WO2006035698A1 - Sheet-like concentrator and solar cell sheet employing it - Google Patents

Sheet-like concentrator and solar cell sheet employing it Download PDF

Info

Publication number
WO2006035698A1
WO2006035698A1 PCT/JP2005/017608 JP2005017608W WO2006035698A1 WO 2006035698 A1 WO2006035698 A1 WO 2006035698A1 JP 2005017608 W JP2005017608 W JP 2005017608W WO 2006035698 A1 WO2006035698 A1 WO 2006035698A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sheet
solar cell
light
light receiving
Prior art date
Application number
PCT/JP2005/017608
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiya Nishibayashi
Original Assignee
Dueller Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dueller Corporation filed Critical Dueller Corporation
Priority to JP2006537711A priority Critical patent/JP4155361B2/en
Publication of WO2006035698A1 publication Critical patent/WO2006035698A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a condensing sheet for a solar cell and a solar cell sheet using the same.
  • the present invention since the present invention has a function of confining light, the multilayer plastic foam sheet that can be suitably used for condensing light rays such as sunlight, a manufacturing method thereof, a solar cell device using the multilayer sheet, and It relates to its usage.
  • the development of solar cell elements with high power generation efficiency includes the development of single crystal silicon type, compound (Group 3-5, Group 2-6, etc.) semiconductor type solar cells, etc. As a cost reduction method, development of amorphous silicon solar cells is underway.
  • Patent Documents 4, 5, 6, and 7 disclose examples of concentrators that collect light using reflection and total reflection by a prism having a triangular cross section.
  • Patent Documents 4, 5, 6, and 7 disclose examples of concentrators that collect light using reflection and total reflection by a prism having a triangular cross section.
  • there are restrictions on the angle of light rays that enter the prism and there are also problems with the magnification and manufacturing cost.
  • Patent Document 8 discloses a sheet in which small prisms, semi-cylindrical or hemispherical protrusions are arranged on the surface of a sheet.
  • Patent Document 9 discloses a prism-like structure between the solar cell element and the surface sheet, and has a function of confining the reflected light of the solar cell element force in this portion.
  • these condensing methods have low condensing magnification, and it is not expected to reduce the area of the solar cell element, which is a merit of the concentrating type.
  • Patent Documents 10 and 11 disclose the idea of reliably condensing light by making the prism shape a wedge shape. However, it is considered difficult to realize due to difficulties in manufacturing methods and installation methods.
  • Patent Document 10 a method of dispersing a resin having a different refractive index in a transparent resin has also been reported! (Patent Document 10), but it is expected that the concentrating efficiency of the light collecting efficiency is difficult.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-289897
  • Patent Document 2 JP 2002-289898 A
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-214470
  • Patent Document 4 JP 54-018762 A
  • Patent Document 5 Japanese Patent Laid-Open No. 06-275859
  • Patent Document 6 Japanese Patent Application Laid-Open No. 07-122771
  • Patent Document 7 JP 2004-047752 A
  • Patent Document 8 JP 2000-031515 A
  • Patent Document 9 JP 2000-323734 A
  • Patent Document 10 Japanese Patent Laid-Open No. 10-221528
  • Patent Document 11 Japanese Patent Laid-Open No. 10-335689 Disclosure of the invention
  • the above-described conventional concentrating solar cells have problems such as the limitation of the condensing magnification, difficulty in following the sun beam, and restrictions on the installation space. There is a problem to develop a concentrating solar cell sheet that has good productivity and is suitable as a solar cell.
  • the sheet-like light collector for solar cell according to the present invention is an intermediate layer of a light guide sheet formed by sandwiching a light guide layer made of a high refractive index material between a light receiving layer made of a low refractive index material force and an intermediate layer. It is characterized by laminating an irregular reflection layer on the side and providing a daylighting part in part.
  • the irregular reflection layer 14 is preferably made of a resin (transparent or translucent) containing a large number of bubbles.
  • the irregular reflection layer 14 is preferably formed by gas foam extrusion.
  • the light receiving layer 11, the light guide layer 12, the intermediate layer 13 and the irregular reflection layer 14 are preferably made of a thermoplastic resin and integrally formed by coextrusion.
  • the sheet-shaped concentrator 10 according to the present invention preferably further has the following configuration.
  • the surface of the light receiving layer 11 has irregularities having a light confinement effect.
  • the area of the light receiving layer 11 is preferably at least twice the area of the daylighting portion 15. More preferably, it is 5 times or more. When it is less than twice, the cost advantage of the sheet-shaped concentrator cannot be obtained, so the value of using the sheet-shaped concentrator 10 is lost.
  • an antifouling layer is formed on the surface of the light receiving layer 11.
  • the antifouling layer has a photoactive catalyst.
  • this sheet-shaped concentrator and a solar cell disposed so that the light receiving surface faces the daylighting portion, it can be used as a solar cell sheet.
  • FIG. 1 is a schematic explanatory view showing a solar cell sheet using a sheet-like concentrator in one embodiment of the present invention.
  • FIG. 2 is a schematic explanatory diagram showing light reflection at a bubble interface.
  • FIG. 3 is a schematic explanatory diagram of an experiment of Example 1.
  • FIG. 4 is a schematic explanatory diagram of the experiment of Example 2 (without black drawing paper 40).
  • FIG. 5 is a schematic explanatory diagram of the experiment of Example 2 (with black drawing paper 40).
  • the light that has entered the interface at a shallow angle of a predetermined critical angle or more is: Cannot go outside the light guide sheet.
  • the sunlight that first enters the light guide sheet also enters at a deep angle below this critical angle, a large amount of sunlight escapes through the light guide sheet.
  • the present inventor has come up with a method of providing an irregular reflection layer on the surface of the light guide sheet opposite to the side on which sunlight is incident.
  • This irregular reflection layer changes the reflection angle of the light that has passed through the light guide sheet, thereby increasing the probability that the reflected light re-enters the light guide sheet at a shallow angle that is equal to or greater than the critical angle.
  • all the light that is about to go out of the light guide sheet is returned to the light guide sheet, and most of the force is confined in the light guide sheet. That is, the light collection efficiency can be greatly increased.
  • the irregular reflection layer may be a simple total reflection surface such as a mirror surface or a metal surface with a fine force and a scratch (scratched line), but a transparent resin layer containing many bubbles. Is also effective. As shown in Fig. 2, by utilizing the fact that the light reflected by the spherical interface of the bubble 20 is reflected at an angle different from the approach angle, it is possible to re-enter the light guide layer at a shallow angle, For this reason, it discovered that the condensing of light and accumulation
  • the laminated sheet of the present invention As a coextruded sheet, loss of light absorption due to an adhesive or the like on the laminated surface does not occur. Light scattered outside the system is allowed because it was reflected at an angle below the critical angle by scattering reflection at the bubble interface of the diffuse reflection layer.
  • the foamed sheet layer according to the present invention desirably has 80% or more of the bubbles contained in the sheet having a bubble diameter in the range of 0.1 to 50 m. As a result, good reflection characteristics can be obtained. Furthermore, it is preferable that 80% or more of the bubbles contained in the sheet have a bubble diameter in the range of 0.4 to 20 m. If the bubble diameter is too large, an optical interference effect or the like is caused, and sufficient reflection cannot be obtained. Conversely, if the bubble diameter is too large, the area that is reflected in the direction perpendicular to the sheet increases, which is not preferable.
  • the foamed sheet layer according to the present invention desirably has a porosity in the range of 20 to 80%.
  • the porosity corresponds to the density of bubbles contained in the foamed sheet, and can be determined from the force sheet representing the gas phase occupation ratio of the sheet, the density of the resin used, and the sheet volume.
  • the porosity of the sheet is further preferably 50 to 70%. This is because the theoretical maximum porosity is about 70% in order to maintain the spherical shape of the bubble, and if it exceeds this, the bubble collapses and good reflection characteristics can be obtained. It is not possible.
  • the light guide layer based on the high refractive index resin in the present invention and the light receiving layer and intermediate layer based on the low refractive index resin laminated on both sides thereof are the light guide layer, the light receiving layer, and the light receiving layer. Since it is possible to prevent light that has entered at the interface of the intermediate layer at an angle greater than the critical angle from leaking out from the high refractive index layer, the light can be confined in the light guide layer.
  • the light guide layer, the light receiving layer, and the intermediate layer are more preferable because the critical angle can be reduced as the difference in refractive index increases.
  • the main thermoplastic resin constituting the diffuse reflection layer having foaming is preferably a resin having a high melt tension in order to promote fine foaming. Therefore, the melt flow rate (measured according to ASTM D1238-98) showing the fluidity in the molten state is preferably 0.5 to 44 g / 10 min. A 10 minute thermoplastic resin is more preferred.
  • the fluidity of thermoplastic resin can be determined according to the measurement conditions (temperature, load, etc.) for various polymers described in ASTM D1238-98.
  • thermoplastic resin polycarbonate, styrene-based resin, polyetherol, polyurethane, polyphenylene sulfide, polyesteramide, polyetherester, polychlorinated butyl, modified polyphenylene ether, polyarylate, polysulfone, polyimide, polyetherimide, polyamideimide, and these
  • the force which can mention the copolymer which makes this a main component, these mixtures, etc. is not limited to these.
  • an acrylic resin or methacrylic resin include, for example, acrylic acid ester or methacrylic acid ester homopolymer or acrylic acid ester or metatalic acid ester of 50% by weight or more. And copolymers with one or more vinyl monomers In particular, a copolymer of 50% by weight or more of a methacrylic acid ester and one or more other types of butyl monomers is preferred. Preferred is a copolymer comprising 50% by weight or less of alkyl ester and 49% by weight or less of at least one vinyl monomer copolymerizable with at least one of methacrylic acid alkyl ester and allylic acid alkyl ester. The amount of the alkyl acrylate ester contained in the copolymer is preferably 0.1% by weight to 40% by weight, more preferably 1% by weight to 15% by weight. The above acrylic resin or methacrylic resin may be used alone or in combination.
  • acrylate esters examples include methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, acrylic acid phenyl, benzyl acrylate, and 2-ethylhexyl acrylate. And 2-hydroxyethyl acrylate and the like, and methyl acrylate and ethyl acrylate are particularly preferable.
  • ester of methacrylate examples include methyl methacrylate, ethyl acetate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid 2 —Hydroxyethyl and the like can be mentioned, and in particular, methyl methacrylate and ethyl acetate are preferable.
  • Examples of other copolymerizable butyl monomers include acrylic acid and methacrylic acid esters such as unsaturated acids such as acrylic acid and methacrylic acid, styrene, ⁇ -methylstyrene, talari-tolyl, Examples thereof include meta-tallow-tolyl, maleic anhydride, phenol maleimide, cyclohexyl maleimide and the like.
  • the weight average molecular weight (Mw) of the acrylic resin or methacrylic resin is preferably 40,000 to 400,000, more preferably 60,000 to 300,000. If the Mw is too small, the resulting foamed sheet layer may have insufficient mechanical strength. If the Mw is too large, the melt viscosity may increase and the extrusion performance may decrease.
  • the above-mentioned acrylic resin or methacrylic resin may contain a rubbery polymer.
  • a rubber-like polymer By blending a rubber-like polymer with acrylic resin or methacrylic resin, the viscosity and toughness of resin can be improved, and a foam sheet with good impact resistance can be obtained.
  • the thermoplastic resin in the present invention includes a range that does not impair the optical characteristics of the sheet-like light collector.
  • a crystallization nucleating agent preferably in the range of 3% by weight or less
  • a crystallization accelerator preferably in the range of 3% by weight or less
  • a cell nucleating agent preferably in the range of 3% by weight or less
  • an antioxidant preferably in the range of 3% by weight or less
  • a processing aid preferably in the range of 3% by weight or less
  • a plasticizer a processing aid
  • an antistatic agent Various additives such as impact aids, foaming agents, fillers, matting agents, mold release agents, flame retardants, UV absorbers, UV inhibitors, pigments, dyes, lubricants, and optical brighteners are formulated.
