WO2007115246A1 - Secure ads-b authentication system and method - Google Patents

Secure ads-b authentication system and method Download PDF

Info

Publication number
WO2007115246A1
WO2007115246A1 PCT/US2007/065759 US2007065759W WO2007115246A1 WO 2007115246 A1 WO2007115246 A1 WO 2007115246A1 US 2007065759 W US2007065759 W US 2007065759W WO 2007115246 A1 WO2007115246 A1 WO 2007115246A1
Authority
WO
WIPO (PCT)
Prior art keywords
ads
transmitter
secure
authentication
authenticator
Prior art date
Application number
PCT/US2007/065759
Other languages
French (fr)
Inventor
Marc J. Viggiano
Edward M. Valovage
Original Assignee
Sensis Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/401,017 external-priority patent/US7730307B2/en
Application filed by Sensis Corporation filed Critical Sensis Corporation
Publication of WO2007115246A1 publication Critical patent/WO2007115246A1/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0008Transmission of traffic-related information to or from an aircraft with other aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/60Digital content management, e.g. content distribution
    • H04L2209/601Broadcast encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/84Vehicles

Definitions

  • the present invention relates to the general area of ADS-B (Automatic Dependent Surveillance—Broadcast, a field of aviation surveillance) and in particular to a method and apparatus for securely authenticating aircraft identity from unencrypted or encrypted broadcast ADS-B position report message
  • ADS-B message (hereinafter ADS-B message) data, providing enhanced security in an airspace.
  • ADS-B is a technology that is being developed and deployed around the world to enhance aviation safety by allowing aircraft to make accurate and timely reports of their position, velocity, identification, capability, and intentions.
  • the current ADS-B message protocol lacks any identity authentication scheme and ADS-B data is currently broadcast without encryption or other security measures.
  • the current direction in air traffic control is to rely on the ADS-B message data for the control and management of air traffic. This leaves the current ATC system vulnerable to broadcast of false identification data.
  • the method for securely authenticating identity between an authenticator system and an ADS-B transmitter system includes the steps of: generating a unique identifier at the authenticator system; transmitting an authentication challenge containing the unique identifier to the ADS-B transmitter system; generating a secure output by inputting the received unique identifier, the ADS-B transmitter system's specific data, ID and secret-key into a secure process at the ADS-B transmitter's system; generating a secure code by inputting the ADS-B transmitter-generated secure output into a second secure process; transmitting the ADS-B transmitter-generated secure code, the ADS-B transmitter's specific data and ID to the authenticator' s system; receiving the ADS-B transmitter's transmitted response containing the ADS-B transmitter-generated secure
  • FIG. 1 is a block diagram of a secure ADS-B authentication system in accordance with one embodiment of the present invention.
  • FIG. 2 is a block diagram of an unsolicited ADS-B authentication system in accordance with a second embodiment of the present invention.
  • FIG. 3 is a block diagram of an encrypted ADS-B authentication system in accordance with a third embodiment of the present invention.
  • the authentication apparatus of the present invention includes an ADS- B system and secure processing including memory for loading and storing an ADS-B equipped platform's secret key.
  • the authentication apparatus of the authentication challenging system further includes a unique identifier generator and identity authentication processing including comparison processing for comparing the independently generated authentication codes.
  • the authentication system includes a user interface to enter a pilot's personal identification number (PIN).
  • the authentication challenging system and ADS-B transmitter system also include an encryption system to encrypt and decrypt the ADS-B broadcast position message(s) (hereinafter ADS-B message).
  • One embodiment of the authentication apparatus and method of the present invention employs an authentication challenge-response methodology and encryption techniques to authenticate the identity of an ADS-B equipped aircraft, vehicle or station, as shown in Fig. 1.
  • ADS-B equipped aircraft, vehicle or station data paths to air traffic control systems and aircraft flight systems, for example, are not depicted in Figures 1-3.
  • each aircraft transiting through an airspace is broadcasting its specific position data 24 and a unique ID 22, for example, a Mode S address.
  • the authentication challenge 12 is transmitted from an ADS-B equipped aircraft, vehicle, vessel or ground station (hereinafter Authenticator).
  • This invention applies an authentication scheme and optional encryption to provide greater assurance that an ADS-B equipped aircraft, vehicle, vessel or station (hereinafter ADS-B transmitter) is who it says it is.
  • each aircraft is broadcasting its ID 22 and specific data 24 in an unencrypted form.
  • the authentication challenge 12 is transmitted from a ground station as part of the uplink data.
  • the unique identifier is a data field generated by unique identifier generator 14 that is part of the system of the Authenticator
  • the unique identifier generator 14 comprises a random number generator. While the unique identifier can be random values, it need only be unique so that an attacker cannot "learn" a valid response by observing the challenges 12 of the authenticator and the corresponding responses 38.
  • the Authenticator' s system generates a unique identifier and transmits an authentication challenge 12, which includes the unique identifier to the ADS-B transmitter 20.
  • the ADS-B transmitter 20 inputs the unique identifier, the ADS-B transmitter's ID 22 and specific data 24 into the authentication processing to generate its authentication challenge response.
  • the ADS-B transmitter's specific data 24 may include such data as position, velocity, and intent as might be provided by a flight management system.
  • the authentication processing of the ADS-B transmitter system comprises a secret- key 36, a secure hash generator 40 and a Message Authentication Code (MAC) generator 35, which transform the input data into a MAC 38.
  • the MAC 38, the ADS-B transmitter's ID 22 and the ADS-B transmitter's specific data 24 are then transmitted to the Authenticator 10 in an authentication response 18.
  • the MAC 38 is transmitted as part of a 1090MHz ADS-B message using unused and/or reserved bits in the ADS-B 1090MHz broadcast message format.
  • the MAC 38 is transmitted in response to an authentication challenge 12 as part of the ADS-B UAT broadcast position message, using unused and/or reserved bits in the ADS-B UAT message format.
  • the ADS-B UAT broadcast position message is broadcast approximately every second by ADS-B UAT equipped aircraft and vehicles.
  • Authenticator 10 may receive an ADS-B transmitter's ID 22 and specific data 24 after transmitting the authentication challenge 12.
  • the Authenticator 10 When the Authenticator 10 receives the ADS-B transmitter's authentication response 18, in either encrypted or unencrypted form, the Authenticator 10 inputs the locally generated unique identifier, with the received ADS-B transmitter's ID 32, and specific data 34 and the secret-key 36a into a secure hash generator 50, to generate an Authenticator-generated secure hash value 52.
  • the secure hash value 52 is input into the MAC generation processing 55 to generate an Authenticator-generated MAC 58.
  • the Authenticator' s system applies the received ADS-B transmitter-generated MAC 38 and the Authenticator-generated MAC 58 to comparator 60 to authenticate the ADS-B transmitter's 20 identity.
  • an authentication signal 70 is produced indicating that the identity of the ADS-B transmitter is authenticated.
  • the Authenticator 10 if an ADS-B transmitter 20 fails two or more consecutive authentication response comparisons, the Authenticator 10 notifies a responsible higher command authority of the authentication failures, so that the responsible higher command authority can respond appropriately.
  • the Authenticator 10 issues an alert that is displayed to other ADS-B equipped aircraft, vehicles, vessels or stations.
  • an Authenticator 10 issues a broadcast authentication challenge 12 to ADS-B equipped platforms each broadcast cycle and the ADS-B equipped platforms authentication challenge response 18 is transmitted in the corresponding transmission cycle.
  • the authentication challenge 12 is broadcast in a newly- defined uplink format and the authentication response 18 is broadcast as part of the Mode S ADS-B message, using unused and/or reserved bits in Mode S ADS-B message.
  • the authentication challenge 12 is broadcast as part of a UAT Ground Uplink and the authentication response 18 is broadcast as part of the ADS-B UAT broadcast position message, using unused and/or reserved bits in ADS-B UAT message.
  • an Authenticator 10 issues addressed authentication challenges 12 to one or more ADS-B equipped platforms each broadcast cycle and each ADS-B transmitter system's authentication challenge response 18 is transmitted in the corresponding transmission cycle.
  • the secure hash generators, 40 and 50 contain a secure hash algorithm, which may be implemented in hardware or software and generate a secure hash value, 30 and 52, as its output.
  • the secure hash value, 30 and 52 is input into the second secure process, which includes the MAC generator, 35 and 55, that modifies, reduces, and/or truncates the secure hash value to generate the MAC, 38 and 58.
  • the ADS-B transmitter 20 transmits MAC 38 to the Authenticator 10 in its authentication response 18 to the Authenticator's authentication challenge 12.
  • a MAC, 38 and 58 for example, contains a designated 16-bit or 8-bit block from the secure hash value, 30 and 52.
  • the application of a MAC generator, 35 and 55 reduces the power of the long secure hash value, it is impractical for an attacker to correctly guess the MAC and limiting the size of the MAC 38 to a designated subset of bits alleviates the impact of the authentication scheme of the present invention on the bandwidth of Mode S, UAT or VDL Mode 4, for example.
  • the MAC 38 is the last 8-bits of the computed secure hash value 30.
  • the authentication apparatus and method of the present invention provides identity authentication without using the authentication challenge-response methodology for airspace in which lower levels of security are acceptable.
  • each ADS-B equipped aircraft inputs the ADS-B system's specific data 24, ID 22 and secret code 36 into the system's secure processing to generate a secure MAC 38 for transmission in this method of unsolicited identity authentication.
  • the unique authentication challenge identifier is replaced with a default value, such as 0000, for example, in the secure hash algorithm.
  • a different secure hash algorithm is used that does not have an authentication challenge input and the secure processing operates as described above.
  • a designated ADS-B system monitors the unsolicited identity authentication contained in the ADS-B messages. The monitoring ADS-B system performs the same processing steps as the ADS-B transmitter to generate the MAC and perform the comparison.
  • an ADS-B transmitter's secret-key 36 must be available to both the ADS-B transmitter 20 and the Authenticator 10.
  • the Authenticator 10 will transmit broadcast authentication challenges 12 to ADS- B transmitters 20 at regular intervals, requiring all ADS-B equipped platforms to respond.
  • the Authenticator 10 will transmit addressed authentication challenges 12 to one or more ADS-B transmitters 20 every reporting cycle (each second for example).
  • the Authenticator 10 will transmit broadcast authentication challenges 12 and addressed authentication challenges 12 to one or more ADS-B transmitters 20 at regular intervals.
  • each ADS-B transmitter 20 has its own secret-key 36.
  • Each ADS-B transmitter 20 having its own secret-key 36 also helps protect the ADS-B system from a system wide attack.
  • the secret-key 36 can be of any agreed-upon length, and the length maybe varied for military or other unique applications.
  • the secret key can be composed of a predefined combination of any number of separate key values and thus provide an authentication of any number of individual entities.
  • a secret key can be composed of the combination of a secret binary number stored in the ADS-B transceiver of an aircraft and a Personal Identification Number (PIN) assigned to the pilot.
  • PIN Personal Identification Number
  • the successful authentication check by the authenticator gives an assurance that the ADS-B message came from the aircraft that the message claims it to be from, and that the pilot is the authorized pilot for that flight.
  • the key can be the combination of the ADS-B transceiver secret binary number and the pilot PIN as in the last embodiment plus an additional PIN entered by a cargo dispatcher certifying that the cargo has had the required screening. Additional PINs can be supplied by other authorized people monitoring other phases of the flight on the ground or in the air. Additional binary values obtained from other systems on board the aircraft or station transmitting the ADS-B message.
  • the secret key used by the ADS-B transmitter 20 must be discoverable by the Authenticator 10.
  • the Authenticator 10 has access to a database of flight plan data, associating a flight with the pilots, aircraft, cargo or passenger dispatcher, or any other authorized people monitoring other phases of the flight on the ground or in the air.
  • the Authenticator 10 can then use this flight plan database along with identifying content of the ADS-B message to determine the pilots, aircraft, cargo or passenger dispatcher, or any other authorized people monitoring other phases of the flight, and to look up in a secure database the corresponding PINs and/or secret binary numbers comprising the secret key.
  • the identifying content of the ADS-B message is the aircraft Mode-S address.
  • the identifying content is the Mode 3/A code.
  • the secure hash algorithm, 40 and 50 can operate on the ADS-B transmitter ID, 22 and 32, and specific data, 24 and 34, in an unencrypted form, as shown on Fig. 1.
  • the secure hash algorithm, 40 and 50 can operate on the ADS-B transmitter ID 32 and specific data 34 in an encrypted form, as shown on Fig. 3.
  • the Authenticator 10 must use the ADS-B transmitter's ID 32 and specific data 34 in the secure hash algorithm 50, prior to decryption. Note that the determination by the authenticator of the secret key to use, discussed in the preceding paragraphs, must come from knowledge of the identity of the ADS-B transmitter. If the encryption scheme encrypts this information, it must be decrypted before determining the identity. This process is not elaborated in
  • FIG. 3 In yet another embodiment of the present invention, some aircraft are broadcasting their ID 32 and specific data 34 in an encrypted form and other aircraft are broadcasting their ID 32 and specific data 34 in an unencrypted form.
  • One requirement for accepting a hash algorithm as sound is that there be no known method of determining the hash without the key that is better than brute force guessing.
  • a hash size of 128 bits has 2 128 possible values and the probability of correctly guessing it is the reciprocal of that number. Although this is a very small probability, in the general field of cryptographic authentication, this is minimally acceptable.
  • the ADS-B transmitter's secure hash value 30 is input into a message authentication code (MAC) generator 35, which generates a message authentication code (MAC) 38 for the ADS-B transmitter 20.
  • the Authenticator 10 inputs its secure hash value 52 into MAC generator 55 to generate its MAC 58.
  • the transmitted MAC 38 contains fewer bits than the associated secure hash value 30.
  • the MAC, 38 and 58 contains a truncated subset of the secure hash value, 30.
  • the MAC, 38 and 58 is generated by using a moving bit pattern of a predetermined length, for example, 8-bits, with the bits selection based on a predetermined sequence, to truncate the MAC generator output.
  • the predetermined bit selection sequence changes at predetermined intervals.
  • the MAC, 38 and 58 comprises a predetermined subset of bits that are non-contiguous.
  • the number of bits in the predetermined pattern is 8-bits or less.
  • the authentication challenge 12 unique identifier is 16-bits in length.
  • the ADS-B transmitter specific data 34 may be transmitted as encrypted data or unencrypted data (i.e., sent in-the-clear).
  • the ADS-B transmitter's ID, 22 and 32 is a constant value of constant length.
  • the ADS-B transmitter's specific data 24 and 34 will comprise a segment of allocated bits in a standard ADS-B message.
  • the number of bits comprising the ADS-B transmitter's specific data 24 and 34 is typically defined by international standard.
  • a Mode-S message contains 112-bits of data and a Universal Access Transceiver (UAT) message contains either 240-bits or 384-bits of data.
  • UAT Universal Access Transceiver
  • a ground station transmits a MAC in the uplink message so that transiting aircraft can authenticate the transmitting ground station's identity.
  • transiting aircraft can request authentication of ground stations or vehicles.
  • the identification, 22 and 32, and specific data, 24 and 34, used in the secure hash algorithm is the ground station ID and designated up-link data, such as weather data, in place of Mode S ID, position, and velocity. The method described herein is valid and useful as long as the data used to authenticate the ground station is predetermined and agreed in advance, and the same data used to generate the MAC, 38 and 58, for comparison 60.
  • the ADS-B transmitter system Where an ADS-B transmitter system has not received an authentication challenge, the ADS-B transmitter system generates a MAC using the challenge unique identifier from the most recent received authentication challenge, in one specific embodiment of the present invention.
  • the authenticator recomputes the MAC using the last challenge unique identifier for the ADS-B transmitter, thereby reducing false identity authentication comparisons.
  • the ADS-B transmitter system generates a MAC using a predetermined default value for the challenge unique identifier where the ADS-B transmitter system has not received an authentication challenge.
  • the authenticator recomputes the MAC using the predetermined default value.
  • the pilot or operator of the ADS-B transmitter system can turn the authentication system of the present invention ON/OFF.

Abstract

A secure system for authenticating the identity of ADS-B systems, including: an authenticator, including a unique id generator and a transmitter transmitting the unique id to one or more ADS-B transmitters; one or more ADS-B transmitters, including a receiver receiving the unique id, one or more secure processing stages merging the unique id with the ADS-B transmitter's identification, data and secret key and generating a secure code identification and a transmitter transmitting a response containing the secure code and ADS-B transmitter's data to the authenticator; the authenticator including means for independently determining each ADS-B transmitter's secret key, a receiver receiving each ADS-B transmitter's response, one or more secure processing stages merging the unique id, ADS-B transmitter's identification and data and generating a secure code, and comparison processing comparing the authenticator-generated and ADS-B transmitter-generated secure codes and providing an authentication signal based on the comparison result.

Description

Secure ADS-B Authentication System and Method
CROSS REFERENCE TO RELATED APPLICATION This application is related to U.S. Patent Application Serial No. 10/285,070, filed October 31, 2002, the entirety of which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to the general area of ADS-B (Automatic Dependent Surveillance—Broadcast, a field of aviation surveillance) and in particular to a method and apparatus for securely authenticating aircraft identity from unencrypted or encrypted broadcast ADS-B position report message
(hereinafter ADS-B message) data, providing enhanced security in an airspace.
BACKGROUND OF THE INVENTION
ADS-B is a technology that is being developed and deployed around the world to enhance aviation safety by allowing aircraft to make accurate and timely reports of their position, velocity, identification, capability, and intentions. The current ADS-B message protocol lacks any identity authentication scheme and ADS-B data is currently broadcast without encryption or other security measures. In addition, the current direction in air traffic control is to rely on the ADS-B message data for the control and management of air traffic. This leaves the current ATC system vulnerable to broadcast of false identification data.
What is needed is a method of authenticating an aircraft's identity, thereby making it more difficult for unauthorized third parties to enter a given air traffic control region by broadcasting false identification data for an aircraft, without adversely affecting the data throughput of the air traffic control system. This invention addresses these problems by employing cryptographic techniques as part of an authentication scheme to enhance the security of the ADS-B system.
SUMMARY OF THE INVENTION One embodiment of the secure authentication ADS-B system and method of this invention requires ADS-B systems to respond to authentication challenges, verifying the identity of the ADS-B systems using an authentication challenge-response format. In this embodiment, the method for securely authenticating identity between an authenticator system and an ADS-B transmitter system includes the steps of: generating a unique identifier at the authenticator system; transmitting an authentication challenge containing the unique identifier to the ADS-B transmitter system; generating a secure output by inputting the received unique identifier, the ADS-B transmitter system's specific data, ID and secret-key into a secure process at the ADS-B transmitter's system; generating a secure code by inputting the ADS-B transmitter-generated secure output into a second secure process; transmitting the ADS-B transmitter-generated secure code, the ADS-B transmitter's specific data and ID to the authenticator' s system; receiving the ADS-B transmitter's transmitted response containing the ADS-B transmitter-generated secure code, specific data and ID; the authenticator independently determining the ADS-B transmitter system's secret-key; generating a secure output by inputting the unique identifier, the ADS-B transmitter's specific data, ID and secret-key in secure processing at the authenticator; generating a secure code by inputting the requestor-generated secure output into a second secure process; comparing the authenticator-generated secure code and the ADS-B transmitter-generated secure code using comparison processing; and authenticating the ADS-B transmitter's identity by determining that the authenticator-generated secure code and the ADS-B transmitter-generated secure code are the same. The secure authentication ADS-B system and method of the present invention overcomes the authentication vulnerability of an airspace by providing a means for authenticating ADS-B equipped platform's identity.
BRIEF DESCRIPTION OF THE DRAWINGS For a fuller understanding of the nature and objects of the invention, reference should be made to the following detailed description of preferred modes of practicing the invention, read in connection with the accompanying drawings in which:
FIG. 1 is a block diagram of a secure ADS-B authentication system in accordance with one embodiment of the present invention.
FIG. 2 is a block diagram of an unsolicited ADS-B authentication system in accordance with a second embodiment of the present invention.
FIG. 3 is a block diagram of an encrypted ADS-B authentication system in accordance with a third embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The authentication apparatus of the present invention includes an ADS- B system and secure processing including memory for loading and storing an ADS-B equipped platform's secret key. The authentication apparatus of the authentication challenging system further includes a unique identifier generator and identity authentication processing including comparison processing for comparing the independently generated authentication codes. In one embodiment of the present invention, the authentication system includes a user interface to enter a pilot's personal identification number (PIN). In another embodiment, the authentication challenging system and ADS-B transmitter system also include an encryption system to encrypt and decrypt the ADS-B broadcast position message(s) (hereinafter ADS-B message).
One embodiment of the authentication apparatus and method of the present invention employs an authentication challenge-response methodology and encryption techniques to authenticate the identity of an ADS-B equipped aircraft, vehicle or station, as shown in Fig. 1. It should be noted that data paths to air traffic control systems and aircraft flight systems, for example, are not depicted in Figures 1-3. In operation, each aircraft transiting through an airspace is broadcasting its specific position data 24 and a unique ID 22, for example, a Mode S address. The authentication challenge 12 is transmitted from an ADS-B equipped aircraft, vehicle, vessel or ground station (hereinafter Authenticator). This invention applies an authentication scheme and optional encryption to provide greater assurance that an ADS-B equipped aircraft, vehicle, vessel or station (hereinafter ADS-B transmitter) is who it says it is. In one embodiment of the present invention, each aircraft is broadcasting its ID 22 and specific data 24 in an unencrypted form. In another embodiment of the present invention, the authentication challenge 12 is transmitted from a ground station as part of the uplink data. The unique identifier is a data field generated by unique identifier generator 14 that is part of the system of the Authenticator
10.
In one embodiment of the present invention, the unique identifier generator 14 comprises a random number generator. While the unique identifier can be random values, it need only be unique so that an attacker cannot "learn" a valid response by observing the challenges 12 of the authenticator and the corresponding responses 38. The Authenticator' s system generates a unique identifier and transmits an authentication challenge 12, which includes the unique identifier to the ADS-B transmitter 20. The ADS-B transmitter 20 inputs the unique identifier, the ADS-B transmitter's ID 22 and specific data 24 into the authentication processing to generate its authentication challenge response. The ADS-B transmitter's specific data 24 may include such data as position, velocity, and intent as might be provided by a flight management system. In one embodiment of the present invention, the authentication processing of the ADS-B transmitter system comprises a secret- key 36, a secure hash generator 40 and a Message Authentication Code (MAC) generator 35, which transform the input data into a MAC 38. The MAC 38, the ADS-B transmitter's ID 22 and the ADS-B transmitter's specific data 24 are then transmitted to the Authenticator 10 in an authentication response 18. In one preferred embodiment of the present invention, the MAC 38 is transmitted as part of a 1090MHz ADS-B message using unused and/or reserved bits in the ADS-B 1090MHz broadcast message format. In another preferred embodiment, the MAC 38 is transmitted in response to an authentication challenge 12 as part of the ADS-B UAT broadcast position message, using unused and/or reserved bits in the ADS-B UAT message format. The ADS-B UAT broadcast position message is broadcast approximately every second by ADS-B UAT equipped aircraft and vehicles. Authenticator 10 may receive an ADS-B transmitter's ID 22 and specific data 24 after transmitting the authentication challenge 12. When the Authenticator 10 receives the ADS-B transmitter's authentication response 18, in either encrypted or unencrypted form, the Authenticator 10 inputs the locally generated unique identifier, with the received ADS-B transmitter's ID 32, and specific data 34 and the secret-key 36a into a secure hash generator 50, to generate an Authenticator-generated secure hash value 52. The secure hash value 52 is input into the MAC generation processing 55 to generate an Authenticator-generated MAC 58. The Authenticator' s system applies the received ADS-B transmitter-generated MAC 38 and the Authenticator-generated MAC 58 to comparator 60 to authenticate the ADS-B transmitter's 20 identity. If the MAC 38 received from the ADS-B transmitter 20 matches the Authenticator-generated MAC 58, an authentication signal 70 is produced indicating that the identity of the ADS-B transmitter is authenticated. In one embodiment of the present invention, if an ADS-B transmitter 20 fails two or more consecutive authentication response comparisons, the Authenticator 10 notifies a responsible higher command authority of the authentication failures, so that the responsible higher command authority can respond appropriately. In another embodiment, the Authenticator 10 issues an alert that is displayed to other ADS-B equipped aircraft, vehicles, vessels or stations. In one embodiment of the present invention, an Authenticator 10 issues a broadcast authentication challenge 12 to ADS-B equipped platforms each broadcast cycle and the ADS-B equipped platforms authentication challenge response 18 is transmitted in the corresponding transmission cycle. In a preferred embodiment, the authentication challenge 12 is broadcast in a newly- defined uplink format and the authentication response 18 is broadcast as part of the Mode S ADS-B message, using unused and/or reserved bits in Mode S ADS-B message. In another preferred embodiment, the authentication challenge 12 is broadcast as part of a UAT Ground Uplink and the authentication response 18 is broadcast as part of the ADS-B UAT broadcast position message, using unused and/or reserved bits in ADS-B UAT message.
In another embodiment of the present invention, an Authenticator 10 issues addressed authentication challenges 12 to one or more ADS-B equipped platforms each broadcast cycle and each ADS-B transmitter system's authentication challenge response 18 is transmitted in the corresponding transmission cycle.
This secure ADS-B technique does not depend on any one specific secure hash algorithm. Some secure hash algorithms have response hashes that are longer than the standard ADS-B message size The secure hash generators, 40 and 50, contain a secure hash algorithm, which may be implemented in hardware or software and generate a secure hash value, 30 and 52, as its output.
However, according to the present invention the secure hash value, 30 and 52, is input into the second secure process, which includes the MAC generator, 35 and 55, that modifies, reduces, and/or truncates the secure hash value to generate the MAC, 38 and 58. The ADS-B transmitter 20 transmits MAC 38 to the Authenticator 10 in its authentication response 18 to the Authenticator's authentication challenge 12. In one embodiment of the present invention, a MAC, 38 and 58, for example, contains a designated 16-bit or 8-bit block from the secure hash value, 30 and 52. Although the application of a MAC generator, 35 and 55, reduces the power of the long secure hash value, it is impractical for an attacker to correctly guess the MAC and limiting the size of the MAC 38 to a designated subset of bits alleviates the impact of the authentication scheme of the present invention on the bandwidth of Mode S, UAT or VDL Mode 4, for example. As the Authenticator 10 observes the ADS-B transmitter 20, the strength of the authentication method and confidence in it quickly grows. In one embodiment, the MAC 38 is the last 8-bits of the computed secure hash value 30.
In another embodiment of the present invention, the authentication apparatus and method of the present invention provides identity authentication without using the authentication challenge-response methodology for airspace in which lower levels of security are acceptable. As shown in Fig. 2, each ADS-B equipped aircraft inputs the ADS-B system's specific data 24, ID 22 and secret code 36 into the system's secure processing to generate a secure MAC 38 for transmission in this method of unsolicited identity authentication. In one embodiment the unique authentication challenge identifier is replaced with a default value, such as 0000, for example, in the secure hash algorithm. In another embodiment, a different secure hash algorithm is used that does not have an authentication challenge input and the secure processing operates as described above. In a preferred embodiment, a designated ADS-B system monitors the unsolicited identity authentication contained in the ADS-B messages. The monitoring ADS-B system performs the same processing steps as the ADS-B transmitter to generate the MAC and perform the comparison.
In the authentication scheme of the present invention, an ADS-B transmitter's secret-key 36 must be available to both the ADS-B transmitter 20 and the Authenticator 10. In one embodiment of the present invention, the Authenticator 10 will transmit broadcast authentication challenges 12 to ADS- B transmitters 20 at regular intervals, requiring all ADS-B equipped platforms to respond. In another embodiment of the present invention, the Authenticator 10 will transmit addressed authentication challenges 12 to one or more ADS-B transmitters 20 every reporting cycle (each second for example). In yet another embodiment of the present invention, the Authenticator 10 will transmit broadcast authentication challenges 12 and addressed authentication challenges 12 to one or more ADS-B transmitters 20 at regular intervals. Since there will be multiple ADS-B transmitters 20 being authenticated during any reporting cycle, it is preferable that each ADS-B transmitter 20 has its own secret-key 36. Each ADS-B transmitter 20 having its own secret-key 36 also helps protect the ADS-B system from a system wide attack. The secret-key 36 can be of any agreed-upon length, and the length maybe varied for military or other unique applications.
The secret key can be composed of a predefined combination of any number of separate key values and thus provide an authentication of any number of individual entities. For example, in one embodiment, a secret key can be composed of the combination of a secret binary number stored in the ADS-B transceiver of an aircraft and a Personal Identification Number (PIN) assigned to the pilot. In this embodiment, the successful authentication check by the authenticator gives an assurance that the ADS-B message came from the aircraft that the message claims it to be from, and that the pilot is the authorized pilot for that flight. In another embodiment, the key can be the combination of the ADS-B transceiver secret binary number and the pilot PIN as in the last embodiment plus an additional PIN entered by a cargo dispatcher certifying that the cargo has had the required screening. Additional PINs can be supplied by other authorized people monitoring other phases of the flight on the ground or in the air. Additional binary values obtained from other systems on board the aircraft or station transmitting the ADS-B message.
The secret key used by the ADS-B transmitter 20 must be discoverable by the Authenticator 10. In one embodiment, the Authenticator 10 has access to a database of flight plan data, associating a flight with the pilots, aircraft, cargo or passenger dispatcher, or any other authorized people monitoring other phases of the flight on the ground or in the air. The Authenticator 10 can then use this flight plan database along with identifying content of the ADS-B message to determine the pilots, aircraft, cargo or passenger dispatcher, or any other authorized people monitoring other phases of the flight, and to look up in a secure database the corresponding PINs and/or secret binary numbers comprising the secret key. In one specific embodiment for air traffic control, the identifying content of the ADS-B message is the aircraft Mode-S address. In another specific embodiment the identifying content is the Mode 3/A code. In one embodiment, the secure hash algorithm, 40 and 50, can operate on the ADS-B transmitter ID, 22 and 32, and specific data, 24 and 34, in an unencrypted form, as shown on Fig. 1. In another embodiment, the secure hash algorithm, 40 and 50, can operate on the ADS-B transmitter ID 32 and specific data 34 in an encrypted form, as shown on Fig. 3. In this case, the Authenticator 10 must use the ADS-B transmitter's ID 32 and specific data 34 in the secure hash algorithm 50, prior to decryption. Note that the determination by the authenticator of the secret key to use, discussed in the preceding paragraphs, must come from knowledge of the identity of the ADS-B transmitter. If the encryption scheme encrypts this information, it must be decrypted before determining the identity. This process is not elaborated in
Figure 3. In yet another embodiment of the present invention, some aircraft are broadcasting their ID 32 and specific data 34 in an encrypted form and other aircraft are broadcasting their ID 32 and specific data 34 in an unencrypted form. One requirement for accepting a hash algorithm as sound is that there be no known method of determining the hash without the key that is better than brute force guessing. A hash size of 128 bits has 2128 possible values and the probability of correctly guessing it is the reciprocal of that number. Although this is a very small probability, in the general field of cryptographic authentication, this is minimally acceptable. In the ADS-B aviation application, broadcasting a 128-bit or larger hash value is impractical due to the small message sizes, but fortunately the probability of guessing the hash value does not have to be extremely low. The reason for this is as follows. In a typical authentication application, an attacker experiences no penalty or risk in making a wrong guess. In addition, one successful guess represents a successful attack (for example, gaining login access to a computer). In our aviation application, the messages with authentication hashes occur one or more times per second as an aircraft flies through a region. An attacker gains little by correctly guessing one of the hashes. All of the hashes must be correct to be authenticated.
Additionally, an incorrect hash is immediately obvious and makes the target suspect. For this reason, a much smaller hash, say 8 bits or fewer, is quite acceptable for ADS-B. With each transmitted ADS-B message, the probability of guessing the correct hash for that message and all of the previous ones grows smaller and the strength of the authentication increases.
In one embodiment, the ADS-B transmitter's secure hash value 30 is input into a message authentication code (MAC) generator 35, which generates a message authentication code (MAC) 38 for the ADS-B transmitter 20. The Authenticator 10 inputs its secure hash value 52 into MAC generator 55 to generate its MAC 58. By design, the transmitted MAC 38 contains fewer bits than the associated secure hash value 30. In one embodiment of the present invention, the MAC, 38 and 58 contains a truncated subset of the secure hash value, 30. In another embodiment of the present invention, the MAC, 38 and 58, is generated by using a moving bit pattern of a predetermined length, for example, 8-bits, with the bits selection based on a predetermined sequence, to truncate the MAC generator output. In yet another embodiment, the predetermined bit selection sequence changes at predetermined intervals. In still another embodiment, the MAC, 38 and 58, comprises a predetermined subset of bits that are non-contiguous. In yet an additional embodiment, the number of bits in the predetermined pattern is 8-bits or less.
In one embodiment of the present invention, the authentication challenge 12 unique identifier is 16-bits in length. The ADS-B transmitter specific data 34 may be transmitted as encrypted data or unencrypted data (i.e., sent in-the-clear). The ADS-B transmitter's ID, 22 and 32, is a constant value of constant length. The ADS-B transmitter's specific data 24 and 34 will comprise a segment of allocated bits in a standard ADS-B message. The number of bits comprising the ADS-B transmitter's specific data 24 and 34 is typically defined by international standard. Currently, for example, a Mode-S message contains 112-bits of data and a Universal Access Transceiver (UAT) message contains either 240-bits or 384-bits of data.
While the specification describes the authentication of an aircraft by an authenticator, typically but not necessarily a ground station/authority, the method is equally applicable to authentication of the ground station by an aircraft or other user of information sent from the ground. In one embodiment of the present invention, a ground station transmits a MAC in the uplink message so that transiting aircraft can authenticate the transmitting ground station's identity. In another embodiment of the present invention, transiting aircraft can request authentication of ground stations or vehicles. In this embodiment, the identification, 22 and 32, and specific data, 24 and 34, used in the secure hash algorithm is the ground station ID and designated up-link data, such as weather data, in place of Mode S ID, position, and velocity. The method described herein is valid and useful as long as the data used to authenticate the ground station is predetermined and agreed in advance, and the same data used to generate the MAC, 38 and 58, for comparison 60.
Where an ADS-B transmitter system has not received an authentication challenge, the ADS-B transmitter system generates a MAC using the challenge unique identifier from the most recent received authentication challenge, in one specific embodiment of the present invention. Here, if the ADS-B transmitter's message fails the MAC comparison, the authenticator recomputes the MAC using the last challenge unique identifier for the ADS-B transmitter, thereby reducing false identity authentication comparisons. In another embodiment, the ADS-B transmitter system generates a MAC using a predetermined default value for the challenge unique identifier where the ADS-B transmitter system has not received an authentication challenge. In this case, if the ADS-B transmitter's message fails the MAC comparison, the authenticator recomputes the MAC using the predetermined default value. In yet another embodiment of the present invention, the pilot or operator of the ADS-B transmitter system can turn the authentication system of the present invention ON/OFF.
While the invention has been described in connection with a presently preferred embodiment thereof, those skilled in the art will appreciate that various modifications and changes may be made therein without departing from the true spirit and scope of the invention which is accordingly intended to be limited solely by the appended claims.

Claims

WE CLAIM:
1. A method for unsolicited identity authentication of an ADS-B system comprising the steps of:
(a) generating an authentication secure code by inputting said ADS-B transmitter system's specific data, ID and secret-key in secure processing in said ADS-B transmitter system;
(b) transmitting an ADS-B message comprising said ADS-B transmitter system's specific data, ID and secure code from said ADS-B transmitter system; (c) receiving at least one of said ADS-B messages transmitted from said at least one ADS-B transmitter system at an authentication monitoring system;
(d) determining said at least one ADS-B transmitter system's secret- key independently at said authentication monitoring system; (e) generating an authentication secure code by inputting said ADS-B transmitter system's specific data, ID and said ADS-B transmitter system's secret-key in secure processing in said authentication monitoring system;
(f) comparing said authentication monitoring system-generated secure code and said ADS-B transmitter-generated secure code using comparison processing for each of said at least one ADS-B transmitter system at said authentication monitoring system; and
(g) authenticating said ADS-B transmitter system's identity where the output of said comparison processing is said authentication monitoring system-generated secure code and said ADS-B transmitter-generated secure code are the same.
2. The method of claim 1, wherein said secure piocessing further comprises the steps of:
(a) generating a secure data string of given length from a first secure data process; (b) inputting said secure data string of given length into a second secure data process; and
(c) receiving a secure code generated by said second secure process, wherein said secure code contains fewer bits than said secure data string of given length from said first secure data process.
3. The method of claim 1 further comprising encrypting said ADS-B system specific data and ID prior to transmission.
4. The method of claim 1 wherein said authentication monitoring system is a ground station.
5. The method of claim 1 wherein said authentication monitoring system is another ADS-B equipped aircraft or ADS-B equipped vessel.
6. A method for securely authenticating identity between an authenticator's system and at least one ADS-B transmitter's system comprising the steps of:
(a) generating a unique identifier at said authenticator's system;
(b) transmitting an authentication challenge containing said unique identifier to said at least one ADS-B transmitter's system;
(c) generating an authentication secure code by inputting said received unique identifier, ADS-B transmitter system's specific data, ID and secret-key in secure processing in said at least one ADS-B transmitter's system; (d) transmitting an authentication challenge response comprising said
ADS-B transmitter-generated secure code, said ADS-B transmitter specific data and ID from said at least one ADS-B transmitter's system to said authenticator's system;
(e) receiving said authentication challenge response transmitted from said at least one ADS-B transmitter's system at said authenticator's system;
(f) determining said at least one ADS-B transmitter system's secret- key independently;
(g) generating an authentication secure code by inputting said unique identifier, said ADS-B transmitter system's specific data, ID and said ADS-B transmitter system's secret-key in secure processing in said authenticator's system;
(h) comparing said authenticator-generated secure code and said ADS- B transmitter-generated secure code using comparison processing for each of said at least one ADS-B transmitter system; and (i) authenticating said ADS-B transmitter system's identity where the output of said comparison processing is said authenticator- generated secure code and said ADS-B transmitter-generated secure code are the same.
7. The method of claim 6, wherein said secure processing further comprises the steps of:
(a) generating a secure data string of given length from a first secure data process,
(b) inputting said secure data string of given length from said first secure data process into a second secure data process; and (c) receiving a secure code generated by said second secure process.
8. The method of claim 6 further comprising encrypting said ADS-B transmitter's system data prior to transmission to said authenticator system.
9. The method of claim 8 further comprising inputting said ADS-B transmitter's system data to said secure data process prior to decryption by said authenticator system.
10. The method of claim 9 further comprising inputting said ADS-B transmitting system data to said secure data process after decryption at said authenticator system.
11. The method of claim 6 wherein determining said at least one ADS-B transmitter system's secret-key comprises generating said secret-key by inputting at least one of flight ID, personal identification number (PIN) of assigned pilot or other authorized personnel and said ADS-B transmitter system's mode S address into a key generation algorithm.
12. The method of claim 6 wherein determining said at least one ADS-B transmitter system's secret-key comprises a database look-up of said secret key.
13. The method of claim 7 wherein said second secure process further comprises the steps of: selecting a subset of bits from said secure data string of given length output by said first secure process using a moving bit selection pattern.
14. An ADS-B secure authentication system comprising: (1) an authenticator system comprising: a. means for generating and storing a unique identifier; b. means for communicating said unique identifier to one or more ADS-B transmitter systems in an authentication challenge; c. means for receiving said one or more ADS-B transmitter systems communication in response to said authentication challenge; d. means for determining said one or more ADS-B transmitter system's secret-key; e. means for securely processing input data comprising said unique identifier, said ADS-B transmitter system's secret-key, identification (ID) and specific data to generate a secure code for each of said one or more ADS-B transmitter systems; f. means for comparing said authenticator system-generated secure code and said ADS-B transmitter system-generated secure code for each of said one or more ADS-B transmitter systems; and g. means for authenticating said ADS-B transmitter system's identity where said authenticator system-generated secure code and said ADS-B transmitter system-generated secure code are the same; and h. means for communicating a failed authentication comparison; (2) said one or more ADS-B transmitter systems comprising: a. means for receiving said authentication challenge transmitted by said authenticator system; b. means for securely processing said received unique identifier, said ADS-B transmitter system's secret-key, identification (ID) and specific data to generate a secure code; and c. means for communicating said secure code and said ADS-B transmitter system's identification (ID) and specific data to said authenticator system in response to said authentication challenge.
15. The system of claim 14, wherein said means for securely processing further comprises:
(a) a first means for securely processing generating a secure data string of given length from said input data; (b) a second means for securely processing receiving said secure data string of given length output from said first secure data process and generating said secure code.
16. The system of claim 14 further comprising a means for encrypting said ADS-B transmitter system identification (ID) and specific data prior to transmission to said authenticator system.
17. The system of claim 14 wherein said means for generating said secret- key comprises inputting at least one of flight ID, personal identification number (PIN) of assigned pilot or other authorized personnel and said ADS-B transmitter's mode S address into a key generation algorithm.
18. The method of claim 14 wherein determining said at least one ADS-B transmitter system's secret-key comprises a database look-up of said secret key.
19. The system of claim 15 wherein said second means for securely processing comprises truncating said secure data string of given length output from said first means for securely processing using a moving bit selection pattern.
20. The system of claim 14 wherein said means for communicating said unique identifier to said one or more ADS-B transmitter systems comprises transferring or sending said unique identifier using RF, light, sound, or other medium to send, receive or transfer said data.
PCT/US2007/065759 2006-04-04 2007-04-02 Secure ads-b authentication system and method WO2007115246A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US39795906A 2006-04-04 2006-04-04
US11/397,959 2006-04-04
US11/401,017 US7730307B2 (en) 2006-04-07 2006-04-07 Secure ADS-B authentication system and method
US11/401,017 2006-04-07

Publications (1)

Publication Number Publication Date
WO2007115246A1 true WO2007115246A1 (en) 2007-10-11

Family

ID=38226436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/065759 WO2007115246A1 (en) 2006-04-04 2007-04-02 Secure ads-b authentication system and method

Country Status (1)

Country Link
WO (1) WO2007115246A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
US8072382B2 (en) 1999-03-05 2011-12-06 Sra International, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
EP2768275A1 (en) * 2013-02-13 2014-08-20 The Boeing Company Secure transmission of an aircraft trajectory
SE1851238A1 (en) * 2018-10-10 2019-07-02 Scania Cv Ab Method and device for identification
CN112866927A (en) * 2021-01-11 2021-05-28 四川九洲空管科技有限责任公司 Dynamic encryption method and decryption method for ADS-B information

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086121A1 (en) * 2002-10-31 2004-05-06 Sensis Corporation Secure automatic dependant surveillance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040086121A1 (en) * 2002-10-31 2004-05-06 Sensis Corporation Secure automatic dependant surveillance

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BELLARE M ET AL: "Message authentication using hash functions - the HMAC construction", CRYPTOBYTES, RSA LABORATORIES,, US, vol. 2, no. 1, 1996, pages 12 - 15, XP002419234 *
DONOVAN T A: "Concept for an Integrated National Surveillance and Data Communication Infrastructure", AEROSPACE CONFERENCE, 2006 IEEE BIG SKY, MT, USA 04-11 MARCH 2006, PISCATAWAY, NJ, USA,IEEE, 4 March 2006 (2006-03-04), pages 1 - 14, XP010928546, ISBN: 0-7803-9545-X *
SAMUELSON K ET AL: "Enhanced ADS-B Research", AEROSPACE CONFERENCE, 2006 IEEE BIG SKY, MT, USA 04-11 MARCH 2006, PISCATAWAY, NJ, USA,IEEE, 4 March 2006 (2006-03-04), pages 1 - 7, XP010928552, ISBN: 0-7803-9545-X *
TU K: "An ID-based cryptographic technique for IFF", MILITARY COMMUNICATIONS CONFERENCE, 1995. MILCOM '95, CONFERENCE RECORD, IEEE SAN DIEGO, CA, USA 5-8 NOV. 1995, NEW YORK, NY, USA,IEEE, US, vol. 3, 5 November 1995 (1995-11-05), pages 1258 - 1262, XP010154143, ISBN: 0-7803-2489-7 *
VAN SICKLE G A: "Aircraft self reports for military air surveillance", DIGITAL AVIONICS SYSTEMS CONFERENCE, 1999. PROCEEDINGS. 18TH ST LOUIS, MO, USA 24-29 OCT. 1999, PISCATAWAY, NJ, USA,IEEE, US, vol. B.5/12 pp. vol.2, 24 October 1999 (1999-10-24), pages 6D2.1 - 6D2.7, XP010366366, ISBN: 0-7803-5749-3 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US7889133B2 (en) 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US8072382B2 (en) 1999-03-05 2011-12-06 Sra International, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surveillance
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
EP2768275A1 (en) * 2013-02-13 2014-08-20 The Boeing Company Secure transmission of an aircraft trajectory
US9786184B2 (en) 2013-02-13 2017-10-10 The Boeing Company Secure transmission of an aircraft trajectory
SE1851238A1 (en) * 2018-10-10 2019-07-02 Scania Cv Ab Method and device for identification
CN112866927A (en) * 2021-01-11 2021-05-28 四川九洲空管科技有限责任公司 Dynamic encryption method and decryption method for ADS-B information

Similar Documents

Publication Publication Date Title
US7730307B2 (en) Secure ADS-B authentication system and method
WO2007115246A1 (en) Secure ads-b authentication system and method
Yang et al. A practical and compatible cryptographic solution to ADS-B security
US20040086121A1 (en) Secure automatic dependant surveillance
CN110635893B (en) Vehicle-mounted Ethernet information security protection method
US8577036B2 (en) Method and device for transmitting messages in real time
CN1685687B (en) Method for determining proximity of target node to source node
US20050005093A1 (en) Methods, systems and devices for securing supervisory control and data acquisition (SCADA) communications
Valovage Enhanced ads-b research
CN101938500B (en) Method and system for verifying source address
JP6092548B2 (en) Radio system and train control system
CN108462695A (en) The method, apparatus and system of safety-oriented data transfer
US20030188012A1 (en) Access control system and method for a networked computer system
CN113079012A (en) Encryption/decryption technology for data protection of aviation ground-air data chain ACARS system based on state cryptographic algorithm
CN111818023A (en) Data transmission method and data transmission system suitable for air-ground communication link
CN113221136B (en) AIS data transmission method, AIS data transmission device, electronic equipment and storage medium
Viggiano et al. Secure ADS-B authentication system and method
CN116528228B (en) Internet of vehicles presetting and session key distribution method, communication method and system
Heinrich et al. Security analysis of the RaSTA safety protocol
CN110995671A (en) Communication method and system
Mäurer et al. Pmake: Physical unclonable function-based mutual authentication key exchange scheme for digital aeronautical communications
CN114157447B (en) Unmanned equipment safety communication method based on block chain technology
KR102419057B1 (en) Message security system and method of railway communication network
Wernberg Security and privacy of controller pilot data link communication
EP2728824A1 (en) Secure group communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07759935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07759935

Country of ref document: EP

Kind code of ref document: A1