WO2007148429A1 - 電磁誘導を用いて物体を検出する物体検出装置 - Google Patents

電磁誘導を用いて物体を検出する物体検出装置 Download PDF

Info

Publication number
WO2007148429A1
WO2007148429A1 PCT/JP2007/000596 JP2007000596W WO2007148429A1 WO 2007148429 A1 WO2007148429 A1 WO 2007148429A1 JP 2007000596 W JP2007000596 W JP 2007000596W WO 2007148429 A1 WO2007148429 A1 WO 2007148429A1
Authority
WO
WIPO (PCT)
Prior art keywords
loop wiring
loop
wiring group
object detection
detection device
Prior art date
Application number
PCT/JP2007/000596
Other languages
English (en)
French (fr)
Inventor
Yasuji Ogawa
Original Assignee
Newcom, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newcom, Inc. filed Critical Newcom, Inc.
Priority to US12/304,226 priority Critical patent/US8013598B2/en
Priority to JP2008522287A priority patent/JP5028552B2/ja
Priority to CN2007800224636A priority patent/CN101473188B/zh
Priority to EP07737252.2A priority patent/EP2031346A4/en
Publication of WO2007148429A1 publication Critical patent/WO2007148429A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/003Measuring arrangements characterised by the use of electric or magnetic techniques for measuring position, not involving coordinate determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2611Measuring inductance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/10Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
    • G01V3/101Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil
    • G01V3/102Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil by measuring amplitude
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means

