WO2007067841A2 - Navigation route information for traffic management - Google Patents

Navigation route information for traffic management Download PDF

Info

Publication number
WO2007067841A2
WO2007067841A2 PCT/US2006/060940 US2006060940W WO2007067841A2 WO 2007067841 A2 WO2007067841 A2 WO 2007067841A2 US 2006060940 W US2006060940 W US 2006060940W WO 2007067841 A2 WO2007067841 A2 WO 2007067841A2
Authority
WO
WIPO (PCT)
Prior art keywords
information
traffic
route
traffic management
vehicle
Prior art date
Application number
PCT/US2006/060940
Other languages
French (fr)
Other versions
WO2007067841A3 (en
Inventor
Shafer B. Seymour
Ramy P. Ayoub
Original Assignee
Motorola Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc. filed Critical Motorola Inc.
Priority to EP06839900A priority Critical patent/EP1969574A2/en
Publication of WO2007067841A2 publication Critical patent/WO2007067841A2/en
Publication of WO2007067841A3 publication Critical patent/WO2007067841A3/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Definitions

  • This invention relates to traffic management on roadway systems. More specifically, the invention relates to a traffic management system that utilizes route information provided by on-board vehicle navigation systems.
  • System 100 includes a management center 101 that receives information from a variety of information sources 102 and implements traffic management procedures on roadways 103 based on the received information.
  • Traffic management procedures typically include adjusting the timing of traffic signals 104, providing traffic updates/instructions to roadside Dynamic Message Signs (DMS) 105, actuating movable lane barriers, etc.
  • DMS Dynamic Message Signs
  • Traffic management center 101 requires reliable information concerning current and future traffic conditions in order to effectively implement such traffic management procedures.
  • Presently available information sources 102 include traffic sensors 106, weather service reports 107, incident reports 108, event promoters 109, and emergency/police dispatch 110.
  • Traffic sensors 106 include devices such as cameras, electronic sensors, and the like distributed about the roadways to provide real time information about the number of cars at various locations. Incident reports
  • Emergency/police dispatch 110 can provide information about the present position and the planned routes of emergency/police vehicles so that management center 101 can implement procedures to provide these vehicles with priority on the roadways.
  • Management system 101 includes computing resources 111 to receive and process information, compute appropriate traffic management procedures, and transmit instructions for implementing traffic management procedures. Management system 101 also typically includes storage resources 112 for storing information relating to historic traffic trends as data by which future traffic behavior can be predicted.
  • FIG. 1 illustrates a prior art traffic management system.
  • Fig. 2 illustrates a traffic management system capable of using route information provided by on board navigation systems to predict traffic flow and manage traffic accordingly.
  • FIG. 3 illustrates a planned route of a vehicle as transmitted to the traffic management system.
  • the present disclosure provides a traffic management system that utilizes route information from commuter vehicles for computing and implementing traffic management procedures.
  • Route information is provided to the traffic management system via on-board navigation systems installed in commuter vehicles.
  • This route information collected for a large number of vehicles on the roadways at a given time, is used to predict short-term future traffic behavior.
  • Such route information is a more reliable indicator of short-term future traffic congestion when compared to predictions based on historical traffic trends, because route information expresses with more certainty the intended future position of a given vehicle.
  • the predictive traffic management capabilities provided by the present system offer an advantage over existing systems because the present system can more reliably predict when and where traffic congestion will occur and implement proactive, rather than reactive, traffic management procedures to deal with congestion before it occurs.
  • Fig. 2 illustrates a traffic management system 200 that includes a traffic management center 21 1 configured to utilize route data provided by a plurality of onboard navigation systems 201 installed in a plurality of vehicles 202.
  • On-board navigation systems which are becoming increasingly common in commuter vehicles, are known in the art and will be discussed only briefly here.
  • Such navigation systems 201 typically feature a display 203 for displaying graphical or text data, for example present position or driving directions; a processor 204; a global positioning system (GPS) receiver 205; a memory/storage 206; and a user input interface 207.
  • GPS global positioning system
  • Many systems also include additional real-time (RT) receiver(s) 208 for receiving real time information such as traffic reports, weather, etc.
  • RT real-time
  • a user of navigation system 201 can use the system to find and plan the most efficient route to a destination, in accordance with the user's preferences.
  • the user may prefer to plan a route according to shortest distance, shortest time, or avoiding highways or tollways.
  • Memory/storage 206 typically contains map data for a given zone of interest, for example, the user's city, state, and/or region.
  • a user wanting directions to a particular destination inputs the address of the destination using input interface 207.
  • the processor 204 determines one or more routes to the destination based on the map data, user preferences and user's present position supplied by GPS receiver 205.
  • the processor may also consider real time traffic conditions provided by RT receiver 208 in formulating the route(s).
  • the navigation systems calculate the estimated times of arrival (ETA) along predefined points of the route, herein referred to as intra- route ETA data.
  • Predefined points of the route include, but are not limited to, intersections, highway exchanges, bridges, tunnels and mile markers on the highways. This information may or may not be of use to the user, but will be of use to the traffic management system in helping to predict traffic congestion information.
  • Fig. 3 illustrates a planned route 300 of a vehicle as transmitted to the traffic management system.
  • the planned arrival time at intersection A 310 is estimated to be 16:20 by the navigation system.
  • the accurate real time clock provided by GPS assists in the determination of ETA, along with accurate navigation map data.
  • the ETA at interchange 320 is 16:30.
  • the ETA at highway mile markers 210 and 215 are shown as 16:35 and 16:50 respectively.
  • the cumulative route and ETA information from the navigation systems 201 are transmitted to the traffic management center 211.
  • the vehicle navigation system 201 in one embodiment constantly monitors the progress of the vehicle 202 along the route and re-calculates the ETA information as the vehicle 202 progresses along the route. Modifications to the route ETA information are transmitted to the traffic management center 211 to provide an update to the calculated congestion information.
  • the information can be provided with a vehicle identifier, so that the traffic management center 211 can distinguish new routes from updated routes.
  • the driver can also deviate from a planned route, or may be re-routed due to real-time traffic information received at the navigation system 201. In either case, new route and intra-route ETA data can be recalculated by the vehicle navigation system 201 and transmitted to the traffic management center 211.
  • the vehicle navigation system 201 provides the traffic management center 211 with navigation route information, as well as periodic GPS location data. Based on the periodic GPS location data from the vehicle 202, the traffic management system 211 predicts the intra-route ETA information for each vehicle 202 reporting this information. The intra-route ETA information may also be calculated using the same map and travel time information used by the in-vehicle navigation systems 201. fooi7i As navigation systems 201 become common in commuter vehicles 202, these systems 201 arc a rich source of data that can be utilized for predicting traffic congestion and implementing traffic management procedures to deal with congestion.
  • An aspect of the present disclosure is to provide a traffic management system 200 configured to utilize data provided by navigation systems 201 installed in commuter vehicles 202 to predict traffic congestion and to implement traffic control procedures to deal with the predicted congestion.
  • Traffic management system 200 utilizes route information calculated by various navigation systems 201 to predict future traffic conditions on roadway system 210.
  • Navigation systems 201 communicate with traffic management center 211 via communication link 212 to provide the current position, destination, and planned route of the vehicle 202.
  • Communication link 212 can be any wireless link using any protocol known in the art, such as dedicated short range communication (DSRC), IEEE 802.11, etc.
  • Communications link 212 can also comprise a cellular connection or a satellite connection. Receipt of the various communication links 212 from the various vehicles 202 is ultimately received by at least one receiver contained within or coupled to the traffic management center 211 (not shown). Normally, the center 211 is coupled to receive communications from a plurality of receivers, each covering a different region within a travel area.
  • the traffic management center 211 knows the present location of the commuter vehicles 202 and has an intra-route ETA information of the vehicles' future positions during the duration of their trip.
  • the traffic management center 211 can use this information, along with the additional information such as sensor data, weather information, etc. described above, to calculate and implement traffic flow control functions.
  • the traffic management center 211 can continually update the traffic flow control strategy periodically based on the real time location of vehicle 202, provided by the GPS receiver 205.
  • the traffic management center 211 is similar to the management center described in the Background section.
  • the traffic management center 21 1 includes computing resources 213 and storage resources 214.
  • Computing resources 213 are configured to predict traffic congestion based on route information received from navigation systems 201 installed in commuter vehicles 202 as well as information received from the various data sources described in the Background section above.
  • the computing resources 213 are configured to predict traffic congestion and determine appropriate traffic control procedures to minimize the congestion. Methods of predicting traffic congestion and appropriate traffic control responses are known in the art. For example, neural network methods of controlling traffic are described in U.S. Patent Nos. 5,459,665 and 5,668,717, which are hereby incorporated by reference in their entirety. A fuzzy logic system and method for controlling traffic and traffic lights and distributing warning messages to motorists is described in U.S. Patent No. 6,317,058, which is hereby incorporated by reference in its entirety.
  • a traditional system acquires, for example, the current coordinates of a plurality of vehicles, and uses statistics based on historical data to determine where congestion is likely to occur. For example, by using the current positions of the vehicles and knowing other factors relevant to traffic patterns (e.g., time of day, day of weeks, etc.), a traditional traffic management system will use predictive statistics to determine future likely traffic patterns, and ultimate a traffic management plan.
  • the future position of a given vehicle 202 (or at least some subset of vehicles in a given area) need not be predicted, but is known via the route information, intra-route ETA information, and the user's present position.
  • the system 200 can reliably compute the future position of at least some of the vehicles in a given area. If the user does deviate from the route, then new route and intra-route ETA information is provided to the traffic management center 211.
  • statistical analysis can still play a part by the center 211 in determining a traffic management plan, such analysis is rendered more accurate by knowing with a high degree of confidence where at least some vehicles will be in the future. In short, receipt of route information increases the reliability of the determined traffic management plan.
  • the navigation systems 201 are configured to receive information from the traffic management center 211, i.e., information regarding predicted traffic congestion to route vehicles 202 around a congested area.
  • the method can be an iterative process, whereby traffic management center 211 receives route information from a plurality of vehicles, computes traffic congestion based on such route information, and transmits the congestion prediction back to the plurality of vehicles, which update their routes to avoid the predicted congestion.
  • Optimal traffic management is reached by the cooperative interaction between traffic management center 21 1 and the navigation systems 201 installed in the commuter vehicles 202.
  • CM08115TC the entire contents of which are incorporated herein by reference, could provide route information to traffic management center 211 without requiring significant user interaction.
  • a "smart navigation system" is configured to learn and remember common destinations and maintain these destinations in a database. When a user begins traveling in a vehicle 202, the smart navigation system can guess the destination from among the stored destinations, based on parameters such as the vehicle's present position, the time of day, historical travel patterns, etc. For example, if a trip begins in the early evening on a weekday and the vehicle's current position is at an address that the navigation system 201 recognizes as the user's office, the navigation system 201 might guess that the destination is the user's home. The smart navigation system can query the user and confirm the destination.
  • the navigation system 201 calculates a route from the office to home, considering current roadway conditions, of which user might be unaware. Thus, even though the user is familiar with the route home, the smart navigation system might suggest an alternate route based on information about roadway conditions. In the context of the presently disclosed method, such "smart" route information is provided to the traffic management center 211 even for familiar routes wherein a user typically would not ask the navigation system 201 to determine a route.

Abstract

The present disclosure provides a traffic management system that utilizes route information provided by on board navigation systems installed in commuter vehicles to predict traffic congestion and determine appropriate traffic management procedures. Traffic management procedures include adjusting the timing of traffic signals, providing traffic updates/instructions to roadside Dynamic Message Signs (DMSs), actuating movable lane barriers, etc. The predictive traffic management capabilities provided by the present system offer an advantage over existing systems because the present system can more reliably predict when and where traffic congestion will occur and implement proactive, rather than reactive, traffic management procedures to deal with congestion before it occurs.

Description

NAVIGATION ROUTE INFORMATION FOR TRAFFIC MANAGEMENT
CROSS REFERENCE TO RELATED APPLICATIONS
[oooi] This application is concurrently filed with U.S. Patent Application Serial No. 11/298,427 entitled "Predictive Navigation," which is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
fooo2i This invention relates to traffic management on roadway systems. More specifically, the invention relates to a traffic management system that utilizes route information provided by on-board vehicle navigation systems.
BACKGROUND
[ooo3i Fig. 1 schematically illustrates a basic traffic management system 100, as is known in the art. System 100 includes a management center 101 that receives information from a variety of information sources 102 and implements traffic management procedures on roadways 103 based on the received information. Traffic management procedures typically include adjusting the timing of traffic signals 104, providing traffic updates/instructions to roadside Dynamic Message Signs (DMS) 105, actuating movable lane barriers, etc.
[ooo4] Traffic management center 101 requires reliable information concerning current and future traffic conditions in order to effectively implement such traffic management procedures. Presently available information sources 102 include traffic sensors 106, weather service reports 107, incident reports 108, event promoters 109, and emergency/police dispatch 110. Traffic sensors 106 include devices such as cameras, electronic sensors, and the like distributed about the roadways to provide real time information about the number of cars at various locations. Incident reports
108 provide information concerning accidents, construction, etc. Event promoters
109 can provide advanced warning of high density traffic due to sporting events, concerts, etc. Emergency/police dispatch 110 can provide information about the present position and the planned routes of emergency/police vehicles so that management center 101 can implement procedures to provide these vehicles with priority on the roadways.
[ooo5] Management system 101 includes computing resources 111 to receive and process information, compute appropriate traffic management procedures, and transmit instructions for implementing traffic management procedures. Management system 101 also typically includes storage resources 112 for storing information relating to historic traffic trends as data by which future traffic behavior can be predicted.
[0006] The majority of vehicles on the roadways are commuter vehicles. The most important information required to efficiently manage traffic flow is information concerning the present congestion of commuter vehicles at various locations on the roadway and information concerning predicted future congestion at various locations. Present congestion is provided primarily by traffic sensors 106. Future congestion is largely predicted based on present congestion, historical trends, etc. Such predictions are inherently uncertain. The effectiveness of traffic management systems 101 would be increased by the availability of reliable predictions of the future location of commuter vehicles on the roadway.
BRIEF DESCRIPTION OF THE DRAWINGS
[ooo7] Embodiments of the inventive aspects of this disclosure will be best understood with reference to the following detailed description, when read in conjunction with the accompanying drawings, in which:
[0008] Fig. 1 illustrates a prior art traffic management system.
[0009] Fig. 2 illustrates a traffic management system capable of using route information provided by on board navigation systems to predict traffic flow and manage traffic accordingly.
[ooio] Fig. 3 illustrates a planned route of a vehicle as transmitted to the traffic management system.
DETAILED DESCRIPTION
[ooii] The present disclosure provides a traffic management system that utilizes route information from commuter vehicles for computing and implementing traffic management procedures. Route information is provided to the traffic management system via on-board navigation systems installed in commuter vehicles. This route information, collected for a large number of vehicles on the roadways at a given time, is used to predict short-term future traffic behavior. Such route information is a more reliable indicator of short-term future traffic congestion when compared to predictions based on historical traffic trends, because route information expresses with more certainty the intended future position of a given vehicle. Thus, the predictive traffic management capabilities provided by the present system offer an advantage over existing systems because the present system can more reliably predict when and where traffic congestion will occur and implement proactive, rather than reactive, traffic management procedures to deal with congestion before it occurs.
[ooi2] Fig. 2 illustrates a traffic management system 200 that includes a traffic management center 21 1 configured to utilize route data provided by a plurality of onboard navigation systems 201 installed in a plurality of vehicles 202. On-board navigation systems, which are becoming increasingly common in commuter vehicles, are known in the art and will be discussed only briefly here. Such navigation systems 201 typically feature a display 203 for displaying graphical or text data, for example present position or driving directions; a processor 204; a global positioning system (GPS) receiver 205; a memory/storage 206; and a user input interface 207. Many systems also include additional real-time (RT) receiver(s) 208 for receiving real time information such as traffic reports, weather, etc.
[ooi3] A user of navigation system 201 can use the system to find and plan the most efficient route to a destination, in accordance with the user's preferences. The user may prefer to plan a route according to shortest distance, shortest time, or avoiding highways or tollways. Memory/storage 206 typically contains map data for a given zone of interest, for example, the user's city, state, and/or region. A user wanting directions to a particular destination inputs the address of the destination using input interface 207. The processor 204 determines one or more routes to the destination based on the map data, user preferences and user's present position supplied by GPS receiver 205. The processor may also consider real time traffic conditions provided by RT receiver 208 in formulating the route(s). F00141 According to one embodiment, the navigation systems calculate the estimated times of arrival (ETA) along predefined points of the route, herein referred to as intra- route ETA data. Predefined points of the route include, but are not limited to, intersections, highway exchanges, bridges, tunnels and mile markers on the highways. This information may or may not be of use to the user, but will be of use to the traffic management system in helping to predict traffic congestion information. Fig. 3 illustrates a planned route 300 of a vehicle as transmitted to the traffic management system. The planned arrival time at intersection A 310 is estimated to be 16:20 by the navigation system. The accurate real time clock provided by GPS assists in the determination of ETA, along with accurate navigation map data. The ETA at interchange 320 is 16:30. The ETA at highway mile markers 210 and 215 are shown as 16:35 and 16:50 respectively. The cumulative route and ETA information from the navigation systems 201 are transmitted to the traffic management center 211.
[oois] The vehicle navigation system 201 in one embodiment constantly monitors the progress of the vehicle 202 along the route and re-calculates the ETA information as the vehicle 202 progresses along the route. Modifications to the route ETA information are transmitted to the traffic management center 211 to provide an update to the calculated congestion information. The information can be provided with a vehicle identifier, so that the traffic management center 211 can distinguish new routes from updated routes. The driver can also deviate from a planned route, or may be re-routed due to real-time traffic information received at the navigation system 201. In either case, new route and intra-route ETA data can be recalculated by the vehicle navigation system 201 and transmitted to the traffic management center 211.
[ooi6] In another embodiment, the vehicle navigation system 201 provides the traffic management center 211 with navigation route information, as well as periodic GPS location data. Based on the periodic GPS location data from the vehicle 202, the traffic management system 211 predicts the intra-route ETA information for each vehicle 202 reporting this information. The intra-route ETA information may also be calculated using the same map and travel time information used by the in-vehicle navigation systems 201. fooi7i As navigation systems 201 become common in commuter vehicles 202, these systems 201 arc a rich source of data that can be utilized for predicting traffic congestion and implementing traffic management procedures to deal with congestion. An aspect of the present disclosure is to provide a traffic management system 200 configured to utilize data provided by navigation systems 201 installed in commuter vehicles 202 to predict traffic congestion and to implement traffic control procedures to deal with the predicted congestion.
[ooi8] Traffic management system 200 utilizes route information calculated by various navigation systems 201 to predict future traffic conditions on roadway system 210. Navigation systems 201 communicate with traffic management center 211 via communication link 212 to provide the current position, destination, and planned route of the vehicle 202. Communication link 212 can be any wireless link using any protocol known in the art, such as dedicated short range communication (DSRC), IEEE 802.11, etc. Communications link 212 can also comprise a cellular connection or a satellite connection. Receipt of the various communication links 212 from the various vehicles 202 is ultimately received by at least one receiver contained within or coupled to the traffic management center 211 (not shown). Normally, the center 211 is coupled to receive communications from a plurality of receivers, each covering a different region within a travel area.
[ooi9] Thus, for each of the commuter vehicles 202 on the roadway that transmit route data, the traffic management center 211 knows the present location of the commuter vehicles 202 and has an intra-route ETA information of the vehicles' future positions during the duration of their trip. The traffic management center 211 can use this information, along with the additional information such as sensor data, weather information, etc. described above, to calculate and implement traffic flow control functions. The traffic management center 211 can continually update the traffic flow control strategy periodically based on the real time location of vehicle 202, provided by the GPS receiver 205.
[0020] The traffic management center 211 is similar to the management center described in the Background section. The traffic management center 21 1 includes computing resources 213 and storage resources 214. Computing resources 213 are configured to predict traffic congestion based on route information received from navigation systems 201 installed in commuter vehicles 202 as well as information received from the various data sources described in the Background section above. The computing resources 213 are configured to predict traffic congestion and determine appropriate traffic control procedures to minimize the congestion. Methods of predicting traffic congestion and appropriate traffic control responses are known in the art. For example, neural network methods of controlling traffic are described in U.S. Patent Nos. 5,459,665 and 5,668,717, which are hereby incorporated by reference in their entirety. A fuzzy logic system and method for controlling traffic and traffic lights and distributing warning messages to motorists is described in U.S. Patent No. 6,317,058, which is hereby incorporated by reference in its entirety.
[oo2i] What is different compared to such prior traffic management systems comprises processing of the route information provided by the vehicles 202. A traditional system acquires, for example, the current coordinates of a plurality of vehicles, and uses statistics based on historical data to determine where congestion is likely to occur. For example, by using the current positions of the vehicles and knowing other factors relevant to traffic patterns (e.g., time of day, day of weeks, etc.), a traditional traffic management system will use predictive statistics to determine future likely traffic patterns, and ultimate a traffic management plan. By contrast, in the disclosed traffic management system 200, the future position of a given vehicle 202 (or at least some subset of vehicles in a given area) need not be predicted, but is known via the route information, intra-route ETA information, and the user's present position. Thus, the system 200 can reliably compute the future position of at least some of the vehicles in a given area. If the user does deviate from the route, then new route and intra-route ETA information is provided to the traffic management center 211. Thus, while statistical analysis can still play a part by the center 211 in determining a traffic management plan, such analysis is rendered more accurate by knowing with a high degree of confidence where at least some vehicles will be in the future. In short, receipt of route information increases the reliability of the determined traffic management plan.
[0022] According to one embodiment, the navigation systems 201 are configured to receive information from the traffic management center 211, i.e., information regarding predicted traffic congestion to route vehicles 202 around a congested area. Thus, the method can be an iterative process, whereby traffic management center 211 receives route information from a plurality of vehicles, computes traffic congestion based on such route information, and transmits the congestion prediction back to the plurality of vehicles, which update their routes to avoid the predicted congestion. Optimal traffic management is reached by the cooperative interaction between traffic management center 21 1 and the navigation systems 201 installed in the commuter vehicles 202.
[0023] The effectiveness of the method described above is rendered increasingly effective when (1) a sufficient percentage of vehicles 202 on the roadways being equipped with navigation systems 201, and (2) the users of those vehicles 202 input or request route information from the navigation system 201 so that such route information is provided to the traffic management center 21 1. As navigation systems 201 become increasingly common, issue (1) will cease to be a concern. Issue (2), however, may remain a concern because it is recognized that considerable commuter traffic occurs along familiar routes, in which case, a user would have no reason to request the navigation system 201 to calculate a route. If the user does not request or inform the navigation system 201 of a planned route, the route information is not provided to the traffic management center 211.
[0024] In such a case, a "smart navigation system," as described in co-owned patent application Serial No. , entitled "Predictive Navigation," (attorney docket
CM08115TC), the entire contents of which are incorporated herein by reference, could provide route information to traffic management center 211 without requiring significant user interaction. A "smart navigation system" is configured to learn and remember common destinations and maintain these destinations in a database. When a user begins traveling in a vehicle 202, the smart navigation system can guess the destination from among the stored destinations, based on parameters such as the vehicle's present position, the time of day, historical travel patterns, etc. For example, if a trip begins in the early evening on a weekday and the vehicle's current position is at an address that the navigation system 201 recognizes as the user's office, the navigation system 201 might guess that the destination is the user's home. The smart navigation system can query the user and confirm the destination. If the user confirms, the navigation system 201 calculates a route from the office to home, considering current roadway conditions, of which user might be unaware. Thus, even though the user is familiar with the route home, the smart navigation system might suggest an alternate route based on information about roadway conditions. In the context of the presently disclosed method, such "smart" route information is provided to the traffic management center 211 even for familiar routes wherein a user typically would not ask the navigation system 201 to determine a route.
[0025] It should be understood that the inventive concepts disclosed herein are capable of many modifications. To the extent such modifications fall within the scope of the appended claims and their equivalents, they are intended to be covered by this patent.

Claims

WHAT IS CLAIMED IS:
1. A process for determining a traffic management plan on a roadway, comprising:
receiving information from a plurality of navigation systems located in a plurality of vehicles on the roadway, wherein, for each navigation system and each vehicle the information is indicative of a present position and a planned route of the vehicle,
predicting traffic congestion based on the received information, and determining a traffic management plan based on the predicted traffic congestion.
2. The process of claim 1 , wherein the traffic management plan comprises optimizing traffic signal light patterns on the roadway.
3. The process of claim 1, wherein the traffic management plan includes displaying a message on a roadside dynamic message sign.
4. The process of claim 1 , wherein the information is received via a wireless protocol selected from dedicated short range communication (DSRC) and IEEE 802.11.
5. The process of claim 1, further comprising communicating the predicted traffic congestion to at least one of the plurality of navigation systems.
6. The process of claim 5, wherein, the at least one of the plurality of navigation systems determines a route based on the predicted traffic congestion.
7. The process of claim 1, wherein the received information from the navigation systems comprises intra-route estimated time of arrival (ETA) information.
8. The process of claim 7 wherein predicting the traffic congestion comprises aggregating the vehicle route information and intra-route ETA information from all the vehicles reporting route information.
9. A traffic control system comprising:
at least one wireless receiver configured to receive information from a plurality of navigation systems located in a plurality of vehicles on a roadway, wherein, for each navigation system and each vehicle the information is indicative of a present position and a planned route of the vehicle, and
a processor configured to predict traffic congestion based on the received information and determine a traffic management plan based on the predicted traffic congestion.
10. The system of claim 9, wherein the traffic management plan comprises optimizing traffic signal light patterns on the roadway.
11. The system of claim 9, wherein the traffic management plan includes displaying a message on a roadside dynamic message sign.
12. The system of claim 9, wherein the information is received via a wireless protocol selected from dedicated short range communication (DSRC), and IEEE 802.11.
13. The system of claim 9, further comprising:
a transmitter for communicating the predicted traffic congestion to at least one of the plurality of navigation systems.
14. The system of claim 9, wherein the processor is further configured to estimate an intra-route estimated time of arrival for each navigation system.
15. The system of claim 9, wherein the processor is configured to aggregate the data for each of the plurality of navigation systems.
16. A navigation system for use in a vehicle, comprising:
a global positioning receiver configured to determine a present position of the vehicle;
a processor configured to determine a route between the present position of the vehicle and a destination;
a wireless transmitter configured to transmit the determined route to a traffic management system; and
a wireless receiver configured to receive traffic congestion information from the traffic management system,
wherein the traffic congestion information is determined from information received from a plurality of navigation systems in each of a plurality of vehicles indicative of a present position and a planned route for each of the plurality of vehicles.
17. The system of claim 16, wherein the processor is further configured to update the determined route based on the traffic congestion information.
18. The system of claim 16, wherein the processor is further configured to determine an intra-route estimated time of arrival (ETA) for the vehicle.
19. The system of claim 18, wherein the processor is configured to initiate transmission of the determined route, present position, and/or intra-route ETA to the traffic management system.
PCT/US2006/060940 2005-12-08 2006-11-15 Navigation route information for traffic management WO2007067841A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06839900A EP1969574A2 (en) 2005-12-08 2006-11-15 Navigation route information for traffic management

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/299,150 US20070135990A1 (en) 2005-12-08 2005-12-08 Navigation route information for traffic management
US11/299,150 2005-12-08

Publications (2)

Publication Number Publication Date
WO2007067841A2 true WO2007067841A2 (en) 2007-06-14
WO2007067841A3 WO2007067841A3 (en) 2008-05-08

Family

ID=38123585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/060940 WO2007067841A2 (en) 2005-12-08 2006-11-15 Navigation route information for traffic management

Country Status (3)

Country Link
US (1) US20070135990A1 (en)
EP (1) EP1969574A2 (en)
WO (1) WO2007067841A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049167A1 (en) * 2013-10-02 2015-04-09 Continental Automotive Gmbh System for providing data for vehicles
US9691275B2 (en) 2015-11-06 2017-06-27 International Business Machines Corporation Adjusting vehicle timing in a transportation network
US10386196B2 (en) 2014-08-19 2019-08-20 Motorola Solutions, Inc. Method of and system for determining route speed of a mobile navigation unit movable along a route segment of a route having a plurality of intersections

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453065B2 (en) 2004-06-25 2013-05-28 Apple Inc. Preview and installation of user interface elements in a display environment
US8606516B2 (en) * 2004-11-30 2013-12-10 Dash Navigation, Inc. User interface system and method for a vehicle navigation device
US7831379B2 (en) * 2006-02-17 2010-11-09 Lear Corporation Roadside signage control from vehicle operating data
US7809360B2 (en) * 2006-05-24 2010-10-05 International Business Machines Corporation Optimization of calendar, itinerary, route plan, and PIM efficiencies according to assimilated wireless service availability conditions
US8229458B2 (en) 2007-04-08 2012-07-24 Enhanced Geographic Llc Systems and methods to determine the name of a location visited by a user of a wireless device
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US8175802B2 (en) 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US8385946B2 (en) 2007-06-28 2013-02-26 Apple Inc. Disfavored route progressions or locations
US8463238B2 (en) 2007-06-28 2013-06-11 Apple Inc. Mobile device base station
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US8311526B2 (en) 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US8127246B2 (en) 2007-10-01 2012-02-28 Apple Inc. Varying user interface element based on movement
US8977294B2 (en) 2007-10-10 2015-03-10 Apple Inc. Securely locating a device
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US8452529B2 (en) 2008-01-10 2013-05-28 Apple Inc. Adaptive navigation system for estimating travel times
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
AU2009262900A1 (en) * 2008-06-24 2009-12-30 Tele Atlas North America Inc. Methods and systems for dynamically adaptive road network hierarchy and routing
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
US8150611B2 (en) * 2008-09-30 2012-04-03 International Business Machines Corporation System and methods for providing predictive traffic information
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8478603B2 (en) * 2009-06-24 2013-07-02 International Business Machines Corporation Method and system for monitoring and reporting to an operator greenhouse gas emission from a vehicle
US8589073B2 (en) * 2009-08-10 2013-11-19 Telcordia Technologies, Inc. Distributed traffic navigation using vehicular communication
US10453011B1 (en) 2009-08-19 2019-10-22 Allstate Insurance Company Roadside assistance
US9070243B1 (en) 2009-08-19 2015-06-30 Allstate Insurance Company Assistance on the go
US9384491B1 (en) 2009-08-19 2016-07-05 Allstate Insurance Company Roadside assistance
US9659301B1 (en) 2009-08-19 2017-05-23 Allstate Insurance Company Roadside assistance
US9412130B2 (en) 2009-08-19 2016-08-09 Allstate Insurance Company Assistance on the go
US8812352B2 (en) * 2009-10-14 2014-08-19 International Business Machines Corporation Environmental stewardship based on driving behavior
US20110087430A1 (en) 2009-10-14 2011-04-14 International Business Machines Corporation Determining travel routes by using auction-based location preferences
US20110087524A1 (en) * 2009-10-14 2011-04-14 International Business Machines Corporation Determining travel routes by using fee-based location preferences
US20110112720A1 (en) * 2009-11-09 2011-05-12 Dale Keep Road Conditions Reporting
US8972171B1 (en) * 2010-04-09 2015-03-03 Google Inc. Collective vehicle traffic routing
US8717192B2 (en) 2010-10-08 2014-05-06 Navteq B.V. Method and system for using intersecting electronic horizons
KR20120036563A (en) * 2010-10-08 2012-04-18 현대자동차주식회사 Nevigation system for electric vehicle and service method of the same
KR20120062539A (en) 2010-12-06 2012-06-14 현대자동차주식회사 Vehicle information update system and method using wireless access point connected to telematics server
US8412445B2 (en) * 2011-02-18 2013-04-02 Honda Motor Co., Ltd Predictive routing system and method
US8880289B2 (en) 2011-03-17 2014-11-04 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle maneuver application interface
US8855900B2 (en) 2011-07-06 2014-10-07 International Business Machines Corporation System and method for self-optimizing traffic flow using shared vehicle information
US8855847B2 (en) * 2012-01-20 2014-10-07 Toyota Motor Engineering & Manufacturing North America, Inc. Intelligent navigation system
US9430941B2 (en) 2012-06-10 2016-08-30 Apple Inc. Harvesting traffic information from mobile devices
US20150141043A1 (en) 2013-08-23 2015-05-21 Cellepathy Ltd. Corrective navigation instructions
CA2877453A1 (en) 2012-06-21 2013-12-27 Cellepathy Ltd. Device context determination
US20150168174A1 (en) * 2012-06-21 2015-06-18 Cellepathy Ltd. Navigation instructions
US9638537B2 (en) 2012-06-21 2017-05-02 Cellepathy Inc. Interface selection in navigation guidance systems
US9053632B2 (en) * 2012-06-29 2015-06-09 International Business Machines Corporation Real-time traffic prediction and/or estimation using GPS data with low sampling rates
CN103632542A (en) * 2012-08-27 2014-03-12 国际商业机器公司 Traffic information processing method, device and corresponding equipment
KR101375219B1 (en) * 2012-09-07 2014-03-20 록앤올 주식회사 Communication Type Navigation System to Navigating by Detecting Changes of Traffic
US9317813B2 (en) 2013-03-15 2016-04-19 Apple Inc. Mobile device with predictive routing engine
US9631930B2 (en) 2013-03-15 2017-04-25 Apple Inc. Warning for frequently traveled trips based on traffic
US9200915B2 (en) 2013-06-08 2015-12-01 Apple Inc. Mapping application with several user interfaces
US20140365459A1 (en) 2013-06-08 2014-12-11 Apple Inc. Harvesting Addresses
US9273980B2 (en) * 2013-06-09 2016-03-01 Apple Inc. Direction list
EP3036924A4 (en) 2013-08-23 2017-04-12 Cellepathy Ltd. Mobile device context aware determinations
US9557184B2 (en) 2014-02-11 2017-01-31 Telenav, Inc. Electronic system with prediction mechanism and method of operation thereof
US9755850B2 (en) * 2014-05-01 2017-09-05 Elizabeth B. Stolfus Providing dynamic routing alternatives based on determined traffic conditions
US10880118B2 (en) 2014-05-01 2020-12-29 Elizabeth B. Stolfus Providing dynamic routing alternatives based on determined traffic conditions
US10169986B2 (en) * 2015-08-24 2019-01-01 International Business Machines Corporation Integration of personalized traffic information
US10217356B2 (en) * 2016-09-22 2019-02-26 Global Traffic Technologies, Llc Timing submission of transit signal priority requests to reduce transit vehicle stop times
US20180188057A1 (en) * 2017-01-03 2018-07-05 International Business Machines Corporation Detecting and simulating a moving event for an affected vehicle
US10252717B2 (en) 2017-01-10 2019-04-09 Toyota Jidosha Kabushiki Kaisha Vehicular mitigation system based on wireless vehicle data
US11748817B2 (en) 2018-03-27 2023-09-05 Allstate Insurance Company Systems and methods for generating an assessment of safety parameters using sensors and sensor data
US11348170B2 (en) 2018-03-27 2022-05-31 Allstate Insurance Company Systems and methods for identifying and transferring digital assets
US11688280B2 (en) * 2019-04-18 2023-06-27 Kyndryl, Inc. Dynamic traffic management system
US11195412B2 (en) * 2019-07-16 2021-12-07 Taiwo O Adetiloye Predicting short-term traffic flow congestion on urban motorway networks
US20220415168A1 (en) * 2019-10-01 2022-12-29 Rapid Flow Technologies, Inc. Methods and systems for adaptive traffic control
WO2022099643A1 (en) * 2020-11-13 2022-05-19 金序能 Method for alleviating traffic congestion
CN112289033B (en) * 2020-12-23 2021-08-03 智道网联科技(北京)有限公司 Real-time traffic information processing method and device
CN116453360A (en) * 2023-05-08 2023-07-18 广东骏思信息科技有限公司 Traffic management system based on big data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030014181A1 (en) * 2001-07-10 2003-01-16 David Myr Traffic information gathering via cellular phone networks for intelligent transportation systems
US20050096842A1 (en) * 2003-11-05 2005-05-05 Eric Tashiro Traffic routing method and apparatus for navigation system to predict travel time and departure time

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289183A (en) * 1992-06-19 1994-02-22 At/Comm Incorporated Traffic monitoring and management method and apparatus
US5668717A (en) * 1993-06-04 1997-09-16 The Johns Hopkins University Method and apparatus for model-free optimal signal timing for system-wide traffic control
JP3414843B2 (en) * 1993-06-22 2003-06-09 三菱電機株式会社 Transportation control device
CA2158500C (en) * 1994-11-04 1999-03-30 Ender Ayanoglu Navigation system for an automotive vehicle
CZ294596B6 (en) * 1995-03-23 2005-02-16 T-Mobile Deutschland Gmbh Method and system for determining dynamic traffic information
US5928307A (en) * 1997-01-15 1999-07-27 Visteon Technologies, Llc Method and apparatus for determining an alternate route in a vehicle navigation system
FR2763726B1 (en) * 1997-05-20 2003-01-17 Bouchaib Hoummadi METHOD FOR MANAGING ROAD TRAFFIC BY VIDEO CAMERA
US6427113B1 (en) * 1998-08-05 2002-07-30 Intel Corporation Method for controlling traffic
JP3488104B2 (en) * 1998-11-18 2004-01-19 富士通株式会社 Mobile object characteristic extraction device, characteristic extraction method, and program recording medium therefor
US6317058B1 (en) * 1999-09-15 2001-11-13 Jerome H. Lemelson Intelligent traffic control and warning system and method
US6256577B1 (en) * 1999-09-17 2001-07-03 Intel Corporation Using predictive traffic modeling
US6587781B2 (en) * 2000-08-28 2003-07-01 Estimotion, Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
DE10044889A1 (en) * 2000-09-12 2002-04-04 Harman Becker Automotive Sys Method for determining a route of a vehicle
US6591188B1 (en) * 2000-11-01 2003-07-08 Navigation Technologies Corp. Method, system and article of manufacture for identifying regularly traveled routes
EP1209643A1 (en) * 2000-11-23 2002-05-29 Telefonaktiebolaget L M Ericsson (Publ) Traffic management system based on packet switching technology
US6463382B1 (en) * 2001-02-26 2002-10-08 Motorola, Inc. Method of optimizing traffic content
US6526349B2 (en) * 2001-04-23 2003-02-25 Motorola, Inc. Method of compiling navigation route content
EP1380813B1 (en) * 2001-08-06 2012-05-02 Panasonic Corporation Information providing method and information providing device
US6983204B2 (en) * 2002-01-09 2006-01-03 International Business Machines Corporation Mapping travel routes
US7421334B2 (en) * 2003-04-07 2008-09-02 Zoom Information Systems Centralized facility and intelligent on-board vehicle platform for collecting, analyzing and distributing information relating to transportation infrastructure and conditions
JP2005031068A (en) * 2003-06-20 2005-02-03 Matsushita Electric Ind Co Ltd Location guide device
US6845322B1 (en) * 2003-07-15 2005-01-18 Televigation, Inc. Method and system for distributed navigation
US7463972B2 (en) * 2003-09-26 2008-12-09 Aisin Aw Co., Ltd. Navigation apparatus and method
KR100522999B1 (en) * 2003-10-16 2005-10-19 현대모비스 주식회사 Method for searching car navigation path by using log file
US7233861B2 (en) * 2003-12-08 2007-06-19 General Motors Corporation Prediction of vehicle operator destinations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030014181A1 (en) * 2001-07-10 2003-01-16 David Myr Traffic information gathering via cellular phone networks for intelligent transportation systems
US20050096842A1 (en) * 2003-11-05 2005-05-05 Eric Tashiro Traffic routing method and apparatus for navigation system to predict travel time and departure time

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049167A1 (en) * 2013-10-02 2015-04-09 Continental Automotive Gmbh System for providing data for vehicles
CN105593642A (en) * 2013-10-02 2016-05-18 大陆汽车有限责任公司 System for providing data for vehicles
US10068475B2 (en) 2013-10-02 2018-09-04 Continental Automotive Gmbh System for providing data for vehicles
US10386196B2 (en) 2014-08-19 2019-08-20 Motorola Solutions, Inc. Method of and system for determining route speed of a mobile navigation unit movable along a route segment of a route having a plurality of intersections
US9691275B2 (en) 2015-11-06 2017-06-27 International Business Machines Corporation Adjusting vehicle timing in a transportation network
US10083609B2 (en) 2015-11-06 2018-09-25 International Business Machines Corporation Adjusting vehicle timing in a transportation network
US10733888B2 (en) 2015-11-06 2020-08-04 Quartz Auto Technologies Llc Adjusting vehicle timing in a transportation network

Also Published As

Publication number Publication date
US20070135990A1 (en) 2007-06-14
WO2007067841A3 (en) 2008-05-08
EP1969574A2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US20070135990A1 (en) Navigation route information for traffic management
US20130162449A1 (en) Traffic Routing Using Intelligent Traffic Signals, GPS and Mobile Data Devices
US9972208B2 (en) System and method for realtime community information exchange
US7447588B1 (en) Method and system for partitioning a continental roadway network for an intelligent vehicle highway system
JP4502386B2 (en) Judgment method of road traffic situation
US20110040621A1 (en) Traffic Routing Display System
US8064931B2 (en) GPS-based traffic monitoring system
US20120139754A1 (en) Driver Safety Enhancement Using Intelligent Traffic Signals and GPS
US20110037618A1 (en) Driver Safety System Using Machine Learning
Hounsell et al. Review of urban traffic management and the impacts of new vehicle technologies
CN114255606B (en) Auxiliary driving reminding method, auxiliary driving reminding device and auxiliary driving reminding device for map and map
US11594127B1 (en) Systems, methods, and devices for communication between traffic controller systems and mobile transmitters and receivers
US8244451B2 (en) Traffic information providing system, apparatus, method, and in-vehicle information apparatus
US20030060968A1 (en) Method and system for allowing vehicles to negotiate roles and permission sets in a hierarchical traffic control system
WO2013109472A1 (en) Driver safety enhancement using intelligent traffic signals and gps
JP4706469B2 (en) Navigation system
WO2022193995A1 (en) Map updating method, and map-based driving decision-making method and apparatus
JP7411803B2 (en) Internet-based dynamic information transmission method and device for vehicles
KR20020043264A (en) Interactive Road Information System
JPH0922497A (en) Method and device for traffic individual guidance
JP5464035B2 (en) Car navigation system
US9008964B2 (en) Device for road and urban mobility and for solving the problem of traffic congestion
JP2005266926A (en) Traffic information collecting system
CN108470455B (en) Bus priority system and control method
JP4295180B2 (en) Navigation system, route search server and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006839900

Country of ref document: EP