WO2007106165A2 - Perceptions ameliorees du contenu de captage de supports audio et audiovisuels - Google Patents

Perceptions ameliorees du contenu de captage de supports audio et audiovisuels Download PDF

Info

Publication number
WO2007106165A2
WO2007106165A2 PCT/US2006/048081 US2006048081W WO2007106165A2 WO 2007106165 A2 WO2007106165 A2 WO 2007106165A2 US 2006048081 W US2006048081 W US 2006048081W WO 2007106165 A2 WO2007106165 A2 WO 2007106165A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
composition
audio
component
media
Prior art date
Application number
PCT/US2006/048081
Other languages
English (en)
Other versions
WO2007106165A3 (fr
Inventor
Robert Alan Richards
Ernest Rafael Vega
Original Assignee
Robert Alan Richards
Ernest Rafael Vega
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Alan Richards, Ernest Rafael Vega filed Critical Robert Alan Richards
Publication of WO2007106165A2 publication Critical patent/WO2007106165A2/fr
Publication of WO2007106165A3 publication Critical patent/WO2007106165A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers

Definitions

  • audible content is often used to achieve desired effects and results.
  • Theme parks, casinos, and hotels; shopping boutiques and malls; and sometimes even visual art displays use audible content to engage the audience or consumer.
  • Some forms of media, like music and radio, are audio in nature.
  • audible content is heard.
  • Human hearing is sensitive in the frequency range of 20 Hz to 20 kHz, though this varies significantly based on multiple factors. For example, some individuals are only able to hear up to 16 kHz, while others are able to hear up to 22 kHz and even higher.
  • Frequencies capable of being heard by humans are called audio, and are referred to as sonic.
  • Frequencies higher than audio are referred to as ultrasonic or supersonic, while frequencies below audio are referred to as infrasonic or subsonic.
  • audible content and media does not contain frequencies lower than 20 Hz or greater than 20 KHz, since the human ear is unable to hear such frequencies.
  • the human ear is also not generally able to hear low volume or amplitude audio content even when it lies in the range of 20 Hz to 20 kHz.
  • Audio content is not only heard, it is also often emotionally and viscerally felt. This can also apply to inaudible content. Audio frequencies or tones of low amplitude, or audio frequencies and tones that fall outside the general hertz range of human hearing, can function to enhance sensory perceptions, including the perceptions of the sensory content of audio and audio-visual media.
  • compositions that are inaudible in their preferred embodiments and are typically generated by infrasound and/or ultrasound component frequencies or tones.
  • Such compositions may be matched to, and combined with, audible content or audio-visual content and conveyed to the end-user or audience through a wide variety of speaker systems. It is further desirable that such speaker systems function as a stand-alone system or be used in conjunction with, or integrated with, screens or other devices or visual displays.
  • the invention pertains generally to method and apparatus for enhancing a sensory perception of audio and audio-visual media. More particularly, the invention pertains to creating a composition or compositions that have at least one component frequency in the ultrasonic or infrasonic range, and preferably at least two or more component frequencies in either or both the infrasonic and ultrasonic ranges.
  • the composition is inaudible in its preferred embodiment, but audible frequency components are contemplated and are not outside the spirit and scope of the present invention.
  • the components and compositions of the present invention may be embodied in multiple ways and forms for achieving their function of enhancing perception of sensory content.
  • a component frequency or whole composition may be embodied as special effects that generate sensory effects, with the component(s) or composition functioning as musical output of an instrument or the like. Accordingly, musicians may find the present invention of particular importance for use in conjunction with any of the various devices or contrivances that can be used to produce musical tones or sounds.
  • One aspect of the invention relates to selecting a root frequency and then, via mathematical operations, calculating single or multiple component frequencies that lie in the infrasonic or ultrasonic range, and therefore outside the typical range of hearing for a human being.
  • the component frequency is not heard, yet its presence and its tonal characteristics may be viscerally and emotionally felt.
  • Any number of mathematical operations, operands or algorithms may be used, keeping in mind that coherency is a preferred factor in creating a dynamic coherent structure or system or systems based on linear or non-linear derivation of frequencies, and therefore coherence permeates throughout the description of the various embodiments even if not explicitly stated as such.
  • Coherence as that term is used to describe the present invention, means that a mathematical and/or numeric relationship exists throughout the compositions created according to the chosen mathematical operation or algorithm. However, given the ambiguities of discipline-based mathematical terms, it is also contemplated within the scope of this invention that incoherency may be a factor in the creation of components and their derived compositions.
  • Another aspect of the invention relates to encoding media with compositions generally having at least one infrasonic component frequency and one ultrasonic component frequency.
  • a component or components may be "subtracted out” to yield a single component composition in order to produce the desired sensory effect when matched to a specific media content.
  • the remaining component frequency will be either infrasonic or ultrasonic.
  • Media in the broadest sense, is defined and used to describe the present invention as content such as audio, audio/visual, satellite transmissions and Internet streaming content to name a few; media devices, for example, cell phones and PDAs; and media storage such as CDs, DVDs and similar products.
  • a sound or music producer, director, engineer or artist could provide nuances and "flavoring" to their own products and properties using the compositions of the present invention. By giving them control over which components of the compositions they want to use — such as the particular tones and frequencies — they could customize their own products using a single component, or multiple components of one or more compositions.
  • FIG. 1 illustrates an embodiment of a computing system that may be used in the present invention
  • FIG. 2 illustrates an embodiment of a graphical representation of an audio signal
  • FIG. 3 illustrates another embodiment of a graphical representation of an audio signal with infrasonic and ultrasonic frequency tones added
  • FIG. 4 illustrates another embodiment of a graphical representation of an audio signal with a variable periodicity ultrasonic frequency tone added
  • FIG. 5 illustrates an embodiment of a flow process of how an eposc composition of infrasonic and ultrasonic component frequencies may be added to audible content
  • FIG. 6 illustrates an embodiment of how an eposc composition of ultrasonic and infrasonic component frequencies may be chosen for simultaneous playback with audible content
  • FIG. 7 illustrates an embodiment of a hardware device capable of generating ultrasonic and infrasonic component frequencies to be played concurrently with audible content
  • FIG. 8 illustrates another embodiment of a hardware device capable of generating ultrasonic and infrasonic component frequencies to be played concurrently with audible content
  • FIG. 9 illustrates another embodiment of a hardware device capable of generating ultrasonic and infrasonic component frequencies to be played concurrently with audible content
  • FIG. 10 illustrates another embodiment of a hardware device capable of generating ultrasonic and infrasonic component frequencies to be played concurrently with audible content.
  • eposc enhancing perceptions of sensory content
  • eposc compositions means, in general, a result of the method using numeric systems whereby a composition is generated that comprises at least two component frequencies.
  • Each component frequency is either an infrasonic or ultrasonic frequency.
  • a composition with two component frequencies has a first component frequency that is infrasonic and a second component frequency that is ultrasonic.
  • both frequencies are infrasonic or both frequencies are ultrasonic is not outside the scope of the invention.
