WO2006069089A2 - Cervical plate system - Google Patents

Cervical plate system Download PDF

Info

Publication number
WO2006069089A2
WO2006069089A2 PCT/US2005/046243 US2005046243W WO2006069089A2 WO 2006069089 A2 WO2006069089 A2 WO 2006069089A2 US 2005046243 W US2005046243 W US 2005046243W WO 2006069089 A2 WO2006069089 A2 WO 2006069089A2
Authority
WO
WIPO (PCT)
Prior art keywords
screw
protrusions
locking disc
central opening
rotational position
Prior art date
Application number
PCT/US2005/046243
Other languages
French (fr)
Other versions
WO2006069089A3 (en
WO2006069089B1 (en
Inventor
Terry Johnston
Fred Geisler
Original Assignee
Packaging Service Corporation Of Kentucky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Packaging Service Corporation Of Kentucky filed Critical Packaging Service Corporation Of Kentucky
Publication of WO2006069089A2 publication Critical patent/WO2006069089A2/en
Publication of WO2006069089A3 publication Critical patent/WO2006069089A3/en
Publication of WO2006069089B1 publication Critical patent/WO2006069089B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • A61B17/8033Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers
    • A61B17/8038Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates having indirect contact with screw heads, or having contact with screw heads maintained with the aid of additional components, e.g. nuts, wedges or head covers the additional component being inserted in the screw head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1728Guides or aligning means for drills, mills, pins or wires for holes for bone plates or plate screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/86Pins or screws or threaded wires; nuts therefor
    • A61B17/8605Heads, i.e. proximal ends projecting from bone
    • A61B17/861Heads, i.e. proximal ends projecting from bone specially shaped for gripping driver
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • Y10S606/903Cranial and facial plate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • Y10S606/903Cranial and facial plate
    • Y10S606/904Jaw plate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • Y10S606/905Rib or sternum plate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/902Cortical plate specifically adapted for a particular bone
    • Y10S606/906Small bone plate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S606/00Surgery
    • Y10S606/915Toolkit for installing or removing cortical plate

Definitions

  • This invention pertains to implantable orthopaedic devices, and more particularly to a cervical plate and screw arrangement, and a tool and method for implanting the same.
  • Bone fixation devices are useful for promoting proper healing of injured or damaged vertebral bone segments caused by trauma, tumor growth, or degenerative disc disease.
  • the external fixation devices are commonly utilized to immobilize the injured bone segments to ensure the proper growth of new osseous tissue between the damaged segments.
  • These types of external bone fixation devices often include internal bracing and instrumentation to stabilize the spinal column to facilitate the efficient healing of the damaged area without deformity or instability, while minimizing any immobilization and post-operative care of the patient.
  • the fixation plate is a rigid metal or polymeric plate positioned to span bones or bone segments that require immobilization with respect to one another.
  • the plate is fastened to the respective bones, usually with bone screws driven into the vertebral bodies. In this way, the plate is secured to the spine, fixing the respective vertebrae in a desired position.
  • Bone plates can be useful in providing the mechanical support necessary to keep vertebral bodies in proper position and bridge a weakened or diseased area such as when a disc, vertebral body or fragment has been removed. Exemplary systems are disclosed in U.S. Published Application 2003/0187443 Al to Lauryssen et al., U.S.
  • Figure l is a perspective view of a bone plate and bone screw assembly constructed in accordance with teachings of the invention. A plurality of such bone screws would be provided in the assembly.
  • FIG. 2 is a plan view of the bone plate of FIG. 1.
  • FIG. 3 is a cross-sectional view of the bone plate of FIGS. 1 and 2 taken along line HI-III in FIG. 2.
  • FIG. 4 is a perspective view of a bone screw constructed in accordance with teachings of the invention.
  • FIG. 5 is a side elevational view of the bone screw of FIG. 4.
  • FIG. 6 is a top plan view of the bone screw of FIGS 4 and 5.
  • FIG. 7 is a cross-sectional view of the bone screw of FIGS. 4-6 taken along line VII-VII in FIG. 6.
  • FIG. 8 is a plan view of a locking disc constructed in accordance with teachings of the invention.
  • FIG. 9 is a side view of the locking disc of FIG. 8.
  • FIG. 10 is a side view of the locking disc of FIGS. 8 and 9 showing the extended protrusion.
  • FIG. 11 is a perspective view of an alternate embodiment of a locking disc constructed in accordance with teachings of the invention.
  • FIG. 12 is a side elevational view of an alternate embodiment of a bone screw constructed in accordance with teachings of the invention.
  • FIG. 13 is a top plan view of the bone screw of FIG. 12.
  • FIG. 14 is a cross-sectional view of the bone screw of FIGS. 12-13 taken along line XIV-XIV in FIG. 13.
  • FIG. 15 is a cross-sectional view of an assembly tool constructed in accordance with teachings of the invention.
  • FIG. 16 is an exploded view of the tool of FIG. 15.
  • FIG. 17 is a perspective view of a tool including a guide block for insertion of a screw, along with a screw and bone plate.
  • FIG. 18 is an enlarged, fragmentary, cross-sectional view of the guide block of FIG. 17.
  • FIG. 19 is an enlarged, fragmentary, cross-sectional view of an alternate embodiment of a guide block of a tool.
  • FIG. 20 is an enlarged, fragmentary, cross-sectional view of yet another alternate embodiment of a guide block of a tool.
  • FIGS. 1-3 an exemplary embodiment of an assembly 30 of a bone plate 32 and one of a plurality of bone screws 34 constructed in accordance with teachings of the invention.
  • the bone plate 32 is an elongated structure having a lower surface 36 adapted to be placed against a plurality of vertebrae (not illustrated), and an upper surface 38 opposite the lower surface 36. Disposed between the lower and upper surfaces 36, 38 are side surfaces 40, 42 and end surfaces 44, 46. In order to minimize undue wear and any irritation to soft tissue surrounding the plate 32 when in position on the skeletal system, the side surfaces 40, 42, 44, 46 are generally rounded, as may be seen in FIGS. 1 and 3.
  • the lower surface 36 of the plate 32 is preferably provided with cleats or ridges (see, e.g., 47) of any appropriate design.
  • the bone plate 32 has a plan view profile that generally narrows from one longitudinal end 48 to the other 50.
  • the bone plate lower surface 36 is generally concave in both the longitudinal and lateral directions (see FIGS. 1 and 3).
  • the bone plate 32 may additionally be divided into a plurality of vertebral nodes 52a-c adapted to be coupled to adjacent vertebrae. In the illustrated embodiment, three such nodes 52a-c are provided for immobilizing three bone segments. It will be appreciated, however, that the plate 32 may alternately include two such nodes, or four or more such nodes for immobilizing two or four or more bone segments, respectively.
  • recesses 54 are provided between adjacent nodes 52a-c. Such recesses 54 reduce the cross-sectional area of the plate 32 between the respective nodes 52a-c to facilitate bending of the plate 32 as may be desirable to further contour the plate 32 to spinal anatomy.
  • the bone plate 32 is provided with a plurality of apertures 60, 62 therethrough for receipt of a plurality of bone screws 34.
  • the apertures 60 extending through the respective nodes 52a-c are elongate channels 60 such that a bone screw 34 disposed therein may be positioned at the desired location within the channels 60.
  • the respective nodes 52a-c are positioned along adjacent vertebrae, and bone screws 34 disposed within the channels 60 are screwed into the vertebrae.
  • channels 60 and apertures 62 through the plate 32 each include a concave edge wall 70.
  • the exemplary bone screws 34 include an enlarged head 64 from which a threaded shank 66 extends.
  • the distal end 68 of the shank 66 is preferably self-tapping.
  • the outside diameter of the threaded shank 66 is smaller than the minor diameter of the lower surface opening 72 through the plate 32.
  • the diameter of the shank is sufficiently smaller than the lower surface opening 72 to allow some pivoting motion of the screw 34 during placement.
  • the enlarged head 64 of the screw 34 is of a generally spherical shape and includes a plurality of spaced, arcuate petal portions 76 disposed around a central opening 78 in the head 64. It will be appreciated by those of skill in the art that the petal portions 76 may flex radially inward to reduce the outer diameter of the enlarged head 64 of the screw 34.
  • the outer diameter of the enlarged head 64 is preferably larger than the minor diameter of the upper surface opening 74 such that the petal portions 76 of the enlarged head 64 must flex radially inward to allow the enlarged head 64 to be positioned within the concave edge wall 70 of an aperture 60 or channel 62 as the screw 34 is advanced through the aperture 60 or channel 62. Once the petal portions 76 of the head 64 advance past the upper surface opening 74, the petal portions 76 expand again to their free, relaxed state, preferably in slight interference with the inside concave edge wall 70.
  • a locking disc 80 is provided. As shown in FIG. 1 , the locking disc 80 is rotatably disposed within the central opening 78 within the head 64. As shown in greater detail in FIGS. 8-10, the locking disc 80 comprises a base portion 82 and extending engaging surfaces (protrusions) 84, 86. In the illustrated embodiment of FIGS. 8-10, the base portion 82 is a circular disc shape, and the engaging surfaces 84, 86 include the corners of a rectangular portion 88 disposed on the circular base portion 82.
  • the locking disc 80 is fully received (nested) within the opening 78 within the head 64 of the screw 34, such that its proximal face does not protrude beyond the proximal end of the screw head 64 (thus minimizing the risk of tissue damage and patient discomfort).
  • the inside surface of the opening 78 includes mating structure 90, such that when the locking disc 80 is in a first rotational position, the petal portions 76 are free to flex inward slightly. The screw may rotate or slide within the aperture 62 or channel 60. Conversely, when the locking disc 80 is in a second rotational position relative to the head 64, the petal portions 76 may not flex inwardly.
  • the engaging structure 100 of the locking disc 102 includes an octagonal star shape 106 (having eight protrusions), while the screw 104 includes sixteen recesses 110, 112 in the inner surface of the central opening 114 of the screw head 116. It will be noted that every other of the recesses 110 is substantially deeper than the alternating recesses 112 (that is, each deep recess 110 has a pair of shallower "neighbor" recesses 112).
  • the screw 34 in order to assemble the screw 34 into the bone, is provided with a bore 120 having an internal defined shape.
  • the bore 120 includes a hexagonal shape. It will be appreciated, however, that the bore 120 may be alternately shaped so long as shape is adequate to provide sufficient traction to permit rotation of the screw 34 into the bone.
  • the locking disc 80 is provided with an internal bore 122 that is larger than and surrounds the bore 120 of the screw 34 (see FIG. 8). In this way, even when the locking disc 80 is disposed within the head 64 of the screw 34, a tool 130 such as the one illustrated in FIGS. 15 and 16 may be utilized to assemble the screw 34 into the bone.
  • the tool 130 includes a handle portion 132 from which a screwdriver shaft 134 extends.
  • the distal end 138 of the shaft 136 has a structure that mates with the internal bore 120 of the screw 34 to permit selective rotation thereof.
  • the tool 130 additionally includes an axially slideable sleeve 140.
  • the sleeve 140 includes a tubular shaft 142 having a distal end 144 with dedicated structure 146 that mates with structure 148 along the internal bore 122 of the locking disc 80.
  • the internal bore 122 of the locking disc 80 includes recesses 148 along either side of the bore 122 that open onto, and are accessible at, the proximal face of the disc.
  • the distal end 144 of the shaft includes opposing fingers 146 disposed to mate with the recesses 148.
  • the sleeve 140 includes a flange 152.
  • the surgeon may insert the distal end 138 of the shaft 134 through the internal bore 122 of the locking disc 80 into the internal bore 120 of the screw 34, and rotate the handle portion 132 of the tool 130 to screw the bone screw 34 into the bone.
  • the surgeon may axially slide the sleeve 140 to position the opposing fingers 146 within the corresponding recesses 148 of the locking disc 80. Maintaining the position of the bone screw 34 by holding the handle portion 132 stationary, the surgeon may then rotate the flange 152 to rotate the sleeve 140, and, accordingly, the locking disc 80 relative to the stationary screw 34.
  • the surgeon may then remove the tool 130 and attached sleeve 140 from the screw 34 and proceed to the next screw until the plate arrangement 30 is properly placed and secured to the bone.
  • the bone plate 32 may be provided with the enlarged head 64, 116 of the screw(s) 34, 104 predisposed within the channels 60 and/or apertures 62 of the bone plate 32 such that the plate 32 is secured in position against the vertebrae as the screws 34, 104 are tightened.
  • the screws 34, 104 may be provided separately from the bone plate 32 and then assembled into the plate 32 during the procedure.
  • an assembly tool 160 such as is shown in FIG. 17 may be provided.
  • the tool 160 includes a guide block 162 disposed on a manipulation arm 164.
  • the manipulation arm 164 preferably includes a handle 166 for the surgeon's comfort during the placement procedure.
  • the guide block 162 of the tool 160 includes one or more bores 168 that extend through a portion of the guide block 162, here from the top surface 170 to the bottom surface 171 of the guide block 162.
  • the surgeon places the bone plate 32 in the desired location and then positions the guide block 162 along the upper surface of the plate 32 with the bore(s) 168 positioned adjacent a channel 60 or aperture 62.
  • the surgeon may then insert a screw 34, 104 through the bore 168 (holding the screw with the tool 130 or otherwise), and rotates the screw 34, 104 into the target.
  • the bore 168 of the guide block 162 guides the screw 34, 104 for straight axial movement.
  • the bore 168 of guide block 162 of the tool 160 of FIG. 17 includes a pair of bores 172, 174 that include relatively separate proximal ends 176, 178, and a shared distal end 180.
  • the surgeon may utilize one or the other of the pair of bores 172, 174 to place the screw 34, 104 at a desired angle through the bone plate 32.
  • the guide block 162 of the tool 106 of FIGS . 17 and 18 includes two pairs of dual bores 172, 174
  • the guide block may have alternate construction.
  • one or both of the bores 182 of the guide block 184 may each have a single axis 186, such as shown in FIG. 19, wherein two such bores 182 are provided.
  • the guide block 188 may include a single bore 190 with dual axes or with a single axis 192, such as is shown, for example, in FIG. 20.
  • the guide blocks shown are by way of example only. It will be appreciated by those of skill in the art that the guide block may comprise alternate numbers and/or combinations of bores and/or constructions of bores in keeping with the invention.
  • one or more such guide blocks 162, 184, 188 may be provided as part of a tool kit that further includes the manipulation arm 164.
  • the desired block 162, 184, 188 may be selectively coupled to the end of the manipulation arm 164 by way of a screw, pin, or the like 194 extending through a bore 196.

Abstract

A device, system and method for securing a plate to a bone. An anchor device has a screw ( 34,104 ) (with a head portion (64,116) ) and a locking disc (80). The head portion includes a slotted wall defining a plurality of petals (76,118) disposed around a central opening (78). The screw further includes an internal bore (120). The locking disc (80) is rotatably disposed within the central opening (78), such that in a first rotational position the petals (76,118) may flex inwardly, and in a second rotational position the petals (76,118) are substantially prevented from flexing inwardly. A tool (130) for manipulating the anchor device (34, 104) has a shaft (134) with its end (138) configured to mate with the internal bore (120) of the screw to permit selective rotation of the screw, and a sleeve member (140) rotatably and slideably mounted on the shaft having an end (114) that mates with the locking disc (80) to permit selective rotation of the disc.

Description

CERVICAL PLATE SYSTEM
RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/637,690, filed December 21, 2004, the disclosure of which is herein incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] This invention pertains to implantable orthopaedic devices, and more particularly to a cervical plate and screw arrangement, and a tool and method for implanting the same.
BACKGROUND OF THE INVENTION
[0003] Bone fixation devices are useful for promoting proper healing of injured or damaged vertebral bone segments caused by trauma, tumor growth, or degenerative disc disease. The external fixation devices are commonly utilized to immobilize the injured bone segments to ensure the proper growth of new osseous tissue between the damaged segments. These types of external bone fixation devices often include internal bracing and instrumentation to stabilize the spinal column to facilitate the efficient healing of the damaged area without deformity or instability, while minimizing any immobilization and post-operative care of the patient.
[0004] One such device is an osteosynthesis or bone fixation plate, which can be used to immobilize adjacent vertebrae. Typically, the fixation plate is a rigid metal or polymeric plate positioned to span bones or bone segments that require immobilization with respect to one another. The plate is fastened to the respective bones, usually with bone screws driven into the vertebral bodies. In this way, the plate is secured to the spine, fixing the respective vertebrae in a desired position. Bone plates can be useful in providing the mechanical support necessary to keep vertebral bodies in proper position and bridge a weakened or diseased area such as when a disc, vertebral body or fragment has been removed. Exemplary systems are disclosed in U.S. Published Application 2003/0187443 Al to Lauryssen et al., U.S. Patent 6,159,213 to Rogozinski, U.S. Patent 6,152,927, U.S. Patent 6,017,345 to Richelsoph, U.S. Patent 5,676,666 to Oxland et al., U.S. Patent 5,616,144 to Yapp et al., U.S. Patent 5,549,612 to Yapp et al., U.S. Patent 5,261,910 to Warden et al., and U.S. Patent 4,696,290 to Steffee. [0005] Accordingly, there exists a need for a plate system and method of placement of the same that provides the advantages of the currently available arrangements, while minimizing or eliminating the disadvantages of the same. There remains a need for an anterior bone plate system that minimizes any soft tissue and osseous tissue damage that would occur with its implementation, that is easy to use, and that provides the surgeon with flexibility in placement of the same. The system must be able to provide effective fixation and immobilization of vertebral bodies, while also providing for the subsidence necessary for proper fusion and prevent axial extension of the plate. The invention provides such an arrangement. The advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0006] Figure l is a perspective view of a bone plate and bone screw assembly constructed in accordance with teachings of the invention. A plurality of such bone screws would be provided in the assembly.
[0007] FIG. 2 is a plan view of the bone plate of FIG. 1.
[0008] FIG. 3 is a cross-sectional view of the bone plate of FIGS. 1 and 2 taken along line HI-III in FIG. 2.
[0009] FIG. 4 is a perspective view of a bone screw constructed in accordance with teachings of the invention.
[0010] FIG. 5 is a side elevational view of the bone screw of FIG. 4.
[0011] FIG. 6 is a top plan view of the bone screw of FIGS 4 and 5.
[0012] FIG. 7 is a cross-sectional view of the bone screw of FIGS. 4-6 taken along line VII-VII in FIG. 6.
[0013] FIG. 8 is a plan view of a locking disc constructed in accordance with teachings of the invention.
[0014] FIG. 9 is a side view of the locking disc of FIG. 8. [0015] FIG. 10 is a side view of the locking disc of FIGS. 8 and 9 showing the extended protrusion.
[0016] FIG. 11 is a perspective view of an alternate embodiment of a locking disc constructed in accordance with teachings of the invention.
[0017] FIG. 12 is a side elevational view of an alternate embodiment of a bone screw constructed in accordance with teachings of the invention.
[0018] FIG. 13 is a top plan view of the bone screw of FIG. 12.
[0019] FIG. 14 is a cross-sectional view of the bone screw of FIGS. 12-13 taken along line XIV-XIV in FIG. 13.
[0020] FIG. 15 is a cross-sectional view of an assembly tool constructed in accordance with teachings of the invention.
[0021] FIG. 16 is an exploded view of the tool of FIG. 15.
[0022] FIG. 17 is a perspective view of a tool including a guide block for insertion of a screw, along with a screw and bone plate.
[0023] FIG. 18 is an enlarged, fragmentary, cross-sectional view of the guide block of FIG. 17.
[0024] FIG. 19 is an enlarged, fragmentary, cross-sectional view of an alternate embodiment of a guide block of a tool.
[0025] FIG. 20 is an enlarged, fragmentary, cross-sectional view of yet another alternate embodiment of a guide block of a tool.
DETAILED DESCRIPTION OF THE INVENTION
[0026] Turning now to the drawings, there is shown in FIGS. 1-3 an exemplary embodiment of an assembly 30 of a bone plate 32 and one of a plurality of bone screws 34 constructed in accordance with teachings of the invention. The bone plate 32 is an elongated structure having a lower surface 36 adapted to be placed against a plurality of vertebrae (not illustrated), and an upper surface 38 opposite the lower surface 36. Disposed between the lower and upper surfaces 36, 38 are side surfaces 40, 42 and end surfaces 44, 46. In order to minimize undue wear and any irritation to soft tissue surrounding the plate 32 when in position on the skeletal system, the side surfaces 40, 42, 44, 46 are generally rounded, as may be seen in FIGS. 1 and 3. To anchor the bone plate 32 to the bony surface, the lower surface 36 of the plate 32 is preferably provided with cleats or ridges (see, e.g., 47) of any appropriate design.
[0027] As may best be seen in FIG. 2, the bone plate 32 has a plan view profile that generally narrows from one longitudinal end 48 to the other 50. To further conform to the vertebral contours, the bone plate lower surface 36 is generally concave in both the longitudinal and lateral directions (see FIGS. 1 and 3). The bone plate 32 may additionally be divided into a plurality of vertebral nodes 52a-c adapted to be coupled to adjacent vertebrae. In the illustrated embodiment, three such nodes 52a-c are provided for immobilizing three bone segments. It will be appreciated, however, that the plate 32 may alternately include two such nodes, or four or more such nodes for immobilizing two or four or more bone segments, respectively. Preferably, recesses 54 are provided between adjacent nodes 52a-c. Such recesses 54 reduce the cross-sectional area of the plate 32 between the respective nodes 52a-c to facilitate bending of the plate 32 as may be desirable to further contour the plate 32 to spinal anatomy.
[0028] In order to couple the plate 32 to the vertebrae, the bone plate 32 is provided with a plurality of apertures 60, 62 therethrough for receipt of a plurality of bone screws 34. Preferably, the apertures 60 extending through the respective nodes 52a-c are elongate channels 60 such that a bone screw 34 disposed therein may be positioned at the desired location within the channels 60. In the preferred application of the bone plate 32 to a spinal column, the respective nodes 52a-c are positioned along adjacent vertebrae, and bone screws 34 disposed within the channels 60 are screwed into the vertebrae. In accordance with the invention, channels 60 and apertures 62 through the plate 32 each include a concave edge wall 70. That is, the lower surface opening 72 along the lower surface 36 of the plate 32 and an upper surface opening 74 along the upper surface 38 of the plate 32 are each smaller than the opening within the concave edge wall 70. Preferably, the upper surface opening 74 is larger than the lower surface opening 72. [0029] As shown in more detail in FIGS. 4-7, the exemplary bone screws 34 include an enlarged head 64 from which a threaded shank 66 extends. The distal end 68 of the shank 66 is preferably self-tapping. To permit assembly of the screw 34 into an aperture 60, 62, the outside diameter of the threaded shank 66 is smaller than the minor diameter of the lower surface opening 72 through the plate 32. Preferably, the diameter of the shank is sufficiently smaller than the lower surface opening 72 to allow some pivoting motion of the screw 34 during placement.
[0030] According to another aspect of the invention, the enlarged head 64 of the screw 34 is of a generally spherical shape and includes a plurality of spaced, arcuate petal portions 76 disposed around a central opening 78 in the head 64. It will be appreciated by those of skill in the art that the petal portions 76 may flex radially inward to reduce the outer diameter of the enlarged head 64 of the screw 34. The outer diameter of the enlarged head 64 is preferably larger than the minor diameter of the upper surface opening 74 such that the petal portions 76 of the enlarged head 64 must flex radially inward to allow the enlarged head 64 to be positioned within the concave edge wall 70 of an aperture 60 or channel 62 as the screw 34 is advanced through the aperture 60 or channel 62. Once the petal portions 76 of the head 64 advance past the upper surface opening 74, the petal portions 76 expand again to their free, relaxed state, preferably in slight interference with the inside concave edge wall 70.
[0031] In order to maintain the head 64 of the bone screw 34 in the desired position captured within an aperture 60 or channel 62 once the screw shank 66 has been screwed into position within the bone, a locking disc 80 is provided. As shown in FIG. 1 , the locking disc 80 is rotatably disposed within the central opening 78 within the head 64. As shown in greater detail in FIGS. 8-10, the locking disc 80 comprises a base portion 82 and extending engaging surfaces (protrusions) 84, 86. In the illustrated embodiment of FIGS. 8-10, the base portion 82 is a circular disc shape, and the engaging surfaces 84, 86 include the corners of a rectangular portion 88 disposed on the circular base portion 82.
[0032] As shown in FIG. 1, the locking disc 80 is fully received (nested) within the opening 78 within the head 64 of the screw 34, such that its proximal face does not protrude beyond the proximal end of the screw head 64 (thus minimizing the risk of tissue damage and patient discomfort). The inside surface of the opening 78 includes mating structure 90, such that when the locking disc 80 is in a first rotational position, the petal portions 76 are free to flex inward slightly. The screw may rotate or slide within the aperture 62 or channel 60. Conversely, when the locking disc 80 is in a second rotational position relative to the head 64, the petal portions 76 may not flex inwardly. Rather, they are engaged lightly against the inside, concave wall 70 of the channel 60 or aperture 62 and prevent the screw 34 from escaping the upper surface opening 74 of the channel or aperture in the plate 32. In other words, when high points of the extending protrusions 84, 86 and the mating structure 90 along the inside surface of the central opening 78 engage, the petal portions 76 are prevented from flexing radially inward.
[0033] It will be appreciated that various structures of engaging and mating structure may be provided in accordance with teachings of the invention. In the embodiment of FIG. 11, the engaging structure 100 of the locking disc 102 includes an octagonal star shape 106 (having eight protrusions), while the screw 104 includes sixteen recesses 110, 112 in the inner surface of the central opening 114 of the screw head 116. It will be noted that every other of the recesses 110 is substantially deeper than the alternating recesses 112 (that is, each deep recess 110 has a pair of shallower "neighbor" recesses 112). In this way, when the engaging structures 100 of the star shape 106 are disposed in the deep recesses 110 the petal portions 118 of the head 116 will have inward flex, in contrast to when the engaging structures 100 of the star shape 106 are disposed in shallow recesses 112.
[0034] Returning to FIGS. 6-7, in order to assemble the screw 34 into the bone, the screw 34 is provided with a bore 120 having an internal defined shape. In the embodiment illustrated, the bore 120 includes a hexagonal shape. It will be appreciated, however, that the bore 120 may be alternately shaped so long as shape is adequate to provide sufficient traction to permit rotation of the screw 34 into the bone. To facilitate access to the bore 120 of the screw 34, the locking disc 80 is provided with an internal bore 122 that is larger than and surrounds the bore 120 of the screw 34 (see FIG. 8). In this way, even when the locking disc 80 is disposed within the head 64 of the screw 34, a tool 130 such as the one illustrated in FIGS. 15 and 16 may be utilized to assemble the screw 34 into the bone.
[0035] The tool 130 includes a handle portion 132 from which a screwdriver shaft 134 extends. The distal end 138 of the shaft 136 has a structure that mates with the internal bore 120 of the screw 34 to permit selective rotation thereof. In order to permit selective rotation of the locking disc 80, the tool 130 additionally includes an axially slideable sleeve 140. The sleeve 140 includes a tubular shaft 142 having a distal end 144 with dedicated structure 146 that mates with structure 148 along the internal bore 122 of the locking disc 80. In one embodiment, the internal bore 122 of the locking disc 80 includes recesses 148 along either side of the bore 122 that open onto, and are accessible at, the proximal face of the disc. The distal end 144 of the shaft includes opposing fingers 146 disposed to mate with the recesses 148. To facilitate rotation of the sleeve 140 relative to the shaft 134, the sleeve 140 includes a flange 152.
[0036] In use, the surgeon may insert the distal end 138 of the shaft 134 through the internal bore 122 of the locking disc 80 into the internal bore 120 of the screw 34, and rotate the handle portion 132 of the tool 130 to screw the bone screw 34 into the bone. Once properly positioned, the surgeon may axially slide the sleeve 140 to position the opposing fingers 146 within the corresponding recesses 148 of the locking disc 80. Maintaining the position of the bone screw 34 by holding the handle portion 132 stationary, the surgeon may then rotate the flange 152 to rotate the sleeve 140, and, accordingly, the locking disc 80 relative to the stationary screw 34. The surgeon may then remove the tool 130 and attached sleeve 140 from the screw 34 and proceed to the next screw until the plate arrangement 30 is properly placed and secured to the bone.
[0037] Those of skill in the art will appreciate that the bone plate 32 may be provided with the enlarged head 64, 116 of the screw(s) 34, 104 predisposed within the channels 60 and/or apertures 62 of the bone plate 32 such that the plate 32 is secured in position against the vertebrae as the screws 34, 104 are tightened. Alternately, the screws 34, 104 may be provided separately from the bone plate 32 and then assembled into the plate 32 during the procedure. In order to assist the surgeon in such an assembly procedure, an assembly tool 160 such as is shown in FIG. 17 may be provided. The tool 160 includes a guide block 162 disposed on a manipulation arm 164. The manipulation arm 164 preferably includes a handle 166 for the surgeon's comfort during the placement procedure.
[0038] In order to facilitate insertion of screw(s) 34, 104 through the plate and into the desired bone, the guide block 162 of the tool 160 includes one or more bores 168 that extend through a portion of the guide block 162, here from the top surface 170 to the bottom surface 171 of the guide block 162. During the placement procedure, the surgeon places the bone plate 32 in the desired location and then positions the guide block 162 along the upper surface of the plate 32 with the bore(s) 168 positioned adjacent a channel 60 or aperture 62. The surgeon may then insert a screw 34, 104 through the bore 168 (holding the screw with the tool 130 or otherwise), and rotates the screw 34, 104 into the target. Those of skill in the art will appreciate that the bore 168 of the guide block 162 guides the screw 34, 104 for straight axial movement.
[0039] As shown in FIG. 18, the bore 168 of guide block 162 of the tool 160 of FIG. 17 includes a pair of bores 172, 174 that include relatively separate proximal ends 176, 178, and a shared distal end 180. In this way, in addition to positioning the guide block 162 itself at the desired angle to provide the optimal screw placement, the surgeon may utilize one or the other of the pair of bores 172, 174 to place the screw 34, 104 at a desired angle through the bone plate 32.
[0040] While the guide block 162 of the tool 106 of FIGS . 17 and 18 includes two pairs of dual bores 172, 174, the guide block may have alternate construction. For example, one or both of the bores 182 of the guide block 184 may each have a single axis 186, such as shown in FIG. 19, wherein two such bores 182 are provided. Alternately, the guide block 188 may include a single bore 190 with dual axes or with a single axis 192, such as is shown, for example, in FIG. 20. The guide blocks shown are by way of example only. It will be appreciated by those of skill in the art that the guide block may comprise alternate numbers and/or combinations of bores and/or constructions of bores in keeping with the invention. Moreover, one or more such guide blocks 162, 184, 188 may be provided as part of a tool kit that further includes the manipulation arm 164. The desired block 162, 184, 188 may be selectively coupled to the end of the manipulation arm 164 by way of a screw, pin, or the like 194 extending through a bore 196.
[0041] All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
[0042] The use of the terms "a" and "an" and "the" and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non- claimed element as essential to the practice of the invention.
[0043] Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the abpve-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims

CLAIM(S):
1. An anchor device for securing to a bone a plate having apertures with concave edges, comprising: a screw including a head portion and a threaded shank with a distal tip and a central longitudinal axis, the head portion having a central opening exposed at the proximal end of the screw and an annular wall with inner and outer surfaces and having a plurality of slots that define a plurality of spaced petals disposed around the central opening, wherein the inner surface of the annular wall includes a plurality of uniformly-spaced recesses, the screw further including an internal surface of defined shape originating in the central opening for engagement by a matingly-configured screw driving tool for driving the screw into the bone; and a locking disc rotatably disposed within the central opening and having a periphery of non-circular configuration defining a plurality of uniformly- spaced protrusions that can be selectively aligned with recesses in the inner surface of the annular wall of the head; whereupon, when the locking disc is in a first rotational position within the central opening the inner surface of the annular wall is spaced from the protrusions so that at least one of the petals may flex inwardly, and when the locking disc is rotated to a second rotational position within the central opening the inner surface of the annular wall is contacted by the protrusions so that the petals are substantially prevented by the protrusions from flexing inwardly and the head is captured by the concave edges of a plate aperture.
2. The device of claim 1, wherein the screw's internal surface comprises a bore extending distally from the central opening along the central longitudinal axis of the shank.
3. The device of claim 2, wherein the locking disc has a central aperture that surrounds the bore, thereby permitting access to the bore by the screw driving tool.
4. The device of claim 2, wherein the bore has a hexagonal cross-section.
5. The device of claim 2, wherein the bore has a cross-sectional shape selected from among the following: slotted, triangular, square, rectangular, pentagonal or octagonal.
6. The device of claim 1, wherein the periphery of the locking disc has a generally square configuration, defining four protrusions.
7. The device of claim 1 , wherein the periphery of the locking disc has a generally octagonal configuration, defining eight protrusions.
8. The device of claim 1, wherein the number of petals equals the number of protrusions.
9. The device of claim 1, wherein the number of protrusions is twice the number of petals, such that upon rotation of the locking disc to the second rotational position at least two protrusions engage each petal.
10. The device of claim 1, wherein the number of recesses is twice the number of protrusions.
11. The device of claim 10, wherein the recesses have alternating depths with every other recess deeper than its respective neighboring recesses, such that when the protrusions defined by the locking disc are disposed within the deeper recesses the petals may flex inwardly.
12. The device of claim 1, wherein the locking disc includes at least a pair of proximally opening notches configured for engagement by a tool to effectuate rotation of the disc from the first rotational position to the second rotational position.
13. The device of claim 1, wherein the distal tip of the screw is self-tapping.
14. The device of claim 1, wherein the locking disc, despite its rotational position within the central opening of the head, is fully nested within the central opening and does not protrude beyond the proximal end of the screw.
15. A system for securing to a bone a plate having apertures with concave edges, comprising: a screw including a head portion and a threaded shank with a distal tip, the head portion having a central opening exposed at the proximal end of the screw and an annular wall with inner and outer surfaces and having a plurality of slots that define a plurality of spaced petals disposed around the central opening, wherein the inner surface of the annular wall includes a plurality of uniformly-spaced recesses, the screw further including an internal bore of defined shape originating in the central opening for engagement to effectuate driving of the screw into the bone; a locking disc rotatably disposed within the central opening, the disc including a periphery of non-circular configuration defining a plurality of uniformly-spaced protrusions that can be selectively aligned with recesses in the inner surface of the annular wall of the head, a central aperture that surrounds the internal bore of the screw so as to permit access to the internal bore, and at least a pair of proximally opening notches configured for engagement to effectuate rotation of the disc from a first rotational position to a second rotational position; and a tool with a handle, a shaft extending from the handle and having a distal end configured to mate with the internal bore of the screw to permit selective rotation of the screw, and a sleeve member axially slideable along and rotatable about the shaft and having a distal end with structure that mates with the pair of proximally opening notches in the locking disc to permit selective rotation of the disc; whereupon, when the locking disc is in the first rotational position within the central opening the inner surface of the annular wall is spaced from the protrusions so that at least one of the petals may flex inwardly, and when the locking disc is rotated to the second rotational position within the central opening the inner surface of the annular wall is contacted by the protrusions so that the petals are substantially prevented by the protrusions from flexing inwardly and the head is captured by the concave edges of a plate aperture.
16. The system of claim 15, wherein the internal bore has a hexagonal cross- section and the distal end of the tool shaft has a mating hexagonal configuration.
17. The system of claim 15, wherein the internal bore has a cross-sectional shape selected from among slotted, triangular, square, rectangular, pentagonal or octagonal, and the distal end of the tool shaft has a correspondingly mated configuration.
18. The system of claim 15, wherein the periphery of the locking disc has a generally octagonal configuration, defining eight protrusions.
19. The system of claiml5, wherein the number of petals equals the number of protrusions.
20. The system of claim 15, wherein the number of protrusions is twice the number of petals, such that upon rotation of the locking disc to the second rotational position at least two protrusions engage each petal.
21. The system of claim 15, wherein the number of mating recesses is twice the number of protrusions.
22. The system of claim 21, wherein the recesses have alternating depths with every other recess being deeper than its respective neighboring recesses, such that when the protrusions defined by the locking disc are disposed within the deeper recesses the petals may flex inwardly.
23. The system of claim 15, wherein the locking disc, despite its rotational position within the central opening of the head, is fully nested within the central opening and does not protrude beyond the proximal end of the screw.
24. The system of claim 15, wherein the sleeve of the tool further includes a flange member, whereby, when the distal ends of the shaft and the sleeve are engaged, respectively, with the screw and the locking disc, a user may maintain the rotational position of the screw by grasping the tool handle and simultaneously rotate the flange and the sleeve and thus also the disc.
25. The system of claim 15, further comprising a screw aligning device having a guide block and a manipulation arm, the guide block including at least one bore through which the screw can pass and which holds the screw in a desired angular position as it is being driven into the bone.
26. A method of securing to a bone a plate having apertures with concave edges, comprising the steps of: positioning a selected aperture of the plate adjacent a desired location on the bone; aligning a bone screw through the selected aperture and into contact with the bone at a desired angular orientation, the screw including a threaded shank with a distal tip, a head portion having a central opening exposed at the proximal end of the screw, and an annular wall with inner and outer surfaces and having a plurality of slots that define a plurality of spaced petals disposed around the central opening, wherein the inner surface of the annular wall includes a plurality of uniformly-spaced recesses, an internal bore of defined shape originating in the central opening for engagement by a driving tool, and a locking disc rotatably disposed within the central opening, the disc having a periphery of non-circular configuration defining a plurality of uniformly-spaced protrusions that can be selectively aligned with recesses in the inner surface of the annular wall, a central aperture that surrounds the internal bore to thereby permit access to the bore by the driving tool, and at least a pair of proximally opening notches configured for engagement to effectuate rotation of the disc; engaging the internal bore of the screw with a driving tool having a handle and a shaft with a distal end configured to mate with the internal bore, driving the distal tip of the screw against the bone and selectively rotating the screw until it penetrates the bone to a desired depth, the driving tool further including a sleeve member axially slideable along and rotatable about the shaft, the sleeve member including a flange for effectuating movement of the sleeve relative to the shaft, and a distal end with structure that mates with the m pair of proximally opening notches in the locking disc; and manipulating the flange first to slide the sleeve into mating engagement with the pair of proximally opening notches in the locking disc and second to rotate the locking disc from a first rotational position to a second rotational position, whereupon, when the locking disc is in the first rotational position within the central opening the inner surface of the annular wall is spaced from the protrusions so that at least one of the petals may flex inwardly, and when the locking disc is rotated to the second rotational position within the central opening the inner surface of the inner wall is contacted by the protrusions so that the petals are substantially prevented by the protrusions from flexing inwardly and the head is captured by the concave edges of the selected plate aperture.
27. The method of claim 26, further comprising the step of simultaneously maintaining the rotational position of the screw by grasping the tool handle while manipulating the flange to effectuate rotation of the locking disc.
28. The method of claim 26, further comprising the step of employing a screw aligning device having a guide block and a manipulation arm, the guide block including at least one bore through which the screw can pass and which maintains the screw in the desired angular orientation as it is being driven into the bone.
29. A driving tool for manipulating an anchor device and thereby securing an apertured plate to a bone, comprising: a handle; a shaft extending from the handle and having a distal end configured to mate with an internal bore in a screw component of the anchor device to permit selective rotation of the screw component into the bone; and a sleeve member axially slideable along and rotatable about the shaft, including a flange for effectuating movement of the sleeve relative to the shaft and a distal end with structure that mates with notches in a locking disc component of the anchor device to permit selective rotation of the disc component from a first rotational position to a second rotational position.
PCT/US2005/046243 2004-12-21 2005-12-21 Cervical plate system WO2006069089A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63769004P 2004-12-21 2004-12-21
US60/637,690 2004-12-21

Publications (3)

Publication Number Publication Date
WO2006069089A2 true WO2006069089A2 (en) 2006-06-29
WO2006069089A3 WO2006069089A3 (en) 2006-11-02
WO2006069089B1 WO2006069089B1 (en) 2006-12-21

Family

ID=36032105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/046243 WO2006069089A2 (en) 2004-12-21 2005-12-21 Cervical plate system

Country Status (2)

Country Link
US (1) US7736380B2 (en)
WO (1) WO2006069089A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010522A1 (en) 2010-07-22 2012-01-26 Aesculap Implant Systems, Llc Semi-dynamic fixation plate system
CN104758040A (en) * 2015-04-30 2015-07-08 山东威高骨科材料股份有限公司 Steel plate for anterior cervial internal fixation and guiding device
WO2015105979A1 (en) * 2014-01-08 2015-07-16 Smith & Nephew, Inc. Drill guide system
EP2566408A4 (en) * 2010-05-03 2015-08-05 Russell G Olsen Surgical fastener and associated systems and methods

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050040A1 (en) 2004-10-08 2006-04-20 Aesculap Ag & Co. Kg bone screw
US8262710B2 (en) * 2006-10-24 2012-09-11 Aesculap Implant Systems, Llc Dynamic stabilization device for anterior lower lumbar vertebral fusion
WO2008128663A2 (en) * 2007-04-19 2008-10-30 Stryker Trauma Gmbh Hip fracture device with static locking mechanism allowing compression
US20090177239A1 (en) * 2007-08-06 2009-07-09 Michael Castro Cervical plate instrument kit
CA2699243A1 (en) * 2007-09-12 2009-03-19 Cendres+Metaux Sa Arrangement for forming a bar construction and a fixation screw therefor
US20090105756A1 (en) 2007-10-23 2009-04-23 Marc Richelsoph Spinal implant
EP2397092B1 (en) * 2007-11-02 2014-04-09 Biomet C.V. Elbow fracture fixation system
US8454654B2 (en) * 2007-12-13 2013-06-04 Smith & Nephew, Inc. Anchoring system
US8007522B2 (en) 2008-02-04 2011-08-30 Depuy Spine, Inc. Methods for correction of spinal deformities
US8257407B2 (en) * 2008-04-23 2012-09-04 Aryan Henry E Bone plate system and method
US9603629B2 (en) 2008-09-09 2017-03-28 Intelligent Implant Systems Llc Polyaxial screw assembly
US9987057B2 (en) * 2009-02-13 2018-06-05 Globus Medical, Inc. Orthopedic anchor assembly
US9358050B2 (en) 2011-10-14 2016-06-07 Globus Medical, Inc. Orthopedic anchor assembly
US8241339B2 (en) 2009-02-13 2012-08-14 Globus Medical, Inc. Orthopedic anchor assembly
US20100217399A1 (en) * 2009-02-22 2010-08-26 Groh Gordon I Base plate system for shoulder arthroplasty and method of using the same
US8652183B1 (en) * 2009-07-07 2014-02-18 Mari S Truman Multi-angle orthopedic expansion head fastener
US20110082506A1 (en) * 2009-10-02 2011-04-07 Spinefrontier, Inc Cervical plate assembly
US8403970B1 (en) 2010-01-06 2013-03-26 Bernard M. Bedor Cervical plate system and method
US8409259B1 (en) 2010-01-06 2013-04-02 Bernard M. Bedor Cervical plate system and method
US8647371B2 (en) * 2010-04-30 2014-02-11 Globus Medical, Inc. Locking bone screws and methods of use thereof
US8753396B1 (en) 2010-09-13 2014-06-17 Theken Spine, Llc Intervertebral implant having back-out prevention feature
US9084636B2 (en) * 2011-01-10 2015-07-21 Spine Craft, LLC Surgical plate system and method
US8940030B1 (en) 2011-01-28 2015-01-27 Nuvasive, Inc. Spinal fixation system and related methods
US9615733B2 (en) * 2011-04-13 2017-04-11 Mayo Foundation For Medical Education And Research Anterior cervical retractor system
US8771324B2 (en) * 2011-05-27 2014-07-08 Globus Medical, Inc. Securing fasteners
US8668723B2 (en) 2011-07-19 2014-03-11 Neurostructures, Inc. Anterior cervical plate
US11123117B1 (en) 2011-11-01 2021-09-21 Nuvasive, Inc. Surgical fixation system and related methods
US9050151B2 (en) 2012-03-06 2015-06-09 Stryker Trauma Sa Bone plate and aiming block
US8814912B2 (en) 2012-07-27 2014-08-26 Zimmer Spine, Inc. Bone stabilization member with bone screw retention mechanism
US9782204B2 (en) 2012-09-28 2017-10-10 Medos International Sarl Bone anchor assemblies
US9265600B2 (en) 2013-02-27 2016-02-23 Orthopediatrics Corp. Graft fixation
CN105188562B (en) 2013-03-06 2019-02-26 史密夫和内修有限公司 Miniature anchor
US9724145B2 (en) 2013-03-14 2017-08-08 Medos International Sarl Bone anchor assemblies with multiple component bottom loading bone anchors
US10342582B2 (en) 2013-03-14 2019-07-09 DePuy Synthes Products, Inc. Bone anchor assemblies and methods with improved locking
US9775660B2 (en) 2013-03-14 2017-10-03 DePuy Synthes Products, Inc. Bottom-loading bone anchor assemblies and methods
US20140277153A1 (en) 2013-03-14 2014-09-18 DePuy Synthes Products, LLC Bone Anchor Assemblies and Methods With Improved Locking
US9259247B2 (en) 2013-03-14 2016-02-16 Medos International Sarl Locking compression members for use with bone anchor assemblies and methods
US9044273B2 (en) 2013-10-07 2015-06-02 Intelligent Implant Systems, Llc Polyaxial plate rod system and surgical procedure
US9629664B2 (en) 2014-01-20 2017-04-25 Neurostructures, Inc. Anterior cervical plate
US9486250B2 (en) 2014-02-20 2016-11-08 Mastros Innovations, LLC. Lateral plate
US10245080B2 (en) 2014-06-04 2019-04-02 Mohammad Etminan System for mounting of a cervical plate to a vertebra
US20170057066A1 (en) * 2015-08-25 2017-03-02 Victor SENEGAL Compressor change-out tool
WO2017164864A1 (en) * 2016-03-23 2017-09-28 Mohammad Etminan System for mounting a cervical plate to a vertebra
US10952781B2 (en) * 2016-12-08 2021-03-23 DePuy Synthes Products, Inc. Cable saddle
US10980641B2 (en) 2017-05-04 2021-04-20 Neurostructures, Inc. Interbody spacer
US10512547B2 (en) 2017-05-04 2019-12-24 Neurostructures, Inc. Interbody spacer
US10687955B2 (en) * 2018-02-02 2020-06-23 Ayman H. Al-Jazaeri Distally expanding facet implant with integrated plate and delivery device
US11076892B2 (en) 2018-08-03 2021-08-03 Neurostructures, Inc. Anterior cervical plate
US11071629B2 (en) 2018-10-13 2021-07-27 Neurostructures Inc. Interbody spacer
US11298244B2 (en) 2019-01-31 2022-04-12 K2M, Inc. Interbody implants and instrumentation
US11020154B2 (en) * 2019-04-26 2021-06-01 Warsaw Orthopedic, Inc. Surgical instrument and methods of use
US11534307B2 (en) 2019-09-16 2022-12-27 K2M, Inc. 3D printed cervical standalone implant
US11000384B2 (en) 2019-10-15 2021-05-11 Ayman H. Al-Jazaeri Distally expanding facet joint implant and delivery device
US11382761B2 (en) 2020-04-11 2022-07-12 Neurostructures, Inc. Expandable interbody spacer
US11304817B2 (en) 2020-06-05 2022-04-19 Neurostructures, Inc. Expandable interbody spacer
US11717419B2 (en) 2020-12-10 2023-08-08 Neurostructures, Inc. Expandable interbody spacer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003781A1 (en) * 1986-11-25 1988-06-02 Synthes Ag Osteosynthetic device
US6117173A (en) * 1995-12-07 2000-09-12 Aesculap Ag & Co., Kg Orthopaedic fixing system
EP1090595A2 (en) * 1999-10-07 2001-04-11 Stryker Spine SA Slotted head pedicle screw assembly
US6579290B1 (en) * 1997-11-29 2003-06-17 Surgicraft Limited Surgical implant and surgical fixing screw
DE202004015912U1 (en) * 2004-10-08 2004-12-09 Aesculap Ag & Co. Kg Bone screw, comprising movable locking element accommodated inside before being joined to bone plate

Family Cites Families (475)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US74489A (en) 1868-02-18 Improvement in wood-soeews
US90132A (en) 1869-05-18 Improvement in nut-lock
US556645A (en) 1896-03-17 Extension-table
US824867A (en) 1906-02-15 1906-07-03 William Houghton Combined marking-peg and center-punch.
US1105105A (en) 1912-02-10 1914-07-28 William O'n Sherman Surgical appliance.
US1501422A (en) 1922-09-22 1924-07-15 Bliss E W Co Key clutch
US1501222A (en) 1923-05-18 1924-07-15 Lamp Sampson Cisco Screw driver
US1980336A (en) 1933-05-17 1934-11-13 Pratt & Whitney Co Chuck retaining means
US2250417A (en) 1939-12-02 1941-07-22 Zimmer Mfg Company Fracture reduction and retention device
US2406987A (en) 1943-01-04 1946-09-03 Anderson Roger Fracture splint
US2372866A (en) 1943-07-26 1945-04-03 Benjamin F Tofflemire Fracture appliance
US2391537A (en) 1943-09-27 1945-12-25 Anderson Roger Ambulatory rotating reduction and fixation splint
US2391693A (en) 1943-12-09 1945-12-25 Zimmer Mfg Company Surgical splint
US2393694A (en) 1945-04-10 1946-01-29 Otto S Kirschner Surgical apparatus
US2497626A (en) 1945-11-09 1950-02-14 Persall Roy Surgical splint
US2423511A (en) 1946-03-12 1947-07-08 Raymond R Luben Self-centering awl
US2780522A (en) 1953-12-17 1957-02-05 Int Minerals & Chem Corp Production of fluorine compounds
US2757457A (en) 1955-01-18 1956-08-07 Sr Albert R Ziegelski Center punch
US2832390A (en) 1955-02-11 1958-04-29 Kustusch Paul W Screw locking deformable disk having workpiece engaging fingers
US2780830A (en) 1955-06-20 1957-02-12 Jr Archer W Kammerer Pin retainer
US3244170A (en) 1962-11-23 1966-04-05 Robert T Mcelvenny Compression type bone splint
US3386437A (en) 1966-01-14 1968-06-04 Richard Mfg Company Compression device for use with a bone fracture plate
USRE28841E (en) 1966-06-22 1976-06-08 Synthes A.G. Osteosynthetic pressure plate construction
CH462375A (en) 1966-06-22 1968-09-15 Synthes Ag Osteosynthetic pressure plate
USRE31628E (en) 1966-06-22 1984-07-10 Synthes Ag Osteosynthetic pressure plate construction
US3604414A (en) 1968-08-29 1971-09-14 Nicomedes Borges Bone setting device
US3709219A (en) 1970-11-27 1973-01-09 W Halloran Bone compression device
US3750652A (en) 1971-03-05 1973-08-07 J Sherwin Knee retractor
US3741205A (en) 1971-06-14 1973-06-26 K Markolf Bone fixation plate
GB1409052A (en) 1971-09-24 1975-10-08 Nat Res Dev Surgical apparatus for bone manipulation
US3837522A (en) 1973-10-09 1974-09-24 Textron Inc Multiple retention plug for sealing openings in metal parts
US3842825A (en) 1973-11-12 1974-10-22 R Wagner Hip fixation device
US3960147A (en) 1975-03-10 1976-06-01 Murray William M Compression bone staples and methods of compressing bone segments
CH600862A5 (en) 1976-03-26 1978-06-30 Synthes Ag
GB1582133A (en) 1976-04-30 1980-12-31 Nat Res Dev Orthopaedic fracture fixing apparatus
US4069586A (en) 1976-05-19 1978-01-24 Skelton Horace C Center punch
US4113227A (en) 1977-04-05 1978-09-12 Marine Moisture Control Co., Inc. Cam lock with vertical plunger
US4349017A (en) 1978-03-31 1982-09-14 Sayegh Antoine Y Orthopaedic apparatus
PL114098B1 (en) 1978-04-14 1981-01-31 Wyzsza Szkola Inzynierska Apparatus for correcting spinal curvature
FR2435243B1 (en) 1978-09-07 1985-06-28 Tornier Sa IMPROVEMENTS IN PLATES FOR OSTEOSYNTHESIS
US4220146A (en) 1979-01-18 1980-09-02 Cloutier Jean Marie Biplanar joint distractor
CH648197A5 (en) 1980-05-28 1985-03-15 Synthes Ag IMPLANT AND SCREW FASTENING ON ITS BONE.
US4328721A (en) 1980-09-10 1982-05-11 Frank Massari Phillips screwdriver with retractable slotted screw driver blade
CH651192A5 (en) 1980-11-20 1985-09-13 Synthes Ag OSTEOSYNTHETIC DEVICE AND CORRESPONDING DRILL GAUGE.
US4338926A (en) 1980-11-21 1982-07-13 Howmedica, Inc. Bone fracture prosthesis with controlled stiffness
DE3114136C2 (en) 1981-04-08 1986-02-06 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Osteosynthesis plate
US4488462A (en) 1981-11-09 1984-12-18 Wall Stanford J Screwdriver with dual tip
FR2519857A1 (en) 1982-01-19 1983-07-22 Butel Jean DEVICE FOR OSTEOSYNTHESIS OF THE FRACTURES OF THE END OF THE FEMUR
US4542539A (en) 1982-03-12 1985-09-24 Artech Corp. Surgical implant having a graded porous coating
US4483334A (en) 1983-04-11 1984-11-20 Murray William M External fixation device
US4611580A (en) 1983-11-23 1986-09-16 Henry Ford Hospital Intervertebral body stabilization
DE3414374C2 (en) 1984-04-16 1986-12-18 Patrick Dr. 3590 Bad Wildungen Kluger Device for setting up a spine with damaged vertebral bodies
CH662936A5 (en) 1984-05-18 1987-11-13 Technomed Gmk BONE JOINT PLATE.
FR2577793B1 (en) 1985-02-22 1989-04-21 Realisations Electro Mecanique EXTERNAL FIXER DEVICE FOR ORTHOPEDIC USE
DE8513288U1 (en) 1985-05-06 1986-09-04 Wolter, Dietmar, Prof. Dr., 2000 Hamburg Osteosynthesis plate
US4620533A (en) 1985-09-16 1986-11-04 Pfizer Hospital Products Group Inc. External bone fixation apparatus
US4743256A (en) 1985-10-04 1988-05-10 Brantigan John W Surgical prosthetic implant facilitating vertebral interbody fusion and method
US4648388B1 (en) 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US4719905B1 (en) 1985-11-01 1995-10-31 Acromed Corp Apparatus and method for maintaining vertebrae in a desired relationship
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4776330A (en) 1986-06-23 1988-10-11 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
DE3707097A1 (en) 1986-12-05 1988-06-09 S & G Implants Gmbh PLIERS FOR SPREADING SPINE BODIES
DE3662967D1 (en) 1986-12-12 1989-06-01 Aesculap Werke Ag Anchoring element for fastening an osteosynthesis plate to a bone
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
DE8704901U1 (en) 1987-04-02 1987-07-23 Kluger, Patrick, Dr.Med., 3590 Bad Wildungen, De
US4913134A (en) 1987-07-24 1990-04-03 Biotechnology, Inc. Spinal fixation system
US4790297A (en) 1987-07-24 1988-12-13 Biotechnology, Inc. Spinal fixation method and system
US5151103A (en) 1987-11-03 1992-09-29 Synthes (U.S.A.) Point contact bone compression plate
WO1989004150A1 (en) 1987-11-03 1989-05-18 Synthes Ag Implant for osteosynthesis
US5057111A (en) 1987-11-04 1991-10-15 Park Joon B Non-stress-shielding bone fracture healing device
USD324424S (en) 1987-11-16 1992-03-03 Michelson Gary K Spinal osteotome
US4840525A (en) 1987-12-09 1989-06-20 Unistrut International Corp. Fastener restrainer for framing system
US4836196A (en) 1988-01-11 1989-06-06 Acromed Corporation Surgically implantable spinal correction system
US4896661A (en) 1988-02-05 1990-01-30 Pfizer, Inc. Multi purpose orthopedic ratcheting forceps
USD318118S (en) 1988-02-08 1991-07-09 Michelson Gary K Medical instrument handle
US5468241A (en) 1988-02-18 1995-11-21 Howmedica Gmbh Support device for the human vertebral column
CH674709A5 (en) 1988-04-27 1990-07-13 Sulzer Ag
US7491205B1 (en) 1988-06-13 2009-02-17 Warsaw Orthopedic, Inc. Instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the lateral aspect of the spine
US6923810B1 (en) 1988-06-13 2005-08-02 Gary Karlin Michelson Frusto-conical interbody spinal fusion implants
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US7534254B1 (en) 1988-06-13 2009-05-19 Warsaw Orthopedic, Inc. Threaded frusto-conical interbody spinal fusion implants
USD377096S (en) 1994-06-03 1996-12-31 Sofamor Danek Properties, Inc. Interbody spinal implant
US6123705A (en) 1988-06-13 2000-09-26 Sdgi Holdings, Inc. Interbody spinal fusion implants
EP0703757B1 (en) 1988-06-13 2003-08-27 Karlin Technology, Inc. Apparatus for inserting spinal implants
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
USD377093S (en) 1994-05-27 1996-12-31 Michelson Gary K Spinal distractor
US6210412B1 (en) 1988-06-13 2001-04-03 Gary Karlin Michelson Method for inserting frusto-conical interbody spinal fusion implants
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US7452359B1 (en) 1988-06-13 2008-11-18 Warsaw Orthopedic, Inc. Apparatus for inserting spinal implants
US6120502A (en) 1988-06-13 2000-09-19 Michelson; Gary Karlin Apparatus and method for the delivery of electrical current for interbody spinal arthrodesis
FR2633177B1 (en) 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
USD425989S (en) 1996-07-15 2000-05-30 Sofamor Danek Holdings, Inc. Artificial spinal fusion implant
CA1333209C (en) 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
US5609635A (en) 1988-06-28 1997-03-11 Michelson; Gary K. Lordotic interbody spinal fusion implants
US5052373A (en) 1988-07-29 1991-10-01 Michelson Gary K Spinal retractor
US4907927A (en) 1988-10-26 1990-03-13 Olympic Manufacturing Group, Inc. Locking plate for fastening insulation
DE3838774A1 (en) 1988-11-11 1990-05-17 Mecron Med Prod Gmbh SLIDING PLATE
FR2642642B1 (en) 1989-02-03 1997-08-22 Cotrel Yves IMPLANT OF SPINAL POSTERIOR OSTEOSYNTHESIS
US5084049A (en) 1989-02-08 1992-01-28 Acromed Corporation Transverse connector for spinal column corrective devices
US5024213A (en) 1989-02-08 1991-06-18 Acromed Corporation Connector for a corrective device
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
US5451227A (en) 1989-04-24 1995-09-19 Michaelson; Gary K. Thin foot plate multi bite rongeur
US6200320B1 (en) 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US5653713A (en) 1989-04-24 1997-08-05 Michelson; Gary Karlin Surgical rongeur
US6129740A (en) 1989-04-24 2000-10-10 Michelson; Gary Karlin Instrument handle design
US5000165A (en) 1989-05-15 1991-03-19 Watanabe Robert S Lumbar spine rod fixation system
CH678803A5 (en) 1989-07-12 1991-11-15 Sulzer Ag
US4959065A (en) 1989-07-14 1990-09-25 Techmedica, Inc. Bone plate with positioning member
DE3923995A1 (en) 1989-07-20 1991-01-31 Lutz Biedermann BONE STABILIZING ELEMENT
IT1237496B (en) 1989-10-26 1993-06-08 Giuseppe Vrespa SCREW DEVICE FOR ANCHORING BONE PROSTHESES, METHOD FOR THE APPLICATION OF SUCH DEVICE AND RELATED EQUIPMENT
US5344422A (en) 1989-10-30 1994-09-06 Synthes (U.S.A.) Pedicular screw clamp
US5002542A (en) 1989-10-30 1991-03-26 Synthes U.S.A. Pedicle screw clamp
US5019079A (en) 1989-11-20 1991-05-28 Zimmer, Inc. Bone screw
JPH066810Y2 (en) 1989-11-29 1994-02-23 旭光学工業株式会社 Vertebral body fixation plate
US5059194A (en) 1990-02-12 1991-10-22 Michelson Gary K Cervical distractor
FR2658413B1 (en) 1990-02-19 1997-01-03 Sofamor OSTEOSYNTHESIS DEVICE FOR THE CORRECTION OF SPINAL DEVIATIONS.
FR2659225B1 (en) 1990-03-08 1995-09-08 Sofamor TRANSVERSE FIXING DEVICE FOR PROVIDING A RIGID CROSS-LINK BETWEEN TWO RODS OF A SPINAL OSTEOSYNTHESIS SYSTEM.
US5030220A (en) 1990-03-29 1991-07-09 Advanced Spine Fixation Systems Incorporated Spine fixation system
WO1991016020A1 (en) 1990-04-26 1991-10-31 Danninger Medical Technology, Inc. Transpedicular screw system and method of use
US5102412A (en) 1990-06-19 1992-04-07 Chaim Rogozinski System for instrumentation of the spine in the treatment of spinal deformities
GB9014817D0 (en) 1990-07-04 1990-08-22 Mehdian Seyed M H Improvements in or relating to apparatus for use in the treatment of spinal disorders
US5120171A (en) 1990-11-27 1992-06-09 Stuart Surgical Bone screw with improved threads
US5417533A (en) 1990-07-13 1995-05-23 National Medical Specialty, Inc. Bone screw with improved threads
US5129900B1 (en) 1990-07-24 1998-12-29 Acromed Corp Spinal column retaining method and apparatus
SE9002569D0 (en) 1990-08-03 1990-08-03 Sven Olerud SPINAL KNUT
US6520990B1 (en) 1990-10-05 2003-02-18 Sdgi Holdings, Inc. Lateral fixation plates for a spinal system
US5127912A (en) 1990-10-05 1992-07-07 R. Charles Ray Sacral implant system
US5300073A (en) 1990-10-05 1994-04-05 Salut, Ltd. Sacral implant system
US5492442A (en) 1990-11-27 1996-02-20 National Medical Specialty, Inc. Bone screw with improved threads
US5729097A (en) 1990-11-29 1998-03-17 Holzer; Walter Method and device for controlling electric discharge lamps with electronic fluorescent lamp ballasts
CH684928A5 (en) 1990-12-10 1995-02-15 Jaquet Orthopedie external fixator.
US5122131A (en) 1991-03-14 1992-06-16 Tsou Paul M Orthopaedic device for mechanical coupling to a surgical rod
US5176678A (en) 1991-03-14 1993-01-05 Tsou Paul M Orthopaedic device with angularly adjustable anchor attachments to the vertebrae
DK0506420T3 (en) 1991-03-27 1999-03-01 Smith & Nephew Inc Bone Fixation Device
US5129899A (en) 1991-03-27 1992-07-14 Smith & Nephew Richards Inc. Bone fixation apparatus
US5486176A (en) 1991-03-27 1996-01-23 Smith & Nephew Richards, Inc. Angled bone fixation apparatus
DE9104025U1 (en) 1991-04-03 1992-07-30 Waldemar Link Gmbh & Co, 2000 Hamburg, De