Definitions

  • Object detection device for detecting an object using electromagnetic induction
  • the present invention relates to an object detection device that detects an object, and more particularly to an object detection device that uses electromagnetic induction to detect the shape of a measurement object made of a conductor or a magnetic material and the distance from the measurement object. .
  • Patent Document 1 discloses a technique for detecting an object made of a conductor or a magnetic body using conventional electromagnetic induction.
  • a plurality of sense coils are two-dimensionally arranged on the detection surface, and a position indicated by a position indicator made of a conductor or a magnetic material is read based on a change in inductance of the sense coil.
  • the technique disclosed in Patent Document 2 is configured to arrange a plurality of sensor portions provided with a cushioning material between coils in a matrix, and detect a pressure distribution applied to the sensor portions based on a change in electromagnetic coupling.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-1 9 8 4 94
  • Patent Document 2 Japanese Patent Laid-Open No. 2 0 0 _ 1 5 6 4 7 4
  • Patent Document 1 detects only an object made of a conductor or a magnetic material, and this is a structure that detects the indicated position of a non-magnetic material, such as a finger. And could not. Also, since the same number of switches as the number of sense coils are required, when detecting the shape of an object, a large number of sense coils and switches are required, which is very expensive. .
  • the present invention can detect the shape of an object made of a conductor or a magnetic body and the distance from the object at a low cost and in addition to a non-conductor such as a finger. It is intended to provide an object detection device that can detect the indicated position of a body object.
  • an object detection device includes a first loop in which a plurality of first loop wires each having a plurality of coil-shaped portions are arranged in parallel on the same plane.
  • a second loop wiring group in which a wiring group and a plurality of second loop wirings each having a plurality of coil-like portions are arranged in parallel on the same plane, wherein the second loop wiring group is a first loop wiring
  • the plurality of second loop wirings are arranged in directions orthogonal to the plurality of first loop wirings, and between the second loop wiring group and the first loop wiring group and the second loop wiring group. The distance between the first loop wiring and the second loop wiring, and the first loop wiring and the second loop wiring are electromagnetic.
  • the size of the coiled portion of the first loop wiring and the size of the coiled portion of the second loop wiring may be different from each other.
  • the object detection device includes a first loop wiring group in which a plurality of first loop wirings each having a plurality of coil-shaped portions are arranged in parallel on the same plane, and a plurality of linear second loops A second loop wiring group in which the wirings are arranged in parallel on the same plane, the second loop wiring group is parallel to the first loop wiring group, and the plurality of second loop wirings are a plurality of first loop wirings Are arranged in directions orthogonal to each other, Spacer means for maintaining a constant distance between the second loop wiring group, the first loop wiring group and the second loop wiring group, and each of the first loop wiring and the second loop wiring orthogonal to each other.
  • a plurality of electromagnetic coupling portions configured such that the first loop wiring and the second loop wiring are electromagnetically coupled by arranging the coil-shaped portion at the position, and the first loop wiring group or the second loop wiring group.
  • the electromagnetic coupling change of the electromagnetic coupling portion from the loop wiring group is detected.
  • a detecting means for detecting is provided.
  • the object detection device includes a first loop wiring group in which a plurality of linear first loop wirings are arranged in parallel on the same plane, and a plurality of linear second loop wirings on the same plane.
  • a second loop wiring group arranged in parallel with each other, wherein the second loop wiring group is parallel to the first loop wiring group, and the plurality of second loop wirings are orthogonal to the plurality of first loop wirings, respectively.
  • the plurality of conductive plates may be arranged in the vicinity between the adjacent first loop wirings and in the vicinity between the adjacent second loop wirings.
  • the plurality of conductive plates are in the vicinity of the first loop wiring and between the adjacent second loop wirings, and in the vicinity of the second loop wiring and between the adjacent first loop wirings. It may be arranged.
  • the plurality of conductive plates may be fixed at a fixed distance from the first loop wiring group and the second loop wiring group.
  • the plurality of conductive plates are arranged in the vicinity of the first loop wiring group and the second loop wiring group via an elastic body, and are separated from the first loop wiring group and the second loop wiring group. May be configured to change according to the pressure applied to the plurality of conductive plates.
  • the plurality of conductive plates may have a coil shape.
  • the detection means can detect the object to be measured when the output signal from the second loop wiring group is attenuated. If the shape is detected and increased, the indicated position of the position indicating means may be detected.
  • the position indicating means may have a tuning circuit that tunes to a specific frequency, and the driving means may drive the first loop wiring group at a specific frequency.
  • the driving means has the first frequency and the second frequency.
  • the tuning circuit is tuned to the second frequency
  • the detection means is driven by the output signal from the second loop wiring group
  • the first loop wiring group is driven at the first frequency.
  • the position indication means When it attenuates, it detects the shape of the object to be measured, and when it increases, it detects the indication position of the position indication means that does not have a tuning circuit, and the output signal when the first loop wiring group is driven at the second frequency is When the output signal is larger than the output signal when driven at the first frequency, the indicated position of the position indicating means having the tuning circuit may be detected.
  • the object detection device of the present invention has an advantage that the shape of an object made of a conductive material or a magnetic material and the distance from the object can be detected inexpensively and stably.
  • it can be configured to detect the indicated position of a non-conductive material such as a finger or non-magnetic material, and it can also be configured to detect the indicated position of a position pointing tool with a built-in tuning circuit. There is an advantage that it is also possible.
  • the object detection device of the present invention has a first loop wiring group consisting of a plurality of first loop wirings 1 and a second loop wiring group consisting of a plurality of second loop wirings 2 on its detection surface 10. Is provided.
  • the object detection device of the present invention includes a drive unit 20 that is connected to the first loop wiring 1 and drives the first loop wiring group, and an electromagnetic wave that is connected to the second loop wiring 1 from the second loop wiring group. And a detector 30 for detecting a change in coupling.
  • the drive unit 20 is connected to the first loop wiring 1 and the detection unit 30 is connected to the second loop wiring 2, but the present invention is not limited to this.
  • the second loop wiring 2 may be connected to the drive unit 20, and the first loop wiring 1 may be connected to the detection unit 30.
  • the first loop wiring 1 and the second loop wiring 2 constitute a detection surface 10 that provides an electromagnetic coupling portion, and the first loop wiring 1 is driven at high frequency.
  • the degree of electromagnetic coupling becomes weak due to the influence of the object to be measured (shield effect).
  • the induced current or induced voltage measured from the second loop wiring 2 Get smaller.
  • the degree of electromagnetic coupling becomes strong, and the induced current or induced voltage measured from the second loop wiring 2 increases.
  • the object detection apparatus of the present invention uses this phenomenon to detect the position where a change has occurred in the electromagnetic coupling unit, and to detect the shape of the object to be measured and the distance from the object to be measured.
  • a conductor whose conductivity is not constant or a magnetic substance whose permeability is not constant it is also possible to detect these change distributions.
  • the first loop wiring group includes a plurality of first loop wirings 1 arranged in parallel on the same plane.
  • the second loop wiring group also includes a plurality of second loop wirings 2 arranged in parallel on the same plane.
  • the second loop wiring group is arranged in parallel with the first loop wiring group, and the second loop wiring 2 is provided so as to be orthogonal to the first loop wiring 1.
  • the first loop wiring group and the second loop wiring group are arranged with a predetermined space so that the distance between them is kept constant. That is, the first loop An insulator 3 is arranged between the wiring group and the second loop wiring group, and is configured so that the first loop wiring group and the second loop wiring group are not in contact with each other and the distance between them is constant. Yes.
  • the insulator 3 may be integral with or separate from the members constituting the detection surface 10.
  • the first loop wiring 1 and the second loop wiring are identical to the object detection device of the present invention.
  • FIG. 2 is a top view of a part of the detection surface for explaining the configuration of the electromagnetic coupling portion of the object detection device of the present invention
  • FIG. 2 (a) shows each wiring formed in a coil shape
  • Fig. 2 (b) shows the one-side wiring in a coil shape and the other in a straight line
  • Fig. 2 (c) shows the one-side wiring in a rectangular shape and the other in a straight line. ing .
  • the electromagnetic coupling unit can be configured as shown in FIG. 2A so that the first loop wiring 1 and the second loop wiring 2 are electromagnetically coupled.
  • FIG. 2A shows that the first loop wiring 1 and the second loop wiring 2 are electromagnetically coupled.
  • the first loop wiring 1 is formed in an arch shape so as to form a smaller coil, and the second loop wiring 2 orthogonal to this is formed so as to overlap with the larger coil. It is formed in an arch shape to form.
  • an electromagnetic coupling unit can be provided.
  • the coiled arch formed by the first loop wiring is formed smaller than the coiled arch formed by the second loop wiring.
  • the present invention is not limited to this. Of course, the same size may be used.
  • the electromagnetic coupling unit can be configured as shown in Fig. 2 (b) so that the first loop wiring and the second loop wiring are electromagnetically coupled.
  • the second loop wiring 2 is formed in an arch shape so as to form a coil, and the first loop wiring 1 orthogonal to the second loop wiring 2 is formed in a straight line shape. Even if comprised in this way, an electromagnetic coupling part can be provided.
  • the second loop wiring 2 is formed in an arch shape and the first loop wiring 1 is formed in a straight shape.
  • the present invention is not limited to this, and conversely, the second loop wiring 1 is formed. Even if the first loop wiring 1 is formed in an arch shape. I do not care.
  • the loop wiring of the object detection device of the present invention is not limited to the arch shape, and may be various shapes such as a diamond shape and a spiral shape as long as it forms a coil that is electromagnetically coupled.
  • the electromagnetic coupling unit may be configured as shown in FIG. 2 (c) so that the first loop wiring and the second loop wiring are electromagnetically coupled. it can.
  • the second loop wiring 2 is formed in a rectangular shape so as to form a coil, and the first loop wiring 1 orthogonal to this is formed in a straight line. Even if comprised in this way, an electromagnetic coupling part can be provided.
  • the second loop wiring 2 is formed in a rectangular shape and the first loop wiring 1 is formed in a linear shape.
  • the present invention is not limited to this, and conversely, the second loop wiring 1 is formed.
  • the wiring 2 may be formed in a straight line
  • the first loop wiring 1 may be formed in a rectangular shape.
  • both the first loop wiring and the second loop wiring may be formed in a rectangular shape.
  • the first loop wiring and the second loop wiring are configured to be electromagnetically coupled to each other.
  • the electromagnetic coupling portion can be formed by using coils having various shapes such as an arch shape, a linear shape, and a diamond shape.
  • the coil size of the electromagnetic coupling part of the loop wiring on the driving side and the loop wiring on the detection side may be the same, but the coil is different between the first loop wiring and the second loop wiring. May be formed to have different sizes. Experiments by the inventor of the present application revealed that the detection sensitivity is improved when the size of the coil is changed between the first loop wiring and the second loop wiring.
  • the first loop wiring and the second loop wiring The electromagnetic coupling part can be configured as shown in Fig. 3 so that the wire is indirectly electromagnetically coupled.
  • FIG. 3 shows an example in which the first loop wiring and the second loop wiring are each formed in a straight line in the object detection device of the present invention, and a conductive plate is provided in the vicinity thereof so that they are electromagnetically coupled.
  • FIG. 3 (a) is a partial top view of the detection surface
