WO2007003759A1 - Method of producing a fuel cell bipolar plate and bipolar plate thus produced - Google Patents

Method of producing a fuel cell bipolar plate and bipolar plate thus produced Download PDF

Info

Publication number
WO2007003759A1
WO2007003759A1 PCT/FR2006/001499 FR2006001499W WO2007003759A1 WO 2007003759 A1 WO2007003759 A1 WO 2007003759A1 FR 2006001499 W FR2006001499 W FR 2006001499W WO 2007003759 A1 WO2007003759 A1 WO 2007003759A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
membrane
bipolar plate
fuel cell
fibers
Prior art date
Application number
PCT/FR2006/001499
Other languages
French (fr)
Inventor
Nicholas Lee
Francis Roy
Jean-Philippe Poirot-Crouvezier
Original Assignee
Peugeot Citroen Automobiles S.A.
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles S.A., Commissariat A L'energie Atomique filed Critical Peugeot Citroen Automobiles S.A.
Publication of WO2007003759A1 publication Critical patent/WO2007003759A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to the manufacture of a bipolar plate for ion exchange membrane type fuel cell, as well as to the bipolar plate obtained by this method.
  • Ion-exchange membrane type fuel cells are electrochemical power generation devices which comprise reacting a fuel gas such as hydrogen with an oxidizing gas such as oxygen or carbon dioxide. air through an ion exchange membrane called membrane electrode assembly. Electricity generation is achieved by a reaction between the oxidizing gas and the fuel gas that produces water and electricity.
  • a fuel cell consists of an alternating stack of membrane electrode assemblies and bipolar plates, the bipolar plates being plates intended to ensure the supply of fuel gas or oxidant along the membrane electrode assemblies and to collect the electric current. .
  • a bipolar plate is disposed between two membrane electrode assemblies, and this bipolar plate has two faces: a first face intended to ensure the circulation of the fuel gas along an anode face of a first electrode membrane assembly, and a second face intended to to ensure the circulation of the oxidizing gas along the cathodic face of the second electrode membrane assembly, the two anodic and cathodic faces of the bipolar plate being separated by a sealed wall intended to prevent contact between the fuel gas and the oxidizing gas through the bipolar plate.
  • This watertight wall must, however, let the electricity pass and it may possibly be traversed by a stream of a coolant for cooling the assembly.
  • Such bipolar plates are made for example from machined graphite plates, or from metal plates cut and stamped, contiguous and welded together.
  • the object of the present invention is to provide a means for manufacturing a bipolar ion exchange membrane type fuel cell plate which can be continuously manufactured much cheaper than known methods and which leads to bipolar plates which are There are not the drawbacks related to the rigidity of known bipolar plates of the prior art, namely the difficulties of ensuring tightness in contact between two adjacent bipolar plates.
  • the subject of the invention is a method for manufacturing a bipolar plate for an ion exchange membrane type fuel cell, characterized in that:
  • a polymer membrane comprising at least two polymer layers having different melting temperatures, on a rigid support comprising a plurality of holes,
  • a layer of an electrically conductive fibrous material is provided on the polymer membrane
  • fibers of the fibrous material are passed through the polymer membrane, and
  • heating is carried out at an intermediate temperature between the two melting temperatures of the polymers, so as to ensure the tightness of the polymer membrane at the points through which the fibers pass by filling the corresponding interstices with polymer having the lowest melting temperature; .
  • the polymer membrane has a plurality of polymer layers, and incorporates channels for the circulation of a cooling fluid.
  • the invention also relates to a bipolar plate for ion exchange membrane type fuel cell comprising two layers of electrically conductive porous material separated by a sealed membrane traversed by electrically conductive fibers.
  • the waterproof membrane consists of at least one layer made of a first polymer, and the sealing at the points at which the impermeable membrane is traversed by fibers is provided by a seal made of a second polymer whose melting point is less than that of the first polymer.
  • the waterproof membrane consists of a plurality of polymer layers, and may incorporate a cooling fluid circulation network.
  • FIG. 1 represents a method of manufacturing a bipolar plate element for a fuel cell
  • FIG. 2A schematically represents an enlarged view of electrically conductive fibers passing through a sealed membrane in a bipolar fuel cell plate at an intermediate stage of manufacture
  • FIG. 2B represents a schematic enlarged view of the electrically conductive fibers passing through a sealed membrane of a bipolar plate of a fuel cell at the final stage of manufacture
  • FIG. 3 is a schematic sectional view of a bipolar plate for fuel cell obtained by the method of Figure 1.
  • the bipolar plate for fuel cell according to the invention is a bipolar plate consisting of two layers of fibrous material 13, 14 separated by a sealed membrane 3 traversed by electrically conductive fibers 10.
  • This bipolar plate is manufactured by a method of needling used for example for making nonwoven fabrics or for making carpets. According to this method, there is disposed on a support plate 1 pierced with a plurality of holes 2 a waterproof polymer membrane 3 consisting of a first layer 4 of a first polymer having a first melting temperature Ti and a second layer 5 of a second polymer having a second melting temperature T 2 , the melting temperature T 2 of the second polymer being substantially less than the melting temperature of the first polymer Ti.
  • this waterproof membrane 3 there is a bed 6 of fibrous material consisting for example of carbon fibers or metal fibers or other electrically conductive fibers.
  • a plate 7 having a plurality of needles 8 arranged opposite the holes 2 of the support plate 1.
  • holes are drilled in the polymer membrane 3 and fibers which originate from the fiber layer 6 are drawn through these holes.
  • a polymer membrane 3 having holes 9 in which Fibers 10 are passed through.
  • the holes are generally wider than the fibers, so that in these areas where the fiber passes through the sealed membrane, the watertightness is not ensured.
  • the liquefied polymer layer which is arranged at the top, under the effect of gravitation and by surface tension effects, is attracted inside the holes 9 which it fills to form plugs 11 which, after solidification, ensure perfect sealing of the membrane 3 at the passage points of the electrically conductive fibers 10.
  • a bipolar plate is thus obtained as shown diagrammatically in FIG. 1 and consists of two layers of fibrous material 13 and 14 separated by a sealed membrane 3 traversed by electrically conductive fibers 10 which are such that Through the penetration of the sealed polymer membrane 3 by the electrically conductive fibers 10, the sealing is ensured by a plug made of a polymer having a melting point which is lower than the melting point of the polymer of which the waterproof membrane 3.
  • the bipolar plate 12 that is obtained has the advantage of being flexible and therefore to be able to fit perfectly in stacks without causing any sealing problem, especially in the peripheral joints. It also has the advantage of being able to be manufactured using a continuous process. In fact, by the method just described, it is possible to manufacture entire plies of bipolar plates in which it is sufficient after cutting elements corresponding to the size of the bipolar plates that it is desired to incorporate into a battery. particular fuel.
  • the bipolar plate as just described is a bipolar plate in which the polymer membrane consists of two polymer layers having different melting temperatures.
  • sealed membranes made of more than three or more polymer layers can be used provided only two polymers, a high melting polymer and a lower melting polymer are used.
  • the waterproof membrane 3 comprises a plurality of layers, it is possible to insert inside a circulation network of a cooling fluid consisting for example of polymer material tubes.

Abstract

The invention relates to a method of producing a bipolar plate for a fuel cell of the type that comprises an ion exchange membrane. The inventive method comprises the following steps consisting in: disposing a polymer membrane (3) comprising at least two polymer layers (4, 5) having different melting points on a rigid support which is equipped with a plurality of holes; disposing a layer (6) of an electrically-conductive fibrous material on the aforementioned polymer membrane; passing fibres (10) of the fibrous material through the polymer membrane using a needling method; and heating the assembly to an intermediate temperature between the two polymer melting points, such as to seal the polymer membrane (3) at the points through which the fibres pass, by filing the corresponding voids (9) with the polymer having the lower melting point.

Description

Procédé de fabrication d'une plaque bipolaire pour pile à combustible et plaque bipolaire obtenue Process for manufacturing a bipolar plate for fuel cell and bipolar plate obtained
La présente invention est relative à la fabrication d'une plaque bipolaire pour pile à combustible du type à membrane échangeuse d'ions, ainsi qu'à la plaque bipolaire obtenue par ce procédé.The present invention relates to the manufacture of a bipolar plate for ion exchange membrane type fuel cell, as well as to the bipolar plate obtained by this method.
Les piles à combustible du type à membrane échangeuse d'ions sont des dispositifs de production d'électricité par un processus électrochimique qui consiste à faire réagir un gaz carburant tel que de l'hydrogène avec un gaz comburant tel que de l'oxygène ou de l'air à travers une membrane échangeuse d'ions appelée assemblage membrane électrode. La production d'électricité est obtenue par une réaction entre le gaz comburant et le gaz carburant qui produit de l'eau et de l'électricité. Une telle pile à combustible est constituée d'un empilement alterné d'ensembles membrane électrode et plaques bipolaires, les plaques bipolaires étant des plaques destinées à assurer l'approvisionnement en gaz carburant ou comburant le long des assemblages membrane électrode et à collecter le courant électrique. Une plaque bipolaire est disposée entre deux assemblages membrane électrode, et cette plaque bipolaire comporte deux faces : une première face destinée à assurer la circulation du gaz carburant le long d'une face anodique d'un premier assemblage membrane électrode, et une deuxième face destinée à assurer la circulation du gaz comburant le long de la face cathodique du deuxième assemblage membrane électrode, les deux faces anodique et cathodique de la plaque bipolaire étant séparées par une paroi étanche destinée à empêcher le contact entre le gaz carburant et le gaz comburant à travers la plaque bipolaire. Cette paroi étanche doit cependant laisser passer l'électricité et elle peut être éventuellement parcourue par un courant d'un fluide caloporteur destiné à assurer le refroidissement de l'ensemble. De telles plaques bipolaires sont fabriquées par exemple à partir de plaques de graphite usinées, ou à partir de plaques métalliques découpées et embouties, accolées et soudées entre elles. Ces procédés classiques de fabrication conduisent à des plaques bipolaires qui sont très rigides et qui doivent être fabriquées par un procédé discontinu relativement coûteux. Le but de la présente invention est de proposer un moyen pour fabriquer une plaque bipolaire pour pile à combustible du type à membrane échangeuse d'ions qui puisse être fabriquée en continu beaucoup plus économique que les procédés connus et qui conduise à des plaques bipolaires qui n'aient pas les inconvénients liés à la rigidité des plaques bipolaires connues de l'art antérieur, à savoir les difficultés qu'il y a à assurer des étan- chéités au contact entre deux plaques bipolaires adjacentes.Ion-exchange membrane type fuel cells are electrochemical power generation devices which comprise reacting a fuel gas such as hydrogen with an oxidizing gas such as oxygen or carbon dioxide. air through an ion exchange membrane called membrane electrode assembly. Electricity generation is achieved by a reaction between the oxidizing gas and the fuel gas that produces water and electricity. Such a fuel cell consists of an alternating stack of membrane electrode assemblies and bipolar plates, the bipolar plates being plates intended to ensure the supply of fuel gas or oxidant along the membrane electrode assemblies and to collect the electric current. . A bipolar plate is disposed between two membrane electrode assemblies, and this bipolar plate has two faces: a first face intended to ensure the circulation of the fuel gas along an anode face of a first electrode membrane assembly, and a second face intended to to ensure the circulation of the oxidizing gas along the cathodic face of the second electrode membrane assembly, the two anodic and cathodic faces of the bipolar plate being separated by a sealed wall intended to prevent contact between the fuel gas and the oxidizing gas through the bipolar plate. This watertight wall must, however, let the electricity pass and it may possibly be traversed by a stream of a coolant for cooling the assembly. Such bipolar plates are made for example from machined graphite plates, or from metal plates cut and stamped, contiguous and welded together. These conventional methods of manufacture lead to bipolar plates which are very rigid and which must be manufactured by a relatively expensive batch process. The object of the present invention is to provide a means for manufacturing a bipolar ion exchange membrane type fuel cell plate which can be continuously manufactured much cheaper than known methods and which leads to bipolar plates which are There are not the drawbacks related to the rigidity of known bipolar plates of the prior art, namely the difficulties of ensuring tightness in contact between two adjacent bipolar plates.
A cet effet, l'invention a pour objet un procédé de fabrication d'une plaque bipolaire pour pile à combustible du type à membrane échangeuse d'ions, caractérisé en ce que :To this end, the subject of the invention is a method for manufacturing a bipolar plate for an ion exchange membrane type fuel cell, characterized in that:
- on dispose une membrane polymère comprenant au moins deux couches en polymère ayant des températures de fusion différentes, sur un support rigide comportant une pluralité de trous,a polymer membrane is provided comprising at least two polymer layers having different melting temperatures, on a rigid support comprising a plurality of holes,
- on dispose sur la membrane polymère une couche d'un matériau fi- breux conducteur d'électricité,a layer of an electrically conductive fibrous material is provided on the polymer membrane,
- par un procédé d'aiguilletage, on fait passer des fibres du matériau fibreux à travers la membrane polymère, etby a needling process, fibers of the fibrous material are passed through the polymer membrane, and
- on effectue un chauffage à une température intermédiaire entre les deux températures de fusion des polymères, de façon à assurer l'étanchéité de la membrane polymère aux points traversés par les fibres en remplissant les interstices correspondants par du polymère ayant la plus faible température de fusion.heating is carried out at an intermediate temperature between the two melting temperatures of the polymers, so as to ensure the tightness of the polymer membrane at the points through which the fibers pass by filling the corresponding interstices with polymer having the lowest melting temperature; .
De préférence, la membrane polymère comporte une pluralité de couches en polymère, et elle incorpore des canaux pour la circulation d'un fluide de refroidissement.Preferably, the polymer membrane has a plurality of polymer layers, and incorporates channels for the circulation of a cooling fluid.
L'invention concerne également une plaque bipolaire pour pile à combustible de type à membrane échangeuse d'ions constituée de deux couches de matériau poreux conducteur d'électricité séparées par une membrane étanche traversée par des fibres conductrices d'électricité. La mem- brane étanche est constituée d'au moins une couche en un premier polymère, et l'étanchéité aux points auxquels la membrane étanche est traversée par des fibres est assurée par un joint en un deuxième polymère dont la température de fusion est inférieure à celle du premier polymère. De préférence, la membrane étanche est constituée d'une pluralité de couches en polymère, et peut incorporer un réseau de circulation de fluide de refroidissement.The invention also relates to a bipolar plate for ion exchange membrane type fuel cell comprising two layers of electrically conductive porous material separated by a sealed membrane traversed by electrically conductive fibers. The waterproof membrane consists of at least one layer made of a first polymer, and the sealing at the points at which the impermeable membrane is traversed by fibers is provided by a seal made of a second polymer whose melting point is less than that of the first polymer. Preferably, the waterproof membrane consists of a plurality of polymer layers, and may incorporate a cooling fluid circulation network.
L'invention va maintenant être décrite de façon plus précise mais non limitative en regard des figures annexées dans lesquelles :The invention will now be described in a more precise but nonlimiting manner with reference to the appended figures in which:
- la figure 1 représente un procédé de fabrication d'un élément de plaque bipolaire pour pile à combustible,FIG. 1 represents a method of manufacturing a bipolar plate element for a fuel cell,
- la figure 2A représente de façon schématique une vue agrandie de fibres conductrices d'électricité traversant une membrane étanche dans une plaque bipolaire de pile à combustible à un stade intermédiaire de la fabrication,FIG. 2A schematically represents an enlarged view of electrically conductive fibers passing through a sealed membrane in a bipolar fuel cell plate at an intermediate stage of manufacture,
- la figure 2B représente une vue agrandie schématique des fibres conductrices d'électricité traversant une membrane étanche d'une plaque bipolaire d'une pile à combustible au stade final de la fabrication, - la figure 3 est une vue en coupe schématique d'une plaque bipolaire pour pile à combustible obtenue par le procédé de la figure 1.FIG. 2B represents a schematic enlarged view of the electrically conductive fibers passing through a sealed membrane of a bipolar plate of a fuel cell at the final stage of manufacture, FIG. 3 is a schematic sectional view of a bipolar plate for fuel cell obtained by the method of Figure 1.
La plaque bipolaire pour pile à combustible selon l'invention est une plaque bipolaire constituée de deux couches de matériau fibreux 13, 14 séparées par une membrane étanche 3 traversée par des fibres conductrices d'électricité 10. Cette plaque bipolaire est fabriquée par un procédé d'aiguil- letage utilisé par exemple pour fabriquer des tissus non tissés ou pour fabriquer des moquettes. Selon ce procédé, on dispose sur une plaque support 1 percée d'une pluralité de trous 2 une membrane étanche en polymère 3 constituée d'une première couche 4 d'un premier polymère ayant une pre- mière température de fusion Ti et d'une deuxième couche 5 d'un deuxième polymère ayant une deuxième température de fusion T2, la température de fusion T2 du deuxième polymère étant sensiblement inférieure à la température de fusion du premier polymère Ti. Sur cette membrane étanche 3 on dispose un lit 6 de matériau fibreux constitué par exemple de fibres de car- bone ou bien de fibres métalliques ou d'autres fibres conductrices d'électricité. Au-dessus de cet empilage, on dispose un plateau 7 comportant une pluralité d'aiguilles 8 disposées en regard des trous 2 de Ia plaque support 1. Par un mouvement alternatif du haut vers le bas du plateau porte-aiguilles 7, on perce des trous dans la membrane polymère 3 et on entraîne à travers ces trous des fibres qui proviennent de la couche de fibres 6. On obtient ainsi, comme représenté en agrandi à la figure 2A, une membrane polymère 3 comportant des trous 9 dans lesquels passent des fibres 10. On constate qu'à ce stade les trous sont généralement plus larges que les fibres si bien que, dans ces zones de passage de la fibre à travers la membrane étanche, l'étanchéité n'est pas assurée. Afin d'assurer l'étanchéité aux points de passage des fibres à travers la membrane polymère 3, on soumet l'ensemble obtenu à un traitement de recuit à un chauffage à une température T com- prise entre la température de fusion T-\ de la première couche de polymère et la température de fusion T2 de la deuxième couche de polymère. Sous l'effet de ce réchauffage à une température comprise entre les deux températures de fusion, la couche polymère 4 dont la température de fusion est la plus élevée reste solide, tandis que la couche de polymère 5 dont la tempé- rature de fusion est la plus basse et inférieure à la température de réchauffage, se liquéfie. En se liquéfiant, la couche polymère liquéfiée qui est disposée à la partie supérieure, sous l'effet de la gravitation et par des effets de tension superficielle, est attirée à l'intérieur des trous 9 qu'elle vient combler pour former des bouchons 11 qui, après solidification, assurent une parfaite étanchéité de la membrane 3 aux points de passage des fibres conductrices d'électricité 10.The bipolar plate for fuel cell according to the invention is a bipolar plate consisting of two layers of fibrous material 13, 14 separated by a sealed membrane 3 traversed by electrically conductive fibers 10. This bipolar plate is manufactured by a method of needling used for example for making nonwoven fabrics or for making carpets. According to this method, there is disposed on a support plate 1 pierced with a plurality of holes 2 a waterproof polymer membrane 3 consisting of a first layer 4 of a first polymer having a first melting temperature Ti and a second layer 5 of a second polymer having a second melting temperature T 2 , the melting temperature T 2 of the second polymer being substantially less than the melting temperature of the first polymer Ti. On this waterproof membrane 3 there is a bed 6 of fibrous material consisting for example of carbon fibers or metal fibers or other electrically conductive fibers. Above this stack, there is a plate 7 having a plurality of needles 8 arranged opposite the holes 2 of the support plate 1. By a reciprocating movement from the top to the bottom of the needle plate 7, holes are drilled in the polymer membrane 3 and fibers which originate from the fiber layer 6 are drawn through these holes. Thus, as shown in enlarged view in FIG. 2A, a polymer membrane 3 having holes 9 in which Fibers 10 are passed through. At this stage, the holes are generally wider than the fibers, so that in these areas where the fiber passes through the sealed membrane, the watertightness is not ensured. To ensure the tightness at the crossing points of the fibers through the polymer membrane 3 is subjected assembly obtained to an annealing treatment at a heating temperature T at a com- engagement between the melting temperature T \ of the first polymer layer and the melting temperature T 2 of the second polymer layer. Under the effect of this reheating at a temperature between the two melting temperatures, the polymer layer 4 whose highest melting temperature remains solid, while the polymer layer 5 whose melting temperature is the highest. lower and lower than the reheating temperature, liquefies. By liquefying, the liquefied polymer layer which is arranged at the top, under the effect of gravitation and by surface tension effects, is attracted inside the holes 9 which it fills to form plugs 11 which, after solidification, ensure perfect sealing of the membrane 3 at the passage points of the electrically conductive fibers 10.
On obtient ainsi une plaque bipolaire telle que représentée en coupe schématiquement à la figure 1 et qui est constituée de deux couches de matériau fibreux 13 et 14 séparées par une membrane étanche 3 traversée par des fibres conductrices d'électricité 10 qui sont telles qu'aux points de traversée 15 de la membrane polymère étanche 3 par les fibres conductrices d'électricité 10, l'étanchéité est assurée par un bouchon constitué d'un polymère ayant une température de fusion plus faible que la température de fusion du polymère dont est constituée la membrane étanche 3. La plaque bipolaire 12 qu'on obtient ainsi a l'avantage d'être souple et donc de pouvoir s'adapter parfaitement dans des empilements sans poser de problème d'étanchéité notamment dans les joints périphériques. Elle a l'avantage également de pouvoir être fabriquée à l'aide d'un procédé continu. En effet, par le procédé qui vient d'être décrit, on peut fabriquer des nappes entières de plaques bipolaires dans lesquelles il suffit après de découper des éléments correspondant à la taille des plaques bipo- laires que l'on veut incorporer dans une pile à combustible particulière.A bipolar plate is thus obtained as shown diagrammatically in FIG. 1 and consists of two layers of fibrous material 13 and 14 separated by a sealed membrane 3 traversed by electrically conductive fibers 10 which are such that Through the penetration of the sealed polymer membrane 3 by the electrically conductive fibers 10, the sealing is ensured by a plug made of a polymer having a melting point which is lower than the melting point of the polymer of which the waterproof membrane 3. The bipolar plate 12 that is obtained has the advantage of being flexible and therefore to be able to fit perfectly in stacks without causing any sealing problem, especially in the peripheral joints. It also has the advantage of being able to be manufactured using a continuous process. In fact, by the method just described, it is possible to manufacture entire plies of bipolar plates in which it is sufficient after cutting elements corresponding to the size of the bipolar plates that it is desired to incorporate into a battery. particular fuel.
La plaque bipolaire telle qu'on vient de la décrire est une plaque bipolaire dans laquelle la membrane polymère est constituée de deux couches de polymère ayant des températures de fusion différentes. Mais on peut utiliser des membranes étanches constituées de plus de trois couches de po- lymère voire plus, pourvu simplement que soient utilisés deux polymères, un polymère à température de fusion élevée et un polymère à température de fusion plus basse.The bipolar plate as just described is a bipolar plate in which the polymer membrane consists of two polymer layers having different melting temperatures. However, sealed membranes made of more than three or more polymer layers can be used provided only two polymers, a high melting polymer and a lower melting polymer are used.
En outre, lorsque la membrane étanche 3 comporte une pluralité de couches, il est possible d'insérer à l'intérieur un réseau de circulation d'un fluide de refroidissement constitué par exemple de tubes en matériau polymère.In addition, when the waterproof membrane 3 comprises a plurality of layers, it is possible to insert inside a circulation network of a cooling fluid consisting for example of polymer material tubes.
On notera que dans le procédé tel qu'il vient d'être décrit, on a décrit simplement la fabrication d'une première couche de la plaque bipolaire. L'homme du métier comprendra que, une fois que l'on a réalisé l'opération d'aiguilletage pour fixer la première couche de polymère sur la membrane étanche et faire traverser cette membrane étanche par des fibres conductrices, on peut disposer une deuxième couche de matériau fibreux sur la deuxième face de la demi-plaque bipolaire obtenue à la suite de l'opération d'aiguilletage et on peut éventuellement effectuer une deuxième opération d'aiguilletage en retournant la feuille obtenue. It will be appreciated that in the method as just described, the manufacture of a first layer of the bipolar plate has been described simply. Those skilled in the art will understand that, once the needling operation has been carried out to fix the first polymer layer on the impermeable membrane and make this conductive membrane pass through this impermeable membrane, a second layer can be arranged. of fibrous material on the second side of the bipolar half-plate obtained following the needling operation and it may optionally perform a second needling operation by returning the sheet obtained.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une plaque bipolaire pour pile à combustible du type à membrane échangeuse d'ions, caractérisé en ce que :A method for manufacturing a bipolar plate for an ion exchange membrane type fuel cell, characterized in that:
- on dispose une membrane polymère (3) comprenant au moins deux couches (4, 5) en polymère ayant des températures de fusion différentes, sur un support rigide comportant une pluralité de trous,a polymer membrane (3) comprising at least two polymer layers (4, 5) having different melting temperatures is provided on a rigid support comprising a plurality of holes,
- on dispose sur la membrane polymère une couche (6) d'un matériau fibreux conducteur d'électricité,a layer (6) of an electrically conductive fibrous material is placed on the polymer membrane,
- par un procédé d'aiguilletage, on fait passer des fibres (10) du maté- riau fibreux à travers la membrane polymère, etby a needling process fibers (10) of the fibrous material are passed through the polymer membrane, and
- on effectue un chauffage à une température intermédiaire entre les deux températures de fusion des polymères, de façon à assurer l'étanchéité de la membrane polymère (3) aux points traversés par les fibres en remplissant les interstices (9) correspondants par du polymère ayant la plus faible température de fusion.heating is carried out at an intermediate temperature between the two melting temperatures of the polymers, so as to seal the polymer membrane (3) at the points through which the fibers pass by filling the corresponding interstices (9) with polymer having the lowest melting temperature.
2. Procédé selon la revendication 1 , caractérisé en ce que la membrane polymère comporte une pluralité de couches en polymère, et en ce qu'elle incorpore des canaux pour la circulation d'un fluide de refroidissement. 2. Method according to claim 1, characterized in that the polymer membrane comprises a plurality of polymer layers, and in that it incorporates channels for the circulation of a cooling fluid.
3. Plaque bipolaire pour pile à combustible de type à membrane échangeuse d'ions, caractérisée en ce qu'elle est constituée de deux couches (13, 14) de matériau poreux conducteur d'électricité, séparées par une membrane étanche (3) traversée par des fibres (10) conductrices d'électricité, en ce que la membrane étanche est constituée d'au moins une couche (4) en un premier polymère, et en ce que l'étanchéité aux points (15) auxquels la membrane étanche est traversée par des fibres, est assurée par un joint (11) en un deuxième polymère dont la température de fusion est inférieure à celle du premier polymère.Bipolar plate for an ion-exchange membrane-type fuel cell, characterized in that it consists of two layers (13, 14) of electrically conductive porous material, separated by a sealed membrane (3). by electrically conductive fibers (10), in that the impervious membrane consists of at least one layer (4) made of a first polymer, and that the imperviousness at the points (15) to which the impermeable membrane is traversed by fibers, is provided by a seal (11) of a second polymer whose melting temperature is lower than that of the first polymer.
4. Plaque bipolaire selon la revendication 3, caractérisée en ce que la membrane étanche est constituée d'une pluralité de couches en polymère, et en ce qu'elle incorpore un réseau de circulation de fluide de refroidissement. 4. bipolar plate according to claim 3, characterized in that the waterproof membrane consists of a plurality of polymer layers, and in that it incorporates a cooling fluid circulation network.
PCT/FR2006/001499 2005-06-29 2006-06-28 Method of producing a fuel cell bipolar plate and bipolar plate thus produced WO2007003759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0506669A FR2888048B1 (en) 2005-06-29 2005-06-29 METHOD FOR MANUFACTURING A BIPOLAR PLATE FOR A FUEL CELL AND A BIPOLAR PLATE OBTAINED
FR0506669 2005-06-29

Publications (1)

Publication Number Publication Date
WO2007003759A1 true WO2007003759A1 (en) 2007-01-11

Family

ID=35788678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001499 WO2007003759A1 (en) 2005-06-29 2006-06-28 Method of producing a fuel cell bipolar plate and bipolar plate thus produced

Country Status (2)

Country Link
FR (1) FR2888048B1 (en)
WO (1) WO2007003759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166538A1 (en) * 2018-03-02 2019-09-06 Robert Bosch Gmbh Bipolar plate for a fuel cell stack

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8455152B2 (en) * 2009-10-22 2013-06-04 Enerfuel, Inc. Integrated PEM fuel cell
FR3106505B1 (en) * 2020-01-23 2022-01-28 Faurecia Systemes Dechappement HYBRID PROTON EXCHANGE MEMBRANE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103413A (en) * 1998-05-21 2000-08-15 The Dow Chemical Company Bipolar plates for electrochemical cells
US6296746B1 (en) * 1999-07-01 2001-10-02 Squirrel Holdings Ltd. Bipolar electrode for electrochemical redox reactions
DE10219384A1 (en) * 2002-04-30 2003-11-20 Proton Motor Fuel Cell Gmbh Bipolar plate for fuel cell stacks and process for their manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103413A (en) * 1998-05-21 2000-08-15 The Dow Chemical Company Bipolar plates for electrochemical cells
US6296746B1 (en) * 1999-07-01 2001-10-02 Squirrel Holdings Ltd. Bipolar electrode for electrochemical redox reactions
DE10219384A1 (en) * 2002-04-30 2003-11-20 Proton Motor Fuel Cell Gmbh Bipolar plate for fuel cell stacks and process for their manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019166538A1 (en) * 2018-03-02 2019-09-06 Robert Bosch Gmbh Bipolar plate for a fuel cell stack

Also Published As

Publication number Publication date
FR2888048B1 (en) 2007-11-02
FR2888048A1 (en) 2007-01-05

Similar Documents

Publication Publication Date Title
EP3183379B1 (en) Method for high-temperature electrolysis or co-electrolysis, method for producing electricity by means of an sofc fuel cell, and associated interconnectors, reactors and operating methods
EP3322839B1 (en) Methods for (co)electrolysis of water or for producing electricity at a high temperature with exchangers incorporated as stages of a reactor stack or a fuel cell
EP1915797A1 (en) Polymer composite ionic/electronic conductance membrane methods for the production thereof and a planar fuel cell core comprising said membrane
EP3391444A1 (en) Method for producing a fuel cell with a screen-printed seal
CA3063286A1 (en) Reactor (soec) for electrolysis or co-electrolysis of water or fuel cell (sofc) operating in a pressurized operating mode and comprising a clamping system suitable for such an ope rating mode
EP2782175B1 (en) Method for manufacturing a membrane-electrode assembly
FR2564251A1 (en) IMPROVEMENTS IN THE STRUCTURES OF FUEL CELLS
WO2007003759A1 (en) Method of producing a fuel cell bipolar plate and bipolar plate thus produced
EP1749323B1 (en) Solid electrolyte fuel cell
FR2858465A1 (en) POROUS STRUCTURES USED AS BIPOLAR PLATES AND METHODS OF PREPARING SUCH POROUS STRUCTURES
EP3482866B1 (en) Method using a laser for welding between two metallic materials or for sintering of powder(s), application to the production of bipolar plates for pemfc cells
CA1137160A (en) Collector electrode for electro-chemical generator
EP3516721B1 (en) Water electrolysis reactor (soec) or fuel cell (sofc) with an increased rate of water vapour use or fuel use, respectively
FR2899386A1 (en) Proton exchange membrane type fuel cell`s elementary assembly, has electrical conducting components presenting elasticity along their thickness for ensuring electrical contact between half-plates and electrode membrane assembly
EP2893589B1 (en) Fuel cell limiting the phenomenon of corrosion
EP3021410B1 (en) Method for manufacturing a fuel cell
CA3102014C (en) Method for improved implementation of a component constituting an hte electrolyzer or sofc fuel cell interconnector
EP3499623B1 (en) Electrochemical reactor with high temperature proton exchange membrane suitable for low temperature storage
EP3761420B1 (en) Gas diffusion device for reducing pressure losses
WO2014122186A1 (en) Core provided with a reinforcement and a seal
EP4315462A1 (en) Method for producing a soec/sofc-type solid oxide stack, and associated stack
WO2023094756A1 (en) System for packaging a plurality of stacks of solid oxide cells of high-temperature soec/sofc type
FR2460341A1 (en) Electrolysis cell for mfg. gas, esp. hydrogen and oxygen from water - where nickel fabric diaphragm is supported by grid of insulating beads
FR2719946A1 (en) Sealing material for use on stacked high-performance fuel cells
FR2708382A1 (en) Separator for leaktight Ni-Zn accumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06778693

Country of ref document: EP

Kind code of ref document: A1