US5169270A (en) 1991-06-03 1992-12-08 Kennametal Inc. Compressible screw-type locking mechanism
US5222954A (en) 1991-06-21 1993-06-29 Artifex, Ltd. Spinal implant system and method for installing the implant
US5622649A (en) 1991-06-27 1997-04-22 Emory University Multiple emulsions and methods of preparation
PT100685A (en) 1991-07-15 1994-05-31 Danek Group Inc SPINAL FIXING SYSTEM
US5242443A (en) 1991-08-15 1993-09-07 Smith & Nephew Dyonics, Inc. Percutaneous fixation of vertebrae
US5545228A (en) 1991-08-15 1996-08-13 Smith & Nephew Richards Inc. Offset bone bolt
US5480440A (en) 1991-08-15 1996-01-02 Smith & Nephew Richards, Inc. Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient
US5584887A (en) 1991-08-15 1996-12-17 Smith & Nephew Richards, Inc. Percutaneous screw adapter
US5378384A (en) 1991-09-19 1995-01-03 Minnesota Mining And Manufacturing Company Process of making hexagonal magnetic ferrite pigment for high density magnetic recording applications
US5180381A (en) 1991-09-24 1993-01-19 Aust Gilbert M Anterior lumbar/cervical bicortical compression plate
US5603713A (en) 1991-09-24 1997-02-18 Aust; Gilbert M. Anterior lumbar/cervical bicortical compression plate
FR2681776A1 (en) 1991-09-30 1993-04-02 Fixano Sa VERTEBRAL OSTEOSYNTHESIS DEVICE.
US5282862A (en) 1991-12-03 1994-02-01 Artifex Ltd. Spinal implant system and a method for installing the implant onto a vertebral column
US5254118A (en) 1991-12-04 1993-10-19 Srdjian Mirkovic Three dimensional spine fixation system
US5234430A (en) 1991-12-18 1993-08-10 Huebner Randall J Orthopedic fixation screw and method
US5167662A (en) 1992-01-24 1992-12-01 Zimmer, Inc. Temporary clamp and inserter for a posterior midline spinal clamp
US5330477A (en) 1992-01-28 1994-07-19 Amei Technologies Inc. Apparatus and method for bone fixation and fusion stimulation
US5534031A (en) 1992-01-28 1996-07-09 Asahi Kogaku Kogyo Kabushiki Kaisha Prosthesis for spanning a space formed upon removal of an intervertebral disk
DE4202748A1 (en) 1992-01-31 1993-08-05 Kluger Patrick SPINAL IMPLANT AND REPOSITION INSTRUMENTS
US5209751A (en) 1992-02-19 1993-05-11 Danek Medical, Inc. Spinal fixation system
US5261910A (en) 1992-02-19 1993-11-16 Acromed Corporation Apparatus for maintaining spinal elements in a desired spatial relationship
JP2664614B2 (en) 1992-02-20 1997-10-15 ジ・ベ・エス ソシエテ アノニム Cervical spine correction, fixation, clamping and retraction devices
US5171279A (en) 1992-03-17 1992-12-15 Danek Medical Method for subcutaneous suprafascial pedicular internal fixation
GB9206018D0 (en) 1992-03-19 1992-04-29 Dall Desmond Meiring Bone fixation system
US5477254A (en) 1992-03-30 1995-12-19 Scitex Digital Printing, Inc. Apparatus for mounting and aligning components of an ink jet printhead
FR2689750B1 (en) 1992-04-10 1997-01-31 Eurosurgical BONE ANCHORING ELEMENT AND SPINAL OSTEOSYNTHESIS DEVICE INCORPORATING SUCH ELEMENTS.
US5655089A (en) 1992-04-10 1997-08-05 Bucci; Joseph J. Method for the consolidation summarization and transmission of a plurality of mailable materials
US5324295A (en) 1992-04-24 1994-06-28 Shapiro Michael R Drill guide for surgical pins
US5312405A (en) 1992-07-06 1994-05-17 Zimmer, Inc. Spinal rod coupler
US5498264A (en) 1992-07-21 1996-03-12 Synthes (U.S.A.) Clamp connection for connecting two construction components for a setting device, particularly an osteosynthetic setting device
US5888221A (en) 1992-08-11 1999-03-30 Gelbard; Steven D. Spinal stabilization implant system
US5397363A (en) 1992-08-11 1995-03-14 Gelbard; Steven D. Spinal stabilization implant system
FR2695026B1 (en) 1992-08-25 1994-10-28 Alexandre Worcel Device for maintaining compression of a fractured bone.
US5382248A (en) 1992-09-10 1995-01-17 H. D. Medical, Inc. System and method for stabilizing bone segments
US5545165A (en) 1992-10-09 1996-08-13 Biedermann Motech Gmbh Anchoring member
US5334203A (en) 1992-09-30 1994-08-02 Amei Technologies Inc. Spinal fixation system and methods
US5275600A (en) 1992-10-05 1994-01-04 Zimmer, Inc. Telescoping rod to rod coupler for a spinal system
FR2697742B1 (en) 1992-11-06 1994-12-16 Biomat Osteosynthesis device for spinal consolidation.
US5702395A (en) 1992-11-10 1997-12-30 Sofamor S.N.C. Spine osteosynthesis instrumentation for an anterior approach
CA2109907C (en) 1992-11-25 2000-01-25 Ronald A. Yapp Osteosynthesis plate system
US5498262A (en) 1992-12-31 1996-03-12 Bryan; Donald W. Spinal fixation apparatus and method
US5947965A (en) 1992-12-31 1999-09-07 Bryan; Donald W. Spinal fixation apparatus and method
US5306275A (en) 1992-12-31 1994-04-26 Bryan Donald W Lumbar spine fixation apparatus and method
US5527314A (en) 1993-01-04 1996-06-18 Danek Medical, Inc. Spinal fixation system
US5352225A (en) 1993-01-14 1994-10-04 Yuan Hansen A Dual-tier spinal clamp locking and retrieving system
EP0631492B1 (en) 1993-01-19 1997-09-24 JBS, Société Anonyme Spinal osteosynthesis device
US5810825A (en) 1995-06-01 1998-09-22 Huebner; Randall J. Surgical wire clamp
US5961555A (en) 1998-03-17 1999-10-05 Huebner; Randall J. Modular shoulder prosthesis
US5944721A (en) 1997-12-08 1999-08-31 Huebner; Randall J. Method for repairing fractured bone
US5545162A (en) 1995-02-15 1996-08-13 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US6171309B1 (en) 1995-02-15 2001-01-09 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US5697934A (en) 1996-12-02 1997-12-16 Huebner; Randall J. Tension band wiring pin and method
US6001099A (en) 1998-06-08 1999-12-14 Huebner; Randall J. Bone plate with varying rigidity
US6017347A (en) 1995-06-01 2000-01-25 Acumed, Inc. Wire clamp assembly
US6120505A (en) 1995-06-01 2000-09-19 Acumed, Inc. Wire clamp assembly
US5665087A (en) 1996-03-26 1997-09-09 Huebner; Randall J. Method and screw for repair of olecranon fractures
US6030162A (en) 1998-12-18 2000-02-29 Acumed, Inc. Axial tension screw
US5624440A (en) 1996-01-11 1997-04-29 Huebner; Randall J. Compact small bone fixator
US5662649A (en) 1995-02-15 1997-09-02 Huebner; Randall J. External fixator for repairing fractures of distal radius and wrist
US5868789A (en) 1997-02-03 1999-02-09 Huebner; Randall J. Removable suture anchor apparatus
USD404128S (en) 1996-12-13 1999-01-12 Huebner Randall J Suture washer
US6162224A (en) 1995-02-15 2000-12-19 Acumed, Inc. External fixator for repairing fractures of distal radius and wrist
US5964768A (en) 1993-01-21 1999-10-12 Acumed, Inc. Tapered bone screw with continuously varying pitch
US5871486A (en) 1993-01-21 1999-02-16 Acumed, Inc. Variable pitch bone screw
DE69430540T2 (en) 1993-01-21 2002-10-31 Acumed Inc TAPERED BONE SCREW WITH VARIOUS THREAD INCLINE
US6299615B1 (en) 1993-01-21 2001-10-09 Acumed, Inc. System for fusing joints
US5976134A (en) 1995-06-01 1999-11-02 Huebner; Randall J. External fixator for repairing fractures
US5658283A (en) 1995-02-15 1997-08-19 Huebner; Randall J. External fixator for repairing fractures
US5702472A (en) 1996-12-26 1997-12-30 Huebner; Randall J. Phalangeal finger joint prosthesis and method
US6984235B2 (en) 1993-01-21 2006-01-10 Acumed Llc System for fusing joints
US6077271A (en) 1998-03-06 2000-06-20 Acumed, Inc. Bone plate vise
US5423826A (en) 1993-02-05 1995-06-13 Danek Medical, Inc. Anterior cervical plate holder/drill guide and method of use
US5364399A (en) 1993-02-05 1994-11-15 Danek Medical, Inc. Anterior cervical plating system
US5403314A (en) 1993-02-05 1995-04-04 Acromed Corporation Apparatus for retaining spinal elements in a desired spatial relationship
US5352226A (en) 1993-02-08 1994-10-04 Lin Chih I Side locking system rotatable in all directions for use in spinal surgery
US6066175A (en) 1993-02-16 2000-05-23 Henderson; Fraser C. Fusion stabilization chamber
US5405391A (en) 1993-02-16 1995-04-11 Hednerson; Fraser C. Fusion stabilization chamber
FR2702362B3 (en) 1993-02-24 1995-04-14 Soprane Sa Fixator for osteosynthesis of the lumbosacral spine.
US5487744A (en) 1993-04-08 1996-01-30 Advanced Spine Fixation Systems, Inc. Closed connector for spinal fixation systems
CA2093900C (en) 1993-04-13 1996-12-10 Norman H. K. Kwan Dental implant having cutting means
US5613501A (en) 1993-06-10 1997-03-25 Gary K. Michelson Surgical face support
ATE263511T1 (en) 1993-06-10 2004-04-15 Karlin Technology Inc PROTECTIVE DEVICE WITH TWO PASSAGES FOR SURGERY OF THE INTERVERBEL SPACE
US5380323A (en) 1993-06-16 1995-01-10 Advanced Spine Fixation Systems, Inc. Clamps for spinal fixation systems
US5584831A (en) 1993-07-09 1996-12-17 September 28, Inc. Spinal fixation device and method
CA2167293A1 (en) 1993-07-16 1995-01-26 Gregg Stuart Baker Implant device and method of installing
US5380328A (en) 1993-08-09 1995-01-10 Timesh, Inc. Composite perforated implant structures
US6032309A (en) 1993-08-18 2000-03-07 Michelson; Gary Karlin Adjustable surgical frame and universal rail clamp
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
US5478348A (en) 1993-09-03 1995-12-26 Bajada; Serge Medical sharp apparatus with means for rendering it safe after use
US5425772A (en) 1993-09-20 1995-06-20 Brantigan; John W. Prosthetic implant for intervertebral spinal fusion
FR2712047B1 (en) 1993-11-05 1995-12-08 Jeanson Jean Francois Self-retention device for assembly and fixing elements such as screws, bolts and nuts.
EP0786964B1 (en) 1993-11-19 2004-03-31 Cross Medical Products, Inc. Rod anchor seat having sliding closure member
US5558674A (en) 1993-12-17 1996-09-24 Smith & Nephew Richards, Inc. Devices and methods for posterior spinal fixation
US5616414A (en) 1993-12-28 1997-04-01 Imation Corp. Hexagonal magnetic ferrite pigment for high density magnetic recording applications
US5476463A (en) 1994-01-12 1995-12-19 Acromed Corporation Spinal column retaining apparatus
US5456685A (en) 1994-02-14 1995-10-10 Smith & Nephew Dyonics, Inc. Interference screw having a tapered back root
US5522816A (en) 1994-03-09 1996-06-04 Acromed Corporation Transverse connection for spinal column corrective devices
US5601552A (en) 1994-03-18 1997-02-11 Sofamor, S.N.C. Fixing device for a rigid transverse connection device between rods of a spinal osteosynthesis system
DE4409833A1 (en) 1994-03-22 1995-10-05 Biedermann Motech Gmbh Stabilizing device, in particular for stabilizing the spine
CA2551185C (en) 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
FR2718945B1 (en) 1994-04-25 1996-07-05 Soprane Sa Device for retaining a connecting rod of a spine fixator on a pedicle screw.
US5947893A (en) 1994-04-27 1999-09-07 Board Of Regents, The University Of Texas System Method of making a porous prothesis with biodegradable coatings
US5662652A (en) 1994-04-28 1997-09-02 Schafer Micomed Gmbh Bone surgery holding apparatus
DE4414781C2 (en) 1994-04-28 2000-05-11 Schaefer Micomed Gmbh Bone surgery holding device
USD374283S (en) 1994-05-19 1996-10-01 Michelson Gary K Combined distractor and sleeve for inserting spinal implants
USD377095S (en) 1994-06-03 1996-12-31 Sofamor Danek Properties, Inc. Interbody spinal implant
USD377527S (en) 1994-06-03 1997-01-21 Sofamor Danek Group, Inc. Artificial spinal infusion implant
SE9402130D0 (en) 1994-06-17 1994-06-17 Sven Olerud Device and method for plate fixation of legs
US5527310A (en) 1994-07-01 1996-06-18 Cole; J. Dean Modular pelvic fixation system and method
US5616142A (en) 1994-07-20 1997-04-01 Yuan; Hansen A. Vertebral auxiliary fixation device
US5507746A (en) 1994-07-27 1996-04-16 Lin; Chih-I Holding and fixing mechanism for orthopedic surgery
US5575791A (en) 1994-07-27 1996-11-19 Lin; Chih-I Universal eccentric fixation mechanism for orthopedic surgery
AU3207895A (en) 1994-08-23 1996-03-14 Spine-Tech, Inc. Cervical spine stabilization system
US5681311A (en) 1994-09-15 1997-10-28 Smith & Nephew, Inc. Osteosynthesis apparatus
US5601553A (en) 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US6004322A (en) 1994-10-25 1999-12-21 Sdgi Holdings, Inc. Modular pedicle screw system
US6176861B1 (en) 1994-10-25 2001-01-23 Sdgi Holdings, Inc. Modular spinal system
US5474551A (en) 1994-11-18 1995-12-12 Smith & Nephew Richards, Inc. Universal coupler for spinal fixation
US5683389A (en) 1994-12-05 1997-11-04 Smith & Nephew, Inc. External fixator for distal radius fractures
WO1996018363A1 (en) 1994-12-08 1996-06-20 Vanderbilt University Low profile intraosseous anterior spinal fusion system and method
US5766252A (en) 1995-01-24 1998-06-16 Osteonics Corp. Interbody spinal prosthetic implant and method
US6758849B1 (en) 1995-02-17 2004-07-06 Sdgi Holdings, Inc. Interbody spinal fusion implants
