WO2006082668A1 - Biosensor and biosensor chip - Google Patents

Biosensor and biosensor chip Download PDF

Info

Publication number
WO2006082668A1
WO2006082668A1 PCT/JP2005/013881 JP2005013881W WO2006082668A1 WO 2006082668 A1 WO2006082668 A1 WO 2006082668A1 JP 2005013881 W JP2005013881 W JP 2005013881W WO 2006082668 A1 WO2006082668 A1 WO 2006082668A1
Authority
WO
WIPO (PCT)
Prior art keywords
cantilever
biosensor
thin film
substance
sensor
Prior art date
Application number
PCT/JP2005/013881
Other languages
French (fr)
Japanese (ja)
Inventor
Sumio Hosaka
Hayato Sone
Haruki Okano
Original Assignee
National University Corporation Gunma University
Tokyo Sokki Kenkyujo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Gunma University, Tokyo Sokki Kenkyujo Co., Ltd. filed Critical National University Corporation Gunma University
Publication of WO2006082668A1 publication Critical patent/WO2006082668A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • G01N2291/0257Adsorption, desorption, surface mass change, e.g. on biosensors with a layer containing at least one organic compound

Definitions

  • the present invention relates to a biosensor and a biosensor chip that can measure antigen-antibody reaction and protein with high sensitivity, and in particular, is dissolved in a liquid using a cantilever.
  • the present invention relates to a biosensor capable of measuring a substance with high sensitivity and a biosensor chip used in the nanosensor.
  • a cantilever used in an atomic force electron microscope has a resonance point, and the resonance point is shifted by the force received from the outside. Ton) is used as a sensor that can measure force. Furthermore, recently, this sensor has a component that the weight of the cantilever changes due to the substance adhering to the cantilever and the resonance point changes, and this sensor can be applied to a biosensor using this change in resonance point. Is being considered.
  • this sensor is a sensor that detects changes in the resonance frequency of a small cantilever 1 using an optical lever to detect physical quantities, chemical quantities, temperatures, stresses, or the like.
  • the laser light emitted from the semiconductor laser 2 is condensed on the back surface of the cantilever 1 using a lens, and the laser light reflected by the cantilever is incident on a position detector 3 composed of a photodiode or the like.
  • An optical system is required.
  • 4 is an actuator that vibrates the cantilever
  • 5 is a detection circuit
  • 6 is the drive of the actuator.
  • the operation circuit 7 is an arithmetic circuit composed of a computer that calculates physical quantities and the like based on the output of the detection circuit.
  • Patent Document 1 Special Table 2004- 506872
  • Patent Document 2 JP-A-9-304409
  • Patent Document 3 Japanese Translation of Special Publication 2002-543403
  • Patent Document 4 Japanese Patent Laid-Open No. 2004-125706
  • Patent Document 5 U.S. Pat.No. 4,549,427
  • Patent Document 6 U.S. Pat.No. 5,719,324
  • Patent Document 7 U.S. Pat.No. 5,631,410
  • Patent Document 8 JP-A-6-323845
  • Non-patent document 1 "Artificial nose” (Analytica Chamica Acta 393 (1999) p. 59)
  • the present invention has been made to solve the above-described problems, and a biosensor that can be used easily without readjustment when used, and a nanosensor chip that can be used for the biosensor The purpose is to provide.
  • a biosensor is provided in the cantilever, an actuator that vibrates the cantilever, and a vibration state of the cantilever.
  • the detected sensor and the sensor Control means for controlling the actuator so that the cantilever resonates based on the issued vibration state, and the vibration state detected by the sensor in a state where the cantilever is controlled to resonate.
  • Detecting means for detecting the amount of the substance adhering to the cantilever based on the change.
  • the vibration state such as the resonance frequency of the cantilever changes. Since the change in the vibration state and the mass of the substance attached to the cantilever are correlated, the amount of the substance attached to the cantilever can be detected based on the change in the vibration state detected by the sensor.
  • the sensor of this feature is provided on the cantilever, it is self-detecting, and therefore it can be used conveniently without having to adjust it again when using the biosensor.
  • the cantilever of the biosensor can be used in a liquid such as a reaction liquid.
  • the cantilever can be attached to an insulator thin film, a thin film to which a substance to be detected can adhere, or the insulator thin film and the substance to be detected coated thereon. It can be covered with a laminated film with a thin film. By covering the cantilever with an insulating film, current leakage when using the biosensor in liquid or the like can be prevented. Moreover, the mass of the target substance can be detected by coating a thin film to which the substance to be detected can adhere.
  • the actuator can be constituted by a piezoelectric element, a capacitance element, or an electromagnetic induction element.
  • the senor includes a strain resistance element whose resistance changes according to vibration of the cantilever, a capacitance element whose capacitance changes according to vibration of the cantilever, or a cantilever of the cantilever.
  • a strain resistance element whose resistance changes according to vibration of the cantilever
  • a capacitance element whose capacitance changes according to vibration of the cantilever
  • a cantilever of the cantilever include a piezoelectric element or electromagnetic induction element that generates a voltage in response to vibration.
  • the biosensor chip has a surface covered with an insulator thin film, a thin film to which a substance to be detected can adhere, or the insulator thin film and the insulator thin film.
  • This biosensor chip can be produced using a technique capable of manufacturing MEMS (Micro Electro Mechanical Systems), which is a system including a mechanical part that is movable as a part of a semiconductor element.
  • MEMS Micro Electro Mechanical Systems
  • the self-detecting sensor for detecting the vibration of the cantilever since the self-detecting sensor for detecting the vibration of the cantilever is provided in the cantilever, it can be used easily without having to adjust again when using the biosensor. The effect of is obtained.
  • FIG. 1 is a schematic diagram showing a nanosensor according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing a processing routine for detecting a substance attached to the cantilever according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a modification of the first embodiment.
  • FIG. 4 is a schematic view showing another modification of the first embodiment.
  • FIG. 5 is a schematic view showing a second embodiment.
  • FIG. 6 is a schematic view showing a third embodiment.
  • FIG. 7 is a schematic view showing a fourth embodiment.
  • FIG. 8 is a schematic view showing a fifth embodiment.
  • FIG. 9 is a schematic view of a biosensor using a conventional optical lever.
  • the biosensor chip according to the first embodiment includes a thin plate-like cantilever 10 formed so as to be continuous with a base 12.
  • the shape of the cantilever 10 may be a single triangle or elongated shape, as shown in Fig. 9, in which the base end is separated into two parts and the tip is connected to form a V shape. May be.
  • the pedestal 12 is attached with an actuator 14 made of a piezoelectric element that vibrates the cantilever 10 by exciting the pedestal.
  • the actuator 14 is attached so as to be integrated with the pedestal by being attached or mechanically joined to the pedestal.
  • Akuchu The position where the eta is attached can be any position where the cantilever can be vibrated in the thickness direction of the cantilever. As shown in the figure, the side where the cantilever is not formed or the side where the cantilever is formed Attached to.
  • a strain resistance element 16 that is a self-detecting sensor is formed in a predetermined region including a boundary portion between the cantilever 10 and the base 12.
  • tensile and compressive stress is generated at the boundary between the cantilever base and the resistance value of the strain resistance element 16 changes. The state can be detected.
  • the cantilever 10 can be formed integrally with the pedestal by etching a semiconductor substrate such as silicon into a thin plate while leaving a portion corresponding to the pedestal.
  • the strain resistance element 16 is formed by forming a pair of electrodes using semiconductor technology at the boundary with the cantilever pedestal and forming a strain resistance pattern by ion implantation of impurity atoms such as boron between the electrodes. can do.
  • the resistance value of the strain resistance is preferably 2 k ⁇ or less.
  • the cantilever and the pedestal are preferably formed of a silicon substrate, but an electrode that is not ion-implanted may be formed and the strain resistance element may be attached.
  • a detection circuit 18 for detecting a change in the resistance value of the strain resistance element is connected to the electrode of the strain resistance element 16.
  • the detection circuit 18 includes a bridge circuit that forms a Wheatstone bridge together with the strain resistance element 16, and a power source that applies a voltage to the bridge circuit.
  • the detection circuit 18 detects a resistance change of the strain resistance element 16 as a voltage change, and detects the detected signal. Is output.
  • the detection circuit 18 is connected to a positive feedback circuit 20 for driving the actuator 14 to resonate the cantilever 10 and an F—V conversion circuit (FM demodulation circuit) 22 for converting the frequency into a voltage.
