WO2007103800A2 - Internally located return electrode electrosurgical apparatus, system and method - Google Patents

Internally located return electrode electrosurgical apparatus, system and method Download PDF

Info

Publication number
WO2007103800A2
WO2007103800A2 PCT/US2007/063198 US2007063198W WO2007103800A2 WO 2007103800 A2 WO2007103800 A2 WO 2007103800A2 US 2007063198 W US2007063198 W US 2007063198W WO 2007103800 A2 WO2007103800 A2 WO 2007103800A2
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
active
electrode
active electrode
return
Prior art date
Application number
PCT/US2007/063198
Other languages
French (fr)
Other versions
WO2007103800A3 (en
WO2007103800B1 (en
Inventor
Jean Woloszko
George Morrison
Thomas Jenkins
Original Assignee
Arthrocare Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arthrocare Corporation filed Critical Arthrocare Corporation
Priority to EP07757813.6A priority Critical patent/EP1996105B1/en
Publication of WO2007103800A2 publication Critical patent/WO2007103800A2/en
Publication of WO2007103800A3 publication Critical patent/WO2007103800A3/en
Publication of WO2007103800B1 publication Critical patent/WO2007103800B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/148Probes or electrodes therefor having a short, rigid shaft for accessing the inner body transcutaneously, e.g. for neurosurgery or arthroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00434Neural system
    • A61B2018/0044Spinal cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • A61B2018/00583Coblation, i.e. ablation using a cold plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1472Probes or electrodes therefor for use with liquid electrolyte, e.g. virtual electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration
    • A61B2218/008Aspiration for smoke evacuation

Definitions

  • Electrosurgical instruments and systems comprising an active and return electrode and powered by a radio-frequency voltage supply as is illustrated for example in Fig. 1, are widely used in procedures for treating target tissues in the body. Treatment of the target tissue involves placing the electrodes (10) in close proximity to a target tissue (12) and applying power to the electrodes to cause Coblation TM, heating, ablation, coagulation, cutting, removal, puncturing, probing, and otherwise stimulating the tissue. In some systems an electrically conductive fluid is supplied between the electrodes to generate plasma to treat the tissue; in other systems, the body's fluids are used as the conductive fluid. An example of such system for treating tissues with plasma is described in commonly assigned U.S. Patent Application no.
  • the active electrode is separated from the return electrode by an insulator (24), and electrically conductive fluid (22) is supplied between the electrodes by a fluid lumen (26) circumferentially positioned on the shaft around the return electrode.
  • This conductive fluid as is illustrated in Fig. 2 forms a conductive fluid pathway (38) between the electrodes
  • the present electrosurgical method in one embodiment is a method of treating tissue that avoids nerve stimulation, comprising the steps of: positioning a distal end of an electrosurgical instrument in close proximity to the tissue, the distal end comprising an active electrode and a return electrode; applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conducting fluid sufficient to generate plasma on the active electrode; and contacting the tissue with the plasma such that the tissue is exposed to plasma but minimally exposed to electric fields generated between the active electrode and the return electrode.
  • Fig. 4 is an illustration of a perspective view of an intervertebral disc.
  • Fig. 11 is as illustration the present electrosurgical system wherein the return electrode is enclosed with the distal end of an electrosurgical shaft.
  • an electrically conductive fluid examples include isotonic saline, a conductive gel, Ringer's solution and the biocompatible electrolytes as described for example in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra.
  • plasma is generated on the electrodes by applying a radio frequency voltage across the electrodes in the presence of the electrically conductive fluid (22, 38).
  • plasma (20) comprised of energized charged species such as ions and electrons, is used to treat the target tissue by Coblation TMas described in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra.
  • an aspiration lumen is provided.
  • the fluid aspiration lumen is located on the shaft but it can also be placed off the shaft in other embodiments.
  • the lumen may comprise of a fluid inlet port disposed at the distal end of shaft, and a fluid discharge port at the proximal end where it is connected to a vacuum system for suctioning fluids, gases and ablated tissue from the target site through the aspiration lumen.
  • Shaft (152) also includes aspiration lumen (171).
  • aspiration lumen (171) includes a distal opening (186) proximate active electrode (158), return electrode (160) and chamber (168) as well as a plurality of apertures (188) formed along a selected length (182) of shaft (152).
  • apertures (188) which may also be referred to as "inlet apertures" are substantially uniformly spaced along selected length 182, including being uniformly spaced along the circumference of shaft (152), and have a uniform size.
  • the size and disposition of apertures (188) may vary along the selected length.
  • selected length (182) comprises approximately 2.5 centimeters, however in alternate embodiments selected length may be in the range of between about one centimeter and about five centimeters or between about two centimeters and about three centimeters.
  • Fluids may enter aspiration lumen (180) through opening (186) or apertures (188) and subsequently travel away from the body structure (138) in the direction of arrows (181).
  • Aspiration lumen (180) may preferably be in communication with a suction source, however, the disposition of apertures (188) along selected length (182) allows fluid to flow away from the treatment site without requiring a separate suction source. In situations in which a separate suction source is not provide or not used, the evacuated material may exit aspiration lumen (180) via apertures along the second portion (184) of selected length (182).
  • an electric field (not expressly shown) may be is generated therebetween.
  • this electric field is directed inwards and is maintained primarily within the distal end (156) the effect of the electric field on neighboring tissue is substantially minimized, if not eliminated.
  • active electrode (158) includes a screen or mesh portion (196) comprising a plurality of apertures (178). Active electrode (158) also includes a distal loop assembly (196). As shown in Figure 15, loop assembly (196) is adapted to interface with distal end (156) of shaft (152). As shown, bushing (190) is disposed circumferentially around the exterior surface of return electrode (160). Note that in Figure 15 a proximal portion of bushing 190 has been cut away to allow return electrode (160) and chamber (168) to be in view. In the present embodiment bushing (190) preferably extends slightly in a proximal direction such that loop section (196) may then be disposed around bushing (190) and such that bushing (190) insulates loop (196) from return electrode (160).
  • an electric insulator or spacer element (162) is provided between active electrode (158) and return electrode (160).
  • Insulator (162) includes an opening for allowing conductive fluid to flow between active electrode (158) and return electrode (160). Additionally, insulator (162) may include apertures (163) formed therein. Apertures (163) may be formed uniformly on the body of the insulator (162) or may be provided along only a portion of insulator (162). Apertures (163) may be elliptical (as shown), circular or have any other suitable shape. Apertures (162) may open into chamber (168) and/or onto a surface of return electrode (160).

Abstract

A bipolar, plasma-generating electrosurgical apparatus and system wherein the return electrode is enclosed within an electrosurgical shaft, and the active electrode is located on the outside surface of the shaft such that in treating the tissue, the tissue is exposed to plasma generated on the active electrode, but is minimally exposed to electric fields generated between the active and return electrodes. Due to the configuration of the electrodes, electric fields generated between the electrodes are directed away from the target tissue and inwardly towards the return electrode within the shaft, thereby electrical stimulation of neuromuscular structures in the tissue by the electric fields is minimized.