CN1134810A (en) 1995-02-17 1996-11-06 索发默达纳集团股份有限公司 Improved interbody spinal fusion implants
US5860973A (en) 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
FR2731344B1 (en) 1995-03-06 1997-08-22 Dimso Sa SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD
AU2101495A (en) 1995-03-13 1996-10-02 Steven D. Gelbard Spinal stabilization implant system
US5562661A (en) 1995-03-16 1996-10-08 Alphatec Manufacturing Incorporated Top tightening bone fixation apparatus
US5569247A (en) 1995-03-27 1996-10-29 Smith & Nephew Richards, Inc. Enhanced variable angle bone bolt
US5688272A (en) 1995-03-30 1997-11-18 Danek Medical, Inc. Top-tightening transverse connector for a spinal fixation system
US6780186B2 (en) 1995-04-13 2004-08-24 Third Millennium Engineering Llc Anterior cervical plate having polyaxial locking screws and sliding coupling elements
US5520690A (en) 1995-04-13 1996-05-28 Errico; Joseph P. Anterior spinal polyaxial locking screw plate assembly
US5882350A (en) 1995-04-13 1999-03-16 Fastenetix, Llc Polyaxial pedicle screw having a threaded and tapered compression locking mechanism
US5888204A (en) 1996-04-15 1999-03-30 Fastenetix, Llc Acetabular cup having capped polyaxial locking screws
US5669911A (en) 1995-04-13 1997-09-23 Fastenetix, L.L.C. Polyaxial pedicle screw
US5582612A (en) 1995-05-01 1996-12-10 Lin; Chih-I Vertebral fixing and retrieving device having centrally two fixation
US5613968A (en) 1995-05-01 1997-03-25 Lin; Chih-I Universal pad fixation device for orthopedic surgery
US5947966A (en) 1995-06-06 1999-09-07 Sdgi Holdings, Inc. Device for linking adjacent rods in spinal instrumentation
WO1996039090A1 (en) 1995-06-06 1996-12-12 Sdgi Holdings, Inc. Device for linking adjacent rods in spinal instrumentation
US5578034A (en) 1995-06-07 1996-11-26 Danek Medical, Inc. Apparatus for preventing screw backout in a bone plate fixation system
US5562663A (en) 1995-06-07 1996-10-08 Danek Medical, Inc. Implant interconnection mechanism
USD392387S (en) 1995-06-07 1998-03-17 Gary Karlin Michelson Lordotic artificial spinal fusion implant
US5683391A (en) 1995-06-07 1997-11-04 Danek Medical, Inc. Anterior spinal instrumentation and method for implantation and revision
US5586984A (en) 1995-07-13 1996-12-24 Fastenetix, L.L.C. Polyaxial locking screw and coupling element assembly for use with rod fixation apparatus
US5645544A (en) 1995-09-13 1997-07-08 Danek Medical, Inc. Variable angle extension rod
FR2740321B3 (en) 1995-10-27 1997-12-05 Fuentes Jean Marc ANTERIOR OSTEOSYNTHESIS DEVICE FOR CERVICAL VERTEBRES
US5709684A (en) 1995-12-04 1998-01-20 Fastenetix, Llc Advanced compression locking variable length cross-link device
US5667507A (en) 1995-12-04 1997-09-16 Fastenetix, Llc Compression locking variable length cross-link device for use with dual rod apparatus
JP2000505323A (en) 1996-02-14 2000-05-09 ウオルター ローレンツ,サージカル インコーポレイテッド Bone fixation device and device for inserting it
US5707373A (en) 1996-04-26 1998-01-13 Ikonos Corporation Bone fastener and instrument for insertion thereof
US5957953A (en) 1996-02-16 1999-09-28 Smith & Nephew, Inc. Expandable suture anchor
USD406646S (en) 1996-02-20 1999-03-09 Walter Lorenz Surgical, Inc. Neuro sub-temporal plate for osteosynthesis
USD402032S (en) 1996-02-20 1998-12-01 Walter Lorenz Surgical, Inc. Neuro gap plate for osteosynthesis
US5865845A (en) 1996-03-05 1999-02-02 Thalgott; John S. Prosthetic intervertebral disc
US5849012A (en) 1996-03-11 1998-12-15 Abboudi; Shalom Y. Surgical clamping assemblies and methods of use
EP1466564B1 (en) 1996-03-22 2010-10-20 Warsaw Orthopedic, Inc. Devices for percutaneous surgery related applications
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US20040176763A1 (en) 1996-03-22 2004-09-09 Foley Kevin T. Methods for percutaneous surgery
US7198598B2 (en) 1996-03-22 2007-04-03 Warsaw Orthopedic, Inc. Devices and methods for percutaneous surgery
FR2748387B1 (en) 1996-05-13 1998-10-30 Stryker France Sa BONE FIXATION DEVICE, IN PARTICULAR TO THE SACRUM, IN OSTEOSYNTHESIS OF THE SPINE
US5713900A (en) 1996-05-31 1998-02-03 Acromed Corporation Apparatus for retaining bone portions in a desired spatial relationship
US5755796A (en) 1996-06-06 1998-05-26 Ibo; Ivo Prosthesis of the cervical intervertebralis disk
US5769856A (en) 1996-06-24 1998-06-23 Osteonics Corp. Drill guide and implant method
US6159214A (en) 1996-07-31 2000-12-12 Michelson; Gary K. Milling instrumentation and method for preparing a space between adjacent vertebral bodies
DE19637938A1 (en) 1996-09-17 1998-03-26 Juergen Harms Bone plate
USD397436S (en) 1996-09-30 1998-08-25 Gary Karlin Michelson Combined distractor and sleeve for inserting spinal implants
TW375522B (en) 1996-10-24 1999-12-01 Danek Medical Inc Devices for percutaneous surgery under direct visualization and through an elongated cannula
USD405176S (en) 1996-12-30 1999-02-02 Gary Karlin Michelson Spinal distractor end piece
ES2268267T3 (en) 1997-02-11 2007-03-16 Warsaw Orthopedic, Inc. PREVIOUS CERVICAL PLATE FOR UNIQUE TYPE LOCK DEVICE.
USD449692S1 (en) 1998-02-11 2001-10-23 Gary K. Michelson Anterior cervical plate
WO1998034556A1 (en) 1997-02-11 1998-08-13 Michelson Gary K Skeletal plating system
US5810824A (en) 1997-02-13 1998-09-22 Chan; Kwan-Ho Surgical fastener assembly and method for bone fracture fixation
US5824108A (en) 1997-03-26 1998-10-20 Johnson & Johnson Professional, Inc. Bipolar acetabular cup
US6017345A (en) 1997-05-09 2000-01-25 Spinal Innovations, L.L.C. Spinal fixation plate
US5785711A (en) 1997-05-15 1998-07-28 Third Millennium Engineering, Llc Polyaxial pedicle screw having a through bar clamp locking mechanism
US5993463A (en) 1997-05-15 1999-11-30 Regents Of The University Of Minnesota Remote actuation of trajectory guide
US6752812B1 (en) 1997-05-15 2004-06-22 Regent Of The University Of Minnesota Remote actuation of trajectory guide
ZA983955B (en) 1997-05-15 2001-08-13 Sdgi Holdings Inc Anterior cervical plating system.
US5810819A (en) 1997-05-15 1998-09-22 Spinal Concepts, Inc. Polyaxial pedicle screw having a compression locking rod gripping mechanism
IES970411A2 (en) 1997-06-03 1997-12-03 Tecos Holdings Inc Pluridirectional and modulable vertebral osteosynthesis device of small overall size
US5954722A (en) 1997-07-29 1999-09-21 Depuy Acromed, Inc. Polyaxial locking plate
US6030389A (en) 1997-08-04 2000-02-29 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6454769B2 (en) 1997-08-04 2002-09-24 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6149653A (en) 1997-09-05 2000-11-21 Deslauriers; Richard J. Self-retaining anchor track and method of making and using same
FR2768609B1 (en) 1997-09-23 2000-01-14 Dimso Sa SCREW AND PLATE SYSTEM FOR OSTEOSYNTHESIS OF THE RACHIS
US6235034B1 (en) * 1997-10-24 2001-05-22 Robert S. Bray Bone plate and bone screw guide mechanism
EP0923908B1 (en) 1997-12-17 2003-04-23 Robert Lange Apparatus for stabilizing certain vertebrae of the spine
EP0933065A1 (en) 1998-02-02 1999-08-04 Sulzer Orthopädie AG Pivotable attachment system for a bone screw
US5921985A (en) 1998-02-10 1999-07-13 Texas Scottish Rite Hospital External fixation device and method
US7052499B2 (en) 1998-02-18 2006-05-30 Walter Lorenz Surgical, Inc. Method and apparatus for bone fracture fixation
US6179838B1 (en) 1998-02-24 2001-01-30 Daniel Fiz Bone fixation arrangements and method
US6494913B1 (en) 1998-03-17 2002-12-17 Acumed, Inc. Shoulder prosthesis
US6083226A (en) 1998-04-22 2000-07-04 Fiz; Daniel Bone fixation device and transverse linking bridge
US5951558A (en) 1998-04-22 1999-09-14 Fiz; Daniel Bone fixation device
FR2778088B1 (en) 1998-04-30 2000-09-08 Materiel Orthopedique En Abreg ANTERIOR IMPLANT, PARTICULARLY FOR THE CERVICAL RACHIS
US20040220571A1 (en) 1998-04-30 2004-11-04 Richard Assaker Bone plate assembly
US6533786B1 (en) 1999-10-13 2003-03-18 Sdgi Holdings, Inc. Anterior cervical plating system
US6258089B1 (en) 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
US6083228A (en) 1998-06-09 2000-07-04 Michelson; Gary K. Device and method for preparing a space between adjacent vertebrae to receive an insert
EP1681021A3 (en) 1998-06-09 2009-04-15 Warsaw Orthopedic, Inc. Abrading element for preparing a space between adjacent vertebral bodies
US6565565B1 (en) 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US6090111A (en) 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
DE69922765T2 (en) 1998-08-06 2005-12-08 Depuy Ace Medical Co., El Segundo Orthopedic self-locking mother
US6981974B2 (en) 1998-08-07 2006-01-03 Berger J Lee Cannulated internally threaded bone screw with aperatured insert
US6436100B1 (en) 1998-08-07 2002-08-20 J. Lee Berger Cannulated internally threaded bone screw and reduction driver device
US6241731B1 (en) 1998-08-11 2001-06-05 Daniel Fiz Plate and screw assembly for fixing bones
JP2002523129A (en) 1998-08-21 2002-07-30 ジンテーズ アクチエンゲゼルシャフト クール Bone fixation element with snap-fit spherical head
US5984924A (en) 1998-10-07 1999-11-16 Isola Implants, Inc. Bone alignment system having variable orientation bone anchors
FR2784571B1 (en) 1998-10-19 2001-02-02 Scient X ANTERIOR OSTEOSYNTHESIS PLATE FOR LUMBAR OR LUMBAR / SACRED VERTEBRES AND INSTRUMENT FOR POSITIONING SUCH A PLATE
FR2784570B1 (en) 1998-10-19 2001-02-16 Scient X INTERVERTEBRAL CONNECTION DEVICE HAVING ANTI-EXTRACTION MEANS FOR ANCHORAGE SCREWS
WO2000025707A1 (en) 1998-10-30 2000-05-11 Michelson Gary K Self-broaching, rotatable, push-in interbody fusion implant and method for deployment thereof
WO2000042898A2 (en) 1999-01-25 2000-07-27 Michelson Gary K Instrument and method for creating an intervertebral space for receiving an implant
US6241770B1 (en) 1999-03-05 2001-06-05 Gary K. Michelson Interbody spinal fusion implant having an anatomically conformed trailing end
DE19914232B4 (en) 1999-03-29 2012-08-30 Signus Medizintechnik Gmbh Device for stabilizing vertebral bodies of a spinal column
CA2366783C (en) 1999-04-05 2008-01-29 Lance Middleton Artificial spinal ligament
US6283967B1 (en) 1999-12-17 2001-09-04 Synthes (U.S.A.) Transconnector for coupling spinal rods
US6234705B1 (en) 1999-04-06 2001-05-22 Synthes (Usa) Transconnector for coupling spinal rods
US6315779B1 (en) 1999-04-16 2001-11-13 Sdgi Holdings, Inc. Multi-axial bone anchor system
US6280445B1 (en) 1999-04-16 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone anchor system
US6423067B1 (en) 1999-04-29 2002-07-23 Theken Surgical Llc Nonlinear lag screw with captive driving device
US6342055B1 (en) 1999-04-29 2002-01-29 Theken Surgical Llc Bone fixation system
WO2000066044A1 (en) 1999-05-05 2000-11-09 Michelson Gary K Nested interbody spinal fusion implants
US6558423B1 (en) 1999-05-05 2003-05-06 Gary K. Michelson Interbody spinal fusion implants with multi-lock for locking opposed screws
US7094239B1 (en) 1999-05-05 2006-08-22 Sdgi Holdings, Inc. Screws of cortical bone and method of manufacture thereof
USD433506S (en) 1999-06-04 2000-11-07 Asfora Wilson T Double drill guide
US6261291B1 (en) 1999-07-08 2001-07-17 David J. Talaber Orthopedic implant assembly
AU6633900A (en) 1999-08-12 2001-03-13 Osteotech, Inc. Rod-to-rod coupler
US6231610B1 (en) 1999-08-25 2001-05-15 Allegiance Corporation Anterior cervical column support device
DE19944120B4 (en) 1999-09-15 2008-08-28 Ulrich Gmbh & Co. Kg Bone screw for variable angle connection with a side member
CA2423973A1 (en) 1999-09-27 2001-04-05 Blackstone Medical, Inc. A surgical screw system and related methods
US6602256B1 (en) 1999-10-11 2003-08-05 Cross Medical Products, Inc. Bone stabilization plate with a secured-locking mechanism for cervical fixation
US6224602B1 (en) 1999-10-11 2001-05-01 Interpore Cross International Bone stabilization plate with a secured-locking mechanism for cervical fixation
US6692503B2 (en) 1999-10-13 2004-02-17 Sdgi Holdings, Inc System and method for securing a plate to the spinal column
US7115143B1 (en) 1999-12-08 2006-10-03 Sdgi Holdings, Inc. Orthopedic implant surface configuration
US6827740B1 (en) 1999-12-08 2004-12-07 Gary K. Michelson Spinal implant surface configuration
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6432108B1 (en) 2000-01-24 2002-08-13 Depuy Orthopaedics, Inc. Transverse connector
EP1645248B8 (en) 2000-02-04 2010-06-16 Warsaw Orthopedic, Inc. Expandable interbody spinal fusion implant having pivotally attached blocker
US6500205B1 (en) 2000-04-19 2002-12-31 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
US6709458B2 (en) 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6814756B1 (en) 2000-02-04 2004-11-09 Gary K. Michelson Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