  • a personal computer 26 for data processing and display is connected to the F—V conversion circuit 22!
  • the cantilever sags when an external force is applied, and the resonance frequency changes when the mass changes in a resonating state.
  • the operation of a force cantilever can be expressed by the following force equation (1).
  • m is the effective mass of the cantilever
  • Z is the amount of strain of the cantilever
  • k is the spring constant of the cantilever
  • is the viscosity of the liquid in which the cantilever is immersed
  • F is the excitation force of the actuator
  • is the frequency of the actuator, that is, the cantilever.
  • the resonance frequency ⁇ of the cantilever 10 is the effective mass m of the cantilever 10
  • the mass of the cantilever is ⁇
  • the change in the mass of the force cantilever that is, the mass of the substance attached to the cantilever can be detected. Since the change in frequency can be measured with an accuracy of 1 Hz or less, the above equation (4) means that the change in the mass of the cantilever can be measured with a picogram or femtogram.
  • the spring constant k is lNZm
  • the resonance frequency ⁇ is 100 kHz
  • the mass of the substance attached to the cantilever can be detected with a sensitivity of about lpgZHz.
  • the detection sensitivity can be reduced by reducing the mass of the cantilever and / or increasing the resonance frequency. Can be made higher.
  • a micromachine process can be used to reduce the mass of the cantilever.
  • the resonance frequency gradually decreases as the mass of the adhering material to the cantilever increases. Therefore, the resonance frequency changing force detected by the vibration detection sensor formed of the strain resistance element is used. It is possible to detect the mass and therefore the weight of the deposits attached to the cantilever.
  • the pedestal 12 When an excitation signal is input from the positive feedback circuit 20 to the actuator 14, the pedestal 12 is vibrated, and thereby the cantilever 10 is vibrated in the thickness direction of the cantilever.
  • the cantilever 10 When the cantilever 10 is immersed in the reaction solution in the container 24, the reaction solution adheres to the cantilever and the frequency of the cantilever decreases slightly due to the influence of the viscosity of the reaction solution. In addition, since various vibration modes are generated at this time, the cantilever resonates at a frequency different from the original resonance frequency.
  • the voltage change detected by the detection circuit 18 is amplified by the positive feedback circuit 20, the phases are aligned, and the voltage change is input to the actuator. As a result, the cantilever is vibrated at the resonance frequency.
  • the voltage change detected by the detection circuit is an analog signal (output Force V) and input to computer 26.
  • step 100 the analog signal output from the F—V conversion is converted into a digital signal and taken in, and in step 102, the output V is stored in the memory of the computer.
  • step 104 the output acquired last time is compared with the output acquired this time, and the output change ⁇ is calculated.
  • step 106 it is determined whether or not the output V has changed. If it is determined, the mass of the substance attached to the cantilever is calculated in step 108 based on the above equation (4). Thereby, the time change of the mass of the substance attached to the cantilever can be detected. In addition, the total amount of the substance attached to the cantilever within the predetermined time can be detected by accumulating the time change of the mass over the predetermined time.
  • the mass of the substance adhering to the cantilever detected in this way is displayed on a display device such as an LCD connected to the computer.
  • the computer can process and calculate noise removal, reaction speed, and the like.
  • the antibody is first attached to the surface of the cantilever and the cantilever is immersed in the reaction solution, and then the measurement sample having the antigen is reacted. Put into the reaction solution in container 24.
  • the constitutional ability has factors such as allergies.
  • allergens are produced in the human body.
  • each electrode portion of the piezoelectric element 14 is covered with an insulating film 28, and It may be electrically insulated. Also in this case, in the same manner as described above, one of the insulating films of the actuator is bonded or mechanically bonded to the pedestal so that the actuator is integrated with the pedestal. Since the actuator electrode is covered with the insulating film 28, measurement can be started immediately by immersing the cantilever in the reaction solution.
  • the cantilever and the base are covered with an insulating film 28. May be.
  • the actuator may be covered with an insulating film as shown in FIG. 3, or may not be covered.
  • the counter electrode 30 is fixed to the base 12 so as to face and parallel to the cantilever 10, and the capacitance between the cantilever 10 and the counter electrode 30 is fixed.
  • An element is configured.
  • the cantilever 10 and the counter electrode 30 are connected to a detection circuit 18 having a bridge circuit that forms a Wheatstone bridge together with the electrostatic capacitance element in the same manner as described above.
  • the bridge circuit of the detection circuit can detect the vibration of the cantilever and output the vibration signal.
  • the change in the resonance frequency is detected from the vibration signal output from the detection circuit, and the change force of this resonance frequency is changed over time in the mass of the substance attached to the cantilever as described above. Can be detected.
  • the counter electrode of the second embodiment is used as an actuator.
  • a strain resistance element similar to that in the first embodiment is used.
  • the strain resistance element 16 is connected to the bridge circuit of the detection circuit 18 as in the first embodiment. Further, the base end side of the cantilever 10 is grounded, and the counter electrode 30 constituting the capacitance element is connected to the positive feedback circuit 20.
  • the voltage change of the strain resistance element 16 is detected by the bridge circuit of the detection circuit 18, the detected signal is input to the positive feedback circuit 20, and the excitation signal is transmitted to the counter electrode 30. Therefore, the cantilever 10 is controlled to resonate and vibrate.
  • the signal detected by the bridge circuit of the detection circuit 18 is input to the computer 26 via the FV conversion circuit 22, and the resonance frequency changing force in the computer 26 is the mass of the substance adhering to the cantilever as described above. A change in time is detected.
  • an electromagnetic induction type actuator is used in place of the electrostatic induction actuator of the third embodiment.
  • the electromagnetic induction coil 32 is fixed to the pedestal 12 so as to face and substantially parallel to the cantilever 10, and the surface of the cantilever 10 is coated with a magnetic thin film 34 made of a magnetic material.
  • a strain resistance element similar to that in the first embodiment is used.
  • the signal from the strain resistance element 16 is detected by the bridge circuit of the detection circuit 18, and the detected signal is input to the positive feedback circuit 20 and the electromagnetic induction coil 32. Therefore, the cantilever 10 is resonantly vibrated.
  • the signal detected by the bridge circuit of the detection circuit 18 is input to the computer 26 through the FV conversion circuit 22 in the same manner as described above, and the resonance frequency changing force in the computer 26 is also a substance attached to the cantilever. Changes in the mass of the time are detected. In Fig. 7, only one side is coated, but it may be coated on both sides, or on the opposite side of Fig. 7.
  • FIG. 8 shows a fifth embodiment of the present invention, in which a special chemically reactive group is attached to the insulating film of the cantilever shown in FIG. 3 in order to attach a substance to be detected.
  • the thin film 36 made of gold or the like is coated.
  • the type of thin film is appropriately selected according to the substance to be deposited. As a result, it is possible to detect a change in the mass of a substance attached to a cantilever such as a protein, DNA, antibody, or antigen that has been artificially selected via a thiol group.
  • the example using the strain resistance element (the first embodiment, etc.) or the capacitance element (the second embodiment) as the self-sensing element has been described.
  • a piezoelectric element, an electromagnetic induction element, a temperature detection element, or the like may be used (piezoelectric element 5 in FIG. 1). 6.
  • electromagnetic induction element 66 As the actuator, a temperature-driven actuator or an optically-driven actuator may be used instead of the piezoelectric element and the electrostatic-driven capacitive element.
  • the example in which the cantilever is coated with an insulating film has been described, it may be covered with a natural acid film.
  • a PLL circuit, a quadrature demodulation circuit or the like may be used for detection of the frequency shift amount of the signal output from the detection circuit.
  • a plurality of cantilevers may be provided on the force base described in the example using one cantilever, and the substance attached to each cantilever may be measured.
  • each of the above embodiments may be configured to use a plurality of chips at the same time.
  • the biosensor and the biosensor chip according to the present invention do not need to be readjusted when used, and can be used easily.
  • the antigen-antibody reaction and proteins are highly sensitive. Suitable for nanosensors and biosensor chips that can be measured with

Abstract

A biosensor comprising a cantilever, an actuator for oscillating the cantilever, a sensor provided on the cantilever to detect the oscillatory state of the cantilever, a means for controlling the actuator to resonate the cantilever basing on the oscillatory state detected by the sensor, and a means for detecting the amount of substance adhering to the cantilever basing on the variation in oscillatory state detected by the sensor under a state where the cantilever is controlled to resonate.

Description

明 細 書  Specification
バイオセンサ及びバイオセンサチップ  Biosensor and biosensor chip
技術分野  Technical field
[0001] 本発明は、抗原抗体反応及び蛋白質等を高感度で測定することができるバイオセ ンサ及びバイオセンサチップに係り、特に、片持ち張り(カンチレバー)を用いて液体 中に溶解して 、る物質を高感度で測定することができるバイオセンサ及びこのノィォ センサに用いられるバイオセンサチップに関する。  [0001] The present invention relates to a biosensor and a biosensor chip that can measure antigen-antibody reaction and protein with high sensitivity, and in particular, is dissolved in a liquid using a cantilever. The present invention relates to a biosensor capable of measuring a substance with high sensitivity and a biosensor chip used in the nanosensor.
背景技術  Background art
[0002] ノィォセンサとしては、手軽で簡易型な高感度のセンサが要求されている。その 1 つとして、水晶発振子を使用したバイオセンサが開発されている。このバイオセンサ の検出感度は、約 30pgZHzであり、バイオセンサとして使用するためには不充分な 感度である。  As a noise sensor, an easy and simple high-sensitivity sensor is required. One of these is the development of biosensors that use crystal resonators. The detection sensitivity of this biosensor is approximately 30 pgZHz, which is insufficient for use as a biosensor.
[0003] 一方、原子間力電子顕微鏡で用いられているカンチレバーは、共振点を持ち、外 部から受ける力により共振点がシフトすることを利用して微小な力である pN (ピコ-ュ 一トン)単位の力を計測できるセンサとして利用されている。さらに、最近、このセンサ は、カンチレバーに付着する物質によりカンチレバーの重量が変化し、共振点が変 化することが分力つており、この共振点の変化を利用してバイオセンサへ応用するこ とが検討されている。  On the other hand, a cantilever used in an atomic force electron microscope has a resonance point, and the resonance point is shifted by the force received from the outside. Ton) is used as a sensor that can measure force. Furthermore, recently, this sensor has a component that the weight of the cantilever changes due to the substance adhering to the cantilever and the resonance point changes, and this sensor can be applied to a biosensor using this change in resonance point. Is being considered.
[0004] カンチレバーをバイオセンサとして利用した論文としては、ラング等が発表したセン サ("人工ノーズ"(アナリティカ ケミカ ァクタ Analytica Chamica Acta 第 39 3卷(1999年) 59頁)が知られて!/、る。  [0004] As a paper using cantilevers as biosensors, a sensor published by Lang et al. ("Artificial Nose" (Analytica Chamica Acta No. 39 3 卷 (1999) p. 59)) is known! / RU
[0005] このセンサは、図 9に示すように、光てこを利用して小さなカンチレバー 1の共振周 波数の変化を検出し、物理量、化学量、温度、または応力等を検出するセンサである 。このセンサには、半導体レーザ 2から照射されたレーザ光をレンズを利用してカンチ レバー 1の背面に集光し、カンチレバーで反射されたレーザ光をホトダイオード等で 構成された位置検出器 3に入射させる光学系が必要になる。なお、図 9において、 4 はカンチレバーを振動させるァクチユエータ、 5は検出回路、 6はァクチユエ一タの駆 動回路、 7は検出回路出力に基づいて物理量等を演算するコンピュータで構成され た演算回路である。 As shown in FIG. 9, this sensor is a sensor that detects changes in the resonance frequency of a small cantilever 1 using an optical lever to detect physical quantities, chemical quantities, temperatures, stresses, or the like. In this sensor, the laser light emitted from the semiconductor laser 2 is condensed on the back surface of the cantilever 1 using a lens, and the laser light reflected by the cantilever is incident on a position detector 3 composed of a photodiode or the like. An optical system is required. In FIG. 9, 4 is an actuator that vibrates the cantilever, 5 is a detection circuit, and 6 is the drive of the actuator. The operation circuit 7 is an arithmetic circuit composed of a computer that calculates physical quantities and the like based on the output of the detection circuit.
[0006] し力しながら、従来のバイオセンサでは、半導体レーザを含む光学系が必要になる ため、空気中で光学系の光軸調整を行なった後空気中と屈折率が異なる液中等に 浸漬して使用する場合等には、光路長が変化することから再度光軸調整をする必要 があり、簡易に使用することができない、という問題がある。  However, since conventional biosensors require an optical system including a semiconductor laser, the optical axis of the optical system is adjusted in the air and then immersed in a liquid having a refractive index different from that of the air. However, when the optical path length is changed, it is necessary to adjust the optical axis again because the optical path length changes, and there is a problem that it cannot be used easily.
[0007] 従来 f列として、更に、特表 2004— 506872、特開平 9— 304409、特表 2002— 54[0007] Conventionally, as column f, Special Table 2004-506872, JP-A-9-304409, Special Table 2002-54
3403、特開 2004— 125706、 US4, 549, 427、 US5, 719, 324、 US5, 631, 43403, JP 2004-125706, US4, 549, 427, US5, 719, 324, US5, 631, 4
10、および特開平 6— 323845が挙げられる。 10 and JP-A-6-323845.
特許文献 1:特表 2004— 506872号公報  Patent Document 1: Special Table 2004- 506872
特許文献 2:特開平 9 - 304409号公報  Patent Document 2: JP-A-9-304409
特許文献 3:特表 2002— 543403号公報  Patent Document 3: Japanese Translation of Special Publication 2002-543403
特許文献 4:特開 2004 - 125706号公報  Patent Document 4: Japanese Patent Laid-Open No. 2004-125706
特許文献 5 :米国特許第 4, 549, 427号明細書  Patent Document 5: U.S. Pat.No. 4,549,427
特許文献 6 :米国特許第 5, 719, 324号明細書  Patent Document 6: U.S. Pat.No. 5,719,324
特許文献 7 :米国特許第 5, 631, 410号明細書  Patent Document 7: U.S. Pat.No. 5,631,410
特許文献 8:特開平 6— 323845号公報  Patent Document 8: JP-A-6-323845
非特許文献 1 : "人工ノーズ"(アナリティカ ケミカ ァクタ Analytica Chamica A cta 第 393卷(1999年) 59頁)  Non-patent document 1: "Artificial nose" (Analytica Chamica Acta 393 (1999) p. 59)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明は、上記問題を解決するためになされたもので、使用する際に再調整するこ となく簡便に使用することができるバイオセンサ及びこのバイオセンサに使用可能な ノィォセンサチップを提供することを目的とする。 [0008] The present invention has been made to solve the above-described problems, and a biosensor that can be used easily without readjustment when used, and a nanosensor chip that can be used for the biosensor The purpose is to provide.
課題を解決するための手段  Means for solving the problem
[0009] 上記目的を達成するために、本発明の第 1の特徴において、バイオセンサは、カン チレバーと、前記カンチレバーを振動させるァクチユエータと、前記カンチレバーの 振動状態を検出するように前記カンチレバーに設けられたセンサと、前記センサで検 出された振動状態に基づいて、前記カンチレバーが共振するように前記ァクチユエ ータを制御する制御手段と、前記カンチレバーが共振するように制御されている状態 で、前記センサで検出された振動状態の変化に基づいて、前記カンチレバーに付着 した物質の付着量を検出する検出手段と、を含んで構成される。 [0009] In order to achieve the above object, according to the first aspect of the present invention, a biosensor is provided in the cantilever, an actuator that vibrates the cantilever, and a vibration state of the cantilever. The detected sensor and the sensor Control means for controlling the actuator so that the cantilever resonates based on the issued vibration state, and the vibration state detected by the sensor in a state where the cantilever is controlled to resonate. Detecting means for detecting the amount of the substance adhering to the cantilever based on the change.
[0010] 本特徴によれば、カンチレバーが共振するように制御されて 、る状態で、カンチレ バーに物質が付着するとカンチレバーの共振周波数等の振動状態が変化する。この 振動状態の変化とカンチレバーに付着した物質の質量とは相関があるため、センサ で検出された振動状態の変化に基づいて、カンチレバーに付着した物質の付着量を 検出することができる。  [0010] According to this feature, when a substance adheres to the cantilever while the cantilever is controlled to resonate, the vibration state such as the resonance frequency of the cantilever changes. Since the change in the vibration state and the mass of the substance attached to the cantilever are correlated, the amount of the substance attached to the cantilever can be detected based on the change in the vibration state detected by the sensor.
[0011] 本特徴のセンサは、カンチレバーに設けられているので自己検知型であり、このた めバイオセンサを使用する際に再度調整する必要がなぐ簡便に使用することができ る。バイオセンサのカンチレバーは、反応液等の液中で使用することができる。  [0011] Since the sensor of this feature is provided on the cantilever, it is self-detecting, and therefore it can be used conveniently without having to adjust it again when using the biosensor. The cantilever of the biosensor can be used in a liquid such as a reaction liquid.
[0012] 本発明の第 2の特徴において、上記カンチレバーを、絶縁体薄膜、検出対象の物 質が付着可能な薄膜、または前記絶縁体薄膜とこれに被覆された前記検出対象の 物質が付着可能な薄膜との積層膜、で被覆することができる。上記カンチレバーを絶 縁膜で被覆することにより、液中等でバイオセンサを使用する場合の電流のリークを 防止することができる。また、検出対象の物質が付着可能な薄膜を被覆することによ り、 目的とする物質の質量を検出することができる。  [0012] In the second aspect of the present invention, the cantilever can be attached to an insulator thin film, a thin film to which a substance to be detected can adhere, or the insulator thin film and the substance to be detected coated thereon. It can be covered with a laminated film with a thin film. By covering the cantilever with an insulating film, current leakage when using the biosensor in liquid or the like can be prevented. Moreover, the mass of the target substance can be detected by coating a thin film to which the substance to be detected can adhere.
[0013] 本発明の第 3の特徴にぉ 、て、前記ァクチユエータを、圧電素子、静電容量素子、 または電磁誘導素子で構成することができる。  [0013] According to the third feature of the present invention, the actuator can be constituted by a piezoelectric element, a capacitance element, or an electromagnetic induction element.
[0014] 本発明の第 4の特徴において、前記センサは、カンチレバーの振動に応じて抵抗 が変化する歪み抵抗素子、カンチレバーの振動に応じて静電容量が変化する静電 容量素子、またはカンチレバーの振動に応じて電圧を発生する圧電素子あるいは電 磁誘導素子を含んで構成してょ ヽ。  [0014] In the fourth aspect of the present invention, the sensor includes a strain resistance element whose resistance changes according to vibration of the cantilever, a capacitance element whose capacitance changes according to vibration of the cantilever, or a cantilever of the cantilever. Include a piezoelectric element or electromagnetic induction element that generates a voltage in response to vibration.
[0015] また、本発明の第 5の特徴において、バイオセンサチップは、表面が、絶縁体薄膜 、検出対象の物質が付着可能な薄膜、または前記絶縁体薄膜と該絶縁体薄膜に被 覆された前記検出対象の物質が付着可能な薄膜との積層膜で被覆された半導体で 構成されたカンチレバーと、前記カンチレバーの振動状態を検出するように前記カン チレバーに内蔵されたセンサと構成されて 、る。 [0015] Further, in the fifth feature of the present invention, the biosensor chip has a surface covered with an insulator thin film, a thin film to which a substance to be detected can adhere, or the insulator thin film and the insulator thin film. A cantilever made of a semiconductor coated with a laminated film with a thin film to which the substance to be detected can adhere, and the cantilever so as to detect a vibration state of the cantilever. It consists of a sensor built into the chiller.
[0016] このバイオセンサチップは、半導体素子の一部に可動する機械部分を含むシステ ムである MEMS (Micro Electro Mechanical Systems)を製造し得る技術を用 いて作成することができる。  [0016] This biosensor chip can be produced using a technique capable of manufacturing MEMS (Micro Electro Mechanical Systems), which is a system including a mechanical part that is movable as a part of a semiconductor element.
発明の効果  The invention's effect
[0017] 要するに、本発明によれば、カンチレバーにカンチレバーの振動を検知する自己 検知型のセンサを設けたので、バイオセンサを使用する際に再度調整する必要がな ぐ簡便に使用することができる、という効果が得られる。  In short, according to the present invention, since the self-detecting sensor for detecting the vibration of the cantilever is provided in the cantilever, it can be used easily without having to adjust again when using the biosensor. The effect of is obtained.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の第 1の実施の形態のノィォセンサを示す概略図である。 FIG. 1 is a schematic diagram showing a nanosensor according to a first embodiment of the present invention.
[図 2]第 1の実施の形態のカンチレバーに付着した物質を検出する処理ルーチンを 示す流れ図である。  FIG. 2 is a flowchart showing a processing routine for detecting a substance attached to the cantilever according to the first embodiment.
[図 3]第 1の実施の形態の変形例を示す概略図である。  FIG. 3 is a schematic diagram showing a modification of the first embodiment.
[図 4]第 1の実施の形態の他の変形例を示す概略図である。  FIG. 4 is a schematic view showing another modification of the first embodiment.
[図 5]第 2の実施の形態を示す概略図である。  FIG. 5 is a schematic view showing a second embodiment.
[図 6]第 3の実施の形態を示す概略図である。  FIG. 6 is a schematic view showing a third embodiment.
[図 7]第 4の実施の形態を示す概略図である。  FIG. 7 is a schematic view showing a fourth embodiment.
[図 8]第 5の実施の形態を示す概略図である。  FIG. 8 is a schematic view showing a fifth embodiment.
[図 9]従来の光てこを利用したバイオセンサの概略図である。  FIG. 9 is a schematic view of a biosensor using a conventional optical lever.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、図面を参照して本発明の実施の形態を詳細に説明する。図 1に示すように、 第 1の実施の形態のバイオセンサチップは、台座 12に連続するように形成された薄 板状のカンチレバー 10を備えている。カンチレバー 10の形状は、図 9に示したように 基端部を 2つに分離しかつ先端部を連結して V字型に形成した形状でもよぐ 1枚の 三角形状や細長状に形成してもよい。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the biosensor chip according to the first embodiment includes a thin plate-like cantilever 10 formed so as to be continuous with a base 12. The shape of the cantilever 10 may be a single triangle or elongated shape, as shown in Fig. 9, in which the base end is separated into two parts and the tip is connected to form a V shape. May be.
[0020] 台座 12には、台座を加振することによりカンチレバー 10を振動させる圧電素子で 構成されたァクチユエータ 14が取り付けられている。ァクチユエータ 14は、台座に接 着または機械的に接合させて台座と一体ィ匕するように取り付けられている。ァクチュ エータを取り付ける位置は、カンチレバーをカンチレバーの厚み方向に振動されるこ とができる位置であればよぐ図示したたように台座のカンチレバーが形成されていな い側、またはカンチレバーが形成されている側に取り付けられる。 [0020] The pedestal 12 is attached with an actuator 14 made of a piezoelectric element that vibrates the cantilever 10 by exciting the pedestal. The actuator 14 is attached so as to be integrated with the pedestal by being attached or mechanically joined to the pedestal. Akuchu The position where the eta is attached can be any position where the cantilever can be vibrated in the thickness direction of the cantilever. As shown in the figure, the side where the cantilever is not formed or the side where the cantilever is formed Attached to.
[0021] また、カンチレバー 10の台座 12との境界部分を含む所定領域には、自己検知型 のセンサである歪み抵抗素子 16が形成されて 、る。ァクチユエータによりカンチレバ 一を厚み方向に振動させることにより、カンチレバーの台座との境界部分に引張り及 び圧縮応力が生じ、歪み抵抗素子 16の抵抗値が変化するため、この抵抗値の変化 力 カンチレバーの振動状態を検出することができる。  In addition, a strain resistance element 16 that is a self-detecting sensor is formed in a predetermined region including a boundary portion between the cantilever 10 and the base 12. When the cantilever is vibrated in the thickness direction by the actuator, tensile and compressive stress is generated at the boundary between the cantilever base and the resistance value of the strain resistance element 16 changes. The state can be detected.
[0022] カンチレバー 10は、シリコン等の半導体基板を台座に相当する部分を残存させて 薄板状にエッチングすることにより、台座と一体的に形成することができる。また、歪 み抵抗素子 16は、カンチレバーの台座との境界部分に半導体技術で一対の電極を 形成し、ボロン等の不純物原子を電極間にイオン打ち込みすることにより歪み抵抗パ ターンを形成して作成することができる。歪み抵抗の抵抗値は、 2k Ω以下が望ましい 。なお、カンチレバーと台座とは、シリコン基板で形成することが好ましいが、イオン打 ち込みすることなぐ電極を形成して歪み抵抗素子を貼着するようにしてもよい。  The cantilever 10 can be formed integrally with the pedestal by etching a semiconductor substrate such as silicon into a thin plate while leaving a portion corresponding to the pedestal. The strain resistance element 16 is formed by forming a pair of electrodes using semiconductor technology at the boundary with the cantilever pedestal and forming a strain resistance pattern by ion implantation of impurity atoms such as boron between the electrodes. can do. The resistance value of the strain resistance is preferably 2 kΩ or less. Note that the cantilever and the pedestal are preferably formed of a silicon substrate, but an electrode that is not ion-implanted may be formed and the strain resistance element may be attached.
[0023] 歪み抵抗素子 16の電極には、歪み抵抗素子の抵抗値の変化を検出するための検 出回路 18が接続されている。検出回路 18は、歪み抵抗素子 16と共にホイートストン ブリッジを構成するブリッジ回路、及びブリッジ回路に電圧を印加する電源とを備えて おり、歪み抵抗素子 16の抵抗変化を電圧変化として検出し、検出した信号を出力す る。この検出回路 18は、ァクチユエータ 14を駆動してカンチレバー 10を共振させる ための正帰還回路 20、及び周波数を電圧に変換する F— V変換回路 (FM復調回路 ) 22に接続されている。 F— V変換回路 22には、データ処理及び表示を行なうパーソ ナルコンピュータ 26が接続されて!、る。  A detection circuit 18 for detecting a change in the resistance value of the strain resistance element is connected to the electrode of the strain resistance element 16. The detection circuit 18 includes a bridge circuit that forms a Wheatstone bridge together with the strain resistance element 16, and a power source that applies a voltage to the bridge circuit. The detection circuit 18 detects a resistance change of the strain resistance element 16 as a voltage change, and detects the detected signal. Is output. The detection circuit 18 is connected to a positive feedback circuit 20 for driving the actuator 14 to resonate the cantilever 10 and an F—V conversion circuit (FM demodulation circuit) 22 for converting the frequency into a voltage. A personal computer 26 for data processing and display is connected to the F—V conversion circuit 22!
[0024] 次に、本実施の形態のカンチレバーに付着した物質の質量を検知するための原理 について説明する。カンチレバーは、外力が加わると橈み、共振している状態で質量 が変化すると共振周波数が変化する。カンチレバーを調和振動子として考えると、力 ンチレバーの動作は以下の(1)式の力の方程式で表すことができる。  [0024] Next, the principle for detecting the mass of the substance attached to the cantilever of this embodiment will be described. The cantilever sags when an external force is applied, and the resonance frequency changes when the mass changes in a resonating state. Considering a cantilever as a harmonic oscillator, the operation of a force cantilever can be expressed by the following force equation (1).
[0025] [数 1]
Figure imgf000008_0001
[0025] [Equation 1]
Figure imgf000008_0001
[0026] なお、 mはカンチレバーの有効質量、 Zはカンチレバーの歪み量、 kはカンチレバ 一のばね定数、 ξはカンチレバーが浸漬されている液体等の粘性、 Fはァクチユエ ータの加振力、 ωはァクチユエータ、すなわちカンチレバーの振動数である。 [0026] where m is the effective mass of the cantilever, Z is the amount of strain of the cantilever, k is the spring constant of the cantilever, ξ is the viscosity of the liquid in which the cantilever is immersed, F is the excitation force of the actuator, ω is the frequency of the actuator, that is, the cantilever.
[0027] 上記(1)式より、カンチレバー 10の共振周波数 ω は、カンチレバーの有効質量 m  [0027] From the above equation (1), the resonance frequency ω of the cantilever 10 is the effective mass m of the cantilever 10
0  0
及びばね定数 kを用いて以下の(2)式で表される。  And the following equation (2) using the spring constant k.
[0028] [数 2]
Figure imgf000008_0002
[0028] [Equation 2]
Figure imgf000008_0002
[0029] ここで、カンチレバーが周波数 ωで共振している状態で、カンチレバーの質量が Δ [0029] Here, with the cantilever resonating at a frequency ω, the mass of the cantilever is Δ
0  0
m増加すると、上記(1)式は、以下の(3)式のように表される。  When m is increased, the above equation (1) is expressed as the following equation (3).
[0030] [数 3]
Figure imgf000008_0003
[0030] [Equation 3]
Figure imgf000008_0003
[0031] これらの式を共振周波数の変化 Δ ωで表すと、次の (4)式が得られる。 [0031] When these equations are represented by a change in resonance frequency Δω, the following equation (4) is obtained.
[0032] 画 [0032] drawings
ω =一丄^! Δ ιη ω = Ichi ^^! Δ ιη
2 m . . . ( 4 ^  2 m ... (4 ^
[0033] したがって、上記 (4)式より、カンチレバーの周波数の変化を検出することにより、力 ンチレバーの質量の変化、すなわちカンチレバーに付着した物質の質量を検知する ことができる。周波数の変化を 1Hz以下の精度で計測できることから、上記 (4)式で はピコグラムまたはフェムトグラムでカンチレバーの質量の変化が計測できることを意 味する。例えば、ばね定数 kを lNZm、共振周波数 ωを 100kHz、カンチレバーの [0033] Therefore, from the above equation (4), by detecting the change in the frequency of the cantilever, the change in the mass of the force cantilever, that is, the mass of the substance attached to the cantilever can be detected. Since the change in frequency can be measured with an accuracy of 1 Hz or less, the above equation (4) means that the change in the mass of the cantilever can be measured with a picogram or femtogram. For example, the spring constant k is lNZm, the resonance frequency ω is 100 kHz,
0  0
有効質量 mを lOngとすると、約 lpgZHzの感度でカンチレバーに付着した物質の 質量を検出することができる。 [0034] また、上記 (4)式は、下記(5)式のように記載できるので、カンチレバーの質量を小 さくすること、及び共振周波数を高くすることの少なくとも一方を行なうことにより、検出 感度をより高くすることができる。 If the effective mass m is lOng, the mass of the substance attached to the cantilever can be detected with a sensitivity of about lpgZHz. [0034] Further, since the above equation (4) can be described as the following equation (5), the detection sensitivity can be reduced by reducing the mass of the cantilever and / or increasing the resonance frequency. Can be made higher.
[0035] [数 5]  [0035] [Equation 5]
△m——„ m  △ m—— „m
Δ ω ω0 … ) Δ ω ω 0 …)
[0036] カンチレバーの質量を小さくするには、マイクロマシーンプロセスを使用することが できる。 [0036] A micromachine process can be used to reduce the mass of the cantilever.
[0037] 本実施の形態によれば、カンチレバーへの付着物の質量が大きくなると共振周波 数が徐々に小さくなるので、歪み抵抗素子で構成された振動検出センサで検出され た共振周波数の変化力 カンチレバーへ付着した付着物の質量、従って重量を検 出することができる。  [0037] According to the present embodiment, the resonance frequency gradually decreases as the mass of the adhering material to the cantilever increases. Therefore, the resonance frequency changing force detected by the vibration detection sensor formed of the strain resistance element is used. It is possible to detect the mass and therefore the weight of the deposits attached to the cantilever.
[0038] 以下、本実施の形態のバイオセンサを用いた計測方法について説明する。  [0038] Hereinafter, a measurement method using the biosensor of the present embodiment will be described.
[0039] 正帰還回路 20から加振信号がァクチユエータ 14に入力されると、台座 12が加振さ れ、これによつてカンチレバー 10がカンチレバーの厚み方向に加振される。容器 24 中の反応溶液にカンチレバー 10を浸漬すると、カンチレバーに反応溶液が付着する と共に反応溶液の粘性の影響によってカンチレバーの振動数が若干減少する。また 、このとき種々の振動モードが発生するので、カンチレバーは当初の共振周波数とは 異なる周波数で共振する。 [0039] When an excitation signal is input from the positive feedback circuit 20 to the actuator 14, the pedestal 12 is vibrated, and thereby the cantilever 10 is vibrated in the thickness direction of the cantilever. When the cantilever 10 is immersed in the reaction solution in the container 24, the reaction solution adheres to the cantilever and the frequency of the cantilever decreases slightly due to the influence of the viscosity of the reaction solution. In addition, since various vibration modes are generated at this time, the cantilever resonates at a frequency different from the original resonance frequency.
[0040] このときのカンチレバーと台座との動きが一体ではないので、歪み抵抗素子に引張 り及び圧縮応力が発生し、歪み抵抗素子の抵抗が変化する。このため、歪み抵抗素 子に一定電圧を印加していると、電流がカンチレバーの振動に応じて変化する。この 電流変化を検出回路のブリッジ回路で電圧変化として検出することにより、カンチレ バーの周波数を検出することができ、これによりカンチレバーの振動状態を検出する ことができる。 [0040] Since the movement of the cantilever and the pedestal at this time is not integral, tensile and compressive stress is generated in the strain resistance element, and the resistance of the strain resistance element changes. For this reason, when a constant voltage is applied to the strain resistance element, the current changes according to the vibration of the cantilever. By detecting this current change as a voltage change by the bridge circuit of the detection circuit, the frequency of the cantilever can be detected, and thereby the vibration state of the cantilever can be detected.
[0041] 検出回路 18で検出された電圧変化は、正帰還回路 20で増幅され、位相が揃えら れ、ァクチユエータに入力される。これによつて、カンチレバーは共振周波数で振動 される。また、検出回路で検出された電圧変化は、 F— V変 でアナログ信号(出 力 V)に変換され、コンピュータ 26に入力される。 [0041] The voltage change detected by the detection circuit 18 is amplified by the positive feedback circuit 20, the phases are aligned, and the voltage change is input to the actuator. As a result, the cantilever is vibrated at the resonance frequency. In addition, the voltage change detected by the detection circuit is an analog signal (output Force V) and input to computer 26.
[0042] 次に、コンピュータによる演算処理について図 2を参照して説明する。ステップ 100 では、 F—V変 から出力されたアナログ信号をデジタル信号に変換して取り込み 、ステップ 102にお 、て出力 Vをコンピュータのメモリに記憶する。  Next, arithmetic processing by the computer will be described with reference to FIG. In step 100, the analog signal output from the F—V conversion is converted into a digital signal and taken in, and in step 102, the output V is stored in the memory of the computer.
[0043] 次のステップ 104では、前回取り込んだ出力を今回取り込んだ出力とを比較し、出 力の変化量 Δνを演算し、ステップ 106で出力 Vが変化した力否かを判断し、変化し たと判断されたときはステップ 108において上記 (4)式に基づいてカンチレバーに付 着した物質の質量を演算する。これにより、カンチレバーに付着した物質の質量の時 間変化を検出することができる。また、この質量の時間変化を所定時間にわたって積 算することにより、所定時間内にカンチレバーに付着した物質の総量を検出すること ができる。  [0043] In the next step 104, the output acquired last time is compared with the output acquired this time, and the output change Δν is calculated. In step 106, it is determined whether or not the output V has changed. If it is determined, the mass of the substance attached to the cantilever is calculated in step 108 based on the above equation (4). Thereby, the time change of the mass of the substance attached to the cantilever can be detected. In addition, the total amount of the substance attached to the cantilever within the predetermined time can be detected by accumulating the time change of the mass over the predetermined time.
[0044] このようにして検出したカンチレバーに付着した物質の質量は、コンピュータに接続 されている LCD等の表示装置に表示される。この他にコンピュータでは、ノイズ除去 や反応速度等を処理、演算することができる。  [0044] The mass of the substance adhering to the cantilever detected in this way is displayed on a display device such as an LCD connected to the computer. In addition, the computer can process and calculate noise removal, reaction speed, and the like.
[0045] 本実施の形態のバイオセンサを抗原抗体反応の検出に利用するには、最初に抗 体をカンチレバーの表面に付着してカンチレバーを反応溶液に浸漬し、その後抗原 を持つ測定試料を反応容器 24の反応溶液中に投入する。これにより、アレルギー等 の要因を持つ体質力否かが明らかになる。また、このような場合と逆に、最初に抗体 を反応容器に入れてから抗原を投入すると、人間の体内にアレルギー物質が生成し ているのが分力る。  [0045] In order to use the biosensor of this embodiment for detection of an antigen-antibody reaction, the antibody is first attached to the surface of the cantilever and the cantilever is immersed in the reaction solution, and then the measurement sample having the antigen is reacted. Put into the reaction solution in container 24. As a result, it is clarified whether or not the constitutional ability has factors such as allergies. Contrary to this case, when an antibody is first placed in a reaction container and then an antigen is introduced, allergens are produced in the human body.
[0046] 本実施の形態では、ァクチユエータとして圧電素子を用いた例について説明したが 、本実施の形態においては図 3に示すように圧電素子 14の電極部分の各々に絶縁 皮膜 28を被覆し、電気的に絶縁するようにしてもよい。この場合においても、上記と 同様に、ァクチユエータの一方の絶縁皮膜を台座に接着または機械的に接合させて ァクチユエータを台座とを一体ィ匕させる。ァクチユエータの電極が絶縁皮膜 28により 被覆されているため、このカンチレバーを反応溶液に浸漬することにより直ちに計測 を開始することができる。  In the present embodiment, an example in which a piezoelectric element is used as an actuator has been described. In this embodiment, as shown in FIG. 3, each electrode portion of the piezoelectric element 14 is covered with an insulating film 28, and It may be electrically insulated. Also in this case, in the same manner as described above, one of the insulating films of the actuator is bonded or mechanically bonded to the pedestal so that the actuator is integrated with the pedestal. Since the actuator electrode is covered with the insulating film 28, measurement can be started immediately by immersing the cantilever in the reaction solution.
[0047] また、図 4に示すように、カンチレバー及び台座を絶縁皮膜 28で被覆するようにし てもよい。この場合には、ァクチユエ一タは図 3に示したように絶縁皮膜により被覆し てもよいし、被覆しないようにしてもよい。これにより、カンチレバーを反応溶液中に浸 漬したときに、カンチレバー表面にリーク電流が流れるのを防止し、検出回路によつ て正確に電流を計測することができる。 [0047] Further, as shown in FIG. 4, the cantilever and the base are covered with an insulating film 28. May be. In this case, the actuator may be covered with an insulating film as shown in FIG. 3, or may not be covered. As a result, when the cantilever is immersed in the reaction solution, leakage current can be prevented from flowing on the surface of the cantilever, and the current can be accurately measured by the detection circuit.