  • inorganic fine particles that function as a bubbling nucleating agent are preferably those capable of forming pores with themselves as nuclei, such as calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide (anatase type, rutile). Type), zinc oxide, barium sulfate, zinc sulfide, basic tin carbonate, titanium mica, antimony oxide, magnesium oxide, calcium phosphate, silica, alumina, my strength, talc, kaolin, and the like.
  • it is particularly preferable to use calcium carbonate and barium sulfate which have low absorption in the visible light range of 400 to 700 nm. If there is absorption in the visible light region, there may be a problem that the luminance decreases.
  • Examples of the gas dissolved in the thermoplastic resin in the extruder in order to form bubbles in the sheet include carbon dioxide, nitrogen, butane, helium, and argon. Of these, carbon dioxide and nitrogen, which have low gas permeability and are inexpensive and can be handled safely, may be used alone or in combination.
  • An antifouling layer can be provided on the surface of the light receiving layer of the present invention.
  • Antifouling layer is Rf- (OC F)-
  • the run coupling agent power be obtained.
  • the antifouling layer is formed of such a material, dirt on the outermost surface of the sheet becomes difficult to adhere, and even if it adheres, it can be easily washed away.
  • a photoactive substance having a photocatalytic action can be used on the outermost surface of the light collecting sheet of the present invention.
  • the dust attached to the surface of the antifouling layer is decomposed by the action of light to destroy the adhesiveness and washed with rain and moisture! It makes it easy to keep the surface clean by pouring.
  • Photoactive materials include TiO, ZnO, SrTiO, CdS, CaP, InP
  • a composition in which a metal such as e and Z or a metal oxide thereof is mixed can be used.
  • an uneven pattern may be transferred to the surface of the light receiving layer.
  • the pattern is transferred to a thermoplastic resin sheet on a casting roll having a fine pattern formed on the surface, or a foam sheet sheeted with a plain casting roll is used. And after winding up on a roll, it can carry out by the method of transferring a pattern to a sheet
  • the cross-section is a triangle, trapezoid, semicircular shape with an inclined surface such as a triangle or trapezoid, or an array of ridges, or pyramids.
  • convex or concave shapes such as a trapezoid with a truncated pyramid shape, a hemispherical shape such as a dome shape, or a hemispherical shape with a curvature.
  • the angle (vertical angle) between the opposing slopes in the array of recesses is particularly preferable to use.
  • the thickness of the entire sheet-like light collector according to the present invention is preferably 100 to 1000 m, more preferably 150 to 500 m. When the thickness is too small, it becomes difficult to ensure the flatness of the sheet, and the light collection efficiency is lowered when used as a sheet-like light collector. On the other hand, if the thickness is too large, lamination with a steel plate or the like becomes difficult.
  • the sheet-shaped concentrator according to the present invention may be formed by coextrusion, extrusion lamination, thermal lamination, coating, vapor deposition, or the like.
  • a laminated sheet by coextrusion is preferable.
  • Such a laminated sheet is formed by, for example, a polymer having a main extruder for a foam layer and a sub-extrusion machine for a non-foam layer in a feed block portion installed in a die hold portion or before entering the die. It can be formed by merging. Since this coextruded laminated sheet does not require an adhesive layer, it is advantageous for reflection characteristics and at the same time has good productivity.
  • the boundary between the intermediate layer and the irregular reflection layer is less affected, for example, there is no boundary between the foamed portion of the irregular reflection layer and the non-foamed portion of the intermediate layer. This can be advantageous particularly when used as a sheet-like concentrator.
  • the solar cell or solar cell element in the present invention means a device that generates power using the photovoltaic effect of a semiconductor, and is a silicon (single crystal, polycrystal, amorphous) solar cell.
  • Compound semiconductors Groups 3-5, 2-6, etc.
  • solar cells wet solar cells, dye-sensitized solar cells, organic semiconductor solar cells, and the like.
  • a sheet-shaped concentrator and a solar cell sheet using the same may be laminated on a steel plate.
  • the sheet-shaped concentrator laminated on this steel plate and the solar cell using the same can be used for building materials such as roofing materials and constituent materials for transportation equipment such as automobiles, buses and ships.
  • the sheet forming machine usable in the present invention is usually an extruder for melting the resin, a flat die for forming a sheet, a cast roll for cooling the sheet, a sheet take-up device, a sheet It consists of a take-off device.
  • Flat dies include multi-hold types that are stacked inside the die, which is preferred by T dies, and those that have a feed block device that is stacked just before the die.
  • Cast rolls usually have a temperature control function, and the temperature control method may be a combination of circulating cooling water, hot water, or oil, or an induction heating method.
  • the sheet take-up device may have a roll temperature control function following the cast roll, and is equipped with a surface treatment device such as a thickness measurement device, defect detection device, antistatic device, corona treatment and frame treatment. It is also possible.
  • the wrinkle removal device can also include a turret mechanism, a touch roll mechanism, a wrinkle changing mechanism, a tension control device, etc.
  • the casting apparatus usable in the present invention may include a vacuum chamber apparatus having a cross section along the curvature of the roll above the roll in the take-up apparatus following the cast roll or the cast roll.
  • This vacuum chamber apparatus is a box-shaped apparatus having a width matched to the sheet, and can be depressurized by exhausting air inside the chamber by a vacuum pump provided outside.
  • the chamber box has a sealing mechanism for maintaining a vacuum, and is composed of a plurality of rooms as required.
  • Such a vacuum chamber apparatus is preferably capable of reducing the pressure inside the chamber to 30 kPa or less in order to obtain a desired foamed sheet.
  • the seal mechanism attached to the chamber apparatus usable in the present invention includes an inlet seal on the inlet side, an outlet seal on the outlet side, and side seals arranged on both sides with respect to the flow direction of the sheet.
  • an inlet seal and outlet seal a labyrinth seal type, a contact roller type seal type, or the like can be adopted.
  • a side seal labyrinth seal type, contact guide type, etc. can be adopted. it can.
  • thermoplastic resin chip as a raw material that has been heated and Z or dried is subjected to foaming and extruding main extruder (A) for foaming and extruding, and foaming, respectively.
  • main extruder (A) Supplied to the sub-extruder (B) used for the light-receiving layer and intermediate layer not to be used, and further to the sub-extruder (C) for the light guide layer.
  • the main extruder (A) is supplied with gas, preferably under supercritical conditions, by a gas supply device placed outside the apparatus. Inside the main extruder (A), the molten thermoplastic resin and gas are sufficiently mixed, and the gas is dissolved in the thermoplastic resin and extruded.
  • the sheet discharged from the T-die is landed on a casting roll and cooled. At this time, the sheet is usually a transparent uniform sheet. After cooling to a predetermined temperature on the casting roll, the sheet is introduced into the take-up roll following the casting roll. Next, the sheet is exposed to a vacuum state by a vacuum chamber provided on the take-up roll. Then, the sheet generates fine foam and changes to a pure white sheet. Then, this sheet is wound up into a roll shape by a winder.
  • the laminated sheet according to the present invention can be produced by a method including a step of foaming by extruding a thermoplastic resin in which a gas is dissolved.
  • a non-foamed or foamed sheet that is foamed without using the vacuum chamber may be passed through the vacuum chamber.
  • the present invention provides a step of sheeting a molten polymer of thermoplastic resin in which a gas is dissolved in an unfoamed state, by exposing the sheet to a vacuum under a temperature condition of 50 to 200 ° C, thereby causing bubbles.
  • a method for producing a foam sheet Such manufacturing method The method is suitable for the production of the foamed sheet or laminated sheet according to the present invention, and the above steps are preferably continuous.
  • the temperature condition is more preferably 70 to 120 ° C.
  • sheeting in a non-foamed state means that the gas is dissolved in the molten resin polymer, but the sheet is formed in a state without foaming when discharged from the die portion. This can be done by reducing the amount of gas to be dissolved and controlling the Z or discharge conditions. Since the non-foamed sheet has a gas dissolved in the polymer, it can be easily foamed by applying a stimulus such as reduced pressure to the sheet.
  • the bubble generation state can be easily controlled by adjusting the conditions such as the temperature and reduced pressure of the sheet, so that the bubble size and the number of bubbles can be easily optimized. Liked in terms of.
  • the foamed sheet of the present invention can be obtained by using a sheeting device and a vacuum chamber device following gas supply extrusion. Therefore, it is possible to produce a sheet excellent in reflection characteristics, workability, and surface smoothness in-line with high productivity.
  • the laminated sheet according to the present invention can be suitably used as a sheet-shaped concentrator and a solar cell sheet using the same.
  • Optical acrylic resin (Sumitomo Chemical Co., Ltd. Sumipex MGSS) heated in advance at 120 ° C for 4 hours is used as a raw material, and this is the first stage with 35mm and L / D of 34.
  • Single-screw extruder, 50mm for the second stage, L / D 28 is supplied to the tandem extruder of the single-screw extruder, and supercritical conditions from the high-pressure gas supply device installed outside the extruder
  • the carbon dioxide gas was supplied to the nozzle provided in the cylinder part of the melt-compression part of the first stage extruder at 38 ° C and 15 MPa, which was dissolved and mixed in the resin.
  • the carbon dioxide gas was supplied at a rate of 0.03 kg / h with respect to the discharge rate of the extruder of 14.3 kg / h.
  • the extrusion temperature at this time was 240 ° C for the first stage and 200 ° C for the second stage.
  • transparent sheet B as intermediate layer 13 Prepare 80mm width x 120mm length cut white sheet A as diffuse reflection layer 14 cut to 80mm width x 120mm length.
  • the four sheets are removed in the order of the light receiving layer 11, the light guide layer 12, the intermediate layer 13, and the irregular reflection layer 14 while moistening them with a small amount of water to eliminate the air between them.
  • the sheet-shaped concentrator 10 is produced by superimposing as described above. Cover both ends with aluminum foil 33, and fix with a clip. Due to the difference in length between the light receiving layer 11 and the light guide layer 12, a portion of the light guide layer 12 is covered with the light receiving layer 11. This portion becomes a daylighting part 15 for taking out light from the light guide layer 12.
  • the sheet-shaped concentrator 10 thus manufactured has the light receiving layer 11 on the upper side, a part including the daylighting part 15 projects outside the dark room 34, and the remaining part is in the dark room 34. Arrange them as follows. Illuminate the dark room 34 with Rogen Light 35. At this time, a solar cell element (NIPPON TETECH Solar Panel SPM01 Single Crystal Silicon Type 33mm X 62mm) 32 is placed in the dark room 34 at the same height as the sheet.
  • a solar cell element 31 of the same type as that in the dark room 34 is arranged so that its light receiving surface faces the daylighting unit 15.
  • the halogen lamp 35 is turned on, and the short-circuit current and the open-circuit voltage of the solar cell element 32 in the dark room 34 and the solar cell element 31 outside the dark room 34 are displayed. To calculate the power.
  • Transparent layer B cut to 80mm width x 120mm length as light receiving layer 11 ', transparent sheet C cut to 80mm width x 120mm length as light guide layer 12', transparent layer 13 'as transparent layer 13' Prepare light sheet B cut to 80mm width x 80mm length, and white sheet A cut to 80mm width x 80mm length as diffuse reflection layer 14 '.
  • the four sheets are respectively wetted with a small amount of water in the order of the light receiving layer 11 ', the light guiding layer 12', the intermediate layer 13 ', and the reflection layer 14'.
  • the collector 10 ' is made by overlapping so as to exclude the air between the two. Cover both ends with aluminum foil 33, and fix with a clip. Due to the difference in length between the light guide layer 12 ′ and the intermediate layer 13 ′, a part of the light guide layer 12 ′ is not covered with the intermediate layer 13 ′. This part becomes the daylighting part 15 ′.
  • a solar cell element 31 of the same type as that used in Example 1 is arranged so that its light receiving surface faces the daylighting portion 15 ′. Place the sheet concentrator 10 'so that the light-receiving layer 11' is on top, measure the short-circuit current and open-circuit voltage of the solar cell element, and calculate the power.
  • the sheet-shaped concentrator of the present invention and the solar cell sheet using the same are because of its light condensing property, caloric property, low cost, etc. It can be applied to solar cell building materials, solar cell transport equipment, etc., but the scope of application is not limited to these! /.

Abstract

Conventional concentrating solar cell has problems of limited concentration magnification, difficulty in follow-up of solar beam, restricted installation space, and the like. A concentrating solar cell sheet suitable for the solar cell and exhibiting good productivity is developed by solving the problems. A diffuse reflection layer (14) is formed on the intermediate layer (13) of a light conducting sheet formed by sandwiching a light conducting layer (12) composed of a high refractive index substance between a light receiving layer (11) composed of a low refractive index substance and the intermediate layer (13), and a lighting part (15) is provided by partially removing the light receiving layer (11) or the intermediate layer (13). The diffuse reflection layer (14) is preferably formed of transparent resin including multiple bubbles. The diffuse reflection layer (14) is preferably formed by gas blowing extrusion. The light receiving layer (11), the light conducting layer (12), the intermediate layer (13) and the diffuse reflection layer (14) are preferably composed of thermoplastic resin and molded integrally by co-extrusion.

Description

明 細 書  Specification
シート状集光器及びこれを用いた太陽電池シート  Sheet concentrator and solar cell sheet using the same
技術分野  Technical field
[0001] 本発明は、太陽電池用の集光シート及びそれを用いた太陽電池シートに関する。  [0001] The present invention relates to a condensing sheet for a solar cell and a solar cell sheet using the same.
詳しくは、本発明は、光を閉じこめる機能を有するため、太陽光等の光線の集光に好 適に使用し得る多層プラスチック発泡シート、その製造方法及び該多層シートを用い た太陽電池装置、さらにその利用方法に関する。  Specifically, since the present invention has a function of confining light, the multilayer plastic foam sheet that can be suitably used for condensing light rays such as sunlight, a manufacturing method thereof, a solar cell device using the multilayer sheet, and It relates to its usage.
背景技術  Background art
[0002] 近年、太陽電池は地球環境保全の点から再生型自然エネルギーを利用した発電 方式として注目されている。し力しながら太陽光はエネルギー密度が低いことと、その 太陽光エネルギーを太陽電池によって電力に変換する効率が高くないことや、太陽 電池素子の製造コストが高いことなどから、採算を取れるほどの経済性がないため、 実用的な発電方法として本格的に普及するには至っていない。このため、太陽光を 効率良く電力に変換するために、発電効率の高い太陽電池素子の開発や、エネル ギー密度を上げるための集光方法の検討、更に太陽電池素子のコストダウン等が鋭 意検討されている。  In recent years, solar cells have attracted attention as a power generation method using renewable natural energy from the viewpoint of global environmental conservation. However, sunlight has a low energy density, is not highly efficient in converting the solar energy into electric power by solar cells, and the manufacturing cost of solar cell elements is high. Since it is not economical, it has not yet become a full-fledged practical power generation method. For this reason, in order to efficiently convert sunlight into electric power, development of solar cell elements with high power generation efficiency, examination of condensing methods for increasing energy density, and further cost reduction of solar cell elements, etc. It is being considered.
[0003] この中で発電効率の高い太陽電池素子の開発としては、単結晶シリコン型、化合 物 (3— 5族、 2— 6族、その他)半導体型太陽電池などが開発されており、またコストダ ゥンの方法としては、アモルファスシリコン型太陽電池の開発が進められている。  [0003] Among these, the development of solar cell elements with high power generation efficiency includes the development of single crystal silicon type, compound (Group 3-5, Group 2-6, etc.) semiconductor type solar cells, etc. As a cost reduction method, development of amorphous silicon solar cells is underway.
[0004] また、エネルギー密度を上げるための集光方法としては、集光レンズ方式、反射鏡 方式、プリズム方式等が検討されており、コストの高い太陽電池の面積が狭くても広 V、面積の太陽光線をエネルギー変換することを目的として!/ヽる。  [0004] Further, as a condensing method for increasing the energy density, a condensing lens method, a reflecting mirror method, a prism method, and the like have been studied. For the purpose of energy conversion of the sun's rays!
[0005] この集光方式の太陽電池は、比較的低コストでエネルギー効率の良い方法として 注目されて 、るが、集光する方式により一長一短があり、広く普及するには至って!/ヽ ない。  [0005] This concentrating solar cell is attracting attention as a relatively low cost and energy efficient method. However, there are advantages and disadvantages depending on the concentrating method, and it has not been widely used!
[0006] 集光方法の最も一般的なものとして、フルネルレンズを使った方式がある (特許文献 1、 2、 3)。この方式は、フルネルレンズの焦点位置に太陽電池素子を配置することに より、高いエネルギー密度を実現することができるというものである。しかし、この方式 では、太陽光線の方角を正確に追尾する必要があることや、追尾装置の設置が必要 なため、設置場所にも制約がある。反射鏡を用いたシステムも同様の制約が考えられ る。 [0006] As a most general condensing method, there is a method using a Furnell lens (Patent Documents 1, 2, and 3). In this method, the solar cell element is arranged at the focal position of the fullnel lens. Thus, a higher energy density can be realized. However, with this method, it is necessary to accurately track the direction of sunlight, and it is necessary to install a tracking device, so the installation location is also limited. The same limitation can be considered for systems using reflectors.
特許文献 4, 5, 6, 7には、断面が三角形状のプリズムで反射と全反射を利用して 集光する集光器の例が開示されている。しかし、プリズムに進入する光線の角度の制 約があり、また、集光倍率や製造コストにも問題がある。  Patent Documents 4, 5, 6, and 7 disclose examples of concentrators that collect light using reflection and total reflection by a prism having a triangular cross section. However, there are restrictions on the angle of light rays that enter the prism, and there are also problems with the magnification and manufacturing cost.
[0007] 一方、シートの表面に小さなプリズムや半円柱状、半球状の突起を配置したものが 特許文献 8に開示されている。また、太陽電池素子と表面シートの中間にプリズム状 の構造を持ち、この部分に太陽電池素子力 の反射光を閉じこめるという機能を持つ たものが特許文献 9に開示されている。しかし、これらの集光方法は集光倍率が低く 、集光型のメリットである太陽電池素子の面積を小さくすることはあまり期待できない。 また、特許文献 10、 11にプリズムの形状をくさび形にすることにより、確実に集光す るアイデア等が開示されている。しかし、製造方法の困難さや設置方法の困難さなど から、実現することは難しいと考えられる。  [0007] On the other hand, Patent Document 8 discloses a sheet in which small prisms, semi-cylindrical or hemispherical protrusions are arranged on the surface of a sheet. Further, Patent Document 9 discloses a prism-like structure between the solar cell element and the surface sheet, and has a function of confining the reflected light of the solar cell element force in this portion. However, these condensing methods have low condensing magnification, and it is not expected to reduce the area of the solar cell element, which is a merit of the concentrating type. Further, Patent Documents 10 and 11 disclose the idea of reliably condensing light by making the prism shape a wedge shape. However, it is considered difficult to realize due to difficulties in manufacturing methods and installation methods.
[0008] 更に、透明樹脂の中に屈折率の異なる榭脂を分散させる方法なども報告されて!、 るが (特許文献 10)、集光効率の点力 困難が予想される。  [0008] Furthermore, a method of dispersing a resin having a different refractive index in a transparent resin has also been reported! (Patent Document 10), but it is expected that the concentrating efficiency of the light collecting efficiency is difficult.
[0009] 特許文献 1 特開 2002- -289897号公報  Patent Document 1 Japanese Patent Application Laid-Open No. 2002-289897
特許文献 2特開 2002- -289898号公報  Patent Document 2 JP 2002-289898 A
特許文献 3特開 2004- -214470号公報  Patent Document 3 Japanese Unexamined Patent Application Publication No. 2004-214470
特許文献 4特開昭 54- -018762号公報  Patent Document 4 JP 54-018762 A
特許文献 5特開平 06- -275859号公報  Patent Document 5 Japanese Patent Laid-Open No. 06-275859
特許文献 6特開平 07- -122771号公報  Patent Document 6 Japanese Patent Application Laid-Open No. 07-122771
特許文献 7特開 2004- -047752号公報  Patent Document 7 JP 2004-047752 A
特許文献 8特開 2000- -031515号公報  Patent Document 8 JP 2000-031515 A
特許文献 9特開 2000- -323734号公報  Patent Document 9 JP 2000-323734 A
特許文献 10:特開平 10-221528号公報  Patent Document 10: Japanese Patent Laid-Open No. 10-221528
特許文献 11:特開平 10-335689号公報 発明の開示 Patent Document 11: Japanese Patent Laid-Open No. 10-335689 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] このように、上述した従来の集光型太陽電池には、集光倍率の限界と太陽光線追 従性の困難、さらには設置スペースの制約等の問題点があり、これらを適正化し、生 産性が良好で、太陽電池として好適な集光型太陽電池シートを開発すべき課題が存 在する。  [0010] As described above, the above-described conventional concentrating solar cells have problems such as the limitation of the condensing magnification, difficulty in following the sun beam, and restrictions on the installation space. There is a problem to develop a concentrating solar cell sheet that has good productivity and is suitable as a solar cell.
課題を解決するための手段  Means for solving the problem
[0011] 上記課題は、以下に記載する本発明によって解決される。  [0011] The above problems are solved by the present invention described below.
即ち、本発明に係る太陽電池用シート状集光器は、高屈折率物質から成る導光層 を低屈折率物質力 成る受光層及び中間層で挟むことにより形成される導光シート の中間層側に乱反射層を積層し、一部に採光部を設けたことを特徴とするものである  That is, the sheet-like light collector for solar cell according to the present invention is an intermediate layer of a light guide sheet formed by sandwiching a light guide layer made of a high refractive index material between a light receiving layer made of a low refractive index material force and an intermediate layer. It is characterized by laminating an irregular reflection layer on the side and providing a daylighting part in part.
[0012] この乱反射層 14は、図 1に示すように、多数の気泡を内包する(透明又は半透明の )榭脂から成ることが望ましい。また、乱反射層 14はガス発泡押出により形成されてい ることが望ましい。そして、受光層 11、導光層 12、中間層 13及び乱反射層 14が熱可 塑性榭脂から成り、且つ共押出により一体形成されていることが望ましい。 As shown in FIG. 1, the irregular reflection layer 14 is preferably made of a resin (transparent or translucent) containing a large number of bubbles. The irregular reflection layer 14 is preferably formed by gas foam extrusion. The light receiving layer 11, the light guide layer 12, the intermediate layer 13 and the irregular reflection layer 14 are preferably made of a thermoplastic resin and integrally formed by coextrusion.
[0013] 本発明に係るシート状集光器 10は、更に、次のような構成を有することが望ましい。  [0013] The sheet-shaped concentrator 10 according to the present invention preferably further has the following configuration.
まず、受光層 11の表面には、図 1に示すように、光閉じ込め効果を持つ凹凸が形成 されていることが望ましい。次に、受光層 11の面積は、採光部 15の面積の 2倍以上 であることが望ましい。更に好ましくは 5倍以上である。 2倍に満たないときには、シー ト状集光器のコストメリットが得られないため、シート状集光器 10を採用する価値がな くなる。  First, as shown in FIG. 1, it is desirable that the surface of the light receiving layer 11 has irregularities having a light confinement effect. Next, the area of the light receiving layer 11 is preferably at least twice the area of the daylighting portion 15. More preferably, it is 5 times or more. When it is less than twice, the cost advantage of the sheet-shaped concentrator cannot be obtained, so the value of using the sheet-shaped concentrator 10 is lost.
[0014] そして、受光層 11の表面には防汚層が形成されていることが望ましい。この場合、 防汚層が光活性触媒を有することが望ましい。  [0014] Then, it is desirable that an antifouling layer is formed on the surface of the light receiving layer 11. In this case, it is desirable that the antifouling layer has a photoactive catalyst.
[0015] このシート状集光器と、受光面が前記採光部に対向するように配置された太陽電池 と、を設けることにより、太陽電池シートとして使用することができる。 [0015] By providing this sheet-shaped concentrator and a solar cell disposed so that the light receiving surface faces the daylighting portion, it can be used as a solar cell sheet.
図面の簡単な説明 [0016] [図 1]本発明の一実施形態におけるシート状集光器を用いた太陽電池シートを示す 概略説明図。 Brief Description of Drawings FIG. 1 is a schematic explanatory view showing a solar cell sheet using a sheet-like concentrator in one embodiment of the present invention.
[図 2]気泡界面での光の反射を示す概略説明図。  FIG. 2 is a schematic explanatory diagram showing light reflection at a bubble interface.
[図 3]実施例 1の実験の概略説明図。  FIG. 3 is a schematic explanatory diagram of an experiment of Example 1.
[図 4]実施例 2の実験の概略説明図(黒色画用紙 40なし)。  FIG. 4 is a schematic explanatory diagram of the experiment of Example 2 (without black drawing paper 40).
[図 5]実施例 2の実験の概略説明図(黒色画用紙 40あり)。  FIG. 5 is a schematic explanatory diagram of the experiment of Example 2 (with black drawing paper 40).
符号の説明  Explanation of symbols
[0017] 10、 10,…シート状集光器 [0017] 10, 10, ... Sheet concentrator
11、 11 '…受光層  11, 11 '… Light-receiving layer
12、 12'…導光層  12, 12 '... Light guiding layer
13、 13' · ··中間層  13, 13 '... middle class
14、 14'…乱反射層  14, 14 '... diffuse reflection layer
15、 15'…採光部  15, 15 '... Daylighting Department
16· ··太陽電池素子  16 ··· Solar cell element
20…気泡  20 ... Air bubbles
31 · ··シート状集光器の採光部に対向して設けた太陽電池素子  31 ··· Solar cell element provided facing the daylighting part of the sheet-shaped concentrator
32…暗室内太陽電池素子  32… Dark room solar cell element
33· ··アルミホイルカノ一  33 ··· Aluminum foil girlfriend
34…暗室  34. Darkroom
35· ··ハロゲンランプ  35 ··· Halogen lamp
40· ··黒色画用紙  40 ... Black drawing paper
発明を実施するための最良の形態及び効果  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 高屈折率物質力 成る導光層を低屈折率物質力 成る受光層及び中間層で挟ん だ導光シートの内部では、所定の臨界角度以上の浅い角度で界面に進入した光は 、導光シートの外部に出ることができない。しかし、最初にこの導光シートに入射する 太陽光は、この臨界角度以下の深い角度でも入ってくるため、多くの太陽光がこの導 光シートを通過して逃げてしまう。特許文献 8に示されている、表面にプリズム形状の 凹凸を設けるという方法によっても、あらゆる角度に対応して光を閉じこめることは困 難である。そこで本発明者は鋭意検討した結果、導光シートの、太陽光が入射する 側とは反対側の面に乱反射層を設けるという方法に想到した。この乱反射層は、導 光シートを通過してきた光の反射角度を変えることにより、反射光が導光シートに臨 界角度以上の浅い角度で再侵入する確率を高める。これにより、導光シートから外に 出ようとする光が全て導光シートに戻され、し力も、そのうちの多くが導光シート内に 閉じこめられるようになる。すなわち、光の集光効率を大きく高めることができる。 [0018] Inside the light guide sheet in which the light guide layer having a high refractive index material force is sandwiched between the light receiving layer and the intermediate layer having a low refractive index material force, the light that has entered the interface at a shallow angle of a predetermined critical angle or more is: Cannot go outside the light guide sheet. However, since the sunlight that first enters the light guide sheet also enters at a deep angle below this critical angle, a large amount of sunlight escapes through the light guide sheet. Even with the method of providing prism-shaped irregularities on the surface, as shown in Patent Document 8, it is difficult to confine light at all angles. It is difficult. Thus, as a result of intensive studies, the present inventor has come up with a method of providing an irregular reflection layer on the surface of the light guide sheet opposite to the side on which sunlight is incident. This irregular reflection layer changes the reflection angle of the light that has passed through the light guide sheet, thereby increasing the probability that the reflected light re-enters the light guide sheet at a shallow angle that is equal to or greater than the critical angle. As a result, all the light that is about to go out of the light guide sheet is returned to the light guide sheet, and most of the force is confined in the light guide sheet. That is, the light collection efficiency can be greatly increased.
[0019] この乱反射層としては、鏡面や金属面のような単純な全反射面に細力 、スクラッチ( 搔き傷線)を入れたものでもよいが、多数の気泡を内包する透明榭脂層も有効である 。図 2に示す通り、気泡 20の球状の界面で反射した光が、進入角度と異なる角度で 反射することを利用することにより、導光層へ浅い角度での再進入を果たすことがで き、このため導光層内での光の集光、蓄積が可能となることを見出した。  [0019] The irregular reflection layer may be a simple total reflection surface such as a mirror surface or a metal surface with a fine force and a scratch (scratched line), but a transparent resin layer containing many bubbles. Is also effective. As shown in Fig. 2, by utilizing the fact that the light reflected by the spherical interface of the bubble 20 is reflected at an angle different from the approach angle, it is possible to re-enter the light guide layer at a shallow angle, For this reason, it discovered that the condensing of light and accumulation | storage in a light guide layer were attained.
[0020] 本発明の積層シートを共押出シートとすることにより、積層面での接着剤等による光 の吸収ロスが起こらない。乱反射層の気泡界面での散乱反射にて、臨界角度以下の 角度で反射したため、系外に放出される光線は許容される。  [0020] By using the laminated sheet of the present invention as a coextruded sheet, loss of light absorption due to an adhesive or the like on the laminated surface does not occur. Light scattered outside the system is allowed because it was reflected at an angle below the critical angle by scattering reflection at the bubble interface of the diffuse reflection layer.
[0021] 本発明による発泡シート層は、シート中に含まれる気泡のうち 80%以上が 0.1〜50 mの範囲の気泡径を有するようにしておくことが望ましい。これにより、良好な反射特 性が得られる。更に、シート中に含まれる気泡のうち 80%以上が 0.4〜20 mの範囲の 気泡径を有していることが好ましい。気泡径カ 、さ過ぎる場合には、光干渉効果など を引き起こすため、十分な反射が得られない。逆に、気泡径が大き過ぎる場合には、 シートに垂直な方向へ反射する面積が大きくなるため、好ましくない。  [0021] The foamed sheet layer according to the present invention desirably has 80% or more of the bubbles contained in the sheet having a bubble diameter in the range of 0.1 to 50 m. As a result, good reflection characteristics can be obtained. Furthermore, it is preferable that 80% or more of the bubbles contained in the sheet have a bubble diameter in the range of 0.4 to 20 m. If the bubble diameter is too large, an optical interference effect or the like is caused, and sufficient reflection cannot be obtained. Conversely, if the bubble diameter is too large, the area that is reflected in the direction perpendicular to the sheet increases, which is not preferable.
[0022] 本発明による発泡シート層は、空隙率が 20〜80%の範囲にあることが望ましい。これ により、良好な反射特性が得られる。空隙率は、発泡シートに含まれる気泡の密度に 相当し、シートの気相占有率を表す力 シート及び用いる榭脂の密度とシート体積か ら、これを求めることができる。シートの空隙率は、更には 50〜70%であることが好まし い。これは気泡の形状が真球状を維持するためには、理論的な最大の空隙率は約 7 0%であり、これを大きく超えると、気泡がつぶれてしまい、良好な反射特性を得ること ができないからである。逆に、空隙率が低過ぎる場合には、気泡の密度が低くなり過 ぎるため、所望の反射特性が得られない。 [0023] 本発明における高屈折率榭脂を基材とした導光層とその両面に積層された低屈折 率榭脂を基材とした受光層及び中間層は、導光層と受光層及び中間層の界面で臨 界角度以上の角度で進入した光を高屈折率層から外部に漏洩することを防止するこ とが出来るため、導光層に光を閉じこめることができる。導光層と受光層及び中間層 は屈折率の差が大きいほど臨界角度を小さくすることが出来るため、より望ましい。 [0022] The foamed sheet layer according to the present invention desirably has a porosity in the range of 20 to 80%. As a result, good reflection characteristics can be obtained. The porosity corresponds to the density of bubbles contained in the foamed sheet, and can be determined from the force sheet representing the gas phase occupation ratio of the sheet, the density of the resin used, and the sheet volume. The porosity of the sheet is further preferably 50 to 70%. This is because the theoretical maximum porosity is about 70% in order to maintain the spherical shape of the bubble, and if it exceeds this, the bubble collapses and good reflection characteristics can be obtained. It is not possible. On the other hand, when the porosity is too low, the density of the bubbles becomes too low and the desired reflection characteristics cannot be obtained. [0023] The light guide layer based on the high refractive index resin in the present invention and the light receiving layer and intermediate layer based on the low refractive index resin laminated on both sides thereof are the light guide layer, the light receiving layer, and the light receiving layer. Since it is possible to prevent light that has entered at the interface of the intermediate layer at an angle greater than the critical angle from leaking out from the high refractive index layer, the light can be confined in the light guide layer. The light guide layer, the light receiving layer, and the intermediate layer are more preferable because the critical angle can be reduced as the difference in refractive index increases.
[0024] 本発明にお ヽて発泡を有する乱反射層を構成する主たる熱可塑性榭脂は、微細 な発泡を促すため、溶融張力の高い榭脂であることが好ましい。従って、溶融状態の 流動性を示すメルトフローレート (ASTM D1238-98に準じた測定値)が 0.5〜44g/10分 である熱可塑性榭脂が好ましぐ溶融状態の流動性が 1.4〜30g/10分の熱可塑性榭 脂がより好ましい。熱可塑性榭脂の流動性は、 ASTM D1238-98に記載された各種ポ リマーに関する測定条件 (温度、荷重等)に準じて決定し得る。  In the present invention, the main thermoplastic resin constituting the diffuse reflection layer having foaming is preferably a resin having a high melt tension in order to promote fine foaming. Therefore, the melt flow rate (measured according to ASTM D1238-98) showing the fluidity in the molten state is preferably 0.5 to 44 g / 10 min. A 10 minute thermoplastic resin is more preferred. The fluidity of thermoplastic resin can be determined according to the measurement conditions (temperature, load, etc.) for various polymers described in ASTM D1238-98.
[0025] 本発明において乱反射層、及び導光層、及び受光層及び中間層それぞれに使用 し得る熱可塑性榭脂の具体例としては、例えば、アクリル榭脂、メタクリル樹脂、ポリオ レフイン、ポリアミド、ポリエステル、ポリカーボネート、スチレン系榭脂、ポリエーテノレ、 ポリウレタン、ポリフエ-レンスルフイド、ポリエステルアミド、ポリエーテルエステル、ポ リ塩化ビュル、変性ポリフエ-レンエーテル、ポリアリレート、ポリサルホン、ポリイミド、 ポリエーテルイミド、ポリアミドイミド、及びこれらを主たる成分とする共重合体、並びに これらの混合物等を挙げることができる力 これらに限定されない。  [0025] Specific examples of the thermoplastic resin that can be used in each of the irregular reflection layer, the light guide layer, the light receiving layer, and the intermediate layer in the present invention include, for example, acrylic resin, methacrylic resin, polyolefin, polyamide, and polyester. , Polycarbonate, styrene-based resin, polyetherol, polyurethane, polyphenylene sulfide, polyesteramide, polyetherester, polychlorinated butyl, modified polyphenylene ether, polyarylate, polysulfone, polyimide, polyetherimide, polyamideimide, and these The force which can mention the copolymer which makes this a main component, these mixtures, etc. is not limited to these.
[0026] とりわけ、本発明における乱反射層を構成する主たる熱可塑性榭脂としてアクリル 榭脂及び Z又はメタクリル榭脂を用いると、特に良好な微細発泡性、成形性が得られ るため好ましぐまた、榭脂そのものの透明度が高いため、結果的に気泡界面におけ る反射も良好となる。更に、耐光性も優れており、原料榭脂も比較的安価に入手し得 る。受光層及び中間層にも同様の榭脂を用いることが好ましい。またこのとき導光層 にはポリカーボネート榭脂を用いると、受光層及び中間層のアクリル榭脂層よりも屈 折率が高く好ましい。  [0026] In particular, when acrylic resin and Z or methacrylic resin are used as the main thermoplastic resin constituting the irregular reflection layer in the present invention, it is preferable because particularly fine foamability and moldability are obtained. As a result, since the resin itself is highly transparent, reflection at the bubble interface is also good. Furthermore, it has excellent light resistance, and raw material fats can be obtained relatively inexpensively. It is preferable to use the same resin for the light receiving layer and the intermediate layer. At this time, it is preferable to use polycarbonate resin for the light guide layer because the refractive index is higher than that of the light-receiving layer and the intermediate acrylic resin layer.
[0027] このようなアクリル榭脂又はメタクリル樹脂の具体例としては、例えば、アクリル酸ェ ステル又はメタクリル酸エステルの単独重合体或いはアクリル酸エステル又はメタタリ ル酸エステルを 50重量%以上と、他の 1種以上のビニル単量体との共重合体が挙げら れ、なかでも、メタクリル酸エステルを 50重量%以上と、他の 1種以上のビュル単量体と の共重合体が好ましぐとりわけ、メタクリル酸アルキルエステルを 50重量%以上と、ァ クリル酸アルキルエステルを 50重量%以下と、メタクリル酸アルキルエステル及びアタリ ル酸アルキルエステルの少なくとも一方と共重合可能なビニル単量体の 1種以上を 4 9重量 %以下との共重合体が好ま 、。共重合体に含まれるアクリル酸アルキルエス テルは、 0.1重量%〜40重量%であることが好ましぐ 1重量%〜15重量%であることがより 好ましい。上記のアクリル榭脂又はメタクリル樹脂は、それぞれを単独で又はブレンド して使用してよい。 [0027] Specific examples of such an acrylic resin or methacrylic resin include, for example, acrylic acid ester or methacrylic acid ester homopolymer or acrylic acid ester or metatalic acid ester of 50% by weight or more. And copolymers with one or more vinyl monomers In particular, a copolymer of 50% by weight or more of a methacrylic acid ester and one or more other types of butyl monomers is preferred. Preferred is a copolymer comprising 50% by weight or less of alkyl ester and 49% by weight or less of at least one vinyl monomer copolymerizable with at least one of methacrylic acid alkyl ester and allylic acid alkyl ester. The amount of the alkyl acrylate ester contained in the copolymer is preferably 0.1% by weight to 40% by weight, more preferably 1% by weight to 15% by weight. The above acrylic resin or methacrylic resin may be used alone or in combination.
[0028] このようなアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸ェチル 、アクリル酸ブチル、アクリル酸シクロへキシル、アクリル酸フエ-ル、アクリル酸ベンジ ル、アクリル酸 2—ェチルへキシル、アクリル酸 2—ヒドロキシェチル等を挙げることが でき、とりわけ、アクリル酸メチル、アクリル酸ェチルが好ましい。また、メタクリル酸ェ ステルとしては、例えば、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸ブチル 、メタクリル酸シクロへキシル、メタクリル酸フエ-ル、メタクリル酸ベンジル、メタクリル 酸 2—ェチルへキシル、メタクリル酸 2—ヒドロキシェチル等を挙げることができ、とりわ け、メタクリル酸メチル、メタクリル酸ェチルが好ましい。共重合可能な他のビュル単 量体としては、上記のアクリル酸エステル又はメタクリル酸エステルのほ力 例えば、 アクリル酸、メタクリル酸などの不飽和酸類、スチレン、 α—メチルスチレン、アタリ口- トリル、メタタリ口-トリル、無水マレイン酸、フエ-ルマレイミド、シクロへキシルマレイミ ド等を挙げることができる。  [0028] Examples of such acrylate esters include methyl acrylate, ethyl acrylate, butyl acrylate, cyclohexyl acrylate, acrylic acid phenyl, benzyl acrylate, and 2-ethylhexyl acrylate. And 2-hydroxyethyl acrylate and the like, and methyl acrylate and ethyl acrylate are particularly preferable. Examples of the ester of methacrylate include methyl methacrylate, ethyl acetate, butyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, benzyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid 2 —Hydroxyethyl and the like can be mentioned, and in particular, methyl methacrylate and ethyl acetate are preferable. Examples of other copolymerizable butyl monomers include acrylic acid and methacrylic acid esters such as unsaturated acids such as acrylic acid and methacrylic acid, styrene, α-methylstyrene, talari-tolyl, Examples thereof include meta-tallow-tolyl, maleic anhydride, phenol maleimide, cyclohexyl maleimide and the like.
[0029] 上記のアクリル榭脂又はメタクリル樹脂の重量平均分子量 (Mw)は、 4万〜 40万であ ることが好ましぐさらに好ましくは 6万〜 30万である。 Mwが小さ過ぎると得られる発泡 シート層の機械強度が十分でない場合があり、 Mwが大き過ぎると溶融粘度が高くな り、押出性能が低下する場合がある。  [0029] The weight average molecular weight (Mw) of the acrylic resin or methacrylic resin is preferably 40,000 to 400,000, more preferably 60,000 to 300,000. If the Mw is too small, the resulting foamed sheet layer may have insufficient mechanical strength. If the Mw is too large, the melt viscosity may increase and the extrusion performance may decrease.
[0030] 更に、上記のアクリル榭脂又はメタクリル樹脂は、ゴム状重合体を含むものであって もよい。アクリル榭脂又はメタクリル樹脂へゴム状重合体を配合することにより、榭脂 の粘性及び靭性が向上するため、耐衝撃性の良好な発泡シートが得られる。  [0030] Further, the above-mentioned acrylic resin or methacrylic resin may contain a rubbery polymer. By blending a rubber-like polymer with acrylic resin or methacrylic resin, the viscosity and toughness of resin can be improved, and a foam sheet with good impact resistance can be obtained.
[0031] 本発明における熱可塑性榭脂には、シート状集光器の光学特性を損なわない範囲 内で、少量の、好ましくは 3重量 %以下の範囲で、結晶化核剤、結晶化促進剤、気泡 化核剤、抗酸化剤、安定剤、加工助剤、可塑剤、帯電防止剤、耐衝撃助剤、発泡剤 、充填剤、艷消剤、離型剤、難燃剤、紫外線吸収剤、紫外線防止剤、顔料、染料、 滑剤、蛍光増白剤などの各種添加剤が配合されて ヽてよ ヽ。 [0031] The thermoplastic resin in the present invention includes a range that does not impair the optical characteristics of the sheet-like light collector. In a small amount, preferably in the range of 3% by weight or less, a crystallization nucleating agent, a crystallization accelerator, a cell nucleating agent, an antioxidant, a stabilizer, a processing aid, a plasticizer, an antistatic agent, Various additives such as impact aids, foaming agents, fillers, matting agents, mold release agents, flame retardants, UV absorbers, UV inhibitors, pigments, dyes, lubricants, and optical brighteners are formulated. Yo ヽ.
[0032] このうち気泡化核剤として機能する無機微粒子としては、それ自体を核として孔を 形成し得るものが好ましぐ例えば炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、酸 化チタン (アナターゼ型、ルチル型)、酸化亜鉛、硫酸バリウム、硫化亜鉛、塩基性炭 酸錫、雲母チタン、酸化アンチモン、酸化マグネシウム、リン酸カルシウム、シリカ、ァ ルミナ、マイ力、タルク、カオリンなどを用いることができる。これらの中で、 400〜700n mの可視光域にぉ 、て吸収の少な 、炭酸カルシウム、硫酸バリウムを用いることが特 に好ましい。可視光域に吸収があると、輝度が低下する問題が発生することがある。  [0032] Of these, inorganic fine particles that function as a bubbling nucleating agent are preferably those capable of forming pores with themselves as nuclei, such as calcium carbonate, magnesium carbonate, zinc carbonate, titanium oxide (anatase type, rutile). Type), zinc oxide, barium sulfate, zinc sulfide, basic tin carbonate, titanium mica, antimony oxide, magnesium oxide, calcium phosphate, silica, alumina, my strength, talc, kaolin, and the like. Among these, it is particularly preferable to use calcium carbonate and barium sulfate, which have low absorption in the visible light range of 400 to 700 nm. If there is absorption in the visible light region, there may be a problem that the luminance decreases.
[0033] シート中に気泡を形成させるため、押出機内で熱可塑性榭脂中に溶解させる気体 としては、例えば二酸化炭素、窒素、ブタン、ヘリウム、アルゴン等が挙げられる。そ の中でも二酸化炭素、窒素は、ガス透過率が低ぐ安価で安全に取り扱える点で好ま しぐこれらを単独で、或いは組み合わせて使用してもよい。  [0033] Examples of the gas dissolved in the thermoplastic resin in the extruder in order to form bubbles in the sheet include carbon dioxide, nitrogen, butane, helium, and argon. Of these, carbon dioxide and nitrogen, which have low gas permeability and are inexpensive and can be handled safely, may be used alone or in combination.
[0034] 本発明の受光層表面には、防汚層を設けることが出来る。防汚層は、 Rf-(OC F ) - An antifouling layer can be provided on the surface of the light receiving layer of the present invention. Antifouling layer is Rf- (OC F)-
3 6 η3 6 η
〇- (CF ) - (CH )- 0- (CH ) - Si(OR )で示されるパーフルォロポリエーテル基含有シ〇- (CF)-(CH)-0- (CH)-Si (OR) -containing perfluoropolyether group
2 m 2 1 2 s 3 3 2 m 2 1 2 s 3 3
ランカップリング剤力もなることが好ましい。防汚層がこのような材料で形成されること で、シート最表面での汚れが付着しにくくなり、また付着しても容易に洗い流すことが できる。  It is also preferable that the run coupling agent power be obtained. When the antifouling layer is formed of such a material, dirt on the outermost surface of the sheet becomes difficult to adhere, and even if it adheres, it can be easily washed away.
[0035] また、この防汚層として、光触媒作用をもつ光活性物質を本発明の集光シート最表 面に用いることができる。こうした構成をとることで、防汚層の表面に付着した塵埃を 光の作用によって分解して粘着性を破壊し、雨や水分で洗!ヽ流すことで表面を清浄 に保つことを容易にする。光活性物質としては、 TiO、 ZnO、 SrTiO、 CdS、 CaP、 InP  [0035] Further, as the antifouling layer, a photoactive substance having a photocatalytic action can be used on the outermost surface of the light collecting sheet of the present invention. By adopting such a configuration, the dust attached to the surface of the antifouling layer is decomposed by the action of light to destroy the adhesiveness and washed with rain and moisture! It makes it easy to keep the surface clean by pouring. Photoactive materials include TiO, ZnO, SrTiO, CdS, CaP, InP
2 3  twenty three
、 GaAs、 BaTiO、 K TiO、 K NbO、 Fe O、 Ta O、 WO、 SnO、 Bi20、 NiO、 Cu 0、 S  , GaAs, BaTiO, K TiO, K NbO, Fe O, Ta O, WO, SnO, Bi20, NiO, Cu 0, S
3 2 3 2 3 2 3 2 3 3 2 3 2 iCゝ SiO、 MoS、 InPbゝ RuO、 CeOなどや、これらに Pt、 Rh、 RuO、 Nbゝ Cuゝ Snゝ Niゝ F 3 2 3 2 3 2 3 2 3 3 2 3 2 iC ゝ SiO, MoS, InPb ゝ RuO, CeO, etc., and Pt, Rh, RuO, Nb ゝ Cu ゝ Sn ゝ Ni ゝ F
2 2 2 2 2 2 2 2 2 2
eなどの金属及び Z又はこれらの金属酸ィ匕物を混合した組成物を使用できる。  A composition in which a metal such as e and Z or a metal oxide thereof is mixed can be used.
[0036] 本発明によるシート状集光器は、受光層表面に凹凸柄が転写されていてもよい。こ のような凹凸柄カ卩ェは、表面に微細な模様を形成させたキャスティングロール上で熱 可塑性榭脂シートに模様を転写させる方法、又は無地のキャスティングロールでシー ト化された発泡シートをー且ロール上に巻き取った後、改めて微細な模様を表面に 持つカレンダー装置にかけてシートに模様を転写させる方法などにより行うことができ る。微細な模様としては、光の反射を効率よく行うための、断面が三角形、台形、半 円形など傾斜面を有する凸条 (畝状)もしくは凹条を配列した形状、又は、ピラミッド形 などの角錐形、角錐の上部をカットした台形、ドーム形などの半球状、或いは曲率を つけた半球状などの凸部もしくは凹部を配列した形状が好ましぐ特に、ピラミッド形 など四角錐形の凸部もしくは凹部の配列で、対向する斜面同士のなす角度 (頂角)が[0036] In the sheet-like light collector according to the present invention, an uneven pattern may be transferred to the surface of the light receiving layer. This As for the uneven pattern cake, the pattern is transferred to a thermoplastic resin sheet on a casting roll having a fine pattern formed on the surface, or a foam sheet sheeted with a plain casting roll is used. And after winding up on a roll, it can carry out by the method of transferring a pattern to a sheet | seat again using the calendar apparatus which has a fine pattern on the surface. For the fine pattern, for efficient light reflection, the cross-section is a triangle, trapezoid, semicircular shape with an inclined surface such as a triangle or trapezoid, or an array of ridges, or pyramids. It is particularly preferable to use convex or concave shapes such as a trapezoid with a truncated pyramid shape, a hemispherical shape such as a dome shape, or a hemispherical shape with a curvature. The angle (vertical angle) between the opposing slopes in the array of recesses
90°のものが好ましい。又はそれらの複合模様などが挙げられる。 90 ° is preferred. Or the composite pattern etc. are mentioned.
[0037] 本発明によるシート状集光器全体の厚みは、 100〜1000 mであることが好ましぐ 1 50〜500 mがより好ましい。厚みが小さ過ぎる場合、シートの平坦性を確保すること が困難となり、シート状集光器として用いた際に、集光効率が低下する。一方、厚み が大き過ぎると鋼板等とのラミネートが難しくなる。 [0037] The thickness of the entire sheet-like light collector according to the present invention is preferably 100 to 1000 m, more preferably 150 to 500 m. When the thickness is too small, it becomes difficult to ensure the flatness of the sheet, and the light collection efficiency is lowered when used as a sheet-like light collector. On the other hand, if the thickness is too large, lamination with a steel plate or the like becomes difficult.
[0038] 本発明によるシート状集光器は、共押出、押出ラミネーシヨン、熱ラミネーシヨン、コ 一ティング、蒸着等により形成されたものであってよい。なかでも、共押出による積層 シートが好ましい。このような積層シートは、例えば、発泡層用主押出機と無発泡層 用の副押出機力ものポリマーを、ダイ内のマ-ホールド部若しくはダイに入る前に設 置されたフィードブロック部で合流させることにより形成し得る。この共押出積層シート は、接着剤層を設ける必要がないため、反射特性にとって有利であると同時に生産 性も良好である。さらに好ましくは、中間層と乱反射層の主原料組成を同じくすること により、例えば乱反射層の発泡部分と中間層の無発泡部分に境界がなくなるなど、 中間層と乱反射層の境界面の影響を少なくすることができるため、特にシート状集光 器として使用する場合に有利であり得る。 [0038] The sheet-shaped concentrator according to the present invention may be formed by coextrusion, extrusion lamination, thermal lamination, coating, vapor deposition, or the like. Among these, a laminated sheet by coextrusion is preferable. Such a laminated sheet is formed by, for example, a polymer having a main extruder for a foam layer and a sub-extrusion machine for a non-foam layer in a feed block portion installed in a die hold portion or before entering the die. It can be formed by merging. Since this coextruded laminated sheet does not require an adhesive layer, it is advantageous for reflection characteristics and at the same time has good productivity. More preferably, by using the same main raw material composition for the intermediate layer and the irregular reflection layer, the boundary between the intermediate layer and the irregular reflection layer is less affected, for example, there is no boundary between the foamed portion of the irregular reflection layer and the non-foamed portion of the intermediate layer. This can be advantageous particularly when used as a sheet-like concentrator.
[0039] 本発明における太陽電池もしくは太陽電池素子とは、半導体の光起電力効果を利 用して発電するものを意味しており、シリコン (単結晶系、多結晶系、アモルファス系) 太陽電池、化合物半導体 (3— 5族、 2— 6族、その他)太陽電池、湿式太陽電池、色 素増感太陽電池、有機半導体太陽電池などが挙げられる。 [0040] 本発明の別の態様では、シート状集光器並びにこれを用いた太陽電池シートを鋼 板にラミネートしても良い。この鋼板にラミネートされたシート状集光器並びにこれを 用いた太陽電池は、屋根材等の建築材料、自動車又はバス、船舶等の輸送機器の 構成材料に使うことが出来る。 [0039] The solar cell or solar cell element in the present invention means a device that generates power using the photovoltaic effect of a semiconductor, and is a silicon (single crystal, polycrystal, amorphous) solar cell. Compound semiconductors (Groups 3-5, 2-6, etc.) solar cells, wet solar cells, dye-sensitized solar cells, organic semiconductor solar cells, and the like. [0040] In another embodiment of the present invention, a sheet-shaped concentrator and a solar cell sheet using the same may be laminated on a steel plate. The sheet-shaped concentrator laminated on this steel plate and the solar cell using the same can be used for building materials such as roofing materials and constituent materials for transportation equipment such as automobiles, buses and ships.
[0041] 本発明において使用可能なシート成形機は、通常、榭脂を溶融させるための押出 機、シート化するためのフラットダイ、シートを冷却するためのキャストロール、シートの 引取り装置、卷取り装置から構成される。フラットダイは Tダイが好ましぐダイ内部で 積層させるマルチマ-ホールドタイプや、ダイの直前で積層させるフィードブロック装 置を備えるものも挙げられる。キャストロールは通常、温調機能を備えており、温調方 法は、冷却水、温水、又はオイル等を循環させたものや、さらに誘導加熱方式と組み 合わせる場合もある。シート引取り装置は、キャストロールに引き続きロールの温調機 能を持たせてもよぐまた、厚み測定装置、欠点検出装置、帯電防止装置、コロナ処 理ゃフレーム処理などの表面処理装置を備えることも可能である。卷取り装置はター レット機構、タツチロール機構、卷替え機構、張力制御装置などを備えることもできる  [0041] The sheet forming machine usable in the present invention is usually an extruder for melting the resin, a flat die for forming a sheet, a cast roll for cooling the sheet, a sheet take-up device, a sheet It consists of a take-off device. Flat dies include multi-hold types that are stacked inside the die, which is preferred by T dies, and those that have a feed block device that is stacked just before the die. Cast rolls usually have a temperature control function, and the temperature control method may be a combination of circulating cooling water, hot water, or oil, or an induction heating method. The sheet take-up device may have a roll temperature control function following the cast roll, and is equipped with a surface treatment device such as a thickness measurement device, defect detection device, antistatic device, corona treatment and frame treatment. It is also possible. The wrinkle removal device can also include a turret mechanism, a touch roll mechanism, a wrinkle changing mechanism, a tension control device, etc.
[0042] 本発明において使用可能なキャスト装置には、キャストロール若しくはキャストロー ルに続く、引取り装置中のロール上方に、ロールの曲率に沿った断面を持つ真空チ ヤンバー装置を備えることができる。この真空チャンバ一装置はシートに合わせた幅 のボックス状の装置であって、外部に設けた真空ポンプによって、チャンバ一内部の 空気を排気して減圧させ得るものである。チャンバ一ボックスは、真空を保持するた めのシール機構を有し、必要に応じ、複数の部屋で構成されている。このような真空 チャンバ一装置は、所望の発泡シートを得るために、チャンバ一の内部を 30kPa以下 に減圧することが可能であることが好ま 、。 [0042] The casting apparatus usable in the present invention may include a vacuum chamber apparatus having a cross section along the curvature of the roll above the roll in the take-up apparatus following the cast roll or the cast roll. . This vacuum chamber apparatus is a box-shaped apparatus having a width matched to the sheet, and can be depressurized by exhausting air inside the chamber by a vacuum pump provided outside. The chamber box has a sealing mechanism for maintaining a vacuum, and is composed of a plurality of rooms as required. Such a vacuum chamber apparatus is preferably capable of reducing the pressure inside the chamber to 30 kPa or less in order to obtain a desired foamed sheet.
[0043] 本発明において使用可能なチャンバ一装置に付属するシール機構は、シートの流 れ方向に対して入口側のインレットシール、出口側のアウトレットシール、両側に配置 されるサイドシールを含んで構成され、インレットシール及びアウトレットシールには、 ラビリンスシールタイプ、接触ローラー方式シールタイプ等を採用することができる。 サイドシールとしては、ラビリンスシールタイプ、接触ガイドタイプ等を採用することが できる。 [0043] The seal mechanism attached to the chamber apparatus usable in the present invention includes an inlet seal on the inlet side, an outlet seal on the outlet side, and side seals arranged on both sides with respect to the flow direction of the sheet. As the inlet seal and outlet seal, a labyrinth seal type, a contact roller type seal type, or the like can be adopted. As the side seal, labyrinth seal type, contact guide type, etc. can be adopted. it can.
[0044] 本発明によるシート状集光器並びにこれを用いた太陽電池シートの製造方法につ いて、その好ましい具体例を以下に説明するが、本発明はこれらの具体例に限定さ れるものではない。  [0044] Preferred examples of the sheet-shaped collector according to the present invention and a method for producing a solar cell sheet using the same will be described below, but the present invention is not limited to these specific examples. Absent.
[0045] まず、必要に応じて、加熱及び Z又は乾燥された原料となる熱可塑性榭脂チップを 、それぞれ予め加熱された発泡押出可能な乱反射層用主押出機 (A)、及び、発泡を 行わない受光層及び中間層に用いる副押出機 (B)、さらに導光層用副押出機 (C)に 供給する。主押出機 (A)には、機外に置かれたガス供給装置によって、好ましくは超 臨界条件以上の条件にて、ガスを供給する。主押出機 (A)内部で、溶融した熱可塑 性榭脂とガスを十分混鍊し、熱可塑性榭脂中にガスを溶解させて押し出す。  [0045] First, if necessary, a thermoplastic resin chip as a raw material that has been heated and Z or dried is subjected to foaming and extruding main extruder (A) for foaming and extruding, and foaming, respectively. Supplied to the sub-extruder (B) used for the light-receiving layer and intermediate layer not to be used, and further to the sub-extruder (C) for the light guide layer. The main extruder (A) is supplied with gas, preferably under supercritical conditions, by a gas supply device placed outside the apparatus. Inside the main extruder (A), the molten thermoplastic resin and gas are sufficiently mixed, and the gas is dissolved in the thermoplastic resin and extruded.
[0046] 主押出機 (A)力も押し出されたポリマー (a)と副押出機 (B)力も押し出されたポリマー (b )さらに副押出機 (C)から押し出されたポリマー (c)を、フィードブロックにて (b)(C)(b)(a)の 4層となるように合流させた後、 Tダイに供給してシート状に吐出させる。このとき、ポリ マー (a)は、ガスは溶解している力 発泡していない無発泡シート状態となるように、ガ ス供給量を調整する。 [0046] Main extruder (A) Feed the extruded polymer (a) and sub-extruder (B) Extruded polymer (b) and polymer (c) extruded from the sub-extruder (C) The blocks are merged to form four layers (b), ( C ), (b), and ( a ), then supplied to the T-die and discharged into a sheet. At this time, the gas supply amount is adjusted so that the polymer (a) is in a non-foamed sheet state in which the gas is dissolved.
[0047] Tダイから吐出させたシートを、キャスティングロールに着地させて冷却させる。この とき、シートは通常、透明状態の均一なシートである。キャスティングロール上で所定 の温度まで冷却した後、キャスティングロールに続く引取りロールにシートを導入させ る。次いで、引取りロール上に設けた真空チャンバ一により、シートを真空状態に晒 す。すると、シートは微細な発泡を生じ、純白色のシートに変化する。その後、このシ 一トを卷取り機によって、ロール状に巻き取る。  [0047] The sheet discharged from the T-die is landed on a casting roll and cooled. At this time, the sheet is usually a transparent uniform sheet. After cooling to a predetermined temperature on the casting roll, the sheet is introduced into the take-up roll following the casting roll. Next, the sheet is exposed to a vacuum state by a vacuum chamber provided on the take-up roll. Then, the sheet generates fine foam and changes to a pure white sheet. Then, this sheet is wound up into a roll shape by a winder.
[0048] 本発明による上記積層シートは、気体が溶解した熱可塑性榭脂を押出すことにより 発泡させる工程を含む方法により製造し得る。この場合、真空チャンバ一装置を用い ずに発泡を行ってよぐ無発泡状態又は発泡状態のシートを真空チャンバ一装置に 通過させてもよい。  [0048] The laminated sheet according to the present invention can be produced by a method including a step of foaming by extruding a thermoplastic resin in which a gas is dissolved. In this case, a non-foamed or foamed sheet that is foamed without using the vacuum chamber may be passed through the vacuum chamber.
[0049] 本発明はある態様において、気体を溶解させた熱可塑性榭脂の溶融ポリマーを無 発泡状態でシートィ匕する工程、シートを 50〜200°Cの温度条件下で真空に晒すこと により気泡を発生させる工程、を含む発泡シートの製造方法に関する。かかる製造方 法は、本発明による上記発泡シート又は積層シートの製造に適したものであり、上記 各工程は、連続していることが好ましい。ここで、温度条件は、 70〜120°Cであることが より好まし 、。 [0049] In one embodiment, the present invention provides a step of sheeting a molten polymer of thermoplastic resin in which a gas is dissolved in an unfoamed state, by exposing the sheet to a vacuum under a temperature condition of 50 to 200 ° C, thereby causing bubbles. A method for producing a foam sheet. Such manufacturing method The method is suitable for the production of the foamed sheet or laminated sheet according to the present invention, and the above steps are preferably continuous. Here, the temperature condition is more preferably 70 to 120 ° C.
[0050] 本発明にお 、て「無発泡状態でシートィ匕する」とは、溶融榭脂ポリマーに気体を溶 解させるが、ダイ部分で吐出させる際に発泡することの無い状態でシートィ匕すること であって、溶解させる気体の量を減らし、及び Z又は吐出条件を制御することによつ て行い得る。この無発泡状態のシートは、ポリマー中に気体が溶解しているため、シ ートに減圧等の刺激を与えることにより、容易に発泡させることが可能である。  In the present invention, “sheeting in a non-foamed state” means that the gas is dissolved in the molten resin polymer, but the sheet is formed in a state without foaming when discharged from the die portion. This can be done by reducing the amount of gas to be dissolved and controlling the Z or discharge conditions. Since the non-foamed sheet has a gas dissolved in the polymer, it can be easily foamed by applying a stimulus such as reduced pressure to the sheet.
[0051] このシートィ匕後の後発泡方法によれば、シートの温度や減圧等の条件を調整する ことにより、気泡の発生状態を容易にコントロールできるため、気泡サイズや気泡数を 最適化し易 、点で好まし 、。  [0051] According to the post-foaming method after sheeting, the bubble generation state can be easily controlled by adjusting the conditions such as the temperature and reduced pressure of the sheet, so that the bubble size and the number of bubbles can be easily optimized. Liked in terms of.
[0052] このように、本発明の発泡シートは、ガス供給押出に続くシートィ匕装置、真空チャン バー装置を用いることにより得ることができる。従って、インラインで、反射特性、加工 性、表面平滑性に優れたシートを生産性良く製造することが可能である。  [0052] Thus, the foamed sheet of the present invention can be obtained by using a sheeting device and a vacuum chamber device following gas supply extrusion. Therefore, it is possible to produce a sheet excellent in reflection characteristics, workability, and surface smoothness in-line with high productivity.