  • a stream, collection or group of infrasonic and/or ultrasonic component frequencies form an eposc composition.
  • a composition may be generated or determined by (1) selecting a root frequency; (2) calculating, using either linear or non-linear mathematical operations, a first component frequency from the root frequency; and (3) further calculating, using linear or non-linear mathematical operations that may or may not be the same as used in step 2, a second component frequency from the first component frequency, such that the first and second component frequencies are either an infrasonic or ultrasonic frequency.
  • a component frequency or frequencies may be subtracted from the composition when the heuristic process of matching a composition and/or its component frequencies to media content determines that one component frequency by itself in either the infrasonic or ultrasonic frequency range provides the desired enhanced perception of sensory content better than multiple component frequencies.
  • the eposc composition may be further adjusted by changing its decibel levels, periodicity, and/or by changing the characteristics of its wave or wave envelopes using, for example, flanging, echo, chorus, or reverb.
  • An eposc composition is inaudible in its preferred embodiment, but one skilled in the art can appreciate that an eposc composition having an audible component or components is contemplated within the scope of the present invention.
  • Reference in the specification to "enhance” is based on subjective human sensibilities, and is defined as improving or adding to the strength, worth, value, beauty, power, or some other desirable quality of perception, and also to increase the clarity, degree of detail, presence or other qualities of perception.
  • Perception means the various degrees to which a human becomes aware of something through the senses.
  • Sensory or “sensory effects” means the various degrees to which a human can hear, see, viscerally feel, emotionally feel, and imagine.
  • content or “original content” means both audio and audiovisual entertainment and information including, but not limited to, music, movies, video games, video gambling machines, television shows, radio shows, theme parks, theatrical presentations, live shows and concerts; entertainments and information associated with cell phones, computers computer media players, portable media players, browsers, mobile and non-mobile applications software, web presentations and shows.
  • Content or original content also includes, but is no way limited to, clips, white noise, pink noise, device sounds, ring tones, software sounds, and special effects including those interspersed with silence; as well as advertising, marketing presentations and events.
  • content may also mean at least a portion of audio and audio-visual media that has been produced, stored, transmitted or played with an eposc composition.
  • a television or radio broadcast with one or more eposc compositions is content, as well as a CD, DVD, or HD-DVD that has both original content and eposc content, where at least a portion of the original content and the eposc content are played simultaneously.
  • media means any professional or amateur- enabled producing, recording, mixing, storing, transmitting, displaying, presenting and communicating any existing and future audio and audio-visual information and content; using any existing and future devices and technologies; including, but not limited to electronics, in that many existing devices or technologies use electronics and electronic systems as part of the audio and audio- visual making, sending, and receiving process, including many speakers and screens, to convey content to the end- user, audience or spectators.
  • Media also means both digitized and non-digitized audio and audio-visual information and content.
  • Sounders mean any output devices used to convey both the eposc compositions that includes their derivative component frequency or frequencies and tonal characteristics, as well as the audible content.
  • a “speaker” is a shorthand term for "loudspeaker,” and is an apparatus that converts impulses including, but not limited to, electrical impulses into sound or frequency responses or into any impression that mimics the qualities or information of sound, or delivers frequencies sometimes associated with devices such as mechanical and non-mechanical transducers, non-acoustic technologies that perform the above enumerated conversions to name a few, and future technologies.
  • the necessity of output through speakers is made explicit in many of the embodiments described. When not made explicit, it is inferred.
  • any reference to "inaudible” or “inaudible content” means any audio signal or stream whose frequencies are generally outside the range of 20 Hz to 20 kHz, or where the decibel level in the audible range is so low as to not be heard by typical human hearing.
  • inaudible content are audio signals or streams that are generally less than 20 Hz and greater than 20 kHz, and/or are decibel levels in the normal range of human hearing.
  • “Inaudible content” may also refer to the eposc compositions, inaudible in their preferred embodiments, calculated using the methods of the illustrated invention described herein.
  • Audible content is defined as any audio signals or streams whose frequency is generally within the range of 20 Hz to 20 kHz, bearing in mind that the range may span as low as 18 Hz and as high as 22 kHz for a small number of individuals.
  • infrasonic and ultrasonic frequencies and tones fall within the scope of this invention and may be used as sources, including digital and non-digital sources.
  • the present invention also relates to one or more apparatus for performing the operations herein.
  • This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored within the computer.
  • a computer program may be stored in a machine readable storage medium, such as, for example, any type of disk including floppy disks, optical disks, CD-ROMs, magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical card, or any type of media suitable for storing electronic instructions and coupled to a computer system bus.
  • FIG. 1 is a block diagram of one embodiment of a computing system 200.
  • the computing system 200 includes a processor 201 that processes data signals.
  • Processor 201 may be a complex instruction set computer (CISC) microprocessor, a reduced instruction set computing (RISC) microprocessor, a very long instruction word (VLIW) microprocessor, a processor implementing a combination of instruction sets, or other processor devices.
  • CISC complex instruction set computer
  • RISC reduced instruction set computing
  • VLIW very long instruction word
  • processor 201 is a processor in the Pentium® family of processors including the Pentium® 4 family and mobile Pentium® and Pentium® 4 processors available from Intel Corporation. Alternatively, other processors may be used.
  • FIG. 1 shows an example of a computing system 200 employing a single processor computer. However, one of ordinary skill in the art will appreciate that computer system 200 may be implemented using multiple processors.
  • Processor 201 is coupled to a processor bus 210.
  • Processor bus 210 transmits data signals between processor 201 and other components in computer system 200.
  • Computer system 200 also includes a memory 213.
  • memory 213 is a dynamic random access memory (DRAM) device.
  • DRAM dynamic random access memory
  • memory 213 may be a static random access memory (SRAM) device, or other memory device.
  • Memory 213 may store instructions and code represented by data signals that may be executed by processor 201.
  • a cache memory 202 resides within processor 201 and stores data signals that are also stored in memory 213.
  • Cache 202 speeds up memory accesses by processor 201 by taking advantage of its locality of access.
  • cache 202 resides external to processor 201.
  • Computer system 200 further comprises a bridge memory controller 211 coupled to processor bus 210 and memory 213.
  • Bridge memory controller 211 directs data signals between processor 201, memory 213, and other components in computer system 200 and bridges the data signals between processor bus 210, memory 213, and a first input/output (I/O) bus 220.
  • I/O bus 220 maybe a single bus or a combination of multiple buses.
  • a graphics controller 222 is also coupled to FO bus 220.
  • Graphics controller 222 allows coupling of a display device to computing system 200, and acts as an interface between the display device and computing system 200.
  • graphics controller 222 may be a color graphics adapter (CGA) card, an enhanced graphics adapter (EGA) card, an extended graphics array (XGA) card or other display device controller.
  • the display device may be a television set, a computer monitor, a flat panel display or other display device.
  • the display device receives data signals from processor 201 through display device controller 222 and displays the information and data signals to the user of computer system 200.
  • a video camera 223 is also coupled to I/O bus 220.
  • a network controller 221 is coupled to I/O bus 220.
  • Network controller 221 links computer system 200 to a network of computers (not shown in FIG. 1) and supports communication among the machines. According to one embodiment, network controller 221 enables computer system 200 to implement a software radio application via one or more wireless network protocols.
  • a sound card 224 is also coupled to I/O Bus 220. Sound card 224 may act as an interface between computing system 220 and speaker 225. Sound card 225 is capable of receiving digital signals representing audio content. Sound card 225 may comprise one or more digital-to- audio (DA) processors capable of converting the digital signals or streams into analog signals or streams which may be pushed to analog external speaker 225.
  • DA digital-to- audio
  • Sound card 225 may also allow digital signals or streams to pass directly through without any DA processing, such that external devices may receive the unaltered digital signal or stream.
  • the signal or stream can be played through a system with speakers or some other frequency delivering technology (not shown).
  • FIG. 2 illustrates one embodiment of a graphical representation of an audio signal or stream.
  • Graph 300 illustrates an audio signal represented by its frequency over time.
  • the vertical axis 310 shows frequency in hertz.
  • the horizontal axis 320 shows time in seconds.
  • Curve 330 is the actual representation of the audio signal.
  • Data point 335 illustrates that the audio signal or stream is playing a 1700 Hz tone two seconds into the stream.
  • Data point 340 illustrates that the audio signal or stream is playing a 100 Hz tone seven seconds into the stream.
  • Data point 345 illustrates that the audio signal is playing a 17500 Hz tone 17 seconds into the stream.
  • the entire audio signal or stream generates a frequency range between 300 Hz and 11,000 Hz which is audible by the human ear.
  • FIG.3 illustrates a graphical representation of an audio signal or stream with both ultrasonic and infrasonic frequencies added to an audio signal.
  • Graph 400 illustrates an audio signal represented by its frequency (y-axis) over time (x-axis).
  • the vertical axis 410 represents a range of frequencies in hertz.
  • the horizontal axis 420 represents the progression of time in seconds.
  • Curve 430 is a representation of an audio signal.
  • Data point 435 on curve 430 illustrates that the audio signal is playing a 21 Hz tone two seconds into the stream.
  • Data point 440 on curve 430 shows that the audio signal is playing a 13,000 Hz tone six seconds into the stream.
  • data point 445 on curve 430 illustrates that the audio signal is playing a 500 Hz tone 20 seconds into the audio signal.
  • the primary audio signal generates a frequency range between 20 Hz and 13,000 Hz. This particular frequency range is audible by the human ear.
  • Graph 400 also shows an ultrasonic frequency 450.
  • frequency 450 is a linear 78,500 Hz tone. Such a frequency level is above and outside typical human hearing. However, such a frequency and its component frequency (not shown) may influence a sensory perception other than through hearing.
  • Ultrasonic frequencies are frequencies that normally play above
  • the component frequency of 78,500 Hz may resonate and affect certain portions of a human's perceptions while a person is concurrently listening to audio signal or stream 430.
  • Graph 400 illustrates infrasonic frequency 460.
  • frequency 460 is a linear 7.127 Hz tone. Similar to ultrasonic frequency 450, infrasonic frequency 460 is also beyond the level of typical human hearing. However, such a frequency and its tonal characteristics may influence a sensory perception by humans other than through hearing.
  • infrasonic frequencies are frequencies that fall below 20 Hz. Such frequencies may induce visceral perceptions that can be felt in high-end audio systems or movie theaters. For example, an explosion may offer a number of frequency ranges well within human hearing (e.g. 20 Hz — 20 kHz) as well as one or more infrasonic frequencies that are not heard but felt viscerally.
  • any combination of inaudible content may be added to audio signal 430, such as both ultrasonic and infrasonic frequencies or only infrasonic frequencies or only ultrasonic frequencies.
  • Infrasonic or ultrasonic frequencies may be added or encoded with audio signal 430 at varying levels of amplitude in order to heighten or decrease a sensory perception of an added tone.
  • an infrasonic frequency (not shown) may be encoded with audio signal 430 at 15 dB (decibels) below the reference level of the audio signal.
  • the infrasonic frequency would be played at 77 dB.
  • the infrasonic frequency's amplitude may decrease to 25 dB below the reference level of the audio signal in order to modify its effects.
  • the tone may increase to 10 dB below the reference level so as to modify the effects of the infrasonic or ultrasonic frequency.
  • multiple linear ultrasonic frequencies may be added or encoded with audio signal 430 to create differing sensory effects that are typically inaudible to the human ear.
  • One or more nonlinear ultrasonic or infrasonic component frequencies may also be encoded with audio signal 430.
  • a single tone maybe added that begins at 87,501 Hz and increases and decreases over time thereby varying the sensory effect during different portions of audio signal 430.
  • FIG.4 illustrates another embodiment having ultrasonic or infrasonic component frequencies added or encoded during a portion of an audio signal 430 such that its presence may fade in and out.
  • Audio signal 475 exists within the audible human range of 20 Hz to 20 kHz. As illustrated, no ultrasonic or infrasonic component frequency tones exist at the start of audio signal 475. However, as shown, tone 471 is added six seconds into playback of audio signal 475. In the illustrated example, tone 471 is initially set at a frequency of 20 kHz. Tone 471 may last for 4 seconds and then increase to 40 kHz at a rate of 5 kHz per second. After 6 seconds of a constant 40 kHz, the tone may disappear for 12 seconds. Later, tone 471 may return at a frequency of 33.33 kHz for 9 seconds before dropping instantly to 54 kHz until the end of audio signal 475.
  • multiple ultrasonic or infrasonic component frequencies may play concurrently alongside audio signal 430, with each tone fading in and out independent of the other.
  • each tone may have its own variable periodicity and hence its frequency may change over time.
  • 15 separate ultrasonic frequency tones may be present for a time of 16 seconds in audio signal 475.
  • four of the tones may fade out, while six of the remaining tones may increase or decrease in frequency at a given rate of change.
  • FIG. 5 illustrates an embodiment of a flow process of how an eposc composition may be added to or encoded with audible content including, for example, a sound recording. It is contemplated in the scope of this invention that the audible content of FIG. 5 may also have inaudible content. Accordingly, an eposc composition that is intended to be inaudible in its preferred embodiment can be added to inaudible content and further enhance any sensory content that may itself be inaudible.
  • an audio file is received and stored in a first storage location 510.
  • the audio file is digital and does not require an analog to digital conversion before receipt. If such a file is received from an analog source, an analog to digital conversion may be required to transform the audio file into digital form.
  • a means for receiving such a digital file may be by a computing system capable of handling digital content.
  • Another means for receiving such a file may be by a hardware device such as an audio receiver, an audio pre-amplifier, audio signal processor, an external tone generator or a portable digital audio player such as an iPod made by Apple Computer.
  • an audio file may reside on the same computing system or hardware device used to receive the file. Therefore, a user or process simply alerts the computing system or hardware device to the location of the audio file.
  • the audio file may reside on a machine-readable medium external to the receiving device.
  • the receiving device may have a wired input coupled to a wired output of the external machine readable medium, allowing a user to transmit the audio file to the receiving device through a wired connection.
  • the audio or A/V file may reside on a machine readable storage medium that is connected to the receiving device through a computing network.
  • the computing network may be a wired network using a TCP/IP transmission protocol or a wireless network using an 802.11 transmission protocol or some other transmission protocol to name a few illustrative examples. Such a means may allow a computing device to receive the audio file from a remote system over a hardwired or wireless network.
  • the audio file may be stored in a first storage location for later use.
  • Examples of a machine readable storage medium used to both store and receive the audio file may include, but are not limited to, CD/DVD ROM, vinyl record, digital analog tape, cassette tape, computer hard drives, random access memory, read only memory and flash memory.
  • the audio file may contain audio content in both a compressed format (e.g., MP3, MP4, Ogg Vorbis, AAC) or an uncompressed format (e.g., WAV, AIFF).
  • the audio content may be in standard stereo or 2 channel format, such as is common with music.
  • the audio content may be in a multi-channel format such as Dolby Pro-Logic, Dolby Digital, Dolby Digital- EX, DTS, DTS-ES or SDDS.
  • the audio content may be in the form of sound effects (e.g., gun shot, train, volcano eruption, etc).
  • the audio content may be music comprised of instruments (electric or acoustic).
  • the audio content may contain sound effects used during a video game such as the sound of footsteps, space ships flying overhead, imaginary monsters growling, etc.
  • the audio content may be in the form of a movie soundtrack including the musical score, sound effects and voice dialog.
  • an eposc composition 520 is then chosen for playback with the received audio file.
  • an eposc composition may contain frequency tones of 1.1 Hz, 1.78 Hz, 2.88 Hz and 23,593 Hz.
  • Another means for determining how to implement an eposc composition is to select when to introduce, during playback or presentation of the audio or A/V content file, an eposc composition.
  • Certain portions of a song may elicit different sensory effects in a user or audience, such that one or more eposc compositions may be best suited for playback during certain portions of the audio file.
  • Franz Schubert's Symphony No. 1 in D has many subtle tones in the form of piano and flutes.
  • a user may wish to add eposc compositions that are also subtle and are considered by that user to be consistent with, conducive to, or catalytic to the sensory effect he wants to experience.
  • Peter Tchaikovsky's 1812 Overture contains two sections with live Howitzer Cannons, numerous French horns and drums. These sections of the Overture are intense, powerful, and filled with impact.
  • a user may choose to add an eposc composition to these sections that are consistent with, conducive to, or catalytic to strong, visceral feelings. Yet during other times of the Overture, such component frequencies or their composition may not be used. Therefore, the playback of an eposc composition or eposc compositions during the presentation may vary according to the type of sensory content being presented.
  • an eposc composition may be introduced at a lower decibel level than the associated content.
  • the volume level of the eposc composition is noted in reference to the volume level of the content. For example, it has been shown that the preferred volume level of an eposc composition is -33 dB, which means that the volume of the eposc composition is 33 decibels lower than the volume level of the associated content. In such an arrangement, irregardless of the volume level used for the playback of the eposc composition and the associated content, the eposc composition is always 33 decibels lower in decibel level than the content itself.
  • the eposc composition is reproduced at 59 dB. If the playback of the content is changed to a concert level system at 127 dB, the eposc composition is changed to 94 dB.
  • a user may determine a separate volume level for each eposc composition.
  • each volume level would be in reference to the content's volume level.
  • an eposc composition may have a frequency of 1.1 Hz with a volume of -33 dB, a frequency of 1.78 Hz with a volume of -27 dB and a frequency of 23,593 Hz with a volume of -22.7 dB.
  • the eposc composition is generated and stored in a storage location.
  • a means for storing the eposc composition in a storage location may include any readable storage media as stated above.
  • a means for generating the eposc composition may be software residing on a computing system. Any software application capable of generating specified frequency tones or eposc compositions over a given period of time may be used. The software should also be capable of controlling the volume level of each frequency within the eposc composition as well as the eposc composition as a whole. As stated above, the volume may be in reference to the volume level of the received content. An example of such a software application is Sound Forge by Sonic Foundry, Inc.
  • Another means for generating an eposc composition may be an external tone generator and a recording device capable of capturing the tone.
  • a second audio file is created.
  • the second audio file is an empty audio file that is configured for simultaneous playback of both the eposc composition and original content.
  • a means for creating the second audio file is simply creating a blank audio file in one of many audio file formats as stated above.
  • the first audio file and the generated eposc composition are retrieved from the first storage location and the second storage location.
  • a means for retrieval may include the use of a computing system as described in FTG. 1.
  • the eposc composition and first audio file may be loaded into the computing system's memory.
  • Another means for retrieval may include the use of a software application such as Sound Forge where such an application allows for the direct retrieval and loading of multiple files into a computing system's memory. In such an embodiment, both files are readily accessible while residing in memory.
  • the first audio file and the eposc composition are simultaneously recorded into a combined audio file such that at least a first segment of the first audio file and a second segment of the eposc composition are capable of simultaneous playback.
  • a means for recording the first audio file and the eposc composition are through the use of a computing system and a software application capable of mixing multiple audio tracks together.
  • a software application such as Sound Forge is capable of mixing two or more audio files together, or in this example the original content and the eposc composition.
  • Another means for recording the first audio file and the eposc composition is through the use of an external mixing board. Through such a means, an input from a mixing board may receive the original content and a second audio input from the mixing board may receive the eposc composition.
  • the mixing board may mix or merge both the original content and the eposc composition into a single output.
  • an external recording device may receive the combined file and record it onto a compatible storage medium.
  • the recording device is a computing system.
  • the content and the eposc composition are stored into a second audio content file.
  • a means for storing the combined audio content file into the second audio content file is through the use of a computing system and software.
  • the second audio file was previously created as a blank audio file. Through the use of a computer, the contents of the combined audio file are saved into the blank second audio file.
  • FIG. 6 illustrates one embodiment of selecting and generating an eposc composition formed of ultrasonic and infrasonic component frequencies that may be selected and generated for playback with content, including music.
  • these frequencies are not chosen at random, but through the use of one or more formulae based on numeric systems. Different combinatorial patterns of component frequencies may be derived from these formulae based on numeric systems, thereby generating different compositions made of diverse component frequencies that provide different sensory effects when matched to media content.
  • the infrasonic and ultrasonic component frequencies utilized in the method and apparatus described herein are mathematically derived using linear and non-linear methods starting from a choice of a root frequency.
  • the primary choice for a root frequency is 144 MHz which works well with the invention described herein and provides a starting point for deriving components and, thereby, eposc compositions.
  • a secondary choice for a root frequency could originate in the range from 0.1 MHz to 288 MHz, with 144 MHz being the approximate arithmetic mean, or median for this particular range.
  • the tertiary choice for the root frequency could originate in the range from 1.5 kHz to 10 Petahertz.
  • a quaternary choice for an alternative root frequency could originate anywhere in the range from 0 Hz to infinity, although generally the root frequency is identified and selected from one of the first three ranges because of their particular mathematical relationships to each other and to other systems.
  • a primary root frequency is chosen.
  • R 144 MHz
  • the root frequency may be alternatively chosen from the selection possibilities as illustrated above.
  • the first component frequency is calculated.
  • the first component frequency (“Ci” where the subscript number “1” designates the number in a series) is calculated by stepping down the root frequency a number of times until the result in within the infrasonic range.
  • the root frequency is stepped down 27 times.
  • “Stepping down” is defined for purposes of the illustrated embodiment as dividing a number by two. Hence, stepping down the root frequency 27 times is equivalent to dividing 144,000,000 by two 27 times.
  • the resulting value is 1.1 Hz, which places the first component frequency of the composition in the infrasonic range. Therefore 1.1 Hz is the first component frequency as well as the first infrasonic component frequency "CiICi,” where "IC” means infrasonic component.
  • any numerical constant or mathematical function may be used to create a first component frequency from a chosen root frequency.
  • the above example is for illustration purposes only, and it is readily apparent that there are many coherent mathematical methods and algorithms that may be used for deriving and calculating the first component frequency from a root frequency, and the illustrated embodiment is not meant to limit the invention in any way.
  • the second component frequency of the composition is calculated such that it falls in the infrasonic range ("C2IC2").
  • the second component frequency is calculated by multiplying the first component by Phi.
  • Phi will be rounded to 1.6180.
  • C2IC 2 (CiICi * Phi).
  • the second component frequency is 1.1 * 1.6180, or 1.78 Hz.
  • the second component frequency can be multiplied or divided by Pi rounded to 3.1415 or phi rounded to .6180.
  • the third, component frequency is determined and is infrasonic.
  • the third component frequency (“C 3 IC 3 ”) is calculated by adding the first component frequency CiICi to the second component frequency C 2 IC 2 .
  • C3IC3 CiICi + C 2 IC 2 .
  • the third component frequency is 1.1 + 1.78, yielding 2.88 Hz ("C 3 IC 3 ").
  • the third component frequency of the composition could be calculated using a mathematical equation such as (C3IC2 * Pi) / Phi. It may be desirable that only component frequencies outside the range of human hearing are chosen for an eposc composition.
  • a fourth component frequency is determined at step 650.
  • the fourth component frequency is also the first ultrasonic component frequency ("C 4 UC 1 ") and is calculated by stepping up the third component frequency ("C3IC3") until a value is in the ultrasonic range.
  • “Stepping up” is defined for the illustrated embodiment as multiplying a number by two.
  • the 13 th step (13 is the 8 th Fibonacci number) of 2.88 (“C 3 IC 3 ”) is 23,592.96 Hz, Hence, in the illustrated example, 23,592.96 Hz becomes the value of the fourth component frequency as well as the first ultrasonic component frequency ("C 4 UCi").
  • additional ultrasonic component frequencies may be calculated utilizing the illustrated mathematical formulas as depicted above.
  • C 4 UC 1 may be multiplied by Phi to create the fifth component frequency which is also the second ultrasonic component frequency ("C5UC2").
  • a sixth component frequency which is also the third ultrasonic component frequency ("CeUC 3 ") may be calculated by adding the first ultrasonic component frequency C 4 UCj to the second ultrasonic component frequency C5UC2.
  • component frequency C1IC 3 is recorded into an empty file at 0 dB, while the other five component frequencies are mixed into said file at -33 dB.
  • the first component frequency may be derived from the primary choice for a root frequency
  • the second component frequency derived from either the primary or the secondary choice ranges for selecting a root frequency
  • the third component frequency may be derived from a primary, secondary or tertiary choice range(s) for selecting a root frequency.
  • a heuristic process of matching any given composition to media content may also be part of the process of selection of a eposc composition.
  • Each eposc composition may enhance perception of sensory content differently. Therefore subjective judgment is the final arbiter of any given eposc composition being ultimately associated with any individual piece of media content.
  • eposc compositions consist of at least two component frequencies with each component frequency being either infrasonic or ultrasonic, and in its preferred embodiment, a composition has at least one of each of infrasonic and ultrasonic frequencies. But one of these component frequencies may be subtracted from the composition to best match the composition to content, as long as the remaining component frequency is either infrasonic or ultrasonic.
  • FIGS. 7 -10 consist of hardware devices capable of generating component frequencies and eposc compositions and concurrently playing them with content. These hardware devices are also capable of editing, adding and storing user-created eposc compositions for later playback.
  • FIG. 7 illustrates an embodiment of an external hardware device capable of generating an eposc composition to be played concurrently with audible content.
  • Audio system 700 comprises an audio player 701, a Frequency Tone Generator 703, an audio receiver 706 and a pair of speakers 708.
  • Audio player 701 is a device capable of reading digital or analog audio content from a readable storage medium such as a CD, DVD, vinyl record, or a digital audio file such as an .MP3 or .WAV file.
  • Player 701 may be a CD/DVD player, an analog record player or a computer or portable music player capable of storing music as digital files to name a few examples.
  • player 701 Upon playback of an audio signal, player 701 transmits the audio signal 702 to Tone Generator 703.
  • Audio signal 702 may be a digital audio signal transmitted from player 701 which itself is a digital device, an analog signal that underwent a digital-to-analog conversion within player 701 or an analog signal that did not require a D-to-A conversion since player 701 is an analog device such as a vinyl record player to name a few.
  • Tone Generator 703, which is coupled to audio player 701, is capable of receiving signal 702 in either an analog or digital format.
  • Tone Generator 703 comprises separate audio inputs for both analog and digital signals.
  • Tone Generator 703 may contain digital signal processor 710 which generates the ultrasonic and infrasonic component frequency tones.
  • Tone Generator 703 may contain one or more physical knobs or sliders allowing a user to select desired frequencies to be generated by Tone Generator 703.
  • Tone Generator 703 may also have a touch screen, knobs or buttons to allow a user to select predefined categories of component frequencies that are cross- referenced to certain sensory effects.
  • a predefined sensory effect can be selected by a user and concurrently generated during playback of audio content.
  • a display may include a menu offering 35 different named sensory effects or eposc compositions. Through manipulation of the display's touch screen and/or buttons, a user may choose one or more eposc compositions to be generated during playback of the audio content. Of the 35 different sensory effects, Sensory Effect 7 may be entitled "SE007.” Sensory Effect 7 may be cross-referenced to a category of frequencies such as 1.1 Hz, 1.78 Hz, 2.88 Hz, and 23,593 Hz. Therefore, if a user selects "SE007", the above four component frequencies will be generated and played concurrently with the initially selected audio file received from audio player 701.
  • Tone Generator 703 may also allow manipulation of the volume level of each eposc composition.
  • the volume level of each eposc composition may be in reference to the volume level of the audio file selected for playback. Hence a user my select how many decibels below the selected audio file's decibel level that the eposc composition should be played. Typically, the volume level of the eposc composition defaults to 33 decibels below the volume level of the selected audio file.
  • a user may also be able to modify eposc composition use, matched to their personal preferences, for storage within Tone Generator 703. For example, a user may determine one or more eposc compositions for playback during at least some portion of a selected audio file. The user may also select individual volume levels for each component frequency as well as an overall volume level for the entire eposc composition.
  • a user may be able to store a new eposc composition with Tone Generator 703 or through an externally connectable storage device such as a USB Drive consisting of flash or some other form of memory.
  • Audio receiver 706 is coupled to Tone Generator 703 by either input signal 704 or input signal 705. Hence, audio receiver 706 is capable of receiving one or more audio signals from Tone Generator 703. Tone Generator's 703 outputs audio signals 704, 705 to audio receiver 706.
  • signal 704 contains the original audio signal 702 received by Tone Generator 703 from player 701. Signal 704 may be unaltered and passed through Tone Generator 703.
  • Signal 704 may be either a digital or an analog signal or alternatively, audio signal 704 may have undergone a D-to-A or an A-to-D process depending on the type of originating signal 702.
  • audio signal 702 may originate from player 701 as an analog signal.
  • Tone Generator 703 converts the signal to digital, hence, signal 704 is , embodied in both digital and analog form.
  • Audio receiver 706 may also receive signal 705 from Tone Generator 703.
  • signal 705 may contain the actual eposc compositions generated from Tone Generator 703. Such signals are time stamped so that the playback of each signal is synchronized with the audio content from audio signal 704.
  • signals 704 and 705 may be combined into a single audio signal such that the audio content from Audio Player 701 and eposc composition generated from Tone Generator 703 are combined into a single signal.
  • Signal 705 may be either an analog or a digital.
  • signal path 707 is 12 gauge oxygen free copper wire capable of transmitting an analog signal to analog speakers 708.
  • path 707 may be embodied in any transmission medium capable of sending a digital signal to digital speakers (not shown).
  • Receiver 706 is configured for converting incoming signals 704 and 705 to a single analog signal and then amplifying the signal through built-in amplifier 709 before passing the signal to speakers 708. If the incoming signals 704 and 705 are already in analog form, then a D-to-A conversion is not required and the two signals are simply mixed into a single signal and amplified by amplifier 709 before passing to speakers 708.
  • FIG. 8 illustrates another embodiment of a hardware device capable of generating an eposc composition to be played concurrently with audible content.
  • Audio system 720 comprises an audio player 711, an audio receiver 713 and a pair of speakers 718.
  • Audio player 711 is a device configured for reading digital or analog audio content from a readable storage medium such as a CD, DVD, vinyl record, or a digital audio file such as an MP3 or .WAV file. Upon playback of an audio signal, player 711 transmits audio signal 712 to audio receiver 713.
  • Audio signal 712 is a digital audio signal transmitted from player 711 which itself is a digital device, an analog signal that may undergo a digital-to-analog conversion within player 711 or an analog signal that does not require a D-to-A conversion since player 711 is an analog device such as a vinyl record player.
  • Receiver 713 may receive signal 712 from player 711 over a wireless network.
  • Audio receiver 713 comprises a built in Frequency Tone Generator 714, display 715 and amplifier 719.
  • Receiver 713 which is coupled to audio player 711, is capable of receiving signal 712 in either an analog or digital format. Typically, receiver 713 comprises separate audio inputs for both analog and digital signals.
  • Receiver 713 also has a Tone Generator 714 which generates component tones and, therefore, eposc compositions. Tone Generator 714 may be coupled to amplifier 719, thereby allowing for the eposc compositions to be amplified before transmission outside receiver 713.
  • Receiver 713 also contains display 715 which may present a user with a menu system of differing predefined eposc compositions that may be selected. Selections from the menu system are accomplished by manipulating buttons coupled to display 715. Display 715 may be a touch screen allowing manipulation of the menu items by touching the display itself.
  • receiver 713 may have a touch screen, a plurality of knobs or a number of buttons that are configured to allow a user to select predefined categories of eposc compositions that are cross-referenced to sensory effects for playback during audio content.
  • display 715 may include a menu offering 35 different eposc compositions. Through manipulation of the display's touch screen and/or buttons, a user may choose one or more eposc compositions to be generated during playback of the audio content.
  • Sensory Effect 7 may be entitled "SE007.” Sensory Effect 7 may be cross-referenced to a category of component frequencies such as 1.1 Hz, 1.78 Hz, 2.88 Hz, and 23,593 Hz.
  • Receiver 713 may further include a database that stores a matrix of the eposc compositions that correspond to particular sensory effects. This database may be stored within Tone Generator 714 or external to it — yet nonetheless stored within receiver 713. A user may be able to create his own sensory effects for storage within Tone Generator 703, as well as the ability to alter the existing eposc compositions. Moreover, a user may be able to edit the volume level of each eposc composition so that the presence of an eposc composition during playback of audio content may be stronger or lower than at a predetermined volume level.
  • signal path 717 are 12 gauge oxygen free copper wires capable of transmitting an analog signal.
  • Signal path 717 may also be embodied in a transmission medium capable of transmitting a digital signal to speakers 718. Ih another embodiment, signal 717 is a wireless transmission capable of transmitting digital or analog audio signals to speakers 718.
  • FIG. 9 illustrates another embodiment of a device capable of generating eposc compositions that may be played concurrently with audible content.
  • Audio system 730 comprises Portable Music Player 736 and a pair of headphones 732.
  • Music Player 736 is typically a self contained audio device capable of storing, playing and outputting digital audio signals.
  • Music Player 736 has an internal storage system such as a hard drive or non- volatile flash memory capable of storing one or more digital audio files.
  • Music Player 736 also comprises a digital-to-analog converter to convert digital audio stored within the device into analog audio signals that may be outputted from the device through wire 731 into headphones 732.
  • Music Player 736 may also have an internal amplifier capable of amplifying an audio signal before exiting the device.
  • Music Player 736 also comprises one or more buttons 741 to manipulate the device.
  • Graphical display 742 provides visual feedback of device information to a user.
  • Frequency Tone Generator 735 is an internal processor within Music Player 736 capable of generating eposc compositions.
  • the functionality of Tone Generator 735 is substantially the same as Tone Generator 714 illustrated and described with reference to FIG. 8.
  • graphical display 742 is capable of providing a user with one or more menu options for predefined categories or eposc compositions of frequencies, similar to display 715 shown in FIG. 7.
  • FIG. 10 illustrates another embodiment of a hardware device capable of generating eposc compositions to be played concurrently with audible content.
  • System 750 comprises computer 755, display 751 and speakers 754.
  • Display 751 is coupled to computer 755, which is capable of transmitting a graphical signal to display 751.
  • Computer 755 maybe any type of computer including a laptop, personal computer hand held or any other computing system.
  • Computer 755 further comprises internal soundcard 752, which may be external to computer 752, yet capable of sending and receiving signals through a transmission medium such as USB, Fire Wire or any other wired or wireless transmission medium.
  • Soundcard 752 is capable of processing digital or analog audio signals and outputting the signals along path 753 to speakers 754. In another embodiment, soundcard 752 may wirelessly transmit audio signals to speakers 754.
  • Soundcard 752 also comprises Frequency Tone Generator 757 whose function is to generate eposc compositions.
  • Tone Generator 757 may be a separate processor directly hardwired to soundcard 752. Alternatively, no specific processor is required, but rather the existing processing capability of soundcard 752 is capable of generating frequencies solely through software. It may be that an external device is coupled to soundcard 752 that allows for tone generation.
  • the functionality of Tone Generator 757 is substantially the same as described above in regards to Tone Generator 714 illustrated in FIG. 7.
  • a software application may permit manipulation of Tone Generator 757 through graphical menu options. For example, a user may be able to add, remove or edit eposc compositions.
  • a user may choose to add an eposc composition (as generated by the methods described herein) to a number of different types of digital media including music stored in digital files or residing on optical discs playing through an optical disc drive; to video content, computer-generated animation and still images functioning as slide shows on a computer.
  • An example of adding an eposc composition to still images can entail the creation of a slideshow of still images with or without music and adding an eposc composition, or in similar fashion to a movie or video originally shot without sound.
  • the eposc composition may be mixed with ambient sound and is concurrently played alongside the slideshow of images and its audible content, if present, or alongside the silent movie.
  • Such an eposc composition may also be stored as part of the slideshow, such that each time the slideshow is replayed, the eposc composition is automatically loaded and concurrently played.
  • a user may add an eposc composition while playing computer games.
  • Current game developers spend large amounts of time and money to add audio content to enhance the sensory immersion of a user into the game.
  • the goal of a game developer is make the user feel as if he is not playing a game, but rather is part of an alternate reality.
  • the visual content is only a part of the sensory content.
  • the audio portion is equally important to engage a user into a game.
  • Adding an eposc composition or a plurality of eposc compositions has the potential to increase the level of sensory immersion a user experiences with a computer game.
  • the added eposc composition can enhance the perception of the audio content of the game.
  • the added eposc composition may be generated on the fly, and concurrently played with the audio content of the game.
  • a user may also have control over the eposc composition he wants to include during game play.
  • Profiles may also be created for specific games so that a user may create an eposc composition for a specific game.
  • game X may be a high intensity first-person-prospective shooting game with powerful music and sound effects meant to invoke strong emotions from the user.
  • a user may choose to add one or more specific eposc compositions for concurrent playback with the game that may further enhance the sensory perception of the overall media content and its visceral and emotional effects.
  • Such a profile could then be saved for game X.
  • external software upon launching game X, external software would become aware of game X's launch, load the predefined profile of eposc compositions and begin generation of an eposc composition, followed by another eposc composition as the game progresses.
  • a game developer may choose to add in his own eposc composition as part of the audio content of the game.
  • a developer would have unlimited control over the type of content to include. For example, a specific portion of a game may elicit specific sensory effects while other portion may elicit different sensory effects.
  • a developer could custom-tailor the eposc compositions for each part of a game, in the same way a movie producer may do so for different scenes.
  • a game developer may also choose to allow a user to turn off or edit the added eposc compositions.
  • a user may be able to choose his own eposc composition profiles for each portion of a game, much like adding profiles for each game as described above, except each profile could be stored as part of the actual game.
  • Gaming consoles may also implement internal or external processing capability to generate eposc compositions for concurrent playback with games.
  • a gaming console is a standalone unit, much like a computer, that comprises one or more computing processors, memory, a graphics processor, an audio processor and an optical drive for loading games into memory.
  • a gaming console may also include a hard disc for permanently storing content. Examples of gaming consoles include the Xbox 360 by Microsoft Corporation and the PlayStation 2 by Sony Corporation.
  • a gaming console may contain a tone generator allowing for the concurrent playback of eposc compositions with sound content of a game.
  • Users may have the capability to set up profiles or eposc compositions for individual games or game segments.
  • Game developers may also create profiles for certain parts of a game as well, such that different portions of a game may elicit different sensory responses from a user.
  • a portable gaming console is a portable gaming console. Such a console is often handheld and runs off portable battery power. An example of a portable gaming console would be the PSP by Sony, Inc. Such a portable console may also incorporate the same tone generation capabilities as described above. Due to the portability of such a console, headphones are often used as a source of audio output. In most cases, headphones do not have the capability to reproduce the full dynamics of the infrasound and ultrasound portions of the eposc compositions, but they transmit the derivative tonal characteristics of the eposc compositions as the means to enhance sensory perception.
  • PDA personal digital assistants
  • cell phones televisions, satellite TV receivers, cable TV receivers, satellite radio receivers such as those made by XM Radio and Sirius Radio, car stereos, digital cameras and digital camcorders.
  • PDA personal digital assistants
  • speakers and headsets used for mobile media devices or cell phones do not have the capability to transmit the full dynamics of the infrasonic and ultrasonic portions of the eposc compositions, but they transmit the derivative properties, such as the tonal characteristics of the eposc compositions, as the means to enhance sensory perception.
  • tone generators are media transmissions systems, whereby the eposc compositions could be incorporated into the media content stream.
  • Terrestrial and satellite transmitted media streams such as television and radio could benefit from enhanced perception of sensory content, as well as internet and cell phone transmissions.
  • any venue where music is played may incorporate eposc composition playback such as live concert halls, indoor and outdoor sports arenas for use during both sporting events and concerts, retail stores, coffee shops, dance clubs, theme parks, cruise ships, bars, restaurants and hotels.
  • venues such as hospitals or dentists office could concurrently playback music along with eposc compositions in order to provide a more conducive setting for their procedures.
  • eposc compositions Another venue that may benefit from eposc compositions is a movie theater.
  • a producer aims to transport an audience away from day-to- day reality and into the movie's reality.
  • Some producers and directors have inferred that the visual content may comprise only 50% of the movie experience.
  • the balance of the movie experience primarily comes from audible content.
  • Movie producers may implement eposc compositions into some or all portions of a movie in order to create more sensory engagement with the product. In a manner similar to choosing music for different parts of a movie, the producer could also choose various combinations and sequences of eposc compositions to enhance the audience's perception of the sensory content.
  • the eposc compositions may be added into the audio tracks of the movie.
  • a separate audio track may be included which only contains the eposc compositions.
  • the finished movie may not contain any eposc compositions. Instead such eposc compositions may be added during screening using external equipment controlled by individual movie theaters.
  • the producer may also provide alternate sound and eposc composition tracks for distribution through video, DVD or HD-DVD. This would allow the viewer to choose to include or not include eposc compositions during playback of the movie.

Abstract

La présente invention concerne généralement l'amélioration d'une perception de captage d'un support. Plus particulièrement, l'invention concerne la création d'une composition ayant au moins une fréquence dans la plage des ultrasons ou des infrasons. Ainsi, par exemple, la composition est inaudible dans son mode de réalisation préféré, mais les composants audibles sont envisagés. Un aspect de l'invention concerne la sélection d'une fréquence racine, puis, via une opération mathématique ou un algorithme, le calcul d'une seule fréquence de composant ou une pluralité de fréquences qui se trouve dans la plage d'infrasons ou d'ultrasons. Généralement, les fréquences par ultrasons et infrasons se trouvent hors de la plage d'écoute de l'être humain moyen. La fréquence du composant par ultrasons ou infrasons n'est pas entendue, pourtant sa présence et ses caractéristiques tonales peuvent améliorer une perception du contenu de captage d'un support transporté via un dispositif de support. Un autre aspect de l'invention concerne l'encodage du support avec une composition ayant une ou plusieurs fréquences de composant calculées de sorte que au moins l'une des fréquences du composant soit inférieure à 20 Hz ou supérieure à 20 kHz.
PCT/US2006/048081 2006-02-16 2006-12-15 Perceptions ameliorees du contenu de captage de supports audio et audiovisuels WO2007106165A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US77381806P 2006-02-16 2006-02-16
US60/773,818 2006-02-16

Publications (2)

Publication Number Publication Date
WO2007106165A2 true WO2007106165A2 (fr) 2007-09-20
WO2007106165A3 WO2007106165A3 (fr) 2009-04-09

Family

ID=38509940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/048081 WO2007106165A2 (fr) 2006-02-16 2006-12-15 Perceptions ameliorees du contenu de captage de supports audio et audiovisuels

Country Status (1)

Country Link
WO (1) WO2007106165A2 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689947B2 (en) * 1998-05-15 2004-02-10 Lester Frank Ludwig Real-time floor controller for control of music, signal processing, mixing, video, lighting, and other systems
US6694817B2 (en) * 2001-08-21 2004-02-24 Georgia Tech Research Corporation Method and apparatus for the ultrasonic actuation of the cantilever of a probe-based instrument

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6689947B2 (en) * 1998-05-15 2004-02-10 Lester Frank Ludwig Real-time floor controller for control of music, signal processing, mixing, video, lighting, and other systems
US6694817B2 (en) * 2001-08-21 2004-02-24 Georgia Tech Research Corporation Method and apparatus for the ultrasonic actuation of the cantilever of a probe-based instrument

Also Published As

Publication number Publication date
WO2007106165A3 (fr) 2009-04-09

Similar Documents

Publication Publication Date Title
US7725203B2 (en) Enhancing perceptions of the sensory content of audio and audio-visual media
Toole Sound reproduction: The acoustics and psychoacoustics of loudspeakers and rooms
JP5609160B2 (ja) 情報処理システム、コンテンツ合成装置および方法、並びに記録媒体
US20100220869A1 (en) audio animation system
JP2006246480A (ja) オーディオ信号を録音および再生する方法および装置
US20090240360A1 (en) Media player and audio processing method thereof
US20120093343A1 (en) Electronically-simulated live music
Beggs et al. Designing web audio
WO2018008434A1 (fr) Dispositif de présentation des performances musicales
JP2002078066A (ja) 振動波形信号出力装置
CN114598917B (zh) 显示设备及音频处理方法
Goodwin Beep to boom: the development of advanced runtime sound systems for games and extended reality
JP2013156543A (ja) 投稿再生装置及びプログラム
JP2021021870A (ja) コンテンツ収集・配信システム
WO2022163137A1 (fr) Dispositif de traitement d'informations, procédé de traitement d'informations et programme
WO2022018786A1 (fr) Système de traitement sonore, dispositif de traitement sonore, procédé de traitement sonore et programme de traitement sonore
JP6958676B1 (ja) 制御方法および制御システム
WO2007106165A2 (fr) Perceptions ameliorees du contenu de captage de supports audio et audiovisuels
JP2014123085A (ja) カラオケにおいて歌唱に合わせて視聴者が行う身体動作等をより有効に演出し提供する装置、方法、およびプログラム
JP2018028646A (ja) 会場別カラオケ
JP6220576B2 (ja) 複数人による通信デュエットに特徴を有する通信カラオケシステム
KR102013054B1 (ko) 퍼포먼스의 출력 및 퍼포먼스 컨텐츠 생성을 수행하는 방법 및 그 시스템
WO2021111965A1 (fr) Système de génération de champ acoustique, appareil de traitement du son et procédé de traitement du son
WO2023084933A1 (fr) Dispositif de traitement d'informations, procédé de traitement d'informations et programme
WO2022176440A1 (fr) Dispositif de réception, dispositif de transmission, procédé de traitement d'informations et programme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06845642

Country of ref document: EP

Kind code of ref document: A2