WO2006046524A1 - Pqq-dependent glucose dehydrogenase composition - Google Patents

Pqq-dependent glucose dehydrogenase composition Download PDF

Info

Publication number
WO2006046524A1
WO2006046524A1 PCT/JP2005/019532 JP2005019532W WO2006046524A1 WO 2006046524 A1 WO2006046524 A1 WO 2006046524A1 JP 2005019532 W JP2005019532 W JP 2005019532W WO 2006046524 A1 WO2006046524 A1 WO 2006046524A1
Authority
WO
WIPO (PCT)
Prior art keywords
dependent
protein component
host
glucose
dehydrogenase
Prior art date
Application number
PCT/JP2005/019532
Other languages
French (fr)
Japanese (ja)
Inventor
Tadanobu Matsumura
Kayoko Kajitani
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2006046524A1 publication Critical patent/WO2006046524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • C12Q1/006Enzyme electrodes involving specific analytes or enzymes for glucose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/54Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving glucose or galactose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/05Oxidoreductases acting on the CH-OH group of donors (1.1) with a quinone or similar compound as acceptor (1.1.5)
    • C12Y101/05002Quinoprotein glucose dehydrogenase (1.1.5.2)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/66Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood sugars, e.g. galactose

Definitions

  • the present invention relates to a stabilized pyroguchi quinoline quinone-dependent glucose dehydrogenase composition.
  • pyroguchi quinoline quinone is also referred to as PQQ, gnolecose dehydrogenase as GDH, and pyroguchi quinoline quinone-dependent glucose dehydrogenase as PQQGDH.
  • PQQ pyroguchi quinoline quinone-dependent glucose dehydrogenase
  • Non-Patent Document 1 As a method for measuring glucose in specimens such as serum and urine, a measurement system using PQQ-dependent gnolecose dehydrogenase that requires PQQ as a coenzyme is known (for example, Non-Patent Document 1). Although this measurement system can be applied to reactions in a solution, it is generally in the form of a gnolecose sensor that is widely used (for example, Patent Document 1). In such a glucose sensor, components necessary for the reaction such as PQQ-dependent glucose dehydrogenase are often immobilized on the sensor in a dry state.
  • Non-Patent Document 1 Methods in Enzymology, Vol. 89 (1982) p20 (Academic
  • Patent Document 1 Patent Publication 2003—207475
  • the present inventor has conducted various studies on a stabilizer for PQQ-dependent glucose dehydrogenase. As a result, the inventors have found a composition that can ensure stability without using a biological substance, and have reached the present invention. .
  • a pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition comprising no protein component other than a host-derived protein component.
  • a method for stabilizing pyroguchi quinoline quinone-dependent gnolecose dehydrogenase in a pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition which does not contain a protein component other than a host-derived protein component.
  • a glucose assembly comprising the glucose dehydrogenase composition according to claim 1.
  • a glucose sensor comprising the glucose dehydrogenase composition according to claim 1.
  • the invention's effect is to give the glucose dehydrogenase composition according to claim 1.
  • the present invention it is possible to provide a Dalcors measurement system that ensures the stability of the enzyme and is highly practical in measuring glucose by a sensor using a PQQ-dependent glucose dehydrogenase.
  • the stability of the enzyme and the accuracy of the measurement can be compatible, and a genolecose measuring system excellent in practicality can be provided.
  • FIG. 2 Comparison of glucose dehydrogenase residual activity after storage in each composition of Example 3.
  • PQQ-dependent glucose dehydrogenase is an enzyme that coordinates PQQ as a coenzyme, and oxidizes D-glucose to produce D-darcono 1,5-latataton. It is an enzyme that catalyzes (EC1. 1. 5. 2 (formerly EC1. 1. 99. 17)), and there are no particular restrictions on its origin or structure.
  • the genus Acinetobacter the genus Pseudomonas, the Burkholde Produced from ria, Gluconobactor, or Acetobactor.
  • Acinetobacter baumannii for example, see Patent Document 1
  • Acinetobacter calcoaceticus for example, see Non-Patent Documents 1 and 2)
  • Aeruginosa Ps eudomonasaeruginosa
  • Gerhard 1 Tomonasu 'putida Pseudomonas putida Li, Gerhard Domonasu' unloading Leo column sense (Pseudomonas fluorescens), Gunorekonono Kuta one 'O Kishidansu
  • Oxidatives such as oyster fungus, Agrobacterium radiobacter, Escherichia coli (see, for example, non-patent document 4), Klebsiella aerogenes, etc.
  • Enterobacteriaceae can Burkholderia 'Sepashia (B urkarrderia
  • Non-patent document 1 ⁇ ⁇ M. Cleton—Jansen et al., J. Bacteriol., 170, 2121 (1988)
  • Non-patent document 2 ⁇ 1 ⁇ Gen. Genet., 217, 430 (1989)
  • Non-Patent Document 3 ⁇ 1Gen. Genet., 229, 206 (1991)
  • Non-Patent Document 4 M. Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990)
  • Patent Document 2 JP-A-11 243949
  • Patent Document 3 JP 2004-173538 A
  • Patent Document 4 Special Table 2004— 512047
  • PQQGDH that can be applied to the present invention may have a part of other amino acid residues deleted or replaced with those exemplified above, as long as it has gnoreucose dehydrogenase activity. Also, other amino acid residues may be added.
  • PQQGDHs can be easily produced by those skilled in the art using known techniques in the art.
  • an expression vector (many of which are known in the art, after the above-mentioned natural microorganism producing PQQGDH or the gene encoding natural PQQGDH is directly or mutated) And then transforming the transformant transformed into an appropriate host (many are known in the art, eg, E. coli), and centrifuging it from the culture. After the body is recovered, the cells are destroyed by a mechanical method or an enzymatic method such as lysozyme, and if necessary, a chelating agent such as EDTA or a surfactant is added to solubilize the PQQGDH. A water-soluble fraction can be obtained.
  • the expressed PQQGDH can be secreted directly into the culture medium by using an appropriate host vector system.
  • the PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting out treatment such as ammonium sulfate and sodium sulfate, or fractional precipitation using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc. It should be precipitated by the law. Heat treatment and isoelectric point treatment are also effective purification means.
  • purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography.
  • the purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
  • heat treatment at 25 to 50 ° C, more preferably 30 to 45 ° C may be performed to improve the ratio of holo-type PQQGDH to the total GDH enzyme protein.
  • the PQQGDH produced as described above contains substantially no protein component other than the protein component derived from the host.
  • a commercially available enzyme such as GLD-321 manufactured by Toyobo Co. It is possible to manufacture S.
  • composition of the present invention further undergoes a process other than "recovering host-derived protein" to PQQGDH containing no protein component other than the host-derived protein component produced as described above. Can be obtained. For example, it is not necessary to add anything to PQQGDH, and it can be achieved by adding various components other than host-derived protein components.
  • the form of the composition can take various forms such as an aqueous composition such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc., but is not particularly limited. .
  • the lyophilization method is not particularly limited and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
  • the composition of the present invention basically comprises the enzyme, calcium or a calcium salt, and a buffer. Further, after containing these, pyro-quinoline quinone, amino acid, saccharide or organic acid may be further added.
  • the enzyme composition of the present invention may be an aqueous composition or a lyophilized product as long as it contains these.
  • the calcium supply form examples include calcium salts of inorganic acids or organic acids such as calcium chloride, calcium acetate, calcium citrate and the like. Of these, calcium chloride is preferred.
  • the calcium content (W / W) is desirably 0.05% to 5%, and more preferably 0.1% to 0.5%.
  • buffering agent those generally used may be used, and those having a pH of the composition of 5 to 10 are usually preferable. However, a substance that forms an insoluble salt with calcium, such as a phosphate buffer, is not preferable. In addition, those having an amino group end such as trisaminomethane are preferred because they destabilize the PQQ bond of PQQ-dependent glucose dehydrogenase.
  • a buffering agent such as boric acid or acetic acid, BES, Bicine, Bis_Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPS ⁇ , TAPS, TAPS ⁇ , TES Good buffer such as Tricine.
  • PIPES having a buffer capacity at pH 6 to 7 is preferable.
  • the content of the buffering agent (W / W) is preferably 1.0% to 50%. More preferably, it is 5% to 10%.
  • amino acid examples include glycylglycine, dimethyldalycin, histidine, serine, asparagine, aspartic acid, glutamine, and salts thereof, and salts thereof.
  • the amino acid content (WZW) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
  • organic acid examples include, but are not particularly limited to, ketokenoretaric acid, pyruvic acid, L-malic acid, gnoreclonic acid, and ketokegluconic acid, and salts thereof.
  • the organic acid content (W / W) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
  • the sugar is not particularly limited, but cyclodextrin and the like are preferable.
  • the saccharide content (WZW) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
  • the content (W / W) of pyroguchi quinoline quinone is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
  • the total content (W / W) of the combined substances is desirably 10% to 80%, more preferably 20% to 70%, and even more preferably 30% to 60%.
  • the present invention is a glucose measurement reagent, a glucose assay kit, and a gnolecose sensor containing the composition.
  • the part relating to the PQQGDH composition can take various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, and the like.
  • the lyophilization method is not particularly limited and may be performed according to a conventional method.
  • the composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
  • the glucose assay kit of the present invention typically has a reagent necessary for measurement such as PQQGDH, buffer solution, and mediator, and a glucose standard for preparing a calibration curve. Includes sub-solutions, as well as guidelines for use.
  • the kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution.
  • the PQQGDH of the present invention is provided in the form of a force apoenzyme provided in a holoform, and can be holoed when used.
  • a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and PQQGLD is immobilized on this electrode.
  • immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinking polymer, a conductive polymer, a redox polymer, or the like. It may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator typified by mouth sen or its derivatives, or a combination thereof.
  • the PQQGDH of the present invention may be immobilized in the form of a force apoenzyme that is immobilized on the electrode in a holo form, and PQQ may be supplied as a separate layer or in solution.
  • PQQGDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block the gnoretaraldehyde.
  • the present invention provides a pyroguchi quinoline quinoline-dependent glucose dehydrogenase composition, which does not contain a protein component other than a host-derived protein component by, for example, the means described above. This is a method for stabilizing quinone-dependent glucose dehydrogenase.
  • the present invention provides a stabilized pyroguchi quinoline quinone-dependent gnolecose dehydrogenase characterized by not containing a protein component other than a host-derived protein component by, for example, the means described above. It is a manufacturing method of a composition.
  • the enzyme activity of PQQGDH can be measured by the following method.
  • NTB nitrotetrazolium blue
  • PMS phenazine methosulfate
  • One unit refers to the amount of PQQGDH enzyme that forms 0.5 mmol of diformazan per minute under the conditions described below.
  • D glucose solution: 1 ⁇ 0M (1.8g D—glucose (molecular weight 180 ⁇ 16) / 10ml H20)
  • PIPES NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302. 36) suspended in 60 mL of water was dissolved in 5N NaOH and 2 ml of 10% Triton X — Calorize 1 00. Use 5N NaOH to 25. Adjust the ⁇ 6. to 6.5 ⁇ 0.05 with C and add water to make 100 ml.)
  • E. Enzyme Diluent ImM CaCl, 0.1% Triton X-100, 0.1% BSA included 50mM PIPES—NaOH buffer ( ⁇ 6 ⁇ 5)
  • the enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
  • Vt Total volume (3. lml)
  • Vs Sample volume (0. lml)
  • the following components were dissolved in 6 L of tap water to adjust the pH to 7.0, and then sterilized with an autoclave at 121 ° C. for 20 minutes to obtain a medium.
  • a glucose sensor is produced by blocking with dartalaldehyde by treatment with a reagent having an amine group.
  • a reagent having an amine group At the time of preparation, both sushi serum albumin (A) and no addition (B) are performed.
  • A sushi serum albumin
  • B no addition
  • a 100 mg / dl (concentration) aqueous glucose solution is measured 20 times. Simultaneous reproducibility and accuracy (difference from theoretical values) is better in (B).

Abstract

[PROBLEMS] To provide a practically useful glucose measuring system whereby the stability of an enzyme can be ensured in measuring glucose with the use of PPQ-dependent glucose dehydrogenase. [MEANS FOR SOLVING PROBLEMS] A pyrroloquinoline quinone-dependent glucose dehydrogenase composition characterized by being free from protein component other than protein components originating in the host; or a pyrroloquinoline quinone-dependent glucose dehydrogenase composition which exclusively contains calcium or a calcium salt and a buffering agent in addition to protein components originating in the host.

Description

明 細 書  Specification
PQQ依存性グルコースデヒドロゲナーゼ組成物  PQQ-dependent glucose dehydrogenase composition
技術分野  Technical field
[0001] 本発明は安定化されたピロ口キノリンキノン依存性グルコースデヒドロゲナーゼ組成 物に関するものである。 (以下ピロ口キノリンキノンを PQQ、グノレコースデヒドロゲナー ゼを GDH、ピロ口キノリンキノン依存性グルコースデヒドロゲナーゼを PQQGDHとも それぞれ記載する。 )  [0001] The present invention relates to a stabilized pyroguchi quinoline quinone-dependent glucose dehydrogenase composition. (Hereinafter, pyroguchi quinoline quinone is also referred to as PQQ, gnolecose dehydrogenase as GDH, and pyroguchi quinoline quinone-dependent glucose dehydrogenase as PQQGDH.)
背景技術  Background art
[0002] 血清、尿などの検体中のグルコース測定法として、 PQQを補酵素として必要とする PQQ依存性グノレコースデヒドロゲナーゼを使用する測定系が知られている(たとえば 、非特許文献 1)。この測定系は、溶液中の反応に適用することもできるが、一般に広 く普及しているのはグノレコースセンサーの形態である(たとえば、特許文献 1)。このよ うなグルコースセンサーにおいて、 PQQ依存性グルコースデヒドロゲナーゼなど反応 に必要な成分は乾燥状態でセンサーに固定化されていることが多い。  [0002] As a method for measuring glucose in specimens such as serum and urine, a measurement system using PQQ-dependent gnolecose dehydrogenase that requires PQQ as a coenzyme is known (for example, Non-Patent Document 1). Although this measurement system can be applied to reactions in a solution, it is generally in the form of a gnolecose sensor that is widely used (for example, Patent Document 1). In such a glucose sensor, components necessary for the reaction such as PQQ-dependent glucose dehydrogenase are often immobilized on the sensor in a dry state.
非特許文献 1 : Methods in Enzymology, Vol. 89 (1982) p20 (Academic Non-Patent Document 1: Methods in Enzymology, Vol. 89 (1982) p20 (Academic
Press, Inc) Press, Inc)
特許文献 1 :特許公開 2003— 207475  Patent Document 1: Patent Publication 2003—207475
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 一般的に酵素製剤には、その安定性の向上や維持等を目的に何らかの安定化剤が 添加されており、 PQQ依存性グルコースデヒドロゲナーゼ製剤の場合も同様である。 し力、しながら、 PQQ依存性グノレコースデヒドロゲナーゼの場合、酵素をセンサーに適 用しょうとすると、安定化剤は測定値に影響を与え正確性を損ねるなど不測の問題を ひきおこす可能性がある。また、測定時において、反応に必要な成分の溶解性を考 慮すると、同一活性を有する酵素製剤としては少量である方が望ましい。これらのこと から、添加される安定化剤としては極力少量であることが望ましぐかつ酵素製剤さら にはセンサーとしての安定性と正確性を確保していることが望ましい。 本願発明の課題は、酵素製剤の安定性、と、センサーに適用した場合の測定の正確 性を損なう要因の低減、を両立させることにある。 [0003] Generally, enzyme preparations are added with some kind of stabilizer for the purpose of improving or maintaining their stability, and the same applies to PQQ-dependent glucose dehydrogenase preparations. However, in the case of PQQ-dependent gnolecose dehydrogenase, if the enzyme is applied to the sensor, the stabilizer may affect the measured value and cause unforeseen problems such as loss of accuracy. . In consideration of the solubility of the components required for the reaction at the time of measurement, it is desirable that the enzyme preparation having the same activity be a small amount. For these reasons, it is desirable that the added stabilizer is as small as possible, and it is desirable to ensure the stability and accuracy of the enzyme preparation as well as the sensor. An object of the present invention is to achieve both the stability of an enzyme preparation and the reduction of factors that impair the accuracy of measurement when applied to a sensor.
課題を解決するための手段  Means for solving the problem
[0004] 本発明者は PQQ依存性グルコースデヒドロゲナーゼの安定化剤について、種々鋭 意検討したところ、生体由来物質を使用しなくとも安定性を担保できる組成を見いだ し、本発明に達した。  [0004] The present inventor has conducted various studies on a stabilizer for PQQ-dependent glucose dehydrogenase. As a result, the inventors have found a composition that can ensure stability without using a biological substance, and have reached the present invention. .
[0005] 本発明の概要は以下の通りである。すなわち、  [0005] The outline of the present invention is as follows. That is,
[項 1コ  [Section 1
宿主由来のタンパク質成分以外のタンパク質成分を含有しないことを特徴とする、 ピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物。  A pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition comprising no protein component other than a host-derived protein component.
[項 2]  [Section 2]
宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有する、請求項 1に記載のピロ口キノリンキノン依存性グルコースデヒドロゲナ ーゼ組成物。  The pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 1, which contains only calcium or a calcium salt and a buffer in addition to the protein component derived from the host.
[項 3コ  [Section 3
宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、ピロ口キノリン キノン、及び緩衝剤のみを含有する、請求項 1に記載のピロ口キノリンキノン依存性グ ルコースデヒドロゲナーゼ組成物。  The pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 1, which contains only calcium or calcium salt, pyroguchi quinoline quinone, and a buffer in addition to the protein component derived from the host.
[項 4コ  [Section 4
宿主由来のタンパク質成分以外のタンパク質成分を含有させないことを特徴とする 、ピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物中におけるピロ口キノ リンキノン依存性グノレコースデヒドロゲナーゼの安定化方法。  A method for stabilizing pyroguchi quinoline quinone-dependent gnolecose dehydrogenase in a pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition, which does not contain a protein component other than a host-derived protein component.
[項 5]  [Section 5]
宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有させることを特徴とする、請求項 4に記載のピロ口キノリンキノン依存性グノレ コースデヒドロゲナーゼ組成物中におけるピロ口キノリンキノン依存性グノレコースデヒ ドロゲナーゼの安定化方法。  5. The pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition according to claim 4, characterized by containing only calcium or a calcium salt and a buffer in addition to the protein component derived from the host. A method for stabilizing a dependent gnolecose dehydrogenase.
[項 6] 宿主由来のタンパク質成分以外のタンパク質成分を含有させなレ、ことを特徴とする 、安定化されたピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物の製造 方法。 [Section 6] A method for producing a stabilized pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition, characterized by not containing a protein component other than a host-derived protein component.
[項 7]  [Section 7]
宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有させることを特徴とする、請求項 6に記載の安定化されたピロ口キノリンキノン 依存性グルコースデヒドロゲナーゼ組成物の製造方法。  7. The method for producing a stabilized pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 6, wherein only the calcium or calcium salt and the buffer are contained in addition to the protein component derived from the host. .
[項 8コ  [Section 8
請求項 1に記載のグルコースデヒドロゲナーゼ組成物を含むグルコースアツセィキッ 卜。  A glucose assembly comprising the glucose dehydrogenase composition according to claim 1.
[項 9コ  [Item 9
請求項 1に記載のグルコースデヒドロゲナーゼ組成物を含むグルコースセンサー。 発明の効果  A glucose sensor comprising the glucose dehydrogenase composition according to claim 1. The invention's effect
[0006] 本願発明によれば、 PQQ依存性グルコースデヒドロゲナーゼを用いたセンサーに よるグルコースの測定において、酵素の安定性を担保し、実用性に優れたダルコ一 ス測定系を提供することができる。また、酵素の安定性と測定の正確性を両立させ、 実用性に優れたグノレコース測定系を提供することができる。  [0006] According to the present invention, it is possible to provide a Dalcors measurement system that ensures the stability of the enzyme and is highly practical in measuring glucose by a sensor using a PQQ-dependent glucose dehydrogenase. In addition, the stability of the enzyme and the accuracy of the measurement can be compatible, and a genolecose measuring system excellent in practicality can be provided.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]実施例 2の各組成における保存後のグルコースデヒドロゲナーゼ残存活性の比 較  [0007] [FIG. 1] Comparison of glucose dehydrogenase residual activity after storage in each composition of Example 2
[図 2]実施例 3の各組成における保存後のグルコースデヒドロゲナーゼ残存活性の比 較  [Fig. 2] Comparison of glucose dehydrogenase residual activity after storage in each composition of Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 本発明において、 PQQ依存性グルコースデヒドロゲナーゼとは、補酵素として PQ Qを配位する酵素であり、 D—グルコースを酸化して D—ダルコノ一 1, 5—ラタトンを 生成するという反応を触媒する酵素 (EC1. 1. 5. 2 (旧 EC1. 1. 99. 17) )であり、 由来や構造に関しては特に限定するものではない。 [0008] In the present invention, PQQ-dependent glucose dehydrogenase is an enzyme that coordinates PQQ as a coenzyme, and oxidizes D-glucose to produce D-darcono 1,5-latataton. It is an enzyme that catalyzes (EC1. 1. 5. 2 (formerly EC1. 1. 99. 17)), and there are no particular restrictions on its origin or structure.
例えば微生物では、 Acinetobacter属糸田菌、 Pseudomonas属糸田菌、 Burkholde ria属細菌、 Gluconobactor属細菌、あるいは Acetobactor属細菌などから生産さ れる。 For example, in microorganisms, the genus Acinetobacter, the genus Pseudomonas, the Burkholde Produced from ria, Gluconobactor, or Acetobactor.
例えば、ァシネトパクター 'バウマンニ (Acinetobacter baumannii) (f列えば、特 許文献 1を参照。)、ァシネトパクター 'カルコァセティカス(Acinetobacter calcoac eticus) (例えば、非特許文献 1および 2を参照。)、シユードモナス.ァエルギノサ(Ps eudomonasaeruginosa)、シュ1 ~トモナス'プチダ (Pseudomonas putidaリ、シュ ードモナス'フノレオレツセンス (Pseudomonas fluorescens)、グノレコノノ クタ一'ォ キシダンス(Gluconobacter oxydans) (例えば、非特許文献 3を参照。)等の酸化 糸田菌ゃァグロバタテリゥム 'ラジオパクター(Agrobacteriumradiobacter)、ェシエリ ヒア 'コリ(Escherichia coli) (例えば、非特許文献 4を参照。 )、クレブシーラ 'エー 口ジーンズ(Klebsiella aerogenes)等の腸内細菌、ブルクホルデリア'セパシァ(B urkhorderia cepaciaリなどを けること力 sできる。 For example, Acinetobacter baumannii (for example, see Patent Document 1), Acinetobacter calcoaceticus (for example, see Non-Patent Documents 1 and 2), Syudomonas. Aeruginosa (Ps eudomonasaeruginosa), Gerhard 1 Tomonasu 'putida (Pseudomonas putida Li, Gerhard Domonasu' unloading Leo column sense (Pseudomonas fluorescens), Gunorekonono Kuta one 'O Kishidansu (Gluconobacter oxydans) (e.g., see non-Patent Document 3.) Oxidatives such as oyster fungus, Agrobacterium radiobacter, Escherichia coli (see, for example, non-patent document 4), Klebsiella aerogenes, etc. Enterobacteriaceae can Burkholderia 'Sepashia (B urkhorderia cepacia the kick force s like Li.
また、例えば Acinetobacter baumannii NCIMB11517株、 Acinetobacter calcoaceticus IF〇12552株、 Acinetobacter calcoaceticus LMD79. 41株 などから生産される(特許文献 2、 3、 4)。  For example, it is produced from Acinetobacter baumannii NCIMB11517 strain, Acinetobacter calcoaceticus IF01552 strain, Acinetobacter calcoaceticus LMD79.41 strain, etc. (Patent Documents 2, 3, and 4).
非特許文献 1 : Α· M. Cleton— Jansenら、 J. Bacteriol. , 170, 2121 (1988) 非特許文献 2 : Μο1· Gen. Genet. , 217, 430 (1989) Non-patent document 1: Α · M. Cleton—Jansen et al., J. Bacteriol., 170, 2121 (1988) Non-patent document 2: Μο1 · Gen. Genet., 217, 430 (1989)
非特許文献 3 : Μο1· Gen. Genet. , 229, 206 (1991 ) Non-Patent Document 3: Μο1Gen. Genet., 229, 206 (1991)
非特許文献 4 : Α· M. Cleton— Jansenら、 J. Bacteriol. , 172, 6308 (1990) 特許文献 2:特開平 11 243949 Non-Patent Document 4: M. Cleton—Jansen et al., J. Bacteriol., 172, 6308 (1990) Patent Document 2: JP-A-11 243949
特許文献 3:特開 2004— 173538 Patent Document 3: JP 2004-173538 A
特許文献 4:特表 2004— 512047 Patent Document 4: Special Table 2004— 512047
本発明に適用することができる PQQGDHは、グノレコースデヒドロゲナーゼ活性を 有する限り、上記に例示されたものにさらに他のアミノ酸残基の一部が欠失または置 換されてレ、てもよく、また他のアミノ酸残基が付加されてレ、てもよレ、。  PQQGDH that can be applied to the present invention may have a part of other amino acid residues deleted or replaced with those exemplified above, as long as it has gnoreucose dehydrogenase activity. Also, other amino acid residues may be added.
このような改変は当該技術分野における公知技術を用いて当業者であれば容易に 実施することが出来る。例えば、蛋白質に部位特異的変異を導入するために当該蛋 白質をコードする遺伝子の塩基配列を置換または揷入するための種々の方法が、 S ambrookら者、 Molecular Cloning; A Laboratory Manual 第 2片及 (1989) Cold Spring Harbor Laboratory Press, New Yorkに記載されている。 Such modifications can be easily carried out by those skilled in the art using known techniques in the art. For example, various methods for substituting or inserting the base sequence of a gene encoding a protein in order to introduce site-specific mutation into the protein include S Ambrook et al., Molecular Cloning; A Laboratory Manual, Part 2 and (1989) Cold Spring Harbor Laboratory Press, New York.
[0010] これらの PQQGDHは、当該技術分野における公知技術を用いて当業者であれば 容易に製造することが出来る。 [0010] These PQQGDHs can be easily produced by those skilled in the art using known techniques in the art.
例えば、上記の PQQGDHを生産する天然の微生物、あるいは、天然の PQQGD Hをコードする遺伝子をそのまま、あるいは、変異させてから、発現用ベクター(多くの ものが当該技術分野において知られている。例えばプラスミド。)に揷入し、適当な宿 主(多くのものが当該技術分野において知られている。例えば大腸菌。)に形質転換 させた形質転換体を培養し、培養液から遠心分離などで菌体を回収した後、菌体を 機械的方法またはリゾチームなどの酵素的方法で破壊し、また、必要に応じて EDT Aなどのキレート剤や界面活性剤等を添加して可溶化し、 PQQGDHを含む水溶性 画分を得ることができる。または適当な宿主ベクター系を用いることにより、発現した P QQGDHを直接培養液中に分泌させることが出来る。  For example, an expression vector (many of which are known in the art, after the above-mentioned natural microorganism producing PQQGDH or the gene encoding natural PQQGDH is directly or mutated) And then transforming the transformant transformed into an appropriate host (many are known in the art, eg, E. coli), and centrifuging it from the culture. After the body is recovered, the cells are destroyed by a mechanical method or an enzymatic method such as lysozyme, and if necessary, a chelating agent such as EDTA or a surfactant is added to solubilize the PQQGDH. A water-soluble fraction can be obtained. Alternatively, the expressed PQQGDH can be secreted directly into the culture medium by using an appropriate host vector system.
上記のようにして得られた PQQGDH含有溶液を、例えば減圧濃縮、膜濃縮、さら に硫酸アンモニゥム、硫酸ナトリウムなどの塩析処理、あるいは親水性有機溶媒、例 えばメタノール、エタノール、アセトンなどによる分別沈殿法により沈殿せしめればよ レ、。また、加熱処理や等電点処理も有効な精製手段である。また、吸着剤あるいはゲ ルろ過剤などによるゲルろ過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、 ァフィ二ティクロマトグラフィーを行うことにより、精製された PQQGDHを得ることがで きる。該精製酵素標品は、電気泳動(SDS— PAGE)的に単一のバンドを示す程度 に純化されていることが好ましい。  The PQQGDH-containing solution obtained as described above is subjected to, for example, vacuum concentration, membrane concentration, salting out treatment such as ammonium sulfate and sodium sulfate, or fractional precipitation using a hydrophilic organic solvent such as methanol, ethanol, acetone, etc. It should be precipitated by the law. Heat treatment and isoelectric point treatment are also effective purification means. In addition, purified PQQGDH can be obtained by performing gel filtration using an adsorbent or gel filter, adsorption chromatography, ion exchange chromatography, and affinity chromatography. The purified enzyme preparation is preferably purified to such an extent that it shows a single band on electrophoresis (SDS-PAGE).
上記工程と前後して、全 GDH酵素タンパク質に対するホロ型 PQQGDHの割合を 向上させるために、好ましくは 25〜50°C、より好ましくは 30〜45°Cの加熱処理を行 つても良い。  Before and after the above steps, heat treatment at 25 to 50 ° C, more preferably 30 to 45 ° C may be performed to improve the ratio of holo-type PQQGDH to the total GDH enzyme protein.
[0011] 上記のようにして製造された PQQGDHは、宿主由来のタンパク質成分以外のタン パク質成分を実質的に含有しなレ、。  [0011] The PQQGDH produced as described above contains substantially no protein component other than the protein component derived from the host.
あるいは、たとえば東洋紡績製 GLD— 321など市販の酵素を同様に精製すること により宿主由来のタンパク質成分以外のタンパク質成分を含有しなレ、 PGGGDHを 製造すること力 Sできる。 Alternatively, for example, a commercially available enzyme such as GLD-321 manufactured by Toyobo Co. It is possible to manufacture S.
[0012] 本発明の組成物は、上記のようにして製造された宿主由来のタンパク質成分以外 のタンパク質成分を含有しない PQQGDHに、さらに「宿主由来のタンパク質をカロえ ること」以外の工程を経ることにより得ることができる。例えば、 PQQGDHに何も加え なくても良いし、宿主由来のタンパク質成分以外の種々の成分を添加することによつ てあ得ること力 Sできる。  [0012] The composition of the present invention further undergoes a process other than "recovering host-derived protein" to PQQGDH containing no protein component other than the host-derived protein component produced as described above. Can be obtained. For example, it is not necessary to add anything to PQQGDH, and it can be achieved by adding various components other than host-derived protein components.
組成物の形態は、液状などの水性組成物(水溶液、懸濁液等)、真空乾燥やスプレ 一ドライなどにより粉末化したもの、凍結乾燥など種々の形態をとることができるが特 に限定されない。凍結乾燥法としては、特に制限されるものではなく常法に従って行 えばよい。本発明の酵素を含む組成物は凍結乾燥物に限られず、凍結乾燥物を再 溶解した溶液状態であってもよレ、。  The form of the composition can take various forms such as an aqueous composition such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, etc., but is not particularly limited. . The lyophilization method is not particularly limited and may be performed according to a conventional method. The composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
[0013] あるいは、本発明の組成物は、上記酵素とカルシウムまたはカルシウム塩、及び緩 衝剤から基本的に成る。また、これらを含有した上で、ピロ口キノリンキノン、アミノ酸、 糖類あるいは有機酸をさらにカ卩えてもかまわない。また、本発明の酵素組成物は、こ れらを含有するものであれば、水性組成物、凍結乾燥物を問わない。 [0013] Alternatively, the composition of the present invention basically comprises the enzyme, calcium or a calcium salt, and a buffer. Further, after containing these, pyro-quinoline quinone, amino acid, saccharide or organic acid may be further added. In addition, the enzyme composition of the present invention may be an aqueous composition or a lyophilized product as long as it contains these.
カルシウムの供給形態としては、塩化カルシウム、酢酸カルシウム、クェン酸カルシ ゥム等の無機酸または有機酸のカルシウム塩を挙げることができる。中でも塩化カル シゥムが好ましい。また、粉末組成物において、カルシウムの含有量 (W/W)は、 0. 05%〜5%であることが望ましぐさらに好ましくは 0. 1%〜0· 5%である。  Examples of the calcium supply form include calcium salts of inorganic acids or organic acids such as calcium chloride, calcium acetate, calcium citrate and the like. Of these, calcium chloride is preferred. In the powder composition, the calcium content (W / W) is desirably 0.05% to 5%, and more preferably 0.1% to 0.5%.
緩衝剤としては、一般的に使用されるものであれば良ぐ通常、組成物の pHを 5〜 10とするものが好ましい。但し、リン酸バッファーのようにカルシウムと不溶性の塩を 形成するものは好ましくない。またトリスァミノメタンのようにアミノ基末端を有するもの は、 PQQ依存性グルコースデヒドロゲナーゼの PQQ結合を不安定とするために好ま しくなレ、。このため、緩衝剤としてさらに好ましくは、ホウ酸や酢酸といった緩衝剤や、 BES、 Bicine、 Bis_Tris、 CHES、 EPPS、 HEPES、 HEPPSO、 MES、 MOPS, MOPSO、 PIPES, POPS〇、 TAPS, TAPS〇、 TES、 Tricineといったグッド緩衝 剤が挙げられる。中でも pH6〜7に緩衝能をもつ PIPESなどが好ましい。また、粉末 組成物において、緩衝剤の含有量 (W/W)は、 1. 0%〜50%であることが望ましく 、さらに好ましくは 5%〜10%である。 As the buffering agent, those generally used may be used, and those having a pH of the composition of 5 to 10 are usually preferable. However, a substance that forms an insoluble salt with calcium, such as a phosphate buffer, is not preferable. In addition, those having an amino group end such as trisaminomethane are preferred because they destabilize the PQQ bond of PQQ-dependent glucose dehydrogenase. For this reason, more preferably as a buffering agent, a buffering agent such as boric acid or acetic acid, BES, Bicine, Bis_Tris, CHES, EPPS, HEPES, HEPPSO, MES, MOPS, MOPSO, PIPES, POPS〇, TAPS, TAPS〇, TES Good buffer such as Tricine. Among them, PIPES having a buffer capacity at pH 6 to 7 is preferable. In the powder composition, the content of the buffering agent (W / W) is preferably 1.0% to 50%. More preferably, it is 5% to 10%.
アミノ酸としては特に限定されなレ、が、グリシルグリシン、ジメチルダリシン、ヒスチジ ン、セリン、ァスパラギン、ァスパラギン酸、グルタミンなどまたはそれらの塩が好まし レ、ものとして挙げられる。アミノ酸の含有量 (WZW)は、 10%〜80%であることが望 ましぐさらに好ましくは 20%〜70%、さらに好ましくは 30%〜60%である。  Examples of the amino acid include glycylglycine, dimethyldalycin, histidine, serine, asparagine, aspartic acid, glutamine, and salts thereof, and salts thereof. The amino acid content (WZW) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
有機酸としては特に限定されなレ、が、 ひケトグノレタル酸、ピルビン酸、 L—リンゴ酸、 グノレクロン酸、 ひケトグルコン酸などあるいはそれらの塩が好ましいものとして挙げら れる。有機酸の含有量 (W/W)は、 10%〜80%であることが望ましぐさらに好まし くは 20%〜70%、さらに好ましくは 30%〜60%である。  Examples of the organic acid include, but are not particularly limited to, ketokenoretaric acid, pyruvic acid, L-malic acid, gnoreclonic acid, and ketokegluconic acid, and salts thereof. The organic acid content (W / W) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
糖類としては特に限定されなレ、が、 ひシクロデキストリンなどが好ましいものとして挙 げられる。糖類の含有量 (WZW)は、 10%〜80%であることが望ましぐさらに好ま しくは 20%〜70%、さらに好ましくは 30%〜60%である。  The sugar is not particularly limited, but cyclodextrin and the like are preferable. The saccharide content (WZW) is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
ピロ口キノリンキノンの含有量 (W/W)は、 10%〜80%であることが望ましぐさら に好ましくは 20%〜 70%、さらに好ましくは 30%〜60%である。  The content (W / W) of pyroguchi quinoline quinone is desirably 10% to 80%, more preferably 20% to 70%, and further preferably 30% to 60%.
さらに、上記のうち 2以上の組み合わせであっても良レ、。好ましい組合わせとしては 、図 1および図 2に記載の組み合わせなどが挙げられる。組合わせた物質の含有量 の合計 (W/W)は、 10%〜80%であることが望ましぐさらに好ましくは 20%〜70 %、さらに好ましくは 30%〜60%である。  In addition, a combination of two or more of the above is acceptable. Preferred combinations include those described in FIGS. 1 and 2. The total content (W / W) of the combined substances is desirably 10% to 80%, more preferably 20% to 70%, and even more preferably 30% to 60%.
なお、上記の試薬類はいずれも市販品などを用いることができる。  In addition, as for said reagents, all can use a commercial item.
[0014] さらに本発明は、該組成物を含むグルコース測定用試薬、グルコースアツセィキット 、グノレコースセンサーである。これらにおいて PQQGDH組成物に係る部分は、液状 (水溶液、懸濁液等)、真空乾燥やスプレードライなどにより粉末化したもの、凍結乾 燥など種々の形態をとることができる。凍結乾燥法としては、特に制限されるものでは なく常法に従って行えばよい。本発明の酵素を含む組成物は凍結乾燥物に限られ ず、凍結乾燥物を再溶解した溶液状態であってもよレ、。 Furthermore, the present invention is a glucose measurement reagent, a glucose assay kit, and a gnolecose sensor containing the composition. In these, the part relating to the PQQGDH composition can take various forms such as liquid (aqueous solution, suspension, etc.), powdered by vacuum drying or spray drying, freeze drying, and the like. The lyophilization method is not particularly limited and may be performed according to a conventional method. The composition containing the enzyme of the present invention is not limited to a lyophilized product, but may be a solution in which the lyophilized product is redissolved.
[0015] グルコースアツセィキット [0015] glucose assembly kit
本発明のグルコースアツセィキットは、典型的には、 PQQGDH、緩衝液、メデイエ 一ターなど測定に必要な試薬、キャリブレーションカーブ作製のためのグルコース標 準溶液、ならびに使用の指針を含む。本発明のキットは、例えば、凍結乾燥された試 薬として、または適切な保存溶液中の溶液として提供することができる。好ましくは本 発明の PQQGDHはホロ化した形態で提供される力 アポ酵素の形態で提供し、使 用時にホロィ匕することもできる。 The glucose assay kit of the present invention typically has a reagent necessary for measurement such as PQQGDH, buffer solution, and mediator, and a glucose standard for preparing a calibration curve. Includes sub-solutions, as well as guidelines for use. The kit of the present invention can be provided, for example, as a lyophilized reagent or as a solution in a suitable storage solution. Preferably, the PQQGDH of the present invention is provided in the form of a force apoenzyme provided in a holoform, and can be holoed when used.
[0016] グルコースセンサー [0016] glucose sensor
本発明のグルコースセンサーは、電極としては、カーボン電極、金電極、白金電極 などを用レ、、この電極上に PQQGLDを固定化する。固定化方法としては、架橋試薬 を用いる方法、高分子マトリックス中に封入する方法、透析膜で被覆する方法、光架 橋性ポリマー、導電性ポリマー、酸化還元ポリマーなどを用いる方法があり、あるいは フエ口センあるいはその誘導体に代表される電子メディエーターとともにポリマー中に 固定あるいは電極上に吸着固定してもよぐまたこれらを組み合わせて用いてもょレ、 。好ましくは本発明の PQQGDHはホロ化した形態で電極上に固定化する力 アポ 酵素の形態で固定化し、 PQQを別の層としてまたは溶液中で供給することも可能で ある。典型的には、ダルタルアルデヒドを用いて本発明の PQQGDHをカーボン電極 上に固定化した後、アミン基を有する試薬で処理してグノレタルアルデヒドをブロッキン グする。  In the glucose sensor of the present invention, a carbon electrode, a gold electrode, a platinum electrode, or the like is used as an electrode, and PQQGLD is immobilized on this electrode. Examples of immobilization methods include a method using a crosslinking reagent, a method of encapsulating in a polymer matrix, a method of coating with a dialysis membrane, a method of using a photocrosslinking polymer, a conductive polymer, a redox polymer, or the like. It may be fixed in a polymer or adsorbed and fixed on an electrode together with an electron mediator typified by mouth sen or its derivatives, or a combination thereof. Preferably, the PQQGDH of the present invention may be immobilized in the form of a force apoenzyme that is immobilized on the electrode in a holo form, and PQQ may be supplied as a separate layer or in solution. Typically, PQQGDH of the present invention is immobilized on a carbon electrode using dartalaldehyde, and then treated with a reagent having an amine group to block the gnoretaraldehyde.
[0017] 本発明は、例えば上記に記載した手段により、宿主由来のタンパク質成分以外のタ ンパク質成分を含有させないことを特徴とする、ピロ口キノリンキノン依存性グルコース デヒドロゲナーゼ組成物中におけるピロ口キノリンキノン依存性グルコースデヒドロゲ ナーゼの安定化方法である。  [0017] The present invention provides a pyroguchi quinoline quinoline-dependent glucose dehydrogenase composition, which does not contain a protein component other than a host-derived protein component by, for example, the means described above. This is a method for stabilizing quinone-dependent glucose dehydrogenase.
[0018] また、本発明は、例えば上記に記載した手段により、宿主由来のタンパク質成分以 外のタンパク質成分を含有させないことを特徴とする、安定化されたピロ口キノリンキノ ン依存性グノレコースデヒドロゲナーゼ組成物の製造方法である。  [0018] Furthermore, the present invention provides a stabilized pyroguchi quinoline quinone-dependent gnolecose dehydrogenase characterized by not containing a protein component other than a host-derived protein component by, for example, the means described above. It is a manufacturing method of a composition.
[0019] なお、 PQQ依存性グルコースデヒドロゲナーゼ活性の測定は、次の方法に従った。  [0019] The PQQ-dependent glucose dehydrogenase activity was measured according to the following method.
50mM  50mM
PIPES緩衝夜、 ρΗ6. 5 25. 5ml, 3. OmM PMS 2. Oml、 6. 6mM NTB 1. Om PIPES buffer night, ρΗ 6. 5 25. 5ml, 3. OmM PMS 2. Oml, 6.6mM NTB 1. Om
1および 1Mグルコースを含む 6. 3% TritonX- 100 Contains 1 and 1M glucose 6. 3% TritonX-100
0. 9mlを混合する。この混合液を 37°Cで 5分間インキュベートした後、酵素液を 0. 1 ml添加し、混和後、水を対照に 37°Cに制御された分光光度計で 570nmの吸光度 変化を 4〜5分間記録し、その初期直線部分から 1分間当たりの吸光度変化を求める 。 1分間に 1マイクロモルのグノレコースを酸化する酵素量を 1単位(U)とする。 0. Mix 9ml. Incubate this mixture at 37 ° C for 5 minutes, then add the enzyme solution to 0.1 Add ml, mix, and record the change in absorbance at 570 nm for 4 to 5 minutes using a spectrophotometer controlled at 37 ° C with water as a control. Calculate the change in absorbance per minute from the initial linear portion. The amount of enzyme that oxidizes 1 micromole of gnolecose per minute is defined as 1 unit (U).
さらに詳しくは、 PQQGDHの酵素活性は以下の方法により測定できる。  More specifically, the enzyme activity of PQQGDH can be measured by the following method.
POOGDH ffi†牛の泡 去 POOGDH ffi †
(1)測定原理  (1) Measurement principle
D—グルコース + PMS + PQQGDH → D—ダルコノ一 1 , 5—ラタトン + PMS (red)  D—Glucose + PMS + PQQGDH → D—Dalcono 1, 5—Lataton + PMS (red)
2PMS (red) + NTB → 2PMS + ジホルマザン  2PMS (red) + NTB → 2PMS + diformazan
フエナジンメトサルフェート(PMS) (red)によるニトロテトラゾリゥムブルー(NTB)の 還元により形成されたジホルマザンの存在は、 570nmで分光光度法により測定した The presence of diformazan formed by the reduction of nitrotetrazolium blue (NTB) with phenazine methosulfate (PMS) (red) was measured spectrophotometrically at 570 nm.
(2)単位の定義 (2) Unit definition
1単位は、以下に記載の条件下で 1分当たりジホルマザンを 0. 5ミリモル形成させる PQQGDHの酵素量をいう。  One unit refers to the amount of PQQGDH enzyme that forms 0.5 mmol of diformazan per minute under the conditions described below.
(3)方法  (3) Method
試薬 Reagent
A. D—グルコース溶液: 1 · 0M (1. 8g D—グルコース(分子量 180· 16) /10ml H20)  A. D—glucose solution: 1 · 0M (1.8g D—glucose (molecular weight 180 · 16) / 10ml H20)
B. PIPES— NaOH緩衝液, pH6. 5 : 50mM (60mLの水中に懸濁した 1. 51gの PIPES (分子量 302. 36)を、 5N Na〇Hに溶解し、 2· 2mlの 10% Triton X— 1 00をカロえる。 5N Na〇Hを用いて 25。Cで ρΗを 6. 5 ± 0. 05に調整し、水を加えて 1 00mlとした。)  B. PIPES—NaOH buffer, pH 6.5: 50 mM (1.51 g of PIPES (molecular weight 302. 36) suspended in 60 mL of water was dissolved in 5N NaOH and 2 ml of 10% Triton X — Calorize 1 00. Use 5N NaOH to 25. Adjust the ρ 6. to 6.5 ± 0.05 with C and add water to make 100 ml.)
C. PMS溶液: 3. 0mM (9. 19mgのフエナジンメトサルフェート(分子量 817. 65) /l0mlH2O)  C. PMS solution: 3.0mM (9.19mg phenazine methosulfate (molecular weight 817.65) / l0mlH2O)
D. NTB溶液: 6. 6mM (53. 96mgの二卜口テ卜ラゾリゥムブノレ一(分子量 817. 65) /l0mlH2O)  D. NTB solution: 6.6 mM (53. 96 mg of double-mouthed terazolium bunoleol (molecular weight 817.65) / l0mlH2O)
E.酵素希釈液: ImM CaCl , 0. 1 % Triton X- 100, 0. 1% BSAを含む 50mM PIPES— NaOH緩衝液(ρΗ6· 5) E. Enzyme Diluent: ImM CaCl, 0.1% Triton X-100, 0.1% BSA included 50mM PIPES—NaOH buffer (ρΗ6 · 5)
手順 Steps
遮光ビンに以下の反応混合物を調製し、氷上で貯蔵した (用時調製) Prepare the following reaction mixture in a light-proof bottle and store on ice (prepared at the time of use)
1. 0. 9ml D—グルコース溶液 (A) 1. 0. 9ml D-glucose solution (A)
25. 5ml PIPES— NaOH緩衝液(pH6. 5) (B)  25. 5ml PIPES—NaOH buffer (pH 6.5) (B)
2. 0ml PMS溶液 (C)  2. 0ml PMS solution (C)
1. 0ml NTB溶液 (D) 上記アツセィ混合物中の濃度は次のとおり。  1. 0ml NTB solution (D) Concentrations in the above assembly are as follows.
PIPES緩衝液 42mM  PIPES buffer 42 mM
D—グルコース 30mM  D—Glucose 30 mM
PMS 0. 20mM  PMS 0.20mM
NTB 0. 22mM  NTB 0.22mM
2. 3. 0mlの反応混合液を試験管(プラスチック製)に入れ、 37°Cで 5分間予備加温 した。 2. 3. 0 ml of the reaction mixture was placed in a test tube (plastic) and pre-warmed at 37 ° C for 5 minutes.
3. 0. 1mlの酵素溶液を加え、穏やかに反転して混合した。  3. 0.1 ml of enzyme solution was added and mixed by gentle inversion.
4. 570nmでの水に対する吸光度の増加を 37°Cに維持しながら分光光度計で 4〜5 分間記録し、曲線の初期直線部分からの 1分当たりの A ODを計算した(ODテスト) 同時に、酵素溶液に代えて酵素希釈液 (E)加えることを除いては同一の方法を繰り 返し、ブランク ( Δ ODブランク)を測定した。  4. Record the increase in absorbance for water at 570 nm at 37 ° C for 4-5 minutes with a spectrophotometer and calculate the A OD per minute from the initial linear part of the curve (OD test) The same method was repeated except that the enzyme diluent (E) was added instead of the enzyme solution, and a blank (ΔOD blank) was measured.
アツセィの直前に氷冷した酵素希釈液 (E)で酵素粉末を溶解し、同一の緩衝液で 0. 1 -0. 8U/mlに希釈した (該酵素の接着性のためにプラスチックチューブの使 用が好ましい)。  The enzyme powder was dissolved in ice-cold enzyme diluent (E) immediately before the assembly and diluted to 0.1 -0.8 U / ml with the same buffer (use a plastic tube for the adhesion of the enzyme). Is preferred).
十昇  Tojo
活性を以下の式を用いて計算する:  Activity is calculated using the following formula:
U/ml= { Δ OD/min ( Δ ODテスト
Figure imgf000013_0001
U / ml = {Δ OD / min (Δ OD test
Figure imgf000013_0001
Vt :総体積(3. lml)  Vt: Total volume (3. lml)
Vs :サンプル体積(0. lml)  Vs: Sample volume (0. lml)
20. 1:ジホルマザンの 1Z2ミリモル分子吸光係数  20. 1: 1Z2 mmol molecular extinction coefficient of diformazan
1. 0 :光路長(cm)  1. 0: Optical path length (cm)
df :希釈係数  df: dilution factor
C:溶液中の酵素濃度(c mg/ml) 実施例  C: Enzyme concentration in solution (c mg / ml) Example
[0021] 以下、実施例を挙げて本発明を具体的に示すが、本発明は実施例によって限定さ れることはなレ、。  [0021] The present invention will be specifically described below with reference to examples, but the present invention is not limited by the examples.
実施例 1  Example 1
下記成分を水道水 6Lに溶解し、 pHを 7. 0に調整した後、オートクレープで 121°C 、 20分間滅菌して、培地を得た。  The following components were dissolved in 6 L of tap water to adjust the pH to 7.0, and then sterilized with an autoclave at 121 ° C. for 20 minutes to obtain a medium.
グルコース 60gポリペプトン 180g酵母エキス 30gNaCl 60g上記培地の入った 10Lジャーフアーメンターに、ァシネトパクター 'カルコァセティカス(Acinetobacter calcoaceticus) NCIMB 11517 (National Collection of Industrial Bacte ria, Abadeen Scotland) を接種し、 30°Cで 20時間通気攪拌培養後、遠心分 離して菌体を取得した。得られた菌体をダイノミルにより破砕し、 PEI処理、硫安分画 、フエ二ルセファロースクロマトグラフィーおよび DEAE—セファロースクロマトグラフィ 一による精製、及び蒸留水への緩衝液置換を実施し、 600Uの PQQ依存性グノレコ 一スデヒドロゲナーゼを得た。  Glucose 60g Polypeptone 180g Yeast extract 30g NaCl 60g Inoculate 10L jar mentor containing the above medium with Acinetobacter calcoaceticus NCIMB 11517 (National Collection of Industrial Bacte ria, Abadeen Scotland) at 30 ° C After 20 hours of aeration and agitation culture, the cells were collected by centrifugation. The obtained cells are crushed with dynomill, PEI-treated, ammonium sulfate fractionation, phenyl sepharose chromatography and DEAE-sepharose chromatography are purified, and the buffer is replaced with distilled water. Gunolecos dehydrogenase was obtained.
[0022] 実施例 2 [0022] Example 2
得られた酵素溶液に下記化合物を添加後、凍結乾燥を実施し、酵素粉末を取得し た。各酵素粉末を 37°C、 1週間保存した後、 GLD活性を測定し、保存前と比較した 残存活性を求めた。結果を図 1に記載する。  The following compounds were added to the obtained enzyme solution, followed by lyophilization to obtain enzyme powder. After each enzyme powder was stored at 37 ° C for 1 week, the GLD activity was measured to determine the residual activity compared to before storage. The results are shown in Figure 1.
従来から知られている BSA (ゥシ血清アルブミン)等の生体由来物質を使用せずと も、有機酸やアミノ酸で同等以上の安定性を示すことが確認された。 Without using biologically derived substances such as BSA (usi serum albumin) In addition, it was confirmed that organic acids and amino acids showed the same or higher stability.
[0023] 実施例 3  [0023] Example 3
得られた酵素溶液に下記化合物を添加後、凍結乾燥を実施し、酵素粉末を取得し た。各酵素粉末を 37°C、 1週間保存した後、 GLD活性を測定し、保存前と比較した 残存活性を求めた。結果を図 2に記載する。  The following compounds were added to the obtained enzyme solution, followed by lyophilization to obtain enzyme powder. After each enzyme powder was stored at 37 ° C for 1 week, the GLD activity was measured to determine the residual activity compared to before storage. The results are shown in FIG.
緩衝剤のみでは安定化効果は少なレ、が、少なくともカルシウム塩を添加することで 、一定の安定性を担保可能であることが確認された。また、従来から知られている BS A等のタンパク成分を添加しなくても安定性を担保可能であることも確認された。なお 、カルシウム塩と緩衝剤からなる組成にさらに PQQを添加しても問題はなぐむしろ 更なる安定化効果が確認された。  It was confirmed that only a buffering agent has a little stabilizing effect, but it is possible to ensure a certain level of stability by adding at least a calcium salt. It was also confirmed that stability could be ensured without adding a conventionally known protein component such as BS A. In addition, even if PQQ was added to the composition consisting of calcium salt and buffer, there was no problem, but a further stabilizing effect was confirmed.
[0024] 実施例 4 [0024] Example 4
ダルタルアルデヒドを用いて本発明の PQQGDH (ホロ型)をカーボン電極上に固 定化した後、アミン基を有する試薬で処理してダルタルアルデヒドをブロッキングする ことによりグルコースセンサーを作製する。作製時には、ゥシ血清アルブミン添加 (A) 、無添加(B)の両方で行う。次いで、得られたセンサーを用いて、 100mg/dl (濃度 )のグルコース水溶液を 20回測定する。同時再現性および正確性 (理論値との差)は (B)の方が優れている。  After immobilizing PQQGDH (holo type) of the present invention on a carbon electrode using dartalaldehyde, a glucose sensor is produced by blocking with dartalaldehyde by treatment with a reagent having an amine group. At the time of preparation, both sushi serum albumin (A) and no addition (B) are performed. Next, using the obtained sensor, a 100 mg / dl (concentration) aqueous glucose solution is measured 20 times. Simultaneous reproducibility and accuracy (difference from theoretical values) is better in (B).
産業上の利用可能性  Industrial applicability
[0025] 本発明により、グルコースセンサーへの適用上優れた PQQ依存性グルコースデヒド ログナーゼを提供することが可能になる。 [0025] According to the present invention, it is possible to provide a PQQ-dependent glucose dehydrogenase excellent in application to a glucose sensor.

Claims

請求の範囲 The scope of the claims
[1] 宿主由来のタンパク質成分以外のタンパク質成分を含有しないことを特徴とする、 ピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物。  [1] A pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition characterized by not containing a protein component other than a host-derived protein component.
[2] 宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有する、請求項 1に記載のピロ口キノリンキノン依存性グルコースデヒドロゲナ ーゼ組成物。  [2] The pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 1, which contains only calcium or a calcium salt and a buffer in addition to the protein component derived from the host.
[3] 宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、ピロ口キノリン キノン、及び緩衝剤のみを含有する、請求項 1に記載のピロ口キノリンキノン依存性グ ルコースデヒドロゲナーゼ組成物。  [3] The pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 1, which contains only calcium or calcium salt, pyroguchi quinoline quinone, and a buffer in addition to the host-derived protein component.
[4] 宿主由来のタンパク質成分以外のタンパク質成分を含有させなレ、ことを特徴とする 、ピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物中におけるピロ口キノ リンキノン依存性グノレコースデヒドロゲナーゼの安定化方法。  [4] Stabilization of pyroguchi quinoline quinone-dependent gnolecose dehydrogenase in a pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition characterized by not containing a protein component other than the host-derived protein component Method.
[5] 宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有させることを特徴とする、請求項 4に記載のピロ口キノリンキノン依存性グノレ コースデヒドロゲナーゼ組成物中におけるピロ口キノリンキノン依存性グノレコースデヒ ドロゲナーゼの安定化方法。  [5] In addition to the host-derived protein component, only pyrocalcium quinoline quinone-dependent gnolecose dehydrogenase composition according to claim 4, characterized by containing only calcium or a calcium salt and a buffer. A method for stabilizing oral quinoline quinone-dependent gnolecose dehydrogenase.
[6] 宿主由来のタンパク質成分以外のタンパク質成分を含有させないことを特徴とする 、安定化されたピロ口キノリンキノン依存性グノレコースデヒドロゲナーゼ組成物の製造 方法。  [6] A method for producing a stabilized pyroguchi quinoline quinone-dependent gnolecose dehydrogenase composition, which does not contain a protein component other than a host-derived protein component.
[7] 宿主由来のタンパク質成分以外に、カルシウムまたはカルシウム塩、及び緩衝剤の みを含有させることを特徴とする、請求項 6に記載の安定化されたピロ口キノリンキノン 依存性グルコースデヒドロゲナーゼ組成物の製造方法。  [7] The stabilized pyroguchi quinoline quinone-dependent glucose dehydrogenase composition according to claim 6, wherein the composition contains only calcium or a calcium salt and a buffer in addition to the protein component derived from the host. Manufacturing method.
[8] 請求項 1に記載のグルコースデヒドロゲナーゼ組成物を含むグルコースアツセィキッ 卜。  [8] A glucose assembly comprising the glucose dehydrogenase composition according to claim 1.
[9] 請求項 1に記載のグノレコースデヒドロゲナーゼ組成物を含むグルコースセンサー。  [9] A glucose sensor comprising the gnolecose dehydrogenase composition according to claim 1.
PCT/JP2005/019532 2004-10-27 2005-10-25 Pqq-dependent glucose dehydrogenase composition WO2006046524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004311952 2004-10-27
JP2004-311952 2004-10-27
JP2004311953 2004-10-27
JP2004-311953 2004-10-27

Publications (1)

Publication Number Publication Date
WO2006046524A1 true WO2006046524A1 (en) 2006-05-04

Family

ID=36227764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019532 WO2006046524A1 (en) 2004-10-27 2005-10-25 Pqq-dependent glucose dehydrogenase composition

Country Status (2)

Country Link
TW (1) TW200630492A (en)
WO (1) WO2006046524A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951749B2 (en) 2008-07-11 2015-02-10 Universal Biosensors Pty Ltd Enhanced immunoassay sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224368A (en) * 2000-02-17 2001-08-21 Toyobo Co Ltd Stabilized pqq-dependent glucose dehydrogenase composition
JP2004236665A (en) * 2004-03-29 2004-08-26 Toyobo Co Ltd Pqq-dependent glucose dehydrogenase composition and reagent composition for glucose measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224368A (en) * 2000-02-17 2001-08-21 Toyobo Co Ltd Stabilized pqq-dependent glucose dehydrogenase composition
JP2004236665A (en) * 2004-03-29 2004-08-26 Toyobo Co Ltd Pqq-dependent glucose dehydrogenase composition and reagent composition for glucose measurement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEIGER O AND GARISCH H.: "Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Ca2+ ions are necessary for re-activation.", BIOCHEM J., vol. 261, no. 2, 1989, pages 415 - 421, XP002995734 *
RAMANAVICIUS A ET AL: "Investigation of activity and stability of PQQ-dependent glucose dehydrogenase from Acinetobacter sp.34-1.", BIOLOGIJA., no. 1-2, 1995, pages 53 - 56, XP002995733 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8951749B2 (en) 2008-07-11 2015-02-10 Universal Biosensors Pty Ltd Enhanced immunoassay sensor

Also Published As

Publication number Publication date
TW200630492A (en) 2006-09-01

Similar Documents

Publication Publication Date Title
JP5176045B2 (en) Method for improving the stability of a composition comprising soluble glucose dehydrogenase (GDH)
EP1367120A2 (en) Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
CN1962860A (en) Method for improving heat stability of composition containing water-soluble coenzyme-bound glucose dehydrogenase (gdh)
JP5593689B2 (en) Lactate oxidase composition
JP4381369B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
JP6101011B2 (en) Method for improving the stability of a composition comprising a flavin-binding glucose dehydrogenase
US20070037237A1 (en) Method for improving substrate specificity of pyrroloquinoline quinone-dependent glucose dehydrogenase
JP2004344145A (en) Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
JP4381463B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
WO2006046524A1 (en) Pqq-dependent glucose dehydrogenase composition
JP2007043982A (en) Composition for measuring glucose, improved with its substrate specificity
JP2004313180A (en) Modified product of pyrrolo-quinoline quinone (ppq)-dependent glucose dehyrogenase excellent in substrate specificity or stability
JP2006149378A (en) Pqq-dependent glucose dehydrogenase composition
JP4029346B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
US7381540B2 (en) Composition for measuring glucose having improved substrate specificity
JP5114756B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP2007116936A (en) Method for improving thermal stability of soluble coenzyme-binding glucose dehydrogenase (gdh)
JP4478865B2 (en) Modified metalloenzyme
JP2006217811A (en) Modified product of pqq (pyrroloquinoline quinone)-dependent glucose dehydrogenase having excellent substrate specificity
JP2007043983A (en) Modified type pyrroloquinoline quinone-dependent glucose dehydrogenase excellent in substrate specificity
JP4770911B2 (en) Method for improving the thermal stability of a composition comprising soluble coenzyme linked glucose dehydrogenase (GDH)
JP4058701B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
EP1752530A1 (en) Composition for suppression PQQGDH reaction inhibition
JP2009189375A (en) Method for improving thermal stability of composition containing soluble coenzyme bonded type glucose dehydrogenase (gdh)
JP2006034165A (en) Method for producing pqqgdh

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805248

Country of ref document: EP

Kind code of ref document: A1