[0048] 次に、本発明の第 2の実施の形態について説明する。第 2の実施の形態は、共振 周波数の変化を検出するセンサとして第 1の実施の形態の歪み抵抗素子に代えて、 カンチレバーの振動に応じて静電容量が変化する静電容量素子を使用するもので ある。 [0048] Next, a second embodiment of the present invention will be described. In the second embodiment, instead of the strain resistance element of the first embodiment, a capacitance element whose capacitance changes according to the vibration of the cantilever is used as a sensor for detecting a change in resonance frequency. It is a thing.
[0049] 本実施の形態では、図 5に示すように、カンチレバー 10と対向して平行になるように 対向電極 30が台座 12に固定され、対向電極 30によりカンチレバー 10との間に静電 容量素子が構成されている。そして、カンチレバー 10及び対向電極 30は、上記と同 様に静電容量素子と共にホイーストンブリッジを構成するブリッジ回路を備えた検出 回路 18に接続されている。  In the present embodiment, as shown in FIG. 5, the counter electrode 30 is fixed to the base 12 so as to face and parallel to the cantilever 10, and the capacitance between the cantilever 10 and the counter electrode 30 is fixed. An element is configured. The cantilever 10 and the counter electrode 30 are connected to a detection circuit 18 having a bridge circuit that forms a Wheatstone bridge together with the electrostatic capacitance element in the same manner as described above.
[0050] これにより、カンチレバーが振動すると静電容量素子の静電容量が周期的に変化 するため、検出回路のブリッジ回路によってカンチレバーの振動を検出し、振動信号 を出力することができる。 [0050] Thereby, when the cantilever vibrates, the electrostatic capacitance of the capacitive element periodically changes. Therefore, the bridge circuit of the detection circuit can detect the vibration of the cantilever and output the vibration signal.
[0051] 本実施の形態によれば、検出回路から出力される振動信号から共振周波数の変化 を検出し、この共振周波数の変化力 上記と同様にカンチレバーに付着した物質の 質量の時間変化等を検出することができる。 [0051] According to the present embodiment, the change in the resonance frequency is detected from the vibration signal output from the detection circuit, and the change force of this resonance frequency is changed over time in the mass of the substance attached to the cantilever as described above. Can be detected.
[0052] 次に、図 6を参照して本発明の第 3の実施の形態について説明する。本実施の形 態は、第 2の実施の形態の対向電極をァクチユエータとして使用するようにしたもので ある。カンチレバーの振動を検出するセンサとしては、第 1の実施の形態と同様の歪 み抵抗素子が用いられて 、る。 Next, a third embodiment of the present invention will be described with reference to FIG. In the present embodiment, the counter electrode of the second embodiment is used as an actuator. As a sensor for detecting the vibration of the cantilever, a strain resistance element similar to that in the first embodiment is used.
[0053] 歪み抵抗素子 16は、第 1の実施の形態と同様に、検出回路 18のブリッジ回路に接 続されている。また、カンチレバー 10の基端側は接地され、静電容量素子を構成す る対向電極 30は、正帰還回路 20に接続されている。 The strain resistance element 16 is connected to the bridge circuit of the detection circuit 18 as in the first embodiment. Further, the base end side of the cantilever 10 is grounded, and the counter electrode 30 constituting the capacitance element is connected to the positive feedback circuit 20.
[0054] 本実施の形態によれば、歪み抵抗素子 16の電圧変化を検出回路 18のブリッジ回 路で検出し、検出した信号が正帰還回路 20に入力され、対向電極 30に加振信号と して入力されるので、カンチレバー 10が共振振動するように制御される。また、検出 回路 18のブリッジ回路で検出された信号は、 F—V変換回路 22を介してコンピュータ 26に入力され、コンピュータ 26において共振周波数の変化力 上記と同様にカンチ レバーに付着した物質の質量の時間変化等が検出される。 According to the present embodiment, the voltage change of the strain resistance element 16 is detected by the bridge circuit of the detection circuit 18, the detected signal is input to the positive feedback circuit 20, and the excitation signal is transmitted to the counter electrode 30. Therefore, the cantilever 10 is controlled to resonate and vibrate. The signal detected by the bridge circuit of the detection circuit 18 is input to the computer 26 via the FV conversion circuit 22, and the resonance frequency changing force in the computer 26 is the mass of the substance adhering to the cantilever as described above. A change in time is detected.
[0055] 次に、図 7を参照して本発明の第 4の実施の形態について説明する。本実施の形 態は、第 3の実施の形態の静電誘導ァクチユエータに代えて、電磁誘導型ァクチュ エータを用いたものである。本実施の形態では、カンチレバー 10と対向して略並行 になるように電磁誘導コイル 32が台座 12に固定され、カンチレバー 10の表面側には 磁性材で構成された磁性薄膜 34がコーティングされて ヽる。カンチレバーの振動を 検出するセンサとしては、第 1の実施の形態と同様の歪み抵抗素子が用いられてい る。 [0055] Next, a fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, an electromagnetic induction type actuator is used in place of the electrostatic induction actuator of the third embodiment. In the present embodiment, the electromagnetic induction coil 32 is fixed to the pedestal 12 so as to face and substantially parallel to the cantilever 10, and the surface of the cantilever 10 is coated with a magnetic thin film 34 made of a magnetic material. The As a sensor for detecting the vibration of the cantilever, a strain resistance element similar to that in the first embodiment is used.
[0056] 本実施の形態によれば、上記と同様に歪み抵抗素子 16からの信号を検出回路 18 のブリッジ回路で検出し、検出した信号が正帰還回路 20に入力され、電磁誘導コィ ル 32に加振信号として入力されるので、カンチレバー 10が共振振動される。また、検 出回路 18のブリッジ回路で検出された信号は、上記と同様に F—V変換回路 22を介 してコンピュータ 26に入力され、コンピュータ 26において共振周波数の変化力もカン チレバーに付着した物質の質量の時間変化等が検出される。図 7では片面だけにコ 一ティングしたが、両面にコーティングしてもよぐ図 7と反対の面にコーティングしても よい。  According to the present embodiment, similarly to the above, the signal from the strain resistance element 16 is detected by the bridge circuit of the detection circuit 18, and the detected signal is input to the positive feedback circuit 20 and the electromagnetic induction coil 32. Therefore, the cantilever 10 is resonantly vibrated. In addition, the signal detected by the bridge circuit of the detection circuit 18 is input to the computer 26 through the FV conversion circuit 22 in the same manner as described above, and the resonance frequency changing force in the computer 26 is also a substance attached to the cantilever. Changes in the mass of the time are detected. In Fig. 7, only one side is coated, but it may be coated on both sides, or on the opposite side of Fig. 7.
[0057] 図 8は、本発明の第 5の実施の形態を示すものであり、図 3に示したカンチレバーの 絶縁皮膜に、検出対象の物質を付着させるために、特別な化学反応基を付着させる ための金等で構成された薄膜 36を被覆したものである。薄膜の種類は、付着させる 物質に応じて適宜選択される。これにより、チオール基等を介在して人為的に選択さ れた蛋白質、 DNA、抗体、または抗原等のカンチレバーに付着した物質の質量の 時間変化等を検出することができる。  [0057] FIG. 8 shows a fifth embodiment of the present invention, in which a special chemically reactive group is attached to the insulating film of the cantilever shown in FIG. 3 in order to attach a substance to be detected. The thin film 36 made of gold or the like is coated. The type of thin film is appropriately selected according to the substance to be deposited. As a result, it is possible to detect a change in the mass of a substance attached to a cantilever such as a protein, DNA, antibody, or antigen that has been artificially selected via a thiol group.
[0058] なお、上記の実施の形態では、 自己検知素子として、歪み抵抗素子 (第 1実施形態 他)または静電容量素子 (第 2実施形態)を用いた例につ 、て説明したが、圧電素子 、電磁誘導素子、または温度検知素子等を用いるようにしてもよい(図 1の圧電素子 5 6、電磁誘導素子 66参照)。また、ァクチユエータとしても圧電素子、静電駆動の静電 容量素子に代えて、温度駆動のァクチユエータ、または光駆動のァクチユエ一タ等を 用いるようにしてもよい。さらに、カンチレバーを絶縁皮膜で被覆した例について説明 したが、自然酸ィ匕膜で覆うようにしてもよい。検出回路から出力される信号の周波数 シフト量の検出には、 PLL回路、クオ一ドラチヤ復調回路等を用いてもよい。 In the above-described embodiment, the example using the strain resistance element (the first embodiment, etc.) or the capacitance element (the second embodiment) as the self-sensing element has been described. A piezoelectric element, an electromagnetic induction element, a temperature detection element, or the like may be used (piezoelectric element 5 in FIG. 1). 6. Refer to electromagnetic induction element 66). Further, as the actuator, a temperature-driven actuator or an optically-driven actuator may be used instead of the piezoelectric element and the electrostatic-driven capacitive element. Furthermore, although the example in which the cantilever is coated with an insulating film has been described, it may be covered with a natural acid film. For detection of the frequency shift amount of the signal output from the detection circuit, a PLL circuit, a quadrature demodulation circuit or the like may be used.
[0059] また、上記では、 1つのカンチレバーを用いる例について説明した力 台座に複数 のカンチレバーを設けて、各カンチレバーに付着した物質を計測するようにしてもよ い。 [0059] In addition, in the above, a plurality of cantilevers may be provided on the force base described in the example using one cantilever, and the substance attached to each cantilever may be measured.
[0060] つまり、上記の各実施形態を、同時に複数のチップを使用するように構成してもよ い。  That is, each of the above embodiments may be configured to use a plurality of chips at the same time.
産業上の利用可能性  Industrial applicability
[0061] 以上の通り、本発明に力かるバイオセンサ及びバイオセンサチップは、使用する際 に再度調整する必要がなく簡便に使用することができ、特に、抗原抗体反応及び蛋 白質等を高感度で測定することができるノィォセンサ及びバイオセンサチップに適し ている。  [0061] As described above, the biosensor and the biosensor chip according to the present invention do not need to be readjusted when used, and can be used easily. In particular, the antigen-antibody reaction and proteins are highly sensitive. Suitable for nanosensors and biosensor chips that can be measured with

Claims

請求の範囲 The scope of the claims
[1] バイオセンサであって、  [1] A biosensor,
カンチレバーと、  Cantilevers,
前記カンチレバーを振動させるァクチユエータと、  An actuator for vibrating the cantilever;
前記カンチレバーの振動状態を検出するように前記カンチレバーに設けられたセン サと、  A sensor provided on the cantilever to detect a vibration state of the cantilever;
前記センサで検出された振動状態に基づいて、前記カンチレバーが共振するよう に前記ァクチユエータを制御する制御手段と、  Control means for controlling the actuator so that the cantilever resonates based on a vibration state detected by the sensor;
前記カンチレバーが共振するように制御されている状態で、前記センサで検出され た振動状態の変化に基づいて、前記カンチレバーに付着した物質の付着量を検出 する検出手段と、  Detection means for detecting the amount of substance attached to the cantilever based on a change in the vibration state detected by the sensor in a state where the cantilever is controlled to resonate;
を含むことを特徴とするノィォセンサ。  A noise sensor comprising:
[2] 前記カンチレバーを液中に浸漬した請求項 1記載のバイオセンサ。  2. The biosensor according to claim 1, wherein the cantilever is immersed in a liquid.
[3] 前記カンチレバーを、絶縁体薄膜、検出対象の物質が付着可能な薄膜、または前 記絶縁体薄膜とこれに被覆された前記検出対象の物質が付着可能な薄膜との積層 膜で被覆した請求項 1記載のバイオセンサ。  [3] The cantilever is covered with an insulator thin film, a thin film to which a substance to be detected can adhere, or a laminated film of the insulator thin film and a thin film to which the substance to be detected can be attached. The biosensor according to claim 1.
[4] 前記ァクチユエータを、圧電素子、静電容量素子、または電磁誘導素子で構成した 請求項 1記載のバイオセンサ。 4. The biosensor according to claim 1, wherein the actuator is configured by a piezoelectric element, a capacitance element, or an electromagnetic induction element.
[5] 前記センサを、前記カンチレバーの振動に応じて抵抗が変化する歪み抵抗素子、 前記カンチレバーの振動に応じて静電容量が変化する静電容量素子、または前記 カンチレバーの振動に応じて電圧を発生する圧電素子あるいは電磁誘導素子を含 んで構成した請求項 1記載のバイオセンサ。 [5] The sensor is connected to a strain resistance element whose resistance changes according to the vibration of the cantilever, a capacitance element whose electrostatic capacity changes according to the vibration of the cantilever, or a voltage according to the vibration of the cantilever. The biosensor according to claim 1, wherein the biosensor is configured to include a generated piezoelectric element or electromagnetic induction element.
[6] 前記ァクチユエータとしての圧電素子の電極部分を、各々絶縁皮膜で被覆した請 求項 4記載のバイオセンサ。 [6] The biosensor according to claim 4, wherein the electrode portions of the piezoelectric element as the actuator are each covered with an insulating film.
[7] 前記検出手段は、前記カンチレバーの共振周波数の変化に基づいて、前記カンチ レバーに付着した物質の付着量を検出する請求項 1記載のバイオセンサ。 7. The biosensor according to claim 1, wherein the detection means detects an adhesion amount of a substance attached to the cantilever based on a change in a resonance frequency of the cantilever.
[8] 前記検出手段は、前記カンチレバーに付着した物質の付着量( A m)を以下の式 に基づき検出する請求項 7記載のバイオセンサ。 Δ πι=— 2 · Δ ω / ω ,m 8. The biosensor according to claim 7, wherein the detection means detects an adhesion amount (A m) of a substance attached to the cantilever based on the following formula. Δ πι = — 2 · Δ ω / ω, m
ο  ο
上記式において、 m=カンチレバーの有効質量  In the above formula, m = effective mass of the cantilever
ω =カンチレバーの共振周波数  ω = cantilever resonance frequency
0  0
Δ ω =共振周波数の変化  Δ ω = change in resonance frequency
Δ πι=カンチレバー有効質量の変化、すなわちカンチレバーに付着 した物質の付着量  Δ πι = cantilever effective mass change, that is, the amount of substances attached to the cantilever
[9] ノィォセンサであって、 [9] A neurosensor,
カンチレバーと、  Cantilevers,
前記カンチレバーを振動させるァクチユエータと、  An actuator for vibrating the cantilever;
前記カンチレバーの振動状態を検出するように前記カンチレバーに設けられたセン サと、  A sensor provided on the cantilever to detect a vibration state of the cantilever;
前記センサで検出された振動状態に基づいて、前記カンチレバーが共振するよう に前記ァクチユエータを制御する制御手段と、  Control means for controlling the actuator so that the cantilever resonates based on a vibration state detected by the sensor;
前記カンチレバーが共振するように制御されている状態で、前記センサの検出結果 力 前記カンチレバーの共振周波数の変化を算出し、該変化に基づき前記カンチレ バーに付着した物質の付着量を検出する検出手段と、  The detection result force of the sensor in a state where the cantilever is controlled to resonate. Detection means for calculating the change in the resonance frequency of the cantilever and detecting the amount of the substance attached to the cantilever based on the change When,
を含むことを特徴とするノィォセンサ。  A noise sensor comprising:
[10] 前記検出手段は、前記カンチレバーに付着した物質の付着量(A m)を以下の式 に基づき検出する請求項 9記載のバイオセンサ。 10. The biosensor according to claim 9, wherein the detection means detects an adhesion amount (A m) of a substance attached to the cantilever based on the following formula.
Δ πι=— 2 · . ω / ω · πι  Δ πι = — 2 ·. Ω / ω · πι
ο  ο
上記式において、 m=カンチレバーの有効質量  In the above formula, m = effective mass of the cantilever
ω =カンチレバーの共振周波数  ω = cantilever resonance frequency
0  0
Δ ω =共振周波数の変化  Δ ω = change in resonance frequency
Δ πι=カンチレバー有効質量の変化、すなわちカンチレバーに付着 した物質の付着量  Δ πι = cantilever effective mass change, that is, the amount of substances attached to the cantilever
[11] 前記カンチレバーを液中に浸漬した請求項 9記載のバイオセンサ。  11. The biosensor according to claim 9, wherein the cantilever is immersed in a liquid.
[12] 前記カンチレバーを、絶縁体薄膜、検出対象の物質が付着可能な薄膜、または前 記絶縁体薄膜とこれに被覆された前記検出対象の物質が付着可能な薄膜との積層 膜で被覆した請求項 9記載のバイオセンサ。 [12] The cantilever is formed by stacking an insulating thin film, a thin film to which a substance to be detected can be attached, or a thin film to which the above-described insulating thin film and the substance to be detected coated thereon can be attached. The biosensor according to claim 9, which is coated with a film.
[13] 前記ァクチユエータを、圧電素子、静電容量素子、または電磁誘導素子で構成した 請求項 9記載のバイオセンサ。 13. The biosensor according to claim 9, wherein the actuator is configured by a piezoelectric element, a capacitance element, or an electromagnetic induction element.
[14] 前記ァクチユエータとしての圧電素子の電極部分を、各々絶縁皮膜で被覆した請 求項 13記載のバイオセンサ。 [14] The biosensor according to claim 13, wherein the electrode portions of the piezoelectric element as the actuator are each coated with an insulating film.
[15] 前記センサを、前記カンチレバーの振動に応じて抵抗が変化する歪み抵抗素子、 前記カンチレバーの振動に応じて静電容量が変化する静電容量素子、または前記 カンチレバーの振動に応じて電圧を発生する圧電素子あるいは電磁誘導素子を含 んで構成した請求項 9記載のバイオセンサ。 [15] The sensor may be a strain resistance element whose resistance changes according to vibration of the cantilever, a capacitance element whose capacitance changes according to vibration of the cantilever, or a voltage according to vibration of the cantilever. The biosensor according to claim 9, wherein the biosensor is configured to include a generated piezoelectric element or electromagnetic induction element.
[16] バイオセンサチップであって、 [16] A biosensor chip,
カンチレバーと、  Cantilevers,
前記カンチレバーの振動状態を検出するように前記カンチレバーに内蔵されたセ ンサと、を含み、  A sensor built in the cantilever to detect a vibration state of the cantilever,
前記カンチレバーが半導体で構成され、該半導体は、その表面を、絶縁体薄膜、 検出対象の物質が付着可能な薄膜、または前記絶縁体薄膜とこれに被覆された前 記検出対象の物質が付着可能な薄膜との積層膜で被覆されていることを特徴とする バイオセンサチップ。  The cantilever is made of a semiconductor, and the surface of the semiconductor can be attached to an insulator thin film, a thin film to which a substance to be detected can adhere, or the insulator thin film and the substance to be detected coated thereon. A biosensor chip characterized by being coated with a laminated film with a thin film.
PCT/JP2005/013881 2005-02-01 2005-07-28 Biosensor and biosensor chip WO2006082668A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005025021A JP2006214744A (en) 2005-02-01 2005-02-01 Biosensor and biosensor chip
JP2005-025021 2005-02-01

Publications (1)

Publication Number Publication Date
WO2006082668A1 true WO2006082668A1 (en) 2006-08-10

Family

ID=36777060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013881 WO2006082668A1 (en) 2005-02-01 2005-07-28 Biosensor and biosensor chip

Country Status (2)

Country Link
JP (1) JP2006214744A (en)
WO (1) WO2006082668A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2599642A1 (en) 2006-08-07 2013-06-05 NSK Ltd. Bearing unit
JP4845649B2 (en) * 2006-09-07 2011-12-28 キヤノン株式会社 Minute object surface evaluation apparatus and minute object surface evaluation method
WO2008042199A2 (en) * 2006-09-29 2008-04-10 Cyberoptics Semiconductor, Inc. Particles sensor integrated with substrate
WO2008069247A1 (en) * 2006-12-05 2008-06-12 National University Corporation Gunma University Mass measuring device and cantilever
JP2008241619A (en) * 2007-03-28 2008-10-09 Gunma Univ Cantilever, biosensor and probe microscope
JP2009085777A (en) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology Oscillator chip and detection sensor
JP2009133772A (en) * 2007-11-30 2009-06-18 National Institute Of Advanced Industrial & Technology Detection sensor and oscillator
JP2014190771A (en) * 2013-03-26 2014-10-06 National Institute Of Advanced Industrial & Technology Mass measurement method and mass measurement device
GB2599858B (en) * 2019-07-10 2024-01-03 Nec Corp Membrane-type surface stress sensor and analysis method using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823329A (en) * 1981-07-31 1983-02-12 Sony Corp Transferring device
US5719324A (en) * 1995-06-16 1998-02-17 Lockheed Martin Energy Systems, Inc. Microcantilever sensor
WO1998050773A2 (en) * 1997-05-08 1998-11-12 University Of Minnesota Microcantilever biosensor
WO2002012443A2 (en) * 2000-08-09 2002-02-14 California Institute Of Technology Active nems arrays for biochemical analyses
JP2004028956A (en) * 2002-06-28 2004-01-29 National Institute Of Advanced Industrial & Technology Adsorption/ desorption amount measuring method and instrument therefor
JP2004125706A (en) * 2002-10-04 2004-04-22 Sony Corp Method for detecting intereaction, bioassay device, and bioassay substrate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183874A (en) * 1997-09-04 1999-03-26 Shimadzu Corp Scanning type probe microscope
JPH11271334A (en) * 1998-03-23 1999-10-08 Olympus Optical Co Ltd Cantilever holder
WO2000066266A1 (en) * 1999-05-03 2000-11-09 Cantion A/S Sensor for microfluid handling system
JP4598307B2 (en) * 2001-05-31 2010-12-15 エスアイアイ・ナノテクノロジー株式会社 Self-sensing SPM probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5823329A (en) * 1981-07-31 1983-02-12 Sony Corp Transferring device
US5719324A (en) * 1995-06-16 1998-02-17 Lockheed Martin Energy Systems, Inc. Microcantilever sensor
WO1998050773A2 (en) * 1997-05-08 1998-11-12 University Of Minnesota Microcantilever biosensor
WO2002012443A2 (en) * 2000-08-09 2002-02-14 California Institute Of Technology Active nems arrays for biochemical analyses
JP2004028956A (en) * 2002-06-28 2004-01-29 National Institute Of Advanced Industrial & Technology Adsorption/ desorption amount measuring method and instrument therefor
JP2004125706A (en) * 2002-10-04 2004-04-22 Sony Corp Method for detecting intereaction, bioassay device, and bioassay substrate

Also Published As

Publication number Publication date
JP2006214744A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
WO2006082668A1 (en) Biosensor and biosensor chip
Mochida et al. A micromachined vibrating rate gyroscope with independent beams for the drive and detection modes
US10571437B2 (en) Temperature compensation and operational configuration for bulk acoustic wave resonator devices
Andrei et al. AlN as an actuation material for MEMS applications: The case of AlN driven multilayered cantilevers
US20020092359A1 (en) Sensor apparatus and cantilever for it
US7140255B2 (en) Devices and method of measuring a mass
JP4514639B2 (en) Cantilever type sensor
JPH10170275A (en) Vibratory angular velocity sensor
Beardslee et al. Geometrical considerations for the design of liquid-phase biochemical sensors using a cantilever's fundamental in-plane mode
JPH1054725A (en) Angular velocity detecting device
Alava et al. Silicon-based micromembranes with piezoelectric actuation and piezoresistive detection for sensing purposes in liquid media
KR20050045728A (en) Apparatus and method for detecting biomolecular mass with an oscillating circuit
JP2011117944A (en) Acceleration sensor
Hu et al. Design, fabrication and characterization of a piezoelectric MEMS diaphragm resonator mass sensor
US6823720B1 (en) Method for chemical sensing using a microfabricated teeter-totter resonator
Hwang et al. Label-free detection of prostate specific antigen (PSA) using a bridge-shaped PZT resonator
JP4930941B2 (en) Cantilever type sensor
JP2004093574A (en) Cantilever with force azimuth sensor for atomic force microscope
Ismail et al. The fabrication, characterization and testing of a MEMS circular diaphragm mass sensor
JP4803802B2 (en) Mass measuring device
JP2008241619A (en) Cantilever, biosensor and probe microscope
US8746048B2 (en) Device for the gravimetric detection of particles in a fluid medium, comprising an oscillator between two fluid channels
Moczała et al. Technology of thermally driven and magnetomotively detected MEMS microbridges
US9032797B2 (en) Sensor device and method
Schlögl et al. Mechanical and electrical characterization of resonant piezoelectric microbridges for strain sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05767137

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5767137

Country of ref document: EP