WO2006131640A1 - Micro-oscillateur paramétrique optique à cavités couplées - Google Patents

Micro-oscillateur paramétrique optique à cavités couplées Download PDF

Info

Publication number
WO2006131640A1
WO2006131640A1 PCT/FR2006/001280 FR2006001280W WO2006131640A1 WO 2006131640 A1 WO2006131640 A1 WO 2006131640A1 FR 2006001280 W FR2006001280 W FR 2006001280W WO 2006131640 A1 WO2006131640 A1 WO 2006131640A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavities
parametric
pump
parametric conversion
cavity
Prior art date
Application number
PCT/FR2006/001280
Other languages
English (en)
Inventor
Jérôme TIGNON
Christiano Ciuti
Gregor Dasbach
Carole Diederichs
Original Assignee
Centre National De La Recherche Scientifique - Cnrs
Universite Paris 7 - Denis Diderot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique - Cnrs, Universite Paris 7 - Denis Diderot filed Critical Centre National De La Recherche Scientifique - Cnrs
Priority to JP2008515251A priority Critical patent/JP5129126B2/ja
Priority to DE602006011742T priority patent/DE602006011742D1/de
Priority to EP06764740A priority patent/EP1896896B1/fr
Priority to US11/916,644 priority patent/US7751117B2/en
Priority to AT06764740T priority patent/ATE455317T1/de
Publication of WO2006131640A1 publication Critical patent/WO2006131640A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0604Arrangements for controlling the laser output parameters, e.g. by operating on the active medium comprising a non-linear region, e.g. generating harmonics of the laser frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1021Coupled cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34306Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers

Definitions

  • the present invention relates to the field of optical parametric conversion systems, optical parametric oscillators (OPOs), optical parametric amplifiers (OPAs), as well as the field of twin photon generation.
  • OPOs optical parametric oscillators
  • OPAs optical parametric amplifiers
  • the optical parametric conversion obtained in a non-linear optical medium makes it possible, for example, to convert "pump” photons, injected into the system at a frequency ⁇ p , into "signal” and "complementary” (or “idler") photon pairs. English language) at different frequencies co 3 and Oa 1 . It allows the generation of twin photons, the generation of new frequencies (for the OPO) or the amplification of weak signals (for the OPA). This effect is amplified when the nonlinear medium is placed within a resonant cavity to produce an oscillator.
  • OPOs coherent light sources in which the generation of new frequencies is spontaneous above a power threshold of the "pump”.
  • OPAs in which the generation is not spontaneous, are used for their ability to amplify light beams, of low intensity, at the frequency ⁇ g or Co 1 .
  • the prior art knows systems, monolithic or not, parametric conversion using cavities to obtain a multi-resonance.
  • the problem with conventional non-monolithic OPOs is their size and complexity because they require a pump laser, a non-linear crystal and external mirrors for the cavities.
  • the difficulty in obtaining efficient parametric conversion is related to the need to satisfy what is known to those skilled in the art as the phase agreement condition on the one hand and the need to obtain modes of synchronization on the other hand.
  • resonant cavity with parametric frequencies For monolithic systems, two very different situations can be distinguished, depending on whether the nonlinearity is in ⁇ (2) or ⁇ ⁇ 3) .
  • the single cavity, in a strong exciton-photon coupling regime, makes it possible here to obtain a triple resonance for the three frequencies. Nevertheless, compliance with the phase-matching condition requires that the pump photons be injected at a particular angle, of great value (typically 16 °) and difficult to determine, which makes any practical use difficult. In addition, the complementary photons are emitted at an even greater angle, an angle at which the coupling of the photons with the outside of the cavity is particularly small, which makes it difficult to generate twin photons. Finally, since the strong exciton-photon coupling regime is essential for obtaining the phase agreement, the system only works with materials available for manufacturing, such as GaAs, at low temperatures.
  • Patent application FR 2 751 796 in the name of the CEA, is also known which describes a system of two coupled lasers in which a first laser pumps a second laser.
  • the laser cavities of this document are however not arranged to generate parametric frequencies. Indeed, the system described in Dl is not a parametric oscillator, but a simple laser. In particular, this document does not describe the nature of the coupling between the laser cavities and does not make it possible to generate parametric frequencies.
  • An object of the present invention is to provide an alternative solution to existing parametric conversion systems for easily performing parametric conversion.
  • Another object of the present invention is to allow parametric conversion for near frequencies, in the sense defined below, between the pump, the signal and the complementary or at least for near frequencies between two of the three parametric frequencies.
  • Another object of the present invention is to provide a vertical parametric conversion system for an injection angle of the pump along the axis of the system.
  • the present invention relates to a monolithic system, for parametric conversion from a pump wave to a pump frequency, comprising at least two cavities. resonant, said cavities being strongly coupled by at least one coupling mirror, said cavities being arranged to generate parametric frequencies associated with said pump frequencies, at least one of said cavities comprising an active non-linear medium, said at least one coupling mirror being arranged so that said parametric frequencies are located in the stop band of said at least one mirror for a direction of injection of said pump wave by the surface of said system.
  • the direction of injection of the pump wave is performed "by the surface" of the system.
  • the system according to the invention comprises a plurality of layers in substantially parallel planes and forming a monolithic system. The injection is then carried out according to these plans and not by the edge of these layers as in known systems.
  • the system according to the invention is therefore known to those skilled in the art as being a vertical injection system, as opposed to an injection by the wafer.
  • the system according to the invention is a surface emission system.
  • the eigenmodes of the coupled system produce a set of multi-resonant optical modes for the parametric frequencies.
  • the nonlinear material has a susceptibility of type ⁇ (3) allowing to generate signal and complementary photons at frequencies close to the pump.
  • the material has a susceptibility of type ⁇ (2) allowing a conversion in which two of the three parametric frequencies will be close to each other.
  • near frequencies refers to frequencies included in the Bragg mirror stop band.
  • the aforementioned system may comprise three resonant cavities, said cavities being strongly coupled by two coupling mirrors, said cavities being arranged to generate three associated parametric frequencies. at said pump frequency, said system comprising two mirrors which close the system and which form said cavities with said two coupling mirrors.
  • said system may comprise two resonant cavities, said cavities being strongly coupled by a coupling mirror, said cavities being arranged to generate three parametric frequencies associated with said pump frequencies, said system comprising two mirrors which close the system and which form said cavities with said coupling mirror.
  • the active nonlinear medium can be either a quantum well, a quantum dot system, or a solid material, for example a semiconductor or a polymer, or any other solid active medium.
  • the coupling mirrors used are preferably Bragg mirrors, or else a dielectric or metallic layer having the reflectivity parameters adapted to the present invention.
  • said at least one cavity is of thickness substantially equal to a small integer number of times the half-wavelength of the pump wave that one wishes to convert, and this, so that the field is sufficiently intense in the cavity.
  • the parametric conversion system according to the present invention makes it possible to obtain the phase-matching condition for the case of a weak light-material coupling regime and also for the case of a strong light-material coupling regime. (photon-exciton).
  • the thickness of at least one cavity optionally has a lateral gradient that is, in the plane normal to the direction of the growth axis for a vertical system.
  • the thickness of one of the cavities has a gradient lateral in a first direction
  • a second cavity has a gradient lateral in a second direction different from said first direction, for example perpendicular, in normal plane to the direction of the axis of growth.
  • the system according to the invention is emission by the surface.
  • This also has the advantage of being able to test the components before cutting and possibly to parallelize the manufacture or use of a large number of components of the same nature.
  • This type of geometry also allows easy coupling to optical fibers.
  • the heart of the cavities and / or certain Bragg mirrors are epitaxially grown.
  • the invention also relates to an optical device for performing parametric conversion comprising a system as described above, the device further comprising means for injecting a pump wave at a pump wavelength, said injection means being adapted to inject said pump wave substantially along the axis of said system.
  • said injection means is formed by a so-called injection cavity, integral with said system and weakly coupled thereto by a weak coupling mirror for said length of said pump wave.
  • the so-called injection cavity may be external to the system as described above and may be attached after the growth of the system by the technique known as "wafer bonding".
  • the said injection cavity may be manufactured according to the prior art techniques for the manufacture of VCSEL so as to allow an electric injection thereof.
  • the injection cavity may be one of the cavities used for producing the parametric conversion system.
  • FIG. 1 illustrates the schematic diagram of FIG. a parametric conversion system according to the prior art and the parametric frequency chart according to the prior art
  • FIG. 2 illustrates one embodiment of the parametric conversion system according to the invention
  • FIG. 3A illustrates the dielectric structure according to the invention, the embodiment shown in FIG. 2
  • Fig. 3B illustrates the reflectivity diagram of the dielectric structure of Fig. 3A
  • FIG. 4 illustrates a reflectivity diagram calculated by the standard method of the transfer matrices, in which the phase agreement is obtained by the system according to the invention, between the three states of lower energy, at the zero angle
  • FIG. 5 illustrates a phase agreement obtained by the system according to the invention for a non-zero emission angle and making it possible to perform an entanglement
  • FIG. 6 illustrates, according to the embodiment illustrated in FIG. 2, the measurement of the emission under non-resonant excitation (left curve) as well as the emission measured under resonant excitation of the pump mode (right curve), with setting highlighting the signal / complementary pair
  • FIG. 7 illustrates the parametric conversion results obtained thanks to the system according to the invention illustrated in FIG. 2. The curve on the left represents the spectrum measured (zero angle) under non-resonant excitation and under resonant excitation.
  • FIG. 8 illustrates a second embodiment of the parametric conversion system according to the invention
  • FIG. 9 illustrates a parametric conversion device in which an electrically contacted injection means is integrated in the conversion system.
  • the invention relates to a parametric conversion system 20 for converting a pump frequency, in a signal frequency and a complementary frequency.
  • This system is formed of a structure comprising for example three resonant cavities of Fabry-Perot type 5, 6 and 7 in GaAs. It also comprises a substrate 11. It is advantageous to use cavities of small thickness, for example a small multiple of the half-wavelength so as to obtain a strong amplitude of the electric field at the belly of the field where will be placed the active material (micro-cavity).
  • each cavity is of thickness equal to once the wavelength.
  • Each of the cavities is enclosed by two Bragg reflection mirrors 1 and 2 for the cavity 5; 2 and 3 for the cavity 6, and 3 and 4 for the cavity 7.
  • the mirrors consist of a repeated stack of two transparent layers, different indices and thickness to obtain the desired reflectivity for the operation of the device.
  • the thickness is then for example equal to a quarter of the pump wavelength for each of the layers.
  • the Bragg mirrors are each formed of 13 pairs of AlAs layers 1 alternating with layers of GaAs.
  • the reflectivity of the Bragg mirrors 1, 2 and 3, shown in FIG. 3B, is slightly less than unity so that the cavities are coupled together.
  • the cavities 5 and 6 are strongly coupled via the Bragg mirror 2 and the cavities 6 and 7 are strongly coupled via the Bragg mirror 3.
  • the strong coupling is obtained when the reflectivity of the coupling mirror is less than 4R / (1 + R) 2 , where R is the reflectivity of the mirrors that enclose the two cavities together.
  • R is the reflectivity of the mirrors that enclose the two cavities together.
  • FIG. 3B illustrates the reflectivity diagram of the mirrors according to FIG. 2 for which the three modes strongly coupled and resonant with the parametric frequencies for a material in ⁇ ⁇ 3) appear (at 7 meV intervals) in the center of the band of stop Bragg mirrors.
  • the whole is here coupled to the outside through the Bragg mirrors 1 and 4.
  • each of these cavities is in the form of a known type of structure and the manufacture of which is controlled by those skilled in the art to produce vertical cavity semiconductor lasers, as is described, for example, in JL publications. Jewell, JP Harbison, A. Sherer, Lee YH, Florez LT, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization", IEEE J. Quantum Electron. QE-27, p 1332 (1991) and M. Shimada, T. Asaka, Y.
  • each cavity has a clean mode of Fabry-Perot type having an energy of the mode denoted w (k) which increases rapidly as a function of the wave vector in the plane of the layers k, or equivalently as a function of the angle of incidence, the one and the other being connected by a relation simple trigonometric.
  • the inter-cavity coupling removes the degeneracy between the three modes, in that the coupling between cavities is greater than the spectral width of the modes.
  • a nonlinear active medium formed for example by a set of quantum wells 8, 9, 10 is positioned in the cavities, in the vicinity of the maxima of the electric field.
  • the fundamental exciton transition is here at an energy close to the resonance with the microcavities.
  • a single quantum well of InGaAs at 6% In
  • the increase in the number of quantum wells makes it possible to increase the non-linearity.
  • the system 20 therefore constitutes a set of 6 coupled oscillators (3 photonic modes and 3 excitons).
  • the material-radiation coupling then corresponds either to a weak exciton-photon coupling regime or to a strong exciton-photon coupling regime, when the coupling force predominates in the face of losses. .
  • the degeneration between photons and excitons is raised and the spectrum then presents 6 new eigen modes, mixed exciton-photon states called the microcavity polaritons.
  • the states “pumps”, “signals” and “complementary” will be selected from 3 of the 6 eigen modes, according to the most advantageous configuration in terms of gain for the parametric oscillation.
  • the operating principle is no longer limited by the nature of the coupling (weak or strong) material-radiation, and the parametric oscillation can be reached, whatever the type of material-radiation coupling.
  • the parametric oscillation regime can be obtained provided that it satisfies the conservation of the energy and the pulse (or the wave vector) between the photons injected in the "pump” state. "and the photons emitted in the" signal "and” complementary “states, which constitutes the phase agreement condition.
  • a thickness gradient is introduced into one or more cavities so as to obtain zero-angle phase matching for the "pump", "signal” and “complementary” states.
  • the introduction of a gradient can be done by selective interruption of the rotation of the wafer during growth, according to a principle similar to what is known for single planar cavities, for example described in the publication of C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in semiconductor quantum microcavity", Phys. Rev. Lett. 69, p3314 (1992).
  • the reflectivity diagram associated with such a configuration is shown diagrammatically in FIG. 4, in which the dispersion is calculated by the standard method of the transfer matrices and the excitation is symbolized on the 2nd mode where two photons are injected, a photon is emitted by the "signal” and a photon is emitted by the "complementary".
  • the effect described above can be demonstrated by a known assembly in the field of emission for semiconductor nanostructures.
  • the device comprises a laser source for excitation, for example of the frequency-tunable titanium-sapphire type.
  • the excitation is carried out continuously, by the surface of the sample, after focusing on a spot of about 20 micrometers in diameter.
  • the substrate has been thinned by a standard method of mechanical sanding, so that optical measurements can be made in transmission as well as in reflection.
  • the emission is collected in transmission, using an optical fiber mounted on a goniometer to perform the angular analysis of the emission.
  • the emitted radiation is detected by a multichannel analyzer at photodiodes placed at the output of a spectrometer having a resolution of 100 micro-eV.
  • Figure 6 shows the emission (photoluminescence) measured as a function of the detection angle, for a non-resonant excitation (part of the figure on the left).
  • the emission diagram then reflects the dispersion as a function of the wave vector in the plane of the layers (or equivalently as a function of the angle). Up to 5 modes are visible in this figure.
  • a detailed analysis of the experimental results makes it possible to highlight the coexistence of 6 modes.
  • the system in the case of non-resonant excitation, is in strong coupling regime between excitons and photons.
  • the Applicant has been able to verify experimentally that the device according to the invention also makes it possible to obtain the parametric amplification of a second low-intensity continuous laser beam, injected into the system at the signal frequency.
  • Figure 7 represents the emission spectrum below the threshold (fine black line) and above the threshold (bold line) for parametric oscillation.
  • the “signal” is refined from 0.7 meV to less than 0.2 meV and the “complementary” from 1.5 meV to less than 0.2 meV, close to the resolution limit of the measurement).
  • the "signal” is refined from 0.7 meV to less than 0.2 meV and the “complementary” from 1.5 meV to less than 0.2 meV, close to the resolution limit of the measurement).
  • the high energies characteristic of the parametric oscillation regime is also observed.
  • This mechanism is the only one possible if the phase agreement, and therefore the position on the sample, does not make it possible to obtain either the parametric diffusion shown in FIG. 4 or the parametric diffusion represented in FIG. this mechanism intrinsically requires only two branches and can therefore be obtained in a two cavity system only. It should be noted that this mechanism, while it offers no interest for the generation of new frequencies, has a significant interest for the generation of twin photons in order to produce a source for quantum optics and cryptography systems. Indeed, in this case, the two emitted photons are intrinsically coupled to the outside in the same way and will therefore offer the same emission intensity. On the other hand, the emission being made at important angles, it will be easy to separate the twin photons emitted.
  • the number of pairs of layers in the Bragg mirrors affects two parameters in the present invention: the fineness of the photonic modes and the importance of the coupling between the cavities. It is known from the state of knowledge on planar single cavities that the threshold for parametric oscillation is all the lower as the fineness is great. Conversely, it is important here to obtain a good coupling between the three cavities and thus to reduce the number of layers for the intermediate mirrors 2 and 3.
  • a system 20a comprising only two coupled cavities, as illustrated in FIG. 8. It therefore comprises two cavities 6a, 5a, a coupling mirror 2a and two mirrors 3a and 1a which close the system and which form the cavities 6a, 5a with the coupling mirror 2a.
  • Each cavity contains, for example, as previously, a quantum well type In 0f06 Ga 0f94 As 8a and 9a.
  • the substrate is noted 11a.
  • This embodiment is suitable both for the use of a medium ⁇ (3) that for a medium in ⁇ ⁇ 2) , the two cavities then being used to obtain a resonance for the signal and the complement only.
  • the thickness of the layers is chosen such that the energy of the coupled cavities is in the region of transparency of the material forming the cavity (for example GaAs).
  • the pumping is done at a higher energy than the signal and the complementary one.
  • the invention also relates to a parametric conversion device comprising a system as described in the previous embodiments and an injection means for the pump at the frequency of the pump.
  • the injection means is for example of the laser type and is arranged such that the injection angle in the system according to the invention is substantially zero. According to the invention, a parametric conversion and the generation of a signal and complementary photon are then carried out.
  • the injection means is integrated in the system according to the invention and is in the form of an additional cavity which is weakly coupled for the pump wavelength, by a weak coupling mirror having, for example, a greater reflectivity.
  • FIG. 9 One embodiment for a device comprising an electrical injection means, noted 20c, is shown in FIG. 9.
  • the cavities 6c and 7c are strongly coupled via the coupling mirror 3c, which comprises 13 pairs of AlAs layers. / GaAs in the example presented. These two strongly coupled cavities provide the resonances for the signal and the complement.
  • the third cavity, called the injection cavity, denoted 5c is weakly coupled to the other two cavities via the mirror 2c, which comprises 23 pairs of layers in the example presented.
  • the calculated reflectivity spectrum, corresponding to this structure, is presented on the right-hand part of FIG. 9.
  • the low-energy mode is the signal mode
  • the intermediate mode is the mode corresponding to the cavity. injection 5c.
  • the injection cavity is electrically contacted according to the means known to those skilled in the art.
  • the mirrors 2c and Ic are doped, then electrically contacted 13c.
  • the device may be coupled to an optical fiber denoted 12c for collecting the two parametric frequencies.
  • the substrate is here denoted Ile.
  • the device Since the device is capable of operating in the parametric amplification regime, it can be used in the telecommunications field for the regeneration of weak signals.
  • the parametric generation makes it possible to obtain frequencies approximately two times lower than that of the pump, in a spectral range hardly accessible by the conventional laser diodes.
  • the parametric generation of twin photons is at the basis of cryptographic processes and serves as a substitute for the use of single photon sources.
  • the photons emitted by the complementary serve to trigger the detection of the photons signals. Any interception of a photon by a third party is systematically detected.
  • parametric generation offers an additional advantage over single photon sources, namely the ability to generate entangled states, such as those shown in Figure 5.
  • Various modes of quantum cryptography are described in the N. publication. Gisin, G. Ribordy, W. Tittel and H. Zbinden, "Quantum Cryptography", Rev. Mod. Phys., P 145 (2002).

Abstract

La présente invention concerne le domaine des oscillateurs paramétriques optiques (OPO). Elle concerne un système (S) monolithique sensiblement vertical , pour la conversion paramétrique à partir d'une onde de pompe à une longueur d'onde de pompe, ledit système comprenant au moins deux cavités résonantes (6, 7), lesdites cavités étant fortement couplées par au moins un miroir de couplage (3), au moins une desdites cavités comprenant un milieu non linéaire actif, ledit au moins un miroir de couplage étant agencé de sorte que les fréquences paramétriques associées à ladite longueur d'onde de pompe soient situées dans la bande d'arrêt dudit au moins un miroir pour une direction d'injection de ladite onde de pompe sensiblement selon l'axe dudit système.

Description

MICRO-OSCILLATEUR PARAMÉTRIQUE OPTIQUE À CAVITÉS COUPLÉES
La présente invention concerne le domaine des systèmes de conversion paramétrique optique, des oscillateurs paramétriques optiques (OPO), des amplificateurs paramétriques optiques (OPA), ainsi que le domaine de la génération de photons jumeaux.
La conversion paramétrique optique obtenue dans un milieu optique non-linéaire permet par exemple de convertir des photons "pompes", injectés dans le système à une fréquence ωp, en paires de photons "signaux" et "complémentaires" (ou « idler » en langue anglaise) à des fréquences différentes co3 et Oa1. Elle permet la génération de photons jumeaux, la génération de nouvelles fréquences (pour l'OPO) ou l'amplification de signaux faibles (pour l'OPA). Cet effet est amplifié lorsque le milieu non- linéaire est placé au sein d'une cavité résonante de façon à produire un oscillateur. Il est connu que quand la cavité est proche de la résonance pour le "signal" et le "complémentaire" (OPO doublement résonant, ou DROPO) ou pour les trois ondes (OPO triplement résonant, ou TROPO), le seuil pour la génération paramétrique peut être considérablement diminué, ce qui accroît considérablement l'efficacité du mécanisme. On notera qu'un tel système peut généralement fonctionner sous excitation impulsionnelle. Les OPO sont des sources de lumière cohérente dans lesquelles la génération des nouvelles fréquences est spontanée au dessus d'un seuil de puissance de la "pompe". Les OPA, dans lesquels la génération n'est pas spontanée, sont utilisés pour leur capacité à amplifier des faisceaux lumineux, de faible intensité, à la fréquence ωg ou Co1. La nature du milieu non-linéaire ainsi que le dessin des cavités détermine les fréquences ωg et Co1. Pour un milieu actif présentant une susceptibilité non-linéaire de type χ<2), la conservation de l'énergie conduit à la relation CUp=CO3H-CO1. Pour un milieu de type χ(3), la relation est 2ωps1. Dans les deux cas, une conversion paramétrique efficace requiert d'optimiser la condition d'accord de phase qui s'écrit : Δk≈kp-ki-kg≈O pour un système de type χ(2> ou Δk=2kp-k1-kg=0 pour un système de type χ<3).
L'art antérieur connaît des systèmes, monolithiques ou non, de conversion paramétrique à l'aide de cavités pour obtenir une multi-résonance. Le problème avec les OPO classiques non monolithiques est leur encombrement et leur complexité parce qu'ils requièrent un laser de pompe, un cristal non-linéaire et des miroirs externes pour les cavités. La difficulté pour obtenir une conversion paramétrique efficace est liée au besoin de satisfaire à ce qui est connu par l'homme du métier comme la condition d'accord de phase d'une part et d'autre part la nécessité d'obtenir des modes de cavité résonant avec les fréquences paramétriques. Concernant les systèmes monolithiques, on distingue deux situations très différentes selon que la non- linéarité soit en χ(2) ou χ<3).
La publication de Savvidis, Baumberg, Stevenson, Skolnick, Whittaker et Roberts "Angle-Résonant Stimulated Polariton Amplifier", publiée dans Physical Review Letters, Vol 84, page 1547, Février 2000, divulgue un système pour l'amplification paramétrique par le moyen d'une seule microcavité planaire. Le champ électromagnétique est entièrement confiné par la cavité selon la direction de croissance et est de surcroît en régime de couplage fort exciton-photon avec le système de puits quantiques placé en son sein. Dans ce système, la susceptibilité χ(3) est très importante et permet d'obtenir une conversion paramétrique efficace pour des fréquences ωp, ωs et Co1 proches, toutes inclues la bande d'arrêt des miroirs de Bragg. La cavité unique, en régime de couplage fort exciton-photon, permet ici d'obtenir une résonance triple pour les trois fréquences. Néanmoins, le respect de la condition d'accord de phase requiert que l'injection des photons pompe se fasse à un angle particulier, de grande valeur (typiquement 16°) et délicat à déterminer, ce qui rend difficile toute utilisation pratique. De plus, les photons complémentaires sont émis à un angle plus important encore, angle pour lequel le couplage des photons avec l'extérieur de la cavité est particulièrement faible, ce qui rend difficile la génération de photons jumeaux. Enfin, le régime de couplage fort exciton-photon étant essentiel à l'obtention de l'accord de phase, le système ne fonctionne, avec les matériaux disponibles pour la fabrication, comme GaAs, qu'à basse température.
D'autre part, pour les systèmes utilisant une non- linéarité en χ<2), la publication de Haïdar, Forget et Rosencher, "Optical Parametric Oscillation in Microcavities Based on Isotropic Semiconductors : a Theoretical Study", publiée dans IEEE Journal of Quantum Electronics, Vol 30, N°4, Avril 2003, divulgue un système pour l'oscillation paramétrique dans lequel le diagramme de réflectivité des miroirs utilisés est tel qu'illustré figure 1. Ce document divulgue un dispositif dans lequel les fréquences ωp, ω3 et CO1 sont très différentes et ne peuvent pas être toutes incluses dans la bande d'arrêt d'un seul miroir de Bragg. La condition de résonance est alors cherchée pour le signal et le complémentaire à l'aide de deux cavités non fortement couplées entre elles au sens défini plus loin.
On connaît également la demande de brevet FR 2 751 796, au nom du CEA, qui décrit un système de deux lasers couplés dans lequel un premier laser pompe un second laser.
Les cavités laser de ce document ne sont toutefois pas agencées pour générer des fréquences paramétriques. En effet, le système décrit dans Dl n'est pas un oscillateur paramétrique, mais un simple laser. En particulier, ce document ne décrit pas la nature du couplage entre les cavités laser et ne permet pas de générer des fréquences paramétriques .
Un but de la présente invention est de fournir une solution alternative aux systèmes de conversion paramétrique existants pour réaliser facilement la conversion paramétrique .
Un autre but de la présente invention est de permettre la conversion paramétrique pour des fréquences proches, au sens défini plus loin, entre la pompe, le signal et le complémentaire ou au moins pour des fréquences proches entre deux des trois fréquences paramétriques.
Un autre but de la présente invention est de réaliser un système de conversion paramétrique vertical pour un angle d'injection de la pompe selon l'axe du système.
Pour résoudre au moins un de ces problèmes, la présente invention concerne un système monolithique, pour la conversion paramétrique à partir d'une onde de pompe à une fréquence de pompe, comprenant au moins deux cavités résonantes, lesdites cavités étant fortement couplées par au moins un miroir de couplage, lesdites cavités étant agencées pour générer des fréquences paramétriques associées à ladite fréquences de pompe, au moins une desdites cavités comprenant un milieu non linéaire actif, ledit au moins un miroir de couplage étant agencé de sorte que lesdites fréquences paramétriques soient situées dans la bande d'arrêt dudit au moins un miroir pour une direction d'injection de ladite onde de pompe par la surface dudit système.
Aux fins de la présente demande, et comme le comprendra l'homme du métier, le terme « cavités fortement couplées entre elles » • correspond à la levée de dégénérescence des modes de cavité résonantes.
On note également que la direction de l'injection de l'onde de pompe est réalisée « par la surface » du système. En effet, le système selon l'invention comprend une pluralité de couches selon des plans sensiblement parallèles et formant un système monolithique. L'injection est alors réalisée selon ces plans et non par la tranche de ces couches comme dans des systèmes connus. Le système selon l'invention est donc connu de l'homme du métier comme étant un système à injection verticale, par opposition à une injection par la tranche. De même, le système selon l'invention est un système à émission par la surface.
De la sorte, les modes propres du système couplé réalisent un ensemble de mode optiques multi-résonant pour les fréquences paramétriques.
Selon un premier mode de réalisation, le matériau non linéaire présente une susceptibilité de type χ(3) permettant de générer des photons signal et complémentaire à des fréquences proches de la pompe.
Selon un second mode de réalisation, le matériau présente une susceptibilité de type χ(2) permettant une conversion dans laquelle deux des trois fréquences paramétriques seront proches entre elles.
Aux fins de la présente demande, le terme « fréquences proches » correspond à des fréquences incluses dans la bande d'arrêt du miroir de Bragg.
Selon un premier mode de mise en oeuvre, pour l'obtention d'un dispositif triplement résonant, le système susmentionné peut comprendre trois cavités résonnantes, lesdites cavités étant fortement couplées par deux miroirs de couplage, lesdites cavités étant agencées pour générer trois fréquences paramétriques associées à ladite fréquence de pompe, ledit système comprenant deux miroirs qui ferment le système et qui forment lesdites cavités avec lesdits deux miroirs de couplage.
Selon un second mode de mise en œuvre, pour l'obtention d'un dispositif doublement résonant, ledit système peut comprendre deux cavités résonnantes, lesdites cavités étant fortement couplées par un miroir de couplage, lesdites cavités étant agencées pour générer trois fréquences paramétriques associées à ladite fréquences de pompe, ledit système comprenant deux miroirs qui ferment le système et qui forment lesdites cavités avec ledit miroir de couplage.
Le milieu non linéaire actif peut être soit un puits quantique, soit un système de boîtes quantiques, ou bien un matériau massif, par exemple un semi-conducteur ou un polymère, ou tout autre milieu actif solide.
Les miroirs de couplage utilisés sont de préférence des miroirs de Bragg, ou bien une couche diélectrique ou métallique possédant les paramètres de réflectivité adaptés à la présente invention.
Selon un mode de réalisation possible, ladite au moins une cavité est d'épaisseur sensiblement égale à un petit nombre entier de fois la demi-longueur d'onde de l'onde de pompe que l'on désire convertir, et ce, afin que le champ soit suffisamment intense dans la cavité.
Avantageusement, le système de conversion paramétrique selon la présente invention permet d'obtenir la condition d'accord de phase pour le cas d'un régime de couplage faible lumière-matière et aussi pour le cas d'un régime de couplage fort lumière-matière (photon-exciton) .
Si la méthode de croissance n'est pas assez précise pour viser les épaisseurs nominales et afin d'ajuster finement la condition de résonance entre les modes de cavité et les fréquences paramétriques, l'épaisseur d'au moins une cavité présente éventuellement un gradient latéral, c'est-à- dire dans le plan normal à la direction de l'axe de croissance pour un système vertical.
De préférence, si la méthode de croissance n'est pas assez précise pour viser les épaisseurs nominales et afin d'ajuster finement la condition de résonance entre les modes de cavité et les fréquences paramétriques, l'épaisseur d'une des cavités présente un gradient latéral dans une première direction, et une seconde cavité présente un gradient latéral dans une seconde direction différente de ladite première direction, par exemple perpendiculaire, dans plan normal à la direction de l'axe de croissance.
Par ailleurs, afin d'obtenir un mode lumineux plus isotrope, et par opposition aux dispositifs donnant une émission par la tranche de la structure, le système selon l'invention est à émission par la surface. Ceci possède également l'avantage de pouvoir tester les composants avant la découpe et de pouvoir éventuellement paralléliser la fabrication ou l'utilisation d'un grand nombre de composants de même nature. Ce type de géométrie permet aussi un couplage aisé à des fibres optiques.
Selon une technique de croissance avantageuse dans le domaine des microstructures, le cœur des cavités et/ou certains miroirs de Bragg sont épitaxiés.
L'invention concerne également un dispositif optique destiné à la réalisation de conversion paramétrique comprenant un système tel que décrit ci-dessus, le dispositif comprenant en outre un moyen d'injection d'une onde de pompe à une longueur d'onde de pompe, ledit moyen d'injection étant apte à injecter ladite onde de pompe sensiblement selon l'axe dudit système.
Avantageusement, selon un mode de réalisation et afin d'obtenir un dispositif compact ledit moyen d'injection est formé par une cavité dite d'injection, solidaire dudit système et faiblement couplé à celui-ci par un miroir de couplage faible pour ladite longueur d'onde de pompe.
Avantageusement, la cavité dite d'injection peut être extérieur au système tel que décrit ci-dessus et peut être attachée après la croissance du système par la technique connue sous le nom de « wafer bonding » .
Avantageusement, la cavité dite d'injection peut être fabriquée selon les techniques de l'art antérieur pour la fabrication des VCSEL de façon à autoriser une injection électrique de celle-ci.
Avantageusement et selon un autre mode de réalisation d'un système compact, la cavité d'injection peut être l'une des cavités utilisée pour la réalisation du système de conversion paramétrique.
On comprendra mieux l'invention à l'aide de la description, faite ci-après à titre purement explicatif, d'un mode de réalisation de l'invention, en référence aux figures annexées : la figure 1 illustre le schéma de principe d'un système de conversion paramétrique selon l'art antérieur et le diagramme des fréquences paramétriques selon l'art antérieur ; la figure 2 illustre un mode de réalisation du système de conversion paramétrique selon l'invention ; - la figure 3A illustre la structure diélectrique selon l'invention le mode de réalisation présenté figure 2 ; la figure 3B illustre le diagramme de réflectivité de la structure diélectrique de la figure 3A ; la figure 4 illustre un diagramme de réflectivité calculé par la méthode standard des matrices de transfert, dans lequel l'accord de phase est obtenu par le système selon l'invention, entre les trois états de plus basse énergie, à l'angle nul ; _ _ __ _ _ _
10
la figure 5 illustre un accord de phase obtenu par le système selon l'invention pour un angle d'émission non nul et permettant de réaliser une intrication ; la figure 6 illustre, selon le mode de réalisation illustré figure 2, la mesure de l'émission sous excitation non résonante (courbe de gauche) ainsi que l'émission mesurée sous excitation résonante du mode de pompe (courbe de droite), avec mise en évidence du couple signal/complémentaire ; - la figure 7 illustre les résultats de conversion paramétrique obtenus grâce au système selon l'invention illustré figure 2. La courbe de gauche représente le spectre mesuré (angle nul) sous excitation non-résonante et sous excitation résonante. Les deux courbes de droite représentent l'intensité émise par le signal ou le complémentaire en fonction du paramètre « x » d'accord de phase (pris dans le régime linéaire) ; la figure 8 illustre un second mode de réalisation du système de conversion paramétrique selon l'invention ; - la figure 9 illustre un dispositif de conversion paramétrique dans lequel un moyen d'injection contacté électriquement est intégré au système de conversion.
Selon un mode de réalisation illustré figure 2 , l'invention concerne un système 20 de conversion paramétrique pour convertir une fréquence de pompe, en une fréquence signal et une fréquence complémentaire. Ce système est formé d'une structure comprenant par exemple trois cavités résonantes de type Fabry-Pérot 5, 6 et 7 en GaAs. Il comprend également un substrat 11. Il est avantageux d'utiliser des cavités de faible épaisseur, par exemple un faible multiple de la demi-longueur d'onde de façon à obtenir une forte amplitude du champ électrique au ventre du champ où sera placé le matériau actif (micro-cavité).
Selon l'exemple présenté, chaque cavité est d'épaisseur égale à une fois la longueur d'onde. Chacune des cavités est enserrée par deux miroirs à réflexion de Bragg 1 et 2 pour la cavité 5; 2 et 3 pour la cavité 6, et 3 et 4 pour la cavité 7. Les miroirs consistent en un empilement répété de deux couches transparentes, d'indices différents et d'épaisseur permettant d'obtenir la réflectivité désirée pour le fonctionnement du dispositif. L'épaisseur est alors par exemple égale au quart de la longueur d ' onde de pompe pour chacune des couches. Plus précisément, dans l'exemple illustré figure 2 ou figure 3A, les miroirs de Bragg sont chacun constitués de 13 paires de couches d 1AlAs en alternance avec des couches de GaAs. La réflectivité des miroirs de Bragg 1, 2 et 3, illustrée figure 3B est légèrement inférieure à l'unité de sorte que les cavités sont couplées entre elles.
Plus précisément, les cavités 5 et 6 sont couplées fortement par l ' intermédiaire du miroir de Bragg 2 et les cavités 6 et 7 sont couplées fortement par l ' intermédiaire du miroir de Bragg 3. Comme le comprendra l'homme du métier, pour un système de deux cavités, le couplage fort est obtenu lorsque la réflectivité du miroir de couplage est inférieure à 4R/(1+R)2, où R est la réflectivité des miroirs qui enserrent l'ensemble des deux cavités. Dans un cas plus général, il est aisé de déterminer la réflectivité et donc le nombre de couches nécessaires pour obtenir un miroir de couplage fort, en effectuant le calcul de la réflectivité par la méthode standard des matrices de transfert. La figure 3B illustre le diagramme de réflectivité des miroirs selon la figure 2 pour laquelle les trois modes fortement couplés et résonants avec les fréquences paramétriques pour un matériau en χ<3) apparaissent (à 7 meV d'intervalle) au centre de la bande d'arrêt des miroirs de Bragg.
L'ensemble est ici couplé à l'extérieur au travers des miroirs de Bragg 1 et 4.
Individuellement, chacune de ces cavités se présente sous la forme de structure de type connu et dont la fabrication est maîtrisée par l'homme du métier pour réaliser les lasers semi-conducteurs à cavité verticale, comme ceci est par exemple décrit dans les publications de J.L. Jewell, J.P. Harbison, A. Sherer, Y. H. Lee, L.T. Florez, "Vertical-cavity surface-emitting lasers - design, growth, fabrication, characterization ", IEEE J. Quantum Electron. QE-27, p 1332 (1991) et de M. Shimada, T. Asaka, Y. Yamasaki, H. Iwano, M. Ogura, S. Mukai, "Low-threshold surface-emitting lasers-diodes with distributed Bragg reflectors and current blocking layers", Appl. Phys. Lett. 57, p 1289 (1990), ou pour réaliser les systèmes de deux cavités couplées, comme ceci est décrit dans les publications de P. Michler, M. Hilpert, G. Reiner, "Dynamics of dual-wavelength émission from a coupled semiconductor microcavity laser", Appl. Phys. Lett. 70, p 2073 (1997), et de P. Pellandini, R.P. Stanley, R. Houdré, U. Oesterle, M. Ilegems, C. Weisbuch, "Dual-wavelength émission from a coupled semiconductor microcavity", Appl. Phys. Lett. 71, p864 (1997).
En dehors du couplage inter-cavités, chaque cavité possède un mode propre de type Fabry-Pérot ayant une énergie du mode notée w(k) qui croît rapidement en fonction du vecteur d'onde dans le plan des couches k, ou de façon équivalente en fonction de l'angle d'incidence, l'un et l ' autre étant reliés par une relation trigonométrique simple.
Lorsque les cavités ont la même épaisseur, le couplage inter-cavités lève la dégénérescence entre les trois modes, dans la mesure où le couplage entre cavités est supérieur à la largeur spectrale des modes.
Il en résulte l'apparition de 3 nouveaux modes propres qui correspondent à des modes photoniques délocalisés dans toute la structure et non plus localisés dans chacune des cavités.
Dans ce mode de réalisation de l'invention, on positionne un milieu non-linéaire actif formé par exemple par un ensemble de puits quantiques 8, 9, 10, au sein des cavités, au voisinage des maxima du champ électrique.
La transition excitonique fondamentale est ici à une énergie voisine de la résonance avec les microcavités. Selon une variante simple, on place par exemple un puits quantique unique d' InGaAs (à 6% d'In) au centre de chacune des trois cavités, étant entendu qu'augmentation du nombre de puits quantiques permet d'augmenter la non-linéarité.
De la sorte, on obtient une contribution importante des non-linéarités à chacun des modes propres du système, favorisant ainsi l'existence d'un seuil à basse puissance d'excitation pour les oscillations paramétriques, par distinction avec une non-linéarité non-résonante, lorsque le fonctionnement se fait dans la zone de transparence du milieu non-linéaire.
Le système 20 constitue donc un ensemble de 6 oscillateurs couplés (3 modes photoniques et 3 excitons).
Suivant les conditions de température et de puissance d'excitation, le couplage matière-rayonnement correspond alors soit à un régime de couplage faible exciton-photon, soit à un régime de couplage fort exciton-photon, lorsque la force du couplage prédomine devant les pertes.
En régime de couplage faible, le système se caractérise ici, par l'existence dans le spectre de 3 résonances ( les 3 modes photoniques élargis par l ' absorption excitonique) . On choisit alors respectivement ces trois résonances pour l'injection dans l'état "pompe" et l'émission par les états "signaux" et "complémentaires".
En régime de couplage fort, la dégénérescence entre photons et excitons est levée et le spectre présente alors 6 nouveaux modes propres, états mixtes excitons-photons appelés les polaritons de microcavité. Dans ce cas, les états "pompes", "signaux" et "complémentaires" seront sélectionnés parmi 3 des 6 modes propres, selon la configuration la plus avantageuse en terme de gain pour l'oscillation paramétrique.
Notons que, contrairement à l'oscillation paramétrique obtenue pour des cavités uniques, le principe de fonctionnement n'est plus limité par la nature du couplage (faible ou fort) matière-rayonnement, et l'oscillation paramétrique peut être atteinte, quelque soit le type de couplage matière-rayonnement. Selon un principe déjà connu, le régime d'oscillation paramétrique peut être obtenu à condition de satisfaire à la conservation de l'énergie et de l'impulsion (ou du vecteur d'onde) entre les photons injectés dans l'état de "pompe" et les photons émis dans les états "signaux" et "complémentaires", ce qui constitue la condition d'accord de phase.
La conservation de l'énergie est satisfaite à condition de sélectionner 3 états équidistants en énergie, de façon à respecter la condition 2ωp = ωs + ωc (pour un processus non-linéaire du 3ème ordre), où ωp est l'énergie de la pompe, ωs l'énergie du signal et ωc l'énergie du complémentaire (cos < ωp < ωc ) .
De même, la conservation de l'impulsion est satisfaite à condition de respecter la relation 2kp = ks + kσ où kp est le vecteur d'onde de la pompe, kg le vecteur d'onde du signal et kc le vecteur d'onde du complémentaire.
Selon une variante avantageuse de l'invention, un gradient d'épaisseur est introduit dans une ou plusieurs cavités de façon à pouvoir obtenir l ' accord de phase à angle nul pour les états "pompe", "signal" et "complémentaire". L'introduction d'un gradient peut se faire par interruption sélective de la rotation du wafer lors de la croissance, selon un principe analogue à ce qui est connu pour les cavités planaires uniques, par exemple décrit dans la publication de C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity" , Phys. Rev. Lett. 69, p3314 (1992). En particulier, il est possible d'introduire un gradient (environ 1 meV/mm) dans des directions perpendiculaires pour deux des trois cavités, ce qui permet d'ajuster l'énergie des trois cavités indépendamment. Pour cela, la rotation du wafer est interrompue lors de la croissance de la première cavité (premier gradient d'épaisseur), puis interrompue, pour la seconde cavité, selon une direction perpendiculaire à celle choisie pour la première cavité (second gradient d'épaisseur perpendiculaire au premier). La rotation est de nouveau interrompue pour la troisième cavité selon la même direction que pour la première. On peut ainsi, en se déplaçant à la surface de l'échantillon, ajuster le désaccord relatif entre les états de "pompe" , "signal" et "complémentaire" pour ajuster la condition de conservation de l'énergie.
La conservation de l'impulsion s'obtient alors naturellement pour une excitation avec un angle d'incidence nul, c'est-à-dire une injection perpendiculaire à la surface de l'échantillon lorsque les énergies respectent la condition 2ωp(kp=0) = ωs(ks=0) + ωc(ko=0).
Le diagramme de réflectivité associé à une telle configuration est représenté schématiquement sur la Figure 4, dans laquelle la dispersion est calculée par la méthode standard des matrices de transfert et l ' excitation est symbolisée sur le 2ème mode où deux photons sont injectés, un photon est émis par le "signal" et un photon est émis par le "complémentaire" .
II est aussi possible, en se déplaçant sur l'échantillon, d'obtenir un accord de phase pour des angles non-nuls. Le diagramme de réflectivité associé à une telle configuration est présentée schématiquement sur la Figure 5. Cette dernière configuration ne produisant pas de modes "signaux" et "complémentaires" uniques, elle n'est pas favorable pour l'obtention d'une oscillation paramétrique, mais peut néanmoins permettre d'observer une émission de modes intriqués sur un anneaux dans un plan perpendiculaire à l'axe de croissance, selon un mécanisme analogue à celui prédit pour des fils photoniques dans une émission de type fluorescence paramétrique.
On peut mettre en évidence l'effet décrit ci-dessus par un montage connu dans le domaine de l'émission pour des nanostructures de semi-conducteurs. Le dispositif comprend une source laser pour l'excitation, par exemple de type Titane-saphir accordable en fréquence. L'excitation est effectuée en régime continu, par la surface de l'échantillon, après focalisation sur un spot d'environ 20 micromètres de diamètre.
Pour l'étude du dispositif, on place un échantillon dans un cryostat à Hélium. Des résultats positifs ont été obtenus par le Demandeur avec le dispositif illustré figure 2 dans une gamme de température entre 6K et 9OK.
Cependant il est entendu qu'on peut envisager d'étendre l'utilisation de la présente invention jusqu'à la température ambiante selon le même principe.
En mode opératoire, le substrat a été aminci par une méthode standard de ponçage mécanique, de façon à pouvoir réaliser des mesures optiques en transmission aussi bien qu'en réflexion. L'émission est collectée en transmission, à l'aide d'une fibre optique montée sur un goniomètre afin d'effectuer l'analyse angulaire de l'émission. Le rayonnement émis est détecté par un analyseur multicanal à photodiodes placé en sortie d'un spectromètre ayant une résolution de 100 micro-eV.
La Figure 6 représente l'émission (photoluminescence) mesurée en fonction de l'angle de détection, pour une excitation non-résonante (partie de la figure à gauche). Le diagramme d'émission reflète alors la dispersion en fonction du vecteur d'onde dans le plan des couches (ou de façon équivalente en fonction de l'angle). Jusqu'à 5 modes sont visibles sur cette figure. Une analyse détaillée des résultats expérimentaux permet de mettre en évidence la coexistence de 6 modes. Le système, dans le cas de l'excitation non-résonante, est en régime de couplage fort entre excitons et photons. La partie à droite de la Figure 6 représente la mesure de l'émission sous excitation résonante continue d'un des 6 modes et sous angle d'incidence nul (état "pompe"), pour une position sur 1 ' échantillon où l ' accord de phase est obtenu entre 3 états à angle nul. Au-delà d'une puissance d'excitation seuil de 200 mW, l'émission de l'état de basse énergie (signal) et de l'état de haute énergie (complémentaire) croissent de façon exponentielle .
On note que le Demandeur a pu vérifier expérimentalement que la polarisation du "signal" et du "complémentaire" respecte les règles de sélection imposées par le mécanisme paramétrique (émission co-circulaire droite ou gauche pour une excitation co-circulaire droite ou gauche) .
On note que le Demandeur a pu vérifier expérimentalement que le dispositif selon l'invention permettait aussi d'obtenir l'amplification paramétrique d'un second faisceau laser continu, de faible intensité, injecté dans le système à la fréquence du signal.
La Figure 7 (courbes de gauche) représente le spectre de l'émission sous le seuil (trait fin noir) et au dessus du seuil (trait gras) pour l'oscillation paramétrique. En plus de l'augmentation considérable de l'émission pour le "signal" et le "complémentaire" au delà du seuil, on observe clairement 1 ' affinement des transitions (le "signal" s'affine de 0.7 meV à moins de 0.2 meV et le "complémentaire" de 1.5 meV à moins de 0.2 meV, proche de la limite de résolution de la mesure). On observe de même au- delà du seuil un léger décalage vers les hautes énergies caractéristiques du régime d'oscillation paramétrique.
On notera qu'en dehors du mécanisme de diffusion représenté sur la Figure 5, qui permet à deux photons injectés sur la deuxième branche d'être convertis en photons sur la première branche à basse énergie, et sur la troisième branche à haute énergie, il existe toujours un autre mécanisme de diffusion paramétrique, non représenté. Cet autre mécanisme correspond à la possibilité pour les photons injectés sur la deuxième branche, d'être diffusés à énergie constante, sur la première branche, la même branche basse énergie pour les deux photons diffusés. Les deux photons sont alors diffusés respectivement en —k et en +k. Par rapport à la situation représentée sur la Figure 5, on peut représenter ce mécanisme comme un cas limite dans lequel tous les photons diffusés conservent l'énergie initiale. Ce mécanisme est le seul possible si l'accord de phase, donc la position sur l'échantillon, ne permet pas d'obtenir ni la diffusion paramétrique représentée sur la Figure 4, ni la diffusion paramétrique représentée sur la Figure 5. En outre, ce mécanisme ne requiert intrinsèquement que deux branches et peut donc être obtenu dans un système à deux cavités seulement. On notera que ce mécanisme , s'il n'offre aucun intérêt pour la génération de nouvelles fréquences, présente un intérêt non négligeable pour la génération de photons jumeaux en vue de réaliser une source pour l'optique quantique et les systèmes de cryptographie. En effet, dans ce cas, les deux photons émis sont intrinsèquement couplés à l'extérieur de la même manière et offriront donc la même intensité en émission. D'autre part, l'émission s'effectuant à des angles importants, il sera aisé de séparer les photons jumeaux émis.
Par ailleurs, on a décrit ici un choix technique, où l'on a minimisé le nombre de couches dans les miroirs de
Bragg (13 paires) et le nombre de puits quantiques (1 puits par cavité) afin de réduire le temps de croissance et de minimiser une possible inhomogénéité (par exemple sur la largeur des puits quantiques et donc sur l ' énergie des puits les uns par rapport aux autres).
Le nombre de paires de couches dans les miroirs de Bragg influe sur deux paramètres dans la présente invention : la finesse des modes photoniques et l'importance du couplage entre les cavités. Il est connu d'après l'état des connaissances sur les cavités uniques planaires que le seuil pour l'oscillation paramétrique est d'autant plus faible que la finesse est grande. Inversement, il est important ici d'obtenir un bon couplage entre les trois cavités et donc de réduire le nombre de couches pour les miroirs intermédiaires 2 et 3.
On peut également envisager d'optimiser la structure en développant une structure ayant un plus grand nombre de paires pour les miroirs extérieurs 1 et 4, afin d'accroître la finesse globale, tout en minimisant le nombre de paires dans les miroirs de couplage 2 et 3.
Selon un second mode de réalisation, on réalise un système 20a comprenant seulement deux cavités couplées, comme illustré figure 8. Il comprend donc deux cavités 6a, 5a, un miroir de couplage 2a et deux miroirs 3a et la qui ferment le système et qui forment les cavités 6a, 5a avec le miroir de couplage 2a. Chaque cavité contient par exemple, comme précédemment, un puit quantique de type In0f06Ga0f94As 8a et 9a. Le substrat est noté lia. Ce mode de réalisation est adapté aussi bien pour l'utilisation d'un milieu en χ(3) que pour un milieu en χ<2), les deux cavités étant alors utilisées pour obtenir une résonance pour le signal et le complémentaire uniquement. Dans ce dernier cas, l'épaisseur des couches est choisie telle que l'énergie des cavités couplées soit dans la zone de transparence du matériau formant la cavité (par exemple GaAs). Pour une non-linéarité en χ(2>, le pompage se fait à une énergie supérieure au signal et au complémentaire.
L'invention concerne également un dispositif de conversion paramétrique comprenant un système tel que décrit dans les modes de réalisation précédents ainsi qu'un moyen d'injection pour la pompe à la fréquence de la pompe.
Selon une première variante, le moyen d'injection est par exemple de type laser et est agencé de sorte que l'angle d'injection, dans le système selon l'invention, soit sensiblement nul. Conformément à l'invention, on réalise alors une conversion paramétrique et la génération d'un photon signal et complémentaire. Selon une seconde variante, le moyen d'injection est intégré au système selon l'invention et se présente sous la forme d'une cavité additionnelle faiblement couplé pour la longueur d'onde de pompe, par un miroir de couplage faible présentant par exemple une plus grande réflectivité.
Un mode de réalisation pour un dispositif comprenant un moyen d'injection électrique, noté 20c, est présenté sur la figure 9. Les cavités 6c et 7c sont fortement couplées par l'intermédiaire du miroir de couplage 3c, qui comprenant 13 paires de couches AlAs/GaAs dans l'exemple présenté. Ces deux cavités fortement couplées fournissent les résonances pour le signal et le complémentaire. La troisième cavité, dite cavité d'injection, notée 5c, est faiblement couplée aux deux autres cavités par l'intermédiaire du miroir 2c qui comprend 23 paires de couches dans l'exemple présenté. Le spectre de réflectivité calculé, correspondant à cette structure, est présenté sur la partie droite de la figure 9. Le mode à basse énergie est le mode signal, le mode haute énergie le complémentaire et le mode intermédiaire est le mode correspondant à la cavité d'injection 5c. La cavité d'injection est contactée électriquement selon les moyens connus par l'homme du métier. Pour cela, les miroirs 2c et Ic sont dopés, puis contactés électriquement 13c. Le dispositif peut être couplé à une fibre optique notée 12c pour collecter les deux fréquences paramétriques. Le substrat est ici noté Ile.
Plusieurs utilisations du dispositif sont possibles. Le dispositif étant capable de fonctionner dans le régime d'amplification paramétrique, il peut être utilisé dans le domaine des télécommunications pour la régénération des signaux faibles. Pour le mode de réalisation faisant appel à une non- linéarité en X<2), la génération paramétrique permet d'obtenir des fréquences environ deux fois plus faibles que celle de la pompe, dans une gamme spectrale difficilement accessible par les diodes lasers classiques.
La génération paramétrique de photons jumeaux est à la base de procédés de cryptographie et servent de substitut à l'utilisation des sources de photons uniques. Dans ce cadre, les photons émis par le complémentaire servent à trigger la détection des photons signaux. Toute interception d'un photon par une tierce partie est systématiquement détectée. De surcroît, la génération paramétrique offre un avantage supplémentaire par rapport aux sources de photons uniques, à savoir la possibilité de générer des états intriqués, tels que ceux présentés dans la figure 5. Différents modes de cryptographie quantique sont décrits dans la publication de N. Gisin, G. Ribordy, W. Tittel et H. Zbinden, "Quantum cryptographie", Rev. Mod. Phys., p 145 (2002).

Claims

REVENDICATIONS
1. Système (S) monolithique, pour la conversion paramétrique à partir d'une onde de pompe à une fréquence de pompe, comprenant au moins deux cavités résonantes (6, 7), lesdites cavités étant fortement couplées par au moins un miroir de couplage (3), lesdites cavités étant agencées pour générer des fréquences paramétriques associées à ladite fréquences de pompe, au moins une desdites cavités comprenant un milieu non linéaire actif, ledit au moins un miroir de couplage étant agencé de sorte que lesdites fréquences paramétriques soient situées dans la bande d'arrêt dudit au moins un miroir pour une direction d'injection de ladite onde de pompe par la surface dudit système.
2. Système (S) de conversion paramétrique selon la revendication 1, caractérisé en ce qu'il comprend trois cavités résonnantes, lesdites cavités étant fortement couplées par deux miroirs de couplage, lesdites cavités étant agencées pour générer trois fréquences paramétriques associées à ladite fréquence de pompe, ledit système comprenant deux miroirs qui ferment le système et qui forment lesdites cavités avec lesdits deux miroirs de couplage.
3. Système (S) de conversion paramétrique selon la revendication 1, caractérisé en ce qu'il comprend deux cavités résonnantes, lesdites cavités étant fortement couplées par un miroir de couplage, lesdites cavités étant agencées pour générer trois fréquences paramétriques associées à ladite fréquences de pompe, ledit système comprenant deux miroirs qui ferment le système et qui forment lesdites cavités avec ledit miroir de couplage.
4. Système de conversion paramétrique selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit milieu non linéaire actif présente une susceptibilité de type χ(3).
5. Système de conversion paramétrique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit milieu non linéaire actif présente une susceptibilité de type χ(2).
6. Système de conversion paramétrique selon l'une quelconque des revendications précédentes, dans lequel ledit matériau actif est un puit quantique, un système de boîtes quantiques, ou un polymère.
7. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce que ledit au moins un miroir de couplage est un miroir de Bragg.
8. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce que ledit au moins un miroir de couplage est composé d'une couche diélectrique ou métallique possédant les paramètres de réflectivité adaptés à ladite conversion paramétrique.
9. Système de conversion paramétrique selon l'une des revendications précédentes pour la conversion paramétrique à partir d'une onde de pompe, caractérisé en ce que chacune desdites cavités est d'épaisseur sensiblement égale à un petit nombre entier de fois la demi longueur d'onde de l'onde de pompe que l'on désire convertir.
10. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur d'au moins une cavité présente un gradient latéral.
11. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce qu'il est de type vertical et en ce que l'épaisseur de la première cavité présente un gradient latéral dans une première direction, et la seconde cavité a une épaisseur présentant un gradient latéral dans une seconde direction différente de ladite première direction.
12. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce que le cœur des cavités est épitaxié.
13. Système de conversion paramétrique selon l'une des revendications précédentes, caractérisé en ce qu'au moins un miroir de couplage est épitaxié.
14. Dispositif optique destiné à la réalisation de conversion paramétrique comprenant un système selon l'une quelconque des revendications précédentes, comprenant en outre un moyen d'injection d'une onde de pompe à une longueur d'onde de pompe, ledit moyen d'injection étant apte à injecter ladite onde de pompe sensiblement selon l'axe dudit système.
15. Dispositif optique selon la revendication 14, caractérisé en ce que ledit moyen d'injection est formé par une cavité solidaire dudit système et faiblement couplé à celui-ci par un miroir de couplage faible pour ladite longueur d'onde de pompe.
16. Utilisation d'un dispositif selon l'une quelconque des revendications 14 ou 15 , pour la réalisation de conversions paramétriques.
PCT/FR2006/001280 2005-06-06 2006-06-06 Micro-oscillateur paramétrique optique à cavités couplées WO2006131640A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008515251A JP5129126B2 (ja) 2005-06-06 2006-06-06 結合キャビティを有する光学的パラメトリックマイクロオシレータ
DE602006011742T DE602006011742D1 (de) 2005-06-06 2006-06-06 Optischer parametrischer mikrooszillator mit gekoppelten resonatoren
EP06764740A EP1896896B1 (fr) 2005-06-06 2006-06-06 Micro-oscillateur paramétrique optique à cavités couplées
US11/916,644 US7751117B2 (en) 2005-06-06 2006-06-06 Optical parametric micro-oscillator comprising couplet cavities
AT06764740T ATE455317T1 (de) 2005-06-06 2006-06-06 Optischer parametrischer mikrooszillator mit gekoppelten resonatoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR05/05708 2005-06-06
FR0505708A FR2886745B1 (fr) 2005-06-06 2005-06-06 Micro-oscillateur parametrique optique a cavites

Publications (1)

Publication Number Publication Date
WO2006131640A1 true WO2006131640A1 (fr) 2006-12-14

Family

ID=35520746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/001280 WO2006131640A1 (fr) 2005-06-06 2006-06-06 Micro-oscillateur paramétrique optique à cavités couplées

Country Status (7)

Country Link
US (1) US7751117B2 (fr)
EP (1) EP1896896B1 (fr)
JP (1) JP5129126B2 (fr)
AT (1) ATE455317T1 (fr)
DE (1) DE602006011742D1 (fr)
FR (1) FR2886745B1 (fr)
WO (1) WO2006131640A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0813980D0 (en) 2008-07-31 2008-09-10 Univ St Andrews Control of relaxation oscillations in intracavity optical parametric oscillato rs
FR2935845B1 (fr) 2008-09-05 2010-09-10 Centre Nat Rech Scient Cavite optique amplificatrice de type fabry-perot
GB0906482D0 (en) * 2009-04-15 2009-05-20 Univ St Andrews intra-cavity optical parametric oscillator
JP2014219477A (ja) * 2013-05-02 2014-11-20 日本電信電話株式会社 光子対発生装置
US9235811B2 (en) * 2014-03-12 2016-01-12 Raytheon Company Creation of a maximally entangled quantum state
FR3094503A1 (fr) * 2019-03-27 2020-10-02 Centre National De La Recherche Scientifique Modulateur ultra-rapide de l’amplitude d’un rayonnement laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751796A1 (fr) * 1996-07-26 1998-01-30 Commissariat Energie Atomique Microlaser soilde, a pompage optique par laser semi-conducteur a cavite verticale

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256164A (en) * 1988-02-02 1993-10-26 Massachusetts Institute Of Technology Method of fabricating a microchip laser
US5854802A (en) * 1996-06-05 1998-12-29 Jin; Tianfeng Single longitudinal mode frequency converted laser
US6356370B1 (en) * 1997-06-06 2002-03-12 Agere Systems Optoelectronics Guardian Corp. Wavelength add-drop multiplexing using four-wave-mixing
US7324267B2 (en) * 2002-06-28 2008-01-29 Pirelli & C. S.P.A. Four-wave-mixing based optical wavelength converter device
US7369583B2 (en) * 2004-06-07 2008-05-06 Innolume Gmbh Electrooptically wavelength-tunable resonant cavity optoelectronic device for high-speed data transfer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2751796A1 (fr) * 1996-07-26 1998-01-30 Commissariat Energie Atomique Microlaser soilde, a pompage optique par laser semi-conducteur a cavite verticale

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. J. BAUMBERG ET AL.: "Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation", PHYSICAL REVIEW B, vol. 62, no. 24, 15 December 2000 (2000-12-15), pages 16247 - 16250, XP002363028 *
PELLANDINI P ET AL: "DUAL-WAVELENGTH LASER EMISSION FROM A COUPLED SEMICONDUCTOR MICROCAVITY", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 71, no. 7, 18 August 1997 (1997-08-18), pages 864 - 866, XP000730201, ISSN: 0003-6951 *
RIBET I ET AL: "Widely tunable single-frequency pulsed optical parametric oscillator", OPTICS LETTERS OPT. SOC. AMERICA USA, vol. 27, no. 4, 15 February 2002 (2002-02-15), pages 255 - 257, XP002363029, ISSN: 0146-9592 *
TEJA J ET AL: "Twin-beam generation in a triply resonant dual-cavity optical parametric oscillator", OPTICS EXPRESS OPT. SOC. AMERICA USA, vol. 2, no. 3, 2 February 1998 (1998-02-02), XP002363027, ISSN: 1094-4087 *
WEISBUCH C ET AL: "OBSERVATION OF THE COUPLED EXCITON-PHOTON MODE SPLITTING IN A SEMICONDUCTOR QUANTUM MICROCAVITY", PHYSICAL REVIEW LETTERS, AMERICAN PHYSICAL SOCIETY, NEW YORK, US, vol. 69, no. 23, 7 December 1992 (1992-12-07), pages 3314 - 3317, XP002046379, ISSN: 0031-9007 *

Also Published As

Publication number Publication date
EP1896896A1 (fr) 2008-03-12
JP5129126B2 (ja) 2013-01-23
FR2886745A1 (fr) 2006-12-08
EP1896896B1 (fr) 2010-01-13
FR2886745B1 (fr) 2007-10-12
US20090097510A1 (en) 2009-04-16
JP2008546029A (ja) 2008-12-18
DE602006011742D1 (de) 2010-03-04
US7751117B2 (en) 2010-07-06
ATE455317T1 (de) 2010-01-15

Similar Documents

Publication Publication Date Title
EP0575227B1 (fr) Procédé et dispositif de modulation et d&#39;amplification de faisceaux lumineux
EP2289134B1 (fr) Dispositif laser d&#39;émission d&#39;onde térahertz
EP1896896B1 (fr) Micro-oscillateur paramétrique optique à cavités couplées
EP1285479B1 (fr) Source a un photon a base d&#39;emetteurs dont les frequences sont reparties de maniere choisie
EP2660938B1 (fr) Dispositif laser d&#39;émission d&#39;onde Térahertz à structure trouée
EP1125347B1 (fr) Filtres auto-adaptes pour l&#39;affinement de l&#39;emission laser
FR2758893A1 (fr) Oscillateur parametrique optique impulsionnel monomode
EP2480866A1 (fr) Procede de stabilisation de la longueur d&#39;une cavite optique
WO2015079187A1 (fr) Systeme pour generer des impulsions optiques courtes de duree inferieure a la periode de la porteuse optique utilisant le principe de l&#39;amplification parametrique
EP2804271B1 (fr) Source optique paramétrique sur puce pompée électriquement
EP4053603B1 (fr) Emetteur optoelectronique a balayage angulaire rapide
EP4237907A1 (fr) Dispositif de génération de photons uniques et de paires de photons intriqués
FR2825524A1 (fr) Laser amplificateur a cavite verticale
FR2785099A1 (fr) Laser a l&#39;etat solide, notamment microlaser, capable d&#39;emettre des impulsions longues
FR3042073A1 (fr) Utilisation d&#39;une source laser a balayage en frequence rapide pour la manipulation d&#39;atomes
FR2817630A1 (fr) Dispositif d&#39;emission d&#39;onde lumineuse dans la gamme du teraherz
FR2726661A1 (fr) Dispositif parametrique optique
WO2012042469A1 (fr) Convertisseur optique de longueur d&#39;onde.
FR2717631A1 (fr) Source laser accordable.
FR2773227A1 (fr) Oscillateur parametrique optique a effet cascade

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008515251

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006764740

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2006764740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916644

Country of ref document: US