DE10005385A1 (en) 2000-02-07 2001-08-09 Ulrich Gmbh & Co Kg Pedicle screw
US6786110B1 (en) 2000-04-13 2004-09-07 Clifford Broderick Machinery slot cover
US7462195B1 (en) 2000-04-19 2008-12-09 Warsaw Orthopedic, Inc. Artificial lumbar interbody spinal implant having an asymmetrical leading end
US6350283B1 (en) 2000-04-19 2002-02-26 Gary K. Michelson Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
US6235033B1 (en) 2000-04-19 2001-05-22 Synthes (Usa) Bone fixation assembly
ES2264692T3 (en) 2000-05-31 2007-01-16 Vese, Silvana DEVICES FOR FIXING AN OSEA PLATE.
US20020111680A1 (en) 2000-06-13 2002-08-15 Michelson Gary K. Ratcheted bone dowel
WO2001095837A1 (en) 2000-06-13 2001-12-20 Michelson Gary K Manufactured major long bone ring implant shaped to conform to a prepared intervertebral implantation space
US6808537B2 (en) 2000-07-07 2004-10-26 Gary Karlin Michelson Expandable implant with interlocking walls
WO2002003885A2 (en) 2000-07-10 2002-01-17 Michelson Gary K Flanged interbody spinal fusion implants
US6482207B1 (en) 2000-07-13 2002-11-19 Fastenetix, Llc Efficient assembling modular locking pedicle screw
US6755829B1 (en) 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
EP1205154A3 (en) 2000-11-08 2003-04-02 Aesculap AG & Co. KG Osteosynthesis plating apparatus and method with extension plate
US6503250B2 (en) 2000-11-28 2003-01-07 Kamaljit S. Paul Bone support assembly
US20050010227A1 (en) 2000-11-28 2005-01-13 Paul Kamaljit S. Bone support plate assembly
US6413259B1 (en) 2000-12-14 2002-07-02 Blackstone Medical, Inc Bone plate assembly including a screw retaining member
US6692501B2 (en) 2000-12-14 2004-02-17 Gary K. Michelson Spinal interspace shaper
TW499953U (en) 2000-12-19 2002-08-21 Jr-Yi Lin Spine fastening reposition device
DE10065232C2 (en) 2000-12-27 2002-11-14 Ulrich Gmbh & Co Kg Implant for insertion between the vertebral body and surgical instrument for handling the implant
US6702817B2 (en) 2001-01-19 2004-03-09 Aesculap Ag & Co. Kg Locking mechanism for a bone screw
US6972019B2 (en) 2001-01-23 2005-12-06 Michelson Gary K Interbody spinal implant with trailing end adapted to receive bone screws
KR100368115B1 (en) 2001-01-26 2003-01-15 삼성전자 주식회사 Bonding pad structure of semiconductor device and method for fabricating the same
US6558387B2 (en) 2001-01-30 2003-05-06 Fastemetix, Llc Porous interbody fusion device having integrated polyaxial locking interference screws
JP4133331B2 (en) 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US6986772B2 (en) 2001-03-01 2006-01-17 Michelson Gary K Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
US6451021B1 (en) 2001-02-15 2002-09-17 Third Millennium Engineering, Llc Polyaxial pedicle screw having a rotating locking element
US7104991B2 (en) 2001-02-27 2006-09-12 Robert A Dixon Method and device for using extended interference fit screw shanks for spinal stabilization
US6896680B2 (en) 2001-03-01 2005-05-24 Gary K. Michelson Arcuate dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine
US7211085B2 (en) 2001-03-01 2007-05-01 Warsaw Orthopedic, Inc. Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine and method for use thereof
WO2002069854A1 (en) 2001-03-06 2002-09-12 Sung-Kon Kim Screw for fixing spine
US6849093B2 (en) 2001-03-09 2005-02-01 Gary K. Michelson Expansion constraining member adapted for use with an expandable interbody spinal fusion implant and method for use thereof
US7128760B2 (en) 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US6554832B2 (en) 2001-04-02 2003-04-29 Endius Incorporated Polyaxial transverse connector
US6749636B2 (en) 2001-04-02 2004-06-15 Gary K. Michelson Contoured spinal fusion implants made of bone or a bone composite material
US6989031B2 (en) 2001-04-02 2006-01-24 Sdgi Holdings, Inc. Hemi-interbody spinal implant manufactured from a major long bone ring or a bone composite
US6890355B2 (en) 2001-04-02 2005-05-10 Gary K. Michelson Artificial contoured spinal fusion implants made of a material other than bone
FR2823096B1 (en) 2001-04-06 2004-03-19 Materiel Orthopedique En Abreg PLATE FOR LTE AND LTE VERTEBRATE OSTEOSYNTHESIS DEVICE, OSTEOSYNTHESIS DEVICE INCLUDING SUCH A PLATE, AND INSTRUMENT FOR LAYING SUCH A PLATE
US20020198533A1 (en) 2001-04-17 2002-12-26 Fred Geisler Multipositional intervertebral instrument guide
US6599290B2 (en) 2001-04-17 2003-07-29 Ebi, L.P. Anterior cervical plating system and associated method
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US7186256B2 (en) 2001-06-04 2007-03-06 Warsaw Orthopedic, Inc. Dynamic, modular, single-lock anterior cervical plate system having assembleable and movable segments
WO2002098277A2 (en) 2001-06-04 2002-12-12 Michelson Gary K Anterior cervical plate system having vertebral body engaging anchors, connecting plate, and method for installation thereof
US7097645B2 (en) 2001-06-04 2006-08-29 Sdgi Holdings, Inc. Dynamic single-lock anterior cervical plate system having non-detachably fastened and moveable segments
WO2002098276A2 (en) 2001-06-04 2002-12-12 Michelson Gary K Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
US7044952B2 (en) 2001-06-06 2006-05-16 Sdgi Holdings, Inc. Dynamic multilock anterior cervical plate system having non-detachably fastened and moveable segments
US7041105B2 (en) 2001-06-06 2006-05-09 Sdgi Holdings, Inc. Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments
US6890335B2 (en) 2001-08-24 2005-05-10 Zimmer Spine, Inc. Bone fixation device
GB2381197A (en) 2001-10-25 2003-04-30 Corin Surgical Ltd A surgical implant
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
US7094242B2 (en) 2001-10-31 2006-08-22 K2M, Inc. Polyaxial drill guide
ITTO20011059A1 (en) 2001-11-09 2003-05-09 Biotek S R L VARIABLE FLEXIBILITY PLATE FOR OSTEOSYNTHESIS.
US6685706B2 (en) 2001-11-19 2004-02-03 Triage Medical, Inc. Proximal anchors for bone fixation system
US20030105462A1 (en) 2001-11-30 2003-06-05 Haider Thomas T. Poly axial cervical plate system
US7070599B2 (en) 2002-07-24 2006-07-04 Paul Kamaljit S Bone support assembly
US6755833B1 (en) 2001-12-14 2004-06-29 Kamaljit S. Paul Bone support assembly
US7008426B2 (en) 2001-12-14 2006-03-07 Paul Kamaljit S Bone treatment plate assembly
US6923830B2 (en) 2002-02-02 2005-08-02 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
US7404641B2 (en) 2002-03-28 2008-07-29 Heidelberg Engineering Optische Gmbh Method for examining the ocular fundus
US20030203745A1 (en) 2002-04-30 2003-10-30 Chiang Tung Ching Assisted base stations synchronization
US7175623B2 (en) 2002-06-24 2007-02-13 Lanx, Llc Cervical plate with backout protection
US7001389B1 (en) 2002-07-05 2006-02-21 Navarro Richard R Fixed and variable locking fixation assembly
US7060067B2 (en) 2002-08-16 2006-06-13 Sdgi Holdings, Inc. Systems, instrumentation and techniques for retaining fasteners relative to a bone plate
US7862597B2 (en) 2002-08-22 2011-01-04 Warsaw Orthopedic, Inc. System for stabilizing a portion of the spine
DE10243791A1 (en) 2002-09-17 2004-03-18 Schäfer, Bernd Cervical vertebral plate for osteosynthesis has cup-shaped openings in corners of plate for heads of bone screws, with decreasing depth towards distal end
US7220263B2 (en) 2002-10-04 2007-05-22 Seaspine, Inc. Cervical plate/screw system for immobilizing vertebral bodies
CN101056591A (en) 2002-10-28 2007-10-17 黑石医药股份有限公司 Bone plate assembly provided with screw locking mechanisms
US7175624B2 (en) 2002-12-31 2007-02-13 Depuy Spine, Inc. Bone plate and screw system allowing bi-directional assembly
US7914561B2 (en) * 2002-12-31 2011-03-29 Depuy Spine, Inc. Resilient bone plate and screw system allowing bi-directional assembly
US7048739B2 (en) 2002-12-31 2006-05-23 Depuy Spine, Inc. Bone plate and resilient screw system allowing bi-directional assembly
US20040153878A1 (en) 2003-01-30 2004-08-05 Julian Bromwich System and method for implementing a dynamic logger
US7935123B2 (en) 2003-04-09 2011-05-03 Depuy Acromed, Inc. Drill guide with alignment feature
US7909829B2 (en) 2003-06-27 2011-03-22 Depuy Spine, Inc. Tissue retractor and drill guide
US7776047B2 (en) 2003-04-09 2010-08-17 Depuy Spine, Inc. Guide for spinal tools, implants, and devices
US20040204712A1 (en) 2003-04-09 2004-10-14 Eric Kolb Bone fixation plates
US7416553B2 (en) 2003-04-09 2008-08-26 Depuy Acromed, Inc. Drill guide and plate inserter
US20040210232A1 (en) 2003-04-09 2004-10-21 Tushar Patel Guide device and plate inserter
US7169150B2 (en) 2003-04-25 2007-01-30 Warsaw Orthopedic, Inc. Non-metallic orthopedic plate
US7309340B2 (en) 2003-06-20 2007-12-18 Medicinelodge, Inc. Method and apparatus for bone plating
US7731721B2 (en) 2003-07-16 2010-06-08 Synthes Usa, Llc Plating system with multiple function drill guide
US7357804B2 (en) 2003-08-13 2008-04-15 Synthes (U.S.A.) Quick-release drill-guide assembly for bone-plate
US7857839B2 (en) 2003-09-03 2010-12-28 Synthes Usa, Llc Bone plate with captive clips
US7306605B2 (en) 2003-10-02 2007-12-11 Zimmer Spine, Inc. Anterior cervical plate
US7846190B2 (en) * 2003-12-12 2010-12-07 Integra Lifesciences Corporation Apparatuses, systems and methods for bone fixation
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US7942913B2 (en) * 2004-04-08 2011-05-17 Ebi, Llc Bone fixation device
US7488327B2 (en) 2004-04-12 2009-02-10 Synthes (U.S.A.) Free hand drill guide
US7524323B2 (en) 2004-04-16 2009-04-28 Kyphon Sarl Subcutaneous support
US7618418B2 (en) 2004-04-16 2009-11-17 Kyphon Sarl Plate system for minimally invasive support of the spine
US8236034B2 (en) 2004-04-19 2012-08-07 Globus Medical, Inc. Bone fixation plate
US7963981B2 (en) * 2004-04-19 2011-06-21 Globus Medical, Inc. Bone fixation plate
US7300282B2 (en) 2004-07-16 2007-11-27 Sapian Schubert L Biofunctional dental implant
US7288095B2 (en) 2004-08-12 2007-10-30 Atlas Spine, Inc. Bone plate with screw lock
US7935137B2 (en) 2004-12-08 2011-05-03 Depuy Spine, Inc. Locking bone screw and spinal plate system
US7166111B2 (en) 2004-12-08 2007-01-23 Depuy Spine, Inc. Spinal plate and drill guide
US7288094B2 (en) 2005-06-10 2007-10-30 Sdgi Holdings, Inc. System and method for retaining screws relative to a vertebral plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003781A1 (en) * 1986-11-25 1988-06-02 Synthes Ag Osteosynthetic device
US6117173A (en) * 1995-12-07 2000-09-12 Aesculap Ag & Co., Kg Orthopaedic fixing system
US6579290B1 (en) * 1997-11-29 2003-06-17 Surgicraft Limited Surgical implant and surgical fixing screw
EP1090595A2 (en) * 1999-10-07 2001-04-11 Stryker Spine SA Slotted head pedicle screw assembly
DE202004015912U1 (en) * 2004-10-08 2004-12-09 Aesculap Ag & Co. Kg Bone screw, comprising movable locking element accommodated inside before being joined to bone plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566408A4 (en) * 2010-05-03 2015-08-05 Russell G Olsen Surgical fastener and associated systems and methods
WO2012010522A1 (en) 2010-07-22 2012-01-26 Aesculap Implant Systems, Llc Semi-dynamic fixation plate system
WO2015105979A1 (en) * 2014-01-08 2015-07-16 Smith & Nephew, Inc. Drill guide system
CN106061412A (en) * 2014-01-08 2016-10-26 史密夫和内修有限公司 Drill guide system
US10111692B2 (en) 2014-01-08 2018-10-30 Smith & Nephew, Inc. Drill guide system and method
CN104758040A (en) * 2015-04-30 2015-07-08 山东威高骨科材料股份有限公司 Steel plate for anterior cervial internal fixation and guiding device

Also Published As

Publication number Publication date
US20060167456A1 (en) 2006-07-27
US7736380B2 (en) 2010-06-15
WO2006069089A3 (en) 2006-11-02
WO2006069089B1 (en) 2006-12-21

Similar Documents

Publication Publication Date Title
US7736380B2 (en) Cervical plate system
US9757163B2 (en) Spinal plate and drill guide
US7166111B2 (en) Spinal plate and drill guide
US20170238974A1 (en) Hybrid spinal plates
AU2004232317B2 (en) Bone plate stabilization system and method for its use
US6666867B2 (en) Longitudinal plate assembly having an adjustable length
US8496693B2 (en) Bone screw retaining and removal system
US20140128872A1 (en) Bone Plates, Screws, and Instruments
US20040186482A1 (en) Modular drill guide
US20060106387A1 (en) Spinal plate system and method of use
US20150190184A1 (en) Bone screw retaining system
US11154338B2 (en) Bone fixation systems and methods
US20040210232A1 (en) Guide device and plate inserter
US8870932B2 (en) Bone screw retaining system with pinned retainer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05854887

Country of ref document: EP

Kind code of ref document: A2