WO2006059067A1 - An electrosurgical generator - Google Patents

An electrosurgical generator Download PDF

Info

Publication number
WO2006059067A1
WO2006059067A1 PCT/GB2005/004470 GB2005004470W WO2006059067A1 WO 2006059067 A1 WO2006059067 A1 WO 2006059067A1 GB 2005004470 W GB2005004470 W GB 2005004470W WO 2006059067 A1 WO2006059067 A1 WO 2006059067A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
generator
voltage
generator according
Prior art date
Application number
PCT/GB2005/004470
Other languages
French (fr)
Inventor
Francis Amoah
Colin Charles Owen Goble
Original Assignee
Gyrus Medical Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gyrus Medical Limited filed Critical Gyrus Medical Limited
Publication of WO2006059067A1 publication Critical patent/WO2006059067A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/149Probes or electrodes therefor bow shaped or with rotatable body at cantilever end, e.g. for resectoscopes, or coagulating rollers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00666Sensing and controlling the application of energy using a threshold value
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • A61B2018/00708Power or energy switching the power on or off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00726Duty cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B2018/1213Generators therefor creating an arc

Definitions

  • This invention relates to an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument, and primarily to a generator having a series-resonant output network.
  • RF radio frequency
  • electrosurgical generators make use of a configuration comprising a voltage source coupled to an electrosurgical instrument via a coupling capacitor which defines a matched output impedance between 50 and 500 ohms.
  • a configuration produces a power- versus-load impedance characteristic having a power maximum at a matched impedance, with power falling off progressively on each side of this peak.
  • the load impedance can change over a very wide range, resulting in unpredictable clinical effects.
  • the initial low impedance load presented by the tissue or surrounding fluid needs to be brought to a higher impedance in order to strike an arc. Delivering too much energy can result in burns adjacent the operative site, excessive smoke, or instrument failure. Delivering too little energy causes a significant delay and can result in unwanted tissue coagulation.
  • an electrosurgical generator to supply a bipolar electrosurgical instrument with pulsed electrosurgical power at very high voltages, e.g. in the region of 1 kilovolt peak-to-peak when removing tissue at an operation site immersed in a conductive liquid, such as saline.
  • the instrument may have an active electrode located at its extreme end to be brought adjacent to or into contact with tissue to be treated, and a return electrode set back from the active electrode and having a fluid contact surface for making an electrical connection with the conductive liquid.
  • the conductive liquid surrounding the active electrode is vaporised to cause arcing at the electrode.
  • EP1053720A1 discloses a generator for generating high electrosurgical voltages.
  • WO2004/062516A1 discloses an electrosurgical generator for supplying RF power to an electrosurgical instrument, the generator comprising an RF output stage having a least one RF power device, at least one pair of output lines for delivering RF power to the instrument, and a series-resonant output network coupled between the RF power device and the said pair of output lines.
  • the output impedance of the output stage at the output lines is less than 2O ⁇ HP ohms, where P is the maximum continuous RF output power of the generator in watts.
  • the maximum continuous power is preferably in the region of 300W to 400W. Accordingly, if the maximum output power is 400W, the output impedance is less than 10 ohms. Dry field electrosurgery, i.e. with the electrode or electrodes not normally immersed, requires less RF output power.
  • the generator may be configured such that the maximum continuous RF output power is in the region of 16W, in which case that the output impedance is then less than 50 ohms. In both such cases, the figures are obtained when operating with an output voltage for cutting or vaporising tissue, i.e. at least 300V peak.
  • the output impedance is preferably less than IOONP ohms, which yields maximum output impedance values of 5 ohms and 25 ohms at the above power outputs.
  • the maximum continuous power is the average power measured over several such bursts.
  • the series-resonant output network is configured such that the maximum rate of rise of the output current at the output lines is less than (VP)/4 amps per microsecond, P being as defined above. Accordingly, for a typical maximum continuous RF output power of 400W for wet field electrosurgery, the maximum rate of rise of the output current amplitude, generally when the output lines are short- circuited at the maximum power setting of the generator, is less than 5A/ ⁇ s. With P at a typical value of 16W for dry field electrosurgery, the rate of rise of the output current amplitude is less than 1 A/ ⁇ s.
  • the power supply to the output stage includes a charge-storing element, preferably a capacitance in excess of ImF, the or each output device being pulsed by a pulsing circuit so that it supplies RF energy in bursts with the timing of the bursts, particularly the termination of each burst, being controlled in response to the output of a voltage sensing circuit coupled to the capacitance.
  • the DC power supply voltage to the output stage is typically 100V or greater.
  • the voltage sensing and pulsing circuits are arranged to terminate the individual pulses of RF energy when the sensed voltage falls below a predetermined level, typically set such that pulse termination occurs when the voltage falls by a predetermined percentage value of between 5 percent and 30 percent which, typically, corresponds to the peak RF voltage delivered at the output lines falling to a value between 25V and 150V below its starting value for the respective pulse.
  • the RF energy delivered during each pulse is typically 60 joules for wet field electrosurgery and 2 joules for dry field electrosurgery. Peak power typically reaches at least IkW 5 and preferably 4kW.
  • the very high peak power capability of the preferred wet field generator allows the impedance transition occurring at the start of a tissue cutting or vaporisation cycle to be completed very quickly since only voltages in excess of those required for arcing are delivered. This significantly reduces the delay and the unwanted coagulation effects of some earlier generators.
  • the substantially constant voltage delivery leads to cutting or vaporisation occurring at consistent rates, regardless of changes in tissue type or engagement.
  • the generator is particularly useful for use with large electrodes, e.g. with a bipolar electrosurgical instrument having an active electrode formed as a conductive U- shaped loop. Such a loop may be used for excising tissue samples in a TURP (transurethral resection of the prostate) procedure.
  • This electrode places particular demands on the generator in terms of achieving saline vaporisation and arcing.
  • the generator can also be set to coagulate tissue via haemostasis.
  • the ability to achieve substantially instant generation of a plasma enveloping the active electrode gives surgeons the confidence of the state of the instrument before tissue engagement and facilitates vaporisation of fronds of tissue which typically result from resection using a loop electrode.
  • Experience has shown, however, that there are variations in efficiency with which surgeons are able to complete a typical TURP procedure. At the end of this procedure, a low level of bleeding is thought to be desirable.
  • the procedure is typically completed by identifying the points of bleeding and applying a specifically coagulating waveform to the instrument using the same loop electrode.
  • the variations in efficiency are thought to be due to anatomical variations and differing surgical techniques. It would be desirable to reduce such variations.
  • the present invention provides an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporising tissue
  • the generator comprises: an RF output stage at least one RF power device, at least one pair of output lines for delivering RF power to the instrument, and a series-resonant output network coupled between the RF power device and the said pair of output lines; a power supply stage coupled to the RF output stage to supply power thereto and having a sensing element for sensing energy levels in the power supply stage; and a control circuit coupled to the sensing element for interrupting the delivery of RF power by the RF output stage, the control circuit being configured to interrupt the power delivery whilst the energy level in the power supply stage exceeds an interruption energy threshold and to cause continuous wave operation of the RF output stage when the energy level is below the threshold.
  • RF radio frequency
  • Interrupting the RF output in this way when the generator is in use, connected to an instrument having an electrode such as that referred to above, increases the dwell time of the electrode during tissue resection. In other words, the resistance to movement of the electrode through the tissue is increased. This results in greater heat transfer and cauterisation of tissue adjacent the loop. In this way, haemostasis can be increased without unacceptably reducing the cutting efficacy of the system.
  • control circuit is in the form of a pulsing circuit configured to apply the interruptions repeatedly in the form of pulse modulation of the RF output stage.
  • the OFF periods of the pulse modulation are less than 10ms in duration so that the interruptions are brief enough to be below the thermal time constant of the electrode and its surroundings and so that the electrode creates a consistent surgical effect during a resection/through tissue (i.e., substantially to avoid a corrugated cut surface).
  • the pulsing circuit is configured to cause pulse modulation of the RF output stage with a mark-to-space ratio of between 1:1 and 1:10, preferably 1:2.5 to 1 :5.
  • the pulse ON periods typically have a duration in the range of from 0.5ms to 5ms.
  • the steady state condition in a typical resection stroke in a TURP procedure is preferably a power supply energy level above the threshold relative to generator default settings, the energy reservoir always recovering towards the defined threshold if interruptions have temporarily depleted the energy reservoir.
  • the energy threshold is defined so as to be towards the maximum energy storage capability of the generator to allow reestablishment of the plasma even in a cold environment.
  • the pulsing circuit of the preferred generator includes a timer which defines the pulse modulation mark-to-space ratio as well as the pulse repetition rate, which may be, typically, in the region of from 100Hz to IkHz.
  • the power supply energy level threshold below which such predetermined pulsed operation is switched off is set at a value which is between 2 and 20 percent below a predetermined maximum power supply energy level. A value less than 16 percent below the maximum energy level is particularly preferred.
  • the pulsing circuit may also be configured such that delivery of RF power by the RF output stage is substantially terminated when the power supply energy level falls below a second, lower, energy threshold.
  • the extinguishing of the RF output in low load impedance conditions can be implemented by means of a function which overrides the above-described pattern of operation combining pulse modulation and continuous wave (CW) operation.
  • CW continuous wave
  • This overriding function is preferably achieved by terminating the delivery of RF power when the power supply energy level falls below a minimum energy threshold with a value of between 5 and 50 percent below the maximum power supply energy threshold and is recommenced when the power supply energy level regains the maximum energy threshold.
  • the delivery of RF power will be reestablished either with pulse modulation or as a CW waveform according to the impedance presented across the generator output.
  • the electrode is surrounded by conductive liquid, such as saline, the power supply energy level will drop rapidly, resulting in a period of CW operation as a plasma is reestablished. If, then, the electrode is brought into contact with tissue to perform tissue resection, for instance, the load impedance rises and, typically, power supply energy levels rise to the extent that operation continues with pulse modulation.
  • an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporizing tissue
  • the generator comprises an RF output stage having at least one RF power device, and at least one pair of output lines for delivering RF power to the instrument, and a power supply stage which is coupled to the RF output stage to supply power thereto and which has a sensing element for dynamically sensing energy levels in the power supply stage, the generator being capable of delivering RF power at the output lines with a peak current of at least IA and a simultaneous peak voltage of at least 300V
  • the generator further comprises a control circuit coupled to the sensing element to receive an energy level sensing signal from the sensing element and to cause interruptions in the delivery of RF power when the energy level sensing signal is indicative of the power supply energy level being in an upper energy region and to cause continuous wave supply of RF power when the energy level sensing signal is indicative of the power supply energy level being in a lower energy region.
  • protection circuitry responsive to a predetermined electrical condition indicative of an output current overload, e.g. due to short-circuiting of the output lines, substantially to interrupt the RF power supplied to the series-resonant output network.
  • the protection circuitry is responsive to short-circuiting with sufficient speed that the supply of RF power to the output network is cut off within a time period corresponding to no more than 20 cycles of the delivered RF power.
  • the protection circuitry is preferably much faster, e.g. being operable to interrupt power delivery within 3 cycles or even 1 cycle.
  • the effect of the series-resonant output network is to delay the build-up of current in a fault condition such as when a very low impedance or a short circuit appears across the output lines.
  • the applicants have found that an impedance transition from open to short circuit results in an effective short circuit across the RF power device only after several RF cycles.
  • the protection circuitry is responsive to application of a short-circuit across the output lines sufficiently quickly to disable the RF power device before the current passing therethrough rises to a rated maximum current as a result of the short-circuit.
  • each RF power device is operated in a switching mode with the result that a square wave output is applied to the series- resonant output network.
  • the RMS voltage available at the output lines is directly proportional to the supply voltage. It follows that the maximum peak-to-peak output voltage is determined by the DC supply voltage and dynamic feedback to control output voltage is, as a result, not required in this embodiment.
  • the protection circuitry is preferably capable of disabling the output stage within one- and-a-half RF periods after onset of the above-mentioned predetermined electrical condition.
  • the predetermined electrical condition is indicative of an instantaneous current in the output stage exceeding a predetermined level, and the speed of response of the protection circuitry is such that the breaching of the predetermined level by the instantaneous current is detected during the same RF cycle that it occurs.
  • detection may be performed by current sensing circuitry including a pick-up arrangement, which is typically a current transformer, coupled in series between the RF power device or devices and the series-resonant output network, and a comparator having a first input coupled to the pick-up arrangement (e.g.
  • the reference level source may be a voltage representation of the instantaneous current, i.e. substantially without filtering, in order to cause a change of state of the comparator output within the same RF half-cycle that the threshold is first exceeded, or within the subsequent half-cycle, depending on whether or not full wave rectification is applied ahead of the comparator.
  • the predetermined instantaneous output level is preferably at least 5A for wet field electrosurgery, and typically 2OA.
  • the output of the comparator is coupled to disabling circuitry to disable the power device or devices when the comparator output changes state in response to the instantaneous current sensed by the pick-up arrangement exceeding the predetermined level as set by the reference source.
  • the current shut-down aspect of the protection circuitry is not limited by impedance.
  • the protection circuitry includes a monostable stage and is operable in response to detection of the predetermined condition to disable the power device for a limited period determined by a time constant of the monostable stage which is typically less than 20 cycles of the operating frequency of the generator.
  • the generator has an RF source coupled to the power device or devices, the source including an oscillator defining the operating frequency of the generator.
  • the series resonant output network is tuned to this operating frequency.
  • the source is arranged such that the operating frequency is substantially constant (e.g. during any given treatment cycle).
  • the preferred generator is arranged such that, for a given user setting, the RMS RF output voltage is maintained substantially constant within a load impedance range of from 600/VP ohms to 1000 ohms, where P is as defined above.
  • the RMS RF output voltage during each burst of RF energy is maintained to within 20 percent of a maximum value. This can be achieved partly as a result of the series- resonant configuration of the output network.
  • a further aspect of the generator is that it comprises protection circuitry responsive to a short circuit across the output lines, wherein the output impedance of the RF output stage is less than 2O ⁇ NP ohms, where P is the maximum continuous RF output power of the generator in watts, and wherein the protection circuitry is responsive to the said short circuit sufficiently quickly to disable the power device before the current passing therethrough rises to a rated maximum current as a result of the short circuit.
  • the or each power device may be disabled in response to application of the short- circuit to the output lines in a time period corresponding to less than three RF cycles.
  • the output impedance of the RF output stage at the output lines is less than 50 ohms.
  • the generator is preferably configured to be capable of maintaining a peak output voltage of at least 300V over a load impedance range of from 6O ⁇ NP ohms to 1000 ohms, where P is the rated output power in watts.
  • the rated output power is as defined in the International Electrotechnical Commission standard, IEC 60601-2-2.
  • the power supply stage has an energy storage capacitor capable of storing between 3 percent and 30 percent of the maximum continuous power P (in watts) of the generator in joules.
  • the energy delivery per pulse (in joules) is between 1 percent and 15 percent of the maximum continuous RF output power (in watts).
  • the pulsing circuit may pulse the delivered RF power in such a way that the crest factor of the voltage developed across the output lines increases as the load impedance presented to the output lines decreases whilst the peak output voltage during pulses is maintained at a value greater than 300V.
  • the output impedance of the output stage is preferably less than 10 ohms and the crest factor varies by a ratio of at least 2:1 over a load impedance range of from 6O ⁇ NP to 1000 ohms (typically from 10 ohms to 1000 ohms).
  • the output impedance figure is less than 50 ohms, and the crest factor varies by a ratio of at least
  • crest factor we mean the ratio of the peak voltage to the RMS voltage.
  • the measurement is conducted over plurality of pulses.
  • the length of such pulses is preferably between 0.5ms and 5ms, the pulse duty cycle typically being between 1% and 20% and, more preferably, between 2% and 10%.
  • the preferred generator comprises a source of radio frequency (RF) energy, an active output terminal, a return output terminal, a DC isolation capacitance between the source and the active output terminal, and a pulsing circuit for the source, wherein the source and the pulsing circuit are arranged to generate a pulsed RF output signal at the output terminals, which signal has a peak current of at least IA, a simultaneous peak voltage of at least 300V, a modulation rate of between 5Hz and 2kHz, and a pulse length of between lOO ⁇ s and 20ms.
  • the signal has a peak current of at least 3 A.
  • the preferred generator in accordance with the invention has a resonant output network and is operable to generate, e.g. during at least an initial part of a treatment period, a peak power of at least one kilowatt, and typically at least 3 or 4 kilowatts. Improvements in electrode erosion performance can be achieved by providing means in the generator for limiting the output voltage to a value in the region of 700V to 1100 V peak-to-peak.
  • the source and the pulsing circuit are arranged to generate, in an initial period, a pulsed RF output signal at the output terminals, which signal has a peak current of at least IA, a simultaneous peak voltage of at least 300V, a modulation rate of between 5Hz and 2kHz, and a pulse length of between lOO ⁇ s and 20ms, and, in a subsequent period, to generate a constant power RF output signal at the output terminals.
  • One generator embodiment is arranged such that the switchover from the initial period to the subsequent period occurs automatically at a predetermined time interval after the beginning of the initial period.
  • the generator has means for monitoring, in use of the generator, the load impedance between the active and return output terminals, and is arranged to cause switchover to the subsequent period when the magnitude of the output impedance increases by a predetermined factor, typically between 5 and 20, and preferably 10, or when it exceeds a predefined threshold.
  • a third switching-over technique may be used, involving the charge-storing element mentioned above.
  • the source of RF energy includes an RF output stage, and the generator has a power supply including the charge-storing element such as a large capacitor for supplying power to the output stage.
  • the capacitor is used to supply power at least during the initial period.
  • a voltage-sensing circuit for sensing the voltage supplied to the output stage by the charge-storing element, the generator being arranged such that treatment ends or the subsequent period begins in response to the supply voltage as sensed by the voltage-sensing circuit reaching a predetermined voltage threshold.
  • the voltage-sensing circuit forms part of the above-mentioned pulsing circuit and the timing of at least the beginnings of the pulses produced by the output stage during the initial period being determined in response to the supply voltage reaching the above-mentioned voltage threshold. It is possible to arrange for both the leading and trailing edges of the pulses produced by the output stage to be determined by the supply voltage respectively falling below and exceeding the respective voltage thresholds.
  • the charge-storing capacitance is preferably at least lOOO ⁇ F and advantageously has a capacity in excess of 5 J.
  • the preferred generator has a tuned output. Indeed, good results have been obtained using a generator with a resonant output network, the load curve of the generator (i.e. the curve plotting delivered power versus load impedance) having a peak at a load impedance below 50 ohms. Delivery of peak power levels into low load impedances is aided by forming the output network as a series-resonant network comprising the series combination of an inductance and a capacitance, the output of the network being taken across the capacitance. The output may be taken to all output terminals of the generator via a coupling capacitor and, optionally, a step-up transformer from a node between the inductance and the capacitance of the series combination.
  • the generator may have its output terminals connected to the resonant output network so that, effectively, when a load is connected to the terminals it is connected as an impedance in series with the inductance and capacitance forming the resonant combination, e.g. between the inductance and the capacitance.
  • the resonant output network typically provides a source impedance at the output terminals in the range of from 50 ohms to 500 ohms.
  • the RF source may include a variable frequency RF oscillator, the output frequency advantageously being limited to a maximum value below the resonant frequency of the output network when connected to a matching load impedance, i.e. a load impedance equal to its source impedance.
  • FIG. 1 is a general diagram showing an electrosurgery system including a generator in accordance with the invention and a bipolar electrosurgical instrument;
  • Figures 2A and 2B are respectively perspective and side views of a loop electrode assembly forming part of the bipolar instrument shown in Figure 1 ;
  • Figure 3 is a block diagram illustrating the main components of the generator
  • Figure 4 is a simplified circuit diagram of an RF output stage forming part of the generator
  • Figure 5 is an illustrative load curve for the generator of Figure 1;
  • FIG. 6 is a more detailed circuit diagram of the RF output stage
  • Figure 7 is a flow diagram showing a control process for pulsed operation of the generator
  • Figures 8A and 8B are waveform diagrams illustrating operation of the generator when activated with a loop electrode in a wet field
  • Figures 9 A and 9B are waveform diagrams illustrating operation of the generator with the electrode in tissue
  • Figures 1OA and 1OB are waveform diagrams illustrating operation of the generator with the electrode in a low impedance tissue
  • FIG. 11 is a block diagram of an alternative electrosurgical generator in accordance with the invention.
  • Figure 12 is a circuit diagram of a resonant output network of the alternative generator.
  • FIG 13 is the load curve of the generator of Figure 11.
  • a generator 10 has an output socket 1OS providing a radio frequency (RF) output for an electrosurgical instrument in the form of an endoscope attachment 12 via a connection cord 14. Activation of the generator may be performed from the instrument 12 via a control connection in cord 14 or by means of a footswitch unit 16, as shown, connected separately to the rear of the generator 10 by a footswitch connection cord 18.
  • the footswitch unit 16 has two footswitches 16A and 16B for selecting a coagulation mode and a cutting mode of the generator respectively.
  • the generator front panel has push buttons 20 and 22 for respectively setting coagulation and cutting power levels, which are indicated in a display 24. Push buttons 26 are provided as alternative means for selection between coagulation and cutting modes.
  • the instrument 12 has a detachable loop electrode assembly 28 with a dual electrode structure and is intended for use in a saline field.
  • the instrument 12 has a detachable loop electrode assembly 28 with a dual electrode structure and intended for use in a saline field.
  • Figures 2A and 2B are enlarged views of the distal end of the electrode assembly 28. At its extreme distal end the assembly has a U-shaped loop electrode 30 depending from a pair of electrode assembly arms 32 which are mounted side-by-side in a clip 34 intended to be snapped onto an endoscope.
  • the loop electrode 30 is an active electrode.
  • Each of the arms 32 is formed as a coaxial cable, the exposed conductive outer shield of which, in each case, forms a return electrode 36.
  • the loop electrode 30 In operation immersed in a saline field, the loop electrode 30 is typically used for excising tissue samples, the electrosurgical voltage developed between the loop electrode 30 and fluid contacting surfaces of the return electrodes 36 promoting vaporisation of the surrounding saline liquid at the loop electrode 30, and arcing through the vapour envelope so formed.
  • the loop electrode 30 comprises a composite molybdenum rhenium wire with an oxide coating to promote increased impedance in the electrode/fluid interface and, as a result, to increase power density at the surface of the electrode.
  • the width of the loop is typically in the range of 2.5mm to 4mm and the wire typically has a diameter in the range of 0.20 to 0.35mm.
  • This loop electrode assembly places particular demands on the generator in terms of starting vaporisation and arc formation.
  • generators in accordance with the invention are not limited to use with a loop electrode assembly, nor to use in wet field surgery.
  • the generator has an RF source in the form of an oscillator 40 which is connectible to an RF output stage 42.
  • the output stage 42 comprises a mosfet power bridge forming part of a power mosfet and driver circuit 44, a current sensing element 46 and a resonant output network 48.
  • the oscillator 40 is configured to operate at a substantially constant RF frequency and the output network 48 is tuned to that frequency.
  • the RF source coupled to the RF power device or devices defines the operating frequency of the generator, and the output network (which, as will be described below, is series- resonant) is tuned to the operating frequency. In this embodiment of the invention the operating frequency is substantially constant.
  • Power to the RF output stage 42 is supplied from a power supply stage 49 which has a DC power supply 50 coupled to the RF output stage 42 via a supply rail 58.
  • the power supply stage 49 has a 6mF reservoir capacitor 60 connected between the supply rail 58 and ground.
  • the voltage on the supply rail 58 is sensed by a voltage sensing circuit 62, the output of which is fed to a pulsing circuit 63 which has a first transmission gate 64 connected in series between the RF oscillator 40 and driver devices in the power mosfet and driver circuit 44.
  • the pulsing circuit 63 has a data processor 65 which controls operation of the gate 64 according to voltages sensed by the sensing circuit 62.
  • the current sensing element 46 in the output stage 42 is a series-connected current transformer, the secondary winding of which is coupled to a first input of a comparator 66 which also receives on the other of its inputs a reference signal from a reference input 68.
  • the output of the comparator controls a monostable 70 which, in turn, controls a second transmission gate 72 coupled in series with the gate 64 in the path between the oscillator 40 and the drivers in the power mosfet and driver circuit 44.
  • the output network 48 supplies RF power to an output termination 74 which, in practice, is a pair of output lines, as will be described hereinafter.
  • Operation of the generator may be pulsed insofar as RF energy may be supplied to the output lines 74 in bursts controlled by the combination of the processor 65, the voltage sensing circuit 62 and the gate 64.
  • the generator When the generator is activated, the voltage on the supply rail 58 tends to fall, at least when the load impedance coupled across output lines 74 is relatively low, owing to the discharge of reservoir capacitor 60.
  • the output of the voltage sensing circuit 62 changes state and transmission gate 64 is driven to its open circuit condition, thereby disabling the power mosfet and driver circuit 44.
  • the reservoir capacitor 60 then recharges and the voltage sensing circuit 62 and the processor 65 cause the gate 64 to reconnect the oscillator 40 when the supply rail voltage reaches an upper threshold value. In this way it is possible to control the amount of energy delivered in each pulse in low load impedance conditions.
  • the generator also has a second pulsed mode of operation in which the RF output is interrupted regularly when the DC supply voltage exceeds an intermediate threshold value.
  • the processor 65 is configured to include a pulse timer 65 A.
  • the current sensing element 46, the comparator 66, the monostable 70 and the second transmission gate 72 act together as a protection circuit to protect the mosfet power devices in circuit 44 against excessive current drain caused, for instance, by a short circuit across the output lines 74.
  • the storage of energy in output network 48 delays the transfer of the short circuit across the output lines 74 to the power devices in the mosfet and driver circuit 44.
  • the electrical circuit condition sensed by the current sensing element 46 and the comparator 66 is the current flowing between the power mosfets in circuit 44 and the output network 48 rising to a level which could be indicative of a short circuit having been applied across the output lines 74.
  • the comparator output changes state and the monostable 70 causes the second transmission gate 72 to become open circuit, disabling the power mosfets and driver stage 44.
  • the monostable time constant is typically set to 0.5 seconds or less, which allows a warning signal to be generated for alerting the user.
  • the power mosfet and driver stage 44 shown in Figure 3 has a power mosfet bridge comprising a first push-pull pair of FET power devices Ql 5 Q2 and a second power FET device push-pull pair Q3, Q4, each pair having a respective output node which, when the pairs are driven 180° out of phase, produces a square wave at the frequency of the oscillator 40 ( Figure 2) at the input to the series resonant output network 48.
  • Each pair of power mosfets Ql, Q2; Q3, Q4 is coupled between the supply rail 58 and ground.
  • each of the mosfets is a virtual short circuit when driven "on"
  • the voltage applied to the output network 48 swings virtually between ground and the supply rail voltages.
  • the reservoir capacitor 60 shown in Figure 3 is, of course, connected across the respective power mosfet pairs, as shown in Figure 4.
  • the output network is series-resonant in that an inductor Ll and a resonating capacitor Cl are coupled in series between the output nodes 76, 78 of the first and second power mosfet pairs respectively.
  • the load resistance RL constituted in practice by an electrosurgical instrument coupled between the output lines 74, and the tissue and/or fluid present across its electrode assembly, is connected in series between inductor Ll and capacitor Cl.
  • the series- resonant tuned circuit formed by inductor Ll and capacitor Cl acts as an energy storing device which delays the current build-up between the nodes of the power mosfet bridge Q1-Q4 should the load resistance RL drop to a very low value.
  • One of the characteristics given to the generator by the output configuration described above with reference to Figure 4 is that, during each burst or pulse of RF energy it has an approximately constant voltage load curve, as shown by the power-versus-load impedance load curve shown in Figure 5.
  • This characteristic is particularly suitable for cutting or vaporisation of tissue since it provides the high power required at low impedance without voltage overshoot.
  • the low output impedance and high current required are provided by the direct coupling of the power mosfets to the supply rail and ground, and by the reservoir capacitor 60, even if a step-up transformer is coupled between the series-resonant elements Ll, Cl and the output lines 74.
  • the RF output stage 42 is shown in more detail in Figure 6.
  • the current sensing element 46 is a current transformer, coupled in series between one of the output nodes 76, 78 of the power mosfet bridge and one of the components Ll, Cl of the series resonant output network, in this case between node 76 and the inductor Ll.
  • the normal DC supply voltage on supply rail 58 is about 120V.
  • a peak voltage in excess of 380V may be required.
  • the RF output network 48 includes a step-up isolating transformer TRl to lift the peak output voltage to the region of 500V peak.
  • the primary winding of the transformer TRl has a tuning capacitor C2 coupled across it to yield a parallel- resonant circuit tuned to the operating frequency to act as a shunt-connected trap. This improves the rejection of harmonics in the power signal supplied to the output lines 74., particularly when the output impedance is high, with the consequent benefit of reduced RFI (RF interference).
  • DC blocking is provided by a coupling capacitor C3 between the transformer TRl secondary winding and one of the output lines 74.
  • the actual resonant frequency of the output network 48 is the result of several elements, these being (1) the main tuning elements represented by the lumped inductance Ll and the tuning capacitor Cl, (2) the transformer leakage inductance and cross-coupling capacitance, (3) the DC blocking capacitance, C3, and (4) the inductive and capacitive loading of the connecting cable (not shown) between the output lines 74 and the electrosurgical instrument itself.
  • the delay in the current build-up in a fault condition is due to the energy levels in this tuned arrangement. At resonance, this arrangement has a finite loss that may be represented by a series resistance, albeit a very small one. Dynamically, however, the energy levels in the resonant output network cannot be changed instantly.
  • An impedance transition from an open to short circuit only presents a short circuit to the switching stage after several RF cycles at the operating frequency.
  • the comparator 66 shown in Figure 3 is capable of detecting such an impedance transition within 1 to 1.5 cycles of the transition beginning at the output lines 74. This rapid response, as well as allowing the power mosfet and driver circuit 44 to be shut down before damage occurs, has the effect that the amount of energy delivered during a short circuit fault is very small.
  • the very high peak powers which are achievable with the output stage described above with reference to Figures 5 and 6 have the benefit that, during power delivery into a low impedance, the voltage across the reservoir capacitor 60 decreases progressively after the instant of generator activation.
  • the capacitor value is chosen to be sufficiently large to ensure that the low to high load impedance transition occurring at the start of a tissue cutting or vaporisation cycle can be produced in a single burst of RF energy.
  • the amount of energy delivered during the initial burst is about 1 joule in a dry environment and between 10 to 20 joules in a wet field environment.
  • the actual energy in the RF pulses or bursts is controlled by the threshold or thresholds set in the voltage sensing circuit 62, specifically by the difference in supply voltage between pulse initiation and pulse termination. Since the output stage has a very low output impedance, this difference voltage is apparent as a change in delivered RF voltage at the output.
  • the capacitor 60 is, therefore, made sufficiently large (in this embodiment 6mF) that the change in voltage represents only a minor proportion of the absolute voltage at the output.
  • the delivered output voltage is a sine wave with a peak voltage of 500V
  • the supply voltage on supply rail 58, the size of the capacitor 60 and the transformer TRl step-up ratio are chosen such that the output voltage drops by no more than 150V peak (30 percent) during an RF burst. In this preferred embodiment, the output voltage drop is about 125 V peak or 25 percent.
  • One of the effects of preventing the supply of lower voltages to the output is that, in a tissue cutting or vaporisation tissue cycle, the voltage is not allowed to drop to a level at which excessive coagulation effects occur.