[0053] 本発明による上記積層シートは、シート状集光器並びにこれを用いた太陽電池シ ートとして好適に使用し得る。  [0053] The laminated sheet according to the present invention can be suitably used as a sheet-shaped concentrator and a solar cell sheet using the same.
実施例 1  Example 1
[0054] 光学用アクリル榭脂 (住友ィ匕学 (株)スミペックス MGSS)を予め 120°Cの条件で 4時間 加熱したものを原料とし、これを 1段目として 35mm、 L/Dが 34の単軸押出機、 2段目と して 50mm、 L/Dが 28の単軸押出機のタンデム構成押出機に供給し、さらに押出機の 機外に設置した高圧ガス供給装置から、超臨界条件を越える 38°C、 15MPaにて、炭 酸ガスを 1段目押出機の溶融圧縮部のシリンダ部に設けたノズルに供給し、榭脂中 に溶解、混鍊させた。このときの炭酸ガスの供給量は、押出機の吐出量 14.3kg/h〖こ 対して、炭酸ガスの割合を 0.03kg/hとした。このときの押出温度は、 1段目 240°C、 2段 目 200°Cであった。  [0054] Optical acrylic resin (Sumitomo Chemical Co., Ltd. Sumipex MGSS) heated in advance at 120 ° C for 4 hours is used as a raw material, and this is the first stage with 35mm and L / D of 34. Single-screw extruder, 50mm for the second stage, L / D 28 is supplied to the tandem extruder of the single-screw extruder, and supercritical conditions from the high-pressure gas supply device installed outside the extruder The carbon dioxide gas was supplied to the nozzle provided in the cylinder part of the melt-compression part of the first stage extruder at 38 ° C and 15 MPa, which was dissolved and mixed in the resin. At this time, the carbon dioxide gas was supplied at a rate of 0.03 kg / h with respect to the discharge rate of the extruder of 14.3 kg / h. The extrusion temperature at this time was 240 ° C for the first stage and 200 ° C for the second stage.
[0055] これをスリット幅 150mm、スリット間隙 0.8mmのダイから吐出させてシート化したところ 、透明の平滑なシートが得られた。このシートを 90°Cに加熱しながら、デシケーター( 真空容器)に入れて 28kPaに減圧したところ、発泡し白濁した。この得られた白色シー ト A (平均厚み : 205 m)をミクロトームにてフィルム断面を潰すことなく切断し、切断し た断面を走査型電子顕微鏡 S-2100A型 ((株)日立製作所製)を用いて、 500倍にて観 察したところ、気泡径は中心が 10 μ mで気泡の 85%以上が 20 μ m以下の範囲の気泡 径を有していた。 [0055] When this was discharged from a die having a slit width of 150 mm and a slit gap of 0.8 mm to form a sheet, a transparent smooth sheet was obtained. When this sheet was heated to 90 ° C. and placed in a desiccator (vacuum vessel) and depressurized to 28 kPa, it foamed and became cloudy. This resulting white sea A (average thickness: 205 m) was cut with a microtome without crushing the film cross section, and the cut cross section was magnified 500 times using a scanning electron microscope S-2100A type (manufactured by Hitachi, Ltd.). As a result, the bubble diameter was 10 μm at the center, and more than 85% of the bubbles had a bubble diameter in the range of 20 μm or less.
[0056] 同じ押出機を用いて発泡シート同じ榭脂 (住友ィ匕学 (株)スミペックス MGSS)を吐出量 8.5kg/hにて炭酸ガスの供給を行わないで押出ししてシートィ匕し、平均厚み 122 mの 透明シート Bを得た。  [0056] Using the same extruder, the same foamed resin (Sumitomo Chemical Co., Ltd. Sumipex MGSS) was extruded at a discharge rate of 8.5kg / h without supplying carbon dioxide, and sheeted, averaged. A transparent sheet B having a thickness of 122 m was obtained.
[0057] さらに同じ押出機を用いて異なるポリカーボネート榭脂 (住友ダウ株式会社製ガリバ 一 301-10)を吐出量 12.5kg/hにて炭酸ガスの供給を行わないで押出ししてシートィ匕し 、平均厚み 180 mの透明シート Cを得た。  [0057] Further, using the same extruder, different polycarbonate resins (Gariba No. 301-10 manufactured by Sumitomo Dow Co., Ltd.) were extruded at a discharge rate of 12.5 kg / h without supplying carbon dioxide, and sheeted. Transparent sheet C having an average thickness of 180 m was obtained.
[0058] 受光層 11として透明シート Bを 80mm幅 X 80mmにカットしたものを、導光層 12として 透明シート Cを 80mm幅 X 120mm長さにカットしたものを、中間層 13として透明シート B を 80mm幅 X 120mm長さにカットしたものを、乱反射層 14として白色シート Aを 80mm 幅 X 120mm長さにカットしたものを、それぞれ準備する。  [0058] Transparent sheet B cut to 80 mm width x 80 mm as light receiving layer 11, transparent sheet C cut to 80 mm width x 120 mm length as light guide layer 12, transparent sheet B as intermediate layer 13 Prepare 80mm width x 120mm length cut white sheet A as diffuse reflection layer 14 cut to 80mm width x 120mm length.
[0059] 図 3に示すように、この 4枚のシートを受光層 11、導光層 12、中間層 13、乱反射層 14の順で、微量の水で湿らせながらそれぞれの間の空気を排除するように重ね合わ せてシート状集光器 10を作製する。両端部をアルミホイル 33でカバーした上で、タリ ップで留めて固定する。受光層 11と導光層 12の長さの違いのため、導光層 12の一 部には受光層 11に覆われて 、な 、部分がある。この部分が導光層 12から光を採り 出すための採光部 15となる。  [0059] As shown in FIG. 3, the four sheets are removed in the order of the light receiving layer 11, the light guide layer 12, the intermediate layer 13, and the irregular reflection layer 14 while moistening them with a small amount of water to eliminate the air between them. The sheet-shaped concentrator 10 is produced by superimposing as described above. Cover both ends with aluminum foil 33, and fix with a clip. Due to the difference in length between the light receiving layer 11 and the light guide layer 12, a portion of the light guide layer 12 is covered with the light receiving layer 11. This portion becomes a daylighting part 15 for taking out light from the light guide layer 12.
[0060] こうして作製したシート状集光器 10を、図 3のように受光層 11を上側として、採光部 15を含む一部が暗室 34の外側に張り出し、残りの部分が暗室 34内になるように配 置する。暗室 34内をノ、ロゲンライト 35で照らす。このとき暗室 34内に太陽電池素子( 日本ィーテックソーラーパネル SPM01単結晶シリコン型 33mm X 62mm)32をシートと 同じ高さに配置する。  As shown in FIG. 3, the sheet-shaped concentrator 10 thus manufactured has the light receiving layer 11 on the upper side, a part including the daylighting part 15 projects outside the dark room 34, and the remaining part is in the dark room 34. Arrange them as follows. Illuminate the dark room 34 with Rogen Light 35. At this time, a solar cell element (NIPPON TETECH Solar Panel SPM01 Single Crystal Silicon Type 33mm X 62mm) 32 is placed in the dark room 34 at the same height as the sheet.
[0061] 採光部 15の上に、暗室 34内に入れたものと同型の太陽電池素子 31をその受光面 が採光部 15に向き合うように配置する。この状態でハロゲンランプ 35を点灯し、暗室 34内の太陽電池素子 32及び暗室 34外の太陽電池素子 31の短絡電流と開放電圧 を測定し、電力を算出する。 On the daylighting unit 15, a solar cell element 31 of the same type as that in the dark room 34 is arranged so that its light receiving surface faces the daylighting unit 15. In this state, the halogen lamp 35 is turned on, and the short-circuit current and the open-circuit voltage of the solar cell element 32 in the dark room 34 and the solar cell element 31 outside the dark room 34 are displayed. To calculate the power.
[0062] その結果、暗室外の太陽電池素子 31により得られた電力が暗室 34内の太陽電池 素子 32により得られた電力の 155%であることを確認した。  As a result, it was confirmed that the electric power obtained by the solar cell element 31 outside the dark room was 155% of the electric power obtained by the solar cell element 32 inside the dark room 34.
実施例 2  Example 2
[0063] 実施例 1と同様にして白色シート A、透明シート B及び透明シート Cを得た。  [0063] In the same manner as in Example 1, white sheet A, transparent sheet B, and transparent sheet C were obtained.
受光層 11 'として透明シート Bを 80mm幅 X 120mm長さにカットしたものを、導光層 1 2'として透明シート Cを 80mm幅 X 120mm長さにカットしたものを、中間層 13 'として透 明シート Bを 80mm幅 X 80mm長さにカットしたものを、乱反射層 14'として白色シート A を 80mm幅 X 80mm長さにカットしたものを、それぞれ準備する。  Transparent layer B cut to 80mm width x 120mm length as light receiving layer 11 ', transparent sheet C cut to 80mm width x 120mm length as light guide layer 12', transparent layer 13 'as transparent layer 13' Prepare light sheet B cut to 80mm width x 80mm length, and white sheet A cut to 80mm width x 80mm length as diffuse reflection layer 14 '.
[0064] 図 4に示すように、この 4枚のシートを受光層 11 '、導光層 12'、中間層 13'、乱反 射層 14'の順で、微量の水で湿らせながらそれぞれの間の空気を排除するように重 ね合わせて集光器 10'を作製する。両端部をアルミホイル 33でカバーした上で、タリ ップで留めて固定する。導光層 12'と中間層 13'の長さの違いのため、導光層 12'の 一部には中間層 13'に覆われていない部分がある。この部分が採光部 15 'となる。 実施例 1で用いたものと同型の太陽電池素子 31をその受光面が採光部 15'に向き 合うように配置する。シート状集光器 10'を受光層 11 'が上になるように置き、太陽電 池素子の短絡電流と開放電圧を測定し電力を算出する。 [0064] As shown in FIG. 4, the four sheets are respectively wetted with a small amount of water in the order of the light receiving layer 11 ', the light guiding layer 12', the intermediate layer 13 ', and the reflection layer 14'. The collector 10 'is made by overlapping so as to exclude the air between the two. Cover both ends with aluminum foil 33, and fix with a clip. Due to the difference in length between the light guide layer 12 ′ and the intermediate layer 13 ′, a part of the light guide layer 12 ′ is not covered with the intermediate layer 13 ′. This part becomes the daylighting part 15 ′. A solar cell element 31 of the same type as that used in Example 1 is arranged so that its light receiving surface faces the daylighting portion 15 ′. Place the sheet concentrator 10 'so that the light-receiving layer 11' is on top, measure the short-circuit current and open-circuit voltage of the solar cell element, and calculate the power.
また、図 5のように、受光層 11 'の上に、 80mm幅 X 80mm長さにカットした黒色の画 用紙 40 (大王製紙 再生色画用紙くろ 坪量 122.1g/m2)を被せ、乱反射層 14'に太 陽光が入射しな 、ようにした状態、即ち本発明の作用が生じな 、状態で太陽電池素 子の短絡電流と開放電圧を測定し電力を算出する。 In addition, as shown in Fig. 5, cover the light receiving layer 11 'with black drawing paper 40 cut to 80mm width x 80mm length (Dao Paper Recycled Color Paper Basis Weight 122.1g / m 2 ) and diffuse reflection layer In a state in which the sunlight is not incident on 14 ', that is, in a state where the action of the present invention does not occur, the short-circuit current and the open-circuit voltage of the solar cell element are measured to calculate the power.
[0065] 以上の測定を屋外 (京都市内、北緯 34° 59' 、東経 135° 46' )において、曇天時 [0065] The above measurements were taken outdoors (Kyoto city, north latitude 34 ° 59 ', east longitude 135 ° 46')
(2005年 3月 15日)の午後 0時に行った。その結果、黒色画用紙 40を被せなかった時 に得られた電力はそれを被せた時の電力の 147%であった。  I went at midnight on March 15, 2005. As a result, the electric power obtained when the black paper 40 was not covered was 147% of the electric power when the black paper 40 was not covered.
また、晴天時 (2005年 3月 21日)の午後 0時に同様の測定を行った。その結果、黒色 画用紙 40を被せなかった時に得られた電力はそれを被せた時の電力の 140%であつ た。  In addition, the same measurement was performed at midnight on a clear day (March 21, 2005). As a result, the power obtained when the black paper 40 was not covered was 140% of the power when the black paper 40 was not covered.
[0066] これらの測定結果は、晴天時、曇天時のいずれにおいても、本実施例のシート状 集光器 10'を用いることにより太陽電池素子への光の集光効率が高まったことを示し ている。 [0066] These measurement results were obtained in the sheet form of this example both in fine weather and in cloudy weather. This shows that the light condensing efficiency to the solar cell element is increased by using the concentrator 10 '.
産業上の利用可能性 Industrial applicability
本発明のシート状集光器並びにこれを用いた太陽電池シートは、その集光性、カロ ェ性、低コスト性などから、汎用太陽電池シート、太陽電池力 なるロールスクリーン 、太陽電池ラミネート鋼板、太陽電池建築材料、太陽電池輸送機器等に適用可能で あるが、その適用範囲はこれらに限られるものではな!/、。  The sheet-shaped concentrator of the present invention and the solar cell sheet using the same are because of its light condensing property, caloric property, low cost, etc. It can be applied to solar cell building materials, solar cell transport equipment, etc., but the scope of application is not limited to these! /.