  • FIG. 3 (b) is a partial sectional perspective view thereof.
  • the electromagnetic coupling portion is provided by forming a conductive plate 4 in the vicinity of each of the orthogonal positions of the first loop wiring 1 and the second loop wiring 2 formed in a straight line. is there.
  • the first loop wiring 1 and the second loop wiring 2 that are orthogonal to each other are not electromagnetically coupled between them, but by providing a conductive plate 4 in the vicinity, electromagnetic waves are indirectly induced by eddy currents generated in the conductive plate 4. Will be combined.
  • the conductive plate 4 is provided above the portion where the first loop wiring 1 and the second loop wiring 2 are orthogonal to each other.
  • the present invention is not limited to this, so that electromagnetic coupling occurs.
  • the conductive plate may be provided in the lower portion of the orthogonal portion.
  • the conductive plate 4 is provided so as to cover the portion where the first loop wiring 1 and the second loop wiring 2 are orthogonal to each other, but the present invention is not limited to this, and the wiring board is viewed from above. Of course, it may be provided inside the quadrilateral shape provided by the orthogonal wiring so as not to be affected. In this case, the first loop wiring or the second loop wiring may be provided in the same plane as the first loop wiring or the second loop wiring instead of the upper part of the first loop wiring or the second loop wiring.
  • FIG. 4 is a diagram for explaining a variation of the arrangement example of the conductive plates in the object detection device of the present invention.
  • Fig. 4 (a) shows the conductivity in the vicinity between the adjacent first loop wirings 1 in the first loop wiring group and in the vicinity between the adjacent second loop wirings 2 in the second loop wiring group. An example in which the plate 4 is formed is shown.
  • Fig. 4 (b) is an example of a combination of Fig. 3 and Fig.
  • FIG. 4 (a) shows the vicinity of the first loop wiring 1 and the vicinity of the adjacent second loop wiring 2, and the vicinity of the second loop wiring 2 and the adjacent first loop wiring 1.
  • conductive plates 4 are formed in the vicinity of each.
  • An electromagnetic coupling part can also be configured by providing a conductive plate with such various patterns.
  • the conductive plate 4 in the illustrated example is provided inside the four-sided shape provided by the orthogonal wiring so as not to cover the wiring as viewed from above, but the present invention is not limited to this. As shown in FIG. 3, a conductive plate 4 may be provided over the wiring.
  • the conductive plate 4 is shown in Fig. 3 (b) if it is only for detecting the shape of the object to be measured and the distance from the object to be measured, which is made of a conductor or magnetic material placed on the detection surface. As described above, the distance between the first loop wiring group and the second loop wiring group may be fixed so as to be constant.
  • the conductive plate 4 may be embedded in the insulating body 3 constituting the detection surface 10, or the conductive plate 4 may be protected from being exposed to the outside by a protective sheet or the like.
  • the conductive plate 4 has a quadrilateral shape in the illustrated example, the present invention is not limited to this, and may be a circular shape, and a coil shape having a hole in the center. It does not matter if it is a thing.
  • the first loop wiring group is driven by the drive unit 20.
  • the drive unit 20 is mainly composed of a high-frequency oscillator 21, a driver 22, and a switcher 2 3, and the drive unit 20 is connected to each first loop wiring in order.
  • 1 Loop wiring 1 is driven sequentially. It goes without saying that all the first loop wirings may be driven at a time by changing the driving frequency for each first loop wiring.
  • the second loop wiring 2 is connected to a detection unit 30 that detects a change in the degree of electromagnetic coupling between the first loop wiring 1 and the second loop wiring 2.
  • the detection unit 30 is mainly composed of a switch 3 1, an amplifier 3 2, a synchronous detection unit 3 3, and an AZ D conversion unit 3 4, and the detection unit 30 is connected to each second loop wiring 2 in order. Connect and second Inductive current or induced voltage is sequentially detected from the loop wiring.
  • the output from the oscillator 21 is also connected to the synchronous detector 33, and the product of the output from the oscillator 21 and the output from the second loop wiring is taken, and this is integrated over time. It may be configured to detect from all the detection coils at once by combining a re-frequency filter circuit provided with a detection circuit separately for each second loop wiring.
  • the drive unit 20 and the detection unit 30 are controlled by a micro computer 40 made of DSP or the like so that a desired output can be obtained. Specifically, first, the drive unit 20 is connected to the first first loop wiring, the detection unit 30 is sequentially connected to the second loop wiring, and the output signal at that time is measured. Then, the driving unit 20 is connected to the second first loop wiring, the detection unit 30 is sequentially connected to the second loop wiring, and the output signal at that time is measured. By repeating this, it is possible to measure the output signals at all positions where the intersection of the first loop wiring and the second loop wiring on the detection surface 10 is the XY coordinate.
  • the detection unit 30 may be connected to the first second loop wiring, and the drive unit 20 may be sequentially connected to the first loop wiring to measure the output signal at that time.
  • the configurations of the drive unit and the detection unit are not limited to the above-described examples, and any configuration is possible as long as the first loop wiring can be driven and the induced current or the induced voltage can be detected from the second loop wiring. It does n’t matter.
  • the electromagnetic coupling at the intersection of the first loop wiring 1 and the second loop wiring 2 covered by the conductor becomes weak, the second loop wiring.
  • the induced current or induced voltage measured from 2 becomes smaller. Therefore, by plotting the XY coordinates with reduced output, the shape of the conductor placed on the detection surface can be detected.
  • the degree of reduction of the induced current or the induced voltage measured from the second loop wiring 2 changes. Therefore, the distance between the conductor and the detection surface can be detected from the magnitude of this output, and the state of the surface of the conductor can be detected from the change distribution of the output. Note that when a conductor with a non-constant conductivity is placed on the detection surface, the change distribution of the output It becomes possible to detect the change distribution of conductivity.
  • the electromagnetic coupling at the intersection of the first loop wiring 1 and the second loop wiring 2 covered by the magnetic body becomes strong, and the second loop wiring The induced current or induced voltage measured from 2 is increased. Therefore, it is possible to detect the shape of the magnetic material placed on the detection surface by plotting the XY coordinates with large output. Further, when the surface on the detection surface of the magnetic material is not a flat surface but a curved surface, the degree of increase of the induced current or the induced voltage measured from the second loop wiring 2 changes. Therefore, the distance between the magnetic body and the detection surface can be detected from the magnitude of this output, and the surface state of the magnetic body can be detected from the change distribution of the output. When a magnetic material with a non-constant magnetic permeability is placed on the detection surface, it is possible to detect the magnetic permeability change distribution from the output change distribution.
  • the conductive plate shown in FIG. 3 is fixed so that the distance between the first loop wiring group and the second loop wiring group is constant, but in the embodiment shown in FIG. It is configured such that the distance between the loop wiring group and second loop wiring group and the conductive plate changes.
  • a first loop wiring 1 and a second loop wiring 2 are provided in the insulator 3, and an elastic body 5 is provided between the insulator 3 and the conductive plate 4.
  • the distance between the first loop wiring group and the second loop wiring group and the conductive plate 4 changes.
  • the output signal of the second loop wiring also changes.
  • the object detection device of the present invention shown in FIG. 5 uses this phenomenon to apply not only the detection of the shape and distance of the conductor and magnetic material, but also the pressure at the position where the change occurred in the electromagnetic coupling part. It can be detected as the indicated position.
  • the detection unit 30 when the output signal from the second loop wiring 2 is attenuated, it is determined that the one placed on the detection surface 10 is a conductor, and the shape of the conductor and the distance from the conductor Is detected. In addition, when the output signal from the second loop wiring 2 increases, the detection unit 30 determines that the one placed on the detection surface 10 is a position pointing tool and detects the indicated position of the position pointing tool. . In addition, when a magnetic material is placed, the output signal increases, but the increase is larger compared to the increase in the output signal due to pressure. The position indicator and magnetic material can also be distinguished.
  • the drive unit 20 drives the first loop wiring at a specific frequency that is tuned to the tuning circuit.
  • the degree of coupling of the electromagnetic coupling portion at the indicated position becomes strong, and the output signal from the second loop wiring 2 increases. Therefore, in the detection unit 30, when the output signal from the second loop wiring attenuates, it is determined that the one placed on the detection surface 10 is a conductor, and the shape of the conductor and the distance from the conductor are determined.
  • the one placed on the detection surface 10 is a position pointing tool and detect the pointing position of the position pointing tool. It is possible to detect even various shapes such as a card type and a pad type as long as they have a tuning circuit.
  • the position indicator having the tuning circuit is tuned. It is also possible to distinguish and detect a position indicator that does not have a circuit. In the following, a method for distinguishing and detecting a measured object having a tuning circuit, a measured object having no tuning circuit, and a conductor or a magnetic material will be described with reference to FIG.
  • FIG. 6 is a flowchart for explaining a procedure for measuring various objects to be measured.
  • the object detection apparatus of the present invention are those composed a first frequency f A of the first loop wire group in a second frequency f B so as to be able to drive movement, respectively.
  • the position pointing device having the tuning circuit shall be tuned to the second frequency f B.
  • the first loop wiring 1 is driven at the first frequency f A , and the output signal A ij at this time is obtained from the second loop wiring 2 (step 100).
  • I and j represent the XY coordinates from which each signal is obtained.
  • the output signal A ij is attenuated, the conductor is placed on the detection surface, and the shape and distance of the conductor are detected on the assumption that the output signal is attenuated by the shielding effect (step 10 2).
  • step 104 it is detected whether or not the output signal B u is larger than the output signal A ij (step 104). If the output signal is not greater than (or equal to) the output signal A ij, a position indicator made up of a non-conductor-non-magnetic material such as a finger is placed on the detection surface, and the conductive plate 4 is As the output signal increases as it approaches the 1st loop wiring and the 2nd loop wiring, the indicated position of a non-conductive object such as a finger is detected (step 105).
  • the first loop wiring group is driven in advance at the first frequency f A and the second frequency f B , respectively, and the output results from these are accumulated, and when the output signal B ij is greater than the output signal A ij Detects a position indicator with a tuning circuit, detects the pointing position of a non-conductive object such as a finger when the output signal A ij increases, and detects the shape and distance of the conductor when the output signal A ij attenuates Of course, it does not matter.
  • object detection device of the present invention is not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention.
  • FIG. 1 is a schematic diagram for explaining the overall configuration of an object detection apparatus of the present invention.
  • FIG. 2 is a top view of a part of the detection surface for explaining the configuration of the electromagnetic coupling portion of the object detection device of the present invention.
  • FIG. 2 (a) shows that each wiring is formed in a coil shape.
  • Fig. 2 (b) is a wire with one side formed in a coil and the other is formed in a straight line.
  • Fig. 2 (c) is a wire with the other side formed in a rectangular shape and the other is formed in a straight line. is there.
  • FIG. 3 is a diagram for explaining another configuration of the electromagnetic coupling portion of the object detection device of the present invention
  • FIG. 3 (a) is a partial top view of the detection surface.
  • (b) is a partially sectional perspective view thereof.
  • FIG. 4 is a diagram for explaining a variation of an arrangement example of conductive plates in the object detection device of the present invention.
  • FIG. 5 is a partial cross-sectional perspective view for explaining another configuration example of the conductive plate in the object detection device of the present invention.
  • FIG. 6 is a flow chart for explaining a procedure for measuring various objects to be measured.

Abstract

 導電体又は磁性体からなる物体の形状や物体からの距離が検出可能で、さらに指等の非導電体・非磁性体の物体の指示位置検出も可能となる物体検出装置を提供する。  電磁誘導を用いて検出面上に載せられる導電体又は磁性体からなる被測定物体の形状や被測定物体からの距離を検出する物体検出装置である。これは、第1ループ配線1が同一平面上に平行に複数配置される第1ループ配線群と、第2ループ配線2が同一平面上に平行に複数配置される第2ループ配線群と、これらの間の距離を一定に保つスペーサ3とからなる。複数の第2ループ配線2は、複数の第1ループ配線1とそれぞれ直交する方向に配置される。そして、第1ループ配線と第2ループ配線間で電磁結合するように構成される複数の電磁結合部を有しており、駆動部20で第1ループ配線群を駆動し、検出部30で第2ループ配線群から電磁結合部の結合の変化を検出する。

Description

明 細 書
電磁誘導を用いて物体を検出する物体検出装置
技術分野
[0001 ] 本発明は物体を検出する物体検出装置に関し、 特に、 電磁誘導を用いて導 電体又は磁性体からなる被測定物体の形状や被測定物体からの距離を検出す る物体検出装置に関する。
背景技術
[0002] 従来の電磁誘導を用いて導電体又は磁性体等からなる物体を検出するもの としては、 例えば特許文献 1に開示の技術がある。 これは、 複数のセンスコ ィルを検出面上に二次元配置して、 導電体又は磁性体からなる位置指示器に よる指示位置をセンスコイルのインダクタンスの変化を基に読み取るもので ある。 また、 特許文献 2に開示の技術は、 コイル間にクッション材を設けた センサ部を複数マトリックス状に配置し、 センサ部にかかる圧力分布を電磁 結合の変化を基に検出するものである。
[0003] 特許文献 1 :特開平 1 0— 1 9 8 4 9 4号公報
特許文献 2:特開 2 0 0 5 _ 1 5 6 4 7 4号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、 従来の導電体又は磁性体からなる物体の検出装置には、 以 下のような問題があった。 すなわち、 例えば特許文献 1の技術は、 導電体又 は磁性体からなる物体のみを検出するものであり、 これを例えば指等の非導 電体■非磁性体の指示位置を検出するような構造とすることはできなかった 。 また、 センスコイルの数と同数の切替器が必要となるため、 物体の形状を 検出しょうとした場合には多数のセンスコイルと切替器が必要となるので、 非常に高価なものとなっていた。
[0005] また、 特許文献 2の技術では、 導電体又は磁性体からなる物体をセンサ上 に載せると、 本来は圧力により誘導電流又は誘導電圧は増加しなければなら ないにも関わらず、 導電体又は磁性体の影響で減衰又は増加してしまう。 こ のため、 測定できるのは非導電体■非磁性体に限られていた。
[0006] 本発明は、 斯かる実情に鑑み、 導電体又は磁性体からなる物体の形状や物 体からの距離が安価に且つ安定して検出可能で、 さらに指等の非導電体■非 磁性体の物体の指示位置検出も可能となる物体検出装置を提供しょうとする ものである。
課題を解決するための手段
[0007] 上述した本発明の目的を達成するために、 本発明による物体検出装置は、 複数のコイル状部分をそれぞれ有する複数の第 1ループ配線が同一平面上に 平行に配置される第 1ループ配線群と、 複数のコイル状部分をそれぞれ有す る複数の第 2ループ配線が同一平面上に平行に配置される第 2ループ配線群 であって、 該第 2ループ配線群は第 1ループ配線群と平行であり、 複数の第 2ループ配線は複数の第 1ループ配線とそれぞれ直交する方向に配置される 、 第 2ループ配線群と、 第 1ループ配線群と第 2ループ配線群との間の距離 を一定に保つスぺーサ手段と、 第 1ループ配線と第 2ループ配線が直交する それぞれの位置にコィル状部分が配置されることで第 1ループ配線と第 2ル ープ配線が電磁結合するように構成される複数の電磁結合部と、 第 1ループ 配線群又は第 2ループ配線群の一方に接続され、 該ループ配線群を駆動する 駆動手段と、 第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該 ループ配線群から電磁結合部の電磁結合の変化を検出する検出手段と、 を具 備するものである。
[0008] ここで、 第 1ループ配線のコイル状部分の大きさと第 2ループ配線のコィ ル状部分の大きさが、 それぞれ異なるものであっても良い。
[0009] また、 物体検出装置は、 複数のコイル状部分をそれぞれ有する複数の第 1 ループ配線が同一平面上に平行に配置される第 1ループ配線群と、 複数の直 線状の第 2ループ配線が同一平面上に平行に配置される第 2ループ配線群で あって、 該第 2ループ配線群は第 1ループ配線群と平行であり、 複数の第 2 ループ配線は複数の第 1ループ配線とそれぞれ直交する方向に配置される、 第 2ループ配線群と、 第 1ループ配線群と第 2ループ配線群との間の距離を 一定に保つスぺーサ手段と、 第 1ループ配線と第 2ループ配線が直交するそ れぞれの位置にコィル状部分が配置されることで第 1ループ配線と第 2ルー プ配線が電磁結合するように構成される複数の電磁結合部と、 第 1ループ配 線群又は第 2ループ配線群の一方に接続され、 該ループ配線群を駆動する駆 動手段と、 第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該ル 一プ配線群から電磁結合部の電磁結合の変化を検出する検出手段と、 を具備 するものであっても良い。
[0010] さらに、 物体検出装置は、 複数の直線状の第 1ループ配線が同一平面上に 平行に配置される第 1ループ配線群と、 複数の直線状の第 2ループ配線が同 一平面上に平行に配置される第 2ループ配線群であって、 該第 2ループ配線 群は第 1ループ配線群と平行であり、 複数の第 2ループ配線は複数の第 1ル ープ配線とそれぞれ直交する方向に配置される、 第 2ループ配線群と、 第 1 ループ配線群と第 2ループ配線群との間の距離を一定に保つスぺーサ手段と 、 第 1ループ配線と第 2ループ配線が直交するそれぞれの位置の近傍に複数 の導電性板がそれぞれ配置されることで第 1ループ配線と第 2ループ配線が 電磁結合するように構成される複数の電磁結合部と、 第 1ループ配線群又は 第 2ループ配線群の一方に接続され、 該ループ配線群を駆動する駆動手段と 、 第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該ループ配線 群から電磁結合部の電磁結合の変化を検出する検出手段と、 を具備するもの であっても良い。
[0011] ここで、 複数の導電性板は、 隣り合う第 1ループ配線間の近傍で且つ隣り 合う第 2ループ配線間の近傍に配置されても良い。
[0012] また、 複数の導電性板は、 第 1ループ配線の近傍で且つ隣り合う第 2ルー プ配線間の近傍、 及び第 2ループ配線の近傍で且つ隣り合う第 1ループ配線 間の近傍に配置されても良い。
[0013] さらに、 複数の導電性板は、 第 1ループ配線群及び第 2ループ配線群との 距離が一定に固定されれば良い。 [0014] また、 複数の導電性板は、 弾性体を介して第 1ループ配線群及び第 2ルー プ配線群の近傍に配置され、 第 1ループ配線群及び第 2ループ配線群との距 離が複数の導電性板に加えられる圧力により変化するように構成されていて も良い。
[0015] さらにまた、 複数の導電性板は、 コイル形状であっても良い。
[0016] ここで、 検出面上に被測定物体及びこれと異なる位置指示手段が載せられ る場合に、 検出手段は、 第 2ループ配線群からの出力信号が減衰したときに は被測定物体の形状を検出し、 増加したときには位置指示手段の指示位置を 検出すれば良い。
[0017] さらに、 位置指示手段は特定の周波数に同調する同調回路を有し、 駆動手 段は特定の周波数で第 1ループ配線群を駆動するようにしても良い。
[0018] このとき、 検出面上に被測定物体、 同調回路を有する位置指示手段、 及び 同調回路を有さない位置指示手段が載せられる場合に、 駆動手段は、 第 1周 波数及び第 2周波数で第 1ループ配線群を駆動し、 同調回路は、 第 2周波数 に同調し、 検出手段は、 第 2ループ配線群からの出力信号が、 第 1ループ配 線群が第 1周波数で駆動されるときに減衰したときには被測定物体の形状を 検出し増加したときには同調回路を有さない位置指示手段の指示位置を検出 し、 第 1ループ配線群が第 2周波数で駆動されるときの出力信号が第 1周波 数で駆動されるときの出力信号より大きいときには同調回路を有する位置指 示手段の指示位置を検出するように構成されていても良い。
発明の効果
[0019] 本発明の物体検出装置には、 導電体又は磁性体からなる物体の形状や物体 からの距離を安価に且つ安定して検出可能であるという利点がある。 また、 指等の非導電体■非磁性体の物体の指示位置検出も可能となるように構成で き、 さらに同調回路を内蔵する位置指示具の指示位置をも検出可能となるよ うに構成することも可能であるという利点がある。
発明を実施するための最良の形態
[0020] 以下、 本発明を実施するための最良の形態を図示例と共に説明する。 図 1 は、 本発明の物体検出装置の全体的な構成を説明するための概略図である。 図示の通り、 本発明の物体検出装置は、 その検出面 1 0には複数の第 1ルー プ配線 1からなる第 1ループ配線群と複数の第 2ループ配線 2からなる第 2 ループ配線群とが設けられている。 また、 本発明の物体検出装置は、 第 1ル ープ配線 1に接続され第 1ループ配線群を駆動する駆動部 2 0と、 第 2ルー プ配線 1に接続され第 2ループ配線群から電磁結合の変化を検出する検出部 3 0とを具備する。 なお、 図示例では駆動部 2 0が第 1ループ配線 1に接続 され、 検出部 3 0が第 2ループ配線 2に接続された例を示しているが、 本発 明はこれに限定されず、 駆動部 2 0に第 2ループ配線 2を、 検出部 3 0に第 1ループ配線 1を接続しても勿論構わない。
[0021 ] 本発明の物体検出装置では、 第 1ループ配線 1と第 2ループ配線 2により 電磁結合部を提供する検出面 1 0を構成し、 第 1ループ配線 1を高周波駆動 する。 導電体からなる被測定物体が検出面に載せられると、 被測定物体の影 響 (シールド効果) で電磁結合の度合いが弱くなリ、 第 2ループ配線 2から 測定される誘導電流又は誘導電圧が小さくなる。 一方、 磁性体からなる被測 定物が検出面に載せられると、 電磁結合の度合いが強くなリ、 第 2ループ配 線 2から測定される誘導電流又は誘導電圧が大きくなる。 本発明の物体検出 装置では、 この現象を利用して電磁結合部に変化が現れた位置を検出し、 被 測定物体の形状や被測定物体からの距離を検出するものである。 なお、 導電 率が一定ではない導電体や透磁率が一定でない磁性体の場合には、 これらの 変化分布を検出することも可能である。