Description

INTERNALLY LOCATED RETURN ELECTRODE ELECTROSURGICAL APPARATUS,
SYSTEM AND METHOD
RELATED APPLICATION This application claims priority from U.S. Patent Application No. 11/367,254 filed March 2,
2006, the complete disclosure of which is incorporated herein by reference for all purposes.
FIELD OF INVENTION
This invention pertains to an electrosurgical apparatus, system and method of treating tissue in a body structure, in particular a bipolar, plasma-generating electrosurgical apparatus and system wherein the return electrode is enclosed within an electrosurgical shaft, and the active electrode is located on the outside surface of the shaft such that in treating the tissue, the tissue is exposed to plasma generated on the active electrode, but minimally exposed to localized electric fields generated between the active and return electrodes. In various embodiments, due to the configuration of the electrodes, the electric fields are directed away from the target tissue, as they are oriented inwardly towards the return electrode within the shaft, thereby avoiding electrical stimulation of neuromuscular structures in the tissue by these electric fields.
BACKGROUND Electrosurgical instruments and systems comprising an active and return electrode and powered by a radio-frequency voltage supply as is illustrated for example in Fig. 1, are widely used in procedures for treating target tissues in the body. Treatment of the target tissue involves placing the electrodes (10) in close proximity to a target tissue (12) and applying power to the electrodes to cause Coblation ™, heating, ablation, coagulation, cutting, removal, puncturing, probing, and otherwise stimulating the tissue. In some systems an electrically conductive fluid is supplied between the electrodes to generate plasma to treat the tissue; in other systems, the body's fluids are used as the conductive fluid. An example of such system for treating tissues with plasma is described in commonly assigned U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), hereby incorporated herein by reference for all purposes. In an electrosurgical system as illustrated in Fig. 1, the electrodes are located on the distal end portion of the shaft (14). In one configuration of the distal end portion of the shaft as is illustrated in detail Fig. 2, the return electrode (16) is positioned on the outside perimeter of the shaft and, in various embodiments, surrounds the active electrode (18) which is within the shaft. To ensure that plasma (20) generated on the active electrode is closest to the tissue, the distal tip of the active electrode projects beyond the return electrode. Also, in the embodiment illustrated in Fig. 2, the active electrode is separated from the return electrode by an insulator (24), and electrically conductive fluid (22) is supplied between the electrodes by a fluid lumen (26) circumferentially positioned on the shaft around the return electrode. This conductive fluid as is illustrated in Fig. 2 forms a conductive fluid pathway (38) between the electrodes
Also in an electrosurgical system as is illustrated in Fig. 2 and as will be appreciated by one ordinarily skilled in the art, when power is applied across the electrodes, an electric field (22) sometimes in the order of 30,000 V/cm is generated which, for some procedures, is not desired as these fields can interact with the tissue and cause electrical stimulation of neuromuscular structures
(28) within the tissue.
Accordingly, there is a need for apparatus and systems for use in electrosurgical procedures wherein unwanted electrical stimulation of the tissue is avoided, and which can be used in confined spaces within the body.
SUMMARY OF THE INVENTION
The present electrosurgical apparatus in one embodiment comprises an electrosurgical shaft having a proximal end portion and a distal end portion. The shaft includes an active electrode disposed on the surface of the distal end portion, and a return electrode disposed within the distal end portion of the shaft. Positioned between the active and return electrode is an insulating member that prevents direct electrical contact between the active and return electrodes. The shaft includes an interconnecting passageway within the distal end portion of the shaft between the active and return electrode. The electrodes are connected to a radio-frequency voltage supply by connectors such that on applying a radio-frequency voltage difference across the active and return electrodes, plasma is generated on the active electrode, and electrical fields generated between the electrodes are directed from the active electrode to the return electrode in the shaft, to avoid electrical stimulation of the tissue. The plasma can be used to treat the tissue by coblating, heating, ablation, coagulation, cutting, removal, puncturing, probing, and otherwise stimulating the tissue. The present electrosurgical system in one embodiment is a system for performing an electrosurgical procedure on a body tissue using plasma such that electrical stimulation of the tissue is minimized, the system comprising: an electrosurgical instrument comprising a shaft; an electrically conductive fluid supply having a discharge port on a distal end of the shaft; and a radio-frequency voltage supply connected to the electrosurgical instrument. In one embodiment, the shaft comprises: an active electrode on the distal end; a return electrode recessed within the shaft; an electrical insulator separating the active and return electrode. Within the shaft is a chamber in communication with the active and return electrodes such that on applying the radio-frequency voltage supply to the active and return electrodes in the presence of an electrically conductive fluid, plasma is generated on the active electrode on the surface of the shaft, and electric fields generated between the active and return electrodes are directed within the shaft, and thus away from the tissue. In some embodiments the shaft of the electrosurgical instrument may include an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft, where the selected length of the shaft include a first portion for insertion within a target tissue structure, such as an intervertebral disc, and a second portion for venting outside the target tissue structure.
The present electrosurgical method in one embodiment is a method of treating tissue that avoids nerve stimulation, comprising the steps of: positioning a distal end of an electrosurgical instrument in close proximity to the tissue, the distal end comprising an active electrode and a return electrode; applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conducting fluid sufficient to generate plasma on the active electrode; and contacting the tissue with the plasma such that the tissue is exposed to plasma but minimally exposed to electric fields generated between the active electrode and the return electrode.
In various embodiments the present apparatus and system can be used in procedures for treating highly neutralized tissue, and other tissues located in confined targets within the body. An example of such targets is tissue in the intervertebral discs. Details of embodiments of the present apparatus, system and methods are illustrated and described the following Figures and specifications.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is an illustration of a bipolar electrosurgical system. Fig. 2 is an illustration of a cross-section of the distal end portion of an electrosurgical instrument showing plasma and electrical fields between the active and return electrodes. Fig. 3 is an illustration of lateral view of a partial spinal column.
Fig. 4 is an illustration of a perspective view of an intervertebral disc.
Fig. 5 is an illustration of an embodiment of the present apparatus within a herniated intervertebral disc for treating the disc in accordance with one orientation of the apparatus. Fig. 6 is an illustration of a perspective cut-away view of the distal end of the present electrosurgical shaft.
Fig. 7 is an illustration of a longitudinal cross-sectional view of the distal end of the present electrosurgical shaft.
Fig. 8 is an illustration of the cross-section of the distal end portion of the present apparatus showing conductive fluid and electrical fields between the active and return electrodes, without plasma.
Fig. 9 is an illustration of the cross-section of the distal end portion of the present apparatus showing conductive fluid flow, electrical field lines between the active and return electrodes, with plasma on the active electrode. Fig. 10 is an illustration of a perspective view of an embodiment of the present active electrode.
Fig. 11 is as illustration the present electrosurgical system wherein the return electrode is enclosed with the distal end of an electrosurgical shaft.
Fig. 12 is an algorithm of the present method of treating tissue with the present apparatus and system.
Fig. 13 shows an electrosurgical system for insertion according to the present disclosure for treating a target tissue.
Fig. 14 shows a cut-away view of a portion of a shaft of an electrosurgical system.
Fig. 15 shows an enlarged view of the distal end of an electrosurgical system, with portions removed, according to the present disclosure.
Fig. 16 shows an embodiment of an active electrode according to the present disclosure.
DETAILED DESCRIPTION
With reference to Figs. 1 and 2, a plasma-generating bipolar electrosurgical system typically comprises an electrosurgical shaft (14) having proximal (30) and distal (32) end portions; one or more active electrode(s) (18) located on the distal end of the shaft; a return electrode (16) located on the shaft of the return electrode and separated from the active electrode by an insulator (24); electrical connectors (34) coupling the active and return electrodes (18, 16) to a source of radio- frequency voltage supply (36); and a supply of electrically conductive fluid (26, 26a) adapted to be discharged between the active and return electrodes. On application of the radio-frequency voltage across the electrodes in the presence of the conductive fluid, plasma is generated which can be used to treat tissue as described for example in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra.
A bipolar electrosurgical apparatus, as is illustrated for example in Figs. 1 and 2, is an electrosurgical apparatus wherein both the active and return electrodes (18, 16) are positioned on the shaft (14). In this regard, a bipolar apparatus is distinguishable from a monopolar apparatus in that on a monopolar apparatus only the active electrode is positioned on the shaft; in a monopolar apparatus the return electrode is located off the shaft but is in electrical contact through the patient to the target site and the electrically conductive fluid.
Examples of an electrically conductive fluid include isotonic saline, a conductive gel, Ringer's solution and the biocompatible electrolytes as described for example in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra.
In a bipolar electrosurgical apparatus as is illustrated for example in one embodiment in Fig. 2, the electrodes are separated from each other by an insulator (242) to prevent short-circuiting of the electrodes on the distal end portion of the shaft. However, to establish a closed electrical circuit across the electrodes on the shaft and generate plasma, an electrically conductive fluid pathway (38) is provided between the electrodes. This electrically conductive fluid pathway can be provided in several ways including placing the conductive fluid on the shaft such that the fluid is in contact with both electrodes; or placing the conductive fluid on the target tissue such that the fluid is in contact with both electrodes and the target tissue at the same time; or inserting the shaft into the tissue such that the electrical circuit between the electrodes is established through the tissue by conductive body fluids in the tissue.
In both bipolar and monopolar plasma-generating apparatus, however, regardless of how the conductive pathway is established between the electrodes, for the instrument to generate plasma it is necessary to maintain a closed electrical circuit on the distal end of the shaft comprising the electrodes, the electrically conductive fluid and the power supply, as described for example in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra. On a bipolar plasma-generating systems and apparatus as illustrated in Figs. 1 and 2 and as is described in commonly assigned U.S. Patent Application No. 10/661,118, (Attorney Docket no. A- 21-1), supra, plasma is generated on the electrodes by applying a radio frequency voltage across the electrodes in the presence of the electrically conductive fluid (22, 38). With these systems and apparatus, plasma (20), comprised of energized charged species such as ions and electrons, is used to treat the target tissue by Coblation ™as described in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra.
On a plasma-generating bipolar apparatus, in order to generate and use plasma to treat the tissue, the electrodes are designed such that only the active electrode generates the plasma, and that in use this electrode is located as close as possible to the target tissue. Conversely, the return electrode is designed such that it does not generate plasma, and that in use it is away from the target tissue to avoid contacting the tissue, but it is in electrical contact with the active electrode through the electrically conductive fluid. One way by which the plasma is generated on the active electrodes but not on the return electrode is to maintain the surface area of the active electrode smaller relative to the surface area of the return electrode .
In this regard it should be noted that during use, ablated tissues and other materials may accumulate on the return electrode thereby causing a reduction of its exposed surface area relative to the exposed surface area of the active electrode, thereby undesirably causing the return electrode to also generate plasma. In a plasma-generating bipolar apparatus and system as is illustrated for example in Figs. 1 and 2 and described in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra, a convenient way by which a relatively large return electrode is maintained is to use the shaft proximal of the active electrode as the return electrode. Typically this involves using an outer metallic portion of the shaft that is insulated from the active electrode. Thus, as is illustrated in Fig., 2 in a bipolar system, in one embodiment, the active electrode is the distal tip of the shaft, whereas the return electrode is the shaft's outer surface insulated from the active electrode.
Also as is illustrated for example in Figs. 1 and 2 and described in U.S. Patent Application no. 10/661,118, (Attorney Docket no. A-21-1), supra, in using a plasma-generating bipolar apparatus for some procedures it is necessary to supply the electrodes with an electrically conductive fluid to form the conductive pathway (22, 38) between the electrodes (18, 16), and in some embodiments also to flush the target site and the electrodes with fluid. In procedures requiring a conductive fluid, this fluid can be provided by a fluid supply lumen located on the shaft. In this arrangement the fluid supply lumen is attached to a conductive fluid supply at the proximal end, such that the fluid is available for discharge at the distal end through an opening in the lumen near the electrodes and the target site. Further, in a plasma-generating bipolar apparatus as is illustrated for example in Figs. 1 and
2, for some procedures it is necessary to remove excess fluids and ablated tissue away from the target site. Where such fluid and tissue removal is necessary, an aspiration lumen is provided. In various embodiments the fluid aspiration lumen is located on the shaft but it can also be placed off the shaft in other embodiments. In an arrangement wherein the aspiration lumen is on the shaft, the lumen may comprise of a fluid inlet port disposed at the distal end of shaft, and a fluid discharge port at the proximal end where it is connected to a vacuum system for suctioning fluids, gases and ablated tissue from the target site through the aspiration lumen.
One procedure wherein a bipolar, plasma-generating apparatus is used for treating tissue is in treating an intervertebral disc as is described for example in U.S. Patent Application No. 10/656,597, (Attorney Docket No . S- 12) incorporated herein by reference herein for all purposes . In one procedure as illustrated in Figs. 3-5, the distal end of the shaft (40) is inserted in the disc (38) and thereafter radio-frequency voltage is applied across the electrodes to generate plasma to treat the disc. In Fig. 5, the wand (50) is shown inserted anteriorily into the disc, however as will be appreciated to one ordinarily skilled in the art, in other procedures not shown in Fig. 5, the wand is also insertable posteriorily into the disc.
As can be appreciated in the art in using a bipolar apparatus in treating a intervertebral disc as is illustrated in Figs. 3-5, besides generating plasma as described above, the apparatus also generates electrical fields (22) across the electrodes as is illustrated in Fig. 2, and these fields can be as high as 30,000 V/cm. A problem with these electrical fields is that in sensitive tissues such as in the disc and around the spine, the electric fields can cause undesired stimulation of regional nerve or nerve fibers (28) as is illustrated in Fig. 2.
Also as can be appreciated by one ordinarily skilled in the art, in treating tissue in confined spaces such as in the intervertebrate disc, it can be difficult to avoid contacting the tissue with the return electrode thus causing a short circuit across the electrodes or reducing the surface area of the electrode relative to the area of the active electrode. Another problem with using a bipolar apparatus in confined spaces such as in the invertebrate disc is that since the shaft may include a fluid supply lumen and an aspiration lumen, the shaft can get too bulky for easy access and use.
Accordingly, the present apparatus, system and apparatus in various embodiments are adapted to electrosurgically treat tissue, while minimizing exposure of the tissue to electrical stimulation. The apparatus, as will be appreciated from the present description, is also reduced in size in part because of the placement of the return electrode with the shaft; thus, with a smaller profile on the distal end the present apparatus and system provides improved access flexibility for applying electrosurgical procedures in restricted areas of the body, as for example, within an intervertebral disc.
With reference to Fig. 5-11, in one embodiment the electrosurgical apparatus (50) comprises a shaft (52) having a proximal end portion (54) and a distal end portion (56). On the distal end portion of the shaft is disposed an active electrode (58) on the surface of the shaft. Also disposed on the distal end but within the shaft is a return electrode (60) that is insulated from the active electrode by an insulating member (62) positioned on the distal end portion of the shaft. In this position, the insulating member prevents direct electrical contact between the active and return electrodes. Also included in the shaft in the present embodiment are electrical conductors (64, 66) that are adapted for applying a radio-frequency voltage difference across the active and return electrodes.
In one embodiment the electrosurgical apparatus comprises a lumen (70) within the shaft through which an electrically conductive fluid such as saline, Ringer's solution or an other acceptable other biocompatible ionic solutions can be supplied to the distal end of the shaft in the vicinity of the electrodes and the target tissue. As is illustrated in Figs. 1 and 11, the electrically conductive fluid can be supplied from a reservoir (26A) attached to the apparatus at the proximal end; in other embodiments not shown the reservoir is located on another apparatus. In the embodiment illustrated in Figs. 6-9, for example, the lumen is connected to an interconnecting passage (68) formed within the distal end of the shaft in between the electrodes. Within this interconnecting passage as is illustrated in Fig. 9, when a high frequency voltage us applied across the electrodes in the presence of an electrically conductive fluid, for example within the interconnecting passageway (68), plasma (74) which can be used to treat tissue is generated on the active electrode (58). Also, as noted above, when the power is applied to the electrodes, an electric field (76) is generated between the active electrode (58) and the return electrode (76) located within the shaft (52). Thus, since these electric fields are directed inwards, their effect on neighboring tissue is at least minimized, or eliminated.
In an embodiment of the active electrode illustrated in Figs. 6 -10, and in particular in Fig. 10, a plurality of apertures or holes (78) are provided on the electrode for passing an electrically conductive fluid between the outside of the shaft to the return electrode. In one embodiment the apertures are in the form of a mesh made of interwoven wires. Thus with this embodiment, both electrodes can be kept in electrical contact with an electrically conductive fluid within the interconnecting passageway (68).
Also in the embodiment of the apparatus illustrated in Figs. 6-10, the return electrode is connected to a conductive cap (76) having an exposed surface on the outer surface of the shaft (52), such that the cap is spaced sufficiently far from the active electrode to minimize generation of an electric field between the active electrode and the cap. An advantage of using this cap is that if the cap is conductive, since it is connected to the return electrode, its conductive area contributes to the area of the return electrode and thus have helps to ensure that the charge density on the surface of the return electrode is lower than the charge density on the surface of active electrode.
With reference to Figs, land 11, the electrosurgical apparatus in one embodiment comprises an aspiration lumen having an inlet in the proximity of the electrodes for removing fluids form the distal end portion of the shaft. The fluids may include fluids that flush the site as well as fluids that result from treatment of the tissue. Also provided in the present application is a system for performing an electrosurgical procedure on a body tissue using plasma, as is illustrated for example in Fig. 11. The system (50) in one embodiment comprises an electrosurgical instrument comprising a shaft (52); an electrically conductive fluid supply having a discharge port on a distal end (56) of the shaft; and a radio- frequency voltage supply (36) connected to the electrosurgical instrument. In one embodiment, and as described above with reference to Figs. 6-9, the shaft comprises: an active electrode (58) on the distal end; a return electrode (60) recessed within the shaft; an electrical insulator (62) separating the active and return electrode; and a chamber (68) in communication with the active and return electrodes within the shaft, wherein on applying the radio-frequency voltage supply (78) to the active and return electrodes in the presence and electrically conductive fluid (72), plasma (74) is generated on the active electrode on the surface of the shaft, and electric fields (76) generated between the active and return electrodes are directed within the shaft. Further provided is a method of treating body tissue including nerve-sensitive tissue in the body, as set forth in Fig. 12, comprising the steps of: positioning a distal end of an electrosurgical instrument in close proximity to the tissue (122), the distal end comprising an active electrode and a return electrode; applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conduct fluid sufficient to generate plasma on the active electrode; contacting the tissue with the plasma (124) and thereby avoiding exposing the tissue to electric fields generated between the active electrode and the return electrodes.
Now referring generally to the embodiments shown in Figures 13-16, an electrosurgical system (150) for insertion into a body structure (138) is provided. Electrosurgical system (150) generally includes shaft (152) having a distal end (156) and a proximal end (not expressly shown) where distal end (156) is adapted for treating a target tissue within body structure (138). In a preferred embodiment, body structure (138) may be an intervertebral disc and the target tissue comprises tissue within either or both the nucleus pulposus or the annulus fibrosus thereof. In the present embodiment distal end (156) includes an active electrode (158) disposed on the exterior surface of shaft (152). Also disposed within distal end (156) but within shaft (152) is a return electrode (160) that is insulated from the active electrode by an insulating member or spacer (162). In this position, insulating member (162) prevents direct electrical contact between active electrode (158) and return electrode (160) but also allows conductive fluid (172) to flow therebetween. Also included in shaft (152) are suitable electrical conductors (not expressly shown) adapted for connection with a radio-frequency voltage source and applying a radio-frequency voltage difference across active electrode (158) and return electrode (160) and a conductive cap (177), as described below.
In the present embodiment apparatus (150) comprises a fluid delivery lumen (170) and an aspiration lumen (171). Fluid delivery lumen (170) is preferably adapted to supply an electrically conductive fluid (172) such as saline, Ringer's solution or another suitable biocompatible ionic solutions to the distal end (156) of shaft (152) in the vicinity of the electrodes (158) and (160) and the target tissue. As is illustrated in Figs. 1 and 11, electrically conductive fluid (172) may be supplied from a reservoir (26A) in communication with the apparatus (150) at the proximal end or from another suitable source of electrically conductive fluid. In the present embodiment the distal terminus of delivery lumen (170) comprises return electrode (160). In the present embodiment fluid delivery lumen (170) is connected with and terminates within an interconnecting passage or chamber (168) formed within the distal end (156) of the shaft (152) between the active electrode (158) and return electrode (160). In other words, fluid delivery lumen (170) supplies fluid (172) to chamber (168) which may then preferably flow through apertures (178) of active electrode (158). Within chamber (168), when a suitable high frequency voltage is applied across the electrodes (158) and (160) in the presence of electrically conductive fluid (172) a plasma may preferably be formed for the treatment of tissue proximate active electrode (158).
Shaft (152) also includes aspiration lumen (171). In the present embodiment aspiration lumen (171) includes a distal opening (186) proximate active electrode (158), return electrode (160) and chamber (168) as well as a plurality of apertures (188) formed along a selected length (182) of shaft (152). In the present embodiment, apertures (188), which may also be referred to as "inlet apertures", are substantially uniformly spaced along selected length 182, including being uniformly spaced along the circumference of shaft (152), and have a uniform size. In alternate embodiments the size and disposition of apertures (188) may vary along the selected length. In the present embodiment, selected length (182) comprises approximately 2.5 centimeters, however in alternate embodiments selected length may be in the range of between about one centimeter and about five centimeters or between about two centimeters and about three centimeters.
As shown in the embodiment of Figure 14, conductive fluid (172) is delivered through fluid delivery lumen (170) and fluids are vented from the treatment site via aspiration lumen (180).
Fluids may enter aspiration lumen (180) through opening (186) or apertures (188) and subsequently travel away from the body structure (138) in the direction of arrows (181).
Referring now to Figure 13, the selected length (182) comprises a first portion (183) and a second portion (184) where the first portion (183) is designed to be inserted within body structure (138) during a medical procedure while the second portion (184) is designed to remain outside of the body structure during use. For example, first portion (183) may be about one (1) centimeter and second portion (184) may be about one and one-half (1.5) centimeters. In this manner, first portion (183) allows fluids (including gases) produced during treatment of the target tissue to evacuate through aspiration lumen (180) via apertures (188) and opening (186) along first portion (183). In an alternate embodiment (not expressly shown) the cumulative or collective area of apertures (188) with second portion (184) is at least equal to the cross sectional area of aspiration lumen (180). In another alternate embodiment, the size and/or distribution of apertures (188) in the first portion (183) may be greater than the size and/or distribution of apertures (188) in the second portion (184). In an alternate embodiment, distal opening 186 may be filled with an epoxy or other suitable material such that flow into aspiration lumen 180 is provided only through apertures (188). By providing second portion (184) outside of body structure (138) pressure Pi within body structure may be preferably kept at or substantially near atmospheric pressure. Aspiration lumen (180) may preferably be in communication with a suction source, however, the disposition of apertures (188) along selected length (182) allows fluid to flow away from the treatment site without requiring a separate suction source. In situations in which a separate suction source is not provide or not used, the evacuated material may exit aspiration lumen (180) via apertures along the second portion (184) of selected length (182).
As noted above, when the power is applied to electrodes (158) and (160), an electric field (not expressly shown) may be is generated therebetween. However, since this electric field is directed inwards and is maintained primarily within the distal end (156) the effect of the electric field on neighboring tissue is substantially minimized, if not eliminated.
In the embodiments of the apparatus illustrated in Figures 13-16, return electrode (160) is in electrical communication with a conductive cap or tip (177) having an exposed surface on the outer surface of the shaft (152), such that the cap is sufficiently spaced with respect to active electrode (158) to minimize generation of an electric field between the active electrode and the cap. As discussed above, an advantage of providing conductive cap (177) is to ensure that the charge density on the surface of return electrode (160) is lower than the charge density on the surface of active electrode (158).
As shown in Figure 16, active electrode (158) includes a screen or mesh portion (196) comprising a plurality of apertures (178). Active electrode (158) also includes a distal loop assembly (196). As shown in Figure 15, loop assembly (196) is adapted to interface with distal end (156) of shaft (152). As shown, bushing (190) is disposed circumferentially around the exterior surface of return electrode (160). Note that in Figure 15 a proximal portion of bushing 190 has been cut away to allow return electrode (160) and chamber (168) to be in view. In the present embodiment bushing (190) preferably extends slightly in a proximal direction such that loop section (196) may then be disposed around bushing (190) and such that bushing (190) insulates loop (196) from return electrode (160). A distal spacer (192), also shown in Figure 15 with a portion removed, may be further provided circumferentially around bushing (190) to insulate cap (177) from active electrode (158). Distal spacer (192) and cap (177) may aid in blunt dissection and protect active electrode (158) during insertion into body structure 138. In an alternate embodiment active electrode (158) may be brazed onto distal end (156) of shaft (152). In an alternate embodiment electrode (158) may include a second loop located, for example, at the opposite end of screen (194) for interfacing with distal end (156).
As shown in Figures 13-15 an electric insulator or spacer element (162) is provided between active electrode (158) and return electrode (160). Insulator (162) includes an opening for allowing conductive fluid to flow between active electrode (158) and return electrode (160). Additionally, insulator (162) may include apertures (163) formed therein. Apertures (163) may be formed uniformly on the body of the insulator (162) or may be provided along only a portion of insulator (162). Apertures (163) may be elliptical (as shown), circular or have any other suitable shape. Apertures (162) may open into chamber (168) and/or onto a surface of return electrode (160). In this manner apertures (163) may contribute to ensuring that the charge density on the surface of return electrode (160) is lower than the charge density on the surface of active electrode (158). Apertures (163) preferably provide an exit path for conductive fluid (172) in chamber (168) in the event that screen portion (194) of active electrode (158) becomes clogged.
By the present description and Figures it is to be understood that the terms used herein are descriptive rather than limiting, and that changes, modifications, and substitutions may be made without departing from the scope of the invention. Also it will be appreciated that although the present apparatus, system is described in the context electrosurgery on an intervertebral disc, the apparatus and its use is not restricted to treating discs but is applicable in general for electrosurgical procedures wherein is desired to minimize exposure of the tissue to electrical stimulation, and where access to the tissue is limited. Therefore the invention is not limited to the embodiments described herein, but is defined by the scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. An electrosurgical apparatus comprising: a shaft having a proximal end portion and a distal end portion; an active electrode disposed on the surface of the distal end portion of the shaft; a return electrode disposed within the distal end portion of the shaft; an insulating member positioned on the distal end portion of the shaft and preventing direct electrical contact between the active and return electrodes; and electrical conductors adapted for applying a radio-frequency voltage difference across the active and return electrodes, wherein the active electrode and return electrode define an interconnecting passageway within the distal end portion of the shaft.
2. The electrosurgical apparatus of claim 1 , wherein the return electrode comprises a lumen within the shaft.
3. The electrosurgical apparatus of claim 2, wherein the lumen and the interconnecting passage way comprises a continuous fluid conduit within the shaft.
4. The electrosurgical apparatus of claim 3, wherein the lumen is adapted for conveying an electrically conductive fluid into the interconnecting passageway at the distal end of the shaft.
5. The electrosurgical apparatus of claim 4, wherein the lumen is adapted for receiving electrically conducting fluid at the proximal end portion of the shaft.
6. The electrosurgical apparatus of claim 4, wherein the electrically conductive fluid is selected from the group consisting of isotonic saline, Ringer's solution and other biocompatible ionic solutions.
7. The electrosurgical apparatus of claim 1 , wherein plasma is generated proximate the active electrode upon application of the radio-frequency voltage across the active and return electrodes in the presence of an electrically conductive fluid.
8. The electrosurgical apparatus of claim 1 , wherein an electric field is generated upon application of the radio-frequency voltage across the active and return electrodes, and wherein the electric field is directed from the active electrode to the return electrode in the shaft.
9. The electrosurgical apparatus of claim 1 , wherein the active electrode comprises one or more apertures therethrough for passing an electrically conductive fluid between the outside of the shaft to the return electrode.
10. The electrosurgical apparatus of claim 1, wherein the return electrode comprises a conductive cap exposed on the outer surface of the shaft, wherein the cap is spaced sufficiently from the active electrode to minimize generation of an electric arc between the active electrode and the cap.
11. The electrosurgical apparatus of claim 1 , wherein the distal end of the shaft is sized for insertion into an intervertebral disc of a patient.
12. The electrosurgical apparatus of claim 1, wherein the shaft comprises an aspiration lumen having an inlet in the proximity of the electrodes for removing fluids from the distal end portion of the shaft.
13. An electrosurgical instrument for treating tissue within a body, comprising: a shaft having a proximal end portion and a distal end portion; an active electrode comprising a tissue-contacting surface on the distal end portion of the shaft;
a return electrode recessed within shaft; and
an insulator separating the active electrode and the return electrode,
wherein the tissue-contacting surface is adapted for generating plasma upon application of a radio frequency voltage across the active and return electrode in the presence of an electrically conducting fluid.
14. The instrument of claim 13, wherein the tissue-contacting surface and the return electrode define a chamber within the distal end portion of the shaft.
15. The instrument of claim 13, wherein the shaft comprises a fluid discharge lumen having a discharge port into the chamber.
16. The instrument of claim 13 , wherein the shaft comprise a suction lumen having a suction port from the chamber.
17. The instrument of claim 13, wherein the active electrode defines an opening into the chamber.
18. The instrument of claim 13 , wherein active electrode at least partly surrounds the return electrode.
19. The instrument of claim 17, wherein the active electrode comprises one or more apertures opening into the chamber for fluid flow between the active electrode and return electrode.
20. The instrument of claim 16, wherein the return electrode comprises at least a portion of the suction lumen.
21. The instrument of claim 13, wherein the active electrode comprises the tissue-contacting surface.
22. The instrument of claim 13, wherein the active electrode has an annular configuration around the shaft.
23. The instrument of claim 13, wherein the active and return electrodes are coupled to the radio- frequency power supply by one or more connectors.
24. The instrument of claim 13, wherein the return electrode extends to a return electrode cap on the shaft at a location sufficiently spaced from the tissue-contacting surface to prevent an electrical circuit between the active electrode and the return electrode cap.
25. A system for performing an electrosurgical procedure on a target tissue within a body structure using plasma, the system comprising: an electrosurgical instrument comprising a shaft; an electrically conductive fluid supply having a discharge port on a distal end of the shaft; and a radio-frequency voltage supply connected to the electrosurgical instrument, wherein the shaft comprises: an active electrode on the distal end; a return electrode recessed within the shaft; an electrical insulator separating the active and return electrode; and a chamber in communication with the active and return electrodes within the shaft, wherein on applying the radio-frequency voltage supply to the active and return electrodes in the presence and electrically conductive fluid, plasma is generated on the active electrode, and electric fields generated between the active and return electrodes are substantially contained within the shaft.
26. The system of claim 25, wherein the body structure comprises an intervertebral disc.
27. The system of claim 25, wherein the conductive fluid supply comprises a fluid delivery element that forms an electrically conductive fluid path in contact with the active electrode and the return electrode.
28. The system of claim 25, wherein the distal end portion of the shaft is sized for insertion into an intervertebral disc.
29. The system of claim 25, wherein the active electrode comprises a portion of the external surface of the shaft.
30. The system of claim 27, wherein the fluid delivery element comprises a fluid supply lumen extending through the shaft, the fluid supply lumen comprising an inlet port into the conductive fluid supply, and a discharge port in the proximity of the active electrode.
31. The system of claim 27, wherein the fluid delivery element comprises a fluid supply instrument separate from the shaft.
32. The system of claim 25, wherein a fluid aspiration lumen for aspirating fluid from a region around the active electrode is provided for removing fluid in the vicinity of the active electrode.
33. The system of claim 32, wherein the fluid aspiration element comprises a suction lumen extending through the shaft, the suction lumen having an inlet in the vicinity of the active electrode.
34. The apparatus of claim 25, wherein the active electrode comprises one or more openings positioned over the chamber for passing electrically conductive fluid into the chamber.
35. The apparatus of claim 25, wherein an electrically insulating support member is located within the shaft for isolating the active electrode from the return electrode.
36. A method of treating nerve-sensitive tissue in the body, comprising: positioning a distal end portion of an electrosurgical instrument in close proximity to the tissue, the distal end comprising an active electrode and a return electrode, wherein the active electrode comprises a tissue-contacting surface on the distal end portion, and the return electrode is recessed with respect to the tissue-contacting surface;
applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conductive fluid sufficient to generate plasma proximate the active electrode; and
contacting the tissue with the plasma.
37. The method of claim 36, wherein the return electrode is enclosed within the shaft, and wherein a fluid passageway is formed within the shaft between the active electrode and the return electrode.
38. The method of claim 36, wherein the conductive fluid is in contact with the active and return electrode through the fluid passageway.
39. The method of claim 36, wherein the conductive fluid is supplied from a fluid supply lumen located on the instrument.
40. The method of claim 36, wherein the conductive fluid is selected from the group consisting of isotonic saline, Ringer's solution, and body fluids.
41. The method claims 36, wherein fluids in the vicinity of the active and return electrodes are removed by a suction lumen comprising a suction port located proximate the active electrode.
42. The method of claim 36, wherein the tissue comprises tissue within an intervertebral disc.
43. The method of claim 36, wherein treating nerve-sensitive tissue comprises at least one selected from the group consisting of: coblating, heating, ablating, coagulating, cutting, removing, puncturing, probing, and stimulating the tissue.
44. The electrosurgical apparatus of claim 1 wherein the shaft comprises an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft.
45. The electrosurgical apparatus of claim 44 wherein the selected length is between about one centimeter and about five centimeters.
46. The electrosurgical apparatus of claim 44 wherein the selected length is between about two centimeters and about three centimeters.
47. The electrosurgical apparatus of claim 44 wherein the selected length of the shaft comprises a first portion for insertion within a target tissue structure and a second portion for venting outside of the target tissue structure.
48. The electrosurgical apparatus of claim 47 wherein the target tissue structure comprises an intervertebral disc .
49. The electrosurgical apparatus of claim 47 wherein the collective area of the aperture in the second portion of the selected length is at least equal to a cross sectional area of the aspiration lumen.
50. The electrosurgical apparatus of claim 44 wherein the aspiration lumen is in communication with a suction source.
51. The electrosurgical apparatus of claim 44 wherein the aspiration lumen and the plurality of apertures are adapted to allow fluid to flow away from the target tissue through one or more of the apertures without requiring a suction source.
52. The electrosurgical apparatus of claim 44 wherein the inlet apertures are substantially evenly spaced along the selected length of the shaft.
53. The electrosurgical apparatus of claim 44 wherein the inlet apertures are spaced along the circumference of the shaft.
54. The electrosurgical apparatus of claim 1 wherein the active electrode comprises a screen section having a plurality of apertures formed therein.
55. The electrosurgical apparatus of claim 54 wherein the active electrode comprises a distal assembly loop for interfacing with the distal end portion of the shaft.
56. The electrosurgical apparatus of claim 54 wherein the active electrode is brazed onto the distal end portion of the shaft.
57. The electrosurgical apparatus of claim 1 further comprising an insulator separating the active electrode and the return electrode.
58. The electrosurgical apparatus of claim 57 wherein the insulator comprises a plurality of apertures formed therein.
59. The electrosurgical instrument of claim 13 wherein the shaft comprises an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft, wherein the selected length of the shaft comprises a first portion for insertion within a target tissue structure and a second portion for venting outside of the target tissue structure.
60. The electrosurgical instrument of claim 59 wherein the selected length is between about one centimeter and about five centimeters.
61. The system of claim 25 wherein the shaft comprises an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft, wherein the selected length of the shaft comprises a first portion for insertion within a target tissue structure and a second portion for venting outside of the target tissue structure.
62. The method of claim 36 wherein the shaft comprises an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft, wherein the selected length of the shaft comprises a first portion for insertion within a target tissue structure and a second portion for venting outside of the target tissue structure.
PCT/US2007/063198 2006-03-02 2007-03-02 Internally located return electrode electrosurgical apparatus, system and method WO2007103800A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07757813.6A EP1996105B1 (en) 2006-03-02 2007-03-02 Internally located return electrode electrosurgical apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/367,254 US7879034B2 (en) 2006-03-02 2006-03-02 Internally located return electrode electrosurgical apparatus, system and method
US11/367,254 2006-03-02

Publications (3)

Publication Number Publication Date
WO2007103800A2 true WO2007103800A2 (en) 2007-09-13
WO2007103800A3 WO2007103800A3 (en) 2008-07-31
WO2007103800B1 WO2007103800B1 (en) 2008-09-25

Family

ID=38472342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/063198 WO2007103800A2 (en) 2006-03-02 2007-03-02 Internally located return electrode electrosurgical apparatus, system and method

Country Status (3)

Country Link
US (3) US7879034B2 (en)
EP (1) EP1996105B1 (en)
WO (1) WO2007103800A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736361B2 (en) 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US7789879B2 (en) 2002-05-03 2010-09-07 Board Of Trustees Of The Leland Stanford Junior University System for plasma-mediated thermo-electrical surgery
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US8177783B2 (en) 2006-11-02 2012-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US8632537B2 (en) 2009-01-05 2014-01-21 Medtronic Advanced Energy Llc Electrosurgical devices for tonsillectomy and adenoidectomy
US8979842B2 (en) 2011-06-10 2015-03-17 Medtronic Advanced Energy Llc Wire electrode devices for tonsillectomy and adenoidectomy

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US7297145B2 (en) 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US6053172A (en) * 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US6770071B2 (en) * 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US7758537B1 (en) 1995-11-22 2010-07-20 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum
US7276063B2 (en) 1998-08-11 2007-10-02 Arthrocare Corporation Instrument for electrosurgical tissue treatment
US6878147B2 (en) 2001-11-02 2005-04-12 Vivant Medical, Inc. High-strength microwave antenna assemblies
US7128739B2 (en) 2001-11-02 2006-10-31 Vivant Medical, Inc. High-strength microwave antenna assemblies and methods of use
WO2003068055A2 (en) * 2002-02-11 2003-08-21 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
US8361067B2 (en) 2002-09-30 2013-01-29 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
US6907884B2 (en) 2002-09-30 2005-06-21 Depay Acromed, Inc. Method of straddling an intraosseous nerve
US7258690B2 (en) 2003-03-28 2007-08-21 Relievant Medsystems, Inc. Windowed thermal ablation probe
US8808284B2 (en) 2008-09-26 2014-08-19 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
US8613744B2 (en) 2002-09-30 2013-12-24 Relievant Medsystems, Inc. Systems and methods for navigating an instrument through bone
US7794456B2 (en) 2003-05-13 2010-09-14 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
US8012153B2 (en) 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
WO2005039390A2 (en) 2003-10-20 2005-05-06 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US7182762B2 (en) * 2003-12-30 2007-02-27 Smith & Nephew, Inc. Electrosurgical device
WO2006002337A2 (en) 2004-06-24 2006-01-05 Arthrocare Corporation Electrosurgical device having planar vertical electrode and related methods
US8096303B2 (en) 2005-02-08 2012-01-17 Koninklijke Philips Electronics N.V Airway implants and methods and devices for insertion and retrieval
US8371307B2 (en) 2005-02-08 2013-02-12 Koninklijke Philips Electronics N.V. Methods and devices for the treatment of airway obstruction, sleep apnea and snoring
US7799019B2 (en) 2005-05-10 2010-09-21 Vivant Medical, Inc. Reinforced high strength microwave antenna
JP4908409B2 (en) * 2005-06-20 2012-04-04 日本電信電話株式会社 Diamond semiconductor device and manufacturing method thereof
US8876746B2 (en) 2006-01-06 2014-11-04 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
US7691101B2 (en) 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
US7879034B2 (en) 2006-03-02 2011-02-01 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
US8114071B2 (en) * 2006-05-30 2012-02-14 Arthrocare Corporation Hard tissue ablation system
GB2452103B (en) 2007-01-05 2011-08-31 Arthrocare Corp Electrosurgical system with suction control apparatus and system
US20080234603A1 (en) * 2007-03-19 2008-09-25 Ethicon Endo-Surgery, Inc. Electrode dome and method of use
US7862560B2 (en) 2007-03-23 2011-01-04 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
US7998139B2 (en) * 2007-04-25 2011-08-16 Vivant Medical, Inc. Cooled helical antenna for microwave ablation
US8353901B2 (en) 2007-05-22 2013-01-15 Vivant Medical, Inc. Energy delivery conduits for use with electrosurgical devices
US9023024B2 (en) 2007-06-20 2015-05-05 Covidien Lp Reflective power monitoring for microwave applications
US9358063B2 (en) 2008-02-14 2016-06-07 Arthrocare Corporation Ablation performance indicator for electrosurgical devices
WO2009137800A2 (en) * 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
WO2011123124A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
JP2011522381A (en) * 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション Plasma-based chemical source apparatus and method of use thereof
JP2011521735A (en) * 2008-05-30 2011-07-28 コロラド ステート ユニバーシティ リサーチ ファンデーション System, method and apparatus for generating plasma
US8192427B2 (en) 2008-06-09 2012-06-05 Tyco Healthcare Group Lp Surface ablation process with electrode cooling methods
US9675411B2 (en) * 2008-07-15 2017-06-13 Biosense Webster, Inc. Catheter with perforated tip
US8747400B2 (en) * 2008-08-13 2014-06-10 Arthrocare Corporation Systems and methods for screen electrode securement
WO2010027798A2 (en) * 2008-08-26 2010-03-11 Northwestern University Ablation devices and related methods thereof
US20100076422A1 (en) * 2008-09-24 2010-03-25 Tyco Healthcare Group Lp Thermal Treatment of Nucleus Pulposus
EP3406210A1 (en) 2008-09-26 2018-11-28 Relievant Medsystems, Inc. Systems and for navigating an instrument through bone
US10028753B2 (en) 2008-09-26 2018-07-24 Relievant Medsystems, Inc. Spine treatment kits
US8821486B2 (en) 2009-11-13 2014-09-02 Hermes Innovations, LLC Tissue ablation systems and methods
US8197476B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation systems
US8372068B2 (en) 2008-10-21 2013-02-12 Hermes Innovations, LLC Tissue ablation systems
US8540708B2 (en) 2008-10-21 2013-09-24 Hermes Innovations Llc Endometrial ablation method
US8197477B2 (en) 2008-10-21 2012-06-12 Hermes Innovations Llc Tissue ablation methods
US8500732B2 (en) 2008-10-21 2013-08-06 Hermes Innovations Llc Endometrial ablation devices and systems
US9662163B2 (en) 2008-10-21 2017-05-30 Hermes Innovations Llc Endometrial ablation devices and systems
US8355799B2 (en) 2008-12-12 2013-01-15 Arthrocare Corporation Systems and methods for limiting joint temperature
US8574187B2 (en) 2009-03-09 2013-11-05 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
US9532827B2 (en) 2009-06-17 2017-01-03 Nuortho Surgical Inc. Connection of a bipolar electrosurgical hand piece to a monopolar output of an electrosurgical generator
US8257350B2 (en) 2009-06-17 2012-09-04 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
US8083737B2 (en) 2009-08-26 2011-12-27 Tyco Healthcare Group Lp Gas-enhanced surgical instrument with mechanism for cylinder puncture
US8323279B2 (en) 2009-09-25 2012-12-04 Arthocare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
US8317786B2 (en) 2009-09-25 2012-11-27 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
US8222822B2 (en) 2009-10-27 2012-07-17 Tyco Healthcare Group Lp Inductively-coupled plasma device
US20120289954A1 (en) * 2009-11-09 2012-11-15 Amnon Lam Micro plasma head for medical applications
US8715278B2 (en) * 2009-11-11 2014-05-06 Minerva Surgical, Inc. System for endometrial ablation utilizing radio frequency
US11896282B2 (en) 2009-11-13 2024-02-13 Hermes Innovations Llc Tissue ablation systems and method
US9289257B2 (en) 2009-11-13 2016-03-22 Minerva Surgical, Inc. Methods and systems for endometrial ablation utilizing radio frequency
US8529562B2 (en) 2009-11-13 2013-09-10 Minerva Surgical, Inc Systems and methods for endometrial ablation
US8372067B2 (en) 2009-12-09 2013-02-12 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
CA2794902A1 (en) 2010-03-31 2011-10-06 Colorado State University Research Foundation Liquid-gas interface plasma device
US8747399B2 (en) 2010-04-06 2014-06-10 Arthrocare Corporation Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures
US9949791B2 (en) 2010-04-26 2018-04-24 Biosense Webster, Inc. Irrigated catheter with internal position sensor
US9943362B2 (en) 2010-04-28 2018-04-17 Biosense Webster, Inc. Irrigated ablation catheter with improved fluid flow
US9510894B2 (en) 2010-04-28 2016-12-06 Biosense Webster (Israel) Ltd. Irrigated ablation catheter having irrigation ports with reduced hydraulic resistance
US9943363B2 (en) 2010-04-28 2018-04-17 Biosense Webster, Inc. Irrigated ablation catheter with improved fluid flow
US8696659B2 (en) 2010-04-30 2014-04-15 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system
US8956348B2 (en) 2010-07-21 2015-02-17 Minerva Surgical, Inc. Methods and systems for endometrial ablation
US8568405B2 (en) 2010-10-15 2013-10-29 Arthrocare Corporation Electrosurgical wand and related method and system
USD658760S1 (en) 2010-10-15 2012-05-01 Arthrocare Corporation Wound care electrosurgical wand
US8685018B2 (en) 2010-10-15 2014-04-01 Arthrocare Corporation Electrosurgical wand and related method and system
US10448992B2 (en) 2010-10-22 2019-10-22 Arthrocare Corporation Electrosurgical system with device specific operational parameters
US9510897B2 (en) 2010-11-05 2016-12-06 Hermes Innovations Llc RF-electrode surface and method of fabrication
US20120179157A1 (en) * 2011-01-06 2012-07-12 Andrew Frazier Systems and methods for screen electrode securement
US8747401B2 (en) 2011-01-20 2014-06-10 Arthrocare Corporation Systems and methods for turbinate reduction
US9131597B2 (en) 2011-02-02 2015-09-08 Arthrocare Corporation Electrosurgical system and method for treating hard body tissue
US9271784B2 (en) 2011-02-09 2016-03-01 Arthrocare Corporation Fine dissection electrosurgical device
US9168082B2 (en) 2011-02-09 2015-10-27 Arthrocare Corporation Fine dissection electrosurgical device
US9408658B2 (en) 2011-02-24 2016-08-09 Nuortho Surgical, Inc. System and method for a physiochemical scalpel to eliminate biologic tissue over-resection and induce tissue healing
US9011428B2 (en) 2011-03-02 2015-04-21 Arthrocare Corporation Electrosurgical device with internal digestor electrode
US9254142B2 (en) 2011-04-11 2016-02-09 Iogyn, Inc. Tissue extraction devices and methods
US9439720B2 (en) 2011-09-01 2016-09-13 Iogyn, Inc. Tissue extraction devices and methods
US9788882B2 (en) 2011-09-08 2017-10-17 Arthrocare Corporation Plasma bipolar forceps
AU2012362524B2 (en) 2011-12-30 2018-12-13 Relievant Medsystems, Inc. Systems and methods for treating back pain
US9439677B2 (en) 2012-01-20 2016-09-13 Iogyn, Inc. Medical device and methods
WO2015041713A1 (en) * 2013-09-20 2015-03-26 American Eagle Instruments, Inc. Electrical discharge irrigator apparatus and method
WO2014042665A1 (en) 2012-09-11 2014-03-20 American Eagle Instruments, Inc. Electrical discharge irrigator apparatus and method
US10898705B2 (en) 2012-09-11 2021-01-26 G&H Technologies, Llc Electrical discharge irrigator apparatus and method
US10588691B2 (en) 2012-09-12 2020-03-17 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
US20140088670A1 (en) * 2012-09-25 2014-03-27 Ines Verner Rashkovsky Devices and methods for stimulation of hair growth
WO2014071161A1 (en) 2012-11-05 2014-05-08 Relievant Medsystems, Inc. System and methods for creating curved paths through bone and modulating nerves within the bone
US9579142B1 (en) * 2012-12-13 2017-02-28 Nuortho Surgical Inc. Multi-function RF-probe with dual electrode positioning
EP3763326B1 (en) * 2012-12-17 2024-03-27 Endo-Logic, Llc Output tip for an electrical discharge irrigator apparatus
US9254166B2 (en) * 2013-01-17 2016-02-09 Arthrocare Corporation Systems and methods for turbinate reduction
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9713489B2 (en) 2013-03-07 2017-07-25 Arthrocare Corporation Electrosurgical methods and systems
US9693818B2 (en) 2013-03-07 2017-07-04 Arthrocare Corporation Methods and systems related to electrosurgical wands
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US9801678B2 (en) 2013-03-13 2017-10-31 Arthrocare Corporation Method and system of controlling conductive fluid flow during an electrosurgical procedure
US9255907B2 (en) * 2013-03-14 2016-02-09 Empire Technology Development Llc Identification of surgical smoke
US9901394B2 (en) 2013-04-04 2018-02-27 Hermes Innovations Llc Medical ablation system and method of making
US9724151B2 (en) 2013-08-08 2017-08-08 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
US9687288B2 (en) 2013-09-30 2017-06-27 Arrinex, Inc. Apparatus and methods for treating rhinitis
US9649125B2 (en) 2013-10-15 2017-05-16 Hermes Innovations Llc Laparoscopic device
EP3082618B1 (en) 2013-12-20 2021-10-06 ArthroCare Corporation All suture device for performing a knotless tissue repair
US10420607B2 (en) 2014-02-14 2019-09-24 Arthrocare Corporation Methods and systems related to an electrosurgical controller
USD732164S1 (en) * 2014-02-25 2015-06-16 ArthroCare Corporarion Electrosurgical wand distal tip
US9526556B2 (en) 2014-02-28 2016-12-27 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
US9763743B2 (en) 2014-07-25 2017-09-19 Arrinex, Inc. Apparatus and method for treating rhinitis
US10492856B2 (en) 2015-01-26 2019-12-03 Hermes Innovations Llc Surgical fluid management system and method of use
EP3288477A4 (en) 2015-04-29 2018-12-19 Cirrus Technologies Ltd. Medical ablation device and method of use
US10052149B2 (en) 2016-01-20 2018-08-21 RELIGN Corporation Arthroscopic devices and methods
CN109561923B (en) 2016-02-11 2022-03-01 阿里内克斯股份有限公司 Method and apparatus for image-guided retronasal nerve ablation
JP2019514481A (en) 2016-04-22 2019-06-06 リライン コーポレーション Arthroscopic device and method
US11039875B2 (en) 2016-04-26 2021-06-22 Kirwan Surgical Products Llc Non-stick monopolar suction coagulator
WO2017213619A1 (en) 2016-06-06 2017-12-14 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Combination electrosurgical instrument
CN113616277A (en) 2016-06-15 2021-11-09 阿里内克斯股份有限公司 Device for treating the lateral surface of the nasal cavity
WO2018005382A1 (en) 2016-07-01 2018-01-04 Aaron Germain Arthroscopic devices and methods
US10939965B1 (en) 2016-07-20 2021-03-09 Arrinex, Inc. Devices and methods for treating a nerve of the nasal cavity using image guidance
US11253312B2 (en) 2016-10-17 2022-02-22 Arrinex, Inc. Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use
US10335225B2 (en) 2016-11-21 2019-07-02 Arthrex, Inc. Electrosurgical medical device handpiece with insulated aspiration system
CN110891507B (en) 2017-04-28 2023-06-23 阿里内克斯股份有限公司 Systems and methods for locating blood vessels in the treatment of rhinitis
WO2019071269A2 (en) 2017-10-06 2019-04-11 Powell Charles Lee System and method to treat obstructive sleep apnea
US11554214B2 (en) 2019-06-26 2023-01-17 Meditrina, Inc. Fluid management system
CN114040788A (en) 2019-06-27 2022-02-11 波士顿科学医学有限公司 Endoscopic detection for fluid management systems
AU2020346827A1 (en) 2019-09-12 2022-03-31 Relievant Medsystems, Inc. Systems and methods for tissue modulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040054366A1 (en) 1998-08-11 2004-03-18 Arthrocare Corporation Instrument for electrosurgical tissue treatment
US20040087937A1 (en) 1994-05-10 2004-05-06 Arthrocare Corporation Systems for electrosurgical tissue treatment in conductive fluid
US20040116922A1 (en) 2002-09-05 2004-06-17 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
US20050027235A1 (en) 2002-02-12 2005-02-03 Knudsen Katherine A. Radiofrequency arthrosopic ablation device

Family Cites Families (387)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US88245A (en) * 1869-03-23 Improved expanding-chuck
US2056377A (en) 1933-08-16 1936-10-06 Wappler Frederick Charles Electrodic instrument
US3659607A (en) * 1968-09-16 1972-05-02 Surgical Design Corp Method for performing surgical procedures on the eye
US3633425A (en) 1970-01-02 1972-01-11 Meditech Energy And Environmen Chromatic temperature indicator
US3815604A (en) 1972-06-19 1974-06-11 Malley C O Apparatus for intraocular surgery
US3828780A (en) 1973-03-26 1974-08-13 Valleylab Inc Combined electrocoagulator-suction instrument
DE2324658B2 (en) 1973-05-16 1977-06-30 Richard Wolf Gmbh, 7134 Knittlingen PROBE FOR COAGULATING BODY TISSUE
US3901242A (en) 1974-05-30 1975-08-26 Storz Endoskop Gmbh Electric surgical instrument
US3939839A (en) 1974-06-26 1976-02-24 American Cystoscope Makers, Inc. Resectoscope and electrode therefor
US4043342A (en) 1974-08-28 1977-08-23 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
US3987795A (en) 1974-08-28 1976-10-26 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
DE2521719C2 (en) 1975-05-15 1985-06-20 Delma, Elektro- Und Medizinische Apparatebaugesellschaft Mbh, 7200 Tuttlingen Electrosurgical device
DE2525982C3 (en) 1975-06-11 1978-03-09 Richard Wolf Gmbh, 7134 Knittlingen Cutting electrode for resectoscopes
US4161950A (en) 1975-08-01 1979-07-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical knife
US4184492A (en) 1975-08-07 1980-01-22 Karl Storz Endoscopy-America, Inc. Safety circuitry for high frequency cutting and coagulating devices
US4040426A (en) 1976-01-16 1977-08-09 Valleylab, Inc. Electrosurgical method and apparatus for initiating an electrical discharge in an inert gas flow
US4074718A (en) 1976-03-17 1978-02-21 Valleylab, Inc. Electrosurgical instrument
US4092986A (en) 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
US4181131A (en) 1977-02-28 1980-01-01 Olympus Optical Co., Ltd. High frequency electrosurgical instrument for cutting human body cavity structures
US4202337A (en) 1977-06-14 1980-05-13 Concept, Inc. Bipolar electrosurgical knife
US4228800A (en) 1978-04-04 1980-10-21 Concept, Inc. Bipolar electrosurgical knife
US4326529A (en) 1978-05-26 1982-04-27 The United States Of America As Represented By The United States Department Of Energy Corneal-shaping electrode
US4248231A (en) 1978-11-16 1981-02-03 Corning Glass Works Surgical cutting instrument
US4232676A (en) 1978-11-16 1980-11-11 Corning Glass Works Surgical cutting instrument
US4269174A (en) 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
SE422885B (en) 1980-04-11 1982-04-05 Ursus Konsult Ab The electrode device
WO1981003271A1 (en) 1980-05-13 1981-11-26 American Hospital Supply Corp A multipolar electrosurgical device
US4449926A (en) 1980-09-02 1984-05-22 Weiss Peter A Dental electrosurgery electrodes and method of use
US4674499A (en) 1980-12-08 1987-06-23 Pao David S C Coaxial bipolar probe
US4805616A (en) 1980-12-08 1989-02-21 Pao David S C Bipolar probes for ophthalmic surgery and methods of performing anterior capsulotomy
US4476862A (en) 1980-12-08 1984-10-16 Pao David S C Method of scleral marking
US4381007A (en) 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
DE3120102A1 (en) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES
US4483338A (en) 1981-06-12 1984-11-20 Raychem Corporation Bi-Polar electrocautery needle
US4582057A (en) 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4548207A (en) 1982-11-17 1985-10-22 Mentor O & O, Inc. Disposable coagulator
US4961422A (en) 1983-01-21 1990-10-09 Marchosky J Alexander Method and apparatus for volumetric interstitial conductive hyperthermia
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
US4593691A (en) 1983-07-13 1986-06-10 Concept, Inc. Electrosurgery electrode
JPS6036041A (en) 1983-08-09 1985-02-25 太田 富雄 Dual electrode electric coagulating tweezers used in operation
US4573448A (en) 1983-10-05 1986-03-04 Pilling Co. Method for decompressing herniated intervertebral discs
US4682596A (en) 1984-05-22 1987-07-28 Cordis Corporation Electrosurgical catheter and method for vascular applications
USRE33925E (en) 1984-05-22 1992-05-12 Cordis Corporation Electrosurgical catheter aned method for vascular applications
DE3423356C2 (en) 1984-06-25 1986-06-26 Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen Electrosurgical high frequency cutting instrument
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4658817A (en) 1985-04-01 1987-04-21 Children's Hospital Medical Center Method and apparatus for transmyocardial revascularization using a laser
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
DE3530335C2 (en) 1985-08-24 1995-12-21 Erbe Elektromedizin High frequency surgical device
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
US5137530A (en) 1985-09-27 1992-08-11 Sand Bruce J Collagen treatment apparatus
US4765331A (en) 1987-02-10 1988-08-23 Circon Corporation Electrosurgical device with treatment arc of less than 360 degrees
US4832020A (en) 1987-03-24 1989-05-23 Augustine Scott D Tracheal intubation guide
US4823791A (en) 1987-05-08 1989-04-25 Circon Acmi Division Of Circon Corporation Electrosurgical probe apparatus
US4936301A (en) 1987-06-23 1990-06-26 Concept, Inc. Electrosurgical method using an electrically conductive fluid
US4943290A (en) 1987-06-23 1990-07-24 Concept Inc. Electrolyte purging electrode tip
US4785823A (en) 1987-07-21 1988-11-22 Robert F. Shaw Methods and apparatus for performing in vivo blood thermodilution procedures
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4832048A (en) 1987-10-29 1989-05-23 Cordis Corporation Suction ablation catheter
EP0325456B1 (en) 1988-01-20 1995-12-27 G2 Design Limited Diathermy unit
US4958539A (en) 1988-02-29 1990-09-25 Everest Medical Corporation Method of making an electrosurgical spatula blade
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
DE3815835A1 (en) 1988-05-09 1989-11-23 Flachenecker Gerhard HIGH FREQUENCY GENERATOR FOR TISSUE CUTTING AND COAGULATION IN HIGH FREQUENCY SURGERY
US4998933A (en) 1988-06-10 1991-03-12 Advanced Angioplasty Products, Inc. Thermal angioplasty catheter and method
US5178620A (en) 1988-06-10 1993-01-12 Advanced Angioplasty Products, Inc. Thermal dilatation catheter and method
US5374261A (en) 1990-07-24 1994-12-20 Yoon; Inbae Multifunctional devices for use in endoscopic surgical procedures and methods-therefor
US4967765A (en) 1988-07-28 1990-11-06 Bsd Medical Corporation Urethral inserted applicator for prostate hyperthermia
US4896671A (en) 1988-08-01 1990-01-30 C. R. Bard, Inc. Catheter with contoured ablation electrode
US4920978A (en) 1988-08-31 1990-05-01 Triangle Research And Development Corporation Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia
US5112330A (en) 1988-09-16 1992-05-12 Olympus Optical Co., Ltd. Resectoscope apparatus
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
AU4945490A (en) 1989-01-06 1990-08-01 Angioplasty Systems Inc. Electrosurgical catheter for resolving atherosclerotic plaque
US4936281A (en) 1989-04-13 1990-06-26 Everest Medical Corporation Ultrasonically enhanced RF ablation catheter
US5078717A (en) 1989-04-13 1992-01-07 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5125928A (en) 1989-04-13 1992-06-30 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5098431A (en) 1989-04-13 1992-03-24 Everest Medical Corporation RF ablation catheter
US4979948A (en) 1989-04-13 1990-12-25 Purdue Research Foundation Method and apparatus for thermally destroying a layer of an organ
US4976711A (en) 1989-04-13 1990-12-11 Everest Medical Corporation Ablation catheter with selectively deployable electrodes
US5084044A (en) 1989-07-14 1992-01-28 Ciron Corporation Apparatus for endometrial ablation and method of using same
US5009656A (en) 1989-08-17 1991-04-23 Mentor O&O Inc. Bipolar electrosurgical instrument
DE3930451C2 (en) 1989-09-12 2002-09-26 Leibinger Gmbh Device for high-frequency coagulation of biological tissue
US5047026A (en) 1989-09-29 1991-09-10 Everest Medical Corporation Electrosurgical implement for tunneling through tissue
US5007908A (en) 1989-09-29 1991-04-16 Everest Medical Corporation Electrosurgical instrument having needle cutting electrode and spot-coag electrode
US5439446A (en) 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5201729A (en) 1990-01-12 1993-04-13 Laserscope Method for performing percutaneous diskectomy using a laser
US5035696A (en) 1990-02-02 1991-07-30 Everest Medical Corporation Electrosurgical instrument for conducting endoscopic retrograde sphincterotomy
US5102410A (en) 1990-02-26 1992-04-07 Dressel Thomas D Soft tissue cutting aspiration device and method
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5306238A (en) 1990-03-16 1994-04-26 Beacon Laboratories, Inc. Laparoscopic electrosurgical pencil
US5047027A (en) 1990-04-20 1991-09-10 Everest Medical Corporation Tumor resector
US5171311A (en) 1990-04-30 1992-12-15 Everest Medical Corporation Percutaneous laparoscopic cholecystectomy instrument
US5312400A (en) 1992-10-09 1994-05-17 Symbiosis Corporation Cautery probes for endoscopic electrosurgical suction-irrigation instrument
US5080660A (en) 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
JPH0734805B2 (en) 1990-05-16 1995-04-19 アロカ株式会社 Blood coagulator
US5195958A (en) 1990-05-25 1993-03-23 Phillips Edward H Tool for laparoscopic surgery
US5084045A (en) * 1990-09-17 1992-01-28 Helenowski Tomasz K Suction surgical instrument
US5158565A (en) 1990-10-10 1992-10-27 Dlp, Inc. Localization needle assembly
US5389096A (en) 1990-12-18 1995-02-14 Advanced Cardiovascular Systems System and method for percutaneous myocardial revascularization
US5085659A (en) 1990-11-21 1992-02-04 Everest Medical Corporation Biopsy device with bipolar coagulation capability
US5122138A (en) 1990-11-28 1992-06-16 Manwaring Kim H Tissue vaporizing accessory and method for an endoscope
US5380316A (en) 1990-12-18 1995-01-10 Advanced Cardiovascular Systems, Inc. Method for intra-operative myocardial device revascularization
DE9117217U1 (en) 1991-01-16 1997-05-15 Erbe Elektromedizin High frequency surgical device
US5261410A (en) 1991-02-07 1993-11-16 Alfano Robert R Method for determining if a tissue is a malignant tumor tissue, a benign tumor tissue, or a normal or benign tissue using Raman spectroscopy
US5156151A (en) 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5632761A (en) 1991-05-29 1997-05-27 Origin Medsystems, Inc. Inflatable devices for separating layers of tissue, and methods of using
US5195959A (en) 1991-05-31 1993-03-23 Paul C. Smith Electrosurgical device with suction and irrigation
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5633578A (en) 1991-06-07 1997-05-27 Hemostatic Surgery Corporation Electrosurgical generator adaptors
DE4122219A1 (en) 1991-07-04 1993-01-07 Delma Elektro Med App ELECTRO-SURGICAL TREATMENT INSTRUMENT
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5207675A (en) 1991-07-15 1993-05-04 Jerome Canady Surgical coagulation device
US5217455A (en) 1991-08-12 1993-06-08 Tan Oon T Laser treatment method for removing pigmentations, lesions, and abnormalities from the skin of a living human
US5217459A (en) 1991-08-27 1993-06-08 William Kamerling Method and instrument for performing eye surgery
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5273524A (en) 1991-10-09 1993-12-28 Ethicon, Inc. Electrosurgical device
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US5662680A (en) 1991-10-18 1997-09-02 Desai; Ashvin H. Endoscopic surgical instrument
US5562703A (en) 1994-06-14 1996-10-08 Desai; Ashvin H. Endoscopic surgical instrument
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5762629A (en) 1991-10-30 1998-06-09 Smith & Nephew, Inc. Oval cannula assembly and method of use
US5192280A (en) 1991-11-25 1993-03-09 Everest Medical Corporation Pivoting multiple loop bipolar cutting device
US5197963A (en) 1991-12-02 1993-03-30 Everest Medical Corporation Electrosurgical instrument with extendable sheath for irrigation and aspiration
US5423882A (en) 1991-12-26 1995-06-13 Cordis-Webster, Inc. Catheter having electrode with annular recess and method of using same
US6210402B1 (en) 1995-11-22 2001-04-03 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US6770071B2 (en) * 1995-06-07 2004-08-03 Arthrocare Corporation Bladed electrosurgical probe
US6974453B2 (en) 1993-05-10 2005-12-13 Arthrocare Corporation Dual mode electrosurgical clamping probe and related methods
US6277112B1 (en) 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
US6102046A (en) 1995-11-22 2000-08-15 Arthrocare Corporation Systems and methods for electrosurgical tissue revascularization
US6159194A (en) 1992-01-07 2000-12-12 Arthrocare Corporation System and method for electrosurgical tissue contraction
US7297145B2 (en) * 1997-10-23 2007-11-20 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
US5902272A (en) 1992-01-07 1999-05-11 Arthrocare Corporation Planar ablation probe and method for electrosurgical cutting and ablation
US5419767A (en) 1992-01-07 1995-05-30 Thapliyal And Eggers Partners Methods and apparatus for advancing catheters through severely occluded body lumens