Claims

請求の範囲 The scope of the claims
[I] 高屈折率物質から成る導光層を低屈折率物質から成る受光層及び中間層で挟む ことにより形成される導光シートの中間層側に乱反射層を積層し、一部に採光部を設 けたことを特徴とするシート状集光器。  [I] A diffused reflection layer is laminated on the intermediate layer side of a light guide sheet formed by sandwiching a light guide layer made of a high refractive index material between a light receiving layer made of a low refractive index material and an intermediate layer, and a daylighting part A sheet-shaped concentrator characterized by having a.
[2] 乱反射層が、多数の気泡を内包する榭脂から成ることを特徴とする請求項 1に記載 のシート状集光器。  [2] The sheet-like concentrator according to [1], wherein the irregular reflection layer is made of a resin containing a large number of bubbles.
[3] 乱反射層がガス発泡押出により形成されていることを特徴とする請求項 2に記載の シート状集光器。  [3] The sheet-shaped concentrator according to claim 2, wherein the irregular reflection layer is formed by gas foam extrusion.
[4] 受光層、導光層、中間層及び乱反射層が熱可塑性榭脂から成り、且つ共押出によ り一体形成されていることを特徴とする請求項 1〜3のいずれかに記載のシート状集 光器。  [4] The light-receiving layer, the light-guiding layer, the intermediate layer, and the irregular reflection layer are made of thermoplastic resin and are integrally formed by coextrusion. Sheet-shaped collector.
[5] 受光層の表面に光閉じ込め効果を持つ凹凸が形成されていることを特徴とする請 求項 1〜4のいずれか〖こ記載のシート状集光器。  [5] The sheet-shaped concentrator according to any one of claims 1 to 4, wherein unevenness having a light confinement effect is formed on the surface of the light receiving layer.
[6] 受光層の面積が採光部の面積の 2倍以上であることを特徴とする請求項 1〜5のい ずれかに記載のシート状集光器。 [6] The sheet-shaped concentrator according to any one of [1] to [5], wherein the area of the light receiving layer is at least twice the area of the daylighting portion.
[7] 受光層の表面に防汚層が形成されていることを特徴とする請求項 1〜6のいずれか に記載のシート状集光器。 [7] The sheet-like concentrator according to any one of [1] to [6], wherein an antifouling layer is formed on the surface of the light receiving layer.
[8] 防汚層が光活性触媒を有することを特徴とする請求項 7に記載のシート状集光器。 [8] The sheet-like concentrator according to [7], wherein the antifouling layer has a photoactive catalyst.
[9] 高屈折率物質から成る導光層を低屈折率物質から成る受光層及び中間層で挟む ことにより形成される導光シートの中間層側に乱反射層を積層し、一部に採光部を設 けたシート状集光器と、 [9] A diffused reflection layer is laminated on the intermediate layer side of the light guide sheet formed by sandwiching a light guide layer made of a high refractive index material between a light receiving layer made of a low refractive index material and an intermediate layer, and a daylighting part A sheet-shaped concentrator with
受光面が前記採光部に対向するように配置された太陽電池と、  A solar cell disposed such that a light-receiving surface faces the daylighting unit;
を備えることを特徴とする太陽電池シート。  A solar cell sheet comprising:
[10] 乱反射層が、多数の気泡を内包する榭脂から成ることを特徴とする請求項 9に記載 の太陽電池シート。 10. The solar cell sheet according to claim 9, wherein the irregular reflection layer is made of a resin containing a large number of bubbles.
[II] 乱反射層がガス発泡押出により形成されていることを特徴とする請求項 10に記載 の太陽電池シート。  [II] The solar cell sheet according to claim 10, wherein the irregular reflection layer is formed by gas foam extrusion.
[12] 受光層、導光層、中間層及び乱反射層が熱可塑性榭脂から成り、且つ共押出によ り一体形成されて 、ることを特徴とする請求項 9〜 11の 、ずれかに記載の太陽電池 シート。 [12] The light-receiving layer, the light-guiding layer, the intermediate layer, and the irregular reflection layer are made of thermoplastic resin and are coextruded. The solar cell sheet according to any one of claims 9 to 11, wherein the solar cell sheet is integrally formed.
[13] 受光層の表面に光閉じ込め効果を持つ凹凸が形成されていることを特徴とする請 求項 9〜4の!、ずれかに記載の太陽電池シート。  [13] The solar cell sheet according to any one of claims 9 to 4, wherein unevenness having a light confinement effect is formed on the surface of the light receiving layer.
[14] 受光層の面積が採光部の面積の 2倍以上であることを特徴とする請求項 9〜13の いずれかに記載の太陽電池シート。 [14] The solar cell sheet according to any one of [9] to [13], wherein the area of the light receiving layer is at least twice the area of the daylighting portion.
[15] 受光層の表面に防汚層が形成されていることを特徴とする請求項 9〜14のいずれ かに記載の太陽電池シート。 [15] The solar cell sheet according to any one of [9] to [14], wherein an antifouling layer is formed on the surface of the light receiving layer.
[16] 防汚層が光活性触媒を有することを特徴とする請求項 15に記載の太陽電池シート 16. The solar cell sheet according to claim 15, wherein the antifouling layer has a photoactive catalyst.
PCT/JP2005/017608 2004-09-27 2005-09-26 Sheet-like concentrator and solar cell sheet employing it WO2006035698A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006537711A JP4155361B2 (en) 2004-09-27 2005-09-26 Sheet concentrator and solar cell sheet using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-279889 2004-09-27
JP2004279889 2004-09-27

Publications (1)

Publication Number Publication Date
WO2006035698A1 true WO2006035698A1 (en) 2006-04-06

Family

ID=36118844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/017608 WO2006035698A1 (en) 2004-09-27 2005-09-26 Sheet-like concentrator and solar cell sheet employing it

Country Status (3)

Country Link
JP (1) JP4155361B2 (en)
TW (1) TW200614529A (en)
WO (1) WO2006035698A1 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009034904A (en) * 2007-08-01 2009-02-19 Japan Gore Tex Inc Method of manufacturing surface machined substrate having fine uneven surface
WO2010012474A2 (en) * 2008-07-30 2010-02-04 Concentrix Solar Gmbh Photovoltaic apparatus for direct conversion of solder energy to electrical energy
WO2010027944A2 (en) * 2008-09-02 2010-03-11 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
US20100116319A1 (en) * 2008-11-12 2010-05-13 Abengoa Solar New Technologies, S.A. Light collection and concentration system
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
JP2010219205A (en) * 2009-03-16 2010-09-30 Furukawa Electric Co Ltd:The Solar cell unit, and method of manufacturing the same
WO2010137695A1 (en) * 2009-05-29 2010-12-02 株式会社クラレ Fresnel lens sheet for solar collection and design method therefor
JP2011020360A (en) * 2009-07-16 2011-02-03 Konica Minolta Holdings Inc Method for forming film structure with fine rugged pattern, film structure with fine rugged pattern, solar energy collecting prism sheet, and optical film for stereoscopic vision display
JP2011029273A (en) * 2009-07-22 2011-02-10 Mitsubishi Electric Corp Solar cell module
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
CN102148277B (en) * 2010-02-05 2013-03-13 胜华科技股份有限公司 Solar light control module
JP2014029450A (en) * 2011-09-30 2014-02-13 Daikin Ind Ltd Light condensing film, solar battery module, and transfer mold
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
JP2015149388A (en) * 2014-02-06 2015-08-20 株式会社カネカ Solar battery module and method for manufacturing the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
WO2015185855A1 (en) * 2014-06-05 2015-12-10 Electricite De France Photovoltaic device and associated manufacturing process
JP2018007437A (en) * 2016-07-04 2018-01-11 市川 雅英 Cordless power transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI414072B (en) 2009-05-06 2013-11-01 Ind Tech Res Inst Solar energy module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275950A (en) * 1980-02-04 1981-06-30 Meyer Stanley A Light-guide lens
JPH06275859A (en) * 1993-03-24 1994-09-30 Omron Corp Condensing device for solar cell
JPH10221528A (en) * 1996-12-05 1998-08-21 Toyota Motor Corp Solar battery device
JPH11243225A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Solar power-generating device, solar power-generating module, and method for setting solar power-generating system
JP2004047752A (en) * 2002-07-12 2004-02-12 Bridgestone Corp Solar cell equipped with condensing means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4275950A (en) * 1980-02-04 1981-06-30 Meyer Stanley A Light-guide lens
JPH06275859A (en) * 1993-03-24 1994-09-30 Omron Corp Condensing device for solar cell
JPH10221528A (en) * 1996-12-05 1998-08-21 Toyota Motor Corp Solar battery device
JPH11243225A (en) * 1998-02-26 1999-09-07 Hitachi Ltd Solar power-generating device, solar power-generating module, and method for setting solar power-generating system
JP2004047752A (en) * 2002-07-12 2004-02-12 Bridgestone Corp Solar cell equipped with condensing means

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8970939B2 (en) 2004-09-27 2015-03-03 Qualcomm Mems Technologies, Inc. Method and device for multistate interferometric light modulation
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US9001412B2 (en) 2004-09-27 2015-04-07 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US8971675B2 (en) 2006-01-13 2015-03-03 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US8964280B2 (en) 2006-06-30 2015-02-24 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
JP2010525582A (en) * 2007-05-01 2010-07-22 モーガン ソーラー インコーポレーテッド Light guiding solar panel and manufacturing method thereof
US8736949B2 (en) 2007-07-31 2014-05-27 Qualcomm Mems Technologies, Inc. Devices and methods for enhancing color shift of interferometric modulators
JP2009034904A (en) * 2007-08-01 2009-02-19 Japan Gore Tex Inc Method of manufacturing surface machined substrate having fine uneven surface
US8797628B2 (en) 2007-10-19 2014-08-05 Qualcomm Memstechnologies, Inc. Display with integrated photovoltaic device
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8693084B2 (en) 2008-03-07 2014-04-08 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
WO2010012474A3 (en) * 2008-07-30 2010-09-02 Concentrix Solar Gmbh Photovoltaic apparatus for direct conversion of solder energy to electrical energy
WO2010012474A2 (en) * 2008-07-30 2010-02-04 Concentrix Solar Gmbh Photovoltaic apparatus for direct conversion of solder energy to electrical energy
DE102008035575B4 (en) * 2008-07-30 2016-08-11 Soitec Solar Gmbh Photovoltaic device for the direct conversion of solar energy into electrical energy containing a two-stage multi-element concentrator optics
WO2010027944A2 (en) * 2008-09-02 2010-03-11 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
WO2010027944A3 (en) * 2008-09-02 2010-12-16 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8320045B2 (en) * 2008-11-12 2012-11-27 Abengoa Solar New Technologies, S.A. Light collection and concentration system
US20100116319A1 (en) * 2008-11-12 2010-05-13 Abengoa Solar New Technologies, S.A. Light collection and concentration system
JP2010212280A (en) * 2009-03-06 2010-09-24 Sumitomo Electric Ind Ltd Light guide structure for solar cell, solar cell unit and solar cell module
JP2010219205A (en) * 2009-03-16 2010-09-30 Furukawa Electric Co Ltd:The Solar cell unit, and method of manufacturing the same
US9158042B2 (en) 2009-05-29 2015-10-13 Kuraray Co., Ltd. Fresnel lens sheet for solar concentration and design method therefor
KR101330013B1 (en) 2009-05-29 2013-11-18 가부시키가이샤 구라레 Optical sheet for solar collection and design method therefor
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
JP5685186B2 (en) * 2009-05-29 2015-03-18 株式会社クラレ Design method of optical sheet for collecting sunlight
JPWO2010137695A1 (en) * 2009-05-29 2012-11-15 株式会社クラレ Fresnel lens sheet for collecting sunlight and its design method
WO2010137695A1 (en) * 2009-05-29 2010-12-02 株式会社クラレ Fresnel lens sheet for solar collection and design method therefor
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
JP2011020360A (en) * 2009-07-16 2011-02-03 Konica Minolta Holdings Inc Method for forming film structure with fine rugged pattern, film structure with fine rugged pattern, solar energy collecting prism sheet, and optical film for stereoscopic vision display
JP2011029273A (en) * 2009-07-22 2011-02-10 Mitsubishi Electric Corp Solar cell module
CN102148277B (en) * 2010-02-05 2013-03-13 胜华科技股份有限公司 Solar light control module
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
JP2014029450A (en) * 2011-09-30 2014-02-13 Daikin Ind Ltd Light condensing film, solar battery module, and transfer mold
US10454411B2 (en) 2011-09-30 2019-10-22 Daikin Industries, Ltd. Light-condensing film, solar cell module, and transfer mold
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
US9081188B2 (en) 2011-11-04 2015-07-14 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
JP2015149388A (en) * 2014-02-06 2015-08-20 株式会社カネカ Solar battery module and method for manufacturing the same
WO2015185855A1 (en) * 2014-06-05 2015-12-10 Electricite De France Photovoltaic device and associated manufacturing process
FR3022073A1 (en) * 2014-06-05 2015-12-11 Electricite De France FLUORESCENT CONCENTRATING PHOTOVOLTAIC DEVICE AND METHOD FOR MANUFACTURING THE SAME
CN106463560A (en) * 2014-06-05 2017-02-22 法国电力公司 Photovoltaic device and associated manufacturing process
CN106463560B (en) * 2014-06-05 2019-10-18 法国电力公司 Photovoltaic device and relative manufacturing process
US10770611B2 (en) 2014-06-05 2020-09-08 Electricite De France Photovoltaic device and associated fabrication method
JP2018007437A (en) * 2016-07-04 2018-01-11 市川 雅英 Cordless power transmission system

Also Published As

Publication number Publication date
JPWO2006035698A1 (en) 2008-05-15
JP4155361B2 (en) 2008-09-24
TW200614529A (en) 2006-05-01

Similar Documents

Publication Publication Date Title
JP4155361B2 (en) Sheet concentrator and solar cell sheet using the same
TWI414426B (en) A light diffusing film
CN101605841B (en) White polyester film and reflective sheet
TWI506803B (en) Solar cell back encapsulation sheet and solar cell module
JP5869581B2 (en) Antireflective article having nanosilica-based coating
TWI485869B (en) Solar battery module on the back with a heat sink and the use of its solar module
KR101610990B1 (en) Polyester film, laminated film, and solar-cell back sheet and solar cell both including same
EP2058866A2 (en) Solar cell sheet and a method for the preparation of the same
JP2007208179A (en) Plastic film for rear surface protective film of solar cell, and rear surface protective film of solar cell
US20140137935A1 (en) Back sheet for solar cells, and solar cell using same
JPWO2007105306A1 (en) POLYESTER RESIN SHEET FOR SOLAR CELL, LAMINATED PRODUCT USING SAME, SOLAR CELL BACK PROTECTIVE SHEET, AND MODULE
JP4715510B2 (en) Light diffusion film
JP2008177181A (en) Condensing sheet type solar cell
JP4780242B2 (en) Light diffusing polyester film
JP2014506667A (en) New solar concentrator
JP4896558B2 (en) Polyester film for solar cell back surface protective film and solar cell back surface protective film using the same
JP2011103428A (en) Back sheet for solar cell, and solar cell module using the same
JP2012135952A (en) White polyester film
JP2009267301A (en) Multilayer film for protecting backside of solar cell
JP2007178789A (en) Method for manufacturing light diffusion film, and the light diffusion film
JP5076791B2 (en) Light diffusion film
KR101327470B1 (en) weatherable solar cell films having multi-layer
JP2007326297A (en) Roll of polyester laminated film
JP2010036487A (en) Surface light diffusing polyester film
JP4036068B2 (en) Dry film Photoresist film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006537711

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase