WO2007087750A1 - Procédé de mise en oeuvre de gestion de ressources sur une couche d'accès pour un circuit virtuel dans un réseau virtuel privé de couche 2 - Google Patents

Procédé de mise en oeuvre de gestion de ressources sur une couche d'accès pour un circuit virtuel dans un réseau virtuel privé de couche 2 Download PDF

Info

Publication number
WO2007087750A1
WO2007087750A1 PCT/CN2007/000299 CN2007000299W WO2007087750A1 WO 2007087750 A1 WO2007087750 A1 WO 2007087750A1 CN 2007000299 W CN2007000299 W CN 2007000299W WO 2007087750 A1 WO2007087750 A1 WO 2007087750A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth parameter
module
virtual circuit
parameter
message
Prior art date
Application number
PCT/CN2007/000299
Other languages
English (en)
French (fr)
Inventor
Jianping Sun
Original Assignee
Huawei Technologies Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co. Ltd. filed Critical Huawei Technologies Co. Ltd.
Priority to EP07710849A priority Critical patent/EP1978673A4/en
Publication of WO2007087750A1 publication Critical patent/WO2007087750A1/zh
Priority to US12/180,006 priority patent/US20080279115A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/825Involving tunnels, e.g. MPLS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • H04L45/507Label distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/15Flow control; Congestion control in relation to multipoint traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/82Miscellaneous aspects
    • H04L47/822Collecting or measuring resource availability data

Definitions

  • the present invention relates to the field of L2VPN (Layer 2 Virtual Private Networks) technology, and relates to a method and device for implementing VC (Virtual Circuit) access control layer resource control by L2VPN.
  • L2VPN Layer 2 Virtual Private Networks
  • VC Virtual Circuit
  • the L2VP transparently transmits the user's Layer 2 data on the PSN (Packet Switch Network), such as the MPLS (Multi-Protocol Label Switching) network.
  • the PSN network is a Layer 2 switching network through which a Layer 2 connection can be established between different sites.
  • the Label Distribution Protocol (LDP) is used as the signaling for transmitting VC information.
  • CE Customer Edge Device
  • CE 11 are in one L2VPN
  • CE 20 and CE 21 are in another L2VPN.
  • the Provider Edge Device (PE), the PE B, and the P (Provided Device) P in the carrier network form an MPLS network.
  • the LSP Label Switch Path
  • the switching path has been established normally.
  • a remote session (LDP) of LDP is established between PE A and PE B.
  • the PE assigns a VC label ( Label ) to each connection between CEs.
  • the Layer 2 VPN information carries the VC Label and is forwarded to the peer PE of the remote session through the established LSP.
  • the VC Labels are transmitted through the mapping (MAPPING) message by using the Label TLV (Type-Length-Value) structure.
  • LDP FEC Forwarding Equivalence Class, Forwarding
  • Equivalence class to carry VC information including VC Label.
  • the PE can be connected to the CE port to limit the traffic rate.
  • the PE is connected to the P port to perform traffic. Plastic surgery.
  • An embodiment of the present invention provides a method for implementing VC resource control in an access layer by using an L2VPN, so that the QoS service is directly implemented on the VC, and does not need to care about an access layer port or a network side port.
  • Another embodiment of the present invention provides a device for implementing VC resource control in an access layer by using an L2VPN, which can implement resource control of a VC at an access layer in an L2VPN, so that the QoS service is directly implemented on the VC without being concerned about access.
  • Layer port or network side port can implement resource control of a VC at an access layer in an L2VPN, so that the QoS service is directly implemented on the VC without being concerned about access.
  • a method for implementing VC resource control in an access layer by using an L2VPN includes:
  • the PEs negotiate the bandwidth parameters of the VC through LDP messages to obtain effective bandwidth parameters.
  • the PE controls the traffic of the VC according to the effective bandwidth parameter.
  • Another embodiment of the present invention provides an apparatus for implementing VC resource control in an access layer, including:
  • a parameter negotiation module configured to negotiate a bandwidth parameter of the VC by using an LDP message during the VC session establishment process, and obtain an effective bandwidth parameter
  • the underlying forwarding module is configured to control the traffic of the VC according to the effective bandwidth parameter negotiated by the parameter negotiation module.
  • the bandwidth parameter of the VC is negotiated by the LDP message exchange between the PE devices in the VC session establishment process, so that bandwidth limitation can be performed on the access layer PE device for each VC;
  • the same port is connected to multiple CEs, and multiple VCs use the same outbound interface on the PE to implement differential services.
  • flow control is implemented at the service level, flow control is performed at the physical layer compared to the prior art. In this way, manageability can be improved.
  • FIG. 1 is a schematic diagram of a prior art L2VPN structure
  • FIG. 2 is a schematic diagram of negotiating bandwidth parameters during a VC session establishment process according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of an underlay forwarding process when the state of the VC is feasible in the embodiment of the present invention
  • FIG. 4 is a block diagram of a PE of an embodiment of the present invention.
  • bandwidth parameters are negotiated to implement VC resource control at the access layer.
  • the LDP label mapping message may be extended, and the bandwidth parameter to be negotiated is carried in the label mapping message.
  • the LDP label mapping message may include the contents as shown in Table 1.
  • TLV ( 0x080 ) 0 VC type (VC Type ) VC information length ( Info Length ) Group ID ( Group ID )
  • I/F parameters IF Parameters ) Common label (Generic Label 0x0200) Length (Length)
  • Table 1 To facilitate the description of the information in Table 1, the contents of Table 1 are divided into ten layers, and these layers are described separately.
  • the first and second layers are LDP headers, including the message type, message length, and message ID (identification).
  • the message type is LDP Label Mapping Message ( 0x0400 ).
  • the third layer is the FEC TLV Header, which includes the TLV type and TLV length.
  • the fourth, fifth, sixth, and seventh layers are virtual circuits FEC elements (Virtual Circuit FEC Element), including VC TLV (0x080), VC type, VC information length, group ID, VC ID, and interface parameters.
  • FEC elements Virtual Circuit FEC Element
  • the eighth, ninth, and tenth layers are labels TLV Header (Label TLV Header), including common labels, lengths, label values, and optional parameters.
  • the FEC element part of the LDP message has an I/F Parameters (Interface Parameters) field, which is mainly used to describe the MTU (Maximum Transmission Unit) value; it can be extended to add a description.
  • the bandwidth parameter can be: Committed data rate (cdr): 0x00000100, Committed burst size (cbs) ⁇ 0x00000200, Maximum burst size (Max) Burst size, mbs ): 0x00000300, Peak rate, psr : 0x00000400.
  • the PEs exchange the LDP label mapping messages of the local end and the LDP label mapping messages of the peer end to negotiate the bandwidth parameters of the two ends.
  • the peer bandwidth parameter is parsed in the I/F Parameters field of the label mapping message, and is compared with the bandwidth parameter configured by the local end for the VC. If they are consistent, the value of the bandwidth parameter takes effect. If they are inconsistent, compare the values of the peer and local bandwidth parameters, and take effect on the smaller bandwidth parameter of the two; or return the negotiation failure message.
  • the bandwidth parameter may be one or more. When the bandwidth parameter is multiple, the parameter values corresponding to the two ends need to be compared separately. ⁇ 3 ⁇
  • the bandwidth parameter that PE2 resolves to PE1 is cdr: 0x00000100, cbs: 0x00000200, mbs: 0x00000300, psr: 0x00000400, and the bandwidth parameter cdr: 0x00000100, cbs: 0x00000200, mbs: 0x00000300, psr: 0x00000400 If the results are equal, the negotiation is successful, and the value of the bandwidth parameter is taken as the standard and takes effect.
  • the bandwidth parameter is cdr: 0x00000100, cbs:
  • the bandwidth parameter can be selected as cdr: 0x00000100, cbs: 0x00000100, mbs : 0x00000300, psr: 0x00000400, Negotiation succeeds and takes effect as this; or returns 1" Business Failure Message.
  • the specific process of establishing a VC session includes:
  • Neighbor discovery is achieved by sending LDP hello packets to each other.
  • Step 210 PE2 sends an LDP hello message to PE1.
  • Step 220 PE1 sends an LDP hello packet to PE2.
  • TCP Transmission Control Protocol
  • Step 230 PE2 sends a TCP SYN packet to PE1.
  • Step 240 PE1 sends a TCP SYN/ACK packet to PE2.
  • Step 250 PE2 sends a TCP ACK packet to PE1.
  • Step 260 PE2 and PE1 negotiate parameters by using an LDP Initialization message.
  • Step 270 PE2 and PE1 negotiate the address parameters by sending LDP Address messages to each other.
  • Step 280 The PE2 and the PE1 exchange the LDP label mapping message of the local end and the LDP label mapping message of the peer end, and mutually negotiate the bandwidth parameters of the two ends.
  • Step 290 After the LDP Keepalive message is received between PE2 and PE1, the session is established. During the receipt of any error messages, the session is closed and the TCP connection is disconnected.
  • the PE performs flow control on each VC as follows: It is assumed that the bandwidth of the backbone link and the P device is sufficiently large. After configuring a VC and configuring the related bandwidth parameters, the PE sends the LDP packet to negotiate the bandwidth parameters. After the negotiation is complete, the PE uses the negotiated bandwidth parameter as the effective traffic control parameter.
  • the underlying forwarding module (not shown) of the PEs 311 and 312 establishes an entry.
  • the entry may be a combination of two entries.
  • An entry is a VC table. As shown in Table 2, it contains at least the VC index (VC ID), the outer label value (Outer Label), the inner and outer label values (Inner Label), the out interface (Out Interface), and the flow control index. (CA Index );
  • Table 2 The other is the flow control table, as shown in Table 3, including at least the flow control index (CAR Index), CDR (Committed Data Rate), CBS (Committed Burst Size), MBS (Max Burst Size) , maximum burst size), PS (Peak Rate, Peak Rate).
  • CAR Index Cost Index
  • CDR Committed Data Rate
  • CBS Committed Burst Size
  • MBS Maximum Burst Size
  • PS Peak Rate, Peak Rate
  • the underlying forwarding module of the PE restricts the traffic of the VC by querying the VC table and the flow control table in succession. Specifically, the VC is determined according to the information of the file, and the corresponding flow control index is searched in the VC table, and the flow control table is searched according to the flow control index, and the flow control is performed according to the parameters in the flow control table.
  • the flow control table is equivalent to a token leaky bucket, and continuously injects a token (X p/s ) into the bucket; once the Y packets forwarded hit the VC table, the Y is subtracted from the corresponding leaky bucket. Tokens.
  • the L2VPN of the embodiment of the present invention implements VC in the access layer resource control.
  • the parameter negotiation module 410 is configured to negotiate the bandwidth parameter of the VC by using an LDP message to obtain an effective bandwidth parameter during the VC session establishment process, and the bottom forwarding module 420 is configured to negotiate an effective bandwidth according to the parameter negotiation module.
  • the parameter controls the flow of the VC.
  • the parameter negotiation module 410 includes: a message sending module 411, configured to send an LDP label mapping message that carries a bandwidth parameter on the local end, and a message processing module 412, configured to receive an LDP label mapping message from the peer end, The negotiation is performed according to the bandwidth parameter carried in the extended field of the LDP label mapping message and the bandwidth parameter configured on the local end.
  • the FEC element part of the LDP label mapping message has an I/F Parameters field, which is mainly used to describe the interface MTU value. This can be extended to describe the bandwidth configured by the VC at the local end. Bandwidth parameters can include: committed rate, committed burst size, maximum burst size, peak rate.
  • the message processing module 412 includes: a parsing module 4121, configured to parse the bandwidth parameter in the LDP label mapping message from the peer end, and a comparison module 4122, configured to parse the bandwidth parameter obtained by the parsing module with the local end Comparing the bandwidth parameters of the VC configuration; the validation module 4123 is configured to: when the comparison result of the comparison module is consistent, the bandwidth parameter is validated; and the selection module 4124 is configured to perform comparison on the comparison module. When it is inconsistent, select a bandwidth parameter with a small value.
  • the underlying forwarding module 420 includes: an entry establishing module 421, configured to establish a VC table and a flow control table according to the bandwidth parameter negotiated by the parameter negotiation module when the state of the VC is feasible; and a traffic limiting module 422, configured to: Limit VC traffic by querying the VC table and flow control table.
  • the message processing module 412 may include: a parsing module 4121, configured to parse the bandwidth parameter in the LDP label mapping message from the peer end, and a comparison module 4122, configured to parse the parsing module The obtained bandwidth parameter is compared with the bandwidth parameter configured by the local end for the VC; the validating module 4123 is configured to enable the bandwidth parameter to be valid when the comparison result of the comparison module is consistent; the failure message returns a module (not shown) And, when the result of the comparison by the comparison module is inconsistent, the negotiation failure message is returned.
  • the device for implementing the access layer resource control of the VC in the L2VPN of the embodiment of the present invention may be set in the PE.
  • the bandwidth parameter of the VC is negotiated by the LDP message exchange between the PE devices, so that the bandwidth limitation can be performed on the access layer PE device for each VC:

Description

一种 L2VPN实现 VC在接入层资源控制的方法及装置
本申请要求于 2006 年 1 月 26 日提交中国专利局、 申请号为 200610033417.3、发明名称为"一种 L2VPN实现每 VC在接入层资源控制的 方法"的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明属于 L2VPN( Layer 2 Virtual Private Networks,二层虚拟专用网) 技术领域, 涉及一种 L2VPN实现 VC ( Virtual Circuit, 虚电路)在接入层 资源控制的方法及装置。
背景技术
L2VP 在 PSN ( Packet Switch Network, 包交换网络), 如 MPLS ( Multi-Protocol Label Switching , 多重协议标签交换) 网络上透明传递用户 的二层数据。 从用户的角度来看, PSN 网络是一个二层的交换网络, 通过 此交换网络, 可以在不同站点之间建立二层的连接。
在 Martini (马提尼) 方式的 L2VPN 中, 使用标签分配协议 ( Label Distribution Protocol , LDP )作为传递 VC信息的信令。
如图 1所示, CE ( Customer Edge Device, 用户边缘设备) 10和 CE 11 处于一个 L2VPN中, CE 20和 CE 21处于另一个 L2VPN中。 以 Martini方 式为例, 运营商网络边缘路由器 (PE, Provider Edge Device) A、 PE B和 运营商网络内部的骨干路由器(P, Provide Device ) P组成 MPLS网络, 公 网 LSP ( Label Switch Path, 标签交换路径 ) 已经正常建立。 PE A和 PE B 之间建立 LDP的远程会话( Remote Session )。
PE为 CE之间的每条连接分配一个 VC标签 ( Label )。 二层 VPN信息 携带 VC Label, 通过建立的 LSP转发到远程会话的对端 PE。
VC Labels 通过 LDP 的远程会话交换, 采用 Label TLV ( Type-Length-Value, 类型 -长度 -值)的结构, 携带在映射 ( MAPPING )消 息中发送。 现有技术中采用 LDP FEC ( Forwarding Equivalence Class, 转发 等价类)来携带包括 VC Label在内的 VC信息。
目前, 现有技术中在接入层的 PE上对 L2VPN执行 QoS策略时, 主要 有两种方式: 1、 可以在 PE接 CE端口进行流量限速; 2、 在 PE接 P端口 对流队列进行流量整形。
方式 1的现有技术中: 对于多个 CE进行端口转换后接入到 PE的同一 个物理接口的情况, 针对不同的 CE在 PE入接口进行流量限速比较困难, 或者较为复杂;
方式 2的现有技术中: 对于有多个 L2VPN的 VC连接, 而 PE网络侧 接口较少, 例如一个或两个接口的情况,很难通过不同的队列来区分不同的 VC, 无法满足对每个 VC的带宽保证的需求。
也就是说, 如果上述情况在网络中出现时, 现有技术不能保证 QoS策 略能够发挥作用。
发明内容
本发明的实施例提供一种 L2VPN实现 VC在接入层资源控制的方法, 使得 QoS服务直接在 VC上实现, 而不必关心接入层端口或者网络侧端口。
本发明的另一实施例提供一种 L2VPN实现 VC在接入层资源控制的装 置, 可以在 L2VPN中实现 VC在接入层的资源控制, 使得 QoS服务直接在 VC上实现, 而不必关心接入层端口或者网络侧端口。
本发明实施例提供的一种 L2VPN实现 VC在接入层资源控制的方法, 包括:
在 VC会话建立过程中 , PE之间通过 LDP消息协商该 VC的带宽参数, 获得有效带宽参数;
PE根据所述有效带宽参数对该 VC的流量进行控制。
本发明的另一实施例提供的一种 L2VPN实现 VC在接入层资源控制的 装置, 包括:
参数协商模块, 用于在 VC会话建立过程中, 通过 LDP消息协商该 VC 的带宽参数, 并获得有效带宽参数;
底层转发模块,用于根据所述参数协商模块协商获得的有效带宽参数对 该 VC的流量进行控制。 本发明的实施例中, 在 VC会话建立过程中, 通过 PE设备之间的 LDP 消息交互来协商该 VC的带宽参数, 从而可以针对每条 VC, 在接入层 PE 设备上进行带宽限制; 避免了在 PE上同一端口接入多个 CE、 多条 VC在 PE上使用相同出接口, 无法进行差分服务的问题; 并且, 由于在业务层面 实现流控, 相对现有技术在物理层进行流控来说, 可以提高可管理性。
附图说明 图 1为现有技术的 L2VPN结构示意图;
图 2为本发明的实施例在 VC会话的建立过程中协商带宽参数的示意 图;
图 3 为本发明的实施例中当 VC的状态都可行后底层转发过程的示意 图;
图 4为本发明的实施例的 PE的框图。
具体实施方式 以下结合附图及实施例进一步说明本发明。
本发明的实施例中, MPLS网络的 PE之间建立 VC会话时, 协商带宽 参数, 以实现 VC在接入层的资源控制。
在一种具体实现中, 可以对 LDP标签映射消息 (LDP Label Mapping Message )进行扩展, 将需要协商的带宽参数携带在所述标签映射消息中。
LDP标签映射消息可以包括如表 1所示的内容。
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 消息类型 (Label Message ( 0x0400 ) ) 消息长度 ( Message Length )
消息 ID ( Message ID )
0 TLV类型 (FEC TLV 0x0100 ) 长度 ( Length )
TLV ( 0x080 ) 0 VC类型 (VC Type ) VC信息长度( Info Length ) 組 ID ( Group ID )
VC ID
I/F 参数( I F Parameters ) 普通标签( Generic Label 0x0200 ) 长度(Length )
标签值 ( Label )
可选参数 ( Optional Parameters )
表 1
为便于描述表 1中的信息,此处将表 1中的内容分为十层, 并分别对这 些层进行描述。
如表 1所示, 第一、 二层为 LDP消息头, 包括消息类型、 消息长度和 消息 ID (标识 )。 消息类型为 LDP标签映射消息 ( 0x0400 )。
第三层为 FEC TLV头部( FEC TLV Header ), 包括 TLV类型、 TLV长 度。
第四、 五、 六、 七层为虚电路 FEC元素(Virtual Circuit FEC Element ), 包括 VC TLV ( 0x080 )、 VC类型、 VC信息长度、组 ID、 VC ID、接口参数。
第八、 九、 十层为标签 TLV头部(Label TLV Header ), 包括普通标签、 长度、 标签值、 可选参数。
在 LDP 消息的虚电路 FEC 元素部分具有 I/F Parameters ( Interface Parameters , 接口参数) 字段, 目前主要用于描述接口 MTU ( Maximum Transmission Unit, 最大传输单元)值; 可以对此进行扩展, 增加描述该 VC 在本端所配置的带宽参数,例如,带宽参数可以为:承诺速率( Committed data rate , cdr ): 0x00000100 , 承诺突发尺寸 ( Committed burst size, cbs )·· 0x00000200, 最大突发尺寸(Max burst size, mbs ): 0x00000300, 峰值速 率 ( Peak rate, psr ): 0x00000400。
如图 2所示, 在 MPLS网络中, 建立 VC Session的过程中, PE之间通 过本端的 LDP标签映射消息和对端的 LDP标签映射消息进行交互,相互协 商两端的带宽参数; PE从对端的 LDP标签映射消息的 I/F Parameters字段 中解析出对端带宽参数, 与本端为该 VC配置的带宽参数进行比较, 如果一 致, 则以所述带宽参数的数值为准生效。 如果不一致, 就所述对端和本端带 宽参数的数值进行比较, 以二者中数值较小的带宽参数为准并生效; 或返回 协商失败消息。 其中, 所述带宽参数可以为一个或多个, 当带宽参数为多个 时, 需要分别对两端对应的参数数值进行比较。 ― 3―
例如, PE2 解析到 PE1 发出的带宽参数为 cdr: 0x00000100, cbs: 0x00000200, mbs: 0x00000300, psr: 0x00000400, 与本端配置的带宽参数 cdr: 0x00000100, cbs: 0x00000200, mbs: 0x00000300, psr: 0x00000400 相比较, 结果相等, 则协商成功, 以所迷带宽参数的数值为准并生效。
如果 PE2 解析到 PE1 发出的带宽参数为 cdr: 0x00000100, cbs:
0x00000200, mbs: 0x00000300, psr: 0x00000400, 与本端配置的带宽参数 cdr: 0x00000200, cbs: 0x00000100, mbs: 0x00000300, psr: 0x00000500 相比较, 可以选定带宽参数为 cdr: 0x00000100, cbs: 0x00000100, mbs: 0x00000300, psr: 0x00000400, 协商成功并以此为准生效; 或者返回 1"办商 失败消息。
一个实施例中, VC会话建立的具体过程包括:
1 )邻居发现: 通过互发 LDP hello报文实现邻居发现;
步骤 210 , PE2向 PE1发送 LDP hello报文;
步骤 220, PE1向 PE2发送 LDP hello报文。
2 )建立 TCP ( Transmission Control Protocol, 传输控制协议)连接: 可 以由地址大的一方主动发起;
步驟 230, PE2向 PE1发送 TCP SYN报文;
步骤 240, PE1向 PE2发送 TCP SYN/ACK报文;
步骤 250, PE2向 PE1发送 TCP ACK报文。
3 )会话初始化及参数协商:
步骤 260 , PE2和 PE1通过互发初始化消息( LDP Initialization )协商参 数。
步骤 270, PE2和 PE1通过互发 LDP Address消息进行地址参数的协商。
4 ) 带宽参数协商:
步骤 280, PE2和 PE1之间通过本端的 LDP标签映射消息和对端的 LDP 标签映射消息进行交互, 相互协商两端的带宽参数。
5 )会话建立:
步骤 290, PE2和 PE1之间相互收到 LDP Keepalive消息后,会话建立。 期间收到任何差错消息, 均关闭会话, 断开 TCP连接。 本发明的一个实施例中, PE对每条 VC进行流量控制的处理如下: 假定骨干链路和 P设备的带宽足够大。 PE在配置一条 VC并配置相关 的带宽参数后, 发出上述的 LDP报文进行带宽参数的协商, 在协商结束后, 将协商得到的带宽参数作为有效的流量控制参数。
当这条 VC的状态可行后, 如图 3所示, 在 PE 311和 312的底层转发 模块(图未示)建立表项。 所述表项可以是由两个表项組合而成。
一个表项是 VC表, 如表 2所示, 至少包含 VC索引 (VC ID )、 外层标 签值 ( Outer Label )、 内外层标签值 ( Inner Label )、 出接口 (Out Interface )、 流量控制索引 (CA Index );
表 2
Figure imgf000008_0001
另一个是流量控制表, 如表 3 所示, 至少包含流量控制索引 (CAR Index )、 CDR ( Committed Data Rate, 承诺速率)、 CBS ( Committed Burst Size, 诺突发尺寸)、 MBS ( Maximum Burst Size, 最大突发尺寸)、 PS ( Peak Rate, 峰值速率)。
表 3
Figure imgf000008_0002
在进行流量控制时, PE的底层转发模块通过先后查询 VC表和流控表, 限制 VC的流量。 具体为: 根据 4艮文的信息确定其对应的 VC, 在 VC表中 查找相应的流量控制索引,根据所述流量控制索引查找流量控制表, 据流 量控制表中的参数进行流量控制。
其中, 流量控制表相当于一个令牌漏桶, 不断的向桶中注入令牌(X p/s ); 同时转发的 Y个报文一旦命中 VC表, 就在相应的漏桶中减去 Y个令 牌。
请参阅图 4, 本发明实施例的 L2VPN实现 VC在接入层资源控制的装 置包括: 参数协商模块 410, 用于在 VC会话建立过程中, 通过 LDP消息协 商该 VC的带宽参数, 获得有效带宽参数; 底层转发模块 420, 用于根据所 述参数协商模块协商获得的有效带宽参数对该 VC的流量进行控制。
在一种具体实现中, 所述参数协商模块 410包括: 消息发送模块 411 , 用于发送本端携带带宽参数的 LDP标签映射消息; 消息处理模块 412, 用 于接收来自对端的 LDP标签映射消息 ,根据 LDP标签映射消息的扩展字段 中携带的带宽参数和本端配置的带宽参数进行协商。
在 LDP标签映射消息的虚电路 FEC元素部分具有 I/F Parameters字段, 目前主要用于描述接口 MTU值; 可以对此进行扩展, 增加描述该 VC在本 端所配置的带宽。 带宽参数可以包括: 承诺速率, 承诺突发尺寸, 最大突发 尺寸, 峰值速率。
其中, 所述消息处理模块 412包括: 解析模块 4121 , 用于解析莰得来 自对端的 LDP标签映射消息中的带宽参数; 比较模块 4122, 用于将所述解 析模块解析获得的带宽参数与本端为该 VC配置的带宽参数进行比较;生效 模块 4123, 用于在所述比较模块进行比较的结果为一致时, 使该带宽参数 生效; 选择模块 4124, 用于在所述比较模块进行比较的结果为不一致时, 选择数值小的带宽参数。
所述底层转发模块 420包括: 表项建立模块 421 , 用于在该 VC的状态 可行时, 根据所述参数协商模块协商后的带宽参数建立 VC表和流量控制 表; 流量限制模块 422, 用于通过查询所述 VC表和流量控制表来限制 VC 的流量。
此外, 在另一实施例中, 所述消息处理模块 412 可以包括: 解析模块 4121 , 用于解析获得来自对端的 LDP标签映射消息中的带宽参数; 比较模 块 4122, 用于将所述解析模块解析获得的带宽参数与本端为该 VC配置的 带宽参数进行比较; 生效模块 4123, 用于在所述比较模块进行比较的结果 为一致时, 使该带宽参数生效; 失败消息返回模块(图未示), 用于在所述 比较模块进行比较的结果为不一致时, 返回协商失败消息。
本发明实施例的 L2VPN实现 VC在接入层资源控制的装置可以设置在 PE内。 本发明的实施例中, 在 VC会话建立过程中, 通过 PE设备之间的 LDP 消息交互来协商该 VC的带宽参数, 从而可以针对每条 VC:, 在接入层 PE 设备上进行带宽限制; 避免了在 PE上同一端口接入多个 CE、 多条 VC在 PE上使用相同出接口, 无法进行差分服务的问题; 并且, 由于在业务层面 实现流控, 相对现有技术在物理层进行流控来说, 可以提高可管理性。

Claims

权 利 要 求
1、 一种二层虚拟专用网实现虚电路在接入层资源控制的方法, 其特征 在于, 包括:
在虚电路会话建立过程中,运营商网络边缘路由器之间通过标签分配协 议消息协商该虚电路的带宽参数, 获得有效带宽参数;
运营商网络边缘路由器根据所述有效带宽参数对该虚电路的流量进行 控制。
2、 根据权利要求 1所述的方法, 其特征在于, 所述运营商网络边缘路 由器之间通过标签分配协议消息协商该虚电路的带宽参数的步骤包括: 运营商网络边缘路由器通过本端的标签分配协议标签映射消息和对端 的标签分配协议标签映射消息进行交互,根据对端的标签分配协议标签映射 消息的扩展字段中携带的带宽参数和本端配置的带宽参数进行协商。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据对端的标签分 配协议标签映射消息的扩展字段中携带的带宽参数和本端配置的带宽参数 进行协商的步骤包括:
运营商网络边缘路由器对解析出来的对端带宽参数,与本端为该虛电路 配置的带宽参数进行比较,如果一致,则使该带宽参数生效作为有效带宽参 数; 如果不一致, 则比较对端和本端的带宽参数, 选择二者中数值较小的带 宽参数并将其作为有效带宽参数, 或返回协商失败消息。
4、 根据权利要求 2所述的方法, 其特征在于: 所述标签分配协议标签 映射消息携带带宽参数的扩展字段位于虚电路转发等价类元素部分的接口 参数字段。
5、 根据权利要求 1所述的方法, 其特征在于, 所述运营商网络边缘路 由器根据所述有效带宽参数对该虚电路的流量进行控制的步驟包括:在该虚 电路的状态可行时, 建立虚电路表和流量控制表。
6、 根据权利要求 5所述的方法, 其特征在于: 所述虚电路表包括虚电 路索引、 外层标签值、 内层标签值、 出接口和流量控制索引。
7、 根据权利要求 5所述的方法, 其特征在于: 所述流量控制表包括流 量控制索引和流量控制参数; 所述流量控制参数为有效带宽参数。
8、 根据权利要求 7所述的方法, 其特征在于: 所述流量控制参数包括 承诺速率、 承诺突发尺寸、 最大突发尺寸、 峰值速率。
9、 根据权利要求 5所述的方法, 其特征在于: 在底层转发模块建立虚 电路表和流量控制表之后,运营商网络边缘路由器的底层转发模块通过查询 虚电路表和流量控制表, 限制虚电路的流量。
10、一种二层虚拟专用网实现虚电路在接入层资源控制的装置,其特征 在于, 包括:
参数协商模块, 用于在虚电路会话建立过程中,通过标签分配协议消息 协商该虚电路的带宽参数, 并获得有效带宽参数;
底层转发模块,用于根据所述参数协商模块协商获得的有效带宽参数对 该虚电路的流量进行控制。
11、 根据权利要求 10所述的装置, 其特征在于, 所述参数协商模块包 括:
消息发送模块,用于发送本端携带带宽参数的标签分配协议标签映射消 息;
消息处理模块, 用于接收来自对端的标签分配协议标签映射消息,根据 标签分配协议标签映射消息的扩展字段中携带的带宽参数和本端配置的带 宽参数进行协商。
12、 根据权利要求 11所述的装置, 其特征在于, 所述消息处理模块包 括:
解析模块 ,用于解析获得来自对端的标签分配协议标签映射消息中的带 宽参数;
比较模块,用于将所述解析模块解析获得的带宽参数与本端为该虚电路 配置的带宽参数进行比较;
生效模块, 用于在所述比较模块进行比较的结果为一致时,使该带宽参 数生效; '
选择模块, 用于在所述比较模块进行比较的结果为不一致时,选择二者 中数值较小的带宽参数作为有效带宽参数。
13、 根据权利要求 11所述的装置, 其特征在于, 所述消息处理模块包 括:
解析模块,用于解析获得来自对端的标签分配协议标签映射消息中的带 宽参数;
比较模块,用于将所述解析模块解析获得的带宽参数与本端为该虚电路 配置的带宽参数进行比较;
生效模块, 用于在所述比较模块进行比较的结果为一致时,使该带宽参 数生效;
失败消息返回模块, 用于在所述比较模块进行比较的结果为不一致时, 返回协商失败消息。
14、根据权利要求 11至 13任一项所述的装置, 其特征在于, 所述底层 转发模块包括:
表项建立模块, 用于在该虚电路的状态可行时,根据所述参数协商模块 协商后的有效带宽参数建立虚电路表和流量控制表;
流量限制模块,用于通过查询所述虚电路表和流量控制表来限制虚电路 的流量。
PCT/CN2007/000299 2006-01-26 2007-01-26 Procédé de mise en oeuvre de gestion de ressources sur une couche d'accès pour un circuit virtuel dans un réseau virtuel privé de couche 2 WO2007087750A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07710849A EP1978673A4 (en) 2006-01-26 2007-01-26 METHOD FOR IMPLEMENTING RESOURCE MANAGEMENT ON AN ACCESS LAYER FOR A VIRTUAL CIRCUIT IN A PRIVATE VIRTUAL LAYER NETWORK 2
US12/180,006 US20080279115A1 (en) 2006-01-26 2008-07-25 Method And Device For Implementing Resource Control On An Access Layer For A VC In An L2VPN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610033417A CN100583887C (zh) 2006-01-26 2006-01-26 一种l2vpn中针对每条vc在接入层进行资源控制的方法
CN200610033417.3 2006-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/180,006 Continuation US20080279115A1 (en) 2006-01-26 2008-07-25 Method And Device For Implementing Resource Control On An Access Layer For A VC In An L2VPN

Publications (1)

Publication Number Publication Date
WO2007087750A1 true WO2007087750A1 (fr) 2007-08-09

Family

ID=36840751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/000299 WO2007087750A1 (fr) 2006-01-26 2007-01-26 Procédé de mise en oeuvre de gestion de ressources sur une couche d'accès pour un circuit virtuel dans un réseau virtuel privé de couche 2

Country Status (4)

Country Link
US (1) US20080279115A1 (zh)
EP (1) EP1978673A4 (zh)
CN (1) CN100583887C (zh)
WO (1) WO2007087750A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277245B (zh) * 2008-05-06 2012-05-23 华为技术有限公司 一种l2vpn跨域的实现方法、系统和装置
CN101621453A (zh) * 2008-06-30 2010-01-06 华为技术有限公司 保证差分业务流量工程网络配置参数一致的方法和系统
CN102238070B (zh) * 2010-05-07 2015-04-29 华为技术有限公司 Mpls支持的差分服务模式的配置方法、设备及系统
CN101924676B (zh) * 2010-08-20 2014-07-02 中兴通讯股份有限公司 一种控制字能力的协商方法及伪线建立设备
CN101986648B (zh) * 2010-11-24 2012-12-12 北京星网锐捷网络技术有限公司 一种tcp选项的协商方法、装置及网络设备
CN102025632B (zh) * 2010-12-15 2012-10-17 迈普通信技术股份有限公司 Mpls网络中数据分组的标签分配方法及系统
CN115052052A (zh) * 2022-04-26 2022-09-13 深圳市云伽智能技术有限公司 一种基于icap协议的信息传输方法、装置及控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838663A (en) * 1995-07-24 1998-11-17 Lucent Technologies Inc. Method for admission control and routing by allocating network resources in network nodes
WO2003079614A1 (en) 2002-03-18 2003-09-25 Nortel Networks Limited Resource allocation using an auto-discovery mechanism for provider-provisioned layer-2 and layer-3 virtual private networks
CN1499775A (zh) * 2002-10-29 2004-05-26 ���Ͽع����޹�˾ 管理通信量的方法和执行该方法的入口路由器
CN1625144A (zh) * 2003-12-01 2005-06-08 华为技术有限公司 一种在二层虚拟专用网的骨干网中保证业务质量的方法
CN1631009A (zh) * 2001-09-27 2005-06-22 西门子公司 用于匹配数据包网络中的标识交换路径的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011780A (en) * 1997-05-23 2000-01-04 Stevens Institute Of Technology Transparant non-disruptable ATM network
WO2004023838A2 (en) * 2002-09-09 2004-03-18 Nortel Networks Limited Svc-l2 vpns: flexible on-demand switched mpls/ip layer-2 vpns for ethernet svc, atm and frame relay
US7865582B2 (en) * 2004-03-24 2011-01-04 Hewlett-Packard Development Company, L.P. System and method for assigning an application component to a computing resource

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5838663A (en) * 1995-07-24 1998-11-17 Lucent Technologies Inc. Method for admission control and routing by allocating network resources in network nodes
CN1631009A (zh) * 2001-09-27 2005-06-22 西门子公司 用于匹配数据包网络中的标识交换路径的方法和装置
WO2003079614A1 (en) 2002-03-18 2003-09-25 Nortel Networks Limited Resource allocation using an auto-discovery mechanism for provider-provisioned layer-2 and layer-3 virtual private networks
CN1499775A (zh) * 2002-10-29 2004-05-26 ���Ͽع����޹�˾ 管理通信量的方法和执行该方法的入口路由器
CN1625144A (zh) * 2003-12-01 2005-06-08 华为技术有限公司 一种在二层虚拟专用网的骨干网中保证业务质量的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1978673A4

Also Published As

Publication number Publication date
US20080279115A1 (en) 2008-11-13
EP1978673A4 (en) 2009-01-07
CN1809070A (zh) 2006-07-26
EP1978673A1 (en) 2008-10-08
CN100583887C (zh) 2010-01-20

Similar Documents

Publication Publication Date Title
EP1739914B1 (en) Method, apparatus, edge router and system for providing a guarantee of the quality of service (qos)
US7948986B1 (en) Applying services within MPLS networks
KR101576411B1 (ko) 레이블 분배 프로토콜(ldp) 레이블 스위칭 경로(lsp)의 데이터 플레인 페이트 분리용 시스템 및 방법
WO2012106869A1 (zh) 一种报文处理方法及相关设备
WO2007087750A1 (fr) Procédé de mise en oeuvre de gestion de ressources sur une couche d'accès pour un circuit virtuel dans un réseau virtuel privé de couche 2
WO2005101730A1 (fr) Systeme et procede permettant d'assurer une qualite de service dans un reseau virtuel prive
WO2007095799A1 (fr) Procédé et système permettant de réaliser une émulation pseudo-filaire de bout en bout de l'interface de groupage
WO2005125104A1 (fr) Procede de transmission securisee de flux de services sur un reseau ip
WO2008077300A1 (fr) Procédé et système permettant de négocier le discriminateur de session de détection de transmission bidirectionnelle d'un pseudo-fil
WO2009056034A1 (fr) Procédé, système et équipement pour établir une détection bfd pour un tunnel lsp
WO2009067871A1 (fr) Procédé, système et dispositif de gestion de sécurité d'accès d'utilisateur
WO2009021458A1 (fr) Procédé, appareil et système de connexion d'un réseau de couche 2 à un réseau de couche 3
WO2009135404A1 (zh) 一种l2vpn跨域的实现方法、系统和装置
US8730977B2 (en) Method of transferring data between a sending station in a first network and a receiving station in a second network, and apparatus for controlling the communication between the sending station in the first network and the receiving station in the second network
WO2008106881A1 (fr) Procédé d'accès ppp, système correspondant et dispositif à noeud d'accès
WO2014019348A1 (zh) 操作、管理和维护oam配置的方法、设备及系统
WO2007076692A1 (fr) Procédé, système et dispositif permettant le transport de services vpls dans un réseau
EP2239956B1 (en) Method, apparatus and system for ip/optical convergence
WO2008028383A1 (fr) Procédé d'identification de protocole de couche 3 dans une interconnexion à supports hétérogènes dans un réseau privé virtuel de protocole l2 et appareil et système correspondants
US9369379B2 (en) System and method providing secured contexts in MPLS LFIB
WO2009132500A1 (zh) 层次化有序地址分组网络中数据链路层信息传送和控制管理的方法及装置
WO2007140703A1 (fr) Procédé et appareil de nœud rsvp interactif
WO2011147233A1 (zh) 一种实现虚拟专用网流量限速的方法及装置
JP5840211B2 (ja) オフセットを用いてインバンド制御チャネルを提供する疑似ワイヤ
Metz Layer 2 over ip/mpls

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007710849

Country of ref document: EP