US6109268A (en) 1995-06-07 2000-08-29 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
US5681282A (en) 1992-01-07 1997-10-28 Arthrocare Corporation Methods and apparatus for ablation of luminal tissues
US6024733A (en) 1995-06-07 2000-02-15 Arthrocare Corporation System and method for epidermal tissue ablation
US6296638B1 (en) 1993-05-10 2001-10-02 Arthrocare Corporation Systems for tissue ablation and aspiration
US7429262B2 (en) * 1992-01-07 2008-09-30 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
US6183469B1 (en) 1997-08-27 2001-02-06 Arthrocare Corporation Electrosurgical systems and methods for the removal of pacemaker leads
US6190381B1 (en) 1995-06-07 2001-02-20 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
US6355032B1 (en) 1995-06-07 2002-03-12 Arthrocare Corporation Systems and methods for selective electrosurgical treatment of body structures
US6500173B2 (en) 1992-01-07 2002-12-31 Ronald A. Underwood Methods for electrosurgical spine surgery
US6053172A (en) 1995-06-07 2000-04-25 Arthrocare Corporation Systems and methods for electrosurgical sinus surgery
US5843019A (en) 1992-01-07 1998-12-01 Arthrocare Corporation Shaped electrodes and methods for electrosurgical cutting and ablation
US6179824B1 (en) 1993-05-10 2001-01-30 Arthrocare Corporation System and methods for electrosurgical restenosis of body lumens
US6063079A (en) * 1995-06-07 2000-05-16 Arthrocare Corporation Methods for electrosurgical treatment of turbinates
US5683366A (en) 1992-01-07 1997-11-04 Arthrocare Corporation System and method for electrosurgical tissue canalization
US5366443A (en) 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
US5230334A (en) 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
US5267994A (en) 1992-02-10 1993-12-07 Conmed Corporation Electrosurgical probe
GB9204218D0 (en) 1992-02-27 1992-04-08 Goble Nigel M A surgical cutting tool
GB9204217D0 (en) 1992-02-27 1992-04-08 Goble Nigel M Cauterising apparatus
US5877289A (en) 1992-03-05 1999-03-02 The Scripps Research Institute Tissue factor compositions and ligands for the specific coagulation of vasculature
US5436566A (en) 1992-03-17 1995-07-25 Conmed Corporation Leakage capacitance compensating current sensor for current supplied to medical device loads
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5207684A (en) 1992-04-13 1993-05-04 Neuro Navigational Corporation Sheath for shunt placement for hydrocephalus
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5318564A (en) 1992-05-01 1994-06-07 Hemostatic Surgery Corporation Bipolar surgical snare and methods of use
US5496314A (en) 1992-05-01 1996-03-05 Hemostatic Surgery Corporation Irrigation and shroud arrangement for electrically powered endoscopic probes
US5290282A (en) 1992-06-26 1994-03-01 Christopher D. Casscells Coagulating cannula
US5300069A (en) 1992-08-12 1994-04-05 Daniel Hunsberger Electrosurgical apparatus for laparoscopic procedures and method of use
US5375588A (en) 1992-08-17 1994-12-27 Yoon; Inbae Method and apparatus for use in endoscopic procedures
US5401272A (en) 1992-09-25 1995-03-28 Envision Surgical Systems, Inc. Multimodality probe with extendable bipolar electrodes
US5314406A (en) 1992-10-09 1994-05-24 Symbiosis Corporation Endoscopic electrosurgical suction-irrigation instrument
US5807306A (en) 1992-11-09 1998-09-15 Cortrak Medical, Inc. Polymer matrix drug delivery apparatus
WO1994010924A1 (en) 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5676693A (en) 1992-11-13 1997-10-14 Scimed Life Systems, Inc. Electrophysiology device
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
DE4338758C2 (en) 1992-11-13 2001-08-09 Scimed Life Systems Inc Catheter assembly
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5336443A (en) 1993-02-22 1994-08-09 Shin-Etsu Polymer Co., Ltd. Anisotropically electroconductive adhesive composition
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
ATE219908T1 (en) 1993-04-28 2002-07-15 Biosense Webster Inc ELECTROPHYSIOLOGY CATHETER WITH PRE-BENT TIP
US5417687A (en) 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5766153A (en) 1993-05-10 1998-06-16 Arthrocare Corporation Methods and apparatus for surgical cutting
US6235020B1 (en) 1993-05-10 2001-05-22 Arthrocare Corporation Power supply and methods for fluid delivery in electrosurgery
US6749604B1 (en) 1993-05-10 2004-06-15 Arthrocare Corporation Electrosurgical instrument with axially-spaced electrodes
US6117109A (en) 1995-11-22 2000-09-12 Arthrocare Corporation Systems and methods for electrosurgical incisions on external skin surfaces
US6391025B1 (en) 1993-05-10 2002-05-21 Arthrocare Corporation Electrosurgical scalpel and methods for tissue cutting
US6254600B1 (en) 1993-05-10 2001-07-03 Arthrocare Corporation Systems for tissue ablation and aspiration
US6832996B2 (en) * 1995-06-07 2004-12-21 Arthrocare Corporation Electrosurgical systems and methods for treating tissue
US5429138A (en) 1993-06-03 1995-07-04 Kormed, Inc. Biopsy needle with sample retaining means
CA2166201A1 (en) 1993-06-30 1995-01-12 Barry Colin Crane Biphasic material
US5860974A (en) 1993-07-01 1999-01-19 Boston Scientific Corporation Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
DE4323585A1 (en) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolar high-frequency surgical instrument
US5807395A (en) 1993-08-27 1998-09-15 Medtronic, Inc. Method and apparatus for RF ablation and hyperthermia
DE4333983A1 (en) 1993-10-05 1995-04-06 Delma Elektro Med App High frequency electrosurgical instrument
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US6530922B2 (en) 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
US5817033A (en) 1994-04-11 1998-10-06 Desantis; Stephen A. Needle core biopsy device
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5571189A (en) 1994-05-20 1996-11-05 Kuslich; Stephen D. Expandable fabric implant for stabilizing the spinal motion segment
AU2621295A (en) * 1994-05-24 1995-12-18 Smith & Nephew Plc Intervertebral disc implant
US5617854A (en) 1994-06-22 1997-04-08 Munsif; Anand Shaped catheter device and method
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
DE4425015C2 (en) 1994-07-15 1997-01-16 Winter & Ibe Olympus Endoscopic electrosurgical device
WO1996003928A1 (en) 1994-08-02 1996-02-15 Gabriel Bernaz Flexible probe for high frequency skin treatment
US5609151A (en) 1994-09-08 1997-03-11 Medtronic, Inc. Method for R-F ablation
US5785705A (en) 1994-10-11 1998-07-28 Oratec Interventions, Inc. RF method for controlled depth ablation of soft tissue
US5514130A (en) 1994-10-11 1996-05-07 Dorsal Med International RF apparatus for controlled depth ablation of soft tissue
US5556397A (en) 1994-10-26 1996-09-17 Laser Centers Of America Coaxial electrosurgical instrument
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5766252A (en) 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US5814044A (en) 1995-02-10 1998-09-29 Enable Medical Corporation Apparatus and method for morselating and removing tissue from a patient
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6159208A (en) 1995-06-07 2000-12-12 Arthocare Corporation System and methods for electrosurgical treatment of obstructive sleep disorders
US6602248B1 (en) 1995-06-07 2003-08-05 Arthro Care Corp. Methods for repairing damaged intervertebral discs
US6203542B1 (en) 1995-06-07 2001-03-20 Arthrocare Corporation Method for electrosurgical treatment of submucosal tissue
US6264650B1 (en) 1995-06-07 2001-07-24 Arthrocare Corporation Methods for electrosurgical treatment of intervertebral discs
WO1996034646A1 (en) 1995-05-01 1996-11-07 Medtronic Cardiorhythm Dual curve ablation catheter and method
DE19516238A1 (en) 1995-05-03 1996-11-07 Delma Elektro Med App Method and device for generating an arc in biological tissue using high-frequency surgical means
US5660836A (en) 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US20050004634A1 (en) 1995-06-07 2005-01-06 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
US7179255B2 (en) 1995-06-07 2007-02-20 Arthrocare Corporation Methods for targeted electrosurgery on contained herniated discs
US6363937B1 (en) 1995-06-07 2002-04-02 Arthrocare Corporation System and methods for electrosurgical treatment of the digestive system
US7572251B1 (en) * 1995-06-07 2009-08-11 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6632193B1 (en) 1995-06-07 2003-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6837888B2 (en) 1995-06-07 2005-01-04 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
US6238391B1 (en) 1995-06-07 2001-05-29 Arthrocare Corporation Systems for tissue resection, ablation and aspiration
US6149620A (en) 1995-11-22 2000-11-21 Arthrocare Corporation System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid
US7090672B2 (en) 1995-06-07 2006-08-15 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from the base of tongue
US6837887B2 (en) 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
US7393351B2 (en) * 1995-06-07 2008-07-01 Arthrocare Corporation Apparatus and methods for treating cervical inter-vertebral discs
US6772012B2 (en) 1995-06-07 2004-08-03 Arthrocare Corporation Methods for electrosurgical treatment of spinal tissue
ES2233239T3 (en) 1995-06-23 2005-06-16 Gyrus Medical Limited ELECTROCHIRURGICAL INSTRUMENT.
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
ES2154824T5 (en) 1995-06-23 2005-04-01 Gyrus Medical Limited ELECTROCHIRURGICAL INSTRUMENT.
GB9600352D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US6330478B1 (en) 1995-08-15 2001-12-11 Rita Medical Systems, Inc. Cell necrosis apparatus
US5925042A (en) 1995-08-15 1999-07-20 Rita Medical Systems, Inc. Multiple antenna ablation apparatus and method
US5836875A (en) 1995-10-06 1998-11-17 Cordis Webster, Inc. Split tip electrode catheter
US5700262A (en) 1995-10-16 1997-12-23 Neuro Navigational, L.L.C. Bipolar electrode with fluid channels for less invasive neurosurgery
US6122549A (en) 1996-08-13 2000-09-19 Oratec Interventions, Inc. Apparatus for treating intervertebral discs with resistive energy
US6007570A (en) 1996-08-13 1999-12-28 Oratec Interventions, Inc. Apparatus with functional element for performing function upon intervertebral discs
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
US5823955A (en) 1995-11-20 1998-10-20 Medtronic Cardiorhythm Atrioventricular valve tissue ablation catheter and method
US6228078B1 (en) 1995-11-22 2001-05-08 Arthrocare Corporation Methods for electrosurgical dermatological treatment
US6805130B2 (en) 1995-11-22 2004-10-19 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US6896672B1 (en) 1995-11-22 2005-05-24 Arthrocare Corporation Methods for electrosurgical incisions on external skin surfaces
US7186234B2 (en) 1995-11-22 2007-03-06 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
NL1001890C2 (en) 1995-12-13 1997-06-17 Cordis Europ Catheter with plate-shaped electrode array.
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US5820580A (en) 1996-02-23 1998-10-13 Somnus Medical Technologies, Inc. Method for ablating interior sections of the tongue
GB2327350A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
GB2327351A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US5935083A (en) 1996-07-03 1999-08-10 Williams; Paul A. Device for body fluid pressure measurement
US7104986B2 (en) 1996-07-16 2006-09-12 Arthrocare Corporation Intervertebral disc replacement method
US7357798B2 (en) * 1996-07-16 2008-04-15 Arthrocare Corporation Systems and methods for electrosurgical prevention of disc herniations
US6468274B1 (en) 1996-07-16 2002-10-22 Arthrocare Corporation Systems and methods for treating spinal pain
US6726684B1 (en) * 1996-07-16 2004-04-27 Arthrocare Corporation Methods for electrosurgical spine surgery
US7069087B2 (en) 2000-02-25 2006-06-27 Oratec Interventions, Inc. Apparatus and method for accessing and performing a function within an intervertebral disc
US6461357B1 (en) * 1997-02-12 2002-10-08 Oratec Interventions, Inc. Electrode for electrosurgical ablation of tissue
US6126682A (en) 1996-08-13 2000-10-03 Oratec Interventions, Inc. Method for treating annular fissures in intervertebral discs
US6068628A (en) 1996-08-20 2000-05-30 Oratec Interventions, Inc. Apparatus for treating chondromalacia
US5836909A (en) * 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US5891134A (en) 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
US6096036A (en) 1998-05-05 2000-08-01 Cardiac Pacemakers, Inc. Steerable catheter with preformed distal shape and method for use
EP1230902A1 (en) * 1996-11-15 2002-08-14 Advanced Bio Surfaces, Inc. Biomaterial system for in situ tissue repair
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US5810809A (en) 1997-01-13 1998-09-22 Enhanced Orthopaedic Technologies, Inc. Arthroscopic shaver incorporating electrocautery
EP0963178A4 (en) 1997-01-30 2000-03-01 Boston Scient Corp Pneumatically actuated tissue sampling device
US6699244B2 (en) * 1997-02-12 2004-03-02 Oratec Interventions, Inc. Electrosurgical instrument having a chamber to volatize a liquid
EP0964650A1 (en) 1997-02-12 1999-12-22 Oratec Interventions, Inc. Electrode for electrosurgical ablation of tissue and method of manufacturing the same
US5882329A (en) 1997-02-12 1999-03-16 Prolifix Medical, Inc. Apparatus and method for removing stenotic material from stents
US5954716A (en) 1997-02-19 1999-09-21 Oratec Interventions, Inc Method for modifying the length of a ligament
FR2761589B1 (en) 1997-04-03 1999-09-24 Cordis Sa CATHETER, ESPECIALLY FOR NEUROSURGERY
US6997925B2 (en) 1997-07-08 2006-02-14 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
GB2327352A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
US6055453A (en) 1997-08-01 2000-04-25 Genetronics, Inc. Apparatus for addressing needle array electrodes for electroporation therapy
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US7094215B2 (en) 1997-10-02 2006-08-22 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction
US6176857B1 (en) 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
US6280441B1 (en) 1997-12-15 2001-08-28 Sherwood Services Ag Apparatus and method for RF lesioning
US6146380A (en) 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US6165175A (en) 1999-02-02 2000-12-26 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
US6045532A (en) 1998-02-20 2000-04-04 Arthrocare Corporation Systems and methods for electrosurgical treatment of tissue in the brain and spinal cord
US6517498B1 (en) 1998-03-03 2003-02-11 Senorx, Inc. Apparatus and method for tissue capture
US6093185A (en) 1998-03-05 2000-07-25 Scimed Life Systems, Inc. Expandable PMR device and method
AU3104999A (en) 1998-03-19 1999-10-11 Oratec Interventions, Inc. Catheter for delivery of energy to a surgical site
US6047700A (en) 1998-03-30 2000-04-11 Arthrocare Corporation Systems and methods for electrosurgical removal of calcified deposits
US6997885B2 (en) 1998-04-08 2006-02-14 Senorx, Inc. Dilation devices and methods for removing tissue specimens
US7435247B2 (en) * 1998-08-11 2008-10-14 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
US6086584A (en) 1998-09-10 2000-07-11 Ethicon, Inc. Cellular sublimation probe and methods
US6319250B1 (en) 1998-11-23 2001-11-20 C.R. Bard, Inc Tricuspid annular grasp catheter
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6428576B1 (en) 1999-04-16 2002-08-06 Endospine, Ltd. System for repairing inter-vertebral discs
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
US6245107B1 (en) 1999-05-28 2001-06-12 Bret A. Ferree Methods and apparatus for treating disc herniation
US6270460B1 (en) 1999-06-24 2001-08-07 Acuson Corporation Apparatus and method to limit the life span of a diagnostic medical ultrasound probe
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US6508839B1 (en) * 1999-08-18 2003-01-21 Intrinsic Orthopedics, Inc. Devices and methods of vertebral disc augmentation
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6379350B1 (en) * 1999-10-05 2002-04-30 Oratec Interventions, Inc. Surgical instrument for ablation and aspiration
US6645247B2 (en) 1999-10-08 2003-11-11 Bret A. Ferree Supplementing engineered annulus tissues with autograft of allograft tendons
US6592625B2 (en) 1999-10-20 2003-07-15 Anulex Technologies, Inc. Spinal disc annulus reconstruction method and spinal disc annulus stent
US6758846B2 (en) 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
US7014633B2 (en) 2000-02-16 2006-03-21 Trans1, Inc. Methods of performing procedures in the spine
US6558390B2 (en) 2000-02-16 2003-05-06 Axiamed, Inc. Methods and apparatus for performing therapeutic procedures in the spine
US6740093B2 (en) 2000-02-28 2004-05-25 Stephen Hochschuler Method and apparatus for treating a vertebral body
US7070596B1 (en) 2000-08-09 2006-07-04 Arthrocare Corporation Electrosurgical apparatus having a curved distal section
US6730080B2 (en) 2000-08-23 2004-05-04 Olympus Corporation Electric operation apparatus
US6679886B2 (en) 2000-09-01 2004-01-20 Synthes (Usa) Tools and methods for creating cavities in bone
EP1582166B1 (en) 2000-09-07 2007-06-27 Sherwood Services AG Apparatus for the treatment of the intervertebral disc
AU9459501A (en) 2000-09-18 2002-03-26 Organogenesis Inc Method for treating a patient using a cultured connective tissue construct
US20030158545A1 (en) * 2000-09-28 2003-08-21 Arthrocare Corporation Methods and apparatus for treating back pain
US6530924B1 (en) 2000-11-03 2003-03-11 Alan G. Ellman Electrosurgical tonsilar and adenoid electrode
US7177701B1 (en) 2000-12-29 2007-02-13 Advanced Bionics Corporation System for permanent electrode placement utilizing microelectrode recording methods
EP1363700A4 (en) 2001-01-11 2005-11-09 Rita Medical Systems Inc Bone-treatment instrument and method
US6837848B2 (en) 2003-01-15 2005-01-04 Medtronic, Inc. Methods and apparatus for accessing and stabilizing an area of the heart
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US6497704B2 (en) 2001-04-04 2002-12-24 Moshe Ein-Gal Electrosurgical apparatus
US6562033B2 (en) 2001-04-09 2003-05-13 Baylis Medical Co. Intradiscal lesioning apparatus
US6974480B2 (en) 2001-05-03 2005-12-13 Synthes (Usa) Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
US6746451B2 (en) 2001-06-01 2004-06-08 Lance M. Middleton Tissue cavitation device and method
US6837884B2 (en) 2001-06-18 2005-01-04 Arthrocare Corporation Electrosurgical apparatus having compound return electrode
US20030013986A1 (en) 2001-07-12 2003-01-16 Vahid Saadat Device for sensing temperature profile of a hollow body organ
DE60239778D1 (en) 2001-08-27 2011-06-01 Gyrus Medical Ltd Electrosurgical device
US6635087B2 (en) 2001-08-29 2003-10-21 Christopher M. Angelucci Laminoplasty implants and methods of use
US6761718B2 (en) 2001-09-06 2004-07-13 Children's Medical Center Corp. Direction-oriented and spatially controlled bipolar coagulator for in-situ cauterization of adherent cranial tissue occluding a ventricular catheter previously implanted in-vivo
AU2002362310A1 (en) * 2001-09-14 2003-04-01 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
AU2002336575A1 (en) 2001-09-14 2003-04-01 Arthrocare Corporation Electrosurgical apparatus and methods for tissue treatment and removal
WO2003028542A2 (en) 2001-10-02 2003-04-10 Arthrocare Corporation Apparatus and methods for electrosurgical removal and digestion of tissue
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US6921399B2 (en) * 2001-11-02 2005-07-26 Electrosurgery Associates, Llc High efficiency electrosurgery probe
US20030088245A1 (en) 2001-11-02 2003-05-08 Arthrocare Corporation Methods and apparatus for electrosurgical ventriculostomy
US6920883B2 (en) 2001-11-08 2005-07-26 Arthrocare Corporation Methods and apparatus for skin treatment
US20030130738A1 (en) 2001-11-08 2003-07-10 Arthrocare Corporation System and method for repairing a damaged intervertebral disc
US7004941B2 (en) 2001-11-08 2006-02-28 Arthrocare Corporation Systems and methods for electrosurigical treatment of obstructive sleep disorders
US7278972B2 (en) 2002-01-24 2007-10-09 Worldwide Medical Technologies, Llc Combined bone marrow aspiration and core biopsy device
AU2003215263A1 (en) 2002-02-13 2003-09-04 Arthrocare Corporation Electrosurgical apparatus and methods for treating joint tissue
NZ517441A (en) * 2002-02-26 2004-11-26 Whisper Tech Ltd Heat exchangers for external combustion engine
EP1487366B1 (en) 2002-03-15 2007-08-08 C.R. Bard, Inc. Apparatus for control of ablation energy and electrogram acquisition through multiple common electrodes in an electrophysiology catheter
US20030208196A1 (en) 2002-05-03 2003-11-06 Arthrocare Corporation Control system for limited-use device
US6780178B2 (en) 2002-05-03 2004-08-24 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
TWI260280B (en) * 2002-05-31 2006-08-21 Pentel Kk Applicator
US20040019358A1 (en) 2002-07-25 2004-01-29 Scimed Life Systems, Inc. Medical device
US6749608B2 (en) 2002-08-05 2004-06-15 Jon C. Garito Adenoid curette electrosurgical probe
US6620156B1 (en) 2002-09-20 2003-09-16 Jon C. Garito Bipolar tonsillar probe
US6827716B2 (en) 2002-09-30 2004-12-07 Depuy Spine, Inc. Method of identifying and treating a pathologic region of an intervertebral disc
AU2003297691A1 (en) 2002-12-03 2004-06-23 Arthrocare Corporation Devices and methods for selective orientation of electrosurgical devices
US20040127893A1 (en) 2002-12-13 2004-07-01 Arthrocare Corporation Methods for visualizing and treating intervertebral discs
EP1596705B1 (en) * 2003-02-05 2018-09-12 Arthrocare Corporation Temperature indicating electrosurgical apparatus
US20050261754A1 (en) 2003-02-26 2005-11-24 Arthrocare Corporation Methods and apparatus for treating back pain
US7794456B2 (en) 2003-05-13 2010-09-14 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
US8012153B2 (en) 2003-07-16 2011-09-06 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
JP4211531B2 (en) * 2003-08-06 2009-01-21 マツダ株式会社 Powertrain damping device
US7104989B2 (en) * 2003-09-05 2006-09-12 Medtronic, Inc. RF ablation catheter including a virtual electrode assembly
WO2005039390A2 (en) * 2003-10-20 2005-05-06 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US20050096645A1 (en) 2003-10-31 2005-05-05 Parris Wellman Multitool surgical device
US7241294B2 (en) * 2003-11-19 2007-07-10 Sherwood Services Ag Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same
US7491200B2 (en) * 2004-03-26 2009-02-17 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from base of tongue
WO2005107857A2 (en) 2004-05-05 2005-11-17 Stryker Instruments System and method for controlling rf output
US7704249B2 (en) * 2004-05-07 2010-04-27 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
WO2005122938A1 (en) 2004-06-10 2005-12-29 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
NL1026422C2 (en) 2004-06-15 2005-12-19 Univ Eindhoven Tech Device for creating a locally cold plasma at the location of an object.
WO2006002337A2 (en) 2004-06-24 2006-01-05 Arthrocare Corporation Electrosurgical device having planar vertical electrode and related methods
US20060095031A1 (en) 2004-09-22 2006-05-04 Arthrocare Corporation Selectively controlled active electrodes for electrosurgical probe
US20060259025A1 (en) 2005-05-16 2006-11-16 Arthrocare Corporation Conductive fluid bridge electrosurgical apparatus
US20070001088A1 (en) 2005-06-29 2007-01-04 Bowman John D Attachment device for plant container catch tray
US7632267B2 (en) * 2005-07-06 2009-12-15 Arthrocare Corporation Fuse-electrode electrosurgical apparatus
US20070106288A1 (en) * 2005-11-09 2007-05-10 Arthrocare Corporation Electrosurgical apparatus with fluid flow regulator
US7691101B2 (en) * 2006-01-06 2010-04-06 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
US20070161981A1 (en) * 2006-01-06 2007-07-12 Arthrocare Corporation Electrosurgical method and systems for treating glaucoma
US7879034B2 (en) * 2006-03-02 2011-02-01 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
US7976554B2 (en) 2006-04-19 2011-07-12 Vibrynt, Inc. Devices, tools and methods for performing minimally invasive abdominal surgical procedures
US8114071B2 (en) * 2006-05-30 2012-02-14 Arthrocare Corporation Hard tissue ablation system
US20090105543A1 (en) 2007-10-19 2009-04-23 Miller Eric C Endoscope Lens Cleaner
US8197419B2 (en) 2008-05-30 2012-06-12 Inrad, Inc. Biopsy device having specimen length adjustment
US20100114110A1 (en) * 2008-10-30 2010-05-06 Arthrocare Corporation Intervertebral disc access assembly
US20110112373A1 (en) 2009-11-10 2011-05-12 Trans1 Inc. Soft tissue access apparatus and methods for spinal surgery
US8979838B2 (en) 2010-05-24 2015-03-17 Arthrocare Corporation Symmetric switching electrode method and related system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040087937A1 (en) 1994-05-10 2004-05-06 Arthrocare Corporation Systems for electrosurgical tissue treatment in conductive fluid
US20040054366A1 (en) 1998-08-11 2004-03-18 Arthrocare Corporation Instrument for electrosurgical tissue treatment
US20050027235A1 (en) 2002-02-12 2005-02-03 Knudsen Katherine A. Radiofrequency arthrosopic ablation device
US20040116922A1 (en) 2002-09-05 2004-06-17 Arthrocare Corporation Methods and apparatus for treating intervertebral discs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1996105A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7789879B2 (en) 2002-05-03 2010-09-07 Board Of Trustees Of The Leland Stanford Junior University System for plasma-mediated thermo-electrical surgery
US8043286B2 (en) 2002-05-03 2011-10-25 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
US7736361B2 (en) 2003-02-14 2010-06-15 The Board Of Trustees Of The Leland Stamford Junior University Electrosurgical system with uniformly enhanced electric field and minimal collateral damage
US8177783B2 (en) 2006-11-02 2012-05-15 Peak Surgical, Inc. Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
US8414572B2 (en) 2006-11-02 2013-04-09 Medtronic Advanced Energy Llc Electrosurgery apparatus with partially insulated electrode and exposed edge
US8323276B2 (en) 2007-04-06 2012-12-04 The Board Of Trustees Of The Leland Stanford Junior University Method for plasma-mediated thermo-electrical ablation with low temperature electrode
US8632537B2 (en) 2009-01-05 2014-01-21 Medtronic Advanced Energy Llc Electrosurgical devices for tonsillectomy and adenoidectomy
US8979842B2 (en) 2011-06-10 2015-03-17 Medtronic Advanced Energy Llc Wire electrode devices for tonsillectomy and adenoidectomy

Also Published As

Publication number Publication date
US7879034B2 (en) 2011-02-01
US20070208334A1 (en) 2007-09-06
US20070208335A1 (en) 2007-09-06
WO2007103800A3 (en) 2008-07-31
WO2007103800B1 (en) 2008-09-25
US20110130753A1 (en) 2011-06-02
EP1996105A4 (en) 2011-09-21
US8292887B2 (en) 2012-10-23
EP1996105A2 (en) 2008-12-03
EP1996105B1 (en) 2018-04-25
US7901403B2 (en) 2011-03-08

Similar Documents

Publication Publication Date Title
US8292887B2 (en) Internally located return electrode electrosurgical apparatus, system and method
US8348944B2 (en) Electrosurgical device having floating-potential electrode and bubble trap
EP1439793B1 (en) Self-wetting, dry-field bipolar electrodes for endoscopic surgery
US7563261B2 (en) Electrosurgical device with floating-potential electrodes
EP1079746B1 (en) Systems for electrosurgical treatment of the digestive system
US8425506B2 (en) Aspirating electrosurgical probe with aspiration through electrode face
US7566333B2 (en) Electrosurgical device with floating-potential electrode and methods of using the same
US7195630B2 (en) Converting cutting and coagulating electrosurgical device and method
EP1095627A1 (en) Electrosurgical probe for surface treatment
US20100042095A1 (en) Systems and methods for screen electrode securement
JPH10503691A (en) Plasma-enhanced bipolar electrosurgical device
WO2005065560A1 (en) Electrosurgical device
US9888954B2 (en) Plasma resection electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007757813

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE