WO2006129486A1 - Chemical analyzer - Google Patents

Chemical analyzer Download PDF

Info

Publication number
WO2006129486A1
WO2006129486A1 PCT/JP2006/309901 JP2006309901W WO2006129486A1 WO 2006129486 A1 WO2006129486 A1 WO 2006129486A1 JP 2006309901 W JP2006309901 W JP 2006309901W WO 2006129486 A1 WO2006129486 A1 WO 2006129486A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
sample
port
electrodes
Prior art date
Application number
PCT/JP2006/309901
Other languages
French (fr)
Japanese (ja)
Inventor
Hironobu Yamakawa
Hideo Enoki
Kunio Harada
Sakuichiro Adachi
Isao Yamazaki
Original Assignee
Hitachi High-Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High-Technologies Corporation filed Critical Hitachi High-Technologies Corporation
Publication of WO2006129486A1 publication Critical patent/WO2006129486A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • B01L2400/0427Electrowetting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a chemical analyzer, and more particularly to a chemical analyzer suitable for analyzing a liquid containing a trace amount of substance.
  • Patent Document 1 An example of a conventional liquid transfer device is described in Patent Document 1.
  • the liquid transfer device described in this patent specification has a microactuator for driving a minute flow rate.
  • This microactuator is based on a phenomenon called electrowetting, has no moving parts, and applies an adhesive energy gradient between the liquid and the solid wall surface to the liquid.
  • a common electrode plate has a flat plate with a drive electrode array having a plurality of electrodes insulated from each other on the surface! Speak. By switching the power to each electrode constituting the electrode array, a small amount of liquid droplets supplied to the gap between the common electrode plate and the drive electrode plate are transported along the electrode array.
  • Patent Document 1 US Pat. No. 6,565,727
  • the voltage is controlled to change the wettability of the surface of the flat plate, and the liquid is transported in the device as the analysis unit.
  • this liquid transfer device focuses only on the transfer of minute droplets, it is sufficient for the dispensing and analysis of droplets necessary for chemical analysis. Is cunning, taking into account.
  • the present invention has been made in view of the above-mentioned problems of the prior art.
  • the purpose of the present invention is to dispense in a chemical analysis apparatus using an electro-wetting-on-electric (EWOD). It is to improve accuracy.
  • Another object of the present invention is to improve the throughput of a chemical analysis apparatus to which EWOD is applied. Means for solving the problem
  • a feature of the present invention that achieves the above object is that an electrode is formed between electrodes formed on opposing surfaces of a substrate on which a port for supplying a liquid is formed and a substrate disposed to face the substrate.
  • a supply means for supplying a liquid from the port using a thin tube at the tip is provided.
  • the electrode on the one substrate includes an electrode array having a large number of small electrodes, can hold a larger volume of liquid than the liquid droplets that move through the electrode array, and the thin tubes are arranged oppositely from the port. It is inserted between the substrates so that a large volume of liquid can be supplied at once.
  • Another feature of the present invention that achieves the above object is that an electrode formed on both opposing surfaces of a substrate on which a port for supplying a liquid is formed and a substrate disposed to face the substrate.
  • the port forms a dispensing portion, and a liquid reservoir is provided below the port.
  • An electrode is arranged, and an electrode array composed of a large number of electrodes having a smaller area than that of the liquid storage electrode is arranged with a slight interval from the liquid storage electrode.
  • the opposing substrate constitutes an analysis device, and the analysis device has an analysis unit arranged at a position different from the dispensing unit having the port. It is preferable that droplets required for one analysis can be separated from the liquid dispensed from the dispensing section by the dispensing section.
  • the dispensing unit has a plurality of ports to which the first liquid and the second liquid can be supplied, respectively, below the plurality of ports and facing the ports.
  • a holding part for mixing and holding the first and second liquids may be formed between the substrates.
  • a stagger that fits in the opening of the port may be provided.
  • the first liquid is a sample liquid and the second liquid is a reagent or a diluent.
  • liquid protrudes therebetween when an angle formed by the plurality of electrode rows, in which a plurality of electrode rows having a plurality of electrodes are arranged around the liquid storage electrode, is an acute angle, liquid protrudes therebetween. It is preferable to provide a prevention means. Further, the liquid pool electrode, which is open at the tip of the thin tube in the direction of the electrode row, is arranged inside a plurality of crescent-shaped electrodes having different outer diameters and the crescent-shaped electrode. It is preferable to arrange the electrodes in which a part of the circle is cut out with a slight gap between them to form a substantially circular electrode.
  • the fluorine system in which the capillary tube is immersed has a controller for changing the magnitude of the voltage applied to a large number of electrodes of the liquid reservoir electrode and electrode array forming the dispensing part.
  • An oil holding means may be provided, and the controller may control to immerse the thin tube in oil held in the fluorine-based oil holding means before supplying the liquid from the port.
  • the diameter of the narrow tube is smaller than the diameter of the open end of the port.
  • the controller may be formed in a funnel shape inside the port opening. The controller supplies the liquid supplied by the thin tube. The liquid may be supplied so that the order of the analysis and the order of analysis in the analysis unit are different.
  • the probe supplied into the device on which the electrode is formed can dispense more than the reagent or sample amount necessary for one analysis, and the dispensing unit
  • This electrode has a structure that forms only the amount of droplets required for one analysis, so the accuracy of the droplet volume can be improved even if a probe with low dispensing accuracy is used.
  • samples or reagents required for multiple analyzes or multiple analyzes can be dispensed from the probe into the device, so that a large number of droplets can be manipulated simultaneously in the device, improving throughput.
  • FIG. 1 is a perspective view of an embodiment of a chemical analyzer according to the present invention.
  • FIG. 2 is a longitudinal sectional view of a dispensing probe unit provided in the chemical analyzer shown in FIG. 1.
  • FIG. 3 is a top view of an analysis device unit provided in the mechanical analysis apparatus shown in FIG. 1.
  • FIG. 4 is a top view of an analysis device unit provided in the mechanical analysis apparatus shown in FIG. 1.
  • FIG. 5 is a detailed perspective view of a sample dispensing unit of the chemical analyzer shown in FIG. 1.
  • FIG. 6 is a longitudinal sectional view of another example of the dispensing probe portion.
  • FIG. 7 is a diagram illustrating a dispensing process.
  • FIG. 8 is a diagram for explaining a dispensing process.
  • FIG. 9 is a top view of another example of the analysis device unit.
  • FIG. 10 is a top view of still another example of the analysis device unit.
  • FIG. 11 is a longitudinal sectional view of still another embodiment of the dispensing probe portion.
  • FIG. 1 is a perspective view of the chemical analysis apparatus 100 in the first embodiment, which is partially omitted.
  • a large number of sample cups 110 which are cylindrical containers for storing biological samples such as serum, are arranged in the vicinity of the outer periphery of a sample disk 120 that is rotatably provided.
  • a reagent disk 140 Adjacent to the sample disk 120, a reagent disk 140, which is also rotatably provided, is disposed.
  • a large number of reagent bottles 130 are accommodated near the outer periphery of the reagent disk 140.
  • An analysis device 150 which will be described in detail later, is disposed at an interval from these two disks 120 and 140.
  • a sample dispensing mechanism 160 is disposed between the analysis device 150 and the sample disk 120.
  • the sample dispensing mechanism 160 has a probe moving mechanism 212 having a main shaft portion that can move up and down and an arm portion in which the main shaft portion force projects in the horizontal direction.
  • a narrow tube 182 called a probe that sucks the sample liquid from the sample cup 110 and discharges it to a plurality of ports 151 having openings provided on the surface of the analysis device extends vertically downward.
  • a tube (not shown) is connected to the arm side end of the probe 182.
  • the other end of the tube is connected to a syringe (not shown) disposed in the vicinity of the sample dispensing mechanism 150.
  • the syringe drives 182 reagents in the probe.
  • a reagent dispensing mechanism 170 is disposed between the analysis device 150 and the reagent disk 140.
  • the reagent dispensing mechanism 170 includes a main shaft portion that can move up and down, and a probe moving mechanism 210 that includes an arm portion that protrudes horizontally from the main shaft portion.
  • a narrow tube 180 called a probe that sucks a reagent solution from the reagent bottle 130 and discharges it to a plurality of ports 151 having openings provided on the surface of the analysis device extends vertically downward.
  • a tube 190 is connected to the arm side end of the probe 180.
  • the other end of the tube 190 is connected to a syringe 200 disposed in the vicinity of the reagent dispensing mechanism 170.
  • the syringe 200 drives 180 reagents in the probe.
  • Sample disk 120 and reagent disk 140 are connected to controller 1 85 by electrical wiring 181.
  • the controller 185 is also connected with a sample dispensing mechanism 160 and a reagent dispensing mechanism 170.
  • the sample disk 120 and the sample dispensing mechanism 160, and the reagent disk 140 and the reagent dispensing mechanism 170 are aligned with each other. Control to work
  • the analysis device 150 has a rectangular flat plate, and is placed on the stage 220.
  • a plurality of ports 151 are arranged side by side near the sample disk 120 and the reagent disk 140 of the analysis device 150 and near the side edge.
  • An electrode lane 152 in which a large number of electrodes are formed in a row is provided with the port 151 as an end.
  • Fig. 2 is a longitudinal sectional view of a dispensing part including the port 151 of the analysis device 150, and Figs. 3 and 4 show one electrode row from the electrode lane 152 formed in the analysis device 150.
  • the top view when taken out is shown.
  • two substrates a rectangular upper substrate 230 and a lower substrate 240, are arranged facing each other with a gap therebetween.
  • the upper surfaces of the electrodes 3001, 3002,... Are covered with an insulating film 250.
  • the upper surface of the insulating film 250 is covered with a water repellent film 260.
  • the upper substrate 230 as a whole is a ground electrode and is covered with a water-repellent film 260.
  • the ground electrode of the upper substrate 230 is connected to the ground, and the electrodes 3001, 3002,... Of the lower substrate 240 are connected to a power source (not shown) by electric wiring 181.
  • Each electrode of lower substrate 240 3001 , 3002,... Can be switched and applied.
  • the distance between the two substrates 230 and 240 is kept constant by the spacer 280.
  • the electrodes 3001, 3002,... Of the lower substrate 240 are formed by depositing or sputtering thin film electrodes having conductivity such as Cr, Ti, Al, ITO on the surface of an insulating substrate material such as glass or quartz. And surface treatment such as CVD. On this electrode, an organic insulating film such as Parylene (trade name) manufactured by ThreeBond Co., Ltd. or an inorganic insulating film such as Si02 is processed by vapor deposition, sputtering, CV D, or the like. A fluorine-based water repellent film 260 is coated on the insulating film 250. As a material of the water repellent film 260, Teflon AF1600 (trade name) manufactured by DuPont, Cytop (trade name) manufactured by Asahi Glass, or the like is used.
  • a transparent conductive film such as ITO is formed on the entire upper surface of the substrate material.
  • a fluorine-based water-repellent film 260 is coated on the conductive film. Since the water-repellent film 260 is formed on the surface, it is possible to prevent contamination by an impurity solution in which various solutions hardly adhere to the surface of the substrates 230 and 240. Openings are formed at a plurality of locations on the upper surface substrate 230, and cylindrical ports 151 are attached to the openings so that the upper force can be accessed.
  • the operation of the analysis device 150 configured as described above will be described below.
  • the operation of the force reagent for explaining the operation of the sample is the same.
  • the probe 180 is immersed in the sample cup 110, and the syringe 200 is operated to suck the sample liquid 290.
  • the amount of sample liquid to be sucked is for multiple tests. For example, in the case of three tests, the probe 180 is aspirated by adding the dummy amount 2904 with a margin to the first to third sample amounts 2901 to 2903 necessary for the analysis.
  • the sample dispensing mechanism 160 is driven to position the probe 180 at the predetermined port 152 of the analysis device 150. Thereafter, as shown in FIG. 2 (A), the probe 180 holding the sample solution therein is inserted into the port 152. The tip of the probe 180 is cut obliquely, and the cut surface 185 faces the electrode lane 152. The syringe 200 is driven, and the sample liquid 290 is discharged into the gap between the two substrates 230 and 240 (see FIG. 2 (B)).
  • the notch surface 185 of the probe 180 is held toward the electrode lane 152, and a voltage is applied between the first electrode 3001 to the fourth electrode 3004 and the upper substrate 230. Is applied to the electrodes 3001 to 30 which are energized in the electrode lane 152. Only on 04, wettability becomes large. Then, the sample liquid discharged from the probe 180 does not go in the direction of the spacer but flows so as to crawl on the electrode lane 152. When all of the sample liquid 290 in the probe 180 is discharged, the sample liquid 290 is applied with a voltage to increase the wettability of the first electrode 3001 to the fourth electrode 3004 and the inertial fifth electrode 3005. It extends to the point where the tip is hooked on (see Fig. 2 (C)).
  • the probe 180 in which the sample liquid 290 is emptied is pulled up, the energization of the first electrode 3001 where the sample rear end 320 is located is stopped, and the fifth electrode 3005 where the sample tip 310 is located is energized.
  • the wettability of the electrode lane 152 decreases at the sample rear end 320 position, and the wettability increases at the sample front end 310 position. As a result, the sample liquid 290 moves to the right in FIG. 2 (see FIG. 2 (D)).
  • an electrode lane 1 52 is formed as shown in FIG. That is, the electrode lane 152 includes a transport lane 330 for transporting the sample liquid or reagent solution to a predetermined position, an analysis lane 350 for transporting the liquid separated at the liquid separation point 340 to the analysis position, and a discharge lane.
  • Liquid separation point 340 is a place where only the amount of liquid used in one analysis is separated from the liquid dispensed from port 151 of the dispensing unit.
  • the discharge lane 360 is continuous with the transfer lane 330, and when the remaining sample liquid 290 separated by an amount necessary for one analysis is temporarily placed, all the droplets necessary for the analysis are separated. Used when the remaining dummy droplets are discharged out of the analysis device 150.
  • Each of these lanes 330, 350, and 360 has a shape in which a large number of rectangular electrodes are arranged on a straight line with a slight gap therebetween.
  • FIG. 3 is a diagram showing how the sample amount required for one analysis is separated.
  • Fig. 3 (A) shows the sample liquid dispensed from port 151 of the dispensing unit. This is the case. A voltage is applied to the electrodes 3301 to 3304 marked with X. The wettability of the electrodes 3301 to 3304 is increased, and the sample liquid occupies the electrodes 3301 to 3304. From this state, current is sequentially applied to the electrode located on the right side of the drawing in relation to the electrode 3304. At the same time, energization is sequentially stopped from the electrode 3301 located on the left side. In this way, the sample liquid 290 is conveyed to the right.
  • the position of the sample liquid 290 transported to the right includes the liquid separation point 340. It shows a state of being conveyed up to.
  • the sample liquid 290 reaches the liquid separation point 340.
  • voltage application is continued to the electrode 320 that is located at the corner where the transfer lane 330 branches to the analysis lane 350 and on which the rear end of the sample liquid 290 is placed.
  • the voltage application to the electrode 3601 located at the leftmost part of the discharge lane 360 adjacent to the electrode 320 is stopped.
  • energization of the rightmost electrode 310 on which the sample solution 290 is placed is started.
  • the sample liquid 290 finally has the first sample droplet 3801 corresponding to the sample amount for the first test.
  • the remaining sample liquid 390 is separated.
  • the first sample droplet 3801 is an amount covering almost one electrode.
  • the position where the first sample droplet 3801 is held is a branch point to the analysis lane 350, and the amount of the first sample droplet 3801 occupies the area of one electrode. If the voltage application position is changed for each of the zero electrodes, the first sample droplet 3801 is transported on the analysis lane 350. That is, in the drawing of the analysis lane 350, the voltage application is switched sequentially from the electrode 3501 located at the upper end (see FIG. 3E). As with sample 290, the reagent solution is also dispensed at the other port 152 force in analytical device 150 and mixed into this first sample droplet 3801 via other transport and analysis lanes. The mixed solution is subjected to absorbance analysis or the like in an analysis unit (not shown).
  • the discharge lane 360 is The voltage application to the electrode 3601 located at the end is started and the voltage application to the electrode 310 at the tip of the discharge lane 360 is stopped. As a result, the remaining sample liquid 390 from which the first sample droplet 3801 has been separated is returned to the left. Then, when the rear end of the sample liquid 390 comes to occupy the electrode 320 (see FIG. 3 (F)), the procedure shown in FIG. 3 (D) is repeated again for the force of FIG. Separate drops 3802.
  • the amount of liquid separated as the first to third sample droplets 3801 to 3803 is defined by the amount remaining on the electrode 320, so the sample 290 is absorbed by the probe 180. Even if an error occurs during drawing and discharging, since the dummy droplet 3804 acts as a buffer, the liquid amount of the three droplets 3801 to 3803 can be set with high accuracy without excess or deficiency. Therefore, even if the dispensing accuracy of the probe 180 is low, the dispensing accuracy of the amount of liquid used for analysis in the analysis device 150 can be maintained with high accuracy, and high-precision analysis can be performed in the analysis unit. In addition, since a plurality of droplets can be formed with a single dispensing force, a plurality of tests can be dispensed at once, and the throughput of the analyzer that does not need to drive the probe or sample disk each time is improved.
  • the number of electrodes for stopping the voltage application in order to form the separated liquid droplets is not limited to one of the electrodes 3601, and the voltage application to a plurality of adjacent electrodes is performed simultaneously. It may be stopped to successfully form a constriction of droplets. In that case, monitor the behavior of the sample solution and reagent at the liquid separation point 340, and monitor the capacitance and images, etc., and determine the number of voltage application stoppages according to the behavior!
  • FIG. 4 shows a modification of the above embodiment.
  • This modification is different from the above embodiment in that a plurality of analysis lanes 350 branched from a continuous transport lane 330 and a discharge lane 360 are provided to simultaneously separate a plurality of sample droplets. Since there are a plurality of analysis lanes 350 and a plurality of droplets are separated at the same time, the electrodes are formed in a shape that facilitates the separation of the droplets.
  • the first analysis lane 350 located on the transport lane 330 side has the same configuration as the above embodiment, but to the right of the branch with the first analysis lane 350.
  • the second analysis lane 350 is arranged, and the third analysis lane 350 is arranged further to the right.
  • electrodes 321 and 322 similar to the electrode 320 at the branch portion are connected to the top of the second and third analysis lanes 350.
  • the small electrodes 3311 to 3316 constitute a liquid separation point 340.
  • a sample liquid 290 force including a sample amount that can be tested a plurality of times is transported on a transport lane 330 to a liquid separation point 340.
  • Liquid separation point 340 includes small electrodes 3311-3316 and large electrodes 320-322.
  • the small electrodes 3311 to 3316 arranged at the liquid separation point 340 have a small droplet holding force by electrowetting, so that the sample liquid 290 forms a constriction 370 corresponding to the electrode area at the liquid separation point 340 ( (See Figure 4 (B)).
  • the amount of sample liquid dispensed from the dispensing port at a time is slightly larger than the analysis amount for 3 batches. You may repeat the procedure.
  • a plurality of droplets for analysis can be formed at the same time by repeatedly arranging small electrodes for separating droplets in the transport lane and arranging an analysis lane therebetween. Therefore, the throughput of the chemical analyzer is improved.
  • FIG. 5 shows a perspective view of the chemical analyzer 100.
  • the sample dispensing unit is shown, and the reagent dispensing unit is omitted.
  • the probe 180 of the sample dispensing mechanism 160 that can be moved up and down and is rotatable is disposed on the rotatable sample disk 120. In the middle of the probe 180, a stock 181 is attached.
  • the probe 180 can also access a port 151 formed in the analysis device 150.
  • the sample disk 120 also contains an oil cup 1151 having high chemical resistance such as fluorinated oil and containing inert oil.
  • a reservoir electrode 400 which will be described in detail later, and a large number of electrodes are arranged as an extraction electrode lane 410.
  • a transport lane 330 is connected to the extraction electrode lane 410.
  • the transfer lane 330 is connected with first to third holding lanes 4601 to 4603 that hold three different types of samples. Retention lanes 4601 to 4603 are not shown! Are connected to the analysis unit.
  • the inert oil 420 is supplied in advance between the two substrates 230 and 240 of the analysis device 150 from the port 151 using the probe 180.
  • the entire substrate 230 and 240 are covered with the oil film, so that the reagents and sample solution are not easily in contact with the substrates 230 and 240. . Therefore, even when the reagent or sample solution is changed for another analysis after one analysis is completed, the carry-over of the solution used in the previous analysis can be avoided. And the same analysis lane can be used to handle different samples.
  • the first sample droplet 4701 generated by separating a part of the first sample liquid dispensed from the first sample cup 1101 to the port 151 by using the probe 180 is extracted from the extraction electrode lane. From 410 to transport lane 330, and finally to first sample holding lane 4601 to await mixing and analysis. Similarly, the second and third samples are dispensed into the port 151, and part of the sample is separated by the reservoir electrode 400 to generate sample droplets 4702 and 4703. The separated droplets 4702 and 4703 are drawn out. Electrode Lane 410, next! Move to transport lane 330 with /, and wait on each holding lane 4602, 4603.
  • Controller force (not shown) Each sample is moved to the analysis lane as necessary. As a result, the first to third samples can be transported from the holding lanes 4601 to 4603 to the analysis lane in any order in the analysis device 150 without driving the probe 180. Can improve throughput. In addition, it is not necessary to rotate the sample disk 120 each time an analysis is requested to move the sample cup containing the desired sample to the dispensing position of the probe 180.
  • FIG. 6 and 7. Details of the droplet separation operation in the present embodiment configured as described above will be described with reference to FIGS. 6 and 7.
  • FIG. In the following description, handling of the sample 290 will be described, but the same applies to the case of the reagent.
  • the sample disc 120 is rotated to position the sample cup 110 and the probe 180, and then the probe 180 is immersed in the sample cup 110 to suck the sample 290.
  • the amount of sample 290 to be aspirated is the amount that can be executed multiple times or multiple tests plus the dummy amount to allow a margin.
  • the tip of the probe 180 is covered with oil on both the inner and outer surfaces. Therefore, the sucked sample 290 can be prevented from adhering to the surface of the probe 180.
  • the sample 290 can suppress the occurrence of contamination at the probe 180, enabling highly accurate analysis.
  • the probe positioning mechanism 210 is driven to move the probe 180 to the dispensing port 151 for positioning (see FIG. 6B). Insert the probe 1 80 holding the sample solution 290 into the port 151.
  • a probe stopper 181 formed in the vicinity of the tip of the probe 180 is fitted into a port connector 1510 formed in the upper part of the port 151 so that the probe 180 and the port 151 are brought into close contact with each other.
  • the stopper 181 provided on the probe 180 compensates for misalignment or insertion misalignment between the probe 180 and the port 151 by the probe positioning mechanism 210, and prevents damage to the bottom surface of the analysis device 180.
  • the oil 420 is prevented from overflowing from the port 151 when the probe 180 is inserted into the port 151.
  • the syringe 200 is driven to discharge the sample liquid 290 into the analysis device 150. At this time, a voltage is applied only to the reservoir electrode 400. The position of the reservoir electrode 400 to which a voltage is applied is good in wettability, but the wettability is bad in other electrode positions. Therefore, the sample liquid 290 stays on the liquid storage electrode 400 without flowing elsewhere (see FIG. 6C).
  • Extraction electrode Apply voltage to the electrode in lane 410. From this, a part of sample liquid 290 is separated by 2902 force S.
  • the voltage application electrodes 410a, 410b,... Of the extraction electrode lane 410 are sequentially switched to drive the sample droplet 2902 on the electrode lane.
  • the shape of the liquid reservoir electrode 400 is such that droplet separation is easy.
  • the electrode marked with X is an electrode to which a voltage is applied.
  • the liquid reservoir electrode 400 has a circular shape in which a plurality of crescent-shaped electrodes 440a to 440d of different sizes are arranged with a slight gap, and a circle is partially cut inside the smallest crescent-shaped electrode 440a.
  • the electrode 430 is arranged.
  • the electrode of the extraction electrode lane 410 has substantially the same shape as the circular electrode 430 of the liquid storage electrode. That is, when two circles having the same size are arranged so as to partially overlap, the electrodes 410a, 410b,.
  • the individual electrodes 410a, 410b,..., Are arranged in a straight line with a gap f3 ⁇ 4 between the forces.
  • the sample liquid 290 immediately after being discharged from the probe 180 covers the liquid reservoir electrode 400 as shown by the bold line (Fig. 7 (A See)).
  • voltage application to the outermost crescent-shaped electrode 440d of the reservoir electrode 410 is stopped, and the electrode 410a located on the leftmost side in FIG. Apply a voltage to 410b (see Fig. 7 (B)). Since the wettability of the electrodes 410a and 410b of the extraction electrode lane 410 is increased, the sample droplet 290 extends toward the extraction electrode lane 410, and a constricted portion is generated.
  • the voltage application to the outermost crescent-shaped electrode 400d is stopped, the sample liquid 290 force map defined by the area of the crescent-shaped electrode 400d tries to move to the right.
  • the droplet force of an amount defined by the shape of the individual electrodes 400a to 400d, 430 of the reservoir electrode 400 It is conveyed as 902. Therefore, if each of the electrodes 400a to 400d and 430 is manufactured with high accuracy, the dispensing accuracy is improved and high accuracy analysis is possible.
  • high-accuracy processing can be performed by easily applying a sputtering method or a vapor deposition method used in the manufacture of semiconductors.
  • the remaining residual sample solution was sucked with the probe 180.
  • the residual sample solution 2905 is discharged into the discharge port not shown. (See Fig. 7 (D)).
  • a discharge lane is connected to the extraction electrode lane 410. According to the present embodiment, since the operation of the probe 180 which does not need to drive the syringe 200 is not restrained, the throughput is improved.
  • the drain electrode lane 410 is provided with an electrode 430b having a triangular portion that fits in the fan-shaped part of the liquid reservoir electrode 40Of, which is formed by a circular part of the electrode 400f. ing.
  • the electrode 430b has a rectangular portion and a triangular portion, and is disposed with a slight gap from the liquid storage electrode 400.
  • the other electrodes 431, 432,... Of the extraction electrode lane 410 are rectangular electrodes (see FIG. 8A).
  • the sample liquid 290 is discharged so as to have a larger diameter than the liquid storage electrode 400f.
  • a voltage is applied to the electrode located on the leftmost side in the drawing of the liquid storage electrode 410 f and the extraction electrode lane 410.
  • the voltage application to each electrode of the extraction electrode lane 410 is switched and the separated droplets are conveyed to the analysis unit.
  • the amount of the sample liquid 290 dispensed from the probe 180 is small! /, And sometimes the separation liquid is generated several times, and the size of the sample liquid 290 located on the liquid reservoir electrode 400f is the size of the liquid reservoir electrode 400f.
  • a voltage is applied to the two electrodes 430b and 431 on the leftmost side in the figure of the liquid storage electrode 400 and the extraction electrode lane 410.
  • the wettability is increased and a part of the sample liquid 290 is pulled out and moved to the extraction electrode lane 410 (see FIG. 8B).
  • the voltage applied to the liquid storage electrode 400f is made smaller than that of the electrode 430b.
  • the wettability of the liquid reservoir electrode 400f decreases, and the suction force of the liquid reservoir electrode 400f sucking the sample liquid 290 decreases.
  • the sample liquid 290 can be easily moved.
  • the liquid storage electrode 290b can be obtained even if the diameter of the sample liquid 290 is further reduced.
  • the sample liquid 290 can be drawn out to the sample electrode 290 drawing electrode lane 410 side.
  • the voltage application to the electrode 430 b is stopped, and the separation droplet 2902 is formed (see FIG. 8C).
  • the applied voltage is increased. Since the separated droplet 2902 is transported, the magnitude of the applied voltage may be adjusted without necessarily switching the electrode on / off. In this case, the separation droplet 2902 can be smoothly transported and the transport speed can be improved.
  • the insulating film 250 and the water repellent film 260 of the substrates 230 and 240 are made thicker at the reservoir electrodes 400 and 400f.
  • the voltage generated in the sample solution is reduced.
  • Another shape of the reservoir electrode is shown in the top view in FIG. Slits 400h are formed at multiple locations on the reservoir electrode 400g. This reduces the electrode area of the liquid reservoir electrode 400g and reduces the suction force.
  • FIG. 10 is a top view showing still another modified example of the liquid storage electrode.
  • three extraction electrode lanes 4101 to 4103 are connected to the liquid storage electrode 400k.
  • the electrode closest to the reservoir electrode 400k in each of the extraction electrode lanes 4101 to 4103 is a rectangle to which a triangular portion is added in the same manner as in the above embodiment, and the triangular portion is formed on the reservoir electrode 400k. It is a structure that fits into the slit.
  • the angle formed by the first extraction electrode lane 4101 and the second extraction electrode lane 4102 is an acute angle, and a pole 450 is provided between them.
  • a third extraction electrode lane 4103 is arranged 180 degrees opposite to the first extraction electrode lane 4101.
  • a voltage is applied to the electrodes of the extraction electrode lane.
  • the sample solution 290 can be withdrawn at the same time.
  • the sample liquid 290 located between the two extraction electrode lanes 4101 and 4102 is used. May protrude from the reservoir electrode 400k and move outward in the radial direction. Therefore, a pole 450 is arranged so that the sample liquid 290 does not protrude.
  • the pole 450 preferably has a structure like a round bar with a small contact area with the sample liquid 290.
  • FIG. 11 is a longitudinal sectional view of a dispensing unit of the analysis device 150 provided in the analysis apparatus 100.
  • This embodiment is different from the above embodiments in the dispensing method of the sample liquid 290.
  • Two types of solutions, in this example, a sample solution and a diluting solution are combined and dispensed. As other combinations, it can be applied to combinations of reagents and sample solutions.
  • the analysis device 150 for analyzing a sample is provided with a port 151 for the probe 180 to supply the sample.
  • a diluent container 490 is placed at one corner of a table 480 on which an analysis device 150 having a pair of upper and lower substrates 230 and 240 is placed.
  • a diluent port 500 for supplying the diluent into the analysis device 150 is disposed.
  • a diluent tube 510 is connected to the diluent port 500 and is connected to the diluent container 490 via the valve 520. Pressure is applied in advance in the diluent container 490.
  • the sample 290 is dispensed by inserting the probe 180 into the sample port 151 from the outside.
  • Probe 180 is much smaller than the inner diameter of sample port 151 and has an outer diameter of 0.lm It is made of SUS or resin, and can be deformed.
  • the inside of the sample port 151 is formed in a mouth shape, and even if the probe 180 hits the inner wall surface of the sample port 151, the sample port 151 is deformed and inserted into the analysis device 150 (see FIG. 11A). Since the inner wall of the sample port is formed in a funnel shape, the probe 180 can be positioned in a predetermined position even if the positioning accuracy of the positioning mechanism of the probe 180 is poor.
  • the valve 520 interposed in the diluent tube 510 connected to the diluent container 490 is opened for a predetermined time, and a predetermined amount of the diluent 540 is discharged into the analysis device 150 (see FIG. 11 (B)). ).
  • the sample solution 290 and the diluent 540 are mixed, and a mixed solution 550 is generated on the reservoir electrode 400 (see FIG. 11C).
  • the lower substrate 240 is recessed slightly downward at the position of the liquid storage electrode 400, and can store the sample liquid 290 and the dilution liquid 540. If a large amount of the dilution liquid 540 is injected, a high dilution liquid mixture 550 can be prepared.
  • the droplet 551 is separated from the mixed solution 550 by the amount necessary for one analysis in the extraction electrode lane 410.
  • the sample port 151 and the diluent port 500 are both arranged on the liquid storage electrode 400, and the two positions are close to each other, so that mixing of the two kinds of liquids becomes easy.
  • the accuracy of the dilution rate can be improved.
  • the large-volume liquid is dispensed later, and a large flow is generated in the mixed solution by the energy at the time of dispensing to enhance the mixing effect.
  • the weighing error is substantially constant, the weighing accuracy when dispensing a large volume of solution is high, and the volume of the sample liquid 290 depends on the amount of sample liquid 290 previously supplied into the analysis device 150.
  • the dilution liquid 540 may be dispensed. As a result, the dispensing amount can be adjusted with high accuracy. If the dispensing amount of sample 290 and diluent 540 is monitored with the capacitance output between the two substrates 23, 240 of analysis device 150 and the photographed image of the solution, the dispensing accuracy can be further improved.

Abstract

A chemical analyzer to which electro-wetting (EWOD) is applied and which enhances a dispensing accuracy. The chemical analyzer (100) applies a voltage between electrodes formed on the opposing surfaces of a substrate, constituting an analysis device (150) and formed with liquid supplying ports (151), and another substrate disposed facing the first substrate to allow liquid supplied into the substrates to flow. A unit (160) is provided which has a thin tube (180) at the tip end thereof and supplies liquid from the ports using this thin tube. The electrode on the lower-side substrate is provided with electrode rows (152) having many small electrodes. The thin tube can retain liquid larger in volume than droplets moving through the electrode rows. The thin tube is inserted between oppositely disposed substrates through a port to supply a large volume of liquid at a stretch.

Description

明 細 書  Specification
化学分析装置  Chemical analyzer
技術分野  Technical field
[0001] 本発明は化学分析装置に係り、特に微量物質が含まれる液の分析に好適な化学 分析装置に関する。  [0001] The present invention relates to a chemical analyzer, and more particularly to a chemical analyzer suitable for analyzing a liquid containing a trace amount of substance.
背景技術  Background art
[0002] 従来の液移送装置の例が、特許文献 1に記載されて!、る。この特許明細書に記載 の液移送装置は、微小流量を駆動するマイクロアクチユエータを有している。このマイ クロアクチユエータは、エレクトロウエツティングという現象に基づいており、可動部を 有しておらず、液と固体の壁面間の粘着エネルギー勾配を液に作用させている。具 体的には、 1枚の共通電極板に、互いに絶縁された複数の電極を有する駆動電極列 が表面に形成された平板が対向配置されて!ヽる。電極列を構成する各電極への通 電を切り換えて、共通電極板と駆動電極板の隙間に供給した微量な液滴を、電極列 に沿って搬送している。  [0002] An example of a conventional liquid transfer device is described in Patent Document 1. The liquid transfer device described in this patent specification has a microactuator for driving a minute flow rate. This microactuator is based on a phenomenon called electrowetting, has no moving parts, and applies an adhesive energy gradient between the liquid and the solid wall surface to the liquid. Specifically, a common electrode plate has a flat plate with a drive electrode array having a plurality of electrodes insulated from each other on the surface! Speak. By switching the power to each electrode constituting the electrode array, a small amount of liquid droplets supplied to the gap between the common electrode plate and the drive electrode plate are transported along the electrode array.
[0003] 特許文献 1:米国特許第 6565727号明細書  [0003] Patent Document 1: US Pat. No. 6,565,727
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 上記特許文献 1に記載の液移送装置によれば、電圧を制御して平板の表面の濡 れ性を変え、分析部であるデバイス内で液を搬送させている。しカゝしながら、この液移 送装置は微小な液滴の移送だけに注目しているので、化学分析に必要な液滴の分 注や液滴の分析等にっ ヽては、十分には考慮して ヽな 、。  [0004] According to the liquid transfer apparatus described in Patent Document 1, the voltage is controlled to change the wettability of the surface of the flat plate, and the liquid is transported in the device as the analysis unit. However, since this liquid transfer device focuses only on the transfer of minute droplets, it is sufficient for the dispensing and analysis of droplets necessary for chemical analysis. Is cunning, taking into account.
[0005] 化学分析装置では、デバイス外力 細管のプローブを用いてサンプルに多種の試 薬を供給して、多項目の分析を高速で実施する必要がある。そのため、デバイス内に 、サンプルや試薬を精度よく分注および導入しなければならないが、現状では分注 方法が確立されておらず分注精度が低い。また、分析に必要な量よりも余分に分注 しないと分析が出来なくなる恐れがあり、分注する試薬やサンプルの量が増大する。 さらに、多数のサンプルや複数の試薬を並行して同時に扱えば自動化の効率が向 上するが、多数の試薬を同時に扱うことについて考慮していないので、スループット を向上させることが困難である。 [0005] In a chemical analyzer, it is necessary to perform a multi-item analysis at high speed by supplying various reagents to a sample using a probe of a device external force capillary. For this reason, samples and reagents must be accurately dispensed and introduced into the device, but at present, no dispensing method has been established and dispensing accuracy is low. In addition, if the sample is not dispensed in excess of the amount required for analysis, the analysis may not be possible, and the amount of reagents and samples to be dispensed will increase. In addition, the efficiency of automation can be improved by handling multiple samples and multiple reagents simultaneously. However, it is difficult to improve throughput because it does not consider handling many reagents at the same time.
[0006] 本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、エレクト 口 ·ゥエツティング ·オン ·ダイエレクトリック(EWOD: electrowetting on dielectric)を適 用した化学分析装置において、分注精度を向上させることにある。本発明の他の目 的は、 EWODを適用したィ匕学分析装置のスループットを向上させることにある。 課題を解決するための手段  [0006] The present invention has been made in view of the above-mentioned problems of the prior art. The purpose of the present invention is to dispense in a chemical analysis apparatus using an electro-wetting-on-electric (EWOD). It is to improve accuracy. Another object of the present invention is to improve the throughput of a chemical analysis apparatus to which EWOD is applied. Means for solving the problem
[0007] 上記目的を達成する本発明の特徴は、液体を供給するポートが形成された基板と 、この基板に対向して配置した基板との双方の対向する面に形成された電極間に電 圧を印加して、前記基板内に供給された液体を流動させる EWODを用いた化学分 析装置において、先端部に細管を有しこの細管を用いて前記ポートから液体を供給 する供給手段を設け、前記一方の基板の電極は、多数の小電極を有する電極列を 備え、この電極列を移動する液滴よりも大容量の液を保持可能であり、前記ポートか ら細管を前記対向配置した基板間に挿入して、大容量の液を一度に供給可能とした ものである。 [0007] A feature of the present invention that achieves the above object is that an electrode is formed between electrodes formed on opposing surfaces of a substrate on which a port for supplying a liquid is formed and a substrate disposed to face the substrate. In a chemical analysis apparatus using EWOD that applies a pressure to flow a liquid supplied into the substrate, a supply means for supplying a liquid from the port using a thin tube at the tip is provided. The electrode on the one substrate includes an electrode array having a large number of small electrodes, can hold a larger volume of liquid than the liquid droplets that move through the electrode array, and the thin tubes are arranged oppositely from the port. It is inserted between the substrates so that a large volume of liquid can be supplied at once.
[0008] 上記目的を達成する本発明の他の特徴は、液体を供給するポートが形成された基 板と、この基板に対向して配置した基板との双方の対向する面に形成された電極間 に電圧を印加して、前記基板内に供給された液体を流動させる EWODを用いたィ匕 学分析装置において、前記ポートは分注部を形成しており、このポートの下方に液溜 り電極を配置し、この液溜り電極より小面積の多数の電極で構成された電極列を、前 記液溜り電極にわずかな間隔をおいて配置したことにある。  [0008] Another feature of the present invention that achieves the above object is that an electrode formed on both opposing surfaces of a substrate on which a port for supplying a liquid is formed and a substrate disposed to face the substrate. In the chemical analysis apparatus using EWOD, in which a voltage is applied between the liquid and the liquid supplied in the substrate flows, the port forms a dispensing portion, and a liquid reservoir is provided below the port. An electrode is arranged, and an electrode array composed of a large number of electrodes having a smaller area than that of the liquid storage electrode is arranged with a slight interval from the liquid storage electrode.
[0009] そしてこれらの特徴にぉ ヽて、前記対向する基板は分析デバイスを構成し、この分 析デバイスは前記ポートを有する分注部と異なる位置に配置した分析部を有し、前 記分注部から分注された液体から 1回の分析に要する液滴を、分注部で分離可能と するのが好ましい。  [0009] According to these features, the opposing substrate constitutes an analysis device, and the analysis device has an analysis unit arranged at a position different from the dispensing unit having the port. It is preferable that droplets required for one analysis can be separated from the liquid dispensed from the dispensing section by the dispensing section.
[0010] また上記特徴にぉ 、て、前記分注部は、それぞれ第 1の液体と第 2の液体を供給 可能な複数のポートを有し、これら複数のポートの下方であって前記対向する基板間 に第 1、第 2の液体を混合して保持する保持部が形成されていてもよぐ前記細管に 、ポートの開口部に嵌合するストツバを設けてもよい。さらに、前記第 1の液がサンプ ル液であり、前記第 2の液が試薬または希釈液の 、ずれかであるのが望まし 、。 [0010] Further, according to the above feature, the dispensing unit has a plurality of ports to which the first liquid and the second liquid can be supplied, respectively, below the plurality of ports and facing the ports. A holding part for mixing and holding the first and second liquids may be formed between the substrates. A stagger that fits in the opening of the port may be provided. Furthermore, it is desirable that the first liquid is a sample liquid and the second liquid is a reagent or a diluent.
[0011] 上記各特徴において、前記液溜り電極の周りに、複数の電極を有する電極列を複 数個配置してもよぐ前記複数の電極列のなす角が鋭角のときには、その間に液体 はみ出し防止手段を設けるのがよい。また、前記細管の先端部は、前記電極列方向 に開口しているのがよぐ前記液溜り電極は、外径が互いに異なる複数の三日月状 の電極と、この三日月状電極の内側に配置され円の一部が切り欠かれた電極とを互 いにわずかの隙間をおいて配置してほぼ円形の電極とするのがよい。  [0011] In each of the above features, when an angle formed by the plurality of electrode rows, in which a plurality of electrode rows having a plurality of electrodes are arranged around the liquid storage electrode, is an acute angle, liquid protrudes therebetween. It is preferable to provide a prevention means. Further, the liquid pool electrode, which is open at the tip of the thin tube in the direction of the electrode row, is arranged inside a plurality of crescent-shaped electrodes having different outer diameters and the crescent-shaped electrode. It is preferable to arrange the electrodes in which a part of the circle is cut out with a slight gap between them to form a substantially circular electrode.
[0012] また上記各特徴において、分注部を形成する液溜り電極および電極列の多数の電 極に印加する電圧の大きさを変えるコントローラを有するのがよぐ細管を浸漬するフ ッ素系オイル保持手段を有し、前記コントローラは、前記ポートから液体を供給する 前に前記細管をこのフッ素系オイル保持手段に保持したオイルに浸漬するよう制御 してもよい。さらに、前記細管の径は前記ポートの開口端部の径よりも小さぐ前記ポ ートの開口部の内側がロート状に形成されていてもよぐ前記コントローラは、前記細 管が供給する液体の順番と、分析部での分析順番とを異ならせるように前記液体を 供給するものであってもよ 、。  [0012] In each of the above features, the fluorine system in which the capillary tube is immersed has a controller for changing the magnitude of the voltage applied to a large number of electrodes of the liquid reservoir electrode and electrode array forming the dispensing part. An oil holding means may be provided, and the controller may control to immerse the thin tube in oil held in the fluorine-based oil holding means before supplying the liquid from the port. Further, the diameter of the narrow tube is smaller than the diameter of the open end of the port. The controller may be formed in a funnel shape inside the port opening. The controller supplies the liquid supplied by the thin tube. The liquid may be supplied so that the order of the analysis and the order of analysis in the analysis unit are different.
発明の効果  The invention's effect
[0013] 本発明によれば、化学分析装置において、電極が形成されたデバイス内に供給す るプローブが、 1回の分析に必要な試薬またはサンプル量以上を分注可能であり、分 注部の電極を 1回の分析に必要な量だけの液滴を形成する構造としたので、分注精 度の低いプローブを用いても液滴量の精度が向上する。また、プローブから複数回 または複数個の分析に要するサンプルまたは試薬をデバイス中に分注できるので、 デバイス内で同時に多数の液滴を操作でき、スループットが向上する。  [0013] According to the present invention, in the chemical analyzer, the probe supplied into the device on which the electrode is formed can dispense more than the reagent or sample amount necessary for one analysis, and the dispensing unit This electrode has a structure that forms only the amount of droplets required for one analysis, so the accuracy of the droplet volume can be improved even if a probe with low dispensing accuracy is used. In addition, samples or reagents required for multiple analyzes or multiple analyzes can be dispensed from the probe into the device, so that a large number of droplets can be manipulated simultaneously in the device, improving throughput.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明に係る化学分析装置の一実施例の斜視図である。 FIG. 1 is a perspective view of an embodiment of a chemical analyzer according to the present invention.
[図 2]図 1に示したィ匕学分析装置が備える分注プローブ部の縦断面図である。  FIG. 2 is a longitudinal sectional view of a dispensing probe unit provided in the chemical analyzer shown in FIG. 1.
[図 3]図 1に示したィ匕学分析装置が備える分析デバイス部の上面図である。  FIG. 3 is a top view of an analysis device unit provided in the mechanical analysis apparatus shown in FIG. 1.
[図 4]図 1に示したィ匕学分析装置が備える分析デバイス部の上面図である。 [図 5]図 1に示したィ匕学分析装置のサンプル分注部の詳細斜視図である。 FIG. 4 is a top view of an analysis device unit provided in the mechanical analysis apparatus shown in FIG. 1. FIG. 5 is a detailed perspective view of a sample dispensing unit of the chemical analyzer shown in FIG. 1.
[図 6]分注プローブ部の他の実施例の縦断面図である。  FIG. 6 is a longitudinal sectional view of another example of the dispensing probe portion.
[図 7]分注プロセスを説明する図である。  FIG. 7 is a diagram illustrating a dispensing process.
[図 8]分注プロセスを説明する図である。  FIG. 8 is a diagram for explaining a dispensing process.
[図 9]分析デバイス部の他の実施例の上面図である。  FIG. 9 is a top view of another example of the analysis device unit.
[図 10]分析デバイス部のさらに他の実施例の上面図である。  FIG. 10 is a top view of still another example of the analysis device unit.
[図 11]分注プローブ部のさらに他の実施例の縦断面図である。  FIG. 11 is a longitudinal sectional view of still another embodiment of the dispensing probe portion.
符号の説明  Explanation of symbols
[0015] 110· ··サンプルカップ、 120· ··サンプルディスク、 150· ··分析デバイス、 180· ··プロ ーブ。  [0015] 110 ··· Sample cup, 120 ··· Sample disc, 150 ··· Analytical device, 180 ··· probe.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明に係る化学分析装置のいくつかの実施例を、図面を用いて説明する 。図 1は、第 1の実施例における化学分析装置 100の斜視図であり、一部省略図で 示して 、る。血清などの生体試料を収容する円柱容器であるサンプルカップ 110は、 回転可能に設けられたサンプルディスク 120の外周近傍に多数配置されている。こ のサンプルディスク 120に隣り合って、これも回転可能に設けられた試薬ディスク 140 が配置されている。試薬ディスク 140の外周近傍には、多数の試薬ボトル 130が収容 されている。 Hereinafter, some embodiments of the chemical analysis apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of the chemical analysis apparatus 100 in the first embodiment, which is partially omitted. A large number of sample cups 110, which are cylindrical containers for storing biological samples such as serum, are arranged in the vicinity of the outer periphery of a sample disk 120 that is rotatably provided. Adjacent to the sample disk 120, a reagent disk 140, which is also rotatably provided, is disposed. A large number of reagent bottles 130 are accommodated near the outer periphery of the reagent disk 140.
[0017] これら 2個のディスク 120、 140から間隔をおいて、詳細を後述する分析デバイス 15 0が配置されている。分析デバイス 150とサンプルディスク 120間には、サンプル分注 機構 160が配置されている。サンプル分注機構 160は、上下に移動可能な主軸部と 、この主軸部力も水平方向に突き出たアーム部を備えたプローブ移動機構 212を有 している。アーム部の先端には、サンプルカップ 110からサンプル液を吸引し、分析 デバイスの表面に設けられた開口部を有する複数のポート 151へ吐出するプローブ と呼ばれる細管 182が鉛直下方に延びている。プローブ 182のアーム側端部には、 図示しないチューブが接続されている。このチューブの他端は、サンプル分注機構 1 50の近傍に配置した図示しないシリンジに接続されている。シリンジは、プローブ内 1 82の試薬を駆動する。 [0018] 分析デバイス 150と試薬ディスク 140との間には、試薬分注機構 170が配置されて いる。試薬分注機構 170は、上下に移動可能な主軸部と、この主軸部から水平方向 に突き出たアーム部を備えたプローブ移動機構 210とを有している。アーム部の先端 には、試薬ボトル 130から試薬液を吸引し、分析デバイスの表面に設けられた開口 部を有する複数のポート 151へ吐出するプローブと呼ばれる細管 180が鉛直下方に 延びている。プローブ 180のアーム側端部には、チューブ 190が接続されている。こ のチューブ 190の他端は、試薬分注機構 170の近傍に配置したシリンジ 200に接続 されている。シリンジ 200は、プローブ内 180の試薬を駆動する。 [0017] An analysis device 150, which will be described in detail later, is disposed at an interval from these two disks 120 and 140. A sample dispensing mechanism 160 is disposed between the analysis device 150 and the sample disk 120. The sample dispensing mechanism 160 has a probe moving mechanism 212 having a main shaft portion that can move up and down and an arm portion in which the main shaft portion force projects in the horizontal direction. At the tip of the arm portion, a narrow tube 182 called a probe that sucks the sample liquid from the sample cup 110 and discharges it to a plurality of ports 151 having openings provided on the surface of the analysis device extends vertically downward. A tube (not shown) is connected to the arm side end of the probe 182. The other end of the tube is connected to a syringe (not shown) disposed in the vicinity of the sample dispensing mechanism 150. The syringe drives 182 reagents in the probe. A reagent dispensing mechanism 170 is disposed between the analysis device 150 and the reagent disk 140. The reagent dispensing mechanism 170 includes a main shaft portion that can move up and down, and a probe moving mechanism 210 that includes an arm portion that protrudes horizontally from the main shaft portion. At the tip of the arm portion, a narrow tube 180 called a probe that sucks a reagent solution from the reagent bottle 130 and discharges it to a plurality of ports 151 having openings provided on the surface of the analysis device extends vertically downward. A tube 190 is connected to the arm side end of the probe 180. The other end of the tube 190 is connected to a syringe 200 disposed in the vicinity of the reagent dispensing mechanism 170. The syringe 200 drives 180 reagents in the probe.
[0019] サンプルディスク 120および試薬ディスク 140は、電気配線 181によりコントローラ 1 85に接続されている。コントローラ 185には、さらにサンプル分注機構 160および試 薬分注機構 170も接続されており、サンプルディスク 120とサンプル分注機構 160、 および試薬ディスク 140と試薬分注機構 170とが、整合して動作するように制御する  Sample disk 120 and reagent disk 140 are connected to controller 1 85 by electrical wiring 181. The controller 185 is also connected with a sample dispensing mechanism 160 and a reagent dispensing mechanism 170. The sample disk 120 and the sample dispensing mechanism 160, and the reagent disk 140 and the reagent dispensing mechanism 170 are aligned with each other. Control to work
[0020] 分析デバイス 150は矩形状をした平板を有しており、ステージ 220上に載置されて V、る。分析デバイス 150のサンプルディスク 120および試薬ディスク 140に近 、側の 辺の近傍に、複数のポート 151が並んで配置されている。このポート 151を端部とし て、多数の電極が列を成して形成された電極レーン 152が設けられている。 [0020] The analysis device 150 has a rectangular flat plate, and is placed on the stage 220. A plurality of ports 151 are arranged side by side near the sample disk 120 and the reagent disk 140 of the analysis device 150 and near the side edge. An electrode lane 152 in which a large number of electrodes are formed in a row is provided with the port 151 as an end.
[0021] 図 2に、分析デバイス 150のポート 151を含む分注部の縦断面図を、図 3および図 4に、分析デバイス 150に形成した電極レーン 152の中から、 1個の電極列を取出し たときの上面図を示す。分析デバイス 150では、矩形の上面基板 230と下面基板 24 0の 2枚の基板を、間隔をおいて対向配置している。下面基板 240の一部には、例え ば 1辺の長さが数 mm力 数/ z m程度の多数の電極 3001、 3002、…が僅かな間隔 をおいて配列されており、電極レーン 152を構成する。電極 3001、 3002、…の上面 は、絶縁膜 250で覆われている。絶縁膜 250の上面は、撥水膜 260で覆われている  [0021] Fig. 2 is a longitudinal sectional view of a dispensing part including the port 151 of the analysis device 150, and Figs. 3 and 4 show one electrode row from the electrode lane 152 formed in the analysis device 150. The top view when taken out is shown. In the analysis device 150, two substrates, a rectangular upper substrate 230 and a lower substrate 240, are arranged facing each other with a gap therebetween. A large number of electrodes 3001, 3002,... With a side length of, for example, several millimeters of power / zm, are arranged at a slight interval on a part of the lower substrate 240 to form an electrode lane 152. To do. The upper surfaces of the electrodes 3001, 3002,... Are covered with an insulating film 250. The upper surface of the insulating film 250 is covered with a water repellent film 260.
[0022] 上側基板 230は全体がグランド電極となっており、撥水膜 260で覆われている。上 側基板 230のグランド電極はグランドに、下側基板 240の電極 3001、 3002、…は図 示しない電源に、電気配線 181により接続されている。下側基板 240の各電極 3001 、 3002、…には、電圧を切り換えて印加できるようになつている。 2枚の基板 230、 2 40間の間隔はスぺーサ 280により、一定に保たれている。 The upper substrate 230 as a whole is a ground electrode and is covered with a water-repellent film 260. The ground electrode of the upper substrate 230 is connected to the ground, and the electrodes 3001, 3002,... Of the lower substrate 240 are connected to a power source (not shown) by electric wiring 181. Each electrode of lower substrate 240 3001 , 3002,... Can be switched and applied. The distance between the two substrates 230 and 240 is kept constant by the spacer 280.
[0023] 下側基板 240の電極 3001、 3002、…は、例えば、ガラスや石英などの絶縁基板 素材の表面に、 Crや Ti、 Al、 ITOなどの導電性を有する薄膜電極を蒸着またはスパ ッタ、 CVD等の表面処理して作成される。この電極の上に、スリーボンド社のパリレン (商品名)などの有機絶縁膜や Si02などの無機絶縁膜を、蒸着またはスパッタ、 CV D等により処理する。絶縁膜 250上に、フッ素系ベースの撥水膜 260をコーティング する。撥水膜 260の材料としては、デュポン社のテフロン AF1600 (商品名)や、旭ガ ラス社の Cytop (商品名)などを用いる。  The electrodes 3001, 3002,... Of the lower substrate 240 are formed by depositing or sputtering thin film electrodes having conductivity such as Cr, Ti, Al, ITO on the surface of an insulating substrate material such as glass or quartz. And surface treatment such as CVD. On this electrode, an organic insulating film such as Parylene (trade name) manufactured by ThreeBond Co., Ltd. or an inorganic insulating film such as Si02 is processed by vapor deposition, sputtering, CV D, or the like. A fluorine-based water repellent film 260 is coated on the insulating film 250. As a material of the water repellent film 260, Teflon AF1600 (trade name) manufactured by DuPont, Cytop (trade name) manufactured by Asahi Glass, or the like is used.
[0024] 上面基板 230では、 ITOなどの透明導電膜を基板素材の上面一面に形成する。こ の導電膜上に、フッ素系ベースの撥水膜 260をコーティングする。撥水膜 260を表面 に形成したので、基板 230、 240の表面には各種溶液が付着し難ぐ不純物溶液に よる汚染を防止できる。上面基板 230の複数箇所には開口が形成されており、この開 口に上部力もアクセス可能なように円筒形のポート 151が取り付けられている。  In the upper substrate 230, a transparent conductive film such as ITO is formed on the entire upper surface of the substrate material. A fluorine-based water-repellent film 260 is coated on the conductive film. Since the water-repellent film 260 is formed on the surface, it is possible to prevent contamination by an impurity solution in which various solutions hardly adhere to the surface of the substrates 230 and 240. Openings are formed at a plurality of locations on the upper surface substrate 230, and cylindrical ports 151 are attached to the openings so that the upper force can be accessed.
[0025] このように構成した分析デバイス 150の動作を、以下に説明する。以下の説明では 、サンプルの操作について説明する力 試薬の操作も同様である。サンプルカップ 1 10にプローブ 180を浸漬し、シリンジ 200を動作させてサンプル液 290を吸引する。 吸引するサンプル液の液量は、複数テスト分である。例えば 3テスト分の場合には、 プローブ 180内に、分析に必要な第 1〜第 3サンプル量 2901〜2903に余裕を見た ダミー量 2904を加えた分が吸引される。  [0025] The operation of the analysis device 150 configured as described above will be described below. In the following explanation, the operation of the force reagent for explaining the operation of the sample is the same. The probe 180 is immersed in the sample cup 110, and the syringe 200 is operated to suck the sample liquid 290. The amount of sample liquid to be sucked is for multiple tests. For example, in the case of three tests, the probe 180 is aspirated by adding the dummy amount 2904 with a margin to the first to third sample amounts 2901 to 2903 necessary for the analysis.
[0026] サンプル分注機構 160を駆動して、プローブ 180を分析デバイス 150の所定ポート 152に位置決めする。その後、図 2 (A)に示すように、内部にサンプル液が保持され たプローブ 180をポート 152内に挿入する。プローブ 180の先端は、斜めに切り欠か れており、切欠き面 185は電極レーン 152を向いている。シリンジ 200を駆動して、サ ンプル液 290を 2枚の基板間 230、 240の隙間に吐出する(図 2 (B)参照)。  The sample dispensing mechanism 160 is driven to position the probe 180 at the predetermined port 152 of the analysis device 150. Thereafter, as shown in FIG. 2 (A), the probe 180 holding the sample solution therein is inserted into the port 152. The tip of the probe 180 is cut obliquely, and the cut surface 185 faces the electrode lane 152. The syringe 200 is driven, and the sample liquid 290 is discharged into the gap between the two substrates 230 and 240 (see FIG. 2 (B)).
[0027] このとき、プローブ 180の切り欠き面 185は電極レーン 152を向いて保持されている こと、および第 1の電極 3001〜第 4の電極 3004に通電して上面基板 230との間に 電圧が印加されていることにより、電極レーン 152の中で通電された電極 3001〜30 04上だけが濡れ性が大になる。そして、プローブ 180から吐出されたサンプル液は スぺーサの方向には向かわず、電極レーン 152の上を這うように流動する。プローブ 180内のサンプル液 290が全て吐出されたときには、サンプル液 290は電圧が印加 されて濡れ性が大になった第 1の電極 3001〜第 4の電極 3004と、慣性により第 5の 電極 3005に先端が掛カる程度まで延びる(図 2 (C)参照)。 [0027] At this time, the notch surface 185 of the probe 180 is held toward the electrode lane 152, and a voltage is applied between the first electrode 3001 to the fourth electrode 3004 and the upper substrate 230. Is applied to the electrodes 3001 to 30 which are energized in the electrode lane 152. Only on 04, wettability becomes large. Then, the sample liquid discharged from the probe 180 does not go in the direction of the spacer but flows so as to crawl on the electrode lane 152. When all of the sample liquid 290 in the probe 180 is discharged, the sample liquid 290 is applied with a voltage to increase the wettability of the first electrode 3001 to the fourth electrode 3004 and the inertial fifth electrode 3005. It extends to the point where the tip is hooked on (see Fig. 2 (C)).
[0028] サンプル液 290が空になったプローブ 180を引き上げ、サンプル後端 320が位置 する第 1の電極 3001の通電を停止し、サンプル先端 310が位置する第 5の電極 300 5に通電する。サンプル後端 320位置では電極レーン 152の濡れ性が低下し、サン プル先端 310位置では濡れ性が増大する。これによりサンプル液 290は、図 2で右 方に移動する(図 2 (D)参照)。  The probe 180 in which the sample liquid 290 is emptied is pulled up, the energization of the first electrode 3001 where the sample rear end 320 is located is stopped, and the fifth electrode 3005 where the sample tip 310 is located is energized. The wettability of the electrode lane 152 decreases at the sample rear end 320 position, and the wettability increases at the sample front end 310 position. As a result, the sample liquid 290 moves to the right in FIG. 2 (see FIG. 2 (D)).
[0029] ところで、本実施例に記載の分析デバイス 150では、図 3に示すように電極レーン 1 52が形成されている。すなわち、電極レーン 152は、サンプル液または試薬液を所 定位置まで搬送するための搬送レーン 330と、液分離ポイント 340で分離された液を 分析位置に搬送するための分析レーン 350と、排出レーン 360とを備えている。液分 離ポイント 340は、分注部のポート 151から分注された液滴から 1回の分析で使用す る液量だけを分離する場所である。排出レーン 360は、搬送レーン 330に連続してお り、 1回の分析に必要な量だけ分離された残りのサンプル液 290を仮置きするときや 、分析に必要な液滴が全て分離された残りのダミー液滴を分析デバイス 150外に排 出する場合に使用される。これらの各レーン 330、 350、 360は、多数の矩形電極を 、一直線上に互いに僅かな隙間をお 、て配置した形状をして 、る。  By the way, in the analysis device 150 described in the present embodiment, an electrode lane 1 52 is formed as shown in FIG. That is, the electrode lane 152 includes a transport lane 330 for transporting the sample liquid or reagent solution to a predetermined position, an analysis lane 350 for transporting the liquid separated at the liquid separation point 340 to the analysis position, and a discharge lane. With 360. Liquid separation point 340 is a place where only the amount of liquid used in one analysis is separated from the liquid dispensed from port 151 of the dispensing unit. The discharge lane 360 is continuous with the transfer lane 330, and when the remaining sample liquid 290 separated by an amount necessary for one analysis is temporarily placed, all the droplets necessary for the analysis are separated. Used when the remaining dummy droplets are discharged out of the analysis device 150. Each of these lanes 330, 350, and 360 has a shape in which a large number of rectangular electrodes are arranged on a straight line with a slight gap therebetween.
[0030] 図 3は、 1回の分析に必要なサンプル量を分離する様子を示す図であり、図 3 (A) は分注部のポート 151から分注されたサンプル液 290力 搬送レーン 330にある場 合である。 X印を付けた電極 3301〜3304に電圧が印加されている。この電極 3301 〜3304の濡れ性が増大し、サンプル液はこれらの電極 3301〜3304上を占めてい る。この状態から、順次電極 3304よりも図で右方に位置する電極に通電する。それと ともに、左方に位置する電極 3301から順次通電を停止する。このようにして、サンプ ル液 290を右方に搬送する。  [0030] Fig. 3 is a diagram showing how the sample amount required for one analysis is separated. Fig. 3 (A) shows the sample liquid dispensed from port 151 of the dispensing unit. This is the case. A voltage is applied to the electrodes 3301 to 3304 marked with X. The wettability of the electrodes 3301 to 3304 is increased, and the sample liquid occupies the electrodes 3301 to 3304. From this state, current is sequentially applied to the electrode located on the right side of the drawing in relation to the electrode 3304. At the same time, energization is sequentially stopped from the electrode 3301 located on the left side. In this way, the sample liquid 290 is conveyed to the right.
[0031] 図 3 (B)に、右方に搬送されたサンプル液 290が、液分離ポイント 340を含む位置 まで搬送された様子を示す。搬送レーン中 330の電極および排出レーン 360中の電 極を順次切り換えた結果、サンプル液 290は液分離ポイント 340に達している。この 状態で、搬送レーン 330から分析レーン 350に分岐する角部に位置し、サンプル液 2 90の後端部が載置された電極 320へは電圧の印加を継続する。し力し、この電極 3 20に隣り合う排出レーン 360の最左部に位置する電極 3601への電圧印加を停止 する。そして、サンプル液 290が載置された最右端側の電極 310への通電を開始す る。このときサンプル液 290は、後端部が電極 320に引かれるとともに、先端部が電 極 310側に引力れて、電極 3601でくびれ 370を生じ始める(図 3 (C)参照)。この電 極レーン 330、 360への電圧印加状態を継続すると、図 3 (D)に示すように、最終的 にサンプル液 290は、第 1テスト分のサンプル量である第 1サンプル液滴 3801と、残 りのサンプル液 390に分離される。第 1サンプル液滴 3801、ほぼ 1個の電極を覆う量 である。 [0031] In FIG. 3B, the position of the sample liquid 290 transported to the right includes the liquid separation point 340. It shows a state of being conveyed up to. As a result of sequentially switching the electrode in the transfer lane 330 and the electrode in the discharge lane 360, the sample liquid 290 reaches the liquid separation point 340. In this state, voltage application is continued to the electrode 320 that is located at the corner where the transfer lane 330 branches to the analysis lane 350 and on which the rear end of the sample liquid 290 is placed. Then, the voltage application to the electrode 3601 located at the leftmost part of the discharge lane 360 adjacent to the electrode 320 is stopped. Then, energization of the rightmost electrode 310 on which the sample solution 290 is placed is started. At this time, in the sample liquid 290, the rear end portion is attracted to the electrode 320 and the front end portion is attracted to the electrode 310 side, and the electrode 3601 starts to constrict 370 (see FIG. 3C). When the voltage application state to the electrode lanes 330 and 360 is continued, as shown in FIG. 3 (D), the sample liquid 290 finally has the first sample droplet 3801 corresponding to the sample amount for the first test. The remaining sample liquid 390 is separated. The first sample droplet 3801 is an amount covering almost one electrode.
[0032] 第 1サンプル液滴 3801が保持される位置は、分析レーン 350への分岐点であり、 第 1サンプル液滴 3801の量は電極 1個の面積を占める量であるから、分析レーン 35 0の電極 1個づっ電圧印加位置を変えれば、第 1サンプル液滴 3801は分析レーン 3 50上を搬送される。つまり、分析レーン 350の図では上端に位置する電極 3501から 順に電圧印加を切り換える(図 3 (E)参照)。サンプル 290と同様に、試薬液を分析デ バイス 150中の他のポート 152力も分注し、他の搬送レーンおよび分析レーンを経て この第 1サンプル液滴 3801に混合させる。混合した液について、図示しない分析部 で吸光度分析等が実施される。  [0032] The position where the first sample droplet 3801 is held is a branch point to the analysis lane 350, and the amount of the first sample droplet 3801 occupies the area of one electrode. If the voltage application position is changed for each of the zero electrodes, the first sample droplet 3801 is transported on the analysis lane 350. That is, in the drawing of the analysis lane 350, the voltage application is switched sequentially from the electrode 3501 located at the upper end (see FIG. 3E). As with sample 290, the reagent solution is also dispensed at the other port 152 force in analytical device 150 and mixed into this first sample droplet 3801 via other transport and analysis lanes. The mixed solution is subjected to absorbance analysis or the like in an analysis unit (not shown).
[0033] 第 1サンプル液滴 3801が分析レーン 350に移動して、分析レーン 350との分岐部 である電極 320上を第 1サンプル液滴 3801が占めていなくなつたら、排出レーン 36 0の後端に位置する電極 3601への電圧印加を開始するとともに排出レーン 360の 先端の電極 310への電圧印加を停止する。これにより第 1サンプル液滴 3801が分 離された残りのサンプル液 390が、左方に戻される。そして、サンプル液 390の後端 が電極 320を占めるようになったら(図 3 (F)参照)、再び図 3 (B)力も図 3 (D)に示し た手順を繰り返し、第 2のサンプル液滴 3802を分離する。  [0033] When the first sample droplet 3801 moves to the analysis lane 350 and the first sample droplet 3801 does not occupy the electrode 320, which is a branching point with the analysis lane 350, the discharge lane 360 is The voltage application to the electrode 3601 located at the end is started and the voltage application to the electrode 310 at the tip of the discharge lane 360 is stopped. As a result, the remaining sample liquid 390 from which the first sample droplet 3801 has been separated is returned to the left. Then, when the rear end of the sample liquid 390 comes to occupy the electrode 320 (see FIG. 3 (F)), the procedure shown in FIG. 3 (D) is repeated again for the force of FIG. Separate drops 3802.
[0034] この手順を、所定の回数だけ繰り返す。本実施例ではサンプル液 290として、 3回 の分析を十分行えるだけの量を分注しているので、第 1〜第 3サンプル液滴 3801〜 3803を分離すると、分注時の余裕を見込んだダミー量 2904が残る。このダミー量 2 904は、今回の分析には不要であるから、排出レーン 360の電圧印加電極を順次右 方に切り換えて、排出レーン 360を右方に搬送し、図示しない排出ポートから排出す る(図 3 (G)参照)。 [0034] This procedure is repeated a predetermined number of times. In this example, sample solution 290 is used three times. Therefore, when the first to third sample droplets 3801 to 3803 are separated, a dummy amount 2904 that allows a margin for dispensing remains. Since this dummy amount 2 904 is unnecessary for this analysis, the voltage application electrodes of the discharge lane 360 are sequentially switched to the right, the discharge lane 360 is transported to the right, and discharged from a discharge port (not shown). (See Figure 3 (G)).
[0035] 本実施例によれば、第 1〜第 3サンプル液滴 3801〜3803として分離される液量は 、電極 320に留まる分の量で規定されているので,プローブ 180でサンプル 290を吸 引および吐出する時に誤差が生じても、ダミー液滴 3804がバッファとして作用するか ら、 3個の液滴 3801〜3803の液量を過不足なく高精度に設定できる。したがって、 プローブ 180の分注精度が低くても ,分析デバイス 150内で分析に使われる液量の 分注精度を高精度に維持でき、分析部で高精度な分析が可能となる。また、複数個 の液滴を 1回の分注力も形成できるので、複数テスト分を一度に分注でき、プローブ やサンプルディスクを分析のたびに駆動する必要がなぐ分析装置のスループットが 向上する。  According to the present embodiment, the amount of liquid separated as the first to third sample droplets 3801 to 3803 is defined by the amount remaining on the electrode 320, so the sample 290 is absorbed by the probe 180. Even if an error occurs during drawing and discharging, since the dummy droplet 3804 acts as a buffer, the liquid amount of the three droplets 3801 to 3803 can be set with high accuracy without excess or deficiency. Therefore, even if the dispensing accuracy of the probe 180 is low, the dispensing accuracy of the amount of liquid used for analysis in the analysis device 150 can be maintained with high accuracy, and high-precision analysis can be performed in the analysis unit. In addition, since a plurality of droplets can be formed with a single dispensing force, a plurality of tests can be dispensed at once, and the throughput of the analyzer that does not need to drive the probe or sample disk each time is improved.
[0036] なお、上記手順にぉ ヽて、分離液滴を形成するために電圧印加を停止する電極数 は、電極 3601の 1個には限らず、隣り合う複数個の電極の電圧印加を同時に停止し て、液滴のくびれをうまく形成するようにしてもよい。その場合、液分離ポイント 340に おけるサンプル液や試薬の挙動を静電容量や画像などモニタして、その挙動にあわ せて電圧印加停止数を決定するのがよ!/、。  [0036] Note that the number of electrodes for stopping the voltage application in order to form the separated liquid droplets is not limited to one of the electrodes 3601, and the voltage application to a plurality of adjacent electrodes is performed simultaneously. It may be stopped to successfully form a constriction of droplets. In that case, monitor the behavior of the sample solution and reagent at the liquid separation point 340, and monitor the capacitance and images, etc., and determine the number of voltage application stoppages according to the behavior!
[0037] 図 4に、上記実施例の変形例を示す。本変形例では、連続する搬送レーン 330と 排出レーン 360とから分岐する分析レーン 350を複数個設けて同時に複数個のサン プル液滴を分離する点が、上記実施例と相違する。分析レーン 350が複数個あり、し カゝも同時に液滴を複数個分離するので、液滴が分離しやすい形状に電極を形成す る。  FIG. 4 shows a modification of the above embodiment. This modification is different from the above embodiment in that a plurality of analysis lanes 350 branched from a continuous transport lane 330 and a discharge lane 360 are provided to simultaneously separate a plurality of sample droplets. Since there are a plurality of analysis lanes 350 and a plurality of droplets are separated at the same time, the electrodes are formed in a shape that facilitates the separation of the droplets.
[0038] 具体的には、搬送レーン 330側に位置する第 1の分析レーン 350までは、上記実 施例と同じ構成であるが、第 1の分析レーン 350との分岐部よりも右方に第 2の分析 レーン 350を、そのさらに右方に第 3の分析レーン 350を配置する。そして図 4におい て、分岐部の電極 320と同様の電極 321、 322を、第 2、第 3の分析レーン 350の最 上側に位置する電極の上側に配置し、電極 320と電極 321間、電極 321と電極 322 間、および電極 322と排出レーン 360の最左側の電極 3601間に、その他の電極より も 1辺の長さが短 、小電極 3311〜3316を 2個づっ並べて配置して!/、る。この小電 極 3311〜3316は、液分離ポイント 340を構成する。 [0038] Specifically, up to the first analysis lane 350 located on the transport lane 330 side has the same configuration as the above embodiment, but to the right of the branch with the first analysis lane 350. The second analysis lane 350 is arranged, and the third analysis lane 350 is arranged further to the right. In FIG. 4, electrodes 321 and 322 similar to the electrode 320 at the branch portion are connected to the top of the second and third analysis lanes 350. Arranged above the upper electrode, between electrode 320 and electrode 321, between electrode 321 and electrode 322, and between electrode 322 and leftmost electrode 3601 of discharge lane 360, one side longer than the other electrodes The length is short, and two small electrodes 3311 to 3316 are arranged side by side! The small electrodes 3311 to 3316 constitute a liquid separation point 340.
[0039] 複数回のテストが可能なサンプル量を含むサンプル液 290力 搬送レーン 330上 を液分離ポイント 340まで搬送される。液分離ポイント 340は、小電極 3311〜3316 と大電極 320〜322とを含む。図 4 (A)〖こ示すよう〖こ、分注部のポート 151から分注さ れ、搬送レーン 330を搬送されたサンプル液 290は、図の右方に進み後端部が分岐 部の電極 320を占めるようになる。このとき、サンプル液 290の前端は、排出レーン 3 60にまで及んでいる。液分離ポイント 340に配置された小電極 3311〜3316では、 エレクトロウエツティングによる液滴の保持力が小さいから、液分離ポイント 340でサン プル液 290は、電極面積に応じたくびれ 370を形成する(図 4 (B)参照)。  [0039] A sample liquid 290 force including a sample amount that can be tested a plurality of times is transported on a transport lane 330 to a liquid separation point 340. Liquid separation point 340 includes small electrodes 3311-3316 and large electrodes 320-322. Figure 4 (A) As shown, the sample liquid 290 dispensed from the port 151 of the dispensing unit and transported through the transport lane 330 proceeds to the right in the figure, and the rear end of the electrode is a branched part. Occupies 320. At this time, the front end of the sample liquid 290 reaches the discharge lane 360. The small electrodes 3311 to 3316 arranged at the liquid separation point 340 have a small droplet holding force by electrowetting, so that the sample liquid 290 forms a constriction 370 corresponding to the electrode area at the liquid separation point 340 ( (See Figure 4 (B)).
[0040] この状態で、液分離ポイント 340の小電極 3311〜3316への電圧印加を同時に停 止する。サンプル液 290から第 1〜第 3サンプル液滴 3801〜3803が分離されるとと もに、残りはダミー液 2904として排出レーンに残る(図 4 (C)参照)。分岐部の電極 3 20〜322だけを第 1〜第 3のサンプル液滴 3801〜3803力 S占めているので、分析レ ーン 350の電極に順次電圧を印加すれば、サンプル液滴 3801〜3803は、それぞ れ別個の分析レーン 350を搬送される(図 4 (D) )。このとき、ダミー液 2904は、排出 レーン 360から図示しな!、排出ポートに送られる。  [0040] In this state, voltage application to the small electrodes 3311 to 3316 at the liquid separation point 340 is stopped simultaneously. The first to third sample droplets 3801 to 3803 are separated from the sample liquid 290, and the remaining remains as a dummy liquid 2904 in the discharge lane (see FIG. 4C). Since only the first to third sample droplets 3801 to 3803 are occupied by the electrodes 3 to 322 of the bifurcation, if the voltage is sequentially applied to the electrodes of the analysis line 350, the sample droplets 3801 to 3803 Are transported in separate analysis lanes 350 (Fig. 4 (D)). At this time, the dummy liquid 2904 is sent from the discharge lane 360 to the discharge port (not shown).
[0041] 本変形例では、分注ポートから一度に分注するサンプル液量を 3回分の分析量より もやや多めの量としている力 6回分や 7回分等よりもやや多めの量として、上記手順 を繰り返すようにしてよい。本変形例で示したように、液滴分離用の小型電極を搬送 レーンに繰り返し配置し、その間に分析レーンを配置すれば、同時に分析のための 液滴を複数個形成できる。したがって、化学分析装置のスループットが向上する。  [0041] In this modification, the amount of sample liquid dispensed from the dispensing port at a time is slightly larger than the analysis amount for 3 batches. You may repeat the procedure. As shown in this modification, a plurality of droplets for analysis can be formed at the same time by repeatedly arranging small electrodes for separating droplets in the transport lane and arranging an analysis lane therebetween. Therefore, the throughput of the chemical analyzer is improved.
[0042] 本発明の他の実施例を、図 5〜図 10を用いて説明する。本実施例が、上記実施例 および変形例と相違するのは、分注と液滴分離を同一の場所で実施可能にしたこと にある。図 5に、化学分析装置 100の斜視図を示す。この図 5ではサンプル分注部を 示し、試薬分注部を省略している。多数のサンプルカップ 1101、 1102、…を収容し 、回転可能なサンプルディスク 120に、上下および回転可能なサンプル分注機構 16 0のプローブ 180がアクセス可能に配置されている。プローブ 180の途中にはストツ ノ 181が取り付けられている。プローブ 180は、分析デバイス 150に形成したポート 1 51にもアクセス可能である。サンプルディスク 120には、フッ素系オイルなどの耐薬 品性が高 、不活性オイルの入ったオイルカップ 1151も収容されて 、る。 [0042] Another embodiment of the present invention will be described with reference to FIGS. The difference between the present embodiment and the above-described embodiments and modifications is that dispensing and droplet separation can be performed at the same place. FIG. 5 shows a perspective view of the chemical analyzer 100. In FIG. 5, the sample dispensing unit is shown, and the reagent dispensing unit is omitted. Accommodates a large number of sample cups 1101, 1102, ... The probe 180 of the sample dispensing mechanism 160 that can be moved up and down and is rotatable is disposed on the rotatable sample disk 120. In the middle of the probe 180, a stock 181 is attached. The probe 180 can also access a port 151 formed in the analysis device 150. The sample disk 120 also contains an oil cup 1151 having high chemical resistance such as fluorinated oil and containing inert oil.
[0043] 分析デバイス 150を構成する下側基板 240には、詳細を後述する液溜め電極 400 と、多数の電極が引き出し電極レーン 410として配列されている。引き出し電極レー ン 410には、搬送レーン 330が接続されている。搬送レーン 330には、異なる 3種の サンプルを保持する第 1〜第 3の保持レーン 4601〜4603が接続されている。保持 レーン 4601〜4603は、図示しな!、分析部に接続されて 、る。  [0043] On the lower substrate 240 constituting the analysis device 150, a reservoir electrode 400, which will be described in detail later, and a large number of electrodes are arranged as an extraction electrode lane 410. A transport lane 330 is connected to the extraction electrode lane 410. The transfer lane 330 is connected with first to third holding lanes 4601 to 4603 that hold three different types of samples. Retention lanes 4601 to 4603 are not shown! Are connected to the analysis unit.
[0044] その他の構成は、上記実施例と同様である。分析デバイス 150の 2枚の基板 230、 240間には、図 6にその断面図で示すように、プローブ 180を用いてポート 151から 予め不活性オイル 420が供給されている。この状態で、サンプル液や試薬が基板 23 0、 240間に入ってきても、基板 230、 240全体がオイル膜で覆われているので、基 板 230、 240に試薬やサンプル液が接触しにくい。したがって、 1回の分析が終了し た後に、他の分析をするために試薬やサンプル液を変えるときであっても、前の分析 に使用した液がキャリーオーバするのを回避でき、同一ポート 151および同一分析レ ーンを用いて、異なるサンプルを扱うことができる。  The other configurations are the same as those in the above embodiment. As shown in the cross-sectional view of FIG. 6, the inert oil 420 is supplied in advance between the two substrates 230 and 240 of the analysis device 150 from the port 151 using the probe 180. In this state, even if the sample solution or reagent enters between the substrates 230 and 240, the entire substrate 230 and 240 are covered with the oil film, so that the reagents and sample solution are not easily in contact with the substrates 230 and 240. . Therefore, even when the reagent or sample solution is changed for another analysis after one analysis is completed, the carry-over of the solution used in the previous analysis can be avoided. And the same analysis lane can be used to handle different samples.
[0045] プローブ 180を用いて第 1のサンプルカップ 1101からポート 151に分注された第 1 のサンプル液の一部を分離して生成された第 1のサンプル液滴 4701は、引き出し電 極レーン 410から搬送レーン 330に運ばれ、最後に第 1サンプル保持レーン 4601に 運ばれて、混合や分析を待つ。同様に、第 2、第 3のサンプルをポート 151に分注し、 液溜め電極 400で一部を分離してサンプル液滴 4702、 4703を生成し、分離された 液滴 4702、 4703は、引き出し電極レーン 410、次!/、で搬送レーン 330へと移動し、 それぞれの保持レーン 4602、 4603で待機する。  [0045] The first sample droplet 4701 generated by separating a part of the first sample liquid dispensed from the first sample cup 1101 to the port 151 by using the probe 180 is extracted from the extraction electrode lane. From 410 to transport lane 330, and finally to first sample holding lane 4601 to await mixing and analysis. Similarly, the second and third samples are dispensed into the port 151, and part of the sample is separated by the reservoir electrode 400 to generate sample droplets 4702 and 4703. The separated droplets 4702 and 4703 are drawn out. Electrode Lane 410, next! Move to transport lane 330 with /, and wait on each holding lane 4602, 4603.
[0046] 図示しないコントローラ力 必要に応じてそれぞれのサンプルを分析レーンに移動 させる。これにより、プローブ 180を駆動しなくても、分析デバイス 150内だけで、第 1 〜第 3のサンプルを任意の順序で保持レーン 4601〜4603から分析レーンへ搬送 することができ、スループットが向上する。また、分析の要求のたびに、毎回サンプル ディスク 120を回転して、所望のサンプルの入ったサンプルカップをプローブ 180の 分注位置にまで移動する必要がなくなる。 [0046] Controller force (not shown) Each sample is moved to the analysis lane as necessary. As a result, the first to third samples can be transported from the holding lanes 4601 to 4603 to the analysis lane in any order in the analysis device 150 without driving the probe 180. Can improve throughput. In addition, it is not necessary to rotate the sample disk 120 each time an analysis is requested to move the sample cup containing the desired sample to the dispensing position of the probe 180.
[0047] このように構成した本実施例における液滴の分離動作の詳細を、図 6および図 7を 用いて説明する。以下の説明においては、サンプル 290のハンドリングを説明するが 、試薬の場合も同様である。シリンジ 200およびチューブ 190、プローブ 180内に、水 191を入れる。オイルカップ 1104にプローブ 180を浸漬し、オイルを少量、吸引する Details of the droplet separation operation in the present embodiment configured as described above will be described with reference to FIGS. 6 and 7. FIG. In the following description, handling of the sample 290 will be described, but the same applies to the case of the reagent. Place water 191 in syringe 200, tube 190, and probe 180. Immerse probe 180 in oil cup 1104 and suck a small amount of oil.
[0048] サンプルディスク 120を回転させて、サンプルカップ 110とプローブ 180を位置決め し、その後サンプルカップ 110にプローブ 180を浸漬してサンプル 290を吸引する。 吸引するサンプル 290の量は、複数回または複数個のテストを実行できる量に、余裕 を見るためのダミー量を合わせた量である。このとき、プローブ 180は先にオイルカツ プ 1104に浸漬されているので、プローブ 180の先端は内外表面ともにオイルで覆わ れている。したがって、吸引したサンプル 290がプローブ 180表面に付着するのを防 止できる。サンプル 290によるプローブ 180でのコンタミの発生を抑制でき、高精度な 分析が可能になる。 [0048] The sample disc 120 is rotated to position the sample cup 110 and the probe 180, and then the probe 180 is immersed in the sample cup 110 to suck the sample 290. The amount of sample 290 to be aspirated is the amount that can be executed multiple times or multiple tests plus the dummy amount to allow a margin. At this time, since the probe 180 is previously immersed in the oil cup 1104, the tip of the probe 180 is covered with oil on both the inner and outer surfaces. Therefore, the sucked sample 290 can be prevented from adhering to the surface of the probe 180. The sample 290 can suppress the occurrence of contamination at the probe 180, enabling highly accurate analysis.
[0049] プローブ位置決め機構 210を駆動して、プローブ 180を分注用のポート 151に移 動させて位置決めする(図 6 (B)参照)。内部にサンプル液 290を保持したプローブ 1 80を、ポート 151内に挿入する。プローブ 180先端近傍に形成したプローブストッパ 181を、ポート 151上部に形成したポートコネクタ 1510に嵌合して、プローブ 180と ポート 151とを密着させる。プローブ 180に設けたストッパ 181は、プローブ位置決め 機構 210によるプローブ 180とポート 151の位置決めずれや挿入ずれを補償するも ので、分析デバイス 180の底面の損傷を防止する。それとともに、プローブ 180をポ ート 151に挿入したときにポート 151からオイル 420が溢れ出るのを防止する。  [0049] The probe positioning mechanism 210 is driven to move the probe 180 to the dispensing port 151 for positioning (see FIG. 6B). Insert the probe 1 80 holding the sample solution 290 into the port 151. A probe stopper 181 formed in the vicinity of the tip of the probe 180 is fitted into a port connector 1510 formed in the upper part of the port 151 so that the probe 180 and the port 151 are brought into close contact with each other. The stopper 181 provided on the probe 180 compensates for misalignment or insertion misalignment between the probe 180 and the port 151 by the probe positioning mechanism 210, and prevents damage to the bottom surface of the analysis device 180. At the same time, the oil 420 is prevented from overflowing from the port 151 when the probe 180 is inserted into the port 151.
[0050] シリンジ 200を駆動して、サンプル液 290を分析デバイス 150内に吐出する。このと き、液溜め電極 400だけに電圧を印加する。電圧を印加された液溜め電極 400の位 置は濡れ性が良ぐその他の電極の位置では濡れ性が悪い。そこで、サンプル液 29 0は他に流動することなく液溜め電極 400上に留まる(図 6 (C)参照)。引き出し電極 レーン 410の電極に電圧を印加する。これ〖こより、サンプル液 290の一部 2902力 S分 離する。引き出し電極レーン 410の電圧印加電極 410a、 410b、…を順次切り換え、 サンプル液滴 2902を電極レーン上で駆動する。 [0050] The syringe 200 is driven to discharge the sample liquid 290 into the analysis device 150. At this time, a voltage is applied only to the reservoir electrode 400. The position of the reservoir electrode 400 to which a voltage is applied is good in wettability, but the wettability is bad in other electrode positions. Therefore, the sample liquid 290 stays on the liquid storage electrode 400 without flowing elsewhere (see FIG. 6C). Extraction electrode Apply voltage to the electrode in lane 410. From this, a part of sample liquid 290 is separated by 2902 force S. The voltage application electrodes 410a, 410b,... Of the extraction electrode lane 410 are sequentially switched to drive the sample droplet 2902 on the electrode lane.
[0051] 分析に必要な最後の液滴 2903を、液溜め電極 400上から引き出し電極レーン 41 0に搬送し終わると、残サンプル 2904を保持したまま、プローブ 180をポート 151力 ら引き上げる。このとき、シリンジ 200を動作して残サンプル 2904を吸引する(図 6 (E )参照)。分析に不要なサンプル液 290を分析デバイス 150外に排出したので、分析 プロセスが簡略ィ匕する。 [0051] When the last droplet 2903 necessary for the analysis has been transported from the reservoir electrode 400 to the extraction electrode lane 410, the probe 180 is pulled up from the force of the port 151 while holding the remaining sample 2904. At this time, the remaining sample 2904 is sucked by operating the syringe 200 (see FIG. 6E). Since the sample liquid 290 unnecessary for the analysis is discharged out of the analysis device 150, the analysis process is simplified.
[0052] ここで本実施例では、図 7に示すように液滴分離が容易な液溜め電極 400形状とし ている。 X印を付した電極は、電圧が印加された電極である。液溜め電極 400は、円 形の部分に大小異なる大きさの三日月状の電極 440a〜440dをわずかの隙間をお いて複数並べ、最も小さい三日月状電極 440aの内部に、一部が切りかかれた円形 の電極 430を配置した構成である。引き出し電極レーン 410の電極は、液溜め電極 の円形の電極 430とほぼ同じ形状である。すなわち、同じ大きさの 2個の円を一部重 なるように配置したときに、一方の円の重部分を切り欠いた形状の電極 410a、 410b 、…である。個々の電極 410a、 410b, ···【ま、互 ヽにわず力に隙 f¾をお ヽて直線状 に配置されている。  [0052] Here, in the present embodiment, as shown in Fig. 7, the shape of the liquid reservoir electrode 400 is such that droplet separation is easy. The electrode marked with X is an electrode to which a voltage is applied. The liquid reservoir electrode 400 has a circular shape in which a plurality of crescent-shaped electrodes 440a to 440d of different sizes are arranged with a slight gap, and a circle is partially cut inside the smallest crescent-shaped electrode 440a. The electrode 430 is arranged. The electrode of the extraction electrode lane 410 has substantially the same shape as the circular electrode 430 of the liquid storage electrode. That is, when two circles having the same size are arranged so as to partially overlap, the electrodes 410a, 410b,. The individual electrodes 410a, 410b,..., Are arranged in a straight line with a gap f¾ between the forces.
[0053] 液溜め電極 440に電圧を印加しているので、プローブ 180から吐出された直後の サンプル液 290は、太線で輪郭を示すように液溜め電極 400を覆って 、る(図 7 (A) 参照)。第 1回目のサンプル液滴 2902を分注するために、液溜め電極 410の最外側 の三日月状電極 440dへの電圧印加を停止し、引き出し電極レーン 410の図 7で最 左側に位置する電極 410a、 410bに電圧を印加する(図 7 (B)参照)。引き出し電極 レーンの 410の電極 410a、 410bの濡れ性が増大したので、サンプル液滴 290は引 き出し電極レーン 410側に延びだし、くびれ部を生ずる。一方、最外側の三日月状 電極 400dへの電圧印加を停止したので、この三日月状電極 400dの面積によって 規定されるサンプル液 290量力 図で右方に移動しょうとする。  [0053] Since a voltage is applied to the liquid reservoir electrode 440, the sample liquid 290 immediately after being discharged from the probe 180 covers the liquid reservoir electrode 400 as shown by the bold line (Fig. 7 (A See)). In order to dispense the first sample droplet 2902, voltage application to the outermost crescent-shaped electrode 440d of the reservoir electrode 410 is stopped, and the electrode 410a located on the leftmost side in FIG. Apply a voltage to 410b (see Fig. 7 (B)). Since the wettability of the electrodes 410a and 410b of the extraction electrode lane 410 is increased, the sample droplet 290 extends toward the extraction electrode lane 410, and a constricted portion is generated. On the other hand, since the voltage application to the outermost crescent-shaped electrode 400d is stopped, the sample liquid 290 force map defined by the area of the crescent-shaped electrode 400d tries to move to the right.
[0054] サンプル液 290のくびれ部に当たる引き出し電極レーン 410の電極 41 Oaへの電圧 印加を停止する。電極 410aの濡れ性が低下し、この電極 410aからサンプル液 290 が流出しようとし、サンプル液滴 2902が形成される(図 7 (C)参照)。引き出し電極レ ーン 410の電極 410a、 410b,…への電圧印加を順次切り換えると、形成されたサン プル液滴 2902は、引き出し電極レーン 410上を搬送される。そのとき、三日月状電 極 440cへの電圧印加を停止すると、分離液滴 2902が分離された残りのサンプル液 2901は、図で右方に移動する。この動作を繰り返す。なお、三日月状電極 440c、 4 40b、…への電圧印加停止のタイミングは、上下 2枚の基板 230、 240間の静電容量 値や画像をモニタして決定する。 [0054] The voltage application to the electrode 41 Oa of the extraction electrode lane 410 that hits the constricted portion of the sample liquid 290 is stopped. The wettability of the electrode 410a decreases, and the sample solution 290 Tries to flow out, and a sample droplet 2902 is formed (see FIG. 7C). When the voltage application to the electrodes 410a, 410b,... Of the extraction electrode lane 410 is sequentially switched, the formed sample droplet 2902 is conveyed on the extraction electrode lane 410. At that time, when the voltage application to the crescent-shaped electrode 440c is stopped, the remaining sample liquid 2901 from which the separated droplet 2902 has been separated moves to the right in the figure. This operation is repeated. The timing of stopping the application of voltage to the crescent-shaped electrodes 440c, 440b,... Is determined by monitoring the capacitance values and images between the upper and lower two substrates 230, 240.
[0055] 液溜め電極 400上に分注した複数テスト分のサンプル液 290から、液溜め電極 40 0の個々の電極 400a〜400d、 430の形状により規定される量の液滴力 分離液滴 2 902として搬送される。したがって、各電極 400a〜400d、 430を精度よく製作すれ ば、分注精度が向上し高精度分析が可能となる。これらの電極 400a〜400d、 430 の製作には、半導体の製造で用いられるスパッタ法ゃ蒸着法を容易に適用すること により、高精度の加工が可能になる。  [0055] From the sample liquid 290 for a plurality of tests dispensed on the reservoir electrode 400, the droplet force of an amount defined by the shape of the individual electrodes 400a to 400d, 430 of the reservoir electrode 400 It is conveyed as 902. Therefore, if each of the electrodes 400a to 400d and 430 is manufactured with high accuracy, the dispensing accuracy is improved and high accuracy analysis is possible. For the production of these electrodes 400a to 400d and 430, high-accuracy processing can be performed by easily applying a sputtering method or a vapor deposition method used in the manufacture of semiconductors.
[0056] なお、図 6に示した実施例では、最後に残った残サンプル液をプローブ 180で吸引 していたが、本実施例では残サンプル液 2905を、図示しない排出レーン力も排出ポ ートに搬送している(図 7 (D)参照)。引き出し電極レーン 410には排出レーンが接続 されている。本実施例によればシリンジ 200を駆動する必要が無ぐプローブ 180動 作が拘束されないのでスループットが向上する。  [0056] In the embodiment shown in FIG. 6, the remaining residual sample solution was sucked with the probe 180. However, in this embodiment, the residual sample solution 2905 is discharged into the discharge port not shown. (See Fig. 7 (D)). A discharge lane is connected to the extraction electrode lane 410. According to the present embodiment, since the operation of the probe 180 which does not need to drive the syringe 200 is not restrained, the throughput is improved.
[0057] 液溜め電極 400の他の例を、図 8に上面図で示す。本実施例では、液溜め電極 40 Ofを円形の 1部を扇形に切り欠いた電極 400fで構成し、扇形に切り欠いた部分に嵌 る三角部を有する電極 430bを、引き出し電極レーン 410が備えている。電極 430b は矩形部と三角部を有しており、液溜め電極 400とはわずかな隙間をおいて配置さ れている。引き出し電極レーン 410のその他の電極 431、 432、…は、矩形状の電極 である(図 8 (A)参照)。  Another example of the liquid reservoir electrode 400 is shown in a top view in FIG. In the present embodiment, the drain electrode lane 410 is provided with an electrode 430b having a triangular portion that fits in the fan-shaped part of the liquid reservoir electrode 40Of, which is formed by a circular part of the electrode 400f. ing. The electrode 430b has a rectangular portion and a triangular portion, and is disposed with a slight gap from the liquid storage electrode 400. The other electrodes 431, 432,... Of the extraction electrode lane 410 are rectangular electrodes (see FIG. 8A).
[0058] 液溜め電極 400fより大径となるようにサンプル液 290を吐出する。液溜め電極 410 fおよび引き出し電極レーン 410の図で最左方側に位置する電極に電圧を印加する 。これにより、分離液滴が形成され、その後は上記各実施例と同様、引き出し電極レ ーン 410の各電極への電圧印加を切り換えて、分離液滴を分析部まで搬送する。 [0059] プローブ 180から分注されたサンプル液 290量が少な!/、ときや数回の分離液滴の 生成で、液溜め電極 400f上に位置するサンプル液 290の大きさが液溜め電極 400f の外径よりも小さくなつたときには、液溜め電極 400と引き出し電極レーン 410の図で 最左方側の 2個の電極 430b、 431に電圧を印加する。濡れ性を増大させてサンプ ル液 290の一部を引き出し、引き出し電極レーン 410まで移動させる(図 8 (B)参照) 。このとき、液溜め電極 400fに印加する電圧を、電極 430bよりも小さくする。液溜め 電極 400fの濡れ性が低下し、液溜め電極 400fがサンプル液 290を吸引する吸引 力が低下する。サンプル液 290は、容易に移動できる。 [0058] The sample liquid 290 is discharged so as to have a larger diameter than the liquid storage electrode 400f. A voltage is applied to the electrode located on the leftmost side in the drawing of the liquid storage electrode 410 f and the extraction electrode lane 410. As a result, separated droplets are formed, and thereafter, as in the above embodiments, the voltage application to each electrode of the extraction electrode lane 410 is switched and the separated droplets are conveyed to the analysis unit. [0059] The amount of the sample liquid 290 dispensed from the probe 180 is small! /, And sometimes the separation liquid is generated several times, and the size of the sample liquid 290 located on the liquid reservoir electrode 400f is the size of the liquid reservoir electrode 400f. When the diameter is smaller than the outer diameter, a voltage is applied to the two electrodes 430b and 431 on the leftmost side in the figure of the liquid storage electrode 400 and the extraction electrode lane 410. The wettability is increased and a part of the sample liquid 290 is pulled out and moved to the extraction electrode lane 410 (see FIG. 8B). At this time, the voltage applied to the liquid storage electrode 400f is made smaller than that of the electrode 430b. The wettability of the liquid reservoir electrode 400f decreases, and the suction force of the liquid reservoir electrode 400f sucking the sample liquid 290 decreases. The sample liquid 290 can be easily moved.
[0060] 液溜め電極 400fに嵌る電極 430bの三角部の頂点部分 4301を、液溜め電極 400 fの中心近傍に配置しているので、サンプル液 290の径がどんどん小径化しても、液 溜め電極 400fと電極 430bとの印加電圧の大きさを変えることにより、液溜め電極 40 Ofからサンプル液 290引き出し電極レーン 410側に引き出すことができる。電極 430 bへの電圧印加を停止して、分離液滴 2902を形成する(図 8 (C)参照)。  [0060] Since the apex portion 4301 of the triangular portion of the electrode 430b that fits in the liquid storage electrode 400f is disposed near the center of the liquid storage electrode 400f, the liquid storage electrode 290b can be obtained even if the diameter of the sample liquid 290 is further reduced. By changing the magnitude of the applied voltage between 400f and the electrode 430b, the sample liquid 290 can be drawn out to the sample electrode 290 drawing electrode lane 410 side. The voltage application to the electrode 430 b is stopped, and the separation droplet 2902 is formed (see FIG. 8C).
[0061] なお、搬送電極レーン 410上でも、分離液滴 2902が位置する 2個の電極について 、一方の電極への印加電圧を他方の電極の印加電圧よりも小さくすると、印加電圧 の大きい方に分離液滴 2902は搬送されるから、必ずしも電極のオン/オフを切り換 える必要はなぐ印加電圧の大きさを調整してもよい。この場合、分離液滴 2902の搬 送がスムーズになり、搬送速度を向上できる。  [0061] On the transport electrode lane 410, when the voltage applied to one electrode is smaller than the voltage applied to the other electrode of the two electrodes on which the separation droplet 2902 is positioned, the applied voltage is increased. Since the separated droplet 2902 is transported, the magnitude of the applied voltage may be adjusted without necessarily switching the electrode on / off. In this case, the separation droplet 2902 can be smoothly transported and the transport speed can be improved.
[0062] 本実施例のいくつかの変形例を、以下に示す。液溜め電極 400、 400fに印カロされ る電圧を小さくするために、基板 230、 240の絶縁膜 250と撥水膜 260の厚さを液溜 め電極 400、 400f部分で厚くする。本変形例では、サンプル液にカ卩わる電圧が小さ くなる。液溜め電極の他の形状を、上面図で図 9に示す。液溜め電極 400gの複数箇 所にスリット 400hを形成する。これにより、液溜め電極 400gの電極面積を低減し、吸 引力を低減する。  [0062] Some modifications of the present embodiment will be described below. In order to reduce the voltage applied to the reservoir electrodes 400 and 400f, the insulating film 250 and the water repellent film 260 of the substrates 230 and 240 are made thicker at the reservoir electrodes 400 and 400f. In this modification, the voltage generated in the sample solution is reduced. Another shape of the reservoir electrode is shown in the top view in FIG. Slits 400h are formed at multiple locations on the reservoir electrode 400g. This reduces the electrode area of the liquid reservoir electrode 400g and reduces the suction force.
[0063] 図 10に、液溜め電極のさらに他の変形例を上面図で示す。この変形例では、液溜 め電極 400kに 3本の引き出し電極レーン 4101〜4103が接続されている。各引き出 し電極レーン 4101〜4103の、最も液溜め電極 400kに近い電極は、上記実施例と 同様に三角形部が付加された矩形であり、三角形部が液溜め電極 400kに形成した スリットに嵌る構造である。第 1の引き出し電極レーン 4101と第 2の引き出し電極レー ン 4102のなす角は鋭角であり、その間には、ポール 450が設けられている。第 1の 引き出し電極レーン 4101と 180度反対側に、第 3の引き出し電極レーン 4103が配 置されている。 FIG. 10 is a top view showing still another modified example of the liquid storage electrode. In this modification, three extraction electrode lanes 4101 to 4103 are connected to the liquid storage electrode 400k. The electrode closest to the reservoir electrode 400k in each of the extraction electrode lanes 4101 to 4103 is a rectangle to which a triangular portion is added in the same manner as in the above embodiment, and the triangular portion is formed on the reservoir electrode 400k. It is a structure that fits into the slit. The angle formed by the first extraction electrode lane 4101 and the second extraction electrode lane 4102 is an acute angle, and a pole 450 is provided between them. A third extraction electrode lane 4103 is arranged 180 degrees opposite to the first extraction electrode lane 4101.
[0064] 第 1の引き出し電極レーン 4101と第 3の引き出し電極レーン 4103のように、互いに 反対方向に配置された引き出し電極レーンを搬送する場合には、引き出し電極レー ンの電極に電圧を印加するだけで、同時にサンプル液 290を引き出すことができる。 し力し、第 1の引き出し電極レーン 4101と第 2の引き出し電極レーン 4102のように、 鋭角で隣り合つている場合には、これら 2個の引き出し電極レーン 4101、 4102間に 位置するサンプル液 290は、液溜め電極 400kからはみ出して、半径方向外方に移 動する恐れがある。そこで、ポール 450を配置して、サンプル液 290が、はみ出ない ようにする。ポール 450は、サンプル液 290との接触面積が少ない丸棒のような構造 がよい。このように、引き出し電極レーン間が狭いときには、液溜め電極からのサンプ ル液はみ出し防止手段を設けるのがよい。  [0064] When transporting extraction electrode lanes arranged in opposite directions like the first extraction electrode lane 4101 and the third extraction electrode lane 4103, a voltage is applied to the electrodes of the extraction electrode lane. The sample solution 290 can be withdrawn at the same time. In the case where the first extraction electrode lane 4101 and the second extraction electrode lane 4102 are adjacent to each other at an acute angle, the sample liquid 290 located between the two extraction electrode lanes 4101 and 4102 is used. May protrude from the reservoir electrode 400k and move outward in the radial direction. Therefore, a pole 450 is arranged so that the sample liquid 290 does not protrude. The pole 450 preferably has a structure like a round bar with a small contact area with the sample liquid 290. Thus, when the space between the extraction electrode lanes is narrow, it is preferable to provide means for preventing the sample liquid from protruding from the liquid storage electrode.
[0065] 本発明に係る化学分析装置のさらに他の実施例を、図 11を用いて説明する。図 11 は、分析装置 100が備える分析デバイス 150の分注部の縦断面図である。本実施例 は、上記各実施例とはサンプル液 290の分注方法が相違している。 2種の溶液、本 実施例ではサンプル液と希釈液を組み合わせて分注する。その他の組み合わせとし て、試薬とサンプル液の組み合わせにも適用できる。  Still another embodiment of the chemical analyzer according to the present invention will be described with reference to FIG. FIG. 11 is a longitudinal sectional view of a dispensing unit of the analysis device 150 provided in the analysis apparatus 100. This embodiment is different from the above embodiments in the dispensing method of the sample liquid 290. Two types of solutions, in this example, a sample solution and a diluting solution are combined and dispensed. As other combinations, it can be applied to combinations of reagents and sample solutions.
[0066] サンプルを分析する分析デバイス 150には、プローブ 180がサンプルを供給するた めのポート 151が設けられている。上下 1対の基板 230、 240を有する分析デバイス 150を載置するテーブル 480の一隅には、希釈液容器 490が載置されている。サン プルポート 151の近傍には、希釈液を分析デバイス 150内に供給するための希釈液 ポート 500が配置されている。希釈液ポート 500には、希釈液チューブ 510が接続さ れており、バルブ 520を介して希釈液容器 490に接続されている。希釈液容器 490 内は、予め圧力が付加されている。  [0066] The analysis device 150 for analyzing a sample is provided with a port 151 for the probe 180 to supply the sample. A diluent container 490 is placed at one corner of a table 480 on which an analysis device 150 having a pair of upper and lower substrates 230 and 240 is placed. In the vicinity of the sample port 151, a diluent port 500 for supplying the diluent into the analysis device 150 is disposed. A diluent tube 510 is connected to the diluent port 500 and is connected to the diluent container 490 via the valve 520. Pressure is applied in advance in the diluent container 490.
[0067] サンプルポート 151に、外部からプローブ 180を挿入して、サンプル 290を分注す る。プローブ 180は、サンプルポート 151の内径よりはるかに小径であり、外径 0. lm m程度の SUS製または榭脂製で、変形可能である。サンプルポート 151の内側は口 ート状に形成されており、サンプルポート 151の内壁面にプローブ 180が当たっても 変形して分析デバイス 150の内部まで挿入される(図 11 (A)参照)。サンプルポート 内壁をロート状にしたので、プローブ 180の位置決め機構の位置決め精度が悪くて も、プローブ 180を分析デバイス 150の所定位置決めできる。 [0067] The sample 290 is dispensed by inserting the probe 180 into the sample port 151 from the outside. Probe 180 is much smaller than the inner diameter of sample port 151 and has an outer diameter of 0.lm It is made of SUS or resin, and can be deformed. The inside of the sample port 151 is formed in a mouth shape, and even if the probe 180 hits the inner wall surface of the sample port 151, the sample port 151 is deformed and inserted into the analysis device 150 (see FIG. 11A). Since the inner wall of the sample port is formed in a funnel shape, the probe 180 can be positioned in a predetermined position even if the positioning accuracy of the positioning mechanism of the probe 180 is poor.
[0068] 希釈液容器 490に接続された希釈液チューブ 510に介在させたバルブ 520を予め 定めた時間だけ開き、希釈液 540の所定量を分析デバイス 150内に吐出する(図 11 (B)参照)。サンプル液 290と希釈液 540が混合され、液溜め電極 400上で混合溶 液 550が生成される(図 11 (C)参照)。ここで、下側基板 240は、液溜め電極 400位 置で少し下側に凹んでおり、サンプル液 290と希釈液 540とを溜めることができる。希 釈液 540を大量に注入すれば、希釈率の高 ヽ混合液 550を作成することができる。 希釈液 540を大量に注入すると、ポート 151からオイルやサンプル液 290が溢れ出る 恐れがあるので、ポート 151にはシッパーチューブ 511を接続し、ポート開口部から 溢れそうになる余分なサンプルやオイル等を吸い出して除去する。上記 、ずれかの 実施例に記載の方法により、引き出し電極レーン 410において、混合液 550から 1回 の分析に必要な量だけ液滴 551を分離する。  [0068] The valve 520 interposed in the diluent tube 510 connected to the diluent container 490 is opened for a predetermined time, and a predetermined amount of the diluent 540 is discharged into the analysis device 150 (see FIG. 11 (B)). ). The sample solution 290 and the diluent 540 are mixed, and a mixed solution 550 is generated on the reservoir electrode 400 (see FIG. 11C). Here, the lower substrate 240 is recessed slightly downward at the position of the liquid storage electrode 400, and can store the sample liquid 290 and the dilution liquid 540. If a large amount of the dilution liquid 540 is injected, a high dilution liquid mixture 550 can be prepared. If a large amount of Diluent 540 is injected, oil or sample liquid 290 may overflow from port 151. Therefore, connect a sipper tube 511 to port 151, and excess sample or oil that may overflow from the port opening. Suck out and remove. According to the method described in any of the above-described embodiments, the droplet 551 is separated from the mixed solution 550 by the amount necessary for one analysis in the extraction electrode lane 410.
[0069] 本実施例によれば、サンプルポート 151と希釈液ポート 500をともに液溜め電極 40 0上に配置し、 2個の位置を近接させているので、 2種の液の混合が容易となり、希釈 率の精度を向上させることが出来る。なお、通常、サンプル液量より希釈液量が多い ので、大容量側の液を後から分注して、分注の際のエネルギで混合液に大きい流動 を生じさせ混合効果を高める。  [0069] According to the present embodiment, the sample port 151 and the diluent port 500 are both arranged on the liquid storage electrode 400, and the two positions are close to each other, so that mixing of the two kinds of liquids becomes easy. The accuracy of the dilution rate can be improved. In general, since the amount of the diluted solution is larger than the amount of the sample solution, the large-volume liquid is dispensed later, and a large flow is generated in the mixed solution by the energy at the time of dispensing to enhance the mixing effect.
[0070] また、計量誤差がほぼ一定であれば、大容量の溶液の分注時の計量精度が高 、 から、先に分析デバイス 150内に供給したサンプル液 290の量に応じて、大容量の 希釈液 540を分注すればよい。その結果、分注量を高い精度で調整することができ る。サンプル 290と希釈液 540の分注量を、分析デバイス 150が有する 2枚の基板 2 3、 240間の静電容量出力や液の撮影画像でモニタすれば、さらに分注精度を改善 できる。  [0070] If the weighing error is substantially constant, the weighing accuracy when dispensing a large volume of solution is high, and the volume of the sample liquid 290 depends on the amount of sample liquid 290 previously supplied into the analysis device 150. The dilution liquid 540 may be dispensed. As a result, the dispensing amount can be adjusted with high accuracy. If the dispensing amount of sample 290 and diluent 540 is monitored with the capacitance output between the two substrates 23, 240 of analysis device 150 and the photographed image of the solution, the dispensing accuracy can be further improved.

Claims

請求の範囲 The scope of the claims
[1] 液体を供給するポート (151)が形成された基板 (230)と、この基板に対向して配置し た基板 (240)との双方の対向する面に形成された電極間に電圧を印加して、前記基 板内に供給された液体を流動させる EWODを用いたィ匕学分析装置において、 先端部に細管 (180)を有しこの細管を用いて前記ポートから液体を供給する供給手 段 (160)を設け、  [1] A voltage is applied between the electrodes formed on the opposing surfaces of the substrate (230) on which the liquid supply port (151) is formed and the substrate (240) arranged opposite to the substrate. Applying and flowing the liquid supplied in the substrate In the chemical analyzer using EWOD, a supply having a thin tube (180) at the tip and supplying the liquid from the port using the thin tube Means (160),
前記一方の基板の電極は、多数の小電極を有する電極列 (152)を備え、 この電極列 (152)を移動する液滴よりも大容量の液を保持可能であり、  The electrode of the one substrate includes an electrode array (152) having a large number of small electrodes, and can hold a larger volume of liquid than the liquid droplets moving through the electrode array (152).
前記ポートから細管を前記対向配置した基板間に挿入して、大容量の液を一度に 供給可能としたことを特徴とする化学分析装置。  A chemical analysis apparatus characterized in that a large volume of liquid can be supplied at a time by inserting a thin tube from the port between the opposed substrates.
[2] 液体を供給するポート (151)が形成された基板 (230)と、この基板に対向して配置し た基板 (240)との双方の対向する面に形成された電極間に電圧を印加して、前記基 板内に供給された液体を流動させる EWODを用いたィ匕学分析装置において、 前記ポート (151)は分注部を形成しており、 [2] A voltage is applied between the electrodes formed on the opposing surfaces of the substrate (230) on which the liquid supply port (151) is formed and the substrate (240) arranged opposite to the substrate. In the chemical analyzer using EWOD for applying and flowing the liquid supplied in the substrate, the port (151) forms a dispensing part,
このポートの下方に液溜り電極 (400)を配置し、  Place the reservoir electrode (400) below this port,
この液溜り電極より小面積の多数の電極で構成された電極列 (152)を、前記液溜り 電極にわず力な間隔をおいて配置したことを特徴とする化学分析装置。  A chemical analysis apparatus characterized in that an electrode array (152) composed of a large number of electrodes having a smaller area than that of the liquid storage electrode is arranged at a powerful interval in place of the liquid storage electrode.
[3] 前記対向する基板は分析デバイス (150)を構成し、 [3] The opposing substrate constitutes an analytical device (150),
この分析デバイス (150)は前記ポートを有する分注部と異なる位置に配置した分析 部を有し、  This analysis device (150) has an analysis part arranged at a position different from the dispensing part having the port,
前記分注部力も分注された液体から 1回の分析に要する液滴を、分注部で分離可 能としたことを特徴とする請求項 1に記載の化学分析装置。  2. The chemical analysis apparatus according to claim 1, wherein a droplet required for one analysis can be separated from the liquid dispensed by the dispensing unit force by the dispensing unit.
[4] 前記分注部は、それぞれ第 1の液体と第 2の液体を供給可能な複数のポートを有し これら複数のポートの下方であって前記対向する基板間に第 1、第 2の液体を混合 して保持する保持部が形成されていることを特徴とする請求項 2に記載の化学分析 装置。 [4] The dispensing unit has a plurality of ports capable of supplying a first liquid and a second liquid, respectively, below the plurality of ports and between the opposing substrates. 3. The chemical analysis apparatus according to claim 2, wherein a holding portion that holds the liquid by mixing is formed.
[5] 前記細管に、ポートの開口部に嵌合するストツバ (181)を設けたことを特徴とする請 求項 2に記載の化学分析装置。 [5] The narrow pipe is provided with a stagger (181) that fits into the opening of the port. The chemical analyzer according to claim 2.
[6] 前記第 1の液がサンプル液であり、 [6] The first liquid is a sample liquid,
前記第 2の液が試薬または希釈液の 、ずれかであることを特徴とする請求項 4に記 載の化学分析装置。  5. The chemical analyzer according to claim 4, wherein the second liquid is a reagent or a diluent.
[7] 前記液溜り電極の周りに、複数の電極を有する電極列を複数個配置したことを特徴 とする請求項 2に記載の化学分析装置。  7. The chemical analyzer according to claim 2, wherein a plurality of electrode arrays having a plurality of electrodes are arranged around the liquid reservoir electrode.
[8] 前記複数の電極列のなす角が鋭角のときには、その間に液体はみ出し防止手段を 設けたことを特徴とする請求項 7に記載の化学分析装置。 8. The chemical analysis apparatus according to claim 7, wherein when the angle formed by the plurality of electrode rows is an acute angle, a liquid overflow preventing means is provided between them.
[9] 前記細管の先端部は、前記電極列方向に開口して 、ることを特徴とする請求項 1 に記載の化学分析装置。 [9] The chemical analyzer according to claim 1, wherein a tip portion of the thin tube opens in the electrode row direction.
[10] 前記液溜り電極は、外径が互いに異なる複数の三日月状の電極 (440a,440b,440c) と、この三日月状電極の内側に配置され円の一部が切り欠かれた電極 (430)とを互い にわずかの隙間をおいて配置してほぼ円形の電極としたものであることを特徴とする 請求項 2に記載の化学分析装置。 [10] The liquid accumulation electrode includes a plurality of crescent-shaped electrodes (440a, 440b, 440c) having different outer diameters, and an electrode (430) arranged inside the crescent-shaped electrode and having a part of a circle cut away. 3. The chemical analysis apparatus according to claim 2, wherein a substantially circular electrode is arranged with a slight gap therebetween.
[11] 分注部を形成する電極列の多数の電極に印加する電圧の大きさを変えるコント口 ーラ (180)を有することを特徴とする請求項 1に記載の化学分析装置。 [11] The chemical analyzer according to claim 1, further comprising a controller (180) for changing a magnitude of a voltage applied to a plurality of electrodes of the electrode array forming the dispensing unit.
[12] 前記細管を浸漬するフッ素系オイル保持手段を有し、  [12] Fluorine-based oil retaining means for immersing the capillary tube,
前記コントローラは、前記ポートから液体を供給する前に前記細管をこのフッ素系 オイル保持手段に保持したオイルに浸漬するよう制御する特徴とする請求項 11に記 載の化学分析装置。  12. The chemical analyzer according to claim 11, wherein the controller controls the thin tube to be immersed in oil held in the fluorine-based oil holding means before supplying the liquid from the port.
[13] 前記細管の径は前記ポートの開口端部の径よりも小さぐ前記ポートの開口部の内 側がロート状に形成されて ヽることを特徴とする請求項 1に記載の化学分析装置。  13. The chemical analyzer according to claim 1, wherein the diameter of the narrow tube is smaller than the diameter of the opening end of the port, and the inner side of the opening of the port is formed in a funnel shape. .
[14] 前記コントローラは、前記細管が供給する液体の順番と、分析部での分析順番とを 異ならせるように前記液体を供給することを特徴とする請求項 11に記載の化学分析 装置。  14. The chemical analysis apparatus according to claim 11, wherein the controller supplies the liquid so that the order of the liquid supplied by the narrow tube is different from the order of analysis in the analysis unit.
PCT/JP2006/309901 2005-05-30 2006-05-18 Chemical analyzer WO2006129486A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005156547A JP4500733B2 (en) 2005-05-30 2005-05-30 Chemical analyzer
JP2005-156547 2005-05-30

Publications (1)

Publication Number Publication Date
WO2006129486A1 true WO2006129486A1 (en) 2006-12-07

Family

ID=37481416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309901 WO2006129486A1 (en) 2005-05-30 2006-05-18 Chemical analyzer

Country Status (2)

Country Link
JP (1) JP4500733B2 (en)
WO (1) WO2006129486A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2132296A2 (en) * 2007-04-10 2009-12-16 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
US9097662B2 (en) 2006-04-18 2015-08-04 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US9110017B2 (en) 2002-09-24 2015-08-18 Duke University Apparatuses and methods for manipulating droplets
US9205433B2 (en) 2006-04-13 2015-12-08 Advanced Liquid Logic, Inc. Bead manipulation techniques
US9238222B2 (en) 2012-06-27 2016-01-19 Advanced Liquid Logic, Inc. Techniques and droplet actuator designs for reducing bubble formation
US9243282B2 (en) 2006-04-18 2016-01-26 Advanced Liquid Logic, Inc Droplet-based pyrosequencing
US9377455B2 (en) 2006-04-18 2016-06-28 Advanced Liquid Logic, Inc Manipulation of beads in droplets and methods for manipulating droplets
US9395361B2 (en) 2006-04-18 2016-07-19 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US9492822B2 (en) 2011-05-09 2016-11-15 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
US9545640B2 (en) 2009-08-14 2017-01-17 Advanced Liquid Logic, Inc. Droplet actuator devices comprising removable cartridges and methods
US9574220B2 (en) 2007-03-22 2017-02-21 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
US9630180B2 (en) 2007-12-23 2017-04-25 Advanced Liquid Logic, Inc. Droplet actuator configurations and methods of conducting droplet operations
US9861986B2 (en) 2008-05-03 2018-01-09 Advanced Liquid Logic, Inc. Droplet actuator and method
US9863913B2 (en) 2012-10-15 2018-01-09 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
JP2018500573A (en) * 2014-12-31 2018-01-11 アボット・ラボラトリーズAbbott Laboratories Digital microfluidic diluter, system and related methods
US9952177B2 (en) 2009-11-06 2018-04-24 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel electrophoresis and molecular analysis
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US10379112B2 (en) 2007-02-09 2019-08-13 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
US20190293599A1 (en) * 2018-03-20 2019-09-26 Kabushiki Kaisha Toshiba Analyzing apparatus
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
US11255809B2 (en) 2006-04-18 2022-02-22 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431775B1 (en) 2005-05-11 2014-08-20 듀크 유니버서티 Method and device for conducting biochemical or chemical reactions at multiple temperatures
US8927296B2 (en) 2006-04-18 2015-01-06 Advanced Liquid Logic, Inc. Method of reducing liquid volume surrounding beads
WO2009111769A2 (en) 2008-03-07 2009-09-11 Advanced Liquid Logic, Inc. Reagent and sample preparation and loading on a fluidic device
WO2008101194A2 (en) 2007-02-15 2008-08-21 Advanced Liquid Logic, Inc. Capacitance detection in a droplet actuator
JP4958622B2 (en) * 2007-04-27 2012-06-20 株式会社日立ハイテクノロジーズ Sample analysis system and sample transport method
WO2009002920A1 (en) 2007-06-22 2008-12-31 Advanced Liquid Logic, Inc. Droplet-based nucleic acid amplification in a temperature gradient
US8591830B2 (en) * 2007-08-24 2013-11-26 Advanced Liquid Logic, Inc. Bead manipulations on a droplet actuator
US8702938B2 (en) 2007-09-04 2014-04-22 Advanced Liquid Logic, Inc. Droplet actuator with improved top substrate
JP2009109459A (en) * 2007-11-01 2009-05-21 Konica Minolta Medical & Graphic Inc Pipette chip, inspection system, pipette, and filling apparatus
US8877512B2 (en) 2009-01-23 2014-11-04 Advanced Liquid Logic, Inc. Bubble formation techniques using physical or chemical features to retain a gas bubble within a droplet actuator
US9248450B2 (en) 2010-03-30 2016-02-02 Advanced Liquid Logic, Inc. Droplet operations platform
WO2012012090A2 (en) 2010-06-30 2012-01-26 Advanced Liquid Logic, Inc. Droplet actuator assemblies and methods of making same
CN103597356A (en) 2011-05-10 2014-02-19 先进流体逻辑公司 Enzyme concentration and assays
BR112014000257A2 (en) 2011-07-06 2017-03-01 Advanced Liquid Logic Inc reagent storage in a drop actuator
US9446404B2 (en) 2011-07-25 2016-09-20 Advanced Liquid Logic, Inc. Droplet actuator apparatus and system
JP2013250205A (en) * 2012-06-01 2013-12-12 Hitachi Ltd Liquid analysis device, liquid analysis system and liquid analysis method
US9223317B2 (en) 2012-06-14 2015-12-29 Advanced Liquid Logic, Inc. Droplet actuators that include molecular barrier coatings
US11541385B2 (en) * 2018-07-06 2023-01-03 Qorvo Us, Inc. Methods of measuring hematocrit in fluidic channels including conductivity sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
WO2004012848A2 (en) * 2002-05-31 2004-02-12 The Regents Of The University Of California Systems and methods for optical actuation of microfluidics based on opto-electrowetting
WO2004030820A2 (en) * 2002-09-24 2004-04-15 Duke University Methods and apparatus for manipulating droplets by electrowetting-based techniques
JP2005030986A (en) * 2003-07-09 2005-02-03 Olympus Corp Liquid feed treatment method and liquid feed treatment means
JP2005118736A (en) * 2003-10-20 2005-05-12 Aida Eng Ltd Microchip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6565727B1 (en) * 1999-01-25 2003-05-20 Nanolytics, Inc. Actuators for microfluidics without moving parts
WO2004012848A2 (en) * 2002-05-31 2004-02-12 The Regents Of The University Of California Systems and methods for optical actuation of microfluidics based on opto-electrowetting
WO2004030820A2 (en) * 2002-09-24 2004-04-15 Duke University Methods and apparatus for manipulating droplets by electrowetting-based techniques
JP2005030986A (en) * 2003-07-09 2005-02-03 Olympus Corp Liquid feed treatment method and liquid feed treatment means
JP2005118736A (en) * 2003-10-20 2005-05-12 Aida Eng Ltd Microchip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO S.K. ET AL: "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, vol. 12, no. 1, 2003, pages 70 - 80, XP003006917 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9638662B2 (en) 2002-09-24 2017-05-02 Duke University Apparatuses and methods for manipulating droplets
US9110017B2 (en) 2002-09-24 2015-08-18 Duke University Apparatuses and methods for manipulating droplets
US9358551B2 (en) 2006-04-13 2016-06-07 Advanced Liquid Logic, Inc. Bead manipulation techniques
US9476856B2 (en) 2006-04-13 2016-10-25 Advanced Liquid Logic, Inc. Droplet-based affinity assays
US9205433B2 (en) 2006-04-13 2015-12-08 Advanced Liquid Logic, Inc. Bead manipulation techniques
US10139403B2 (en) 2006-04-18 2018-11-27 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US11525827B2 (en) 2006-04-18 2022-12-13 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US11789015B2 (en) 2006-04-18 2023-10-17 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US9377455B2 (en) 2006-04-18 2016-06-28 Advanced Liquid Logic, Inc Manipulation of beads in droplets and methods for manipulating droplets
US9395329B2 (en) 2006-04-18 2016-07-19 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US9395361B2 (en) 2006-04-18 2016-07-19 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US9097662B2 (en) 2006-04-18 2015-08-04 Advanced Liquid Logic, Inc. Droplet-based particle sorting
US10585090B2 (en) 2006-04-18 2020-03-10 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US9494498B2 (en) 2006-04-18 2016-11-15 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US9243282B2 (en) 2006-04-18 2016-01-26 Advanced Liquid Logic, Inc Droplet-based pyrosequencing
US10078078B2 (en) 2006-04-18 2018-09-18 Advanced Liquid Logic, Inc. Bead incubation and washing on a droplet actuator
US10809254B2 (en) 2006-04-18 2020-10-20 Advanced Liquid Logic, Inc. Manipulation of beads in droplets and methods for manipulating droplets
US11255809B2 (en) 2006-04-18 2022-02-22 Advanced Liquid Logic, Inc. Droplet-based surface modification and washing
US10379112B2 (en) 2007-02-09 2019-08-13 Advanced Liquid Logic, Inc. Droplet actuator devices and methods employing magnetic beads
US9574220B2 (en) 2007-03-22 2017-02-21 Advanced Liquid Logic, Inc. Enzyme assays on a droplet actuator
EP2132296A4 (en) * 2007-04-10 2015-04-08 Advanced Liquid Logic Inc Droplet dispensing device and methods
EP2132296A2 (en) * 2007-04-10 2009-12-16 Advanced Liquid Logic, Inc. Droplet dispensing device and methods
US9630180B2 (en) 2007-12-23 2017-04-25 Advanced Liquid Logic, Inc. Droplet actuator configurations and methods of conducting droplet operations
US9861986B2 (en) 2008-05-03 2018-01-09 Advanced Liquid Logic, Inc. Droplet actuator and method
US9707579B2 (en) 2009-08-14 2017-07-18 Advanced Liquid Logic, Inc. Droplet actuator devices comprising removable cartridges and methods
US9545641B2 (en) 2009-08-14 2017-01-17 Advanced Liquid Logic, Inc. Droplet actuator devices and methods
US9545640B2 (en) 2009-08-14 2017-01-17 Advanced Liquid Logic, Inc. Droplet actuator devices comprising removable cartridges and methods
US9952177B2 (en) 2009-11-06 2018-04-24 Advanced Liquid Logic, Inc. Integrated droplet actuator for gel electrophoresis and molecular analysis
US9492822B2 (en) 2011-05-09 2016-11-15 Advanced Liquid Logic, Inc. Microfluidic feedback using impedance detection
US9513253B2 (en) 2011-07-11 2016-12-06 Advanced Liquid Logic, Inc. Droplet actuators and techniques for droplet-based enzymatic assays
US10731199B2 (en) 2011-11-21 2020-08-04 Advanced Liquid Logic, Inc. Glucose-6-phosphate dehydrogenase assays
US9815061B2 (en) 2012-06-27 2017-11-14 Advanced Liquid Logic, Inc. Techniques and droplet actuator designs for reducing bubble formation
US9238222B2 (en) 2012-06-27 2016-01-19 Advanced Liquid Logic, Inc. Techniques and droplet actuator designs for reducing bubble formation
US9863913B2 (en) 2012-10-15 2018-01-09 Advanced Liquid Logic, Inc. Digital microfluidics cartridge and system for operating a flow cell
US10369565B2 (en) 2014-12-31 2019-08-06 Abbott Laboratories Digital microfluidic dilution apparatus, systems, and related methods
JP2018500573A (en) * 2014-12-31 2018-01-11 アボット・ラボラトリーズAbbott Laboratories Digital microfluidic diluter, system and related methods
US11213817B2 (en) 2014-12-31 2022-01-04 Abbott Laboratories Digital microfluidic dilution apparatus, systems, and related methods
US20190293599A1 (en) * 2018-03-20 2019-09-26 Kabushiki Kaisha Toshiba Analyzing apparatus

Also Published As

Publication number Publication date
JP4500733B2 (en) 2010-07-14
JP2006329899A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
JP4500733B2 (en) Chemical analyzer
JP4427461B2 (en) Chemical analysis apparatus and analysis device
EP0485379B1 (en) New and improved, ultra low carryover sample liquid analysis apparatus and method
JP2006317364A (en) Dispenser
EP0484329B1 (en) New and improved sample liquid aspirating and dispensing probe
EP1627685A1 (en) Microfuidic-chip for chemical analysis based on electrowetting
US10307782B2 (en) Nozzle cleaning method and automated analyzer
WO2016170994A1 (en) Autoanalyzer and method
US5101673A (en) Ultra low sample liquid analysis apparatus and method
JP4268955B2 (en) Chemical analyzer
JP2006513401A (en) Measuring tip with internal structure to control liquid meniscus and vibration
JP6368536B2 (en) Automatic analyzer and analysis method
JP2008002899A (en) Dispenser and analyzer
JP2000329771A (en) Dispenser
JP2016015922A (en) Nucleic acid analyzer
US20220196695A1 (en) Automatic analyzer
JP2009031174A (en) Autoanalyzer
JPH11271331A (en) Washing mechanism of sampling nozzle
JP2006317365A (en) Chemical analyzer
AU649948C (en) New and improved sample liquid aspirating and dispensing probe
JPH11174062A (en) Chemical analyzer
JP2006317363A (en) Mixing apparatus
JP2010133838A (en) Reaction treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746589

Country of ref document: EP

Kind code of ref document: A1