  • the preferred generator in accordance with the present invention allows the DC energy fed to the reservoir capacitor 60 when the output impedance is low to be altered so that the time period during which a cutting voltage is present at the output can be altered. In practice, owing to the low output impedance of the generator, this time period is directly proportional to the stored energy.
  • the control methodology whereby RF energy bursts or pulses are controlled according to voltage thresholds sensed across a reservoir capacitor, allows very low duty cycles to be used, permitting tissue cutting or vaporisation at low average powers. Indeed, it is possible to operate with less than 5 watts average power (averaged over several capacitor charging and discharging cycles). Accordingly, the generator has uses in low power as well as high power applications.
  • step Sl the capacitor voltage is compared against a lower voltage threshold of 90V. Initially, of course, the voltage is below 90V, which means that the operation passes to the step Sl 12. The function of turning off the RF output is inapplicable at this stage since it was not turned on previously. Thereafter, operation reverts to step SlOO and the above steps are repeated until (a) the capacitor voltage exceeds the lower threshold (Sl 10) and (b) the capacitor voltage subsequently exceeds the higher threshold at step S 102.
  • the repetition rate of this sequence of steps is higher than IkHz and preferably about 10kHz, so that the capacitor voltage is sensed at least once every 100 microseconds. As soon as the higher threshold is exceeded, operation passes to step Sl 14 in which the DC power supply is switched off and an "RF ready" flag is set.
  • step S 106 Since, now, the capacitor voltage exceeds the intermediate threshold and the RF ready flag is set, operation passes from step S 106 to a pulse timer branch Sl 16, Sl 18, Sl 20, S 122, S 124 in which the pulse timer 65A ( Figure 3) is enabled and gate 64 ( Figure 3) is closed to turn the RF output ON.
  • step S 102 the flow passes directly through step S 106 to step Sl 12 which results in gate 64 being opened and the RF output being terminated, as shown at point b in Figure 8A.
  • step Sl 14 the DC power supply is toggled off (step Sl 14) briefly and then toggled back on (step 104) and, as soon as the RF output has been turned off in step S 112, the capacitor voltage begins to rise as shown by the upward slope of the voltage curve starting at point b in Figure 8B.
  • step Sl 12 when the RF output is turned on (step Sl 12) a plasma is established around the loop electrode, as shown by the increasing load impedance (see the lower trace in Figure 8B at c to d).
  • the rise in impedance is such that the energy drain from the capacitor 60 ( Figure 3) is insufficient to cause the capacitor voltage to drop below the lower threshold of 90V (see point d on the capacitor voltage trace on Figure 8B), which means that step SI lO in Figure 7 produces a negative result and the RF output remains ON.
  • the above "f ⁇ ring-up" process has taken place in a period of about 1 A of a second in this example. The first attempt to start a plasma failed, but owing to the heat generated in the first attempt, the second attempt succeeded.
  • a plasma will be formed in low impedance conditions at the first or second pulse of RF energy. Firing-up is achieved as a result of the high power delivery available from the generator output stage when supplied from a large reservoir capacitor. Should the plasma be extinguished subsequently, it can be restarted with a somewhat lower voltage.
  • the generator when the capacitor voltage exceeds an intermediate threshold, at which time the power supply stage can be considered to be in an energy surplus condition, the generator is operated in a particular pulsed mode of operation to promote a degree of haemostasis as tissue is cut.
  • the RF output is repeatedly interrupted whilst the capacitor voltage exceeds the intermediate threshold.
  • a plasma has to be established.
  • the load impedance is low and the instantaneous power is high.
  • the power drops as the impedance rises (see the lower trace in Figure 9B).
  • the impedance oscillates generally between about 400 and 800 ohms, and power delivery is such that the supply voltage across the reservoir capacitor is maintained at or near the upper threshold (see the upper trace in Figure 9B).
  • the generator load curve is such that, with pulsed operation, a constant user-defined average power level can be delivered to tissue unless the load impedance is high enough to cause a maximum RF output voltage to be reached.
  • this impedance threshold typically 450 to 600 ohms
  • the power output from the generator falls progressively as the RF load impedance rises. This condition occurs when the electrode is predominantly engaged in tissue where, for instance, in the middle of a resection stroke with a loop electrode, impedances may reach 900 ohms to 1000 ohms, the power output then being about 10OW.
  • the generator is preferably set to have a higher default power setting for such an electrode, typically 160W, to ensure plasma fire-up in saline. When an interruption has occurred, the RF power is reapplied using energy reserves as necessary for sufficiently long to allow the plasma to be reestablished and power delivery to be maintained at a sufficiently high level to continue cutting or vaporisation of tissue.
  • This interrupted mode of operation takes place as a result of the processor 65 ( Figure 3) following the "yes" output from step 106 to perform the pulse timing steps Sl 16, S120, S122 (when the RF output is ON), and steps Sl 16, S120 and S124 (when the RF output is interrupted).
  • the processor timer 65A is configured to produce a predetermined mark-to-space ratio and a predetermined pulse repetition rate.
  • the mark-to-space ratio is 1:1, with the pulse ON duration being set in the region of 0.5ms.
  • the OFF duration is preferably at least 0.5ms but also, preferably, less than 1.5ms. It will be understood that other mark-to-space ratios and pulse widths are possible. Good results, i.e.
  • the preferred generator includes a control for adjusting the parameters of this pulsed mode of operation to achieve different degrees of haemostasis and cutting drag (the physical resistance to movement of the electrode). Tissue cutting may be accompanied by increased bleeding, which, if interruptions to the RF output are applied, lowers the load impedance to the extent that, after a cutting has begun, the capacitor voltage drops below the intermediate threshold.
  • step S 106 the processor operation is diverted from its timed pulsing mode by comparison step S 106 whereupon, on reaching step SI lO, operation reverts to step SlOO and repeatedly executes the loop SlOO, S 102, S 104, S 106, S 108, SI lO so that the DC power supply 50 (Figure 3) remains on continuously and the RF output is continuous until the capacitor voltage regains the intermediate threshold, as sensed by step S 106.
  • this period is seen as a period/of constant RF output and increasing capacitor voltage. With a CW RF output, the load impedance is maintained at a comparatively high value, allowing the capacitor to recharge.
  • the RF output is interrupted by the timer loop (steps Sl 16, Sl 18, S120, S124) and when the RF output is next turned ON (step S 122) another very high power spike g is produced as the capacitor once again discharges into the low impedance which has occurred as a result of the plasma being extinguished when the RF output was turned off.
  • This process of CW operation with comparatively infrequent interruptions continues until a less conductive tissue region in reached. Note that interruptions to the RF output occur only when the capacitor voltage is high enough, indicating an energy "surplus” and a sufficiently high reservoir of energy to reestablish the plasma.
  • the control process can be adjusted by the user by altering the generator power setting.
  • a default power setting is 160W.
  • Increasing the power setting above this level increases the likelihood of an energy "surplus” and, therefore, increases the power dissipating interruptions to the plasma, thereby increasing haemostasis.
  • the tissue cutting performance increases with power. Reducing the power setting below the default reduces the likelihood of an energy surplus and eventually causes the control process to cease making interruptions. The result in the latter case is that RF power is normally delivered only in a continuous wave (CW) form with interruptions occurring only when the capacitor voltage drops below the lower threshold defined by comparison step SIlO.
  • CW continuous wave
  • the cutting characteristics are less aggressive and, consequently, are less likely to result in excessive haemostasis.
  • This generator has a variable frequency RF source including a voltage controlled oscillator (VCO) 4OA.
  • VCO voltage controlled oscillator
  • the VCO feeds a divide-by-two stage 4OB which, in turn, feeds a power driver stage 44 A driving an RF output stage in the form of a power bridge 44B.
  • the power bridge 44B feeds a resonant output network 80 which delivers a generator output signal across output terminals 74.
  • the power driver stage 44 A and the power bridge 44B can have the same configuration as the power mosfet and driver circuit 44 of the generator described above with reference to Figure 3.
  • the power bridge 44B takes its DC supply from the supply rail 58 of the DC power supply 50, but the driver stage 44A has a lower voltage supply. Typical supply voltages are 180V maximum for the power bridge 44B and 16.5V for the driver stage 44A.
  • the above-described components of the RF source are coupled in a phase-locked loop including a phase sensing element 82 coupled between the power bridge 44B and the output network 80 to sense the voltage phase in the input leads to the output network.
  • This voltage phase signal is applied to one input of a phase comparator 84, the other input of which receives a signal representative of the output of the VCO 4OA, derived from the output of the divide-by-two stage 4OB via a delay stage 86 which compensates for the delay to the RF signal as it passes through the power driver and the power bridge.
  • the RF output stage 44B is supplied from the DC supply rail 58 attached to the reservoir capacitor 60, which allows large currents to be drawn by the output stage 44B for short periods of time, i.e. currents significantly larger than the current rating of a power supply 50 connected to the DC supply rail 58. It follows that the voltage on supply rail 58 will fall during the time that a large current is drawn. Such variations in voltage are sensed by the voltage sensing stage 62 coupled to the rail 58. Voltage sensing circuit 62 has a control output coupled to the first transmission gate 64 in a line 88 coupling the divided-down output of the VCO 4OA to the input of the power driver 44 A.
  • the arrangement of the voltage sensing stage 62 and the pulsing circuit 63 are such that when the voltage on supply rail 58 (the voltage supplied to the power bridge 44B) drops below a predetermined voltage threshold, the gate 64 is operated to interrupt the signal path between the VCO and the power driver 44A. When the supply rail voltage rises again, the gate 64 reverts to its conducting state. This may happen when the voltage rises above the threshold mentioned above, or the maximum threshold voltage referred to above.
  • the second transmission gate 72 connected in series in the signal line 88 with the voltage-operated gate 64, has a control input connected to the output of a 0.5 second monostable 70 which is triggered by current sensing circuitry comprising the current sensing element 46 in one of the input leads to the output network 80 and the comparator 66. These elements act to interrupt the signal line 88 to the power driver
  • the resonant output network 80 comprises the series combination of an in-line inductance L 1 and a tank capacitor C 1 .
  • the output is taken from across the tank capacitor C 1 (which takes out switching noise) via a first coupling capacitor C 2 .
  • This first coupling capacitor C 2 couples to the output (represented by terminals 74) via a step-up matching transformer T with a 1 : 2 step-up ratio.
  • the secondary rewinding of the transformer T couples to the output terminals via a second coupling capacitor C3.
  • Li is about 4.7 ⁇ H
  • the tank capacitor is about 1 OnF
  • the two coupling capacitors C 2 and C 3 co-operate (one of them via the transformer T) to form a coupling capacitance of about 23nF.
  • the resonant frequency of the output network is determined by the series combination of Li and C 1 .
  • the resonant frequency is determined by the series combination of L 1 and the network represented by Ci, C 2 , C 3 and T. With the values given, the short-circuit resonant frequency is about 0.55 times the open-circuit resonant frequency.
  • FIG. 13 the load curve of a series-tuned network (i.e. the delivered power versus load impedance) at resonance is shown by the dotted curve A.
  • the network 80 has minimum power delivery, which may be regarded as the "matched condition", at a load impedance across the terminals 74 ( Figures 11 and 12) of about 200 ohms.
  • the part of the curve A which has a negative slope follows a path which is approximately hyperbolic over a major part of its length, which means that this part of the curve is of similar shape to a constant voltage line on the graph of Figure 13.
  • the generator can be made to behave as a constant voltage supply. This can be achieved with a matched output impedance much higher than the load impedance presented by the electrode assembly shown in Figure 2A and 2B in the wetted condition, which, for a 4mm loop is in the region of 25 ohms. This translates to a maximum power of about 4.5kW at 340 volts rms.
  • the actual load curve achieved with the arrangement shown in Figures 11 and 12 is shown by curve B in Figure 13.
  • the current limit is set at a level of about 13 amps.
  • the actual load curve B also deviates from the inherent series-tuned load curve A towards the lower part of the negative-slope portion of the curve A so that the delivered power follows a continuing negative gradient as the load impedance rises, again mimicking a constant voltage supply. This latter deviation is deliberate inasmuch as extreme power into a very high impedance is undesirable.
  • the reason for this deviation is the movement of the resonant frequency of the output network 80, as described above, coupled with the imposition of a high-frequency limit on the RF frequency output as will be described below.
  • the phase comparator 84 compares the current phase at the input to the output network 80, as sensed by the phase sensing circuit 82 with a delayed version of the output of the divide-by-two circuit 4OB which, in turn, is fed by the VCO 4OA. Accordingly, the phase and frequency of the VCO are varied to maintain a constant phase at the input to the output network 80, subject to the upper frequency limit mentioned above. In the absence of other influences, therefore, the output network 80 is maintained in resonance as the load impedance varies.
  • the locking characteristics of the phase-locked loop are such that it can be brought into a locked condition at the minimum frequency, corresponding to minimum load impedance, sufficiently quickly to achieve resonance in the early part of the output pulse, but not so quickly that the current limit circuit
  • sensing circuitry 46, 66 monostable 70 and gate 72 fails to trip when the current exceeds a predetermined current threshold.
  • the output carrier frequency is limited to a value below the frequency of the matched load resonant condition, the delivered power will fall off as the load impedance increases and the resonant frequency correspondingly rises.
  • the free-run output frequency of the phase locked loop containing the VCO 4OA ( Figure 7) is designed to be this maximum frequency. This ensures that the output network always represents a higher source impedance than the impedance of the load, which affords over- voltage protection in the event of a short.
  • the excitation oscillator VCO is phase-locked to the resonant output network.
  • Defining the range of the VCO provides load curve definition in that the delivered output power falls below the theoretical maximum when the output network resonant frequency rises above the maximum frequency of the divided down output of the VCO 4OA. In other words, a match at high load impedance is prevented by preventing the VCO from generating the higher frequencies necessary for resonance. It also follows that, at high load impedances, the maximum output voltage is controlled by virtue of frequency.
  • the delivered output power is in excess of IkW over a range of load impedances corresponding to a wetted or partly wetted electrode.
  • the impedance rises, and the delivered power falls.
  • the output signal is pulsed when the load impedance is low. It will be understood that with a peak power in excess of 4kW, the pulse duty cycle needs to drop to a level in the region of 5% or less.
  • the pulse repetition rate should be between 5Hz and 2kHz, and is preferably at least 10Hz.
  • the pulses have a maximum length of about 4 or 5ms into a low impedance requiring maximum power.
  • the pulse length is in the region of 1 to 2ms. While it is not essential, configuring the RF output stage of the generator as an amplifier amplifying the output of a signal derived from a separate oscillator, rather than having a self-oscillating output stage, is preferred in order that full peak power can be achieved within the above-stated pulse lengths.
  • the output stage 44B is an amplifier configured as a power switching bridge for high efficiency.
  • Pulsing of the output signal can be performed in a number of ways, including simply pulse modulating with predetermined pulse lengths and pulse repetition rates.
  • the output is pulsed only during an initial period from the commencement of treatment, the output signal being a continuous wave (CW) signal or an interrupted signal (as described above with reference to Figure 7) thereafter, i.e. generally when vaporisation and arcing have been achieved and the load impedance is in an upper range.
  • the duration of the initial period may be fixed or it may be determined by monitoring the load impedance and terminating the initial period when the impedance exceeds a predetermined value.
  • the duration of the initial period and the length and frequency of the pulses are dynamically variable in response to delivered energy, as measured by the supply rail voltage on supply rail 58.
  • high instantaneous power levels are achieved only by allowing the output stage 44B to draw current from a charge reservoir, here a large capacitance such as capacitor the 6mF capacitor 60.
  • a charge reservoir here a large capacitance such as capacitor the 6mF capacitor 60.
  • the supply rail voltage drops. Between pulses, the supply rail voltage rises again.
  • the output of the generator can be pulsed to achieve maximum peak delivered power whilst operating within a predetermined average power limit.
  • This equilibrium of power consumption and DC supply voltage is achieved by setting the voltage thresholds so that the RF output stage is activated when the supply rail voltage is sufficient to achieve a maximum vaporisation voltage (e.g. 340V rms) and switched off when a lower threshold is reached.
  • the lower threshold defines the maximum energy per pulse and the repetition rate for a given average power level.
  • the initial period referred to above is terminated when the electrode has "fired-up", in other words when vaporisation and arcing have commenced, so that the load impedance rises and the supply rail voltage stays above the switching threshold or thresholds. In this way it is possible to achieve vaporisation of the conductive liquid surrounding the electrode at impedances as low as 20 ohms without unacceptable erosion of the electrode surface.

Abstract

An electrosurgical generator for supplying RF power to an electrosurgical instrument for cutting or vaporising tissue has an RF output stage (42) with RF output devices (44), a series-resonant output network (48) and an RF output (74). The generator offers improved cutting and vaporising performance, especially in relation to the reliability with which an arc can be struck when presented with an initial low impedance load. This is achieved by virtue of the output stage being capable of maintaining output pulses of at least 1kW peak by supplying the RF output devices from a large reservoir capacitor (60). An appropriate combination of cutting performance and haemostasis is provided by allowing for pulsed or continuous wave operation once an arc has been established, according to whether or not a surplus energy condition exists, as indicated by the voltage across the reservoir capacitor.

Description

AN ELECTROSURGICAL GENERATOR
This invention relates to an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument, and primarily to a generator having a series-resonant output network.
Conventionally, electrosurgical generators make use of a configuration comprising a voltage source coupled to an electrosurgical instrument via a coupling capacitor which defines a matched output impedance between 50 and 500 ohms. Such a configuration produces a power- versus-load impedance characteristic having a power maximum at a matched impedance, with power falling off progressively on each side of this peak. In practice, when conducting electrosurgery, the load impedance can change over a very wide range, resulting in unpredictable clinical effects.
To deal with this problem, it is known to provide an RF output stage capable of providing an impedance match over a wide range. This has the disadvantage that* 7^ψ rapid load impedance changes can produce large output voltage excursions. An alternative approach is to control the DC supply to the RF output stage in response to feedback signals in order that the delivered power is virtually continuous. This may be done by adjusting the power supply DC voltage or by maintaining the supplied DC power constant. These techniques lead to a power versus load impedance characteristic which is virtually flat over a range of impedances, but one limitation is that it is difficult to control the delivery of energy when initiating tissue cutting or vaporisation (as opposed to tissue coagulation). To cut or vaporise tissue using radio frequency power, the initial low impedance load presented by the tissue or surrounding fluid needs to be brought to a higher impedance in order to strike an arc. Delivering too much energy can result in burns adjacent the operative site, excessive smoke, or instrument failure. Delivering too little energy causes a significant delay and can result in unwanted tissue coagulation.
It is also known to use an electrosurgical generator to supply a bipolar electrosurgical instrument with pulsed electrosurgical power at very high voltages, e.g. in the region of 1 kilovolt peak-to-peak when removing tissue at an operation site immersed in a conductive liquid, such as saline. The instrument may have an active electrode located at its extreme end to be brought adjacent to or into contact with tissue to be treated, and a return electrode set back from the active electrode and having a fluid contact surface for making an electrical connection with the conductive liquid. To achieve tissue removal, the conductive liquid surrounding the active electrode is vaporised to cause arcing at the electrode. The high voltages used to achieve tissue cutting or vaporisation under varying load impedance conditions are particularly demanding of the generator when the instrument experiences a low load impedance. Indeed, as stated above, under such conditions it is difficult reliably to initiate arcing without unwanted effects. Steps have been taken to increase power density at the active electrode and, hence, improve the reliability with which arcing is started, by reducing the size of the electrode and by roughening its surface, e.g. by applying an oxide layer. The latter technique has the effect of trapping vapour in the irregularities in the surface as a means of increasing power density.
It has been found that operation of such instruments at high voltages tends to cause erosion of the active electrode. The rate of erosion increases as the supply voltage is increased, and is also exacerbated by reducing the size of the electrode and providing a roughened surface, as just mentioned.
Published European Patent Application No. EP1053720A1 discloses a generator for generating high electrosurgical voltages.
The applicant's published International Application No. WO2004/062516A1 discloses an electrosurgical generator for supplying RF power to an electrosurgical instrument, the generator comprising an RF output stage having a least one RF power device, at least one pair of output lines for delivering RF power to the instrument, and a series-resonant output network coupled between the RF power device and the said pair of output lines. In this generator, the output impedance of the output stage at the output lines is less than 2OθHP ohms, where P is the maximum continuous RF output power of the generator in watts. When the generator is configured for wet field surgery, e.g. for use with the electrode or electrodes of the instrument immersed in a conductive fluid such as saline, the maximum continuous power is preferably in the region of 300W to 400W. Accordingly, if the maximum output power is 400W, the output impedance is less than 10 ohms. Dry field electrosurgery, i.e. with the electrode or electrodes not normally immersed, requires less RF output power. In this case, the generator may be configured such that the maximum continuous RF output power is in the region of 16W, in which case that the output impedance is then less than 50 ohms. In both such cases, the figures are obtained when operating with an output voltage for cutting or vaporising tissue, i.e. at least 300V peak. The output impedance is preferably less than IOONP ohms, which yields maximum output impedance values of 5 ohms and 25 ohms at the above power outputs.
When RF energy is supplied to a load in bursts, generally as an RF sine wave, the maximum continuous power is the average power measured over several such bursts.
In this generator the series-resonant output network is configured such that the maximum rate of rise of the output current at the output lines is less than (VP)/4 amps per microsecond, P being as defined above. Accordingly, for a typical maximum continuous RF output power of 400W for wet field electrosurgery, the maximum rate of rise of the output current amplitude, generally when the output lines are short- circuited at the maximum power setting of the generator, is less than 5A/μs. With P at a typical value of 16W for dry field electrosurgery, the rate of rise of the output current amplitude is less than 1 A/μs.
To maintain the constant peak output voltage at low impedances, the power supply to the output stage includes a charge-storing element, preferably a capacitance in excess of ImF, the or each output device being pulsed by a pulsing circuit so that it supplies RF energy in bursts with the timing of the bursts, particularly the termination of each burst, being controlled in response to the output of a voltage sensing circuit coupled to the capacitance. The DC power supply voltage to the output stage is typically 100V or greater. To avoid substantial decay of the supply voltage, the voltage sensing and pulsing circuits are arranged to terminate the individual pulses of RF energy when the sensed voltage falls below a predetermined level, typically set such that pulse termination occurs when the voltage falls by a predetermined percentage value of between 5 percent and 30 percent which, typically, corresponds to the peak RF voltage delivered at the output lines falling to a value between 25V and 150V below its starting value for the respective pulse. The RF energy delivered during each pulse is typically 60 joules for wet field electrosurgery and 2 joules for dry field electrosurgery. Peak power typically reaches at least IkW5 and preferably 4kW.
The very high peak power capability of the preferred wet field generator (in excess of IkW) allows the impedance transition occurring at the start of a tissue cutting or vaporisation cycle to be completed very quickly since only voltages in excess of those required for arcing are delivered. This significantly reduces the delay and the unwanted coagulation effects of some earlier generators. The substantially constant voltage delivery leads to cutting or vaporisation occurring at consistent rates, regardless of changes in tissue type or engagement.
The generator is particularly useful for use with large electrodes, e.g. with a bipolar electrosurgical instrument having an active electrode formed as a conductive U- shaped loop. Such a loop may be used for excising tissue samples in a TURP (transurethral resection of the prostate) procedure. This electrode places particular demands on the generator in terms of achieving saline vaporisation and arcing.
It has been found that the combination of the above generator and the loop electrode is effective for resecting or vaporizing tissue with a haemostatic effect. The generator can also be set to coagulate tissue via haemostasis. The ability to achieve substantially instant generation of a plasma enveloping the active electrode gives surgeons the confidence of the state of the instrument before tissue engagement and facilitates vaporisation of fronds of tissue which typically result from resection using a loop electrode. Experience has shown, however, that there are variations in efficiency with which surgeons are able to complete a typical TURP procedure. At the end of this procedure, a low level of bleeding is thought to be desirable. Should bleeding be unacceptably high, the procedure is typically completed by identifying the points of bleeding and applying a specifically coagulating waveform to the instrument using the same loop electrode. The variations in efficiency are thought to be due to anatomical variations and differing surgical techniques. It would be desirable to reduce such variations. Accordingly, the present invention provides an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporising tissue, wherein the generator comprises: an RF output stage at least one RF power device, at least one pair of output lines for delivering RF power to the instrument, and a series-resonant output network coupled between the RF power device and the said pair of output lines; a power supply stage coupled to the RF output stage to supply power thereto and having a sensing element for sensing energy levels in the power supply stage; and a control circuit coupled to the sensing element for interrupting the delivery of RF power by the RF output stage, the control circuit being configured to interrupt the power delivery whilst the energy level in the power supply stage exceeds an interruption energy threshold and to cause continuous wave operation of the RF output stage when the energy level is below the threshold. Interrupting the RF output in this way when the generator is in use, connected to an instrument having an electrode such as that referred to above, increases the dwell time of the electrode during tissue resection. In other words, the resistance to movement of the electrode through the tissue is increased. This results in greater heat transfer and cauterisation of tissue adjacent the loop. In this way, haemostasis can be increased without unacceptably reducing the cutting efficacy of the system.
In practice, interrupting the RF output causes the plasma around the electrode to collapse, which, with the preferred generator, increases power dissipation in tissue and conductive liquids adjacent the electrode. By arranging for interruptions to occur only above a given power supply energy threshold, sufficient energy is available to re- establish the plasma at the end of each interruption. Preferably, control circuit is in the form of a pulsing circuit configured to apply the interruptions repeatedly in the form of pulse modulation of the RF output stage. Typically, the OFF periods of the pulse modulation are less than 10ms in duration so that the interruptions are brief enough to be below the thermal time constant of the electrode and its surroundings and so that the electrode creates a consistent surgical effect during a resection/through tissue (i.e., substantially to avoid a corrugated cut surface).
OFF periods of 0.5ms to 1.5ms are preferred. Advantageously the pulsing circuit is configured to cause pulse modulation of the RF output stage with a mark-to-space ratio of between 1:1 and 1:10, preferably 1:2.5 to 1 :5. The pulse ON periods typically have a duration in the range of from 0.5ms to 5ms.
There is significant latitude in the control process, so long as there is sufficient energy to reestablish the plasma, hence the use of a given power supply energy threshold below which this kind of pulsed operation is disabled. The steady state condition in a typical resection stroke in a TURP procedure is preferably a power supply energy level above the threshold relative to generator default settings, the energy reservoir always recovering towards the defined threshold if interruptions have temporarily depleted the energy reservoir. The energy threshold is defined so as to be towards the maximum energy storage capability of the generator to allow reestablishment of the plasma even in a cold environment.
The pulsing circuit of the preferred generator includes a timer which defines the pulse modulation mark-to-space ratio as well as the pulse repetition rate, which may be, typically, in the region of from 100Hz to IkHz.
Preferably, the power supply energy level threshold below which such predetermined pulsed operation is switched off is set at a value which is between 2 and 20 percent below a predetermined maximum power supply energy level. A value less than 16 percent below the maximum energy level is particularly preferred.
The pulsing circuit may also be configured such that delivery of RF power by the RF output stage is substantially terminated when the power supply energy level falls below a second, lower, energy threshold. Thus, the extinguishing of the RF output in low load impedance conditions can be implemented by means of a function which overrides the above-described pattern of operation combining pulse modulation and continuous wave (CW) operation. In effect, the mode of operation described in the above-referenced International Application No. WO2004/062516 takes precedence over the determination of whether the RF output power should be pulsed or continuous. This overriding function is preferably achieved by terminating the delivery of RF power when the power supply energy level falls below a minimum energy threshold with a value of between 5 and 50 percent below the maximum power supply energy threshold and is recommenced when the power supply energy level regains the maximum energy threshold.
It will be understood that the delivery of RF power will be reestablished either with pulse modulation or as a CW waveform according to the impedance presented across the generator output. In the extreme case, if the electrode is surrounded by conductive liquid, such as saline, the power supply energy level will drop rapidly, resulting in a period of CW operation as a plasma is reestablished. If, then, the electrode is brought into contact with tissue to perform tissue resection, for instance, the load impedance rises and, typically, power supply energy levels rise to the extent that operation continues with pulse modulation.
According to another aspect of the invention, there is provided an electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporizing tissue, wherein the generator comprises an RF output stage having at least one RF power device, and at least one pair of output lines for delivering RF power to the instrument, and a power supply stage which is coupled to the RF output stage to supply power thereto and which has a sensing element for dynamically sensing energy levels in the power supply stage, the generator being capable of delivering RF power at the output lines with a peak current of at least IA and a simultaneous peak voltage of at least 300V, and wherein the generator further comprises a control circuit coupled to the sensing element to receive an energy level sensing signal from the sensing element and to cause interruptions in the delivery of RF power when the energy level sensing signal is indicative of the power supply energy level being in an upper energy region and to cause continuous wave supply of RF power when the energy level sensing signal is indicative of the power supply energy level being in a lower energy region.
In a preferred generator in accordance with the invention, there is protection circuitry responsive to a predetermined electrical condition indicative of an output current overload, e.g. due to short-circuiting of the output lines, substantially to interrupt the RF power supplied to the series-resonant output network. The protection circuitry is responsive to short-circuiting with sufficient speed that the supply of RF power to the output network is cut off within a time period corresponding to no more than 20 cycles of the delivered RF power. The protection circuitry is preferably much faster, e.g. being operable to interrupt power delivery within 3 cycles or even 1 cycle. The effect of the series-resonant output network is to delay the build-up of current in a fault condition such as when a very low impedance or a short circuit appears across the output lines. The applicants have found that an impedance transition from open to short circuit results in an effective short circuit across the RF power device only after several RF cycles. By arranging for the protection circuitry to respond quickly, the output stage can be disabled before that happens. In general, the protection circuitry is responsive to application of a short-circuit across the output lines sufficiently quickly to disable the RF power device before the current passing therethrough rises to a rated maximum current as a result of the short-circuit.
The use of an RF output stage with a relatively low output impedance means that the RF voltage output is substantially directly related to the DC supply voltage applied to the output stage (specifically to the RF power device or devices which it contains). In the preferred embodiment of the invention, each RF power device is operated in a switching mode with the result that a square wave output is applied to the series- resonant output network. The RMS voltage available at the output lines is directly proportional to the supply voltage. It follows that the maximum peak-to-peak output voltage is determined by the DC supply voltage and dynamic feedback to control output voltage is, as a result, not required in this embodiment.
The protection circuitry is preferably capable of disabling the output stage within one- and-a-half RF periods after onset of the above-mentioned predetermined electrical condition. Preferably, the predetermined electrical condition is indicative of an instantaneous current in the output stage exceeding a predetermined level, and the speed of response of the protection circuitry is such that the breaching of the predetermined level by the instantaneous current is detected during the same RF cycle that it occurs. Such detection may be performed by current sensing circuitry including a pick-up arrangement, which is typically a current transformer, coupled in series between the RF power device or devices and the series-resonant output network, and a comparator having a first input coupled to the pick-up arrangement (e.g. to the secondary winding of the transformer) and a second input coupled to a reference level source. The reference level source may be a voltage representation of the instantaneous current, i.e. substantially without filtering, in order to cause a change of state of the comparator output within the same RF half-cycle that the threshold is first exceeded, or within the subsequent half-cycle, depending on whether or not full wave rectification is applied ahead of the comparator. The predetermined instantaneous output level is preferably at least 5A for wet field electrosurgery, and typically 2OA. The output of the comparator is coupled to disabling circuitry to disable the power device or devices when the comparator output changes state in response to the instantaneous current sensed by the pick-up arrangement exceeding the predetermined level as set by the reference source. The current shut-down aspect of the protection circuitry is not limited by impedance.
Generally, it is necessary only to interrupt power delivery for a short time. Consequently the protection circuitry includes a monostable stage and is operable in response to detection of the predetermined condition to disable the power device for a limited period determined by a time constant of the monostable stage which is typically less than 20 cycles of the operating frequency of the generator.
Preferably, the generator has an RF source coupled to the power device or devices, the source including an oscillator defining the operating frequency of the generator. The series resonant output network is tuned to this operating frequency. Generally, the source is arranged such that the operating frequency is substantially constant (e.g. during any given treatment cycle).
The preferred generator is arranged such that, for a given user setting, the RMS RF output voltage is maintained substantially constant within a load impedance range of from 600/VP ohms to 1000 ohms, where P is as defined above. Thus, for instance, the RMS RF output voltage during each burst of RF energy is maintained to within 20 percent of a maximum value. This can be achieved partly as a result of the series- resonant configuration of the output network.
A further aspect of the generator is that it comprises protection circuitry responsive to a short circuit across the output lines, wherein the output impedance of the RF output stage is less than 2OθNP ohms, where P is the maximum continuous RF output power of the generator in watts, and wherein the protection circuitry is responsive to the said short circuit sufficiently quickly to disable the power device before the current passing therethrough rises to a rated maximum current as a result of the short circuit. The or each power device may be disabled in response to application of the short- circuit to the output lines in a time period corresponding to less than three RF cycles.
In a generator in accordance with the invention for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporising tissue in dry field electrosurgery, the output impedance of the RF output stage at the output lines is less than 50 ohms.
The generator is preferably configured to be capable of maintaining a peak output voltage of at least 300V over a load impedance range of from 6OθNP ohms to 1000 ohms, where P is the rated output power in watts. The rated output power is as defined in the International Electrotechnical Commission standard, IEC 60601-2-2.
In the preferred generator, the power supply stage has an energy storage capacitor capable of storing between 3 percent and 30 percent of the maximum continuous power P (in watts) of the generator in joules.
In another aspect, the energy delivery per pulse (in joules) is between 1 percent and 15 percent of the maximum continuous RF output power (in watts).
When terminating and re-establishing the RF output according to stored energy levels (at the minimum and maximum energy thresholds respectively in the preferred embodiment), as may happen when operating with low load impedances, the pulsing circuit may pulse the delivered RF power in such a way that the crest factor of the voltage developed across the output lines increases as the load impedance presented to the output lines decreases whilst the peak output voltage during pulses is maintained at a value greater than 300V. For wet field electrosurgery, the output impedance of the output stage is preferably less than 10 ohms and the crest factor varies by a ratio of at least 2:1 over a load impedance range of from 6OθNP to 1000 ohms (typically from 10 ohms to 1000 ohms). For dry field electrosurgery, the output impedance figure is less than 50 ohms, and the crest factor varies by a ratio of at least
2:1 over a load impedance range of 600/VP to 50 kilohms (typically from 50 ohms to 50 kilohms).
By "crest factor" we mean the ratio of the peak voltage to the RMS voltage. In the case of a pulsed output waveform, the measurement is conducted over plurality of pulses.
At the lowest load impedances defined above, the length of such pulses is preferably between 0.5ms and 5ms, the pulse duty cycle typically being between 1% and 20% and, more preferably, between 2% and 10%.
The preferred generator comprises a source of radio frequency (RF) energy, an active output terminal, a return output terminal, a DC isolation capacitance between the source and the active output terminal, and a pulsing circuit for the source, wherein the source and the pulsing circuit are arranged to generate a pulsed RF output signal at the output terminals, which signal has a peak current of at least IA, a simultaneous peak voltage of at least 300V, a modulation rate of between 5Hz and 2kHz, and a pulse length of between lOOμs and 20ms. In preferred embodiments of the invention, the signal has a peak current of at least 3 A.
With such a generator it is possible to start arcing even under conditions of relatively low load impedance. Once an arc is established, the load impedance tends to rise, to the extent that the arcing can be maintained using a continuous RF output waveform. The preferred generator in accordance with the invention has a resonant output network and is operable to generate, e.g. during at least an initial part of a treatment period, a peak power of at least one kilowatt, and typically at least 3 or 4 kilowatts. Improvements in electrode erosion performance can be achieved by providing means in the generator for limiting the output voltage to a value in the region of 700V to 1100 V peak-to-peak.
In one embodiment, the source and the pulsing circuit are arranged to generate, in an initial period, a pulsed RF output signal at the output terminals, which signal has a peak current of at least IA, a simultaneous peak voltage of at least 300V, a modulation rate of between 5Hz and 2kHz, and a pulse length of between lOOμs and 20ms, and, in a subsequent period, to generate a constant power RF output signal at the output terminals.
Different ways of causing the generator to end the above-mentioned initial period of operation and begin the so-called subsequent period are feasible. One generator embodiment is arranged such that the switchover from the initial period to the subsequent period occurs automatically at a predetermined time interval after the beginning of the initial period. In an alternative embodiment, the generator has means for monitoring, in use of the generator, the load impedance between the active and return output terminals, and is arranged to cause switchover to the subsequent period when the magnitude of the output impedance increases by a predetermined factor, typically between 5 and 20, and preferably 10, or when it exceeds a predefined threshold.
A third switching-over technique may be used, involving the charge-storing element mentioned above. In this case, the source of RF energy includes an RF output stage, and the generator has a power supply including the charge-storing element such as a large capacitor for supplying power to the output stage. When the treatment period includes an initial period and a subsequent period, as described above, the capacitor is used to supply power at least during the initial period. Associated with the charge- storing element is a voltage-sensing circuit for sensing the voltage supplied to the output stage by the charge-storing element, the generator being arranged such that treatment ends or the subsequent period begins in response to the supply voltage as sensed by the voltage-sensing circuit reaching a predetermined voltage threshold. Indeed, it is possible to control the length and timing of individual pulses using the same voltage-sensing circuit. In this case, the voltage-sensing circuit forms part of the above-mentioned pulsing circuit and the timing of at least the beginnings of the pulses produced by the output stage during the initial period being determined in response to the supply voltage reaching the above-mentioned voltage threshold. It is possible to arrange for both the leading and trailing edges of the pulses produced by the output stage to be determined by the supply voltage respectively falling below and exceeding the respective voltage thresholds. The charge-storing capacitance is preferably at least lOOOμF and advantageously has a capacity in excess of 5 J.
As already stated, the preferred generator has a tuned output. Indeed, good results have been obtained using a generator with a resonant output network, the load curve of the generator (i.e. the curve plotting delivered power versus load impedance) having a peak at a load impedance below 50 ohms. Delivery of peak power levels into low load impedances is aided by forming the output network as a series-resonant network comprising the series combination of an inductance and a capacitance, the output of the network being taken across the capacitance. The output may be taken to all output terminals of the generator via a coupling capacitor and, optionally, a step-up transformer from a node between the inductance and the capacitance of the series combination. Whilst it is possible, instead, to take the output from across the inductance, taking it across the capacitor has the advantage of reducing switching transients. As a further alternative, the generator may have its output terminals connected to the resonant output network so that, effectively, when a load is connected to the terminals it is connected as an impedance in series with the inductance and capacitance forming the resonant combination, e.g. between the inductance and the capacitance.
The resonant output network typically provides a source impedance at the output terminals in the range of from 50 ohms to 500 ohms.
Not least because the resonant frequency of the output network can vary with load impedance as a result of coupling capacitance, the RF source may include a variable frequency RF oscillator, the output frequency advantageously being limited to a maximum value below the resonant frequency of the output network when connected to a matching load impedance, i.e. a load impedance equal to its source impedance.
The invention will now be described by way of example with reference to the drawings in which:- Figure 1 is a general diagram showing an electrosurgery system including a generator in accordance with the invention and a bipolar electrosurgical instrument;
Figures 2A and 2B are respectively perspective and side views of a loop electrode assembly forming part of the bipolar instrument shown in Figure 1 ;
Figure 3 is a block diagram illustrating the main components of the generator;
Figure 4 is a simplified circuit diagram of an RF output stage forming part of the generator;
Figure 5 is an illustrative load curve for the generator of Figure 1;
Figure 6 is a more detailed circuit diagram of the RF output stage;
Figure 7 is a flow diagram showing a control process for pulsed operation of the generator;
Figures 8A and 8B are waveform diagrams illustrating operation of the generator when activated with a loop electrode in a wet field;
Figures 9 A and 9B are waveform diagrams illustrating operation of the generator with the electrode in tissue;
Figures 1OA and 1OB are waveform diagrams illustrating operation of the generator with the electrode in a low impedance tissue;
Figure 11 is a block diagram of an alternative electrosurgical generator in accordance with the invention;
Figure 12 is a circuit diagram of a resonant output network of the alternative generator; and
Figure 13 is the load curve of the generator of Figure 11. Referring to Figure 1, a generator 10 has an output socket 1OS providing a radio frequency (RF) output for an electrosurgical instrument in the form of an endoscope attachment 12 via a connection cord 14. Activation of the generator may be performed from the instrument 12 via a control connection in cord 14 or by means of a footswitch unit 16, as shown, connected separately to the rear of the generator 10 by a footswitch connection cord 18. In the illustrated embodiment, the footswitch unit 16 has two footswitches 16A and 16B for selecting a coagulation mode and a cutting mode of the generator respectively. The generator front panel has push buttons 20 and 22 for respectively setting coagulation and cutting power levels, which are indicated in a display 24. Push buttons 26 are provided as alternative means for selection between coagulation and cutting modes. The instrument 12 has a detachable loop electrode assembly 28 with a dual electrode structure and is intended for use in a saline field.
The instrument 12 has a detachable loop electrode assembly 28 with a dual electrode structure and intended for use in a saline field. Figures 2A and 2B are enlarged views of the distal end of the electrode assembly 28. At its extreme distal end the assembly has a U-shaped loop electrode 30 depending from a pair of electrode assembly arms 32 which are mounted side-by-side in a clip 34 intended to be snapped onto an endoscope. The loop electrode 30 is an active electrode. Each of the arms 32 is formed as a coaxial cable, the exposed conductive outer shield of which, in each case, forms a return electrode 36. In operation immersed in a saline field, the loop electrode 30 is typically used for excising tissue samples, the electrosurgical voltage developed between the loop electrode 30 and fluid contacting surfaces of the return electrodes 36 promoting vaporisation of the surrounding saline liquid at the loop electrode 30, and arcing through the vapour envelope so formed.
The loop electrode 30 comprises a composite molybdenum rhenium wire with an oxide coating to promote increased impedance in the electrode/fluid interface and, as a result, to increase power density at the surface of the electrode.
The width of the loop is typically in the range of 2.5mm to 4mm and the wire typically has a diameter in the range of 0.20 to 0.35mm. This loop electrode assembly places particular demands on the generator in terms of starting vaporisation and arc formation.
Efforts to improve the starting of the arc (the "firing up") of this electrode assembly by reducing the wire diameter and forming oxide layers have tended to increase the rate of erosion or resulted in the loop being mechanically flimsy.
It should be noted that generators in accordance with the invention are not limited to use with a loop electrode assembly, nor to use in wet field surgery.
The generator will now be described in more detail with reference to Figure 3. It has an RF source in the form of an oscillator 40 which is connectible to an RF output stage 42. The output stage 42 comprises a mosfet power bridge forming part of a power mosfet and driver circuit 44, a current sensing element 46 and a resonant output network 48. The oscillator 40 is configured to operate at a substantially constant RF frequency and the output network 48 is tuned to that frequency. In general terms, the RF source coupled to the RF power device or devices defines the operating frequency of the generator, and the output network (which, as will be described below, is series- resonant) is tuned to the operating frequency. In this embodiment of the invention the operating frequency is substantially constant.
Power to the RF output stage 42, or, more specifically, to the power mosfets, is supplied from a power supply stage 49 which has a DC power supply 50 coupled to the RF output stage 42 via a supply rail 58. The power supply stage 49 has a 6mF reservoir capacitor 60 connected between the supply rail 58 and ground. The voltage on the supply rail 58 is sensed by a voltage sensing circuit 62, the output of which is fed to a pulsing circuit 63 which has a first transmission gate 64 connected in series between the RF oscillator 40 and driver devices in the power mosfet and driver circuit 44. The pulsing circuit 63 has a data processor 65 which controls operation of the gate 64 according to voltages sensed by the sensing circuit 62.
The current sensing element 46 in the output stage 42 is a series-connected current transformer, the secondary winding of which is coupled to a first input of a comparator 66 which also receives on the other of its inputs a reference signal from a reference input 68. The output of the comparator controls a monostable 70 which, in turn, controls a second transmission gate 72 coupled in series with the gate 64 in the path between the oscillator 40 and the drivers in the power mosfet and driver circuit 44. The output network 48 supplies RF power to an output termination 74 which, in practice, is a pair of output lines, as will be described hereinafter. Operation of the generator may be pulsed insofar as RF energy may be supplied to the output lines 74 in bursts controlled by the combination of the processor 65, the voltage sensing circuit 62 and the gate 64. When the generator is activated, the voltage on the supply rail 58 tends to fall, at least when the load impedance coupled across output lines 74 is relatively low, owing to the discharge of reservoir capacitor 60. When the DC supply voltage on the supply rail 58 falls to a preset value, the output of the voltage sensing circuit 62 changes state and transmission gate 64 is driven to its open circuit condition, thereby disabling the power mosfet and driver circuit 44. The reservoir capacitor 60 then recharges and the voltage sensing circuit 62 and the processor 65 cause the gate 64 to reconnect the oscillator 40 when the supply rail voltage reaches an upper threshold value. In this way it is possible to control the amount of energy delivered in each pulse in low load impedance conditions.
The generator also has a second pulsed mode of operation in which the RF output is interrupted regularly when the DC supply voltage exceeds an intermediate threshold value. For this purpose, the processor 65 is configured to include a pulse timer 65 A.
Further details of the operation of the pulsing circuit will be provided below.
Referring again, however, to Figure 3, the current sensing element 46, the comparator 66, the monostable 70 and the second transmission gate 72 act together as a protection circuit to protect the mosfet power devices in circuit 44 against excessive current drain caused, for instance, by a short circuit across the output lines 74. The storage of energy in output network 48 delays the transfer of the short circuit across the output lines 74 to the power devices in the mosfet and driver circuit 44.
The electrical circuit condition sensed by the current sensing element 46 and the comparator 66 is the current flowing between the power mosfets in circuit 44 and the output network 48 rising to a level which could be indicative of a short circuit having been applied across the output lines 74. When the current reaches a preset current level, as detected by the comparator 66, the comparator output changes state and the monostable 70 causes the second transmission gate 72 to become open circuit, disabling the power mosfets and driver stage 44. The monostable time constant is typically set to 0.5 seconds or less, which allows a warning signal to be generated for alerting the user. However, owing to energy storage in the series-resonant circuit, it is possible to protect the RF power devices with a monostable time constant of about 20 RF cycles at an operating frequency of 40OkHz.
The configuration of the output stage 42 is shown in principle in the simplified circuit diagram of Figure 4. Referring to Figure 4, the power mosfet and driver stage 44 shown in Figure 3 has a power mosfet bridge comprising a first push-pull pair of FET power devices Ql5 Q2 and a second power FET device push-pull pair Q3, Q4, each pair having a respective output node which, when the pairs are driven 180° out of phase, produces a square wave at the frequency of the oscillator 40 (Figure 2) at the input to the series resonant output network 48. Each pair of power mosfets Ql, Q2; Q3, Q4 is coupled between the supply rail 58 and ground. Accordingly, since each of the mosfets is a virtual short circuit when driven "on", the voltage applied to the output network 48 swings virtually between ground and the supply rail voltages. The reservoir capacitor 60 shown in Figure 3 is, of course, connected across the respective power mosfet pairs, as shown in Figure 4.
The output network is series-resonant in that an inductor Ll and a resonating capacitor Cl are coupled in series between the output nodes 76, 78 of the first and second power mosfet pairs respectively. In this embodiment, the load resistance RL constituted in practice by an electrosurgical instrument coupled between the output lines 74, and the tissue and/or fluid present across its electrode assembly, is connected in series between inductor Ll and capacitor Cl. As explained above, the series- resonant tuned circuit formed by inductor Ll and capacitor Cl acts as an energy storing device which delays the current build-up between the nodes of the power mosfet bridge Q1-Q4 should the load resistance RL drop to a very low value. Another feature of this resonant arrangement is that it is a low impedance at one frequency only, which means that the delivered output signal consists almost exclusively of the fundamental component of the waveform produced by the power mosfets, conditional, of course, upon the frequency of resonance of the network 48 being the same as that of the operating frequency of the oscillator stage 40 (Figure 3).
One of the characteristics given to the generator by the output configuration described above with reference to Figure 4 is that, during each burst or pulse of RF energy it has an approximately constant voltage load curve, as shown by the power-versus-load impedance load curve shown in Figure 5. This characteristic is particularly suitable for cutting or vaporisation of tissue since it provides the high power required at low impedance without voltage overshoot. The low output impedance and high current required are provided by the direct coupling of the power mosfets to the supply rail and ground, and by the reservoir capacitor 60, even if a step-up transformer is coupled between the series-resonant elements Ll, Cl and the output lines 74. It is possible, using this configuration, to keep the output impedance of the generator at the output lines 74 to 2 ohms or less. The implications which this has for peak current delivery in a fault condition leads to the need for a protection circuit such as that referred to above.
The RF output stage 42 is shown in more detail in Figure 6. As shown in Figure 6, the current sensing element 46 is a current transformer, coupled in series between one of the output nodes 76, 78 of the power mosfet bridge and one of the components Ll, Cl of the series resonant output network, in this case between node 76 and the inductor Ll. In this preferred generator, the normal DC supply voltage on supply rail 58 is about 120V. To strike an arc for the purpose of performing tissue cutting or vaporisation, a peak voltage in excess of 380V may be required. Accordingly, and for isolation purposes, the RF output network 48 includes a step-up isolating transformer TRl to lift the peak output voltage to the region of 500V peak. The primary winding of the transformer TRl has a tuning capacitor C2 coupled across it to yield a parallel- resonant circuit tuned to the operating frequency to act as a shunt-connected trap. This improves the rejection of harmonics in the power signal supplied to the output lines 74., particularly when the output impedance is high, with the consequent benefit of reduced RFI (RF interference). DC blocking is provided by a coupling capacitor C3 between the transformer TRl secondary winding and one of the output lines 74.
The actual resonant frequency of the output network 48 is the result of several elements, these being (1) the main tuning elements represented by the lumped inductance Ll and the tuning capacitor Cl, (2) the transformer leakage inductance and cross-coupling capacitance, (3) the DC blocking capacitance, C3, and (4) the inductive and capacitive loading of the connecting cable (not shown) between the output lines 74 and the electrosurgical instrument itself. The delay in the current build-up in a fault condition is due to the energy levels in this tuned arrangement. At resonance, this arrangement has a finite loss that may be represented by a series resistance, albeit a very small one. Dynamically, however, the energy levels in the resonant output network cannot be changed instantly. An impedance transition from an open to short circuit only presents a short circuit to the switching stage after several RF cycles at the operating frequency. The comparator 66 shown in Figure 3 is capable of detecting such an impedance transition within 1 to 1.5 cycles of the transition beginning at the output lines 74. This rapid response, as well as allowing the power mosfet and driver circuit 44 to be shut down before damage occurs, has the effect that the amount of energy delivered during a short circuit fault is very small.
Referring again to Figure 3 and, in particular, the voltage sensing and output stage pulsing circuits 62, 64, the very high peak powers which are achievable with the output stage described above with reference to Figures 5 and 6 have the benefit that, during power delivery into a low impedance, the voltage across the reservoir capacitor 60 decreases progressively after the instant of generator activation. The capacitor value is chosen to be sufficiently large to ensure that the low to high load impedance transition occurring at the start of a tissue cutting or vaporisation cycle can be produced in a single burst of RF energy. Typically, the amount of energy delivered during the initial burst is about 1 joule in a dry environment and between 10 to 20 joules in a wet field environment. The actual energy in the RF pulses or bursts is controlled by the threshold or thresholds set in the voltage sensing circuit 62, specifically by the difference in supply voltage between pulse initiation and pulse termination. Since the output stage has a very low output impedance, this difference voltage is apparent as a change in delivered RF voltage at the output. The capacitor 60 is, therefore, made sufficiently large (in this embodiment 6mF) that the change in voltage represents only a minor proportion of the absolute voltage at the output. Thus, if the delivered output voltage is a sine wave with a peak voltage of 500V, the supply voltage on supply rail 58, the size of the capacitor 60 and the transformer TRl step-up ratio are chosen such that the output voltage drops by no more than 150V peak (30 percent) during an RF burst. In this preferred embodiment, the output voltage drop is about 125 V peak or 25 percent.
One of the effects of preventing the supply of lower voltages to the output is that, in a tissue cutting or vaporisation tissue cycle, the voltage is not allowed to drop to a level at which excessive coagulation effects occur.
The preferred generator in accordance with the present invention allows the DC energy fed to the reservoir capacitor 60 when the output impedance is low to be altered so that the time period during which a cutting voltage is present at the output can be altered. In practice, owing to the low output impedance of the generator, this time period is directly proportional to the stored energy.
The control methodology, whereby RF energy bursts or pulses are controlled according to voltage thresholds sensed across a reservoir capacitor, allows very low duty cycles to be used, permitting tissue cutting or vaporisation at low average powers. Indeed, it is possible to operate with less than 5 watts average power (averaged over several capacitor charging and discharging cycles). Accordingly, the generator has uses in low power as well as high power applications.
Operation of the pulsing circuit will now be described in more detail with reference to the flow diagram of Figure 7 and the waveform diagrams of Figures 8 A and 8B, 9 A and 9B, 1OA and 1OB.
Consider, firstly, activation of the generator with the loop electrode assembly adjacent tissue and immersed in a conductive liquid such as saline. Referring to Figure 7, when the "cut" footswitch is pressed (SlOO) the voltage on the capacitor 60 (Figure 3) is initially zero, i.e. below the upper voltage threshold which, in this example, is 120V, this condition being sensed in comparison step S 102. The processor 65 (Figure 3) causes the DC power supply 50 to be switched on (S 104). There follows another comparison step S 106 in which the capacitor voltage is compared with an intermediate voltage threshold, here 115V. Initially, the result of this comparison is negative; the timer 65 A (Figure 3) is therefore reset (S 108) and another comparison (SI lO) is performed. In this step, the capacitor voltage is compared against a lower voltage threshold of 90V. Initially, of course, the voltage is below 90V, which means that the operation passes to the step Sl 12. The function of turning off the RF output is inapplicable at this stage since it was not turned on previously. Thereafter, operation reverts to step SlOO and the above steps are repeated until (a) the capacitor voltage exceeds the lower threshold (Sl 10) and (b) the capacitor voltage subsequently exceeds the higher threshold at step S 102. The repetition rate of this sequence of steps is higher than IkHz and preferably about 10kHz, so that the capacitor voltage is sensed at least once every 100 microseconds. As soon as the higher threshold is exceeded, operation passes to step Sl 14 in which the DC power supply is switched off and an "RF ready" flag is set.
Since, now, the capacitor voltage exceeds the intermediate threshold and the RF ready flag is set, operation passes from step S 106 to a pulse timer branch Sl 16, Sl 18, Sl 20, S 122, S 124 in which the pulse timer 65A (Figure 3) is enabled and gate 64 (Figure 3) is closed to turn the RF output ON.
The above-described sequence of events has the effects shown in the left hand parts of Figures 8A and 8B where it will be seen that, initially, low RF power is delivered to the electrode assembly (Figure 8A) and the capacitor voltage rises from zero to 120V (Figure 8B). Note that, owing to the electrode assembly being immersed in conductive fluid, the load impedance is low, typically between 10 and 20 ohms. As soon as the capacitor voltage reaches the upper threshold of 120V, the RF output is switched on and RF energy is supplied at very higher power, typically in excess of 3kW, as shown at point a in Figure 8A.
As a result of the high power, capacitor 60 is discharged rapidly, as shown by the steep negative slope from point a in Figure 8B. The result of this voltage drop on the operation of the processor according to the flow diagram of Figure 7 is that at the next instance of step S 102, the flow passes directly through step S 106 to step Sl 12 which results in gate 64 being opened and the RF output being terminated, as shown at point b in Figure 8A.
At point a, the DC power supply is toggled off (step Sl 14) briefly and then toggled back on (step 104) and, as soon as the RF output has been turned off in step S 112, the capacitor voltage begins to rise as shown by the upward slope of the voltage curve starting at point b in Figure 8B. Once again, the processor operationsuccessively executes steps SlOO to Sl 12 until the capacitor voltage once again reaches the upper threshold, as sensed by S 102 and as indicated as point c in Figures 8 A and 8B.
Now, on this occasion, when the RF output is turned on (step Sl 12) a plasma is established around the loop electrode, as shown by the increasing load impedance (see the lower trace in Figure 8B at c to d). In this instance, the rise in impedance is such that the energy drain from the capacitor 60 (Figure 3) is insufficient to cause the capacitor voltage to drop below the lower threshold of 90V (see point d on the capacitor voltage trace on Figure 8B), which means that step SI lO in Figure 7 produces a negative result and the RF output remains ON. The above "fϊring-up" process has taken place in a period of about 1A of a second in this example. The first attempt to start a plasma failed, but owing to the heat generated in the first attempt, the second attempt succeeded. Normally, a plasma will be formed in low impedance conditions at the first or second pulse of RF energy. Firing-up is achieved as a result of the high power delivery available from the generator output stage when supplied from a large reservoir capacitor. Should the plasma be extinguished subsequently, it can be restarted with a somewhat lower voltage. In accordance with the present invention, when the capacitor voltage exceeds an intermediate threshold, at which time the power supply stage can be considered to be in an energy surplus condition, the generator is operated in a particular pulsed mode of operation to promote a degree of haemostasis as tissue is cut.
Accordingly, referring to Figures 9A and 9B, the RF output is repeatedly interrupted whilst the capacitor voltage exceeds the intermediate threshold. Referring to the upper trace of Figure 9A, showing instantaneous power delivery, at the start of each RF ON period a plasma has to be established. Until then, the load impedance is low and the instantaneous power is high. Subsequently, during each pulse, the power drops as the impedance rises (see the lower trace in Figure 9B). In the example shown in Figures 9A and 9B, the impedance oscillates generally between about 400 and 800 ohms, and power delivery is such that the supply voltage across the reservoir capacitor is maintained at or near the upper threshold (see the upper trace in Figure 9B).
The generator load curve is such that, with pulsed operation, a constant user-defined average power level can be delivered to tissue unless the load impedance is high enough to cause a maximum RF output voltage to be reached. At impedances above this impedance threshold of typically 450 to 600 ohms, the power output from the generator falls progressively as the RF load impedance rises. This condition occurs when the electrode is predominantly engaged in tissue where, for instance, in the middle of a resection stroke with a loop electrode, impedances may reach 900 ohms to 1000 ohms, the power output then being about 10OW. The generator is preferably set to have a higher default power setting for such an electrode, typically 160W, to ensure plasma fire-up in saline. When an interruption has occurred, the RF power is reapplied using energy reserves as necessary for sufficiently long to allow the plasma to be reestablished and power delivery to be maintained at a sufficiently high level to continue cutting or vaporisation of tissue.
This interrupted mode of operation takes place as a result of the processor 65 (Figure 3) following the "yes" output from step 106 to perform the pulse timing steps Sl 16, S120, S122 (when the RF output is ON), and steps Sl 16, S120 and S124 (when the RF output is interrupted). The processor timer 65A is configured to produce a predetermined mark-to-space ratio and a predetermined pulse repetition rate. In a typical setting, the mark-to-space ratio is 1:1, with the pulse ON duration being set in the region of 0.5ms. The OFF duration is preferably at least 0.5ms but also, preferably, less than 1.5ms. It will be understood that other mark-to-space ratios and pulse widths are possible. Good results, i.e. rapid cutting with sufficient haemostasis to reduce bleeding to a negligible level have been achieved with mark-to-space ratios in the region of 2:1 to 1:4, but values outside this range are feasible within the scope of the invention. The preferred generator includes a control for adjusting the parameters of this pulsed mode of operation to achieve different degrees of haemostasis and cutting drag (the physical resistance to movement of the electrode). Tissue cutting may be accompanied by increased bleeding, which, if interruptions to the RF output are applied, lowers the load impedance to the extent that, after a cutting has begun, the capacitor voltage drops below the intermediate threshold. Referring to Figures 1OA and 1OB, it will be seen that depressed load impedance (the lower trace in Figure 10B) results in very high instantaneous RF output power levels to reestablish the plasma. Consequently, the capacitor voltage rapidly decreases to reach the intermediate threshold at point e (see Figure 10B).
Referring to Figure 7, the processor operation is diverted from its timed pulsing mode by comparison step S 106 whereupon, on reaching step SI lO, operation reverts to step SlOO and repeatedly executes the loop SlOO, S 102, S 104, S 106, S 108, SI lO so that the DC power supply 50 (Figure 3) remains on continuously and the RF output is continuous until the capacitor voltage regains the intermediate threshold, as sensed by step S 106. Referring back to Figures 1OA and 1OB, this period is seen as a period/of constant RF output and increasing capacitor voltage. With a CW RF output, the load impedance is maintained at a comparatively high value, allowing the capacitor to recharge.
When the capacitor voltage reaches the intermediate threshold, the RF output is interrupted by the timer loop (steps Sl 16, Sl 18, S120, S124) and when the RF output is next turned ON (step S 122) another very high power spike g is produced as the capacitor once again discharges into the low impedance which has occurred as a result of the plasma being extinguished when the RF output was turned off. This process of CW operation with comparatively infrequent interruptions continues until a less conductive tissue region in reached. Note that interruptions to the RF output occur only when the capacitor voltage is high enough, indicating an energy "surplus" and a sufficiently high reservoir of energy to reestablish the plasma. The control process can be adjusted by the user by altering the generator power setting. A default power setting is 160W. Increasing the power setting above this level increases the likelihood of an energy "surplus" and, therefore, increases the power dissipating interruptions to the plasma, thereby increasing haemostasis. The tissue cutting performance increases with power. Reducing the power setting below the default reduces the likelihood of an energy surplus and eventually causes the control process to cease making interruptions. The result in the latter case is that RF power is normally delivered only in a continuous wave (CW) form with interruptions occurring only when the capacitor voltage drops below the lower threshold defined by comparison step SIlO. However, at a lower power setting of the generator, the cutting characteristics are less aggressive and, consequently, are less likely to result in excessive haemostasis.
An alternative generator for use in the system described above with reference to Figure 1 will now be described with reference to Figure 11. This generator has a variable frequency RF source including a voltage controlled oscillator (VCO) 4OA. In this example, the VCO feeds a divide-by-two stage 4OB which, in turn, feeds a power driver stage 44 A driving an RF output stage in the form of a power bridge 44B. The power bridge 44B feeds a resonant output network 80 which delivers a generator output signal across output terminals 74. In practice, the power driver stage 44 A and the power bridge 44B can have the same configuration as the power mosfet and driver circuit 44 of the generator described above with reference to Figure 3. The power bridge 44B takes its DC supply from the supply rail 58 of the DC power supply 50, but the driver stage 44A has a lower voltage supply. Typical supply voltages are 180V maximum for the power bridge 44B and 16.5V for the driver stage 44A.
To bring the frequency of the combination of the VCO 4OA and divide-by-two stage 4OB to the resonant frequency of the output network 80, the above-described components of the RF source are coupled in a phase-locked loop including a phase sensing element 82 coupled between the power bridge 44B and the output network 80 to sense the voltage phase in the input leads to the output network. This voltage phase signal is applied to one input of a phase comparator 84, the other input of which receives a signal representative of the output of the VCO 4OA, derived from the output of the divide-by-two stage 4OB via a delay stage 86 which compensates for the delay to the RF signal as it passes through the power driver and the power bridge.
As in the first-described generator, the RF output stage 44B is supplied from the DC supply rail 58 attached to the reservoir capacitor 60, which allows large currents to be drawn by the output stage 44B for short periods of time, i.e. currents significantly larger than the current rating of a power supply 50 connected to the DC supply rail 58. It follows that the voltage on supply rail 58 will fall during the time that a large current is drawn. Such variations in voltage are sensed by the voltage sensing stage 62 coupled to the rail 58. Voltage sensing circuit 62 has a control output coupled to the first transmission gate 64 in a line 88 coupling the divided-down output of the VCO 4OA to the input of the power driver 44 A.
As before, the arrangement of the voltage sensing stage 62 and the pulsing circuit 63 are such that when the voltage on supply rail 58 (the voltage supplied to the power bridge 44B) drops below a predetermined voltage threshold, the gate 64 is operated to interrupt the signal path between the VCO and the power driver 44A. When the supply rail voltage rises again, the gate 64 reverts to its conducting state. This may happen when the voltage rises above the threshold mentioned above, or the maximum threshold voltage referred to above.
The second transmission gate 72, connected in series in the signal line 88 with the voltage-operated gate 64, has a control input connected to the output of a 0.5 second monostable 70 which is triggered by current sensing circuitry comprising the current sensing element 46 in one of the input leads to the output network 80 and the comparator 66. These elements act to interrupt the signal line 88 to the power driver
44A for 0.5 seconds when the power bridge output current exceeds a predetermined threshold.
Referring to Figure 12, the resonant output network 80 comprises the series combination of an in-line inductance L1 and a tank capacitor C1. The output is taken from across the tank capacitor C1 (which takes out switching noise) via a first coupling capacitor C2. This first coupling capacitor C2 couples to the output (represented by terminals 74) via a step-up matching transformer T with a 1 : 2 step-up ratio. The secondary rewinding of the transformer T couples to the output terminals via a second coupling capacitor C3. In this embodiment, Li is about 4.7μH, the tank capacitor is about 1 OnF and the two coupling capacitors C2 and C3 co-operate (one of them via the transformer T) to form a coupling capacitance of about 23nF.
It will be appreciated that when the output terminals 74 are open-circuit, the resonant frequency of the output network is determined by the series combination of Li and C1. When the output terminals 74 are shorted, the resonant frequency is determined by the series combination of L1 and the network represented by Ci, C2, C3 and T. With the values given, the short-circuit resonant frequency is about 0.55 times the open-circuit resonant frequency.
One of the features of a series-tuned output stage is that peak power delivery inherently occurs at extremely low and extremely high impedances. Referring to Figure 13, the load curve of a series-tuned network (i.e. the delivered power versus load impedance) at resonance is shown by the dotted curve A. The network 80 has minimum power delivery, which may be regarded as the "matched condition", at a load impedance across the terminals 74 (Figures 11 and 12) of about 200 ohms. It will be noted that the part of the curve A which has a negative slope follows a path which is approximately hyperbolic over a major part of its length, which means that this part of the curve is of similar shape to a constant voltage line on the graph of Figure 13.
The applicant has recognised that such a characteristic, when applied to the output stage of an electrosurgical generator, allows output power to be maximised for a given constant voltage limit over a range of load impedances. It has been found that erosion of the active electrode of an electrosurgical instrument operated in a conductive liquid increases markedly when the output voltage rises above a threshold in the region of 900 volts, to 1100 volts peak-to-peak. By arranging for the load curve of the output network 48 to follow an approximate constant voltage curve at about 1000 volts peak- to-peak (340 volts rms) the power delivered into a varying load impedance can be close to the maximum theoretically achievable for that voltage.
In effect, over the range of load impedances of importance in so-called "underwater" electrosurgery, the generator can be made to behave as a constant voltage supply. This can be achieved with a matched output impedance much higher than the load impedance presented by the electrode assembly shown in Figure 2A and 2B in the wetted condition, which, for a 4mm loop is in the region of 25 ohms. This translates to a maximum power of about 4.5kW at 340 volts rms.
The actual load curve achieved with the arrangement shown in Figures 11 and 12 is shown by curve B in Figure 13. This deviates from the series-tuned curve A at low impedances owing to imposition of a current limit using the current sensing stage circuitry 46, 66 monostable 70 and transmission gate 72 (Figure 11). In the present embodiment, the current limit is set at a level of about 13 amps. The actual load curve B also deviates from the inherent series-tuned load curve A towards the lower part of the negative-slope portion of the curve A so that the delivered power follows a continuing negative gradient as the load impedance rises, again mimicking a constant voltage supply. This latter deviation is deliberate inasmuch as extreme power into a very high impedance is undesirable. The reason for this deviation is the movement of the resonant frequency of the output network 80, as described above, coupled with the imposition of a high-frequency limit on the RF frequency output as will be described below. The phase comparator 84 compares the current phase at the input to the output network 80, as sensed by the phase sensing circuit 82 with a delayed version of the output of the divide-by-two circuit 4OB which, in turn, is fed by the VCO 4OA. Accordingly, the phase and frequency of the VCO are varied to maintain a constant phase at the input to the output network 80, subject to the upper frequency limit mentioned above. In the absence of other influences, therefore, the output network 80 is maintained in resonance as the load impedance varies.
Given that the free-running frequency of the phase-locked loop is arranged to be its maximum frequency of operation, the locking characteristics of the phase-locked loop are such that it can be brought into a locked condition at the minimum frequency, corresponding to minimum load impedance, sufficiently quickly to achieve resonance in the early part of the output pulse, but not so quickly that the current limit circuit
(sensing circuitry 46, 66 monostable 70 and gate 72) fails to trip when the current exceeds a predetermined current threshold.
If, now, the output carrier frequency is limited to a value below the frequency of the matched load resonant condition, the delivered power will fall off as the load impedance increases and the resonant frequency correspondingly rises. In fact, the free-run output frequency of the phase locked loop containing the VCO 4OA (Figure 7) is designed to be this maximum frequency. This ensures that the output network always represents a higher source impedance than the impedance of the load, which affords over- voltage protection in the event of a short. Summarising, to achieve optimum resonant frequency, the excitation oscillator (VCO) is phase-locked to the resonant output network. Defining the range of the VCO provides load curve definition in that the delivered output power falls below the theoretical maximum when the output network resonant frequency rises above the maximum frequency of the divided down output of the VCO 4OA. In other words, a match at high load impedance is prevented by preventing the VCO from generating the higher frequencies necessary for resonance. It also follows that, at high load impedances, the maximum output voltage is controlled by virtue of frequency.
It will be seen from Figure 13 that the delivered output power is in excess of IkW over a range of load impedances corresponding to a wetted or partly wetted electrode. Once vaporisation and arcing has been initiated, the impedance rises, and the delivered power falls. To maintain the average output power at 200W or less, the output signal is pulsed when the load impedance is low. It will be understood that with a peak power in excess of 4kW, the pulse duty cycle needs to drop to a level in the region of 5% or less. The pulse repetition rate should be between 5Hz and 2kHz, and is preferably at least 10Hz. These figures are chosen in view of the time taken to initiate vaporisation at the electrode surface. This means that the pulses have a maximum length of about 4 or 5ms into a low impedance requiring maximum power. Typically, the pulse length is in the region of 1 to 2ms. While it is not essential, configuring the RF output stage of the generator as an amplifier amplifying the output of a signal derived from a separate oscillator, rather than having a self-oscillating output stage, is preferred in order that full peak power can be achieved within the above-stated pulse lengths. (In this embodiment, the output stage 44B is an amplifier configured as a power switching bridge for high efficiency.) Should the VCO fail to operate at a frequency corresponding to resonance of the output network 80, as may happen at the start of each pulse, excessive output currents associated with such a mismatch are prevented since the series-tuned output network is low impedance only at resonance.
Pulsing of the output signal can be performed in a number of ways, including simply pulse modulating with predetermined pulse lengths and pulse repetition rates. In the low impedance mode of operation of the alternative generator described here, the output is pulsed only during an initial period from the commencement of treatment, the output signal being a continuous wave (CW) signal or an interrupted signal (as described above with reference to Figure 7) thereafter, i.e. generally when vaporisation and arcing have been achieved and the load impedance is in an upper range. The duration of the initial period may be fixed or it may be determined by monitoring the load impedance and terminating the initial period when the impedance exceeds a predetermined value. In this embodiment, the duration of the initial period and the length and frequency of the pulses are dynamically variable in response to delivered energy, as measured by the supply rail voltage on supply rail 58. As has been explained above, high instantaneous power levels are achieved only by allowing the output stage 44B to draw current from a charge reservoir, here a large capacitance such as capacitor the 6mF capacitor 60. As charge is drawn from the capacitor 60, the supply rail voltage drops. Between pulses, the supply rail voltage rises again. Accordingly, by using gate 64 alternately to allow and prevent the passage of an RF signal along signal line 88 to the power driver 44 A according to the relationship between the supply voltage level and thresholds set in the voltage sensing circuit 62, the output of the generator can be pulsed to achieve maximum peak delivered power whilst operating within a predetermined average power limit. This equilibrium of power consumption and DC supply voltage is achieved by setting the voltage thresholds so that the RF output stage is activated when the supply rail voltage is sufficient to achieve a maximum vaporisation voltage (e.g. 340V rms) and switched off when a lower threshold is reached. The lower threshold defines the maximum energy per pulse and the repetition rate for a given average power level. The initial period referred to above is terminated when the electrode has "fired-up", in other words when vaporisation and arcing have commenced, so that the load impedance rises and the supply rail voltage stays above the switching threshold or thresholds. In this way it is possible to achieve vaporisation of the conductive liquid surrounding the electrode at impedances as low as 20 ohms without unacceptable erosion of the electrode surface.

Claims

1. An electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporising tissue, wherein the generator comprises: an RF output stage having at least one RF power device, at least one pair of output lines for delivering RF power to the instrument, and a series-resonant output network coupled between the RF power device and the said pair of output lines; a power supply stage coupled to the RF output stage to supply power thereto and having a sensing element for sensing energy levels in the power supply stage; and a control circuit coupled to the sensing element for interrupting the delivery of
RF power by the RF output stage, the control circuit being configured to interrupt the power delivery whilst the energy level in the power supply stage exceeds an interruption energy threshold and to cause continuous wave operation of the RF output stage when the energy level is below the threshold.
2. A generator according to claim 1, wherein the output impedance of the output stage at the output lines is less than 200/VP ohms, where P is the maximum continuous RF output power of the generator in watts.
3. A generator according to claim 1 or claim 2, wherein the control circuit is a pulsing circuit configured to apply the said interruptions repeatedly in the form of pulse modulation of the RF output stage with a mark-to-space ratio of between 2:1 and 1 :10.
4. A generator according to any preceding claim, wherein the control circuit is configured such that the RF power ON periods between successive interruptions have a duration in the range of from 0.2ms to 5ms.
5. A generator according to any preceding claim, wherein the control circuit is configured such that the interruptions in the delivery of RF power have a duration of less than 10ms.
6. A generator according to claim 5, wherein the control circuit is configured such that the interruptions have a duration of less than 1.5ms.
7. A generator according to claim 5 or claim 6, wherein the control circuit is configured such that the interruptions have a duration of at least 0.5ms.
8. A generator according to any preceding claim, wherein the said energy level threshold is set at a value which is between 2 and 20 percent below a predetermined maximum power supply energy level.
9. A generator according to any preceding claim, wherein the control circuit is configured such that delivery of RF power by the RP output stage is substantially terminated when the power supply energy level falls below a minimum energy threshold which is lower than the interruption energy threshold.
10. A generator according to claim 9, wherein the control circuit is configured such that the delivery of RF power is resumed after the said termination only when the power supply energy level reaches a maximum power supply energy threshold which is higher than the interruption energy threshold.
11. A generator according to claim 10, wherein the minimum energy threshold is set at a value which is between 5 and 50 percent lower than the maximum energy threshold.
12. A generator according to any preceding claim, wherein the power supply stage includes a charge-storing element for supplying power to the RF output stage and wherein the sensing element comprises a voltage sensing circuit arranged to sense the voltage supplied to the RF output stage by the charge-storing element, the or each said energy level threshold being defined as a respective threshold value of the sensed voltage.
13. A generator according to any preceding claim, wherein the control circuit is a pulsing circuit configured to apply pulse modulation with a predetermined mark-to- space ratio and pulse repetition rate.
14. An electrosurgical generator for supplying radio frequency (RF) power to an electrosurgical instrument for cutting or vaporizing tissue, wherein the generator comprises an RF output stage having at least one RF power device, and at least one pair of output lines for delivering RF power to the instrument, and a power supply stage which is coupled to the RF output stage to supply power thereto and which has a sensing element for dynamically sensing energy levels in the power supply stage, the generator being capable of delivering RF power at the output lines with a peak current of at least IA and a simultaneous peak voltage of at least 300V, and wherein the generator further comprises a control circuit coupled to the sensing element to receive an energy level sensing signal from the sensing element and to cause interruptions in the delivery of RF power when the energy level sensing signal is indicative of the power supply energy level being in an upper energy region and to cause continuous wave supply of RF power when the energy level sensing signal is indicative of the power supply energy level being in a lower energy region.
15. A generator according to claim 14, wherein the circuit is a pulsing circuit configured to apply the said interruptions repeatedly in the form of pulse modulation of the RF power.
16. A generator according to claim 15, wherein, during pulsed operation, RF power is delivered with a peak voltage of at least 300V during the entire pulse length.
17. A generator according to any of claims 14 to 16, wherein the pulsing circuit includes a timer operable to define a pulsed operation mark-to-space ratio in the region of from 2:1 to 1:10.
18. A generator according to claims 17, wherein the timer is configured such that the mark-to-space ratio lies between 1:1 and 1:5.
19. A generator according to claim 17 or claim 18, including a control for adjusting the said mark-to-space ratio.
20. A generator according to any of claims 14 to 19, wherein the output impedance of the output stage at the output lines is less than 10 ohms.
21. A generator according to any of claims 14 to 20, arranged such that RF power delivery to the output lines is cut off when the power supply energy level falls below a predetermined minimum value.
PCT/GB2005/004470 2004-12-03 2005-11-18 An electrosurgical generator WO2006059067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0426648.2 2004-12-03
GB0426648A GB0426648D0 (en) 2004-12-03 2004-12-03 An electrosurgical generator

Publications (1)

Publication Number Publication Date
WO2006059067A1 true WO2006059067A1 (en) 2006-06-08

Family

ID=34044070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2005/004470 WO2006059067A1 (en) 2004-12-03 2005-11-18 An electrosurgical generator

Country Status (2)

Country Link
GB (1) GB0426648D0 (en)
WO (1) WO2006059067A1 (en)

Cited By (521)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114243A1 (en) * 2007-03-19 2008-09-25 Medicn.R.G. Ltd. Medical apparatus for administering heat treatments particularly usefeul in dental root canal treatments
GB2480498A (en) * 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8186560B2 (en) 2007-03-15 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US8205781B2 (en) 2008-09-19 2012-06-26 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US8322589B2 (en) 2007-06-22 2012-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
WO2013068724A1 (en) * 2011-11-07 2013-05-16 Asalus Medical Instruments Limited Improvements in and relating to laparoscopic instruments
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US8631987B2 (en) 2006-08-02 2014-01-21 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8875972B2 (en) 2008-02-15 2014-11-04 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
EP2829248A1 (en) * 2013-07-24 2015-01-28 Covidien LP Systems and methods for generating electrosurgical energy using a multistage power converter
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
CN108472007A (en) * 2015-11-02 2018-08-31 皇家飞利浦有限公司 The active distributed of high-voltage power supply for ultrasonic transducer
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10433896B2 (en) 2014-12-10 2019-10-08 Olympus Winter & Ibe Gmbh Electrosurgical generator as well as a control device and a method
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11304702B2 (en) 2013-09-13 2022-04-19 Cilag Gmbh International Surgical clip having compliant portion
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
EP4011307A4 (en) * 2019-08-06 2022-10-12 Shenzhen Neumann Technology Co., Ltd. Real-time pulse monitoring circuit and tumor treatment apparatus
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11944306B2 (en) 2008-09-19 2024-04-02 Cilag Gmbh International Surgical stapler including a replaceable staple cartridge
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11957795B2 (en) 2021-12-13 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590934A (en) * 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
EP1157667A2 (en) * 2000-05-25 2001-11-28 Ethicon Endo-Surgery, Inc. Electrosurgical generator with RF leakage reduction
US20020165531A1 (en) * 2000-10-31 2002-11-07 Gyrus Medical Limited An Electrosurgical System
US20040030329A1 (en) * 2000-08-08 2004-02-12 Martin Hagg High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation
WO2004062516A1 (en) * 2003-01-09 2004-07-29 Gyrus Medical Limited An electrosurgical generator
US20050177150A1 (en) * 2003-01-09 2005-08-11 Gyrus Medical Limited Electrosurgical generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590934A (en) * 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
EP1157667A2 (en) * 2000-05-25 2001-11-28 Ethicon Endo-Surgery, Inc. Electrosurgical generator with RF leakage reduction
US20040030329A1 (en) * 2000-08-08 2004-02-12 Martin Hagg High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation
US20020165531A1 (en) * 2000-10-31 2002-11-07 Gyrus Medical Limited An Electrosurgical System
WO2004062516A1 (en) * 2003-01-09 2004-07-29 Gyrus Medical Limited An electrosurgical generator
US20050177150A1 (en) * 2003-01-09 2005-08-11 Gyrus Medical Limited Electrosurgical generator

Cited By (1502)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783541B2 (en) 2003-05-20 2014-07-22 Frederick E. Shelton, IV Robotically-controlled surgical end effector system
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US8517244B2 (en) 2004-07-28 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US8317070B2 (en) 2005-08-31 2012-11-27 Ethicon Endo-Surgery, Inc. Surgical stapling devices that produce formed staples having different lengths
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US8636187B2 (en) 2005-08-31 2014-01-28 Ethicon Endo-Surgery, Inc. Surgical stapling systems that produce formed staples having different lengths
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US8464923B2 (en) 2005-08-31 2013-06-18 Ethicon Endo-Surgery, Inc. Surgical stapling devices for forming staples with different formed heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US8567656B2 (en) 2005-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US10010322B2 (en) 2006-01-31 2018-07-03 Ethicon Llc Surgical instrument
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US8746529B2 (en) 2006-01-31 2014-06-10 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US8157153B2 (en) 2006-01-31 2012-04-17 Ethicon Endo-Surgery, Inc. Surgical instrument with force-feedback capabilities
US8752747B2 (en) 2006-01-31 2014-06-17 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US8167185B2 (en) 2006-01-31 2012-05-01 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8172124B2 (en) 2006-01-31 2012-05-08 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8292155B2 (en) 2006-01-31 2012-10-23 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US8820605B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instruments
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US8844789B2 (en) 2006-01-31 2014-09-30 Ethicon Endo-Surgery, Inc. Automated end effector component reloading system for use with a robotic system
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US10335144B2 (en) 2006-01-31 2019-07-02 Ethicon Llc Surgical instrument
US10342533B2 (en) 2006-01-31 2019-07-09 Ethicon Llc Surgical instrument
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US10064688B2 (en) 2006-03-23 2018-09-04 Ethicon Llc Surgical system with selectively articulatable end effector
US9149274B2 (en) 2006-03-23 2015-10-06 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US8631987B2 (en) 2006-08-02 2014-01-21 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US10695053B2 (en) 2006-09-29 2020-06-30 Ethicon Llc Surgical end effectors with staple cartridges
US8360297B2 (en) 2006-09-29 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling instrument with self adjusting anvil
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8499993B2 (en) 2006-09-29 2013-08-06 Ethicon Endo-Surgery, Inc. Surgical staple cartridge
US11633182B2 (en) 2006-09-29 2023-04-25 Cilag Gmbh International Surgical stapling assemblies
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US8348131B2 (en) 2006-09-29 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US11406379B2 (en) 2006-09-29 2022-08-09 Cilag Gmbh International Surgical end effectors with staple cartridges
US8365976B2 (en) 2006-09-29 2013-02-05 Ethicon Endo-Surgery, Inc. Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US8485412B2 (en) 2006-09-29 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical staples having attached drivers and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US8899465B2 (en) 2006-09-29 2014-12-02 Ethicon Endo-Surgery, Inc. Staple cartridge comprising drivers for deploying a plurality of staples
US11678876B2 (en) 2006-09-29 2023-06-20 Cilag Gmbh International Powered surgical instrument
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8479969B2 (en) 2007-01-10 2013-07-09 Ethicon Endo-Surgery, Inc. Drive interface for operably coupling a manipulatable surgical tool to a robot
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US8517243B2 (en) 2007-01-10 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US10441369B2 (en) 2007-01-10 2019-10-15 Ethicon Llc Articulatable surgical instrument configured for detachable use with a robotic system
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9999431B2 (en) 2007-01-11 2018-06-19 Ethicon Endo-Surgery, Llc Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US8668130B2 (en) 2007-03-15 2014-03-11 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US8925788B2 (en) 2007-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US8672208B2 (en) 2007-03-15 2014-03-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US8991676B2 (en) 2007-03-15 2015-03-31 Ethicon Endo-Surgery, Inc. Surgical staple having a slidable crown
US9872682B2 (en) 2007-03-15 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US8186560B2 (en) 2007-03-15 2012-05-29 Ethicon Endo-Surgery, Inc. Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
WO2008114243A1 (en) * 2007-03-19 2008-09-25 Medicn.R.G. Ltd. Medical apparatus for administering heat treatments particularly usefeul in dental root canal treatments
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US10441280B2 (en) 2007-06-04 2019-10-15 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US8424740B2 (en) 2007-06-04 2013-04-23 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8196796B2 (en) 2007-06-04 2012-06-12 Ethicon Endo-Surgery, Inc. Shaft based rotary drive system for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8616431B2 (en) 2007-06-04 2013-12-31 Ethicon Endo-Surgery, Inc. Shiftable drive interface for robotically-controlled surgical tool
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8353437B2 (en) 2007-06-22 2013-01-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US8322589B2 (en) 2007-06-22 2012-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8333313B2 (en) 2007-06-22 2012-12-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a firing member return mechanism
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US10765424B2 (en) 2008-02-13 2020-09-08 Ethicon Llc Surgical stapling instrument
US8540129B2 (en) 2008-02-13 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US8657178B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US8196795B2 (en) 2008-02-14 2012-06-12 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US8573461B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with cam-driven staple deployment arrangements
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8540130B2 (en) 2008-02-14 2013-09-24 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US8113410B2 (en) 2008-02-14 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US8371491B2 (en) 2008-02-15 2013-02-12 Ethicon Endo-Surgery, Inc. Surgical end effector having buttress retention features
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US10835250B2 (en) 2008-02-15 2020-11-17 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US8875972B2 (en) 2008-02-15 2014-11-04 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US9913647B2 (en) 2008-02-15 2018-03-13 Ethicon Llc Disposable loading unit for use with a surgical instrument
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US10058327B2 (en) 2008-02-15 2018-08-28 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US11944306B2 (en) 2008-09-19 2024-04-02 Cilag Gmbh International Surgical stapler including a replaceable staple cartridge
US10258336B2 (en) 2008-09-19 2019-04-16 Ethicon Llc Stapling system configured to produce different formed staple heights
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US11123071B2 (en) 2008-09-19 2021-09-21 Cilag Gmbh International Staple cartridge for us with a surgical instrument
US8205781B2 (en) 2008-09-19 2012-06-26 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US9326771B2 (en) 2008-09-19 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridge
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US8602287B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery, Inc. Motor driven surgical cutting instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US9028519B2 (en) 2008-09-23 2015-05-12 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US8602288B2 (en) 2008-09-23 2013-12-10 Ethicon Endo-Surgery. Inc. Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9549732B2 (en) 2008-09-23 2017-01-24 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting instrument
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US8348129B2 (en) 2009-10-09 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapler having a closure mechanism
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8353438B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid cap assembly configured for easy removal
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8622275B2 (en) 2009-11-19 2014-01-07 Ethicon Endo-Surgery, Inc. Circular stapler introducer with rigid distal end portion
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US9675372B2 (en) 2009-12-24 2017-06-13 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8453914B2 (en) 2009-12-24 2013-06-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
GB2480498A (en) * 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US10470770B2 (en) 2010-07-30 2019-11-12 Ethicon Llc Circular surgical fastening devices with tissue acquisition arrangements
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8672207B2 (en) 2010-07-30 2014-03-18 Ethicon Endo-Surgery, Inc. Transwall visualization arrangements and methods for surgical circular staplers
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8794497B2 (en) 2010-09-09 2014-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US10188393B2 (en) 2010-09-17 2019-01-29 Ethicon Llc Surgical instrument battery comprising a plurality of cells
US10595835B2 (en) 2010-09-17 2020-03-24 Ethicon Llc Surgical instrument comprising a removable battery
US10492787B2 (en) 2010-09-17 2019-12-03 Ethicon Llc Orientable battery for a surgical instrument
US11471138B2 (en) 2010-09-17 2022-10-18 Cilag Gmbh International Power control arrangements for surgical instruments and batteries
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8789741B2 (en) 2010-09-24 2014-07-29 Ethicon Endo-Surgery, Inc. Surgical instrument with trigger assembly for generating multiple actuation motions
US10898191B2 (en) 2010-09-29 2021-01-26 Ethicon Llc Fastener cartridge
US11571213B2 (en) 2010-09-29 2023-02-07 Cilag Gmbh International Staple cartridge
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US9131940B2 (en) 2010-09-29 2015-09-15 Ethicon Endo-Surgery, Inc. Staple cartridge
US11944303B2 (en) 2010-09-29 2024-04-02 Cilag Gmbh International Staple cartridge
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US8474677B2 (en) 2010-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and a cover
US8529600B2 (en) 2010-09-30 2013-09-10 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix
US8657176B2 (en) 2010-09-30 2014-02-25 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US8740037B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Compressible fastener cartridge
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US8740034B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with interchangeable staple cartridge arrangements
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US8746535B2 (en) 2010-09-30 2014-06-10 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising detachable portions
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US8752699B2 (en) 2010-09-30 2014-06-17 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising bioabsorbable layers
US8757465B2 (en) 2010-09-30 2014-06-24 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US8763877B2 (en) 2010-09-30 2014-07-01 Ethicon Endo-Surgery, Inc. Surgical instruments with reconfigurable shaft segments
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US8783542B2 (en) 2010-09-30 2014-07-22 Ethicon Endo-Surgery, Inc. Fasteners supported by a fastener cartridge support
US10136890B2 (en) 2010-09-30 2018-11-27 Ethicon Llc Staple cartridge comprising a variable thickness compressible portion
US8814024B2 (en) 2010-09-30 2014-08-26 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of connected retention matrix elements
US8840003B2 (en) 2010-09-30 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with compact articulation control arrangement
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US8864007B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge having a non-uniform arrangement
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8899463B2 (en) 2010-09-30 2014-12-02 Ethicon Endo-Surgery, Inc. Surgical staple cartridges supporting non-linearly arranged staples and surgical stapling instruments with common staple-forming pockets
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US8925782B2 (en) 2010-09-30 2015-01-06 Ethicon Endo-Surgery, Inc. Implantable fastener cartridge comprising multiple layers
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US8978956B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Jaw closure arrangements for surgical instruments
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9033203B2 (en) 2010-09-30 2015-05-19 Ethicon Endo-Surgery, Inc. Fastening instrument for deploying a fastener system comprising a retention matrix
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10213198B2 (en) 2010-09-30 2019-02-26 Ethicon Llc Actuator for releasing a tissue thickness compensator from a fastener cartridge
US9044228B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a plurality of fastener cartridges
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US9044227B2 (en) 2010-09-30 2015-06-02 Ethicon Endo-Surgery, Inc. Collapsible fastener cartridge
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US9113862B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a variable staple forming system
US9113864B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instruments with separate and distinct fastener deployment and tissue cutting systems
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US9168038B2 (en) 2010-09-30 2015-10-27 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a tissue thickness compensator
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US9295464B2 (en) 2010-09-30 2016-03-29 Ethicon Endo-Surgery, Inc. Surgical stapler anvil comprising a plurality of forming pockets
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9301755B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Compressible staple cartridge assembly
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US10405854B2 (en) 2010-09-30 2019-09-10 Ethicon Llc Surgical stapling cartridge with layer retention features
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US9113883B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Collapsible anvil plate assemblies for circular surgical stapling devices
US11864747B2 (en) 2011-03-14 2024-01-09 Cilag Gmbh International Anvil assemblies for circular staplers
US9125654B2 (en) 2011-03-14 2015-09-08 Ethicon Endo-Surgery, Inc. Multiple part anvil assemblies for circular surgical stapling devices
US11478238B2 (en) 2011-03-14 2022-10-25 Cilag Gmbh International Anvil assemblies with collapsible frames for circular staplers
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
US10987094B2 (en) 2011-03-14 2021-04-27 Ethicon Llc Surgical bowel retractor devices
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US9980713B2 (en) 2011-03-14 2018-05-29 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US8734478B2 (en) 2011-03-14 2014-05-27 Ethicon Endo-Surgery, Inc. Rectal manipulation devices
US9033204B2 (en) 2011-03-14 2015-05-19 Ethicon Endo-Surgery, Inc. Circular stapling devices with tissue-puncturing anvil features
US10045769B2 (en) 2011-03-14 2018-08-14 Ethicon Llc Circular surgical staplers with foldable anvil assemblies
US9974529B2 (en) 2011-03-14 2018-05-22 Ethicon Llc Surgical instrument
US10751040B2 (en) 2011-03-14 2020-08-25 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US9089330B2 (en) 2011-03-14 2015-07-28 Ethicon Endo-Surgery, Inc. Surgical bowel retractor devices
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US8978955B2 (en) 2011-03-14 2015-03-17 Ethicon Endo-Surgery, Inc. Anvil assemblies with collapsible frames for circular staplers
US10130352B2 (en) 2011-03-14 2018-11-20 Ethicon Llc Surgical bowel retractor devices
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US8827903B2 (en) 2011-03-14 2014-09-09 Ethicon Endo-Surgery, Inc. Modular tool heads for use with circular surgical instruments
US10898177B2 (en) 2011-03-14 2021-01-26 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8833632B2 (en) 2011-09-06 2014-09-16 Ethicon Endo-Surgery, Inc. Firing member displacement system for a stapling instrument
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
WO2013068724A1 (en) * 2011-11-07 2013-05-16 Asalus Medical Instruments Limited Improvements in and relating to laparoscopic instruments
US10245106B2 (en) 2011-11-07 2019-04-02 Asalus Medical Instruments Limited Laparoscopic instruments
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10166025B2 (en) 2012-03-26 2019-01-01 Ethicon Llc Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
EP2829248A1 (en) * 2013-07-24 2015-01-28 Covidien LP Systems and methods for generating electrosurgical energy using a multistage power converter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US11304702B2 (en) 2013-09-13 2022-04-19 Cilag Gmbh International Surgical clip having compliant portion
US11759201B2 (en) 2013-12-23 2023-09-19 Cilag Gmbh International Surgical stapling system comprising an end effector including an anvil with an anvil cap
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US11950776B2 (en) 2013-12-23 2024-04-09 Cilag Gmbh International Modular surgical instruments
US11779327B2 (en) 2013-12-23 2023-10-10 Cilag Gmbh International Surgical stapling system including a push bar
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US11583273B2 (en) 2013-12-23 2023-02-21 Cilag Gmbh International Surgical stapling system including a firing beam extending through an articulation region
US11364028B2 (en) 2013-12-23 2022-06-21 Cilag Gmbh International Modular surgical system
US11896223B2 (en) 2013-12-23 2024-02-13 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US10265065B2 (en) 2013-12-23 2019-04-23 Ethicon Llc Surgical staples and staple cartridges
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11246587B2 (en) 2013-12-23 2022-02-15 Cilag Gmbh International Surgical cutting and stapling instruments
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11026677B2 (en) 2013-12-23 2021-06-08 Cilag Gmbh International Surgical stapling assembly
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10729441B2 (en) 2014-06-13 2020-08-04 Ethicon Llc Closure lockout systems for surgical instruments
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US11547410B2 (en) 2014-06-13 2023-01-10 Cilag Gmbh International Closure lockout systems for surgical instruments
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10433896B2 (en) 2014-12-10 2019-10-08 Olympus Winter & Ibe Gmbh Electrosurgical generator as well as a control device and a method
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11510675B2 (en) 2015-08-26 2022-11-29 Cilag Gmbh International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
US10966724B2 (en) 2015-08-26 2021-04-06 Ethicon Llc Surgical staples comprising a guide
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10470769B2 (en) 2015-08-26 2019-11-12 Ethicon Llc Staple cartridge assembly comprising staple alignment features on a firing member
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10188394B2 (en) 2015-08-26 2019-01-29 Ethicon Llc Staples configured to support an implantable adjunct
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US10390829B2 (en) 2015-08-26 2019-08-27 Ethicon Llc Staples comprising a cover
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
US11051817B2 (en) 2015-08-26 2021-07-06 Cilag Gmbh International Method for forming a staple against an anvil of a surgical stapling instrument
US10433845B2 (en) 2015-08-26 2019-10-08 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US11589868B2 (en) 2015-09-02 2023-02-28 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
CN108472007A (en) * 2015-11-02 2018-08-31 皇家飞利浦有限公司 The active distributed of high-voltage power supply for ultrasonic transducer
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US11058421B2 (en) 2016-04-01 2021-07-13 Cilag Gmbh International Modular surgical stapling system comprising a display
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10568632B2 (en) 2016-04-01 2020-02-25 Ethicon Llc Surgical stapling system comprising a jaw closure lockout
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US11766257B2 (en) 2016-04-01 2023-09-26 Cilag Gmbh International Surgical instrument comprising a display
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10542991B2 (en) 2016-04-01 2020-01-28 Ethicon Llc Surgical stapling system comprising a jaw attachment lockout
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10856867B2 (en) 2016-04-01 2020-12-08 Ethicon Llc Surgical stapling system comprising a tissue compression lockout
US10478190B2 (en) 2016-04-01 2019-11-19 Ethicon Llc Surgical stapling system comprising a spent cartridge lockout
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11337694B2 (en) 2016-04-01 2022-05-24 Cilag Gmbh International Surgical cutting and stapling end effector with anvil concentric drive member
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US11786246B2 (en) 2016-06-24 2023-10-17 Cilag Gmbh International Stapling system for use with wire staples and stamped staples
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
USD948043S1 (en) 2016-06-24 2022-04-05 Cilag Gmbh International Surgical fastener
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11000276B2 (en) 2016-12-21 2021-05-11 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
EP4011307A4 (en) * 2019-08-06 2022-10-12 Shenzhen Neumann Technology Co., Ltd. Real-time pulse monitoring circuit and tumor treatment apparatus
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11957344B2 (en) 2021-09-27 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US11957339B2 (en) 2021-11-09 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11957795B2 (en) 2021-12-13 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11957345B2 (en) 2022-12-19 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication

Also Published As

Publication number Publication date
GB0426648D0 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
US7195627B2 (en) Electrosurgical generator
AU2003290301B2 (en) An electrosurgical generator
WO2006059067A1 (en) An electrosurgical generator
EP1082944B1 (en) An electrosurgical generator and system
EP0754437B1 (en) An electrosurgical generator and system
US6093186A (en) Electrosurgical generator and system
JP3415147B2 (en) Electrosurgical surgical device using constant voltage
WO2008053532A1 (en) High frequency cautery electric power source device
US9980768B2 (en) Electrosurgical device with improved incision
US11918270B2 (en) Electrosurgical generator, electrosurgical system, and method of operating an electrosurgical generator
MXPA99005760A (en) Electrosurgical generator and system for underwater operation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05807971

Country of ref document: EP

Kind code of ref document: A1