[0022] 本発明の物体検出装置において、 第 1ループ配線群は、 複数の第 1ループ 配線 1が同一平面上に平行に配置されたものである。 また、 第 2ループ配線 群も複数の第 2ループ配線 2が同一平面上に平行に配置されたものである。 そして、 第 2ループ配線群は第 1ループ配線群と平行に配置され、 さらに第 2ループ配線 2は、 第 1ループ配線 1と直交するように設けられている。 さ らに、 第 1ループ配線群と第 2ループ配線群は、 それらの間の距離が一定に 保たれるように所定のスペースを設けて配置される。 すなわち、 第 1ループ 配線群と第 2ループ配線群の間には絶縁体 3が配置され、 第 1ループ配線群 と第 2ループ配線群が接触せず且つそれらの間の距離が一定となるように構 成されている。 なお、 絶縁体 3は、 検出面 1 0を構成する部材と一体であつ ても別体であっても勿論構わない。
[0023] ここで、 本発明の物体検出装置では、 第 1ループ配線 1と第 2ループ配線
2とが電磁結合するように構成されている。 以下、 本発明の物体検出装置の 電磁結合部のよリ具体的な構成について説明する。
[0024] 図 2は、 本発明の物体検出装置の電磁結合部の構成を説明するための検出 面の一部の上面図であり、 図 2 ( a ) が各配線をコイル状に形成したもの、 図 2 ( b ) がー方の配線をコイル状に、 他方を直線状に形成したもの、 図 2 ( c ) がー方の配線を矩形状に、 他方を直線状に形成したものを示している 。 本発明の物体検出装置において電磁結合部は、 第 1ループ配線 1と第 2ル ープ配線 2とが電磁結合するように、 図 2 ( a ) に示すように構成すること ができる。 図 2 ( a ) の例では、 第 1ループ配線 1が小さめのコイルを形成 するようにアーチ状に形成され、 その上に重なるように、 これに直交する第 2ループ配線 2が大きめのコイルを形成するようにアーチ状に形成されてい る。 このように構成することで、 電磁結合部が提供可能である。 なお、 図示 例では第 1ループ配線で形成したコイル状のアーチの方が第 2ループ配線で 形成したコイル状のアーチよりも小さく形成されている例を示したが、 本発 明はこれに限定されず、 同じ大きさで形成されても勿論構わない。
[0025] また、 電磁結合部の他の例としては、 第 1ループ配線と第 2ループ配線と が電磁結合するように、 電磁結合部を図 2 ( b ) に示すように構成すること ができる。 図 2 ( b ) の例では、 第 2ループ配線 2がコイルを形成するよう にアーチ状に形成され、 これに直交する第 1ループ配線 1が直線状に形成さ れている。 このように構成しても、 電磁結合部が提供可能である。 なお、 図 示例では第 2ループ配線 2がアーチ状に形成され、 第 1ループ配線 1が直線 状に形成された例を示したが、 本発明はこれに限定されず、 逆に、 第 2ルー プ配線 2が直線状に形成され、 第 1ループ配線 1がアーチ状に形成されても 構わない。 なお、 本発明の物体検出装置のループ配線は、 アーチ状に限定さ れず、 電磁結合するコイルを形成するものであれば、 菱形状や螺旋形状等、 種々の形状とすることが可能である。
[0026] さらに、 電磁結合部の他の例としては、 第 1ループ配線と第 2ループ配線 とが電磁結合するように、 電磁結合部を図 2 ( c ) に示すように構成するこ とができる。 図 2 ( c ) の例では、 第 2ループ配線 2がコイルを形成するよ うに矩形状に形成され、 これに直交する第 1ループ配線 1が直線状に形成さ れている。 このように構成しても、 電磁結合部が提供可能である。 なお、 図 示例では第 2ループ配線 2が矩形状に形成され、 第 1ループ配線 1が直線状 に形成された例を示したが、 本発明はこれに限定されず、 逆に、 第 2ループ 配線 2が直線状に形成され、 第 1ループ配線 1が矩形状に形成されても構わ ない。 さらに、 第 1ループ配線及び第 2ループ配線の両方が矩形状に形成さ れても勿論構わない。
[0027] このように、 第 1ループ配線及び第 2ループ配線は、 互いに電磁結合する ように構成されている。 電磁結合部の形状としては、 アーチ状や直線状、 菱 形状等、 種々の形状のコイルとすることで電磁結合部を形成可能である。 ま た、 コイルの大きさに関しては、 駆動側のループ配線と検出側のループ配線 の電磁結合部のコイルの大きさが同じでも良いが、 第 1ループ配線と第 2ル ープ配線とでコイルの大きさが異なるように形成されても良い。 コイルの大 きさを第 1ループ配線と第 2ループ配線とで変えると、 検出感度が向上する ことが本願発明者による実験により明らかになった。 所定の条件下で実験を 行ったところ、 被測定物体が検出面に置かれたときに、 同じ大きさのコイル で駆動して検出した場合には、 2 0 %程度の変化が得られたが、 どちらかの コイルの大きさを 1 Z 2にした場合には、 6 0 %程度の変化が得られた。 こ の結果から明らかなように、 検出感度を高くしたい場合には、 コイルの大き さを変えることが好ましい。 なお、 大小どちらのコイルで駆動しても、 同様 の結果が得られた。
[0028] また、 本発明の物体検出装置においては、 第 1ループ配線と第 2ループ配 線とが間接的に電磁結合するように、 電磁結合部を図 3に示すように構成す ることができる。 図 3に、 本発明の物体検出装置において、 第 1ループ配線 と第 2ループ配線とがそれぞれ直線状に形成され、 これらが電磁結合するよ うにその近傍に導電性板を設けた例を示す。 図 3 ( a ) はその検出面の一部 上面図であり、 図 3 ( b ) がその一部断面斜視図である。 図示の通り、 電磁 結合部は、 それぞれ直線状に形成された第 1ループ配線 1と第 2ループ配線 2の直交するそれぞれの位置の近傍に、 導電性板 4が形成されて提供される ものである。 直線状に直交する第 1ループ配線 1と第 2ループ配線 2ではそ の間は電磁結合しないが、 近傍に導電性板 4を設けることで、 導電性板 4に 生じる渦電流により間接的に電磁結合することになる。 なお、 図示例では、 導電性板 4を第 1ループ配線 1と第 2ループ配線 2とが直交する部分の上部 に設けているが、 本発明はこれに限定されず、 電磁結合が生ずるように構成 されれば、 導電性板は直交する部分の下部に設けられても勿論良い。 また、 導電性板 4は、 第 1ループ配線 1と第 2ループ配線 2とが直交する部分を覆 うように設けられているが、 本発明はこれに限定されず、 上部から見て配線 上にかからないように、 直交する配線で提供される四辺形状の内側に設けら れても勿論構わない。 なお、 この場合には、 第 1ループ配線や第 2ループ配 線の上部ではなく、 第 1ループ配線又は第 2ループ配線と同じ面内に設けら れても良い。
さらに、 導電性板 4の配置は、 第 1ループ配線 1と第 2ループ配線 2とが 直交する位置の近傍に設けられる以外に、 以下で説明するようなパターンで 設けても良い。 図 4は、 本発明の物体検出装置における導電性板の配置例の バリエーションを説明するための図である。 図 4 ( a ) は、 第 1ループ配線 群の隣リ合う第 1ループ配線 1間の近傍で、 且つ第 2ループ配線群の隣リ合 う第 2ループ配線 2間の近傍に、 それぞれ導電性板 4を形成した例を示して いる。 図 4 ( b ) は、 図 3と図 4 ( a ) を組み合わせた配置例であり、 第 1 ループ配線 1と第 2ループ配線 2が直交する位置の近傍、 及び第 1ループ配 線群の隣リ合う第 1ループ配線 1間の近傍で且つ第 2ループ配線群の隣リ合 う第 2ループ配線 2間の近傍に、 それぞれ導電性板 4を形成した例を示して いる。 さらに、 図 4 ( c ) は、 第 1ループ配線 1の近傍で且つ隣り合う第 2 ループ配線 2間の近傍、 及び第 2ループ配線 2の近傍で且つ隣リ合う第 1ル ープ配線 1間の近傍に、 それぞれ導電性板 4を形成した例を示している。 こ のような種々のパターンで導電性板を設けることでも電磁結合部を構成する ことが可能である。 なお、 図示例の導電性板 4は、 上部から見て配線上にか からないように、 直交する配線で提供される四辺形状の内側に設けられてい るが、 本発明はこれに限定されず、 図 3に示すように、 配線上にかかるよう に導電性板 4を設けても構わない。
[0030] 導電性板 4は、 検出面上に載せられる導電体又は磁性体からなる被測定物 の形状や被測定物体からの距離を検出するためだけであれば、 図 3 ( b ) に 示したように、 第 1ループ配線群及び第 2ループ配線群との距離が一定にな るように固定されれば良い。 なお、 導電性板 4は、 検出面 1 0を構成する絶 縁体 3に埋め込まれても良いし、 別途保護シート等により導電性板 4が外部 に露出するのを保護しても構わない。 さらに、 導電性板 4は、 図示例では四 辺形状のものを示したが、 本発明はこれに限定されず、 円形状のものであつ ても良く、 さらに中心に孔が開いたコィル形状のものであつても構わない。
[0031] 次に、 本発明の物体検出装置における具体的な検出手順について図 1を再 度参照して説明する。 まず、 第 1ループ配線群を駆動部 2 0により駆動する 。 具体的には、 駆動部 2 0は高周波発振器 2 1とドライバ 2 2と切替器 2 3 とから主になるものであり、 駆動部 2 0を各第 1ループ配線に順に接続して いき、 第 1ループ配線 1を順次駆動する。 なお、 第 1ループ配線毎に駆動す る周波数を変化させてすべての第 1ループ配線を一度に駆動するように構成 しても勿論構わない。
[0032] 一方、 第 2ループ配線 2は、 第 1ループ配線 1と第 2ループ配線 2との電 磁結合の度合いの変化を検出する検出部 3 0に接続される。 検出部 3 0は、 切替器 3 1とアンプ 3 2と同期検波部 3 3と AZ D変換部 3 4とから主にな るものであり、 検出部 3 0を各第 2ループ配線 2に順に接続していき、 第 2 ループ配線から誘導電流又は誘導電圧を順次検出する。 同期検波部 3 3には 、 発振器 2 1からの出力も接続され、 発振器 2 1からの出力と第 2ループ配 線からの出力の積を取り、 これを時間積分する。 なお、 第 2ループ配線毎に 別々に検出回路を設けたリ周波数フィルタ回路等を組み合わせたりすること で、 すべての検出コイルから一度に検出するように構成しても良い。
[0033] これらの駆動部 2 0及び検出部 3 0は、 D S P等からなるマイクロコンビ ユータ 4 0で制御され、 所望な出力が得られるよう構成されている。 具体的 には、 まず 1つ目の第 1ループ配線に駆動部 2 0を接続し、 検出部 3 0を第 2ループ配線に順次接続してそのときの出力信号を測定する。 そして 2つ目 の第 1ループ配線に駆動部 2 0を接続し、 検出部 3 0を第 2ループ配線に順 次接続してそのときの出力信号を測定する。 これを繰り返すことで、 検出面 1 0における第 1ループ配線と第 2ループ配線の交点を X Y座標とするすべ ての位置における出力信号を測定することができる。 なお、 検出部 3 0を 1 つ目の第 2ループ配線に接続し、 駆動部 2 0を第 1ループ配線に順次接続し てそのときの出力信号を測定するようにしても勿論構わない。 なお、 駆動部 及び検出部の構成は、 上述の図示例に限定されるものではなく、 第 1ループ 配線を駆動でき、 第 2ループ配線から誘導電流又は誘導電圧を検出できるも のであれば如何なる構成であつても構わない。
[0034] さて、 導電体が検出面 1 0上に載せられると、 導電体に覆われる第 1ルー プ配線 1と第 2ループ配線 2の交点部分の電磁結合が弱くなリ、 第 2ループ 配線 2から測定される誘導電流又は誘導電圧が小さくなる。 そこで、 出力が 小さくなつた X Y座標をプロッ卜することで、 検出面上に載せられた導電体 の形状を検出することが可能となる。 また、 導電体の検出面に載せられる側 の面が平面ではなく曲面等の場合には、 第 2ループ配線 2から測定される誘 導電流又は誘導電圧が小さくなる度合いが変化する。 そこで、 この出力の大 きさから、 導電体と検出面との間の距離を検出することが可能となり、 出力 の変化分布から導電体の表面の状態を検出することが可能となる。 なお、 導 電率が一定でない導電体を検出面上に載せた場合には、 出力の変化分布から 導電率の変化分布を検出することが可能となる。
[0035] 一方、 磁性体が検出面 1 0上に載せられると、 磁性体に覆われる第 1ルー プ配線 1と第 2ループ配線 2の交点部分の電磁結合が強くなリ、 第 2ループ 配線 2から測定される誘導電流又は誘導電圧が大きくなる。 そこで、 出力が 大きくなつた X Y座標をプロッ卜することで、 検出面上に載せられた磁性体 の形状を検出することが可能となる。 また、 磁性体の検出面に載せられる側 の面が平面ではなく曲面等の場合には、 第 2ループ配線 2から測定される誘 導電流又は誘導電圧が大きくなる度合いが変化する。 そこで、 この出力の大 きさから、 磁性体と検出面との間の距離を検出することが可能となり、 出力 の変化分布から磁性体の表面の状態を検出することが可能となる。 なお、 透 磁率が一定でない磁性体を検出面上に載せた場合には、 出力の変化分布から 透磁率の変化分布を検出することが可能となる。
[0036] 次に、 本発明の他の実施例について、 図 5を参照して説明する。 図 3に示 した導電性板は、 第 1ループ配線群及び第 2ループ配線群との距離が一定に なるように固定されたものであつたが、 図 5に示した実施例では、 第 1ルー プ配線群及び第 2ループ配線群と導電性板との距離が変化するように構成さ れたものである。 図示のように、 絶縁体 3内に第 1ループ配線 1と第 2ルー プ配線 2が設けられ、 絶縁体 3と導電性板 4との間に、 弾性体 5が設けられ ている。 導電性板 4に圧力が加えられると、 第 1ループ配線群及び第 2ルー プ配線群と導電性板 4との距離が変化する。 第 1ループ配線群及び第 2ルー プ配線群と導電性板 4との距離が変化すると、 第 2ループ配線の出力信号も 変化する。 具体的には、 第 1ループ配線群及び第 2ループ配線群と導電性板 4との距離が狭くなると、 電磁結合の度合いが強くなるため、 第 2ループ配 線から測定される誘導電流又は誘導電圧が大きくなる。 図 5に示した本発明 の物体検出装置ではこの現象を利用して、 導電体や磁性体の形状や距離の検 出だけでなく、 電磁結合部に変化が現れた位置を圧力が加えられた指示位置 として検出可能としたものである。
[0037] 本実施例の物体検出装置における具体的な検出手順について説明すると、 例えば検出面 1 0上に、 位置指示具として非導電体■非磁性体である指や絶 縁体が載せられた場合、 導電性板 4が第 1ループ配線 1及び第 2ループ配線 2に近寄るため、 その指示位置の電磁結合部の結合の度合いは強くなリ、 第 2ループ配線 2からの出力信号が大きくなる。 一方、 導電体が検出面 1 0上 に載せられた場合には、 その重さにより導電性板 4が第 1ループ配線 1及び 第 2ループ配線 2に近寄リ電磁結合の度合いが強くなるが、 それ以上に導電 体によるシールド効果が効いて、 第 2ループ配線 2からの出力信号は減衰す ることになる。 したがって、 検出部 3 0においては、 第 2ループ配線 2から の出力信号が減衰したときには、 検出面 1 0上に載せられたものは導電体と 判断して導電体の形状や導電体からの距離を検出する。 また、 検出部 3 0は 、 第 2ループ配線 2からの出力信号が増加したときには、 検出面 1 0上に載 せられたものは位置指示具と判断して位置指示具の指示位置を検出する。 さ らに、 磁性体が載せられた場合には、 出力信号は増加するが、 圧力による出 力信号の増加と比べると、 より増加が大きいものであったリ、 指と比べて増 加する領域が広いものであったりするため、 位置指示具と磁性体との区別も 可能である。
さらに、 本発明の物体検出装置において、 指以外の位置指示具としては、 特定の周波数に同調する同調回路を有する位置指示具を適用することが可能 である。 この場合、 駆動部 2 0は、 同調回路と同調する特定の周波数で第 1 ループ配線を駆動する。 検出面 1 0上に同調回路を有する位置指示具が載せ られると、 その指示位置の電磁結合部の結合の度合いは強くなリ、 第 2ルー プ配線 2からの出力信号が大きくなる。 したがって、 検出部 3 0においては 、 第 2ループ配線からの出力信号が減衰したときには、 検出面 1 0上に載せ られたものは導電体と判断して導電体の形状や導電体からの距離を検出し、 増加したときには、 検出面 1 0上に載せられたものは位置指示具と判断して 位置指示具の指示位置を検出することが可能となる。 なお、 同調回路を有す るものであれば、 カード型やパッド型等、 種々の形状のものであっても検出 することが可能である。 [0039] さらに、 同調周波数とそれ以外の周波数で順次第 1ループ配線 1を駆動す ることにより、 導電体又は磁性体の形状や距離の検出だけでなく、 同調回路 を有する位置指示具と同調回路を有さない位置指示具を区別して検出するこ とも可能となる。 以下、 図 6を用いて、 同調回路を有する被測定物体と、 同 調回路を有さない被測定物体と、 導電体又は磁性体とを区別してそれぞれ検 出する手法について説明する。 図 6は、 種々の被測定物体を測定するための 手順を説明するためのフローチャートである。 前提として、 本発明の物体検 出装置は、 第 1周波数 f Aと第 2周波数 f Bで第 1ループ配線群をそれぞれ駆 動できるように構成されるものである。 また、 同調回路を有する位置指示具 は、 第 2周波数 f Bに同調するものとする。
[0040] まず、 第 1周波数 f Aで第 1ループ配線 1を駆動し、 このときの出力信号 A i jを第 2ループ配線 2から得る (ステップ 1 0 0 ) 。 なお、 i , jは各信号 が得られる X Y座標を表す。 次に、 この出力信号 A uが、 検出面上に何も載 せられていない状態の基準出力信号と比べて増加したか減衰したかを検出す る (ステップ 1 0 1 ) 。 出力信号 A i jが減衰した場合には、 導電体が検出面 に載せられ、 シールド効果により出力信号が減衰したものとして、 導電体の 形状や距離を検出する (ステップ 1 0 2 ) 。 ステップ 1 0 1で、 出力信号 A i jが増加した場合には、 第 2周波数 f Bで第 1ループ配線 1を駆動し、 このと きの出力信号 B uを得る (ステップ 1 0 3 ) 。 次に、 この出力信号 B uが出 力信号 A i jより大きいか否かを検出する (ステップ 1 0 4 ) 。 出力信号 が出力信号 A i jより大きくない場合 (等しい場合) には、 指等の非導電体- 非磁性体からなる位置指示具が検出面に載せられ、 圧力によリ導電性板 4が 第 1ループ配線及び第 2ループ配線に近づき出力信号が増加したものとして 、 指等の非導電体の物体の指示位置を検出する (ステップ 1 0 5 ) 。 ステツ プ 1 0 4で、 出力信号 B uが出力信号 A uより大きい場合には、 同調回路を 有する位置指示具が検出面上に載せられ、 これにより出力信号が増加したも のとして、 同調回路を有する位置指示具の指示位置を検出する (ステップ 1 0 6 ) 。 これらのステップをすベてのループ配線について繰り返すことで、 各種物体を区別してそれぞれ検出することが可能となる。
[0041 ] なお、 予め第 1周波数 f Aと第 2周波数 f Bで第 1ループ配線群をそれぞれ 駆動した上で、 これらによる出力結果を蓄積し、 出力信号 B i jが出力信号 A i jより大きいときには同調回路を有する位置指示具を検出し、 出力信号 A i jが 増加したときには指等の非導電体の物体の指示位置を検出し、 出力信号 A i j が減衰したときには導電体の形状や距離を検出するようにしても勿論構わな い。
[0042] また、 さらに別の同調回路を有する位置指示具を用いて、 その別の同調回 路に同調する周波数で第 1ループ配線を駆動させることで、 さらに多くの位 置指示具を区別して検出することが可能となる。 なお、 周波数を可変させた 場合、 周波数が高くなるほど渦電流が増加するため、 検出面上に載せられた 物体に変化がなくても厳密には出力信号に変化が現れてしまう。 したがって 、 これを考慮した補正回路を設けたり、 所定の閾値以下の変化は測定しない ようにすること等により、 周波数の変化による出力信号の変化を補償するこ とも可能である。
[0043] なお、 本発明の物体検出装置は、 上述の図示例にのみ限定されるものでは なく、 本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは 勿論である。
図面の簡単な説明
[0044] [図 1 ]図 1は、 本発明の物体検出装置の全体的な構成を説明するための概略図 である。
[図 2]図 2は、 本発明の物体検出装置の電磁結合部の構成を説明するための検 出面の一部の上面図であり、 図 2 ( a ) が各配線をコイル状に形成したもの 、 図 2 ( b ) がー方の配線をコイル状に、 他方を直線状に形成したもの、 図 2 ( c ) がー方の配線を矩形状に、 他方を直線状に形成したものである。
[図 3]図 3は、 本発明の物体検出装置の電磁結合部の他の構成を説明するため の図であり、 図 3 ( a ) はその検出面の一部上面図であり、 図 3 ( b ) がそ の一部断面斜視図である。 [図 4]図 4は、 本発明の物体検出装置における導電性板の配置例のバリエーシ ョンを説明するための図である。
[図 5]図 5は、 本発明の物体検出装置における導電性板の他の構成例を説明す るための一部断面斜視図である。
[図 6]図 6は、 種々の被測定物体を測定するための手順を説明するためのフロ 一チヤ一卜である。
符号の説明
1 第 1ループ配線
2 第 2ループ配線
3 絶縁体
4 導電性板
5 弾性体
1 0 検出面
2 0 駆動部
2 1 発振器
2 2 ドライバ
2 3 切替器
3 0 検出部
3 1 切替器
3 2 アンプ
3 3 同期検波部
3 4 AZ D変換部
4 0 マイクロコンピュータ

Claims

請求の範囲
[1] 電磁誘導を用いて検出面上に載せられる導電体又は磁性体からなる被測定 物体の形状や被測定物体からの距離を検出する物体検出装置であって、 該装 置は、
複数のコイル状部分をそれぞれ有する複数の第 1ループ配線が同一平面上 に平行に配置される第 1ループ配線群と、
複数のコイル状部分をそれぞれ有する複数の第 2ループ配線が同一平面上 に平行に配置される第 2ループ配線群であって、 該第 2ループ配線群は第 1 ループ配線群と平行であり、 前記複数の第 2ループ配線は複数の第 1ループ 配線とそれぞれ直交する方向に配置される、 第 2ループ配線群と、
前記第 1ループ配線群と第 2ループ配線群との間の距離を一定に保つスぺ ーサ手段と、
前記第 1ループ配線と第 2ループ配線が直交するそれぞれの位置に前記コ ィル状部分が配置されることで前記第 1ループ配線と第 2ループ配線が電磁 結合するように構成される複数の電磁結合部と、
前記第 1ループ配線群又は第 2ループ配線群の一方に接続され、 該ループ 配線群を駆動する駆動手段と、
前記第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該ループ 配線群から前記電磁結合部の電磁結合の変化を検出する検出手段と、 を具備することを特徴とする物体検出装置。
[2] 請求項 1に記載の物体検出装置において、 前記第 1ループ配線のコイル状 部分の大きさと第 2ループ配線のコィル状部分の大きさが、 それぞれ異なる ことを特徴とする物体検出装置。
[3] 電磁誘導を用いて検出面上に載せられる導電体又は磁性体からなる被測定 物体の形状や被測定物体からの距離を検出する物体検出装置であって、 該装 置は、
複数のコイル状部分をそれぞれ有する複数の第 1ループ配線が同一平面上 に平行に配置される第 1ループ配線群と、 複数の直線状の第 2ループ配線が同一平面上に平行に配置される第 2ルー プ配線群であって、 該第 2ループ配線群は第 1ループ配線群と平行であり、 前記複数の第 2ループ配線は複数の第 1ループ配線とそれぞれ直交する方向 に配置される、 第 2ループ配線群と、
前記第 1ループ配線群と第 2ループ配線群との間の距離を一定に保つスぺ ーサ手段と、
前記第 1ループ配線と第 2ループ配線が直交するそれぞれの位置に前記コ ィル状部分が配置されることで前記第 1ループ配線と第 2ループ配線が電磁 結合するように構成される複数の電磁結合部と、
前記第 1ループ配線群又は第 2ループ配線群の一方に接続され、 該ループ 配線群を駆動する駆動手段と、
前記第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該ループ 配線群から前記電磁結合部の電磁結合の変化を検出する検出手段と、 を具備することを特徴とする物体検出装置。
電磁誘導を用いて検出面上に載せられる導電体又は磁性体からなる被測定 物体の形状や被測定物体からの距離を検出する物体検出装置であって、 該装 置は、
複数の直線状の第 1ループ配線が同一平面上に平行に配置される第 1ルー プ配線群と、
複数の直線状の第 2ループ配線が同一平面上に平行に配置される第 2ルー プ配線群であって、 該第 2ループ配線群は第 1ループ配線群と平行であり、 前記複数の第 2ループ配線は複数の第 1ループ配線とそれぞれ直交する方向 に配置される、 第 2ループ配線群と、
前記第 1ループ配線群と第 2ループ配線群との間の距離を一定に保つスぺ ーサ手段と、
前記第 1ループ配線と第 2ループ配線が直交するそれぞれの位置の近傍に 複数の導電性板がそれぞれ配置されることで前記第 1ループ配線と第 2ルー プ配線が電磁結合するように構成される複数の電磁結合部と、 前記第 1ループ配線群又は第 2ループ配線群の一方に接続され、 該ループ 配線群を駆動する駆動手段と、
前記第 1ループ配線群又は第 2ループ配線群の他方に接続され、 該ループ 配線群から前記電磁結合部の電磁結合の変化を検出する検出手段と、 を具備することを特徴とする物体検出装置。
[5] 請求項 4に記載の物体検出装置において、 前記複数の導電性板は、 隣り合 う第 1ループ配線間の近傍で且つ隣り合う第 2ループ配線間の近傍に配置さ れることを特徴とする物体検出装置。
[6] 請求項 4に記載の物体検出装置において、 前記複数の導電性板は、 第 1ル ープ配線の近傍で且つ隣リ合う第 2ループ配線間の近傍、 及び第 2ループ配 線の近傍で且つ隣り合う第 1ループ配線間の近傍に配置されることを特徴と する物体検出装置。
[7] 請求項 4乃至請求項 6の何れかに記載の物体検出装置において、 前記複数 の導電性板は、 前記第 1ループ配線群及び第 2ループ配線群との距離が一定 に固定されることを特徴とする物体検出装置。
[8] 請求項 4乃至請求項 6の何れかに記載の物体検出装置において、 前記複数 の導電性板は、 弾性体を介して前記第 1ループ配線群及び第 2ループ配線群 の近傍に配置され、 前記第 1ループ配線群及び第 2ループ配線群との距離が 前記複数の導電性板に加えられる圧力によリ変化することを特徴とする物体 検出装置。
[9] 請求項 4乃至請求項 8の何れかに記載の物体検出装置において、 前記複数 の導電性板は、 コイル形状であることを特徴とする物体検出装置。
[10] 請求項 1乃至請求項 9の何れかに記載の物体検出装置において、 前記検出 面上に被測定物体及びこれと異なる位置指示手段が載せられる場合に、 前記 検出手段は、 第 1ループ配線群及び第 2ループ配線群の一方からの出力信号 が減衰したときには被測定物体の形状を検出し、 増加したときには位置指示 手段の指示位置を検出することを特徴とする物体検出装置。
[11 ] 請求項 1 0に記載の物体検出装置において、 前記位置指示手段は特定の周 波数に同調する同調回路を有し、 前記駆動手段は前記特定の周波数で前記第
1ループ配線群及び第 2ループ配線群の他方を駆動することを特徴とする物 体検出装置。
請求項 1 1に記載の物体検出装置において、 前記検出面上に被測定物体、 同調回路を有する位置指示手段、 及び同調回路を有さない位置指示手段が載 せられる場合に、
前記駆動手段は、 第 1周波数及び第 2周波数で前記第 1ループ配線群及び 第 2ループ配線群の他方を駆動し、
前記同調回路は、 第 2周波数に同調し、
前記検出手段は、 第 1ループ配線群及び前記第 2ループ配線群の一方から の出力信号が、 前記第 1ループ配線群及び第 2ループ配線群の他方が第 1周 波数で駆動されるときに減衰したときには被測定物体の形状を検出し増加し たときには前記同調回路を有さない位置指示手段の指示位置を検出し、 前記 第 1ループ配線群及び第 2ループ配線群の他方が第 2周波数で駆動されると きの出力信号が第 1周波数で駆動されるときの出力信号より大きいときには 前記同調回路を有する位置指示手段の指示位置を検出することを特徴とする 物体検出装置。
PCT/JP2007/000596 2006-06-19 2007-06-04 電磁誘導を用いて物体を検出する物体検出装置 WO2007148429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/304,226 US8013598B2 (en) 2006-06-19 2007-06-04 Object detecting device for detecting object using electromagnetic induction
JP2008522287A JP5028552B2 (ja) 2006-06-19 2007-06-04 電磁誘導を用いて物体を検出する物体検出装置
CN2007800224636A CN101473188B (zh) 2006-06-19 2007-06-04 利用电磁感应来检测物体的物体检测装置
EP07737252.2A EP2031346A4 (en) 2006-06-19 2007-06-04 OBJECT DETECTION DEVICE FOR DETECTING AN OBJECT BY ELECTROMAGNETIC INDUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-169145 2006-06-19
JP2006169145 2006-06-19

Publications (1)

Publication Number Publication Date
WO2007148429A1 true WO2007148429A1 (ja) 2007-12-27

Family

ID=38833176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/000596 WO2007148429A1 (ja) 2006-06-19 2007-06-04 電磁誘導を用いて物体を検出する物体検出装置

Country Status (6)

Country Link
US (1) US8013598B2 (ja)
EP (1) EP2031346A4 (ja)
JP (1) JP5028552B2 (ja)
KR (1) KR101098200B1 (ja)
CN (1) CN101473188B (ja)
WO (1) WO2007148429A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169462A (ja) * 2009-01-21 2010-08-05 Newcom Inc 電磁結合度の変化を検出して入力体情報を検出する入力体情報検出装置
JP2013200865A (ja) * 2012-03-23 2013-10-03 Samsung Electro-Mechanics Co Ltd デジタイザ
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
JP2014232530A (ja) * 2013-05-28 2014-12-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8339372B2 (en) * 2009-04-20 2012-12-25 Broadcom Corporation Inductive touch screen with integrated antenna for use in a communication device and methods for use therewith
US8810523B2 (en) 2009-04-20 2014-08-19 Broadcom Corporation Inductive touch screen and methods for use therewith
US20130127736A1 (en) * 2011-11-18 2013-05-23 Qualcomm Mems Technologies, Inc. Electromagnetic touchscreen
KR102111032B1 (ko) * 2013-08-14 2020-05-15 삼성디스플레이 주식회사 터치 감지 표시 장치
CN104990494B (zh) * 2015-03-05 2016-09-07 三峡大学 一种快速测量轴孔参数的装置及测量方法
JP6698386B2 (ja) * 2016-03-10 2020-05-27 株式会社ジャパンディスプレイ 表示装置およびタッチ検出装置
JP6677587B2 (ja) * 2016-06-24 2020-04-08 株式会社ワコム 位置検出装置及び位置検出センサの制御方法
CN111727359A (zh) * 2018-02-15 2020-09-29 触觉实验室股份有限公司 用于感测压力的装置和方法
CN109188534B (zh) * 2018-09-11 2020-02-04 电子科技大学 一种基于主动电场原理的水下金属形状探测方法及装置
JP7091963B2 (ja) * 2018-09-14 2022-06-28 オムロン株式会社 物体検知センサおよび物体検知システム
CN110703959B (zh) * 2019-08-26 2021-01-29 华为技术有限公司 输入装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146714B2 (ja) * 1972-06-16 1976-12-10
JPS5245823A (en) * 1975-10-09 1977-04-11 Kazunari Imahashi Chinese character input unit
JPH10198494A (ja) 1997-01-01 1998-07-31 Wacom Co Ltd データタブレット
JP2005156474A (ja) 2003-11-28 2005-06-16 Xiroku:Kk 電磁結合を用いる圧力検出装置
JP3928976B1 (ja) * 2006-01-19 2007-06-13 株式会社シロク 電磁結合を利用する圧力分布検出装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021711A (en) 1957-05-10 1962-02-20 Svenska Flygmotor Aktiebolaget Device for measuring pressure or difference of pressure in fluids
US3722288A (en) 1969-01-31 1973-03-27 Hughes Aircraft Co Electromagnetic coupled detector of dynamic gravitational force gradients
JPS5057125A (ja) * 1973-09-18 1975-05-19
JPS5146714A (en) 1974-10-18 1976-04-21 Ig Gijutsu Kenkyusho Kk Zooryutaikazai oyobi zooryutaikazaio mochiitenaru taikapaneru
US4353050A (en) 1980-06-13 1982-10-05 Ranco Incorporated Displacement measuring transducer
JPS5711331A (en) 1980-06-24 1982-01-21 Takeo Uchida Shouldering tool
JPS57100331A (en) 1980-12-15 1982-06-22 Agency Of Ind Science & Technol Measuring device for load distribution
JPS57165849A (en) 1981-04-07 1982-10-13 Ricoh Co Ltd Electrophotographic toner
JPS5971141U (ja) 1982-11-02 1984-05-15 株式会社東芝 ロ−ドセル
JPS60221820A (ja) 1983-08-05 1985-11-06 Wacom Co Ltd 位置検出装置
JPS61135240A (ja) 1984-12-05 1986-06-23 Fujitsu Ltd 信号選択受信回路
JPH0652206B2 (ja) 1986-03-28 1994-07-06 工業技術院長 静電容量型圧力分布測定装置
JPH0610269Y2 (ja) 1986-10-27 1994-03-16 池田物産株式会社 圧力分布測定装置
JPH0646171B2 (ja) 1987-09-19 1994-06-15 工業技術院長 圧覚センサ
JPH01212301A (ja) 1988-02-19 1989-08-25 Toshiba Corp ひずみセンサ
US4918418A (en) 1988-08-04 1990-04-17 Caterpillar Inc. Inductive coil structure with electrical return path
JPH0278925A (ja) 1988-09-16 1990-03-19 Yokohama Syst Kenkyusho:Kk 静電容量型圧力センサ
US4944187A (en) 1988-12-23 1990-07-31 Rosemount Inc. Multimodulus pressure sensor
JP2732145B2 (ja) * 1990-04-19 1998-03-25 株式会社エース電研 パチンコゲーム機におけるパチンコ玉検出装置
US5120908A (en) 1990-11-01 1992-06-09 Gazelle Graphic Systems Inc. Electromagnetic position transducer
JPH05231809A (ja) * 1992-02-24 1993-09-07 Nippon Denshi Kogyo Kk 起電力形渦電流変位計
US5564696A (en) * 1992-04-28 1996-10-15 Kabushiki Kaisha Ace Denken Metal object detection system for detecting the position of a metal object
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
JPH0755615A (ja) 1993-08-10 1995-03-03 Agency Of Ind Science & Technol 静電容量型力センサ
JPH09113203A (ja) 1995-10-16 1997-05-02 Toyoda Mach Works Ltd 差動トランスおよびそれを用いた測定装置
US6338199B1 (en) 1997-03-25 2002-01-15 Canon Kabushiki Kaisha Sensor
US6480187B1 (en) 1997-08-07 2002-11-12 Fujitsu Limited Optical scanning-type touch panel
JP3543695B2 (ja) 1999-03-17 2004-07-14 富士ゼロックス株式会社 駆動力発生装置
JP2000322201A (ja) 1999-05-06 2000-11-24 Ricoh Co Ltd 座標入力装置
JP3934846B2 (ja) 2000-03-06 2007-06-20 株式会社リコー 座標入力/検出装置、電子黒板システム、受光素子の位置ズレ補正方法及び記憶媒体
JP2001265517A (ja) 2000-03-17 2001-09-28 Ricoh Co Ltd 座標入力装置、センサヘッド取り付け方法、座標入力装置付き表示装置および記録媒体
US6690363B2 (en) 2000-06-19 2004-02-10 Next Holdings Limited Touch panel display system
US6803906B1 (en) 2000-07-05 2004-10-12 Smart Technologies, Inc. Passive touch system and method of detecting user input
ATE345525T1 (de) 2000-07-05 2006-12-15 Smart Technologies Inc Kamerabasiertes beruehrungssystem
US6471613B1 (en) 2000-08-23 2002-10-29 Daimlerchrysler Corporation Transmission with variable line pressure
JP3736440B2 (ja) 2001-02-02 2006-01-18 株式会社セガ カード及びカードゲーム装置
JP2002268807A (ja) 2001-03-14 2002-09-20 Ricoh Co Ltd 座標入力装置、座標入力機能を実行するプログラムおよび該プログラムを記録した記録媒体
JP4768143B2 (ja) 2001-03-26 2011-09-07 株式会社リコー 情報入出力装置、情報入出力制御方法およびプログラム
US6960911B2 (en) 2002-01-29 2005-11-01 Kabushiki Kaisha Toshiba Strain sensor
JP3645553B2 (ja) 2002-01-29 2005-05-11 株式会社東芝 歪みセンサ
JP2003337071A (ja) 2002-05-20 2003-11-28 Yokohama Tlo Co Ltd 触覚センサ
DE10252862B3 (de) * 2002-11-12 2004-07-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Einrichtung zum Messen einer Kraft
US7256772B2 (en) 2003-04-08 2007-08-14 Smart Technologies, Inc. Auto-aligning touch system and method
CN100458670C (zh) 2003-05-19 2009-02-04 株式会社伊特 使用了区域图像传感器的位置检测装置
GB0313808D0 (en) * 2003-06-14 2003-07-23 Binstead Ronald P Improvements in touch technology
JP2005275760A (ja) 2004-03-24 2005-10-06 Ntt Comware Corp パック装置およびセンステーブル管理装置、ならびに移動軌跡算出方法、移動軌跡算出プログラム、記録媒体
US7703342B2 (en) * 2005-03-30 2010-04-27 Xiroku, Inc. Pressure distribution detection device
US7602157B2 (en) 2005-12-28 2009-10-13 Flyback Energy, Inc. Supply architecture for inductive loads
US7861605B2 (en) 2006-07-14 2011-01-04 Newcom, Inc. Pressure distribution sensor utilizing electromagnetic coupling
WO2008050468A1 (fr) 2006-10-24 2008-05-02 Newcom, Inc. Outil opérationnel avec pièce conductrice

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146714B2 (ja) * 1972-06-16 1976-12-10
JPS5245823A (en) * 1975-10-09 1977-04-11 Kazunari Imahashi Chinese character input unit
JPH10198494A (ja) 1997-01-01 1998-07-31 Wacom Co Ltd データタブレット
JP2005156474A (ja) 2003-11-28 2005-06-16 Xiroku:Kk 電磁結合を用いる圧力検出装置
JP3928976B1 (ja) * 2006-01-19 2007-06-13 株式会社シロク 電磁結合を利用する圧力分布検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2031346A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563880B2 (en) 2006-10-24 2013-10-22 Newcom, Inc. Operating tool with conductor pieces
JP2010169462A (ja) * 2009-01-21 2010-08-05 Newcom Inc 電磁結合度の変化を検出して入力体情報を検出する入力体情報検出装置
JP2013200865A (ja) * 2012-03-23 2013-10-03 Samsung Electro-Mechanics Co Ltd デジタイザ
JP2014232530A (ja) * 2013-05-28 2014-12-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置

Also Published As

Publication number Publication date
KR101098200B1 (ko) 2011-12-23
EP2031346A1 (en) 2009-03-04
US8013598B2 (en) 2011-09-06
CN101473188B (zh) 2011-01-19
CN101473188A (zh) 2009-07-01
US20090146654A1 (en) 2009-06-11
EP2031346A4 (en) 2014-07-02
KR20090020575A (ko) 2009-02-26
JP5028552B2 (ja) 2012-09-19
JPWO2007148429A1 (ja) 2009-11-12

Similar Documents

Publication Publication Date Title
WO2007148429A1 (ja) 電磁誘導を用いて物体を検出する物体検出装置
EP2333648B1 (en) Position detecting device
EP2931549B1 (en) A safety system, a method of operating a safety system and a method of building a safety system
JP3928976B1 (ja) 電磁結合を利用する圧力分布検出装置
CN101501521B (zh) 用于磁感应层析术具有降低的互线圈耦合的传感器线圈阵列
US10495486B2 (en) Inductive touch input
US20150193080A1 (en) Touch pad with antenna
JP2010055385A (ja) 複数の指示具を識別可能なデジタイザ
EP2940829B1 (en) Non-contact power supply apparatus
CN105403599B (zh) 通过对不同阻抗点的测量进行材料辨别感测
GB2590662A (en) Electromagnetic sensor
JP2005165432A (ja) 座標入力装置のセンス部
KR100313842B1 (ko) 검출시스템용송수신기
JP4747041B2 (ja) 電磁誘導を用いる検出装置の検出面を構成するタイルユニット
US11101704B2 (en) Foreign object detector, foreign object detection system, use of a foreign object detector, and method of detecting a foreign object
JP5139822B2 (ja) 磁界プローブ
CN219368643U (zh) 一种基于电磁微位移测量技术的柔性阵列传感线圈
JP2008032589A (ja) インダクタンスの変化を用いる物体検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022463.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522287

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007737252

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087028588

Country of ref document: KR

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 12304226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE