WO2005114045A1 - バックライトユニット及びそれを備えた液晶表示装置 - Google Patents

バックライトユニット及びそれを備えた液晶表示装置 Download PDF

Info

Publication number
WO2005114045A1
WO2005114045A1 PCT/JP2005/005952 JP2005005952W WO2005114045A1 WO 2005114045 A1 WO2005114045 A1 WO 2005114045A1 JP 2005005952 W JP2005005952 W JP 2005005952W WO 2005114045 A1 WO2005114045 A1 WO 2005114045A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight unit
liquid crystal
unit according
crystal display
Prior art date
Application number
PCT/JP2005/005952
Other languages
English (en)
French (fr)
Inventor
Tetsuya Hamada
Toshihiro Suzuki
Masaru Ishiwa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to GB0623872A priority Critical patent/GB2430071B/en
Priority to DE112005001170T priority patent/DE112005001170B4/de
Publication of WO2005114045A1 publication Critical patent/WO2005114045A1/ja
Priority to US11/562,181 priority patent/US7488104B2/en
Priority to US12/023,311 priority patent/US7513661B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means

Definitions

  • the present invention relates to a backlight unit and a liquid crystal display device including the same.
  • FIG. 70 shows a schematic structure of a conventional liquid crystal display device.
  • the liquid crystal display device has a liquid crystal display panel 110 and a backlight unit.
  • the knock light unit includes a light guide plate 114 and cold cathode tubes 116 arranged on two opposite end surfaces of the light guide plate 114.
  • a reflector 117 is provided around the cold-cathode tube 116 so that light can efficiently enter the light guide plate 114.
  • Lens sheets 111 and 112 and a diffusion sheet 113 are arranged between the liquid crystal display panel 110 and the backlight unit. Further, a reflection sheet 115 is arranged on the back surface side of the light guide plate 114.
  • a backlight unit used in a liquid crystal display device As a backlight unit used in a liquid crystal display device, a sidelight type shown in Fig. 70 and a direct type in which a light source is disposed immediately below a liquid crystal display panel are generally used. Use of both
  • sidelight-type backlight units are used for liquid crystal display devices with a screen size of approximately 20 inches (20 inches diagonal) or less, and especially for liquid crystal display devices that require a thin profile.
  • a cold cathode tube is generally used as a light source.
  • white LEDs are used as light sources in liquid crystal display devices, which are small in screen size used in mobile phones and PDAs, because they do not require a large amount of light and are optimal for compact and lightweight devices.
  • a cold cathode tube is mainly used.
  • environmental issues have been regarded as important, and mercury has been used.
  • various light sources such as a mercury-free fluorescent tube and an LED have been developed as a light source replacing the cold cathode tube.
  • the LED is promising as the next light source.
  • a configuration in which a plurality of white LEDs are arranged and a configuration in which a plurality of R, G, and B single-color LEDs are arranged are considered.
  • a backlight unit that uses a combination of R, G, and B single-color LEDs is a field-sequential display device that turns on each single-color LED in sequence, achieving a vast color reproducibility that cannot be achieved with white LEDs.
  • the liquid crystal display device using the backlight unit has a problem that the color of each LED is visually recognized in a region corresponding to the vicinity of the light incident surface of the light guide plate. This is because, in the vicinity of the light incident surface, lights of different colors are mixed with each other, are taken out of the light guide plate in a state where they are not, and immediately enter the liquid crystal display panel.
  • a backlight has been proposed (see Non-Patent Document 1).
  • the sub-light guide plate mixes the RGB colors and enters the upper main light guide plate in a uniform white state.
  • the problem with this method is that the efficiency of light entry from the LED to the sub light guide plate and the efficiency of light entry from the sub light guide plate to the main light guide plate are very low overall. Since the input power increases due to the low efficiency, heat countermeasures are required, and the size increases due to radiation fins. In addition, costs increase because more LEDs are used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-215349
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-95390
  • Non-Patent Document 1 Saikei Electronics, March 31, 2003, No. 844, pl 26-127, Disclosure of the Invention
  • An object of the present invention is to provide a backlight unit capable of obtaining good display quality and a liquid crystal display device including the same.
  • the above object has a discrete light source means, a reflecting means, a light guiding means, a light mixing means A, and a light mixing means B, wherein the reflecting means, the light guiding means, and the light mixing means A And the light mixing means B are superimposed in this order, and the discrete light source means is configured by arranging individual light sources having different spectra or different light emission amounts in the vicinity of the light incident surface of the light guide means.
  • the surface of the light guide means facing the reflection means or the face facing the light mixing means A has a front surface.
  • Light extraction means for extracting light propagating through the light guide means to the reflection means side or the light mixing means A side is provided, and the light mixing means A mainly emits light of a different spectrum of color or light of a different amount.
  • the light mixing means B is a means for mixing and uniforming light in different directions in the in-plane direction. This is achieved by a knock light unit characterized in that it is a means for making the color and the amount of illumination uniform within a plane.
  • the object is also a liquid crystal display device comprising: a backlight unit including a light guide plate and a light source unit; and a liquid crystal display panel disposed on a light exit surface side of the light guide plate.
  • the present invention is attained by a liquid crystal display device characterized in that the backlight unit according to any one of the above aspects of the present invention is used as a light unit.
  • the object is to provide a sidelight type backlight unit including a light guide plate and a light source unit arranged near at least one side end surface of the light guide plate, and a light guide plate provided on a light exit surface side of the light guide plate.
  • a flexible substrate or printed circuit board is disposed around the liquid crystal display panel, and the flexible substrate or printed circuit board does not cover the light source unit. This is achieved by a liquid crystal display device characterized in that the liquid crystal display device is arranged in a different manner.
  • the above object is a liquid crystal display device having a backlight unit including a light guide plate, a light source unit, and a control unit, and a liquid crystal display panel arranged on a light exit surface side of the light guide plate,
  • the liquid crystal display panel has, apart from the display pixels, small regions from which the R light, G light, and B light are respectively emitted from the backlight unit side. Are provided with a light amount sensor for detecting a light amount, and the control unit controls the light source unit based on the light amount.
  • the object is to provide a discrete light source means having an individual light source having a different spectrum or a different light emission amount, one end surface having a light incident surface for receiving light emitted from the discrete light source means, and the light incident surface.
  • a light-guiding unit having a light-guiding region for guiding the light incident from the light source, a light-exiting surface for emitting the light guided through the light-guiding region, and conducting heat generated by the discrete light source unit.
  • Heat conducting means and disposed on the back side of the light exit surface to conduct the heat conducting means. And a heat radiating means for radiating the heat.
  • the object is to provide a discrete light source means having individual light sources having different spectra or different light emission amounts, one end face provided with a light incident face for receiving light emitted from the discrete light source means, and the light incident face described above.
  • a light-guiding unit having a light-guiding region for guiding the light incident from the light source, a light-exiting surface for emitting the light guided through the light-guiding region, and conducting heat generated by the discrete light source unit.
  • a backlight unit having a heat conducting means for radiating the heat conducted through the heat conducting means, the heat conducting means being disposed on the back side of the light emitting surface, and a light emitting means disposed on the light emitting surface side of the backlight unit.
  • the backlight unit and the liquid crystal display panel which are formed of a heat-radiating high-temperature material, and which thermally contact the backlight unit and radiate heat generated by the discrete light source means. House This is achieved by a liquid crystal display device having a storage means.
  • the above object has discrete light source means, reflecting means A, light guiding means, light mixing means A, and light mixing means B, wherein the reflecting means A, the light guiding means, and the light
  • the mixing means A and the light mixing means B are stacked in this order, and the discrete light source means is configured by arranging individual light sources having different spectra or different light emission amounts in the vicinity of the light incident surface of the light guide means, A light propagating through the light guiding means is extracted to the reflecting means A side or the light mixing means A side on a surface of the light guiding means facing the reflection means A or a surface facing the light mixing means A.
  • the height of the light mixing means A is H
  • the minimum unit length of the periodicity of the array of the discrete light source means is Lp, 0 ⁇ Lp / H ⁇ 2. This is achieved by a backlight unit characterized in that the relationship of 5 holds.
  • a discrete light source means having individual light sources having different spectra or different light emission amounts, one end face provided with a light incident surface for receiving light emitted from the discrete light source means, and the light incident surface described above.
  • a light-guiding unit having a light-guiding region for guiding the light incident from the light source, a light-exiting surface for emitting the light guided through the light-guiding region, and conducting heat generated by the discrete light source unit.
  • a heat retaining means that has a contact surface that covers a part of the outer surface of the heat conductive means and that is in thermal contact with the heat conductive means and keeps the temperature of the heat conductive means substantially uniform. This is achieved by a knock light unit.
  • the object of the present invention is to provide a liquid crystal display panel including a pair of substrates disposed to face each other, a liquid crystal sealed between the pair of substrates, and the present invention arranged on a back surface of the liquid crystal display panel. This is achieved by a liquid crystal display device having any one of the following knock light units.
  • FIG. 1 is a sectional view showing the principle of the backlight unit according to the present embodiment.
  • the backlight unit as a planar light source has a planar light guide plate (light guide means) 20 having, for example, a rectangular planar shape.
  • a light source (discrete light source means) 51 is arranged near at least one side end face of the light guide plate 20.
  • the light source 51 includes, for example, a plurality of LEDs having emission wavelengths of different spectra. Alternatively, the light source 51 is composed of a plurality of LEDs having different light emission amounts.
  • Optical sheets such as a diffusion plate (light mixing means B) 40 and the like are arranged above the light exit surface 21 of the light guide plate 20 in the figure, and a liquid crystal display panel (not shown) is arranged further above.
  • a gas space (light mixing means A) 30 having a predetermined thickness is provided between the light exit surface 21 of the light guide plate 20 and the diffusion plate 40.
  • a reflection sheet (reflection means) 10 is disposed below the light guide plate 20 in the figure. That is, the knock light unit has a configuration in which the reflection sheet 10, the light guide plate 20, the gas space 30, and the diffusion plate 40 are stacked in this order.
  • Light extraction means such as scattering dots 22 is provided on the surface of the light guide plate 20 on the reflection sheet 10 side, and light extraction means is provided on the light emission surface 21.
  • the light emitted from the light source 51 and guided through the light guide plate 20, and the light extracted by the scattering dots 22 is mainly emitted from the light exit surface 21 near the in-plane direction of the light exit surface 21 of the light guide plate 20. It is emitted as light L1 traveling in the direction with a large angle ⁇ from the normal direction. Therefore, by increasing the distance between the light emitting surface 21 and the optical sheets and the liquid crystal display panel disposed thereon, the light The light emitted from the exit surface 21 does not immediately enter the liquid crystal display panel, but travels in the gas space 30 for a while.
  • the gas space 30 has a function of mixing light having different emission wavelengths or different amounts of light in the in-plane direction of the backlight unit to make them uniform.
  • the diffusing plate 40 has a function of mixing the lights traveling at different angles at the same point in the plane and reorienting them angularly, thereby making the illumination light color and the illumination light amount uniform in the plane.
  • the scattering dots 22 may be provided on the light emitting surface 21 side (the gas space 30 side) of the light guide plate 20. However, if the scattering dots 22 are provided on the light exit surface 21 side of the light guide plate 20, the light that has hit the scattering dots 22 of the light guide will be substantially changed to the principal ray of the incident light while maintaining the characteristic of the incident angle. Light is emitted from the light guide plate 20 toward the panel while being scattered along. That is, the angle ⁇ ⁇ shown in FIG. 1 becomes smaller, and the distance that travels in the gas space 30 becomes shorter. Further, the optical path from the scattering dot L 22 to the diffusion plate 40 is shortened by the thickness of the light guide plate 20.
  • the thickness of the gas space 30 must be further increased than in the configuration shown in Fig. 1.However, if the thickness of the gas space 30 is increased, the backlight Increasing the size of the unit and increasing the number of reflections at various points of each member also increase the amount of light absorption, resulting in lower brightness.
  • FIG. 2 illustrates a cross-sectional configuration of the knock light unit according to the first embodiment.
  • a plurality of LEDs 50 constituting a discrete light source row are arranged in the vicinity of both end faces of the light guide plate 20 on which the scattering dots 22 are printed.
  • the light guide plate 20 is arranged so that the printed surface of the scattering dots 22 faces the reflection sheet 10 side.
  • the LED 50 is covered with a reflector 54 so that light from the LED 50 efficiently enters the light guide plate 20.
  • a diffusion plate 40 is disposed via a gas space 30 having a predetermined thickness. These components are fixed by a housing 60.
  • the light extracted near the light incident surface 23 of the light guide plate 20 travels in the direction opposite to the light guide plate 20 and enters the diffusion plate 40 while traveling through the gas space 30. Therefore, the light emitted from each LED 50 is mixed with the light emitted from the other LEDs 50 while passing through the gas space 30 and enters the diffusion plate 40. For this reason, it is possible to suppress color unevenness and brightness unevenness of the knock light unit.
  • FIG. 3 shows a cross-sectional configuration of the knock light unit according to the second embodiment.
  • the distance between the individual LEDs 50 was about 9 mm
  • the size of the emission surface was about 6 mm
  • the thickness of the light guide plate 20 was about 8 mm.
  • the thickness of the gas space 30 between the light guide plate 20 and the diffusion plate 40 was about 15 mm.
  • the size and arrangement of the LEDs 50 and the thickness of the light guide plate 20 are not limited thereto.
  • the thickness of the gas space 30 is not limited to this, and it is sufficient if the distance between the light guide plate and the optical members disposed thereon is small, as an example, 2 to 50 mm, especially 10 to 20 mm. The effect is obtained.
  • FIG. 4 shows a configuration of the light guide plate 20 of the knock light unit according to the third embodiment.
  • FIG. 4A is a perspective view of the light guide plate 20
  • FIG. 4B is a partial cross-sectional view of the light guide plate 20.
  • scattering dots 22 are printed on the back surface of the light guide plate 20 as light extraction means.
  • the paint used for dot printing may be a material used for a conventional backlight unit or the like, for example, a material in which beads having different refractive indexes such as titanium oxide are dispersed in a paint binder such as acrylic or a filler. Absent.
  • the printing pattern and size of the scattering dots 22 may be the same as in the past.
  • FIG. 5 shows a configuration of the light guide plate 20 of the knock light unit according to the fourth embodiment.
  • FIG. 5 (a) is a perspective view of the light guide plate 20
  • FIG. 5 (b) is a partially enlarged view of the light guide plate 20.
  • the back surface of the light guide plate 20 is provided with irregularities such as minute projections 24 as light extraction means.
  • the protrusion 24 can be formed by embedding the protrusion in a mold used for manufacturing the light guide plate 20.
  • FIG. 6 shows a configuration of the light guide plate 20 of the knock light unit according to the fifth embodiment.
  • FIG. 6 (a) is a perspective view of the light guide plate 20
  • FIG. 6 (b) is a partially enlarged view of the light guide plate 20.
  • a fine projection 25 having a lens shape is provided as light extraction means.
  • the projection 25 can be formed by embedding a lens shape in a mold used for manufacturing the light guide plate 20.
  • FIG. 7 shows a configuration of the light guide plate 20 of the knock light unit according to the sixth embodiment.
  • the arrangement pattern of the scattering dots 22 has a lower arrangement density on the side closer to the LED module 52. As the distance from the LED module 52 increases, the arrangement density gradually increases, and the arrangement pattern becomes closer to the center of the light guide plate 20. Designed for highest density. As a result, a uniform luminance distribution over the entire surface and a luminance distribution in which the luminance is highest at the center of the light guide plate 20 and lower at the periphery can be realized. Even when the projections 24 and 25 are used instead of the scattering dots 22, a similar luminance distribution can be realized by increasing the density near the center of the light guide plate 20 which is lower on the LED module 52 side.
  • FIG. 8 shows a configuration of the knock light unit according to the seventh embodiment.
  • 8A is a cross-sectional view of the backlight unit
  • FIG. 8B is a perspective view of the light guide plate 20 of the backlight unit.
  • the thickness of the gas space 30 is set to be thin, color unevenness may be visually recognized.
  • the scattering dots 22 are not provided in a region where the distance from the light incident surface 23 of the light guide plate 20 is about 10 mm or less. As a result, the light incident on the light guide plate 20 is guided in the region without being emitted from the light guide plate 20.
  • the light is mixed with the light from the other LEDs, and the light is emitted from the light guide plate 20 in a mixed state, so that the color unevenness is reduced.
  • the above distance is not limited to 10 mm, and may be, for example, in the range of 2 to 50 mm. If the above distance is set to about 50 mm, even if the thickness of the gas space 30 is about several mm, the color unevenness is reduced to a level that causes almost no problem.
  • FIG. 9 shows a configuration of a backlight unit according to the eighth embodiment.
  • a plurality of R light emitting LEDs 50 (R), G light emitting LEDs 50 (G), and B light emitting LEDs 50 (B) are substantially uniformly arranged.
  • the number of LEDs 50 for each color is determined in consideration of the power supplied to each color LED and the illumination color of the target knock light unit.
  • LED50 (G) is the most.
  • the thickness of the gas space 30 for preventing color unevenness from being visually recognized can be set to the minimum.
  • color unevenness is physiologically easier to see than brightness unevenness.
  • an appropriate number of LEDs of the three primary colors are arranged closer to each other to create an LED group that produces light close to white. It is also an effective method to arrange them.
  • FIG. 10 shows a configuration of a backlight unit according to the ninth embodiment.
  • Fig. 10 (a) shows the configuration when the LED mounting board 56 of the backlight unit is viewed parallel to the board surface
  • Fig. 10 (b) shows the configuration when the LED mounting board 56 is viewed perpendicular to the board surface.
  • FIG. 10 (c) shows a cross-sectional configuration of the backlight unit.
  • the plurality of LEDs 50 are linearly arranged along the longitudinal direction of the LED mounting board 56.
  • the plurality of LEDs 50 are arranged along the longitudinal direction of the light incident surface of the light guide plate 20.
  • the LEDs 50 of R, G, and B are substantially evenly arranged.
  • the LED 50 is mounted on the LED mounting board 56 at a position deviated to one side in the short direction (the lower side in the figure). Lower edge in the figure On the side, the LED mounting board 56 is incorporated in the backlight unit such that the LED 50 is on the lower side. This allows the thickness of the knock light unit to be reduced despite the provision of the gas space 30 between the light guide plate 20 and the diffusion plate 40.
  • the rear surface of the LED mounting board 56 is made of a metal plate to enhance the heat radiation effect of the heat generated by the LED 50.
  • FIG. 11 shows a configuration of the LED mounting board 56 of the knock light unit according to the tenth embodiment.
  • FIG. 11A shows a configuration in which the LED mounting substrate 56 is viewed parallel to the substrate surface
  • FIG. 11B shows a configuration in which the LED mounting substrate 56 is viewed perpendicular to the substrate surface.
  • a mirror reflection sheet 58 is affixed to the LED 50 mounting surface side (the light guide plate 20 side) of the LED mounting board 56. This allows the mounting surface of the LED mounting board 56 to be used as a part of the side surface of the gas space 30 between the light guide plate 20 and the diffusion plate 40 of the ninth embodiment. Further, a diffuse reflection sheet may be used instead of the mirror reflection sheet 58.
  • FIG. 12 shows a cross-sectional configuration of the knock light unit according to the eleventh embodiment.
  • a thicker diffusion sheet may be used instead of the diffusion plate.
  • transparent pins may be arranged on the light exit surface 21 side of the light guide plate 20 to hold the diffusion sheet 42.
  • FIG. 13 shows a cross-sectional configuration of the knock light unit according to the twelfth embodiment.
  • the LED mounting substrate is made compact, and the LED housing 60 has a shape surrounding the light exit surface 21 of the light guide plate 20.
  • a mirror reflection sheet 44 is attached to a surface of the inner surface of the housing 60 corresponding to the side surface of the gas space 30.
  • a diffuse reflection sheet may be used instead of the mirror reflection sheet 44, or the inner surface of the housing 60 itself may be a high reflection mirror surface.
  • FIG. 14A is an exploded perspective view showing a configuration of a knock light unit according to Example 13.
  • the LED module 52 is mounted on the side surface covering the gas space 30, and a color sensor 70 is incorporated near the center of the surface.
  • Kara One sensor 70 is mounted on a sensor board 72.
  • the sensor substrate 72 is attached so that the color sensor 70 fits into the opening of the housing 60 that is opened to the same size as the color sensor 70.
  • the mounting position of the color sensor 70 is not limited to this. Further, the number of color sensors 70 is not limited to one.
  • a signal from the color sensor 70 controls the current of the LED control unit for white balance adjustment.
  • FIG. 14B is a cross-sectional view illustrating another configuration of the backlight unit according to the present embodiment.
  • the color sensor 70 is arranged on the back surface of the light guide plate 20 with the sensor surface facing the light guide plate 20 side.
  • the color sensor 70 is separated from the light incident surface 23 by, for example, 10 mm or more, preferably 50 mm or more.
  • FIG. 15 shows a cross-sectional configuration of the knock light unit according to the fourteenth embodiment.
  • a heat radiating fin (or heat radiating plate) 64 is provided via a housing 60.
  • a high heat radiation sheet may be attached to the heat radiation fins 64, or a high heat radiation material may be applied.
  • FIG. 16 shows a cross-sectional configuration of a backlight unit according to Embodiment 15.
  • a high infrared emissivity sheet 66 is attached to a region corresponding to the back surface of the light guide plate 20 on the outer surface of the housing 60, or a high infrared emissivity material is applied. T! Thereby, the heat radiation effect from the back surface side of the light guide plate 20 can also be enhanced.
  • FIG. 17 shows a cross-sectional configuration of a knock light unit according to Embodiment 16.
  • a high-infrared emissivity sheet 66 is applied to almost the entire outer surface of the housing 60, or a high-infrared thermal emissivity material is applied. Due to this, heat dissipation effect And the size of the backlight unit can be reduced as compared with the configuration in which the radiation fins 64 are provided (see FIG. 16).
  • the housing 60 is made of a high infrared radiation material.
  • FIG. 18 shows a cross-sectional configuration of the knock light unit according to the seventeenth embodiment.
  • the LED mounting board 56 has an L-shaped cross section.
  • the LED mounting board 56 is in close contact with the side and bottom of the housing 60. Thereby, the board area of the LED mounting board 56 to which the heat from the LED 50 moves by heat conduction increases, and the heat can be transferred directly to the housing 60 on the back surface side of the light guide plate 20 by the power of the LED mounting board 56. Therefore, the heat generated by the LED 50 can be efficiently discharged to the outside.
  • FIG. 19 shows a cross-sectional configuration of a liquid crystal display device according to Example 18.
  • the liquid crystal display device has the knock light unit according to any one of the first to seventeenth embodiments.
  • optical sheets such as a lens sheet 84 (for example, BEF manufactured by 3M) and a polarizing sheet 86 (for example, DBEF manufactured by 3M) are arranged.
  • the optical sheet is not limited to the above, and may be used in various combinations as needed.
  • a liquid crystal display panel 80 is arranged on the optical sheet. Further, a cover 82 that covers a frame area of the liquid crystal display panel 80 is attached.
  • FIG. 20A shows the structure of the liquid crystal display device according to the nineteenth embodiment.
  • FIG. 20 (b) shows the configuration of the liquid crystal display panel 80 on which the driver is mounted
  • FIG. 20 (c) shows the cross-sectional configuration of the liquid crystal display panel 80 cut in parallel to the data bus lines. Shows a sectional configuration of the liquid crystal display panel 80 cut in parallel with the scan bus line.
  • a data driver and a scan driver for driving the liquid crystal for each pixel are mounted on the liquid crystal display panel 80 via a flexible substrate or a printed substrate. .
  • the scan driver is arranged on the side where the LED 50 is arranged.
  • the scan driver flexible 90 on which the scan driver is mounted is folded and housed in the upper space of the LED 50 and the LED mounting board 56.
  • the scan driver flexible 90 is not disposed on the back surface side of the LED mounting board 56, so that heat radiation from the side surface of the knock light unit is facilitated.
  • the data driver is arranged on the side where the LED 50 is not arranged. Therefore, the data driver flexible 92 on which the data driver is mounted is housed so as to cover the side surface of the light guide plate 20.
  • heat radiation fins can be provided on the side of the backlight unit on the back side of the LED mounting board 56.
  • the configuration is such that the LED 50 is arranged on the scan driver side.
  • the data driver flexible 92 should be folded.
  • FIG. 21 is a perspective view showing the configuration of the liquid crystal display device according to Example 20.
  • a flexible flat cable 96 for connecting the scan driver flexible 90 and the control circuit board 94 is connected to the scan driver flexible 90 at the side of the data driver. I am trying to pull it out. As a result, the flexible flat cable 96 does not cover the back side of the LED mounting board 56, so that heat radiation from the side of the backlight unit is facilitated.
  • FIG. 22 shows the configuration of the liquid crystal display device according to Example 21.
  • FIG. 22A shows the configuration of the liquid crystal display device
  • FIG. 22B shows the liquid crystal display device in a partially enlarged manner.
  • FIG. 22 (c) shows a sectional configuration of the liquid crystal display device.
  • the liquid crystal display device includes a TFT substrate 74 on which a thin film transistor (TFT) is formed for each pixel, and a counter substrate 76 on which a color filter (CF) layer 77 is formed. And a liquid crystal layer 78 sealed between the TFT substrate 74 and the counter substrate 76.
  • TFT thin film transistor
  • CF color filter
  • the liquid crystal display device On the outer surfaces of the TFT substrate 74 and the counter substrate 76, a pair of polarizing plates 87 is arranged in a cross-cord. Further, the liquid crystal display device has a frame-shaped light shielding film (BM) 79 outside the display area 81.
  • BM light shielding film
  • a CF layer 77 '(R, G, B) is formed in each region.
  • the CF layer 77 ′ (R, G, B) is formed simultaneously with the same material as the CF layer 77 (R, G, B) formed in the display area 81.
  • the counter substrate Outside the polarizing plate 87 on the 76 side (observer side), light amount sensors 73 are arranged.
  • a predetermined voltage (for example, the same voltage as white display in the display area 81) is always applied to the liquid crystal layer 78 in each area.
  • the signal of the light amount measured by each light amount sensor 73 is output to the control unit of the backlight unit.
  • the control unit controls the driving conditions of the LED 50 so that the light amounts of R, G, and B have a predetermined light amount balance. Thereby, the white balance in the display area 81 can be appropriately adjusted.
  • FIG. 23 shows another configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 23 (a) shows a partially enlarged liquid crystal display device
  • FIG. 23 (b) shows a cross-sectional configuration of the liquid crystal display device.
  • the polarizing plate 87 is not provided in the area where the light amount sensor 73 is arranged.
  • a predetermined voltage (for example, the same voltage as white display in the display area 81) is always applied to the liquid crystal layer 78 in each area.
  • the white balance in the display area 81 can be adjusted by controlling the driving conditions of the LED 50 so that the measured light amounts of R, G, and B have a predetermined light amount balance.
  • the white balance is adjusted in a state where there is no influence of the wavelength dependence of the polarizing plate 87.
  • the configuration is almost the same as the configuration shown in FIG. Can be adjusted with a precision of.
  • FIG. 24A shows the configuration of the liquid crystal display device according to the embodiment 22.
  • FIG. 24 (b) shows a cross-sectional configuration of the liquid crystal display device cut in parallel to the data bus lines
  • FIG. 24 (c) shows a cross-sectional configuration of the liquid crystal display device cut in parallel to the scan bus lines.
  • the LED modules (light source unit) 52 are arranged near the four side end surfaces of the light guide plate 20, respectively.
  • the LEDs 50 of the LED module 52 are arranged in a direction along the long side of the side end surface of the light guide plate 20.
  • the backlight unit of the present embodiment can mount the largest number of LEDs 50 as a sidelight type, so that a backlight with the highest luminance can be realized.
  • the liquid crystal display device has a data driver and a scan driver.
  • the data driver and the scan driver are respectively located above the mounting of the LED 50. For this reason, The data driver flexible 92 and the scan driver flexible 90 are folded and stored near the upper part of the LED module 52. As a result, the flow of heat from the LED 50 to the driver side can be avoided without obstructing the cooling of the LED 50. Therefore, it is possible to extend the life of the LED 50 and the driver IC while reducing the size of the liquid crystal display device.
  • FIG. 25A shows another configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 25 (b) shows a cross-sectional configuration of the liquid crystal display device cut in parallel to the data bus lines
  • FIG. 25 (c) shows a cross-sectional configuration of the liquid crystal display device cut in parallel to the scan bus lines.
  • the data driver and the scan driver are arranged on two adjacent sides of the liquid crystal display panel 80, and the LEDs correspond to two other sides different from the two sides.
  • the light guide plate 20 is arranged near two side end surfaces.
  • the data driver flex 92 and the scan driver flex 90 can be arranged along the side surface of the knock light unit, so that the size of the liquid crystal display device can be reduced.
  • the LED module 52 is not covered with the data driver flexible 92 and the scan driver flexible 90, cooling of the LED 50 is not hindered.
  • the LED mounting part arranged on the upper part the heat radiation effect of the LED is enhanced.
  • FIG. 26 illustrates a cross-sectional configuration of a knock light unit (and an optical sheet) according to Embodiment 23.
  • the knock light unit has two light guide plates 20a and 20b.
  • the two light guide plates 20a and 20b are arranged with the opposing surfaces 27 facing the light incident surface 23 facing each other.
  • the light guide plates 20a and 20b have a wedge shape in which the thickness on the light incident surface 23 side is large and the thickness on the opposing surface 27 side is small.
  • the emission surface of the LED 50 is about 6 ⁇
  • the thickness of the human light surface 23 of the light guide plates 20a and 20b is approximately 6 to 8 mm. As a result, the emitted light from the LEDs 50 is efficiently incident.
  • the thickness of the facing surface 27 side is about lmm.
  • Light incident on the light guide plates 20a and 20b is emitted from the opposing surface 27 and exits the light guide plates 20a and 20b because the thickness of the light guide plates 20a and 20b is reduced while the light is being guided. Is extremely small. This slight light emitted from the opposing surface 27 enters the other light guide plates 20b and 20a, and contributes to the brightness of the knock light, albeit slightly.
  • the light reaching the opposing surface 27 is arranged on the opposing surface 27 side. To the other LED 50. For this reason, a small percentage of this light is returned to the light guide plate 20 again, which has caused a light amount loss.
  • the amount of light passing through the facing surface 27 is drastically reduced, so that the light use efficiency can be improved.
  • FIG. 27 shows another configuration of the backlight unit according to the present embodiment.
  • a double-sided reflection sheet (or a double-sided diffuse reflection sheet) 26 is sandwiched between portions where the light guide plates 20a and 20b face each other.
  • the double-sided reflection sheet 26 functions as a cushioning material, thereby preventing the occurrence of cracks and cracks due to vibration and drop. it can.
  • the light reflected and returned by the double-sided reflection sheet 26 is extracted by the scattering dots 22 while being guided again in the light guide plates 20a and 20b, so that the light use efficiency can be improved.
  • FIG. 28 shows still another configuration of the backlight unit according to the present embodiment.
  • the light guide plates 20a and 20b are arranged such that their light exit surfaces 21 are on the same plane.
  • the distance (thickness of the gas space 30) between the light emitting surfaces 21 of the light guide plates 20a and 20b and the diffusion plate 40 becomes constant, so that the necessary minimum distance (thickness) can be set. If this distance is increased, the backlight luminance decreases, and therefore, this configuration has an effect of suppressing the luminance reduction as compared with the configurations shown in FIGS. 26 and 27.
  • FIG. 29 shows still another configuration of the backlight unit according to the present embodiment.
  • the two light guide plates 20a and 20b have a parallel plate shape instead of a wedge shape.
  • a two-sided diffuse reflection sheet 28 is sandwiched between the two light guide plates 20a and 20b.
  • the light returning from the facing surface 27 is diffused, so that it can be easily mixed with the light of the other LEDs 50. Therefore, the color uniformity of the backlight unit can be improved.
  • FIG. 30 shows a cross-sectional configuration of a knock light unit (and an optical sheet) according to Example 24.
  • the knock light unit has two light guide plates 20a and 20b.
  • the two light guide plates 20a and 20b are arranged with a predetermined gap between opposing surfaces 27 opposing the light incident surface 23.
  • the light guide plates 20a and 20b have a wedge shape in which the thickness on the opposing surface 27 side where the thickness on the light incident surface 23 side is thicker.
  • the light exit surface 21 is inclined at a predetermined angle with respect to the light entrance surface of the diffusion plate 40, and the surface facing the light exit surface 21 is substantially flat. Are arranged in rows.
  • the light exit surfaces 21 of the light guide plates 20a and 20b are arranged at a predetermined distance d from the diffusion plate 40.
  • mirror reflection plates 46 are disposed at both ends of the diffusion plate 40.
  • FIG. 31 (a) shows the vicinity of the light guide plate 20a in an enlarged manner.
  • the region indicated by ⁇ in the drawing indicates the light guide range when the light exit surface 21 is inclined at a predetermined angle (taper angle ⁇ 1).
  • Light emitted at an angle other than the emission angle ⁇ 3 is incident on the diffusion plate 40 while being reflected by the reflection plate 10 (not shown in FIG. 31) and other members.
  • the light emitted at the emission angle ⁇ 3 travels while expanding in the gas space 30, and the degree of expansion is determined by the distance d from the diffusion plate 40.
  • the LED 50 is configured by arranging a plurality of R, G, and B single-color LEDs!
  • the length L from the light incident surface 23 to the opposing surface 27 of the light guide plate 20a is increased to, for example, 50 mm or more.
  • the light emitted from the opposing surface 27 is excellent white.
  • the light emitted from the facing surface 27 enters the diffusion plate 40 while being reflected by the reflection plate 10 and other peripheral members.
  • FIG. 32 shows another configuration of the backlight unit according to the present embodiment.
  • the reflection plate 10 is formed in a convex shape so that the distance from the diffusion plate 40 is minimized near the center in the plane.
  • the brightness of the knock light unit is maximized at the center of the screen.
  • the distribution decreases as approaching the periphery.
  • the knock light unit according to the present embodiment does not have to include the lens sheet 84 and the polarizing sheet 86 arranged on the light exit surface side of the diffusion plate 40.
  • FIG. 33 illustrates a cross-sectional configuration of a knock light unit (and an optical sheet) according to Embodiment 25.
  • the knock light unit has an LED 50 near one side surface of the light guide plate 20.
  • the light guide plate 20 has a thicker V on the light incident surface 23 side and a thinner V on the opposing surface 27 side, and has a wedge shape.
  • the light guide plate 20 is formed to have substantially the same length as the reflection plate 10.
  • the taper angle of the light exit surface 21 and the distance d between the light exit surface 21 and the diffusion plate 40 are set based on the same concept as in the above-described Embodiment 24.
  • the knock light unit according to the present embodiment has the same effects as the backlight unit according to the twenty-fourth embodiment.
  • FIG. 34 shows another configuration of the backlight unit according to the present embodiment.
  • the light guide plate 20 is arranged such that the printed surface of the scattering dots 22 faces the reflection plate 10 side.
  • the light guide plate 20 may have fine protrusions (see FIG. 5) having uneven shapes as a member for changing the light guide conditions.
  • the light emitted from the light exit surface 21 and incident on the diffusion plate 40 includes, in addition to the light emitted according to the light guide conditions, the light guide condition by guiding the light guide plate 20 and hitting the scattering dots 22. Includes light that has lost power. As a result, the efficiency of extracting light from the light guide plate 20 can be improved. Further, by appropriately designing the scattering dots 22, it becomes easy to control the in-plane distribution of light emitted from the diffusion plate 40.
  • the scattering dots 22 or the minute projections are formed in the area, the area light is extracted and is visually recognized as uneven color. Therefore, when the scattering dots 22 and the fine projections are used as a member for changing the light guide condition, the scattering dots 22 and the fine projections should not be provided in a region at a predetermined distance b from the light incident surface 23. To As a result, color unevenness can be reduced to an almost problematic level.
  • FIG. 35 shows a configuration of a conventional backlight unit.
  • G light emitting LED 50 (G), R light emitting LED 50 (R), G light emitting LED 50 (G), and B light emitting LED 50 ( B) are arranged in this order. If the LEDs 50 are arranged in this order, color unevenness 53 is likely to occur near both ends of the light incident surface 23.
  • the inventors have found that in order to reduce the color unevenness 53, it is desirable that the light of each of the RGB LEDs 50 be as close as possible near both ends of the light incident surface 23.
  • FIG. 36 shows a configuration of a backlight unit according to Embodiment 26.
  • FIG. 36 (a) shows a cross-sectional configuration of the knock light unit (and the optical sheet).
  • FIG. 36 (b) shows the configuration of the backlight unit when the light guide plate 20 is viewed in the normal direction.
  • the LED modules 52 are arranged at both ends in the longitudinal direction of the light guide plate 20.
  • the RGB LEDs 50, G, R, and B are arranged in this order along the longitudinal direction (from left to right in the figure) to one end of the light incident surface and the other end.
  • Adjacent to B a plurality of LED light-emitting groups 50a arranged adjacent to G, R, G and B in this order are arranged side by side. Further, R and G are arranged adjacent to the LED light emitting group 50a arranged at the rightmost end in this order in this order.
  • the RGB LEDs 50 By arranging the RGB LEDs 50 in this manner, since the RGB light amounts are present in the vicinity of both ends of the light incident surface without shortage, it is possible to suppress the deviation of the white balance. This makes it possible to reduce color unevenness near both ends of the light incident surface to a level that causes almost no problem. If there is an LED 50 that cannot be accommodated in the RGB arrangement of the LED light emitting group 50a, the LED 50 may be arbitrarily inserted between the adjacent LED light emitting groups 50a. For example, when one G light emitting LED 50 cannot be accommodated, the LED light emitting group 50a, the G light emitting LED 50, and the LED light emitting group 50a may be arranged in this order. That is, the arrangement of the LEDs 50 in this case is GRGB, G, GRGB, GRGB.
  • FIG. 37 shows another configuration of the backlight unit according to the present embodiment.
  • the arrangement pattern of the LED light emitting group 50a depends on the light emission amount of the LED used, and may be changed as appropriate. As shown in FIG. 37, for example, the LED light emitting groups 50a may be arranged adjacent to each other in the order of R, G, R, and B from left to right in the figure.
  • the size of the knock light unit is increased.
  • a second embodiment according to the present invention relates to a knock light unit and a liquid crystal display device including the same.
  • a backlight unit using a cold cathode tube and a liquid crystal display device including the same have a limit in color reproducibility.
  • awareness of environmental issues has increased, and cold cathode tubes using mercury are in an undesirable situation.
  • cold-cathode tubes can be easily cracked by impact.
  • driving a cold-cathode tube requires a high voltage of several thousand volts, which is dangerous.
  • LEDs have attracted attention as a light source for knock light units, which replaces cold cathode tubes. LEDs are hard to crack, can be driven at low voltage, and are environmentally friendly because they do not use mercury.
  • LEDs can compensate for the disadvantages of cold-cathode tubes.
  • liquid crystal display devices having a backlight unit using an LED as a light source have been adopted and commercialized.
  • the amount of light emitted from the LED is substantially proportional to the amount of flowing current.
  • LEDs are chip-type components, so it is difficult to pass large current. For this reason, it is not suitable as a light source for a backlight unit of a liquid crystal display device for a monitor device or a notebook computer that requires a large screen and high luminance.
  • high-brightness power LEDs with low thermal resistance have been developed, and large-screen monitor liquid crystal display devices equipped with a backlight unit using this as a light source are also being developed.
  • a system or structure that discharges heat transferred to the substrate is indispensable.
  • An object of the present embodiment is to provide a long-life backlight unit that can efficiently radiate heat generated by a light source, has a narrow frame, has less luminance unevenness, and a liquid crystal display device including the same. It is in.
  • the object is to provide a discrete light source means having individual light sources having different spectra or different light emission amounts, one end face provided with a light incident face for receiving light emitted from the discrete light source means, and the light incident face described above.
  • a light-guiding unit having a light-guiding region for guiding the light incident from the light source, a light-exiting surface for emitting the light guided through the light-guiding region, and conducting heat generated by the discrete light source unit.
  • a backlight unit comprising: a heat conducting means for radiating the heat transmitted through the heat conducting means;
  • the present embodiment it is possible to efficiently dissipate the heat generated by the light source, to realize a long-life backlight unit with a narrow frame, less luminance unevenness, and a liquid crystal display device including the same.
  • the backlight unit according to the present embodiment includes a discrete light source unit having individual light sources having different spectra or different light emission amounts, one end surface having a light incident surface for receiving light emitted from the discrete light source unit, and the light incident surface.
  • a light-guiding unit having a light-guiding region for guiding the light incident from above, a light-emitting surface for emitting the light guided through the light-guiding region, and conducting heat generated by the discrete light source unit. It has a heat conducting means and a heat radiating means disposed on the back side of the light emitting surface and radiating the heat conducted through the heat conducting means.
  • the heat generated by the discrete light source means is brought into thermal contact with the discrete light source means and the heat radiating means by the heat conduction means formed of a material having high thermal conductivity.
  • the heat conduction means formed of a material having high thermal conductivity.
  • the light exit surface of the light guide By arranging the discrete light source means on a light incident surface that is substantially perpendicular to the light incident surface and arranging the heat radiating means on the back side of the light emitting surface, it is possible to achieve a narrow frame of the knock light unit.
  • the liquid crystal display device is formed of the backlight unit, a liquid crystal display panel disposed on the light emitting surface side of the knock light unit, and a material having a high heat radiation property.
  • storage means for thermally contacting the backlight unit and storing the backlight unit and the liquid crystal display panel. Since the storage means is in thermal contact with the backlight unit, heat generated by the discrete light source means is transmitted to the storage means and radiated into the air. In this way, by providing a heat radiating function to the storage means in addition to the heat radiating means of the knock light unit, the heat generated by the discrete light source means can be more efficiently radiated.
  • FIG. 38 is an exploded perspective view showing a configuration of a conventional liquid crystal display device equipped with a backlight unit using an LED as a light source.
  • the liquid crystal display device is used as a display device of a PDA, a mobile phone, and the like.
  • FIG. 38 (a) is an exploded perspective view showing the configuration of the liquid crystal display device.
  • FIG. 38 (b) is an exploded perspective view showing the configuration of the LED module 159.
  • the LED module 159 has an FPC 159b and a chip-type (surface-mount) LED 159a mounted on the FPC 159b. Light emitted from the LED 159a enters from the side surface of the light guide plate 156 shown in FIG.
  • the light incident on the light guide plate 156 is emitted toward the diffusion sheet 154 by the reflection sheet 157 and the concave / convex pattern (not shown) formed on the surface of the light guide plate 156 facing the reflection sheet 157.
  • the light emitted from the light guide plate 156 enters the diffusion sheet 154.
  • the diffusion sheet 154 has a function of mixing the light traveling at different angles at the same point in the plane and reorienting it angularly, thereby making the illumination light color and the illumination light amount uniform in the plane. ! /
  • the light made uniform by the diffusion sheet 154 is emitted toward the liquid crystal display panel 152 after the brightness is improved by a lens sheet (not shown) or a polarizing sheet 153.
  • An image signal and a control signal are input to the liquid crystal display panel 152 from a driving circuit (not shown) through the FPC 163.
  • the liquid crystal display panel 152 has a light transmittance based on the image signal and the control signal. Controlled, a predetermined image is displayed on the display screen.
  • the liquid crystal display panel 152, the optical sheets (the polarizing sheet 153 and the diffusion sheet 154), the light guide plate 156, and the reflection sheet 157 are accommodated and held in the plastic frame 155 and the front cover 151.
  • a touch panel 160 for inputting information is arranged on the front cover 151.
  • the FPC 161 is connected to the touch panel 160.
  • the chip-type LED 159a has a small input power and cannot obtain a large amount of light, and is therefore only used for a backlight unit for a small electronic device such as a PDA or a mobile phone device.
  • a backlight unit that uses the LED 159a as a light source is not suitable for use in monitor devices or notebook computers that require large screens and high brightness.
  • high-brightness power LEDs with a self-cooling function have been developed.
  • a liquid crystal display device for a large-screen monitor device equipped with a backlight unit using the power LED as a light source has also been developed.
  • FIG. 39 is an exploded perspective view showing the configuration of the liquid crystal display device 130 according to the present embodiment.
  • FIG. 39 (a) is a perspective view showing the front surface of the liquid crystal display device.
  • FIG. 39 (b) is a perspective view showing the rear surface of the liquid crystal display device 130.
  • FIG. 39 (c) is an exploded perspective view of the liquid crystal display device.
  • FIG. 39 (d) is an enlarged view of the virtual circle shown in FIG. 39 (c).
  • FIG. 40 shows a cross section of a main part of the liquid crystal display device 130.
  • FIG. 41 is an exploded perspective view showing a configuration of a heat radiating portion 109b that radiates heat generated by a plurality of LEDs (discrete light source means) 113b.
  • the light emitted from the plurality of LEDs 113b enters from the light incident surface 106a provided on the side surface (one end surface) of the light guide plate (light guide means) 106. It is captured.
  • the light incident on the light guide plate 106 guides the light guide area 106b, and is formed by a concave / convex pattern (not shown) formed on the surface of the light guide plate 106 facing the reflection sheet 107 and the reflection sheet 107 from the light exit surface 106c. Injected in the direction of the diffusion sheet 104.
  • Light emitted from the light guide plate 106 mixes colors while traveling in the gas space 30 between the light guide plate 106 and the diffusion sheet 104.
  • the emitted light is incident on the diffusion sheet 104 and is made uniform.
  • the luminance is improved by the lens sheet (not shown) and the polarizing sheet 103, and the emitted light is emitted toward the liquid crystal display panel 102.
  • the image signal and the control signal output from the liquid crystal drive substrate 110 are input to the liquid crystal display panel 102.
  • the liquid crystal display panel 102 is based on an image signal and a control signal.
  • the light transmittance is controlled, and a predetermined image is displayed on the display screen.
  • a back plate (protection means) 108 for protecting the reflection sheet 107, the light guide plate 106 and the like is arranged.
  • the liquid crystal display panel 102, the polarization sheet 103, the diffusion sheet 104, the light guide plate 106, and the reflection sheet 107 are accommodated and held by the back plate 108, the plastic frame 105, and the front cover 101.
  • the plurality of LEDs 113b are mounted and fixed on a light source fixing member 115b formed of a metal or the like having a high thermal conductivity in a thin rectangular parallelepiped shape.
  • An insulating layer is formed on the surface of the light source fixing member 115b, and a predetermined wiring is patterned on the insulating layer.
  • the light source fixing member 115b is in thermal contact with the heat conducting means for conducting the heat generated by the LED 113b to the heat sink (radiating means) 11 lb via the heat conducting sheet 119b. As shown in FIG.
  • the heat conducting means has an L-shaped heat conducting member 117b which is bent along the light guide plate 106 and has an L-shaped cross section.
  • the L-type heat conductive member 117b is formed of a metal material having a high heat conductivity, such as aluminum.
  • the plurality of LEs 11b are in thermal contact with the L-type heat conductive member 117b via the light source fixing member 115b and the heat conductive sheet 119b.
  • the L-shaped heat conductive member 117b is in thermal contact with and fixed to a heat sink 11lb that radiates heat generated by the LED 113b to the outside of the backlight unit via a heat conductive sheet 118b.
  • the plurality of LEDs 113b are in thermal contact with the heat sink 11 lb via the L-shaped heat conducting member 117b.
  • the backlight unit can sufficiently radiate the heat generated by the LED 113b to the outside.
  • the heat radiating portion 109a (see FIG. 39 (c)) disposed opposite to the heat radiating portion 109b has the same configuration as the heat radiating portion 109b.
  • FIG. 42 shows a cross section near the heat radiating portion 109a of the backlight unit.
  • FIG. 42 (a) shows a state in which the L-shaped heat conducting member 117a is used.
  • FIG. 42 (b) shows a state using the L-type heat conductive member 117a!
  • Most of the heat generated in the LED 113a is radiated in the direction opposite to the light emitting portion of the LED 115a. Therefore, in order to efficiently release heat, the heat sink 11 la needs to be arranged on the opposite side of the light emitting portion of the LED 115 a.
  • FIG. 42 (b) in the conventional backlight unit, since the heat sink 11la must be arranged in the normal direction (upper side in the figure) of the light incident surface 106a of the light guide plate 106, the liquid crystal display device Frame length D2 becomes relatively long.
  • the use of the L-shaped heat conductive member 117a allows the heat sink 11 to extend in the direction perpendicular to the normal line of the light incident surface 106a of the light guide plate 106 (rightward in the figure). la can be placed. Thereby, the length D1 (D1 ⁇ D2) of the frame of the liquid crystal display device can be relatively shortened. Further, since the L-shaped heat conductive member 117a is disposed on the opposite side of the light emitting portion of the LED 115a, heat can be efficiently conducted to the heat sink 11la.
  • the backlight unit according to the present embodiment includes the heat transfer unit including the L-shaped heat transfer member 117a that is in thermal contact with each of the plurality of LEDs 113a and the heat sink 11la.
  • the knock light unit according to the present embodiment includes a heat conducting unit including an L-shaped heat conducting member 117b that is in thermal contact with each of the plurality of LEDs 113b and the heat sink 11 lb.
  • the knock light unit can sufficiently conduct the heat generated by the plurality of LEDs 113a and 113b to the heat sinks 11la and 11lb, and can efficiently dissipate the heat.
  • the knock light unit can dispose the heat sinks 11 la and 111 b in a direction orthogonal to the light incident surface 106 a of the light guide plate 106 (the back side of the light exit surface 106 c of the light guide plate 106), the liquid crystal display device Can be achieved.
  • FIG. 43 is a cross-sectional view of a main part showing a configuration of a knock light unit according to the second embodiment.
  • FIG. 43 shows a portion corresponding to the portion surrounded by the virtual circle shown in FIG. 42 (a).
  • the backlight unit according to the present embodiment includes a thermal connection member 114a that makes thermal contact between the L-shaped heat conductive member 117a and the back plate.
  • the thermal connection member 114a is fixed to each of the L-shaped heat conduction member 117a and the back plate 108.
  • the knock light unit can transfer the heat generated by the plurality of LEDs 113a not only to the heat sink 11 la but also to the back plate. It can also conduct heat to 108 and dissipate heat.
  • a heat connecting member is also arranged on the heat radiating portion 109b side, and the L-shaped heat conductive member 117b is in thermal contact with the back plate 108.
  • FIG. 44 shows another configuration of the backlight unit according to the present embodiment.
  • the rear plate 108 is formed so as to partly protrude, and is fixed to the L-shaped heat conductive member 117a.
  • the L-shaped heat conducting member 117a is in thermal contact with the back plate 108. Therefore, the backlight unit according to the present embodiment has the same effects as the backlight unit shown in FIG. Even if the L-type heat conductive members 117a and 117b are partially protruded to ensure thermal contact with the back plate 108, the same effect as the backlight unit according to the present embodiment can be obtained.
  • FIG. 45 is a cross-sectional view of a main part showing a configuration of a knock light unit according to the third embodiment.
  • the heat conducting means of the knock light unit according to the present embodiment has a light source fixing member 115a which is bent along the light guide plate 106 and has an L-shaped cross section.
  • the light source fixing member 115a is fixed to the heat sink 11la and is in thermal contact therewith.
  • the light source fixing member 115a is fixed to the thermal coupling member 114a and is in thermal contact with the back plate 108.
  • the light source fixing member 115b on the heat radiating portion 109b side is also formed in an L-shaped cross section, and is in thermal contact with the heat sink 11 lb and the back plate 108.
  • the knock light unit according to the present embodiment by forming the light source fixing members 115a and 115b into an L-shape, the LEDs 113a and 113b are heat sinks without using the L-shaped heat conductive members 117a and 117b. la, 11 lb and back plate 108 can be in thermal contact. As a result, the knock light unit according to the present embodiment has the same effects as the backlight units according to the first and second embodiments. Even if the knock light unit has the L-shaped heat conducting members 117a and 117b, the same effect as the knock light unit according to the present embodiment can be obtained.
  • FIG. 46 illustrates a state where the LED 115a of the backlight unit according to the fourth embodiment is fixed to the light source fixing member 115a.
  • the lower diagram in the figure shows a state in which the surface-mount type LED 115a is fixed to the light source fixing member 115a.
  • the LED 115a has a lead terminal 140 'for connecting to a wiring patterned on the light source fixing member 115a.
  • the LED 115a is fixed to the light source fixing member 115a by a lead terminal 140 '.
  • Lead terminal 140 ' is LED It is formed to protrude from the outer wall of 115a. Therefore, the mounting pitch L1 of the surface-mount type LED 115a is relatively large.
  • the DIP type LED 115a has the lead terminal 140 formed on the opposite side of the light emitting part and inside the outer wall.
  • the DIP LED 115a is fixed by inserting a lead terminal 140 into a through hole formed in the light source fixing member 115a.
  • the mounting pitch L2 of the DIP LED 115a can be smaller than the mounting pitch L1 of the surface mount LED 115a. Therefore, the DIP-type LED 115a can be mounted more in a limited area than the surface-mount type LED 115a. Thereby, a backlight unit and a liquid crystal display device 130 with high luminance can be obtained.
  • FIG. 47 is a perspective view showing the vicinity of a light source fixing member 170 of a conventional backlight unit having a reflector 172.
  • FIG. FIG. 47 (a) is a perspective view showing a state where the reflector 172 is fixed to the light source fixing member 170.
  • FIG. FIG. 47B is an exploded perspective view showing a state where the reflection plate 172 is removed from the light source fixing member 170.
  • the reflection plate 172 is provided to efficiently guide the light emitted from the LED 159 to the light guide plate 156.
  • the reflection plate 172 reflects the light emitted from the LED 159 obliquely to the normal direction of the light incident surface of the light guide plate 156, and can guide the light to the light guide plate 156.
  • the conventional reflector 172 is used for cooling the LED 159! /.
  • FIG. 48 is a perspective view showing the vicinity of the light source fixing member 115 of the knock light unit according to the fifth embodiment.
  • FIG. 48 (a) is a perspective view showing a state where the heat conductive reflector 112 is fixed to the light source fixing member 115.
  • FIG. 48 (b) is an exploded perspective view showing a state where the heat conductive reflection plate 112 is removed from the light source fixing member 115.
  • the heat conductive reflector 112 is Puru.
  • the heat conductive reflection plate 112 has a diameter slightly longer than the outer diameter of the LED 113 and has a plurality of insertion holes 116 into which the LED 113 can be inserted.
  • the insertion hole 116 is formed to penetrate the heat conductive reflection plate 112. ⁇
  • the entrance hole 116 is formed at a pitch substantially equal to the pitch of the plurality of LEDs 113 fixed to the light source fixing member 115! RU
  • the inner wall surface of the insertion hole 116 is subjected to light reflection processing! [0099]
  • the insertion hole 116 penetrates the heat conductive reflection plate 112. For this reason, as shown in FIG. 48 (a), when the heat conductive reflection plate 112 is fixed to the light source fixing member 115, the light emission side of the LED 113 is open.
  • the periphery of the LED 115 other than the light emission side is covered with an insertion hole 116 that has been subjected to light reflection processing.
  • the heat conductive reflection plate 112 can reflect the light emitted obliquely from the LED 113 with respect to the normal direction of the light incident surface of the light guide plate 106 (not shown in FIG. 48) and guide the light to the light guide plate 106. .
  • the light emitted from the LED 113 can be efficiently guided to the light guide plate 106.
  • the heat conductive reflector 112 is formed of a material having a high thermal conductivity, the heat generated by the LED 113 is transferred to the heat conductive means (the L-shaped heat conductive members 117a and 117b or the light source fixed) through the light source fixing member 115.
  • the heat can be efficiently transmitted to the members 115a and 115b) and the heat sinks 11 la and 11 lb (both not shown in FIG. 48).
  • the backlight unit according to the present embodiment can radiate the heat generated by the LED 113 into the air.
  • FIG. 49 is an exploded perspective view showing a configuration of a liquid crystal display device (monitor liquid crystal display device) for a monitor device according to the sixth embodiment.
  • the monitor liquid crystal display device is formed of a material having high heat radiation, and is provided with a storage unit that is in thermal contact with a backlight unit mounted on the liquid crystal display device 130 and stores the liquid crystal display device 130.
  • the monitor liquid crystal display device has a power input unit (not shown).
  • the storage means has a front cover 120 and a rear cover 121.
  • the rear cover 121 has a screwing portion 125 so that the rear cover 121 can be screwed to the rear plate 108 of the backlight unit.
  • the rear cover 121 is fixed to the rear plate 108 by screws. Since the back cover 121 is in thermal contact with the back plate 108 of the backlight unit, heat generated by the LEDs 113a and 113b (not shown in FIG. 49) is transferred to the heat sinks 11 la and 11 lb and the back plate 108. Also, heat can be radiated by the heat radiating portion 124 formed on the rear cover 121 of the liquid crystal display device for a motor.
  • FIG. 50 is a perspective view showing another configuration of the monitor liquid crystal display device according to the present embodiment.
  • FIG. 50A is a perspective view showing a configuration of the liquid crystal display device 130.
  • FIG. FIG. 50 (b) is an enlarged view of the virtual circle shown in FIG. 50 (a).
  • the liquid crystal display device 130 according to the present embodiment has a screw for screwing to the rear cover 121 (not shown in FIG. 50).
  • the heat radiation section 124 of the liquid crystal display device for monitoring can also radiate heat.
  • FIG. 51 shows a cross section of a liquid crystal display device 130 according to the seventh embodiment.
  • the length L3 of the light exit surface 106c of the light guide plate 106 is shorter than the length L4 of the display area of the liquid crystal display panel 102.
  • the length L3 of the light exit surface 106c of the light guide plate 106 is formed shorter than the length of the diffusion sheet 104 measured in the same direction.
  • the area of the light exit surface 106c of the light guide plate 106 is formed smaller than the area of the display area of the liquid crystal display panel 102 or the area of the diffusion sheet 102.
  • the knock light unit is formed of a plastic frame formed between the light guide plate 106 and the diffusion sheet 104 such that the opening area on the light guide plate 106 side is smaller than the opening area on the diffusion sheet 104 side. (Frame member) 105.
  • the liquid crystal display device 130 makes the length L3 of the light exit surface 106c of the light guide plate 106 shorter than the length L4 of the display area of the liquid crystal display panel 102 or the length of the diffusion sheet 104 measured in the same direction.
  • the area of the light exit surface 106c of the light plate 106 can be made smaller than the area of the display area of the liquid crystal display panel 102 or the area of the diffusion sheet 102.
  • the outer dimensions of the knock light unit can be made approximately equal to the outer dimensions of the liquid crystal display panel 102. Thereby, the size of the liquid crystal display device 130 can be reduced.
  • the length of the light incident surface of the light guide plate 106 and the length of the surface facing the light incident surface are determined by the length L 4 of the display area of the liquid crystal display panel 102 or the length of the diffusion sheet 104 measured in the same direction.
  • the size of the liquid crystal display device 130 can be reduced.
  • the opening area on the light guide plate 106 side is smaller than the opening area on the diffusion sheet 104 side.
  • the backlight unit according to the present embodiment includes a heat conducting means (L-shaped heat conducting members 117a, 117b or 11b) for conducting the heat generated by the plurality of LEDs 113a, 113b to the heat sinks 11la, 11lb.
  • Light source fixing members 115a and 115b As a result, the backlight unit according to the present embodiment can reduce uneven brightness and extend the life.
  • heat sinks 11 la and 11 lb can be arranged in a direction perpendicular to the light incident surface 106 a of the light guide plate 106 (on the back side of the light exit surface 106 c of the light guide plate 106). This makes it possible to achieve a narrow frame of the liquid crystal display device.
  • the heat generated by the LEDs 113a and 113b can be radiated by the rear cover 121.
  • the monitor liquid crystal display device can sufficiently radiate the heat generated by the LEDs 113a and 113b without using an air-cooling fan or the like, so that a small size display can be achieved.
  • a third embodiment according to the present invention relates to a knock light unit (surface lighting device) and a liquid crystal display device including the same.
  • the backlight unit provided in the liquid crystal display device has an edge light system in which white LEDs are arranged on a pair of side surfaces of a light guide plate formed in a thin rectangular parallelepiped shape, or a predetermined gap without using the light guide plate.
  • a hollow system in which white LEDs arranged opposite to each other are arranged.
  • the knock light unit has a three-primary LED set combining LEDs of different emission colors arranged directly on the opposite side of the display surface of the liquid crystal display panel, or for mixing LEDs of different emission colors.
  • a sub light guide plate system using the above sub light guide plate has been proposed.
  • the white LED is a combination of a yellow light-emitting phosphor and a blue (B) light-emitting LED, and has the feature that the color variation of the emission color is relatively small.
  • the width of each LED is relatively large, about 10 mm. If LEDs, G-emitting LEDs, and B-emitting LEDs are repeatedly arranged in this order, LEDs of the same color will be placed at least 30 mm apart. For this reason, it is necessary to devise ways to mix the colors emitted by each LED. become.
  • Lumileds Lighting has proposed a backlight unit that does not use the light guide area for mixing emission colors as a display area (sub light guide plate method).
  • the thickness of the air layer up to the diffusion plate needs to be 50 mm or more so that the emission colors are sufficiently mixed.
  • An object of the present embodiment is to provide a small backlight unit having excellent color uniformity and a liquid crystal display device including the same.
  • the object has discrete light source means, reflecting means A, light guiding means, light mixing means A, and light mixing means B, wherein the reflecting means A, the light guiding means, and the light
  • the mixing means A and the light mixing means B are stacked in this order, and the discrete light source means is configured by arranging individual light sources having different spectra or different light emission amounts in the vicinity of the light incident surface of the light guide means, A light propagating through the light guiding means is extracted to the reflecting means A side or the light mixing means A side on a surface of the light guiding means facing the reflection means A or a surface facing the light mixing means A.
  • the height of the light mixing means A is H
  • the minimum unit length of the periodicity of the array of the discrete light source means is Lp, 0 ⁇ Lp / H ⁇ 2. This is achieved by a backlight unit characterized in that the relationship of 5 holds.
  • FIG. 52 shows a schematic basic configuration of a knock light unit according to the present embodiment and a liquid crystal display device including the same.
  • FIG. 52 (a) shows a state where the liquid crystal display device is viewed from the display screen side
  • FIG. 52 (b) shows a cross section cut along a virtual line A--A shown in FIG. 52 (a).
  • the liquid crystal display device has a pair of A liquid crystal display panel 80 having a plate (not shown), a liquid crystal (not shown) sealed between the pair of substrates, and a backlight unit 2 disposed on the back side of the liquid crystal display panel 80.
  • the backlight unit 2 as a planar light source has a planar light guide plate (light guide means) 20 having, for example, a rectangular planar shape.
  • Light sources (discrete light source means) 51 are arranged near the pair of side end surfaces of the light guide plate 20, respectively.
  • the light source 51 has, for example, an LED array unit group 241 having at least one LED.
  • the LED array unit group is periodically arranged with a pitch length Lp.
  • the pitch length Lp of the LED array unit group 241 is the minimum unit length of the periodicity of the array of the light sources 51.
  • the plurality of LEDs constituting the light source 51 have, for example, emission wavelengths of different spectra. Alternatively, the LEDs emit different amounts of light.
  • optical sheets such as a transmission type diffusion plate (light mixing means B) 240 are disposed above the light exit surface 21 of the light guide plate 20 in the figure.
  • the liquid crystal display panel 80 is arranged.
  • a gas space (light mixing means A) 30 is provided between the light exit surface 21 of the light guide plate 20 and the transmission type diffusion plate 240.
  • a reflection sheet (reflection means A) 10 is disposed below the light guide plate 20 in the figure. That is, the knock light unit has a configuration in which the reflection sheet 10, the light guide plate 20, the gas space 30, and the transmission type diffusion plate 240 are stacked in this order.
  • a predetermined scattering surface 252 is provided as light extraction means.
  • the light guide plate 20 and the transmissive diffusion plate 240 are arranged such that the relationship of 0 ⁇ Lp / H ⁇ 2.5 is established between the height H of the gas space 30 and the pitch length Lp of the LED array unit group 241. Is arranged. By doing so, as will be described later, the occurrence of color unevenness in the region where the display surface of the liquid crystal display panel 80 is illuminated can be prevented without providing the knock light unit 2 with a light mixing space. Therefore, a backlight unit and a liquid crystal display device having excellent color uniformity can be obtained.
  • FIGS. 53 to 55 are schematic diagrams of the liquid crystal display device according to the present embodiment. The schematic configuration is shown.
  • FIGS. 53 (a) to 55 (a) show cross sections of the liquid crystal display device, and
  • FIGS. 53 (b) to 55 (b) show enlargedly a scattering surface as a light extraction means of the backlight unit. I have.
  • the backlight units 2a, 2b and 2c provided in the liquid crystal display device according to the present embodiment are the same as the backlight unit 2 shown in FIG.
  • a side wall reflector (reflection means B) 245 arranged on the side surface of the gas space 30 is provided.
  • the side wall reflector 245 is a regular reflection mirror sheet such as a silver reflection sheet. Accordingly, the light emitted from the light guide plate 20 can also be used without losing the light emitted to the gas space 30.
  • the transmission type diffusion plate 240 is, for example, a Balta type that diffuses light with a scattering substance dispersed therein, and has a transmittance of 65% and a thickness of 2 mm.
  • Knock light units 2a, 2b, and 2c have different shapes of light extraction means. As shown in FIGS. 53 (a) and 53 (b), the light extraction means of the backlight unit 2a has a scattering printing surface 252a.
  • the scattering printing surface 252a is formed, for example, by screen-printing a transparent resin (printing ink) mixed with fine particles of titanium oxide on substantially the entire surface of the light guide plate 20 on the reflection sheet 10 side.
  • the light extraction means of the knock light unit 2b has a plurality of internal scattering type printing surfaces 252b.
  • the internal scattering type printing surface 252b is formed such that the fine particles of titanium oxide are not exposed on the surface.
  • the surface on the reflection sheet 10 side is formed in a curved shape, for example, so that incident light is not reflected on the internal scattering type printing surface 252b in a direction substantially orthogonal to the light exit surface 21 of the light guide plate 20. Thereby, the optical characteristics of knock light unit 2b are improved.
  • the light extraction means of the knock light unit 2c has a plurality of transparent lenses 252c.
  • the transparent lens 252c has, for example, a curved surface on the reflection sheet 10 side so that incident light is not reflected in a direction substantially orthogonal to the light exit surface 21 of the light guide plate 20. Thereby, the optical characteristics of the knock light unit 2c are improved.
  • a transparent dot may be formed instead of the transparent lens 252c as light extraction means of the knock light unit 2c.
  • Fig. 56 shows the ratio LpZH between the pitch length Lp of the LED array unit group 241 and the height H of the gas space 30.
  • 5 is a graph showing the relationship between the light emission surface of the knock light unit and color unevenness.
  • the horizontal axis represents the ratio LpZH, and the vertical axis represents color unevenness (Axy).
  • the curves connecting the reference marks in the figure show the characteristics of the knock light unit 2a (structure 1), and the curves connecting the X marks in the figure show the characteristics of the knock light unit 2b (structure 2).
  • the curve connecting the marks shows the characteristics of knock light unit 2c (structure 3).
  • ⁇ xy ⁇ (xl - ⁇ 2) 2 + (yl -y2) 2 ⁇ 1/2
  • the limit value of Axy at which color unevenness is visually recognized in the knock light unit is about 0.01. Therefore, as shown in FIG. 56, in at least one of the structures 1 to 3, in order for A xy to be about 0.01 or less, the LED array unit must be such that 0 ⁇ LpZH ⁇ 2.5.
  • the pitch length Lp of the group 241 and the height H of the gas space 30 may be selected. For example, when the pitch length Lp of the LED array unit group 2 41 is determined by the restriction of the LED package size, the height H of the gas space 30 is set so that 0 ⁇ Lp / H ⁇ 2.5.
  • the LED array unit group 241 is set so that 0 ⁇ Lp / H ⁇ 2.5.
  • the pitch length Lp is adjusted.
  • the knock light units 2a, 2b, and 2c optimize the ratio LpZH between the pitch length Lp of the LED array unit group 241 and the height H of the gas space 30.
  • the color uniformity and the luminance uniformity of the display area can be improved without providing a light mixing space.
  • the size of the knock light units 2a, 2b, 2c can be reduced.
  • the display quality of the liquid crystal display device can be significantly improved and the size can be reduced.
  • FIG. 57 shows a schematic configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 57 (a) shows a state in which the display screen side force of the liquid crystal display device is also viewed
  • FIG. 57 (b) shows a cross section cut along a virtual line AA in FIG. 57 (a).
  • the liquid crystal display according to the present embodiment has a liquid crystal display panel 80 and a backlight unit 3.
  • Knock light unit 3 has light sources 51 arranged in the vicinity of a pair of side end surfaces of light guide plate 20, respectively.
  • the light source 51 has a plurality of LED array unit groups 241 periodically arranged with a pitch length Lp.
  • the LED array unit group 241 includes an R light emitting LED (R), a G light emitting LED (G), a B light emitting LED (B), and a G light emitting LED (G).
  • the knock light unit 3 has a prism sheet (reflecting means C) 254 arranged adjacent to the transmission type diffusion plate 240.
  • the prism sheet 254 for example, BEF manufactured by 3M is used.
  • the prism sheet 254 is formed in a rectangular flat plate shape and is disposed between the transmission type diffusion plate 240 and the liquid crystal display panel 80.
  • knock light unit 3 has scattering type side wall reflector 247.
  • the side wall reflector 247 is made of white PET or polycarbonate resin.
  • the light emitted from the R light emitting LED (R), G light emitting LED (G), and B light emitting LED (B) (three primary color lights) near the light incident surface of the light guide plate 20 Not mixed well.
  • R light emitting LED
  • G light emitting LED
  • B B light emitting LED
  • Light emitted from the light source 51 is reflected by the scattering printing surface 252a of the light guide plate 20 or the reflection sheet 10 and is scattered in various directions. As shown in FIG.
  • light emitted from the light source 51 on the left side of the figure and reflected at the point P includes reflected light L1 reflected at a reflection angle almost equal to the incident angle, and a light guide plate.
  • the reflected light L2 is reflected in a direction substantially orthogonal to the 20 light exit surfaces 21.
  • the reflected light L1 propagates obliquely in the gas space 30 and reaches the transmissive diffuser 240, where the three primary colors are mixed, so that color unevenness is reduced.
  • the reflected light L1 is deflected by the prism sheet 254 and emitted and becomes a mixed color having good color uniformity when contributing to display luminance in a direction orthogonal to the prism sheet 254.
  • the display area near the light source 51 arranged on the left side in the figure is arranged on the right side in the figure.
  • the light emitted from the light source 51 passes through the light guide plate 20 and the gas space 30, and the white light of a predetermined chromaticity in which the R light emitting LED (R), the G light emitting LED (G), and the B light emitting LED (B) are sufficiently mixed.
  • the prism sheet 254 is arranged like a conventional backlight unit, the reflected light L2 is mixed with the white light of a predetermined chromaticity, and color unevenness occurs near the light source 51 on the left side in the figure. I will.
  • the prism sheet 254 is formed in a predetermined shape so as to reflect the color light distribution that is incident in a direction substantially orthogonal to the prism sheet. Therefore, the reflected light L2 is reflected by the prism sheet 254 and returned to the gas space 30 side. Therefore, the color uniformity of the transmitted light transmitted through the prism sheet 254 near the light source 51 on the left side in the drawing is improved. Thereby, color unevenness of the liquid crystal display device can be reduced.
  • the light emitted from the light source 51 on the right side in the drawing and reflected at the point R includes the reflected light L3 reflected in the direction of the side wall reflector 247.
  • the side wall reflector is a regular reflection mirror sheet such as a silver reflection sheet as in the backlight units 2a to 2c of the above embodiment
  • the reflected light L3 is reflected by the side wall reflector at substantially the same angle of incidence as the reflection angle. Then, the light is incident on the transmission type diffusion plate 240.
  • the reflected light L3 transmitted through the transmission type diffusion plate 240 causes color unevenness near the light source 51.
  • the reflected light L3 is reflected and diffused in various directions by forming the scattering type side wall reflector 247, the reflected light L3 which is incident on the transmission type diffuser 240 near the light source 51 and is transmitted therethrough. The amount of light decreases. Thereby, color unevenness near the light source 51 can be reduced.
  • FIG. 58 is a graph showing the relationship between the ratio LpZH of the pitch length Lp of the LED array unit group 241 to the height H of the gas space 30 and the color unevenness of the light emission surface of the knock light unit.
  • the horizontal axis represents the ratio LpZH
  • the vertical axis represents color unevenness (Axy).
  • the color unevenness is obtained by the same method as in the above embodiment.
  • the curves connecting the reference marks in the figure indicate the characteristics of the knock light unit 2a (structure 1)
  • the curves connecting the marks in the figure indicate the characteristics of the backlight unit in which only the prism sheet 254 is added to the backlight unit 2a.
  • the curve connecting the X marks shows the characteristics of the backlight unit in which the side wall reflector 245 of the knock light kit 2a is changed to a side wall reflector 247 (diffuse reflector).
  • a prism sheet 254 was added to the knock light unit 2a, or a scattering type
  • the color uniformity of the knock light kit can be improved because the color unevenness is reduced by using the side wall reflector 247.
  • the prism sheet 254 and the side wall reflector 247 are used in combination, so that the color unevenness in the display area of the backlight unit 3 is further reduced, so that the display quality of the liquid crystal display device is reduced. It can be further improved.
  • FIG. 59 shows the relationship between the transmittance (%) and the plate thickness (mm) of the transmission diffusion plate 240 and the color unevenness.
  • the symbol ⁇ indicates that color unevenness is hardly visible
  • the mark X in the figure indicates that color unevenness is visible.
  • the transmissive diffusion plate 240 having a transmittance of 80% or less and a plate thickness of 2 mm or more, color unevenness in the display area of the knock light unit 3 can be further reduced.
  • the backlight unit 3 and the liquid crystal display device having excellent color uniformity can be obtained.
  • the present embodiment is not limited to the above example, and various modifications are possible. Also in the backlight units 2a to 2c according to the first embodiment, by setting the transmittance of the transmissive diffusion plate 240 to 80% or less and the plate thickness to 2 mm or more, color unevenness in the display area can be reduced.
  • the fourth embodiment of the present invention relates to a backlight unit (surface lighting device) and a liquid crystal display device including the same.
  • the backlight unit provided in the liquid crystal display device has an edge light system in which white LEDs are arranged on a pair of side surfaces of a light guide plate formed in a thin rectangular parallelepiped shape, or a predetermined gap without using the light guide plate.
  • a hollow system in which white LEDs arranged opposite to each other are arranged.
  • the knock light unit has a three-primary LED set combining LEDs of different emission colors arranged directly on the opposite side of the display surface of the liquid crystal display panel, or for mixing LEDs of different emission colors.
  • a sub light guide plate system using the above sub light guide plate has been proposed.
  • the white LED is a combination of a yellow light-emitting phosphor and a blue (B) light-emitting LED, and has a feature that the color variation of the emission color is relatively small.
  • Red (R) LED, green Color In the three primary color LED set that uses a combination of (G) LED and B LED, the width of each LED is relatively large, about 10 mm.
  • the LEDs When the LEDs are arranged repeatedly in the order of the LEDs, the LEDs of the same color are arranged at a distance of 30 mm or more. For this reason, it is necessary to devise ways to mix the colors emitted by each LED.
  • Lumileds Lighting has proposed a backlight unit that does not use the light guide area for mixing emission colors as a display area (sub light guide plate method).
  • the thickness of the air layer up to the diffusion plate needs to be 50 mm or more so that the emission colors are sufficiently mixed.
  • the rear surface of the LED module substrate on which the LED is mounted is forcibly air-cooled or directly cooled by a heat sink. For this reason, temperature unevenness in the LED module becomes large, and light emission unevenness for each LED occurs. As a result, there is a problem that color unevenness and luminance unevenness occur in the surface illumination area of the backlight unit.
  • the higher the temperature of an LED the more easily it deteriorates, so that the brightness of the LED drops earlier than the brightness of other LEDs. As a result, there is a problem that color unevenness and luminance unevenness occur over time in the surface illumination area of the knock light unit.
  • the LED module is arranged on the back of the liquid crystal display panel, and the back of the LED module substrate or the metal plate holding the LED module substrate is directly cooled.
  • the hollow and edge light knock light units have an LED module light source at the end of the surface illumination area.
  • the LED module substrate on which the LEDs are arranged is directed directly to the back of the liquid crystal display panel, and is directly cooled by air from the back side.
  • the LED module board on which the top-view type LEDs are arranged is placed on the side of the light guide plate, but the LED module board is directly exposed to the outside air for forced air cooling, or a heat sink is attached for forced air cooling.
  • the width of the frame of the liquid crystal display device becomes 50 mm or more and the liquid crystal display device becomes large, there is a problem.
  • An object of the present embodiment is to provide a backlight unit having excellent color uniformity and a narrow frame, and a liquid crystal display device including the same.
  • the object is to provide a discrete light source device having individual light sources with different spectra or different light emission amounts.
  • a step one end surface having a light incident surface on which light emitted from the discrete light source means is incident, a light guiding region for guiding the light incident from the light incident surface, and a light guiding region for guiding the light.
  • a light guiding means having a light exit surface for emitting the light, a heat conducting means for conducting heat generated by the discrete light source means, and a thermal conductor covering a part of an outer surface of the heat conducting means.
  • a heat-retaining means for maintaining the temperature of the heat-conducting means substantially uniformly with a contact surface for contacting the heat-conducting means.
  • a backlight unit having excellent color uniformity and a narrow frame and a liquid crystal display device including the same can be realized.
  • FIG. 60 and FIG. 61 show a schematic configuration of the liquid crystal display device according to the present embodiment.
  • FIG. 60 schematically shows a state where the liquid crystal display device on which the LED modules (discrete light source means) 201a and 201b are arranged is viewed obliquely.
  • the front cover 101 is shown by a broken line, and the liquid crystal display panel, the light guide plate, and the like are omitted.
  • FIG. 61 shows a cross-sectional configuration of the liquid crystal display device. In FIG. 61, the front cover 101 is omitted.
  • the LED modules 201a and 201b are arranged near the longitudinal side wall of the front cover 101, respectively.
  • the LED modules 201a and 201b are arranged opposite each other in the front force bar 101.
  • the LED modules 201a and 201b are formed of thin rectangular parallelepiped light source fixing members 115a and 115b having a length Lm in the longitudinal direction, and a plurality of LEDs (almost linearly mounted in the longitudinal direction of the light source fixing members 115a and 115b). (Individual light sources) 113a and 113b.
  • the light source fixing members 115a and 115b are formed of a metal having a high thermal conductivity such as aluminum.
  • the liquid crystal display device includes a pair of substrates (not shown) arranged opposite to each other, and a liquid crystal (not shown) sealed between the pair of substrates. It has a panel 102 and a backlight unit arranged on the back side of the liquid crystal display panel 102.
  • the knock light unit is provided with LED modules 201a and 201b opposed to each other, light incident surfaces 106a and 106a 'on which light emitted from the LED modules 201a and 201b is incident, and light guided through the light guide region 106b. And a light guide plate (light guide means) 106 having a light exit surface 106c for emitting light.
  • the light incident surface 106a is formed on one end surface of the light guide plate 106, and the light incident surface 106a 'is formed on a surface of the light guide plate 106 facing the one end surface.
  • the backlight unit is composed of L-shaped heat conducting members 200a and 200b as heat conducting means for conducting the heat generated by the LED modules 201a and 20 lb, respectively, and the outer surfaces of the L-shaped heat conducting members 200a and 200b.
  • heat insulating members (heat insulating means) 203a and 203b which cover the portions and are in thermal contact with each other to keep the temperatures of the L-shaped heat conductive members 200a and 200b almost uniformly.
  • the heat retaining members 203a and 203b are formed of, for example, a polycarbonate resin in a thin rectangular parallelepiped shape extending in the normal direction of the drawing.
  • the heat retaining members 203a and 203b have contact surfaces 204a and 204b that are in thermal contact with the L-shaped heat conducting members 200a and 200b, respectively.
  • the L-shaped heat conductive members 200a and 200b are formed in an L-shape in a plane substantially orthogonal to the light emitting surface 106c of the light guide plate 106 and the contact surfaces 204a and 204b of the heat retaining members 203a and 203b.
  • the L-shaped heat conducting members 200a and 200b are formed of, for example, an aluminum material.
  • the L-shaped heat conducting members 200a and 200b have heat radiating surfaces 206a and 206b for radiating heat generated in the LED modules 201a and 20 lb, respectively, on the side opposite to the surface facing the back surface of the light emitting surface 106c.
  • the heat radiating surfaces 206a and 206b are subjected to a surface treatment such as an alumite treatment or a coating treatment to increase the infrared emissivity, for example. Further, the heat dissipation of the L-shaped heat conduction members 200a and 20 Ob is enhanced by exposing the heat dissipation surfaces 206a and 206b to the outside air.
  • a deformable material such as a heat radiating sheet is interposed between the L-shaped heat conductive members 200a and 200b and the light source fixing members 115a and 115b, respectively, in order to reduce thermal resistance.
  • the method of reducing the thermal resistance between the L-shaped heat conducting members 200a and 200b and the light source fixing members 115a and 115b is not limited to the sandwiching of a heat dissipation sheet or the like.
  • 115a, 115b with screws, glue, adhesive A method of fusing with an adhesive or silver paste material may be used.
  • the thermal resistance of the heat retaining member 203a from the contact surface 204a to the back surface side of the contact surface 204a is based on the thermal resistance of the L-type heat conducting member 200a from the heat inflow generated by the LED module 201a to the heat radiation surface 206a. It is getting higher. Further, the thermal resistance of the heat retaining member 203a is higher than the thermal resistance of the L-type thermal conductive member 200a in a plane parallel to the contact surface 204a.
  • the thermal resistance of the heat insulating member 203b from the contact surface 204b to the back surface side of the contact surface 204b is based on the thermal resistance of the L-type heat conductive member 200b from the LED module 201b to the heat inflow portion generated by the LED module 201b. It is getting higher. Further, the thermal resistance of the heat retaining member 203b is higher than the thermal resistance of the L-type heat conducting member 200b in a plane parallel to the contact surface 204b.
  • the heat conducted to the heat retaining members 203a and 203b via the L-shaped heat conducting members 200a and 200b becomes less likely to be radiated from the back surfaces of the contact surfaces 204a and 204b that are in contact with the outside air.
  • Heat is kept in the heat insulating members 203a and 203b.
  • the heat conducted to the L-shaped heat conducting members 200a and 200b is transferred to the heat insulation materials 203a and 203b, and the contact surface between the heat dissipation surfaces 206a and 206b and the LED modules 201a and 20 lb.
  • the heat is also dissipated from the back surface.
  • the heat of the heat insulating materials 203a and 203b hardly dissipates heat from the back surface of the insect-contacting surface with the LED modules 201a and 201b. Therefore, the high-temperature portion force in the L-shaped heat conductive members 200a and 200b also transfers the heat to the low-temperature portion, so that the temperature unevenness in the plane parallel to the contact surfaces 204a and 204b is reduced.
  • the temperatures in the L-shaped heat conducting members 200a and 200b are made substantially uniform.
  • the temperature in the LED modules 201a and 201b is also made substantially uniform by the temperature uniformity of the L-type heat conductive materials 200a and 200b.
  • the light incident surface of the light guide plate is formed as a rough cut surface.
  • the light incident surfaces 106a and 106a ' are formed as mirror surfaces in order to utilize the mirror inversion effect of the LED array.
  • a reflection sheet (not shown) disposed outside the light incident surfaces 106a and 106a '(side wall of the light guide plate 106) functions to return the light passing through the light guide plate 106 to the light guide region 106b.
  • the back surface of the light exit surface 106c of the light guide plate 106 is a screen-printed scattering surface.
  • the scattering surface side A supporting member (supporting means) 208 for supporting the reflecting sheet and the L-shaped heat conducting members 200a and 200b in a predetermined gap is arranged in this order.
  • the support member 208 is formed of, for example, an aluminum material in a thin rectangular parallelepiped shape.
  • the supporting member 208 is in thermal contact with the L-shaped heat conducting members 200a and 200b on the back surfaces of the heat radiation surfaces 206a and 206b. At least a part of the plane of the support member 208 that is in thermal contact with the L-shaped heat conductive members 200a and 200b is subjected to the same surface treatment as the heat radiation surfaces 206a and 206b. This makes it easier for the knock light unit to dissipate the heat generated in the LED modules 201a and 201b.
  • a thin rectangular parallelepiped transmission diffusion plate 202 having a thickness of 2 mm is arranged.
  • An optical sheet 205 such as a polarizing sheet or a diffusion sheet and a liquid crystal display panel 102 are arranged in this order on the light exit surface side of the transmission type diffusion plate 202.
  • FIG. 62 is a graph showing temperature variations of the LED modules 201a and 201b depending on the presence or absence of the heat insulating members 203a and 203b.
  • the horizontal axis is the total thickness t, which is the sum of the length Lm of the light source fixing members 115a and 115b, the thickness 1; 1 of the light source fixing substrates 115a and 1151), and the thickness t2 of the] ⁇ -type heat conducting members 200 & and 200b.
  • the vertical axis represents the temperature difference (° C) between the maximum temperature and the minimum temperature in the LED modules 201a and 201b.
  • the curves connecting the reference marks in the figure show the characteristics when the heat insulating members 203a and 203b are provided, and the curves connecting the ⁇ marks in the figure show the characteristics when the heat insulating members 203a and 203b are not provided.
  • the heat insulating members 203a and 203b are arranged, the L-shaped heat conducting members 200a and 200b are Since the temperatures are equalized, the temperature difference between the LED modules 201a and 201b can be suppressed to about 4 ° C, respectively.
  • the heat retaining members 203a and 203b are not provided, the temperature difference between the LED modules 201a and 201b is as large as about 9 ° C.
  • a red light emitting LED (R light emitting LED) has an individual difference of about 12% in the light emission amount, while a blue light emitting LED.
  • B light-emitting LED there is almost no difference in the amount of light emission, about 0%. For this reason, the whiteness of these mixed colors differs by more than 0.01 in the xy chromaticity coordinate system.
  • the light emission amount of the high temperature R light emitting LED with respect to the light emission amount of the low temperature R light emitting LED decreases by about 5% after 50,000 hours. And it will decrease about 10% after 100,000 hours.
  • the change over time in the amount of light emitted by the R light emitting LED causes an increase in color unevenness in the surface illumination area.
  • the temperature difference between the LED modules 201a and 201b can be suppressed to about 4 ° C. by the heat retaining members 203a and 203b, color unevenness and luminance unevenness in the surface illumination area of the knock light unit are reduced. It can be extremely reduced.
  • FIG. 63 shows a relationship between the length Lm of the light source fixing members 115a and 115b and the total thickness t when the temperature difference between the LED modules 201a and 201b is equal to or less than a predetermined temperature.
  • the horizontal axis represents the total thickness t of the light source fixing substrates 115a and 1151) and the fin-shaped heat conducting members 200 & and 200b, and the vertical axis represents the length Lm (mm) of the light source fixing substrates 115a and 115b.
  • the straight line connecting the reference marks in the figure indicates the characteristic of the temperature difference S2 ° C
  • the curve connecting the mark ⁇ in the figure indicates the characteristic of the temperature difference of ° C.
  • the LED modules 201a and 201b and the L-shaped heat conductive members 200a and 200b so as to satisfy the relational expression, it is possible to significantly reduce color unevenness and luminance unevenness in the surface illumination area of the knock light unit. In addition, since the variation over time of color unevenness and luminance unevenness is reduced, the life of the knock light unit and the liquid crystal display device can be extended.
  • the L-type heat conductive members 200a, 200b [the thermal insulation materials 203a, 203b, which are insulated to each other]
  • the temperature difference between the modules 201a and 201b can be reduced to make them substantially uniform. This reduces the unevenness of light emission and the change over time in the amount of light emitted by each of the LEDs 113a and 113b.
  • the color unevenness and the luminance unevenness in the surface illumination area of the unit are extremely reduced, and the life of the backlight unit and the liquid crystal display device having the same can be extended.
  • the heat radiation surfaces 206a and 206b of the L-shaped heat conductive members 200a and 200b disposed on the back side of the light exit surface 106c of the light guide plate 106 the light incident surfaces 116a, 116a and The backlight unit and the liquid crystal display device having a narrow frame can be provided without the necessity of arranging a heat cooling means such as a heat sink.
  • FIG. 64 shows a cross section of the liquid crystal display device according to this embodiment.
  • the backlight unit provided in the liquid crystal display device according to this embodiment is folded back in a plane substantially parallel to the light incident surfaces 106a and 106a ′ of the light guide plate 106, and the heat insulating members 203a and 203b are respectively provided. It is characterized in that it includes internal heat conduction members 210a and 210b sandwiched and included.
  • the internal heat conduction members 210a and 210b have heat-dissipating surfaces 206a and 206b, respectively, in parallel with the insect-contacting surfaces 204a and 204b of the heat-insulating members 203a and 203b.
  • the heat radiating surfaces 206a and 206b are subjected to a surface treatment such as an alumite treatment or a coating treatment to increase the infrared emissivity, for example.
  • the internal heat-transfer members 210a and 210b have improved heat radiation properties by exposing the heat radiation surfaces 206a and 206b to the outside air.
  • the contact surfaces 204a and 204b also have a thermal resistance between the heat-insulating members 203a and 203b up to the back surface side of the contact surfaces 204a and 204b. , 206b, which are higher than the respective thermal resistances of the internal heat conduction members 210a, 210b. This makes it possible to radiate heat while keeping the temperature in the internal heat conduction members 210a and 210b almost uniform. Further, the thermal resistance of the heat retaining members 203a and 203b is higher than the thermal resistance of the entrapping heat conductive members 210a and 210b in the planes parallel to the insect contact surfaces 204a and 204b.
  • the knock light unit according to the present embodiment has the same effect as the above embodiment.
  • FIG. 65 shows a cross section of the backlight unit according to this embodiment.
  • the backlight unit according to the present embodiment is integrally formed so as to conduct heat generated in both of the LED modules 201a and 201b, and the light emitting surface 106c and the contact surfaces 204a and 204b. It is characterized by having a U-shaped heat conducting member 212 formed in a U-shape in a plane substantially orthogonal to each other.
  • the U-shaped heat conductive member 212 has a heat radiating surface 118 on the opposite side of the surface facing the back surface of the light emitting surface 106c.
  • the heat radiating surface 118 is subjected to a surface treatment such as an alumite treatment or a coating treatment so as to increase infrared emissivity, for example.
  • the U-shaped heat conductive member 212 has improved heat dissipation by making the heat dissipation surface 118 contact with the outside air.
  • the contact surfaces 204a, 204b also have a thermal resistance of the heat insulating members 203a, 203b up to the back surface side of the contact surfaces 204a, 204b, from the inflow portion of the heat generated in the LED modules 201a, 20 lb to the heat dissipation surface 118, respectively.
  • the heat resistance is higher than the heat resistance of the U-shaped heat conductive member 212.
  • the thermal resistance of the heat retaining members 203a and 203b is higher than the thermal resistance of the U-shaped heat conducting member 212 in a plane substantially parallel to the contact surfaces 204a and 204b.
  • the U-shaped heat conducting member 212 has the heat conducting means and the supporting means formed in a body, the heat generated in the LED module 2 Ola, 201b is transferred to the back side of the light emitting surface 106c. Easy to do. Further, by forming the heat radiating surface 118 on the entire surface of the U-shaped heat conductive member 212 located on the back side of the light emitting surface 106c, heat can be radiated more efficiently than in the first and second embodiments. LED module 201a, 20 lb overall temperature can be further reduced.
  • the supporting means is not required, the number of parts of the backlight unit is reduced, and the assembling step of the heat conducting means and the supporting means is also unnecessary, thereby reducing the cost of the backlight unit and the liquid crystal display device. Can be planned.
  • FIG. 66 shows the liquid crystal display device according to the present embodiment in a state where the rear surface side force of the display screen is also observed.
  • the backlight unit provided in the liquid crystal display according to the example includes a U-shaped heat conduction member 212 as a heat conduction means and a heat sink as a heat radiation means for radiating heat conducted through the U-shaped heat conduction member 212. It has a feature in that it has 214.
  • the heat sink 214 is also integrated with the U-shaped heat conductive member 212 by extending the near force of the LED module 201a to around 20 lb of the LED module.
  • the heat radiation fins 214a of the heat sink 214 extend from the vicinity of the LED module 201a to the vicinity of 20 lb of the LED module.
  • At least a part of the outer surface of the heat sink 214 is subjected to the same surface treatment as the heat radiation surface 118 of the U-shaped heat conduction member 212 of the above embodiment.
  • an arrangement area of a circuit board (not shown) on which a predetermined circuit for driving the LED modules 201a, 201b and the like is mounted is secured.
  • the circuit board is covered with a protective cover 216 having an outer surface that has been subjected to the same surface treatment as the heat dissipation surface 118.
  • FIG. 67 shows a liquid crystal display device as a comparative example viewed from the back side of the display screen.
  • the backlight unit provided in the liquid crystal display device includes a heat sink disposed on the U-shaped heat conductive member 212 substantially symmetrically with respect to a region where the protective cover 216 extends in the longitudinal direction. Having 218!
  • the heat sink 218 has radiation fins 218 a and 218 b extending in the short direction of the backlight unit, and is integrated with the U-shaped heat conduction member 212.
  • the temperature difference between the LED modules 201a and 201b is 3 ⁇ 4 ° C, whereas in the backlight unit of the present embodiment, the temperature difference between the LED modules 201a and 201b is 4 ° C. It is.
  • the temperature difference between the LED modules 201a and 201b can be reduced by almost half. Therefore, color unevenness and luminance unevenness on the light emitting surface of the knock light unit are extremely reduced, and the life of the knock light unit and the liquid crystal display device including the same can be extended.
  • the conventional backlight unit uses the electric power (32W) supplied equally to the LED modules 201a and 201b.
  • the LED module for example, the LED module 201a
  • the power is increased by about 2W to about 34W.
  • the temperature of the LED 113a of the LED module 201a decreases by about 2 ° C
  • the temperature of the LED 113b of the LED module 201b increases by about 2 ° C, so that the temperatures of the LED modules 201a and 201b can be made almost the same. it can.
  • FIG. 68 is a graph showing a change in temperature with respect to power supplied to the LED modules 201a and 201b.
  • the horizontal axis represents the ratio (%) of the input power of the LED module 201a (upper side LED module) to the input power of the LED module 201b (lower side LED module), and the vertical axis represents the temperature of the LED modules 201a and 201b (%).
  • ° C The curve connecting the reference marks in the figure indicates the temperature characteristic of the LED module 20 la (upper side), the curve connecting the mark ⁇ in the figure indicates the temperature characteristic of the LED module 201b (lower side), and the X mark in the figure indicates the temperature characteristic.
  • the connecting curve shows the characteristics of the LED module 201a with a temperature difference of 20 lb.
  • the temperature difference between the LED modules 201a and 201b is about 4 ° C.
  • the temperature of the LED module 201a is higher than the temperature of the LED module 201b. Therefore, the input power of the LED module 201a is reduced by about 2W, while the input power of the LED module 201b is increased by about 2W, and the ratio of the input power of the LED modules 201a and 201b is set to about 90%.
  • the temperature difference between the LED modules 201a and 201b can be reduced to almost 0 ° C.
  • the maximum temperature of LED module 201a decreases by about 2 ° C, while the maximum temperature of LED module 201b rises by about 2 ° C, but the temperature difference between LED modules 201a and 201b is reduced to almost 0 ° C. Therefore, color unevenness and luminance unevenness in the surface illumination area of the backlight unit are extremely reduced, and the life of the knock light unit and the liquid crystal display device including the same can be extended.
  • the total power supplied to the LED modules 201a and 201b is 64W, which is V different from that of the conventional backlight unit, the brightness of the knock light unit and the brightness of the display screen of the liquid crystal display device almost do not increase or decrease. Absent.
  • the total input power to all the LEDs 113a mounted on the LED module 201a and the LED module 2 The input power to all the LEDs 113b mounted on 0 lb may be different from the total input power to the LEDs 113b, or the input power to a predetermined light emitting color LED (for example, the R light emitting LED) of all the LEDs 113a mounted on the LED module 2 Ola, Only the input power to the LED of the same color as the predetermined emission color LED (for example, the R emission color LED) of all the LEDs 113b mounted on the LED module 201b may be different.
  • a predetermined light emitting color LED for example, the R light emitting LED
  • FIG. 69 schematically shows a cross section of a main part of the knock light unit in order to explain a mounting structure of the protection cover 216 to the U-shaped heat conductive member 212.
  • FIG. 69 (a) shows a cross section of a main part of a knock light unit according to the present embodiment
  • FIG. 69 (b) shows a cross section of a main part of a conventional knock light unit as a comparative example.
  • FIG. 69 (a) shows the heat sink 214 rotated by 90 ° about the normal direction of the heat radiation surface of the U-shaped heat conduction member 212 as a rotation axis for easy understanding.
  • the protective cover 230 is fixed together with the circuit board 220 to the fixing portion 228 formed on the support member 232.
  • the protective cover 216 is fixed to the U-shaped heat conducting member 212 at a place different from the circuit board 220.
  • the U-shaped heat conductive member 212 is in contact with the circuit board fixing portion 222 for thermally contacting and fixing the circuit board 220, and is thermally contacted at a place different from the circuit board fixing portion 222.
  • a protective cover fixing portion 225 for fixing the protective cover 216 of the circuit board 220 is provided.
  • the circuit board fixing part 222 is formed by cutting and raising a part of the U-shaped heat conductive member 212, for example.
  • the circuit board 220 is screwed to the circuit board fixing portion 222 with screws 226.
  • the protective cover 216 is screwed to the protective cover fixing portion 225 with a screw 226.
  • the protective cover 216 is in direct contact with the U-shaped heat conducting member 212.
  • the method of fixing the circuit board 220 and the protective cover 216 is not limited to screwing.
  • the deformability of a heat dissipation sheet or the like for reducing the thermal resistance between the circuit board 220 and the protective cover 216 and each of the fixing portions 222 and 225 is used.
  • a method in which a material is sandwiched between the circuit board 220 and the protective cover 216 and each of the fixing portions 222 and 225 may be bonded with an adhesive, adhered with an adhesive, or fused with a silver paste material.
  • the protective cover 230 is supported by the support portion via the circuit board 220.
  • the structure in which the protective cover 216 is directly fixed to the U-shaped heat conducting member 212 like the knock light unit of the present embodiment conducts heat to the protective cover 216 more than the structure fixed to the member 232. Can be improved. That is, since the thermal resistance between the U-shaped heat conductive member 212 and the protective cover 216 is reduced, large heat transfer from the U-shaped heat conductive member 212 to the protective cover 216 becomes possible.
  • the front and back surfaces of the protective cover 216 and the outer surface of the heat sink 214 are provided with, for example, anodizing treatment.
  • Surface treatment for improving infrared emissivity such as painting is applied. Thereby, the heat radiation effect of the knock light unit can be improved.
  • the temperature rise of the room temperature force of the U-shaped heat conductive member 212 is reduced from 80% to 85% as compared with the case where the surface treatment is not performed. Reduced. Specifically, the temperature rises of the protective cover 216 and the heat sink 214 before the alumite treatment are 23 ° C and 31 ° C, respectively, but the temperature rises by the alumite treatment are 20 ° C and 25 ° C. Respectively. Furthermore, when the protective cover 216 is directly fixed to the U-shaped heat conducting member 212, the temperature rise of the protective cover 216 increases to 23 ° C. The temperature rise of the heat sink 214 thermally coupled to the LED module 201a increases by 24 °. Reduced to C.
  • the temperature of the LED modules 201a and 201b can be made almost uniform and the heat can be efficiently radiated and cooled, so that the knock light unit and the liquid crystal display device can be cooled.
  • the color uniformity and the luminance uniformity are extremely improved, and the service life can be extended.
  • the knock light unit has any of the L-shaped heat conductive members 200a and 200b, the included heat conductive members 210a and 210b, and the U-shaped heat conductive member 212 as the heat conductive means.
  • the present embodiment is not limited to this.
  • the knock light unit may have a heat radiating surface in which the light source fixing members 115a and 1151) are formed in the same shape as the] ⁇ heat conductive members 200 & 200b as heat conductive means.
  • the backlight unit according to the fourth embodiment includes the U-shaped heat conductive member 212, but the present embodiment is not limited to this.
  • the knock light unit has the L-shaped heat conductive members 200a and 200b or the included heat conductive members 210a and 210b, the same effect as that of the fourth embodiment can be obtained.
  • FIG. 1 is a cross-sectional view showing a basic configuration of a backlight unit according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a backlight unit according to Example 1 of the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a backlight unit according to Example 2 of the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a light guide plate of a backlight unit according to Example 3 of the first embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a light guide plate of a backlight unit according to Example 4 of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration of a light guide plate of a backlight unit according to Example 5 of the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a light guide plate of a backlight unit according to Example 6 of the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a configuration of a backlight unit according to Example 7 of the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a configuration of a backlight unit according to Example 8 of the first embodiment of the present invention.
  • FIG. 10 is a diagram showing a configuration of a backlight unit according to Example 9 of the first embodiment of the present invention.
  • FIG. 11 is a view showing a configuration of an LED mounting board of a backlight unit according to Example 10 of the first embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a configuration of a backlight unit according to Example 11 of the first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view illustrating a configuration of a backlight unit according to Example 12 of the first embodiment of the present invention.
  • FIG. 14 is a diagram showing a configuration of a backlight unit according to Example 13 of the first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view showing a configuration of a backlight unit according to Example 14 of the first embodiment of the present invention.
  • FIG. 16 is a cross-sectional view illustrating a configuration of a backlight unit according to Example 15 of the first embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a configuration of a backlight unit according to Example 16 of the first embodiment of the present invention.
  • FIG. 18 is a cross-sectional view showing a configuration of a backlight unit according to Example 17 of the first embodiment of the present invention.
  • FIG. 19 is a cross-sectional view illustrating a configuration of a liquid crystal display device according to Example 18 of the first embodiment of the present invention.
  • FIG. 20 is a diagram illustrating a configuration of a liquid crystal display device according to Example 19 of the first embodiment of the present invention.
  • FIG. 21 is a perspective view showing a configuration of a liquid crystal display device according to Example 20 of the first embodiment of the present invention.
  • FIG. 22 is a diagram illustrating a configuration of a liquid crystal display device according to Example 21 of the first embodiment of the present invention.
  • FIG. 23 is a diagram showing another configuration of the liquid crystal display device according to Example 21 of the first embodiment of the present invention.
  • FIG. 24 is a diagram illustrating a configuration of a liquid crystal display device according to Example 22 of the first embodiment of the present invention.
  • FIG. 25 is a diagram showing another configuration of the liquid crystal display device according to Example 22 of the first embodiment of the present invention.
  • FIG. 26 is a cross-sectional view showing a configuration of a backlight unit according to Example 23 of the first embodiment of the present invention.
  • FIG. 27 is a cross-sectional view showing another configuration of the backlight unit according to Example 23 of the first embodiment of the present invention.
  • FIG. 28 is a cross-sectional view showing still another configuration of the backlight unit according to Example 23 of the first embodiment of the present invention.
  • FIG. 29 is a sectional view showing still another configuration of the knock light unit according to Example 23 of the first embodiment of the present invention.
  • FIG. 30 is a cross-sectional view showing a configuration of a backlight unit according to Example 24 of the first embodiment of the present invention.
  • FIG. 31 is a cross-sectional view showing a configuration of a backlight unit according to Example 24 of the first embodiment of the present invention.
  • FIG. 32 is a cross-sectional view showing another configuration of the backlight unit according to Example 24 of the first embodiment of the present invention.
  • FIG. 33 is a cross-sectional view showing a configuration of a backlight unit according to Example 25 of the first embodiment of the present invention.
  • FIG. 34 is a cross-sectional view showing another configuration of the backlight unit according to Example 25 of the first embodiment of the present invention.
  • FIG. 35 is a diagram showing a configuration of a conventional backlight unit.
  • FIG. 36 is a cross-sectional view showing a configuration of a backlight unit according to Example 26 of the first embodiment of the present invention.
  • FIG. 37 is a cross-sectional view showing another configuration of the backlight unit according to Example 26 of the first embodiment of the present invention.
  • FIG. 38 is a view showing a schematic structure of a conventional liquid crystal display device.
  • FIG. 39 is a diagram showing a configuration of a liquid crystal display device 130 according to Example 1 of the second embodiment of the present invention.
  • FIG. 40 is an essential part cross sectional view showing the configuration of a liquid crystal display device 130 according to Example 1 of the second embodiment of the present invention.
  • FIG. 41 is a diagram showing a configuration of a heat radiating portion 109b of the knock light unit according to Example 1 of the second embodiment of the present invention.
  • FIG. 42 is an essential part cross sectional view showing the configuration of a liquid crystal display device 130 according to Example 1 of the second embodiment of the present invention.
  • FIG. 43 is an essential part cross sectional view showing the structure of a backlight unit according to Example 2 of the second embodiment of the present invention.
  • FIG. 44 is a cross-sectional view of a principal part showing another configuration of the backlight unit according to Example 2 of the second embodiment of the present invention.
  • FIG. 45 is an essential part cross sectional view showing the configuration of a liquid crystal display device 130 according to Example 3 of the second embodiment of the present invention.
  • FIG. 46 is a diagram showing a configuration of an LED 115a of a backlight unit according to Example 4 of the second embodiment of the present invention.
  • FIG. 47 is a view showing a configuration near a light source fixing member 170 of a conventional backlight unit.
  • FIG. 48 is a diagram showing a configuration near a light source fixing member 115 of a backlight unit according to Example 4 of the second embodiment of the present invention.
  • FIG. 49 is a diagram showing a configuration of a liquid crystal display device for a monitor device according to Example 6 of the second embodiment of the present invention.
  • FIG. 50 is a diagram showing another configuration of the liquid crystal display device 130 according to Example 6 of the second embodiment of the present invention.
  • FIG. 51 is a cross-sectional view showing a configuration of a liquid crystal display device 130 according to Example 7 of the second embodiment of the present invention.
  • FIG. 52 is a diagram showing a schematic basic configuration of a liquid crystal display device according to Example 1 of a third embodiment of the present invention.
  • FIG. 53 is a diagram illustrating a schematic configuration of a liquid crystal display device according to Example 1 of a third embodiment of the present invention.
  • FIG. 54 is a diagram illustrating a schematic configuration of a liquid crystal display device according to Example 1 of the third embodiment of the present invention.
  • FIG. 55 shows a schematic configuration of a liquid crystal display device according to Example 1 of the third embodiment of the present invention.
  • a backlight unit according to Example 1 of the third embodiment of the present invention which is a ratio LpZH between the pitch length Lp of the LED array unit group 241 and the height H of the gas space 30; 6 is a graph showing a relationship with color unevenness of a light exit surface of a backlight unit.
  • FIG. 57 is a diagram showing a schematic configuration of a liquid crystal display device according to Example 2 of the third embodiment of the present invention.
  • a backlight unit according to Example 2 of the third embodiment of the present invention which is a ratio LpZH between the pitch length Lp of the LED array unit group 241 and the height H of the gas space 30; 6 is a graph showing a relationship with color unevenness of a light exit surface of a backlight unit.
  • FIG. 59 A backlight unit according to Example 2 of Embodiment 3 of the present invention, which illustrates the relationship between the transmittance (%) and the plate thickness (mm) of the transmissive diffusion plate 240 and the color unevenness.
  • FIG. FIG. 60 is a perspective view of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 61 is a cross-sectional view of a liquid crystal display device according to Example 1 of the fourth embodiment of the present invention.
  • FIG. 62 is a graph showing a temperature variation of the LED modules 201a and 201b according to the knock light unit according to the first embodiment of the fourth embodiment of the present invention, which is caused by the presence or absence of the heat retaining members 203a and 203b. is there.
  • FIG. 63 A backlight unit according to Example 1 of the fourth embodiment of the present invention, wherein the length of the light source fixing members 115a, 115b is such that the temperature difference between the LED modules 201a, 201b is equal to or lower than a predetermined temperature. 6 is a graph showing the relationship between the height Lm and the total thickness.
  • FIG. 64 is a sectional view of a liquid crystal display device according to Example 2 of the fourth embodiment of the present invention.
  • FIG. 65 is a cross-sectional view of a liquid crystal display device according to Example 3 of the fourth embodiment of the present invention.
  • FIG. 66 is a diagram showing a liquid crystal display device according to Example 4 of the fourth embodiment of the present invention, as viewed from the back side of the display screen.
  • FIG. 67 is a diagram showing a state in which a liquid crystal display device as a comparative example of the liquid crystal display device according to Example 4 of the fourth embodiment of the present invention is viewed from the back side of the display screen.
  • FIG. 68 is a graph showing a change in temperature with respect to power supplied to the LED modules 201a and 201b in the backlight unit according to Example 4 of the fourth embodiment of the present invention.
  • FIG. 9 is a diagram for explaining a structure for attaching a protective cover 216 to a U-shaped heat conductive member 212.
  • FIG. 70 is a view showing a schematic structure of a conventional liquid crystal display device.

Abstract

【課題】本発明は、バックライトユニット及びそれを備えた液晶表示装置に関し、良好な表示品質の得られるバックライトユニット及びそれを備えた液晶表示装置を提供することを目的とする。 【解決手段】光源51と、反射シート10と、導光板20と、気体空間30と、拡散板40とを有し、反射シート10、導光板20、気体空間30、及び拡散板40は、この順番に重ねられ、光源51は、異なるスペクトル又は異なる発光量の個別光源を導光板20の入光面23近傍に配列したものであり、導光板の反射シート10に対向する面には、導光板20を伝播する光を反射シート10側に取り出す散乱ドット22が設けられているように構成する。

Description

明 細 書
ノ^クライトユニット及びそれを備えた液晶表示装置
技術分野
[0001] 本発明は、バックライトユニット及びそれを備えた液晶表示装置に関する。
背景技術
[0002] 図 70に、従来の液晶表示装置の概略構造を示す。液晶表示装置は、液晶表示パ ネル 110とバックライトユニットとを有している。ノ ックライトユニットは、導光板 114と、 導光板 114の対向する 2端面に配置された冷陰極管 116とを備えている。冷陰極管 116の周囲には、光を導光板 114に効率良く入射させるためのリフレクタ 117が配置 されている。液晶表示パネル 110とバックライトユニットとの間には、レンズシート 111 、 112や拡散シート 113が配置されている。また、導光板 114の裏面側には反射シー ト 115が配置されている。
[0003] 液晶表示装置に用いるバックライトユニットとしては、図 70に示したサイドライト型と、 液晶表示パネル直下に光源を配置した直下型とが一般的に用いられる。両者の使
V、分けとして、概ね 20型 (対角 20インチ)以下の画面サイズを備えた液晶表示装置 や、特に薄型を必要とする液晶表示装置には、サイドライト型バックライトユニットが用 いられる。いずれの方式についても、光源には一般に冷陰極管が使われている。唯 一、携帯電話機や PDAなどに用いられる画面サイズの小さ 、液晶表示装置では、 光量がさほど必要でないことと小型軽量ィ匕に最適なことから白色 LEDが光源に用い られている。
[0004] 携帯電話や PDAよりも大きな画面サイズを有する液晶表示装置にぉ 、ては冷陰極 管が主流であるものの、近年では環境問題が重要視されており、水銀が用いられて
V、る冷陰極管を用いるのは好ましくな 、状況にある。
[0005] そこで、冷陰極管に代わる光源として水銀レス蛍光管や LED等、種々の光源が開 発されているが、その中でも LEDは次期光源として有望視されている。サイドライト型 ノ ックライトユニットにおいて、 LEDを光源とする場合、白色 LEDを複数配置する構 成と、 R、 G、 Bの各単色 LEDを複数配置する構成とが考えられている。その中でも、 R、 G、 Bの各単色 LEDを組み合わせて用いたバックライトユニットは、白色 LEDでは 実現不可能な広大な色再現性を実現できる、各単色 LEDを順番に点灯させるフィー ルドシーケンシャル型の表示装置のバックライトとして使用できるという点で非常に注 目されている。し力しながら、このバックライトユニットを用いた液晶表示装置は、導光 板の入光面近傍に対応する領域で個々の LEDの色が視認されてしまう t 、う問題を 有している。これは、入光面近傍では、異なる色の LED力もの光が互いに混ざり合え て 、な 、状態で導光板から取り出され、直ちに液晶表示パネルに入射して 、るため である。
[0006] Lumileds Lighting社から、サブ導光板を用いた 2段導光板構造のバ
ックライトが提案されている(非特許文献 1参照)。サブ導光板にて RGBの色を混色し 、均一な白色になった状態で上段のメインの導光板に入射させている。この方式の 問題は、 LEDからサブ導光板への入光効率およびサブ導光板からメイン導光板へ の入光効率が低いため、全体として効率が非常に低いことである。効率が低いことに より投入電力が増えるため、熱対策が必要となり、放熱フィンなどによるサイズの大型 化が発生する。また、使用する LEDが増えるためコストアップが発生する。
[0007] 特許文献 1 :特開 2003— 215349号公報
特許文献 2:特開 2003 - 95390号公報
非特許文献 1 :曰経エレクトロニクス、 2003年 3月 31曰、 No. 844、 pl26〜127 発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、良好な表示品質の得られるバックライトユニット及びそれを備え た液晶表示装置を提供することにある。
課題を解決するための手段
[0009] 上記目的は、離散光源手段と、反射手段と、導光手段と、光混合手段 Aと、光混合 手段 Bとを有し、前記反射手段、前記導光手段、前記光混合手段 A、及び前記光混 合手段 Bは、この順番に重ねられ、前記離散光源手段は、異なるスペクトル又は異な る発光量の個別光源を前記導光手段の入光面近傍に配列したものであり、前記導 光手段の前記反射手段に対向する面又は前記光混合手段 Aに対向する面には、前 記導光手段を伝播する光を前記反射手段側又は前記光混合手段 A側に取り出す光 取出し手段が設けられてあり、前記光混合手段 Aは、異なるスペクトルの色光又は異 なる光量の光を主として面内方向において混合して均一化する手段であり、前記光 混合手段 Bは、異なる角度の光を面内の同一点にお 、て混合して角度的に配光し 直すことにより、照明光色と照明光量を面内で均一にする手段であることを特徴とす るノ ックライトユニットによって達成される。
[0010] また上記目的は、導光板と光源部とを備えたバックライトユニットと、前記導光板の 光射出面側に配置された液晶表示パネルとを有する液晶表示装置であって、前記 ノ ックライトユニットとして、上記本発明のいずれかのバックライトユニットが用いられて Vヽることを特徴とする液晶表示装置によって達成される。
[0011] 上記目的は、導光板と前記導光板の少なくとも 1つの側端面近傍に配置された光 源部とを備えたサイドライト型のバックライトユニットと、前記導光板の光射出面側に配 置された液晶表示パネルとを有する液晶表示装置であって、前記液晶表示パネルの 周辺部にはフレキシブル基板又はプリント基板が配置されており、前記フレキシブル 基板又はプリント基板は、前記光源部を覆わな ヽように配置されて ヽることを特徴と する液晶表示装置によって達成される。
[0012] 上記目的は、導光板と光源部と制御部とを備えたバックライトユニットと、前記導光 板の光射出面側に配置された液晶表示パネルとを有する液晶表示装置であって、
[0013] 前記液晶表示パネルは、前記バックライトユニット側から R光、 G光、 B光がそれぞ れ射出する微小領域を表示画素とは別に有しており、前記微小領域の観察者側に は光量を検出する光量センサがそれぞれ配置されており、前記制御部は、前記光量 に基づいて前記光源部を制御することを特徴とする液晶表示装置によって達成され る。
[0014] 上記目的は、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手 段と、前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前 記光入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前 記光を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝 導する熱伝導手段と、前記光射出面の裏面側に配置され、前記熱伝導手段を伝導 した前記熱を放熱する放熱手段とを有することを特徴とするバックライトユニットによつ て達成される。
[0015] 上記目的は、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手 段と、前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前 記光入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前 記光を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝 導する熱伝導手段と、前記光射出面の裏面側に配置され、前記熱伝導手段を伝導 した前記熱を放熱する放熱手段とを有するバックライトユニットと、前記バックライトュ ニットの光射出面側に配置された液晶表示パネルと、熱放射性の高 ヽ材料で形成さ れ、前記バックライトユニットと熱的に接触して前記離散光源手段で生じた熱を放熱 する、前記バックライトユニットと前記液晶表示パネルとを収納する収納手段とを有す ることを特徴とする液晶表示装置によって達成される。
[0016] 上記目的は、離散光源手段と、反射手段 Aと、導光手段と、光混合手段 Aと、光混 合手段 Bとを有し、前記反射手段 A、前記導光手段、前記光混合手段 A、及び前記 光混合手段 Bは、この順番に重ねられ、前記離散光源手段は、異なるスペクトル又は 異なる発光量の個別光源を前記導光手段の入光面近傍に配列したものであり、前記 導光手段の前記反射手段 Aに対向する面又は前記光混合手段 Aに対向する面には 、前記導光手段を伝播する光を前記反射手段 A側又は前記光混合手段 A側に取り 出す光取出し手段が設けられてあり、前記光混合手段 Aの高さを Hとし、前記離散光 源手段の配列の周期性の最小単位の長さを Lpとすると、 0≤Lp/H≤2. 5の関係 が成り立つことを特徴とするバックライトユニットによって達成される。
[0017] 上記目的は、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手 段と、前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前 記光入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前 記光を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝 導する熱伝導手段と、前記熱伝導手段の外表面の一部を覆って熱的に接触する接 触面を備えて前記熱伝導手段の温度をほぼ均一に保温する保温手段とを有すること を特徴とするノ ックライトユニットによって達成される。 [0018] また上記目的は、対向配置された一対の基板と、前記一対の基板間に封止された 液晶とを備えた液晶表示パネルと、前記液晶表示パネルの背面に配置された上記 本発明のいずれかのノ ックライトユニットとを有することを特徴とする液晶表示装置に よって達成される。
発明の効果
[0019] 本発明によれば、良好な表示品質の得られるノ ックライトユニット及びそれを備えた 液晶表示装置を実現できる。
発明を実施するための最良の形態
[0020] 〔第 1の実施の形態〕
本発明の第 1の実施の形態によるバックライトユニット及びそれを備えた液晶表示 装置について図 1乃至図 37を用いて説明する。図 1は、本実施の形態によるバックラ イトユニットの原理を示す断面図である。図 1に示すように、面状光源であるバックライ トユニットは、例えば長方形状の平面形状を有する面状の導光板 (導光手段) 20を有 している。導光板 20の少なくとも 1つの側端面近傍には、光源 (離散光源手段) 51が 配置されている。光源 51は、例えば異なるスペクトルの発光波長を有する複数の LE D等で構成されている。あるいは光源 51は、異なる発光量の複数の LED等で構成さ れている。導光板 20の光射出面 21の図中上方には、拡散板 (光混合手段 B) 40等 の光学シート類が配置され、さらに上方に液晶表示パネル(図示せず)が配置されて いる。導光板 20の光射出面 21と拡散板 40との間には、所定の厚さを有する気体空 間 (光混合手段 A) 30が設けられている。導光板 20の図中下方には、反射シート (反 射手段) 10が配置されている。すなわち、ノ ックライトユニットは、反射シート 10、導光 板 20、気体空間 30及び拡散板 40とがこの順に重ねられた構成を有している。導光 板 20の反射シート 10側の面には、散乱ドット 22等の光取出し手段が設けられ、光射 出面 21には光取出し手段が設けられて 、な 、。
[0021] 光源 51から射出して導光板 20を導光し、散乱ドット 22により取り出された光は、主 として、導光板 20の光射出面 21の面内方向に近ぐ光射出面 21の法線方向からの 角度 Θの大きい方向に進む光 L1として射出される。このため、光射出面 21とその上 に配置される光学シート類及び液晶表示パネルとの間の距離を離すことにより、光射 出面 21から射出した光は液晶表示パネルに直ちには入射せず、しばらく気体空間 3 0内を進むことになる。これにより、入光面 23近傍で取り出されて他の LEDからの光 と混ざり合えていない状態の光は、気体空間 30内を進む間に他の光と混ざり合って パネルの広範囲にわたって広がるため、色むらや輝度むらが視認されなくなる。すな わち、気体空間 30は、バックライトユニットの面内方向において、異なるスペクトルの 発光波長の光、又は異なる光量の光を混合して均一化する機能を有している。拡散 板 40は、面内の同一点において、異なる角度で進む光を混合して角度的に配向し 直すことにより、面内で照明光色と照明光量を均一にする機能を有している。
[0022] 実際に導光板 20から射出する光は、光射出面 21の法線方向に対してかなり斜め 方向( Θ = 70〜80° )に射出する。そこで、ある射出点で導光板 20から射出した光 を当該射出点力も例えば 50mmほど気体空間 30を面内方向へ進んだ位置で拡散 板 40に入射させようとすると、気体空間 30の厚さ(光射出面 21と拡散板 40との間の 距離)として 9〜18mmが必要となる。 50mmも進む間に光は拡散していくため、他の 光と混色するため、色むらや輝度むらとして視認し難くなる。
[0023] なお、散乱ドット 22は、導光板 20の光射出面 21側 (気体空間 30側)に設けてもよ い。ただし、導光板 20の光射出面 21側に散乱ドット 22を設けると、導光のうち散乱ド ット 22に当たった光は、その入射角度の特性を残したまま概ね入射光の主光線に沿 つて散乱しながら導光板 20からパネルに向力つて射出することになる。すなわち、図 1に示す角度 Θが小さくなり、気体空間 30内を進む距離が短くなる。また、散舌 Lドット 22から拡散板 40までの光路が導光板 20の厚さ分だけ短くなる。このため、入光面 2 3近傍で取り出されて他の LEDからの光と混ざり合えて 、な 、状態の光は、気体空 間 30内で他の光と十分に混ざり合うことができずにパネルに入射し、色むらや輝度 むらが視認される。光が気体空間 30内を進む距離を十分に確保するためには、図 1 に示す構成より気体空間 30の厚さをさらに厚くする必要があるが、気体空間 30の厚 さを厚くするとバックライトユニットが大型化すること、各部材の各所で反射する回数 が増えることで光吸収量も大きくなり、輝度が低くなつてしまう。したがって、色むらや 輝度むらの視認されな 、小型のバックライトユニットを実現するためには、散舌 Lドット 2 2等の光取出し機能を導光板 20の光射出面 21側ではなく反射シート 10側の面に設 けるのが効果的である。
[0024] 以下、本実施の形態によるノ ックライトユニット及びそれを備えた液晶表示装置に ついて、実施例を用いてより具体的に説明する。
[0025] (実施例 1)
図 2は、実施例 1によるノ ックライトユニットの断面構成を示している。図 2に示すよう に、散乱ドット 22が印刷された導光板 20の両端面近傍には、離散光源列を構成する LED50がそれぞれ複数配置されている。導光板 20は、散乱ドット 22の印刷面が反 射シート 10側に向くように配置されている。 LED50には、 LED50からの光が効率良 く導光板 20に入射するようにリフレクタ 54が被せられている。導光板 20の上面側に は、所定の厚さの気体空間 30を介して拡散板 40が配置されている。これらの構成材 は、ハウジング 60によって固定されている。導光板 20の入光面 23近傍で取り出され た光は、気体空間 30を進む間、導光板 20の対向方向へ進行して拡散板 40に入射 する。したがって、個々の LED50から射出した光は、気体空間 30を通過する間に他 の LED50から射出した光と混ざり合って拡散板 40に入射することになる。このため、 ノ ックライトユニットの色むらや輝度むらを抑制できる。
[0026] (実施例 2)
図 3は、実施例 2によるノ ックライトユニットの断面構成を示している。本例では、個 々の LED50の距離を約 9mm、射出面の大きさを約 6mm φとし、導光板 20の厚さを 約 8mmとした。導光板 20と拡散板 40との間の気体空間 30の厚さは約 15mmとした 。これにより、色むらや輝度むらが視認されない程度に改善された。なお、 LED50の サイズや並び方、導光板 20の厚さはこれに限るものではない。また、気体空間 30の 厚さもこれに限るものではなぐ導光板とその上に配置される光学部材の間隔が僅か でもあればよぐ一例として 2〜50mm、特に 10〜20mmとすることで十分な効果が 得られる。
[0027] (実施例 3)
図 4は、実施例 3によるノ ックライトユニットの導光板 20の構成を示している。図 4 (a )は導光板 20の斜視図であり、図 4 (b)は導光板 20の部分断面図である。図 4 (a)、 ( b)に示すように、導光板 20の裏面には、光取出し手段として散乱ドット 22が印刷され ている。ドット印刷に用いる塗料などは、従来のバックライトユニットなどに用いられて V、る材料、例えばアクリル等の塗料バインダに酸ィ匕チタン等の屈折率の異なるビーズ ゃフイラ一を分散した材料で構わない。また、散乱ドット 22の印刷パターンやサイズ につ 、ても従来と同様で構わな 、。
[0028] (実施例 4)
図 5は、実施例 4によるノ ックライトユニットの導光板 20の構成を示している。図 5 (a )は導光板 20の斜視図であり、図 5 (b)は導光板 20の部分拡大図である。図 5 (a)、 ( b)に示すように、導光板 20の裏面には、光取出し手段として微細な突起部 24等の 凹凸形状が設けられている。突起部 24は、導光板 20の製造に用いる金型に突起形 状を盛り込むことにより形成できる。
[0029] (実施例 5)
図 6は、実施例 5によるノ ックライトユニットの導光板 20の構成を示している。図 6 (a )は導光板 20の斜視図であり、図 6 (b)は導光板 20の部分拡大図である。図 6 (a)、 ( b)に示すように、導光板 20の裏面には、光取出し手段としてレンズ形状の微細な突 起部 25が設けられている。突起部 25は、導光板 20の製造に用いる金型にレンズ形 状を盛り込むことにより形成できる。
[0030] (実施例 6)
図 7は、実施例 6によるノ ックライトユニットの導光板 20の構成を示している。図 7に 示すように、散乱ドット 22の配置パターンは、 LEDモジュール 52に近い側で配置密 度が低ぐ LEDモジュール 52から離れるとともに配置密度が徐々に高くなり、導光板 20の中央付近で配置密度が最も高くなるように設計されている。これにより、全面で 均一な輝度分布や、導光板 20中央で最も輝度が高く周辺部で輝度が低くなるような 輝度分布が実現できる。また、散乱ドット 22に代えて突起部 24、 25を用いたいた場 合でも、それらの密度を LEDモジュール 52側で低ぐ導光板 20中央付近で高くする ことで同様の輝度分布が実現できる。
[0031] (実施例 7)
図 8は、実施例 7によるノ ックライトユニットの構成を示している。図 8 (a)はバックライ トユニットの断面図であり、図 8 (b)はバックライトユニットの導光板 20の斜視図である 。気体空間 30の厚さを薄めに設定した場合、色むらが視認される場合がある。本実 施例ではその色むらを抑えるため、導光板 20の入光面 23からの距離が約 10mm以 下の領域には、散乱ドット 22を設けないようにしている。これによつて、導光板 20に入 射した光は、当該領域では導光板 20から射出されることなく導光していく。その間、 他の LEDからの光と混ざり合い、混ざり合った状態で光が導光板 20から射出される ため、色むらが低減される。なお、上記の距離は 10mmに限られず、例えば 2〜50m mの範囲であればよい。上記の距離を約 50mmに設定すれば、気体空間 30の厚さ を数 mm程度にしても、色むらがほぼ問題ない程度に低減される。
[0032] (実施例 8)
図 9は、実施例 8によるバックライトユニットの構成を示している。図 9に示すように、 導光板 20の入光面 23近傍には、 R発光 LED50 (R)、 G発光 LED50 (G)、 B発光 L ED50 (B)が概ね均等にそれぞれ複数配置されている。各色の LED50の数は、各 色の LEDへの投入電力と、目標のノ ックライトユニットの照明色を考慮して決められ る。通常は、 LED50 (G)が最も多い。 LED50を均等な間隔で配置することにより、 個々の LED50の色が視認される入光面 23からの距離が概ねどの LED50において も同等となる。したがって、色むらが視認されないようにするための気体空間 30の厚 さを最小に設定することができる。また、生理学的に輝度むらよりも色むらの方が視認 されやす 、ため、適当な個数の三原色の LEDをより近くに配置して白色に近い光を 作る LED群とし、該 LED群をやや離れて配設することも有効な手法である。
[0033] (実施例 9)
図 10は、実施例 9によるバックライトユニットの構成を示している。図 10 (a)はバック ライトユニットの LED実装基板 56を基板面に平行に見た構成を示し、図 10 (b)は LE D実装基板 56を基板面に垂直に見た構成を示している。図 10 (c)はバックライトュ- ットの断面構成を示している。図 10 (a)、(b)、 (c)に示すように、複数の LED50は L ED実装基板 56の長手方向に沿って直線状に配置されて 、る。複数の LED50は、 導光板 20の入光面の長手方向に沿って配置されることになる。 R、 G、 B各色の LED 50は、それぞれ概ね均等に配置されている。また LED50は、 LED実装基板 56の短 手方向の一方に偏った位置(図中下方の端辺側)に実装されている。図中下方の端 辺側に LED実装基板 56は、 LED50が下側になるようにバックライトユニットの中に 組み込まれる。これによつて、導光板 20と拡散板 40との間に気体空間 30を設けてい るにもかかわらず、ノ ックライトユニットの厚さを薄くすることができる。 LED実装基板 5 6の裏面側は金属板とし、 LED50で発生する熱の放熱効果を高めるようにしている。
[0034] (実施例 10)
図 11は、実施例 10によるノ ックライトユニットの LED実装基板 56の構成を示して ヽ る。図 11 (a)は LED実装基板 56を基板面に平行に見た構成を示し、図 11 (b)は LE D実装基板 56を基板面に垂直に見た構成を示している。図 l l (a)、 (b)に示すよう に、 LED実装基板 56の LED50実装面側(導光板 20側)には、ミラー反射シート 58 が貼付されている。これによつて、 LED実装基板 56の実装面を、実施例 9の導光板 20と拡散板 40との間の気体空間 30の側面の一部として活用できる。また、ミラー反 射シート 58に代えて拡散反射シートを用いてもょ 、。
[0035] (実施例 11)
図 12は、実施例 11によるノ ックライトユニットの断面構成を示している。図 12に示 すように、拡散板 40の代わりに厚めの拡散シート 42を用いてもよい。この場合、中央 近傍では拡散シート 42のたわみが生じる可能性があるため、導光板 20の光射出面 2 1側に透明なピンを配置して拡散シート 42を保持するようにしてもよい。
[0036] (実施例 12)
図 13は、実施例 12によるノ ックライトユニットの断面構成を示している。図 13に示 すように、本実施例では LED実装基板がコンパクトにできており、ノ、ウジング 60が導 光板 20の光射出面 21を囲むような形状を有している。ハウジング 60の内面のうち、 気体空間 30の側面に対応する面には、ミラー反射シート 44が貼付されている。これ により、導光板 20から気体空間 30に射出された光をロスすることなく利用することが できる。なお、ミラー反射シート 44の代わりに拡散反射シートでも構わないし、あるい は、ハウジング 60内面自体が高反射ミラー面であっても構わない。
[0037] (実施例 13) 図 14 (a)は、実施例 13によるノ ックライトユニットの構成を示す分解斜 視図である。図 14 (a)に示すように、気体空間 30を覆う側面のうち LEDモジュール 5 2が実装されて 、な 、面の中心部近傍にカラーセンサ 70が組み込まれて 、る。カラ 一センサ 70はセンサ基板 72に実装されている。センサ基板 72は、カラーセンサ 70と 同サイズに開口されたハウジング 60の開口部にカラーセンサ 70が嵌合するように取 り付けられている。なお、カラーセンサ 70の取付け位置はこれに限られることはない。 また、カラーセンサ 70の数も 1個に限られることはない。カラーセンサ 70からの信号 によって、ホワイトバランス調整のための LED制御部の電流制御が行われるようにな つている。
[0038] 図 14 (b)は、本実施例によるバックライトユニットの他の構成を示す断面図である。
図 14 (b)に示すように、カラーセンサ 70は、導光板 20の裏面側にセンサ面を導光板 20側に向けて配置されている。カラーセンサ 70を入光面 23から十分離すことによつ て、カラー調整 (例えばホワイトバランス調整)を行う際に入光面 23近傍での色むらに よる影響を受けないようにできる。カラーセンサ 70は、例えば入光面 23から 10mm以 上、できれば 50mm以上離れていることが望ましい。
[0039] (実施例 14)
図 15は、実施例 14によるノ ックライトユニットの断面構成を示している。図 15に示 すように、 LED実装基板 56の裏面側には、ハウジング 60を介して放熱フィン (又は 放熱板) 64が設けられている。放熱フィン 64を設けることによって、 LED50で発生す る熱を速やかにバックライトユニットの外へ排出できるため、 LED50の温度上昇によ る発光効率の低下を抑えることができる。放熱フィン 64には、高熱放射シートを貼付 してもよく、高熱放射材を塗布してもよい。
[0040] (実施例 15)
図 16は、実施例 15によるバックライトユニットの断面構成を示している。図 16に示 すように、ハウジング 60の外側表面のうち導光板 20裏面に対応する領域には、高赤 外線放射率シート 66が貼付されて 、るか、又は高赤外線放射率材が塗布されて!、 る。これにより、導光板 20裏面側からの放熱効果も高めることができる。
[0041] (実施例 16)
図 17は、実施例 16によるノ ックライトユニットの断面構成を示している。図 17に示 すように、ハウジング 60の外側表面のほぼ全体には、高赤外線放射率シート 66が貼 付されているか、又は高赤外線熱放射率材が塗布されている。これにより、放熱効果 を高めることができるとともに、放熱フィン 64を設けた構成(図 16参照)と比較してバッ クライトユニットを小型化できる。ハウジング 60を高赤外線熱放射率部材で形成して ちょい。
[0042] (実施例 17)
図 18は、実施例 17によるノ ックライトユニットの断面構成を示している。図 18に示 すように、 LED実装基板 56は L字状の断面形状を有している。 LED実装基板 56は 、ハウジング 60の側面部及び底面部に密着している。これにより、 LED50からの熱 が熱伝導により移動する LED実装基板 56の基板面積が増加し、かつ LED実装基 板 56力も導光板 20裏面側のハウジング 60に熱が直接移動できる。このため、 LED5 0で発生する熱を効率良く外部に排出できる。
[0043] (実施例 18)
図 19は、実施例 18による液晶表示装置の断面構成を示している。図 19に示すよう に、液晶表示装置は、上記実施例 1乃至 17のいずれかによるノ ックライトユニットを 有している。拡散板 40上には、レンズシート 84 (例えば 3M社製の BEF)及び偏光シ ート 86 (例えば 3M社製の DBEF)等の光学シートが配置されている。光学シートは 上記に限らず、必要に応じて種々の組合せで用いられる。光学シート上には液晶表 示パネル 80が配置されている。また、液晶表示パネル 80の額縁領域を覆うカバー 8 2が取り付けられている。
[0044] (実施例 19)
図 20 (a)は、実施例 19による液晶表示装置の構成を示している。図 20 (b)はドライ バが実装された液晶表示パネル 80の構成を示し、図 20 (c)は液晶表示パネル 80を データバスラインに平行に切断した断面構成を示し、図 20 (d)は液晶表示パネル 80 をスキャンバスラインに平行に切断した断面構成を示して ヽる。図 20 (a)〜(d)に示 すように、液晶表示パネル 80には、画素毎に液晶を駆動するためのデータドライバ やスキャンドライバがフレキシブル基板やプリント基板を介して実装されて 、る。スキ ヤンドライバは、 LED50が配置されている辺側に配置されている。液晶表示パネル 8 0をバックライトユニットに組み込む場合、スキャンドライバが実装されたスキャンドライ バフレキ 90を折り畳んで LED50や LED実装基板 56の上部空間に収めている。これ により、 LED実装基板 56の裏面側にスキャンドライバフレキ 90が配置されることがな いため、ノ ックライトユニットの側面からの放熱が容易となる。一方、データドライバは LED50が配置されていない辺側に配置されている。このため、データドライバが実 装されたデータドライバフレキ 92は、導光板 20の側面を覆うように収納されている。 図示して!/、な 、が、 LED実装基板 56裏面側のバックライトユニット側面に放熱フィン を設けることも可能である。なお、本例では LED50がスキャンドライバ側に配置され た構成であるが、データドライバ側に LED50が配置された構成の場合には、データ ドライバフレキ 92を折り畳むようにすればょ 、。
[0045] (実施例 20)
図 21は、実施例 20による液晶表示装置の構成を示す斜視図である。図 21に示す ように、本実施例では実施例 19の構成に加えて、スキャンドライバフレキ 90と制御回 路基板 94とを接続するフレキシブルフラットケーブル 96をスキャンドライバフレキ 90 力もデータドライバ側の側面側に引き出すようにしている。これにより、フレキシブルフ ラットケーブル 96が LED実装基板 56の裏面側を覆うことがなくなるため、バックライト ユニット側面からの放熱が容易となる。
[0046] (実施例 21)
図 22は、実施例 21による液晶表示装置の構成を示している。図 22 (a)は液晶表示 装置の構成を示し、図 22 (b)は液晶表示装置を部分的に拡大して示している。図 22 (c)は液晶表示装置の断面構成を示して!/、る。図 22 (a)〜(c)に示すように、液晶表 示装置は、画素毎に薄膜トランジスタ (TFT)が形成された TFT基板 74と、カラーフィ ルタ (CF)層 77が形成された対向基板 76と、 TFT基板 74及び対向基板 76間に封 止された液晶層 78とを有している。 TFT基板 74及び対向基板 76の外側の表面には 、一対の偏光板 87がクロス-コルに配置されている。また液晶表示装置は、表示領 域 81の外側に枠状の遮光膜 (BM) 79を有して 、る。
[0047] BM79より外側でシール材 88より内側には、 R、 G、 Bの光がそれぞれ射出される 3 つの領域が設けられている。各領域には CF層 77' (R、 G、 B)がそれぞれ形成され ている。 CF層 77' (R、 G、 B)は、表示領域 81内に形成されている CF層 77 (R、 G、 B)とそれぞれ同一の材料で同時に形成されている。また各領域において、対向基板 76側の偏光板 87の外側 (観察者側)には、光量センサ 73がそれぞれ配置されてい る。各領域の液晶層 78には、常に所定の電圧 (例えば表示領域 81内での白表示と 同じ電圧)が印加されている。これにより、表示領域 81内での白表示とほぼ同じ状態 での光量を R、 G、 Bそれぞれ測定することができる。各光量センサ 73で測定された 光量の信号は、バックライトユニットの有する制御部にそれぞれ出力される。制御部 は、 R、 G、 Bの光量が所定の光量バランスになるように LED50の駆動条件を制御す る。これによつて、表示領域 81内のホワイトバランスを適切に調整することができる。
[0048] 図 23は、本実施例による液晶表示装置の他の構成を示している。図 23 (a)は液晶 表示装置を部分的に拡大して示し、図 23 (b)は液晶表示装置の断面構成を示して いる。図 23 (a)、(b)に示すように、光量センサ 73が配置された領域には偏光板 87 が設けられていない。各領域の液晶層 78には、常に所定の電圧 (例えば表示領域 8 1内での白表示と同じ電圧)が印加されている。これにより、 R、 G、 Bそれぞれの光量 を測定することができる。測定した R、 G、 Bの光量が所定の光量バランスになるように LED50の駆動条件を制御することよって、表示領域 81内のホワイトバランスを調整 することができる。図 23に示す構成では、偏光板 87の波長依存性の影響がない状 態でホワイトバランスを調整することになるが、予めその影響を考慮した設定を行えば 、図 22に示す構成と概ね同等の精度で調整できる。
[0049] (実施例 22)
図 24 (a)は、実施例 22による液晶表示装置の構成を示している。図 24 (b)は液晶 表示装置をデータバスラインに平行に切断した断面構成を示し、図 24 (c)は液晶表 示装置をスキャンバスラインに平行に切断した断面構成を示して ヽる。図 24 (a)〜(c )に示すように、 LEDモジュール (光源部) 52は、導光板 20の 4つの側端面近傍にそ れぞれ配置されている。 LEDモジュール 52の各 LED50は、導光板 20の側端面の 長辺に沿う方向に配列している。本実施例のバックライトユニットは、サイドライト型と しては最も多くの LED50を実装できるため、最も輝度の高いバックライトを実現でき る。
[0050] 液晶表示装置は、データドライバ及びスキャンドライバを有して 、る。データドライバ 及びスキャンドライバは、それぞれ LED50の実装上部に位置している。このため、デ ータドライバフレキ 92及びスキャンドライバフレキ 90は、 LEDモジュール 52上部近傍 で折り畳まれて収納されている。これにより、 LED50の冷却を妨げることなぐまた LE D50からドライバ側への熱の流れを避けることができる。したがって、液晶表示装置を 小型化しつつ、 LED50及びドライバ ICの長寿命化が可能である。
[0051] 図 25 (a)は、本実施例による液晶表示装置の他の構成を示している。図 25 (b)は 液晶表示装置をデータバスラインに平行に切断した断面構成を示し、図 25 (c)は液 晶表示装置をスキャンバスラインに平行に切断した断面構成を示している。図 25 (a) 〜(c)に示すように、データドライバ及びスキャンドライバは液晶表示パネル 80の隣 接する 2端辺に配置され、 LEDは当該 2端辺とは別の 2端辺に対応する導光板 20の 2つの側端面近傍に配置されている。これにより、データドライバフレキ 92及びスキヤ ンドライバフレキ 90はノ ックライトユニットの側面に沿って配置することができるため、 液晶表示装置を小型化できる。また、 LEDモジュール 52がデータドライバフレキ 92 及びスキャンドライバフレキ 90により覆われることもないため、 LED50の冷却を妨げ られることはない。また、 LED実装部を上部に配置した LCD形態にすることで、 LED の放熱効果が高まる。
[0052] (実施例 23)
図 26は、実施例 23によるノ ックライトユニット (及び光学シート)の断面構成を示し ている。図 26に示すように、ノ ックライトユニットは 2枚の導光板 20a、 20bを有してい る。 2枚の導光板 20a、 20bは、入光面 23に対向する対向面 27同士を突き合わせて 配置されている。導光板 20a、 20bは、入光面 23側の厚さが厚ぐ対向面 27側の厚 さが薄いくさび形状を有している。例えば LED50の射出面は約 6πιπι φであり、導光 板 20a、 20bの人光面 23佃 Jの厚さ ίま 6〜8mmである。これにより、 LED50力らの射 出光が効率良く入射されるようになっている。対向面 27側の厚さは lmm程度である 。導光板 20a、 20bに入射した光は、導光していく間に導光板 20a、 20bの厚さが薄く なっていくため、対向面 27から射出して導光板 20a、 20bから抜けていく光量は極め て少なくなる。対向面 27から射出するこの僅かな光は他方の導光板 20b、 20aに入 射することになり、僅かではあるがノ ックライトの輝度に寄与する。これまでに説明した 実施例(例えば実施例 1)の構造では、対向面 27に達した光は、対向面 27側に配置 される他方の LED50に入射することになる。このため、この光のうち再度導光板 20 に戻される割合は少なぐこれが光量ロスの原因となっていた。本実施例の構成では 、対向面 27を抜ける光量を激減させているため、光の利用効率を向上できる。
[0053] 図 27は、本実施例によるバックライトユニットの他の構成を示している。図 27に示す ように、導光板 20a、 20bが互いに対向している部分に両面反射シート(又は両面拡 散反射シート) 26が挟まれている。導光板 20a、 20bが直接押し当てられて接触して いる図 26に示す構成と比較すると、両面反射シート 26が緩衝材として機能するため 、振動や落下によってクラックや割れ等が発生するのを防止できる。また、両面反射 シート 26で反射して戻った光は再度導光板 20a、 20b内を導光する間に散乱ドット 2 2で取り出されるため、光の利用効率を向上できる。
[0054] 図 28は、本実施例によるバックライトユニットのさらに他の構成を示している。図 28 に示すように、導光板 20a、 20bは、それぞれの光射出面 21が同一平面となるように 配置されている。これにより、導光板 20a、 20bの光射出面 21と拡散板 40との間の距 離 (気体空間 30の厚さ)が一定となるため、必要最小限の距離 (厚さ)に設定できる。 この距離を長くするとバックライト輝度が低下するため、本構成では図 26及び図 27に 示す構成に比べて輝度低下を抑える効果がある。
[0055] 図 29は、本実施例によるバックライトユニットのまたさらに他の構成を示している。図 29に示すように、 2枚の導光板 20a、 20bは、くさび形状ではなく平行平板形状を有 している。 2枚の導光板 20a、 20bとの間には、両面拡散反射シート 28が挟まれてい る。これにより、対向面 27から戻る光は拡散されるため、他の LED50の光と混ざり易 くなる。したがって、バックライトユニットの色均一性を向上できる。
[0056] (実施例 24)
図 30は、実施例 24によるノ ックライトユニット (及び光学シート)の断面構成を示し ている。図 30に示すように、ノ ックライトユニットは 2枚の導光板 20a、 20bを有してい る。 2枚の導光板 20a、 20bは、入光面 23に対向する対向面 27間に所定の間隙を設 けて配置されている。導光板 20a、 20bは、入光面 23側の厚さが厚ぐ対向面 27側 の厚さが薄いくさび形状を有している。導光板 20a、 20bは、拡散板 40の光入射面 に対して光射出面 21が所定の角度で傾斜し、光射出面 21に対向する面がほぼ平 行に配置されている。導光板 20a、 20bの光射出面 21は拡散板 40との間に所定の 距離 dを介して配置されている。また、拡散板 40の両端部には、ミラー反射板 46が配 置されている。これにより、導光板 20a、 20bから気体空間 30に射出された光をロス することなく利用することができる。
[0057] 図 31 (a)は、導光板 20a近傍を拡大して示している。図中に αで示す領域は、光 射出面 21が所定の角度 (テーパ角 θ 1)に傾斜している場合の導光範囲を示してい る。図中に j8で示す領域は、光射出面 21が傾斜していない場合 (テーパ角 Θ 1 =0 。 )の導光範囲を示している。光射出面 21はテーパ角 θ 1だけ傾斜しているので、導 光板 20aに入射した光の一部は光射出面 21から射出される。例えば、光射出面 21 力も射出角 Θ 3で射出した光は直接拡散板 40に入射する。射出角 Θ 3以外の角度 で射出した光は反射板 10 (図 31では不図示)その他の部材で反射しながらいずれ は拡散板 40に入射する。射出角 Θ 3で射出した光は気体空間 30を広がりながら進 んでいき、拡散板 40との距離 dにより、広がりの程度が決められる。
[0058] LED50は R、 G、 Bの各単色 LEDが複数配置されて構成されて!、る。光射出面 21 と拡散板 40との距離 dは、 R光、 G光及び B光が拡散板 40と導光板 20aとの間の気 体空間 30を進んで 、く間に混ざり合 、、所定の色むらの範囲内に収まるように決め られる。図 31 (b)に示すように、例えば、テーパ角 0 1 = 5° の場合、光射出面 21か ら光が射出した位置と、拡散板 40から光 48が射出した位置との距離 Aを 46mm程度 にするためには、距離 dを約 2mmにするとよい。また、テーパ角 0 1 = 10° の場合に 、距離 Aを 46mm程度にするためには、距離 dを約 4mmにするとよい。
[0059] また、導光板 20aの中を導光して対向面 27から射出する光については、導光板 20 aの入光面 23から対向面 27までの長さ Lを例えば 50mm以上に長くすれば、導光板 20a内で R光、 G光及び B光が十分に混ざり合えるため、対向面 27から射出する光 は良好な白色になっている。対向面 27から射出した光は反射板 10やその他周辺部 材で反射しながら拡散板 40に入射する。
[0060] 図 32は、本実施例によるバックライトユニットの他の構成を示している。図 32に示す ように、反射板 10は、面内中央部近傍で拡散板 40との距離が最小となるように凸状 に形成されている。こうすると、ノ ックライトユニットの輝度は、画面中央部で最大とな り、周辺部に近づくに従って低下する分布となる。このように、反射板 10の形状を変 えることにより、拡散板 40からの射出光量の均一性を制御することができる。なお、本 実施例によるノ ックライトユニットは拡散板 40の光射出面側に配置されたレンズシー ト 84及び偏光シート 86を有して 、なくてもょ ヽ。
[0061] (実施例 25)
図 33は、実施例 25によるノ ックライトユニット (及び光学シート)の断面構成を示し ている。図 33に示すように、ノ ックライトユニットは導光板 20の 1つの側面近傍に LE D50を有している。導光板 20は入光面 23側の厚さが厚ぐ対向面 27側の厚さが薄 V、くさび形状を有して!/、る。導光板 20は反射板 10とほぼ同じ長さに形成されて!、る。 光射出面 21のテーパ角及び拡散板 40との距離 dは、上記実施例 24と同様の考えに 基づいて設定されている。これにより、本実施例によるノ ックライトユニットは、上記実 施例 24によるバックライトユニットと同様の効果が得られる。
[0062] 図 34は、本実施例によるバックライトユニットの他の構成を示している。図 34に示す ように、導光板 20は、散乱ドット 22の印刷面が反射板 10側に向くように配置されてい る。導光板 20は散乱ドット 22に代え、導光条件を変える部材として、凹凸形状の微 細な突起部(図 5参照)を有していてもよい。光射出面 21から射出して拡散板 40に入 射する光には、導光条件に従って射出される光の他に、導光板 20を導光して散乱ド ット 22に当たることにより導光条件力も外れた光が含まれる。これにより導光板 20から の光取り出し効率の向上を図ることができる。さらに、散乱ドット 22を適宜設計するこ とにより、拡散板 40から射出される光の面内分布を制御することが容易となる。
[0063] ところで、入光面 23から所定の距離 b (例えば、 10〜50mm)の領域では、入光面 23から入射した R光、 G光及び B光は十分に混ざり合っていない。このため、当該領 域に散乱ドット 22又は微細な突起部が形成されていると、当該領域力 光が取り出さ れてしまい、色むらとして視認されてしまう。そこで、導光条件を変える部材として散 乱ドット 22や微細な突起部を使用する場合には、入光面 23から所定の距離 bの領域 には散乱ドット 22や微細な突起部を設けないようにする。これにより、色むらをほぼ問 題な 、程度に低減することができる。
[0064] (実施例 26) 図 35は、従来のバックライトユニットの構成を示している。図 35に示すように、導光 板 20の入光面 23近傍には、図中左側から、 G発光 LED50 (G)、 R発光 LED50 (R )、 G発光 LED50 (G)及び B発光 LED50 (B)がこの順に複数配置されて 、る。 LED 50がこの順に並んで配置されて 、ると、入光面 23の両端部近傍に色むら 53が発生 し易くなる。当該色むら 53を低減するためには、入光面 23の両端部近傍では、 RGB の各 LED50の光ができる限り隣接しているのが望ましいことを発明者らは見出した。
[0065] 図 36は、実施例 26によるバックライトユニットの構成を示している。図 36 (a)は、ノ ックライトユニット (及び光学シート)の断面構成を示して 、る。図 36 (b)は、導光板 20 を法線方向に見たバックライトユニットの構成を示している。図 36 (b)に示すように、 L EDモジュール 52は導光板 20の長手方向の両端部に配置されている。 RGBの各 L ED50は、入光面の一端部力 他端部まで長手方向に沿って(図中左から右に向か つて)、 G、 R及び Bがこの順に隣接して並び、さらに当該 Bに隣接して、 G、 R、 G及び Bこの順に隣接して配置された LED発光群 50aが複数並んで配置されて 、る。さら に、図において最右端に配置された LED発光群 50aに隣接して R及び Gがこの順に 隣接して配置されている。
[0066] このように RGBの各 LED50を配置すると、入光面の両端部近傍にぉ 、て、 RGB の各光量が不足することなく存在するため、ホワイトバランスのずれを抑えることがで きる。これにより、入光面の両端部近傍の色むらをほぼ問題ない程度に低減すること ができる。また、 LED発光群 50aの RGB配列では収まらない LED50がある場合に は、隣接する LED発光群 50a間に任意に LED50を挿入してもよい。例えば、 G発光 LED50が 1個収まらない場合には、 LED発光群 50a、 G発光 LED50及び LED発 光群 50aの順に配置してもよい。つまり、この場合の LED50の配列は、 GRGB、 G、 GRGB、 GRGBとなる。
[0067] 図 37は、本実施例によるバックライトユニットの他の構成を示している。 LED発光群 50aの配列パターンは使用する LEDの発光量に依存するため、適宜変更してもよい 。図 37に示すように、例えば、 LED発光群 50aは、図中左から右に向力つて R、 G、 R及び Bの順に隣接して配置されて 、てもよ 、。
[0068] 以上説明したように、本実施の形態によれば、ノ ックライトユニットを大型化すること なく入光面 23近傍での色むらや輝度むらを解消することができる。
[0069] 〔第 2の実施の形態〕
本発明による第 2の実施の形態は、ノ ックライトユニット及びそれを備えた液晶表示 装置に関する。
[0070] 巿場に流通して 、るバックライトユニットの大部分は光源に冷陰極管が用いられて いるが、 LEDを採用したバックライトユニットも開発されている。 LEDを光源としたバッ クライトユニットを用いた液晶表示装置は PDAや携帯電話機器等の小型電子装置に 搭載されている。ところで、近年、自己冷却機能を有する高輝度のパワー LEDが開 発されている。当該パワー LEDを光源に使用したバックライトユニットを搭載したモニ タ用途向けの大画面液晶表示装置が展示会等で発表されている。
[0071] 冷陰極管を使用したバックライトユニット及びそれを備えた液晶表示装置は色再現性 に限界がある。また、近年では、環境問題に対する意識が高まっており、水銀を使用 した冷陰極管は好ましくない状況にある。さらに、冷陰極管は衝撃に弱く割れる可能 性もある。またさらに、冷陰極管を駆動するためには、数千ボルトもの高電圧が必要 であり危険でもある。近年では、冷陰極管に代わる、ノ ックライトユニットの光源として 、 LEDが注目されている。 LEDは割れ難く、低電圧で駆動でき、さら〖こ、水銀を使用 していないので環境にやさしい部品である。このように、 LEDは冷陰極管の欠点を補 うことができる。 PDAや携帯電話機器等の小型電子装置では、 LEDを光源としたバ ックライトユニットを有する液晶表示装置が採用されて製品化されている。
[0072] LEDの発光量は流れる電流量にほぼ比例する。し力し、 LEDはチップ型部品であ り大きな電流を流し難い。このため、大画面で高輝度を必要するモニタ装置用途及 びノートパソコン用途の液晶表示装置のバックライトユニットの光源としては不向きで ある。ところが、近年、熱抵抗の小さい高輝度のパワー LEDが開発されており、これ を光源に使用したバックライトユニットを搭載した大画面のモニタ用液晶表示装置も 開発されつつある。しかし、熱抵抗の小さい LEDであっても、基板に伝えた熱を排出 するシステムあるいは構造が必要不可欠な状況にある。特に小型化、狭額縁化が要 求されるモニタ装置用及びノートパソコン用のバックライトユニットの光源の冷却は困 難である。例えば、ファンによる強制空冷では、ノ ックライトユニットが大型化してしま う。さらに、ファンの故障又はフィルタの目詰まり等により、交換や清掃に多大な労力 を必要とする。一方、液冷の場合には、冷媒が必要となり、液漏れが発生する可能性 を有している。水以外の冷媒が採用されていると、液漏れは環境問題に発展する可 能性を有している。
[0073] 本実施の形態の目的は、光源で発生した熱を効率よく放熱することができ、狭額縁 で輝度むらの少ない長寿命なバックライトユニット及びそれを備えた液晶表示装置を 提供することにある。
[0074] 上記目的は、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手 段と、前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前 記光入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前 記光を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝 導する熱伝導手段と、前記光射出面の裏面側に配置され、前記熱伝導手段を伝導 した前記熱を放熱する放熱手段とを有することを特徴とするバックライトユニットによつ て達成される。
[0075] 本実施の形態によれば、光源で発生した熱を効率よく放熱することができ、狭額縁 で輝度むらの少ない長寿命なバックライトユニット及びそれを備えた液晶表示装置が 実現できる。
[0076] 本発明の第 2の実施の形態によるバックライトユニット及びそれを備えた液晶表示 装置について図 38乃至図 51を用いて説明する。本実施の形態によるバックライトュ ニットは、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手段と、 前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前記光 入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前記光 を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝導す る熱伝導手段と、前記光射出面の裏面側に配置され、前記熱伝導手段を伝導した 前記熱を放熱する放熱手段とを有して!/ヽる。
[0077] 本実施の形態によるバックライトユニットは、離散光源手段と放熱手段とを熱伝導率 の高い材料で形成された熱伝導手段で熱的に接触させることにより、離散光源手段 で発生した熱を放熱手段に伝導することができる。また、導光手段の光射出面にほ ぼ直交する光入射面に離散光源手段を配置し、当該光射出面の裏面側に放熱手段 を配置することにより、ノ ックライトユニットの狭額縁ィ匕を図ることができる。
[0078] また、本実施の形態による液晶表示装置は、当該バックライトユニットと、ノ ックライト ユニットの光射出面側に配置された液晶表示パネルと、熱放射性の高!ヽ材料で形成 され、前記バックライトユニットと熱的に接触し、前記バックライトユニットと前記液晶表 示パネルとを収納する収納手段とを有して 、る。当該収納手段はバックライトユニット と熱的に接触しているため、離散光源手段で発生した熱は収納手段に伝導されて空 気中に放射される。このように、ノ ックライトユニットの放熱手段の他に、収納手段にも 放熱機能をもたせることにより、離散光源手段で発生した熱をより効率よく放熱するこ とがでさる。
以下、実施例を用いてより具体的に説明する。
[0079] (実施例 1)
図 38は、光源に LEDを用いたバックライトユニットを搭載した従来の液晶表示装置 の構成を示す分解斜視図である。当該液晶表示装置は PDAや携帯電話機器等の 表示装置として用いられている。図 38 (a)は、液晶表示装置の構成を示す分解斜視 図である。図 38 (b)は、 LEDモジュール 159の構成を示す分解斜視図である。図 38 (b)に示すように、 LEDモジュール 159は、 FPC159bと、 FPC159bに実装されたチ ップ型(表面実装型)の LED159aとを有している。 LED159aから射出した光は、図 38 (a)に示す導光板 156の側面から入射する。導光板 156に入射した光は反射シ ート 157に対向する導光板 156の面に形成された凹凸パターン (不図示)及び反射 シート 157により、拡散シート 154に向力つて射出される。導光板 156から射出した射 出光は拡散シート 154に入射される。拡散シート 154は、面内の同一点において、異 なる角度で進む光を混合して角度的に配向し直すことにより、面内で照明光色と照 明光量を均一にする機能を有して!/、る。
[0080] 拡散シート 154により均一化された光は、レンズシート(不図示)や偏光シート 153 により輝度が向上されて液晶表示パネル 152の方向へ射出される。液晶表示パネル 152には、不図示の駆動回路から FPC 163を通して画像信号及び制御信号が入力 される。液晶表示パネル 152は、画像信号及び制御信号に基づいて光の透過率が 制御され、表示画面に所定の画像が表示される。
[0081] 液晶表示パネル 152、光学シート類 (偏光シート 153及び拡散シート 154)、導光板 156及び反射シート 157は、プラスチックフレーム 155及びフロントカバー 151に収 納されて保持されている。また、フロントカバー 151上には、情報入力用のタツチパネ ル 160が配置されている。タツチパネル 160には FPC161が接続されている。
[0082] チップ型の LED159aは投入できる電力が少なぐ大きな光量を得ることができない ため、 PDAや携帯電話機器等の小型電子機器用のバックライトユニットにしか採用さ れていない。光源に LED159aを用いたバックライトユニットは、大画面で高輝度を必 要するモニタ装置用途又はノートパソコン用途には不向きである。しかし、近年、自己 冷却機能を有する高輝度のパワー LEDが開発されている。当該パワー LEDを光源 に使用したバックライトユニットが搭載された大画面のモニタ装置用の液晶表示装置 も開発されている。
[0083] 図 39は、本実施例による液晶表示装置 130の構成を示す分解斜視図である。図 3 9 (a)は、液晶表示装置 130の前面を示す斜視図である。図 39 (b)は、液晶表示装 置 130の背面を示す斜視図である。図 39 (c)は、液晶表示装置 130の分解斜視図 である。図 39 (d)は、図 39 (c)の図中に示す仮想円を拡大して示している。図 40は、 液晶表示装置 130の要部断面を示している。図 41は、複数の LED (離散光源手段) 113bで生じた熱を放熱する放熱部 109bの構成を示す分解斜視図である。
[0084] 図 39 (c)及び図 40に示すように、複数の LED113bから射出した光は導光板 (導 光手段) 106の側面(一端面)に備えられた光入射面 106aから入射されて取り込ま れる。導光板 106に入射した光は導光領域 106bを導光し、反射シート 107に対向す る導光板 106の面に形成された凹凸パターン (不図示)及び反射シート 107により、 光射出面 106cから拡散シート 104方向へ射出される。導光板 106からの射出光は 導光板 106と、拡散シート 104との間の気体空間 30を進む間に混色する。当該射出 光は拡散シート 104に入射して均一化され、レンズシート(不図示)や偏光シート 103 により輝度が向上されて、液晶表示パネル 102に向力つて射出される。液晶表示パ ネル 102には、液晶駆動基板 110 (図 39 (b)参照)から出力された画像信号及び制 御信号が入力される。液晶表示パネル 102は、画像信号及び制御信号に基づいて 光の透過率が制御され、表示画面に所定の画像が表示される。
[0085] 反射シート 107と液晶駆動回路 110との間には、反射シート 107や導光板 106等を 保護する背面板 (保護手段) 108が配置されている。液晶表示パネル 102、偏光シー ト 103、拡散シート 104、導光板 106及び反射シート 107は、背面板 108、プラスチッ クフレーム 105及びフロントカバー 101により収納されて保持されて!、る。
[0086] 図 39 (d)及び図 41に示すように、複数の LED113bは熱伝導率の大きい金属等を 薄板直方体状に形成した光源固定部材 115bに実装されて固定されている。光源固 定部材 115b表面には絶縁層が形成され、当該絶縁層上には所定の配線がパター ユングされている。光源固定部材 115bは、熱伝導シート 119bを介して、 LED113b で発生した熱をヒートシンク (放熱手段) 11 lbに伝導する熱伝導手段に熱的に接触 している。図 40に示すように、熱伝導手段は、導光板 106に沿って曲げられて、断面 が L字形状に形成された L型熱伝導部材 117bを有して ヽる。 L型熱伝導部材 117b は熱伝導率の大きい金属材料、例えばアルミニウム等で形成されている。複数の LE Dl l 3bは光源固定部材 115b及び熱伝導シート 119bを介して L型熱伝導部材 117 bに熱的に接触している。
[0087] また、 L型熱伝導部材 117bは熱伝導シート 118bを介して、 LED113bで発生した 熱をバックライトユニットの外部に放熱するヒートシンク 11 lbに熱的に接触して固着さ れている。このように、複数の LED113bは L型熱伝導部材 117bを介してヒートシン ク 11 lbに熱的に接触している。このため、バックライトユニットは LED113bで発生し た熱を外部に十分に放熱することができる。放熱部 109bに対向配置された放熱部 1 09a (図 39 (c)参照)は、放熱部 109bと同様の構成を有して 、る。
[0088] 図 42は、バックライトユニットの放熱部 109a近傍の断面を示している。図 42 (a)は、 L型熱伝導部材 117aを用いた状態を示して 、る。図 42 (b)は L型熱伝導部材 117a を用いて!/ヽな 、状態を示して!/、る。 LED113aで発生した大部分の熱は LED 115a の発光部の反対側の方向に放出される。このため、効率よく熱を放出するためには、 ヒートシンク 11 laを LED115aの発光部の反対側に配置する必要がある。図 42 (b) に示すように、従来のバックライトユニットでは、導光板 106の光入射面 106aの法線 方向(図中上方)にヒートシンク 11 laを配置しなければならないので、液晶表示装置 の額縁の長さ D2が相対的に長くなつてしまう。
[0089] 一方、本実施例によるバックライトユニットでは、 L型熱伝導部材 117aを用いること により、導光板 106の光入射面 106aの法線に直交する方向(図中右方向)にヒート シンク 11 laを配置することができる。これにより、液晶表示装置の額縁の長さ D1 (D1 く D2)を相対的に短くすることができる。また、 L型熱伝導部材 117aは LED115aの 発光部の反対側に配置されて ヽるので、ヒートシンク 11 laに効率よく熱を伝導するこ とがでさる。
[0090] 以上説明したように、本実施例によるバックライトユニットは、複数の LED113a及び ヒートシンク 11 laのそれぞれに熱的に接触する L型熱伝導部材 117aを備えた熱伝 導手段を有している。また、本実施例によるノ ックライトユニットは、複数の LED113b 及びヒートシンク 11 lbのそれぞれに熱的に接触する L型熱伝導部材 117bを備えた 熱伝導手段を有している。これにより、ノ ックライトユニットは、複数の LED113a、 11 3bで発生した熱をヒートシンク 11 la、 11 lbに十分に伝導することができ、効率よく放 熱することができる。さらに、ノ ックライトユニットは、導光板 106の光入射面 106aに 直交する方向(導光板 106の光射出面 106cの裏面側)にヒートシンク 11 la、 111b を配置することができるので、液晶表示装置の狭額縁ィ匕を図ることができる。
[0091] (実施例 2)
図 43は、実施例 2によるノ ックライトユニットの構成を示す要部断面図である。図 43 は、図 42 (a)の図中に示す仮想円で囲まれた部分に相当する部分を示している。図 43に示すように、本実施例によるバックライトユニットは、 L型熱伝導部材 117aと背面 板 108とを熱的に接触する熱連結部材 114aを有している。熱連結部材 114aは、 L 型熱伝導部材 117a及び背面板 108のそれぞれに固着されて ヽる。熱連結部材 114 aを用いて L型熱伝導部材 117aを背面板 108に熱的に接触させることにより、ノ ック ライトユニットは、複数の LED113aで発生した熱をヒートシンク 11 laだけでなく背面 板 108にも伝導させて放熱することができる。また、図示は省略するが、放熱部 109b 側にも熱連結部材が配置され、 L型熱伝導部材 117bは背面板 108に熱的に接触し ている。このように、複数の LED113a、 113bで発生した熱の一部を背面板 108で放 熱することができるので、ヒートシンク l l la、 11 lbの大きさを小さくすることができる。 これにより、バックライトユニット及び液晶表示装置 130の小型化を図ることができる。
[0092] 図 44は、本実施例によるバックライトユニットの他の構成を示している。図 44に示す ように、背面板 108は一部が突出して形成されて、 L型熱伝導部材 117aに固着され ている。このように、 L型熱伝導部材 117aは背面板 108に熱的に接触している。従つ て、本実施例によるバックライトユニットは、図 43に示すバックライトユニットと同様の 効果が得られる。 L型熱伝導部材 117a、 117bを一部突出させて背面板 108と熱的 な接触を確保しても、本実施例によるバックライトユニットと同様の効果が得られる。
[0093] (実施例 3)
図 45は、実施例 3によるノ ックライトユニットの構成を示す要部断面図である。図 45 に示すように、本実施例によるノ ックライトユニットの熱伝導手段は、導光板 106に沿 つて曲げられて、断面が L字形状に形成された光源固定部材 115aを有している。光 源固定部材 115aは、ヒートシンク 11 laに固着されて熱的に接触している。また、光 源固定部材 115aは、熱連結部材 114aに固着されて、背面板 108と熱的に接触して いる。図示は省略するが、放熱部 109b側の光源固定部材 115bも断面 L字状に形 成され、ヒートシンク 11 lb及び背面板 108に熱的に接触されている。
[0094] 本実施例によるノ ックライトユニットは、光源固定部材 115a、 115bを L字形状に形 成することにより、 L型熱伝導部材 117a、 117bを用いずに、 LED113a、 113bをヒ ートシンク l l la、 11 lb及び背面板 108に熱的に接触させることができる。これにより 、本実施例によるノ ックライトユニットは、上記実施例 1及び実施例 2によるバックライト ユニットと同様の効果が得られる。なお、ノ ックライトユニットが L型熱伝導部材 117a 、 117bを有していても、本実施例によるノ ックライトユニットと同様の効果が得られる
[0095] (実施例 4)
図 46は、実施例 4によるバックライトユニットの LED115aを光源固定部材 115aに 固定した状態を示している。図中下側の図は、表面実装型の LED115aを光源固定 部材 115aに固定した状態を示して 、る。 LED115aは光源固定部材 115aにパター ユングされた配線と接続するためのリード端子 140'を有している。 LED115aはリー ド端子 140'により光源固定部材 115aに固定されている。リード端子 140'は、 LED 115aの外壁に突出して形成されている。このため、表面実装型の LED115aは実装 ピッチ L1が相対的に大きくなる。
[0096] これに対し、図中上側の図に示すように、 DIP型の LED115aはリード端子 140が 発光部の反対側で、且つ外壁より内側に形成されている。 DIP型の LED115aは光 源固定部材 115aに形成されたスルーホールにリード端子 140を挿入して固定されて V、る。 DIP型の LED115aの実装ピッチ L2は表面実装型の LED115aの実装ピッチ L1より小さくすることができる。従って、 DIP型の LED115aは、表面実装型の LED1 15aより、限られた領域に多く実装できる。これにより、輝度の高いバックライトユニット 及び液晶表示装置 130を得ることができる。
[0097] (実施例 5)
図 47は、反射板 172を有する従来のバックライトユニットの光源固定部材 170近傍 を示す斜視図である。図 47 (a)は、光源固定部材 170に反射板 172を固定した状態 の斜視図である。図 47 (b)は、光源固定部材 170から反射板 172を取り外した状態 の分解斜視図ある。反射板 172は LED159から射出した光を導光板 156に効率よく 導くために設けられて 、る。反射板 172は導光板 156の光入射面の法線方向に対し て LED159から斜めに射出された光を反射させて導光板 156に導くことができる。こ れにより、 LED159の射出光を効率よく導光板 156に導くことができる。しかし、従来 の反射板 172は LED159の冷却につ!、ては考慮されて 、な!/、。
[0098] 図 48は、実施例 5によるノ ックライトユニットの光源固定部材 115近傍を示す斜視 図である。図 48 (a)は、光源固定部材 115に熱伝導反射板 112を固定した状態の斜 視図である。図 48 (b)は、光源固定部材 115から熱伝導反射板 112を取り外した状 態の分解斜視図である。図 48 (a)及び図 48 (b)に示すように、熱伝導反射板 112は
Figure imgf000029_0001
ヽる。熱伝導反射板 112は L ED113の外径より若干直径が長く形成されて、 LED113が挿入できる、複数の挿入 孔部 116を有して 、る。挿入孔部 116は熱伝導反射板 112を貫通して形成されて ヽ る。揷入孔部 116は光源固定部材 115に固定された複数の LED 113のピッチとほぼ 同じピッチに形成されて!、る。挿入孔部 116の内壁面には光反射処理が施されて!/ヽ る。 [0099] 挿入孔部 116は熱伝導反射板 112を貫通している。このため、図 48(a)に示すよう に、熱伝導反射板 112を光源固定部材 115に固定すると、 LED113の光射出側は 開口されている。また、 LED115の光射出側以外の周囲は光反射処理が施された 挿入孔部 116で覆われている。従って、熱伝導反射板 112は導光板 106 (図 48では 不図示)の光入射面の法線方向に対して LED113から斜めに射出された光を反射さ せて導光板 106に導くことができる。これにより、 LED113から射出した光を導光板 1 06に効率よく導くことができる。また、熱伝導反射板 112は熱伝導率の高い材料で形 成されているので、 LED113で発生した熱を光源固定部材 115を介して熱伝導手段 (L型熱伝導部材 117a、 117b又は光源固定部材 115a、 115b)及びヒートシンク 11 la、 11 lb (図 48ではいずれも不図示)に効率よく伝導できる。これにより、本実施例 によるバックライトユニットは LED113で生じた熱を空気中へ放熱することができる。
[0100] (実施例 6)
図 49は、実施例 6によるモニタ装置用途向けの液晶表示装置 (モニタ用液晶表示 装置)の構成を示す分解斜視図である。図 49に示すように、モニタ用液晶表示装置 は、熱放射性の高い材料で形成され、液晶表示装置 130に搭載されたバックライトュ ニットと熱的に接触し、液晶表示装置 130を収納する収納手段を有している。また、 モニタ用液晶表示装置は電源入力部 (不図示)を有している。当該収納手段は、前 面カバー 120及び背面カバー 121を有している。例えば、背面カバー 121はバックラ イトユニットの背面板 108にネジ止めできるようにネジ止め部 125を有している。背面 カバー 121は背面板 108にネジ止めされて固着されている。背面カバー 121はバッ クライトユニットの背面板 108に熱的に接触しているので、 LED113a、 113b (図 49 では不図示)で発生した熱をヒートシンク 11 la、 11 lb及び背面板 108にカ卩え、モ- タ用液晶表示装置の背面カバー 121に形成された熱放射部 124でも放熱することが できる。
[0101] 図 50は、本実施例によるモニタ用液晶表示装置の他の構成を示す斜視図である。
図 50 (a)は、液晶表示装置 130の構成を示す斜視図である。図 50 (b)は、図 50 (a) の図中に示す仮想円を拡大して示している。図 50 (a)に示すように、本実施例による 液晶表示装置 130は、背面カバー 121 (図 50では不図示)にネジ止めするためのネ ジ止め咅 126a、 126b力ヒー卜シンク 11 la、 11 lbに形成されて!/、る。背面カノ一 12 1ίまヒートシンク l l la、 11 lb【こ熱的【こ接虫できるので、 LED113a、 113b (図 50で は不図示)で発生した熱をヒートシンク 11 la、 11 lb及び背面板 108にカ卩え、モニタ 用液晶表示装置の熱放射部 124でも放熱することができる。
[0102] (実施例 7)
図 51は、実施例 7による液晶表示装置 130の断面を示している。図 51に示すよう に、本実施例による液晶表示装置 130は導光板 106の光射出面 106cの長さ L3が 液晶表示パネル 102の表示領域の長さ L4より短く形成されている。また、液晶表示 装置 130は導光板 106の光射出面 106cの長さ L3が、同方向に測った拡散シート 1 04の長さより短く形成されている。さらに、液晶表示装置 130は導光板 106の光射出 面 106cの面積が液晶表示パネル 102の表示領域の面積又は拡散シート 102の面 積より小さく形成されている。
[0103] ノ ックライトユニットは、導光板 106と拡散シート 104との間に、導光板 106側の開 口面積が拡散シート 104側の開口面積より狭くなるように形成されたプラスチックフレ ーム (枠状部材) 105を有している。これにより、液晶表示装置 130は導光板 106の 光射出面 106cの長さ L3を液晶表示パネル 102の表示領域の長さ L4、又は同方向 に測った拡散シート 104の長さより短くしたり、導光板 106の光射出面 106cの面積を 液晶表示パネル 102の表示領域の面積又は拡散シート 102の面積より小さくしたり できる。また、プラスチックフレーム 105の傾斜する内壁面 105a、 105a'に、例えば アルミニウムの反射膜を形成することにより、導光板 106の光射出面 106cから射出し た光を効率よく拡散シート 104に入射することができる。さらに、導光板 106の端面に LED113a、 113bを配置しても、ノ ックライトユニットの外形寸法を液晶表示パネル 1 02の外形寸法と同等程度にすることができる。これにより、液晶表示装置 130の小型 ィ匕を図ることができる。
[0104] また、導光板 106の光入射面と、当該光入射面に対向する面との長さを液晶表示 パネル 102の表示領域の長さ L4又は同方向に測った拡散シート 104の長さより短く することにより、液晶表示装置 130の小型化を図ることができる。また、この液晶表示 装置 130に導光板 106側の開口面積が拡散シート 104側の開口面積より狭くなるよ うに形成されたプラスチックフレーム 105を用いてももちろんよ!/、。
[0105] 以上説明したとおり、本実施の形態によるバックライトユニットは、複数の LED113a 、 113bで発生した熱をヒートシンク 11 la、 11 lbに伝導する熱伝導手段 (L型熱伝導 部材 117a、 117b又は光源固定部材 115a、 115b)を有している。これにより、本実 施の形態によるバックライトユニットは輝度むらを低減して長寿命化を図ることができ る。さらに、バックライトユニットは、導光板 106の光入射面 106aに直交する方向(導 光板 106の光射出面 106cの裏面側)にヒートシンク 11 la、 11 lbを配置することがで きる。これにより、液晶表示装置の狭額縁ィ匕を図ることができる。また、本実施の形態 による液晶表示装置 130を有するモニタ用液晶表示装置は、 LED113a、 113bで発 生した熱を背面カバー 121で放熱できる。このように、モニタ用液晶表示装置は空冷 ファン等を用いなくても LED113a、 113bで生じた熱を十分に放熱できるため、小型 ィ匕を図ることができる。
[0106] 〔第 3の実施の形態〕
本発明による第 3の実施の形態は、ノ ックライトユニット(面照明装置)及びそれを備 えた液晶表示装置に関する。
[0107] 液晶表示装置に備えられたバックライトユニットには、薄板直方体形状に形成され た導光板の一対の側面に白色 LEDを配列したエッジライト方式や当該導光板を用 いずに所定の間隙を設けて対向配置された白色 LEDを配列した中空方式が提案さ れている。さらに、ノ ックライトユニットには、異なる発光色の LEDを組み合わせた 3原 色 LEDセットを液晶表示パネルの表示面の反対側に配列した直下型方式や、異な る発光色の LEDを混合させるためのサブ導光板を用いたサブ導光板方式が提案さ れている。
[0108] 白色 LEDは黄色発光蛍光体と青色 (B)発光 LEDとが組み合わされており、発光 色の色バラツキが相対的に少ないという特徴を有している。赤色 (R)発光 LED、緑 色 (G)発光 LED及び B発光 LEDを組み合わせて使用する 3原色発光 LEDセットで は、 1個当たりの LEDの幅が 10mm程度と比較的大きいため、例えば R発光 LED、 G発光 LED及び B発光 LEDの順に繰り返し配置すると、同色 LEDは 30mm以上離 れて配設される。このため、各 LEDで発光された発光色を混ぜ合わせる工夫が必要 になる。発光色を混合するための導光領域を表示領域として使用しない方式 (サブ 導光板方式)のバックライトユニットが Lumileds Lighting社により提案されている。 また、直下型方式のノ¾ /クライトユニットでは、発光色が十分に混合されるように拡散 板までの空気層の厚さを 50mm以上設ける必要がある。
[0109] 従来の 3原色発光 LEDセットを用いるバックライトユニットでは、液晶表示パネルの 表示面を照射する領域の他に各 LEDで発光された光を混合するための光混合空間 を設ける必要がある。光混合空間を設けな ヽと各 LEDで発光された光が十分に混合 されないので液晶表示パネルの表示面を照射する領域に色ムラが生じて液晶表示 装置の表示品位が著しく低下すると 、う問題を有して 、る。
[0110] 本実施の形態の目的は、色均一性に優れて小型のバックライトユニット及びそれを備 えた液晶表示装置を提供することにある。
[0111] 上記目的は、離散光源手段と、反射手段 Aと、導光手段と、光混合手段 Aと、光混 合手段 Bとを有し、前記反射手段 A、前記導光手段、前記光混合手段 A、及び前記 光混合手段 Bは、この順番に重ねられ、前記離散光源手段は、異なるスペクトル又は 異なる発光量の個別光源を前記導光手段の入光面近傍に配列したものであり、前記 導光手段の前記反射手段 Aに対向する面又は前記光混合手段 Aに対向する面には 、前記導光手段を伝播する光を前記反射手段 A側又は前記光混合手段 A側に取り 出す光取出し手段が設けられてあり、前記光混合手段 Aの高さを Hとし、前記離散光 源手段の配列の周期性の最小単位の長さを Lpとすると、 0≤Lp/H≤2. 5の関係 が成り立つことを特徴とするバックライトユニットによって達成される。
[0112] 本実施の形態によれば、色均一性に優れて小型のバックライトユニット及びそれを 備えた液晶表示装置が実現できる。
[0113] 本実施の形態によるバックライトユニット及びそれを備えた液晶表示装置について 図 52乃至図 59を用いて説明する。図 52は、本実施の形態によるノ ックライトユニット 及びそれを備えた液晶表示装置の概略の基本構成を示している。図 52 (a)は、液晶 表示装置を表示画面側から見た状態を示し、図 52 (b)は、図 52 (a)に示す仮想線 A —Aで切断した断面を示して 、る。
[0114] 図 52 (a)及び図 52 (b)に示すように、液晶表示装置は、対向配置された一対の基 板 (不図示)と、当該一対の基板間に封止された液晶 (不図示)とを備えた液晶表示 パネル 80と、液晶表示パネル 80の背面側に配置されたバックライトユニット 2とを有し ている。面状光源であるバックライトユニット 2は、例えば長方形状の平面形状を有す る面状の導光板 (導光手段) 20を有している。導光板 20の一対の側端面近傍には、 光源 (離散光源手段) 51がそれぞれ配置されている。光源 51は、例えば少なくとも 1 つの LEDを備えた LED配列単位群 241を有して!/、る。 LED配列単位群はピッチ長 Lpで周期的に配置されている。 LED配列単位群 241のピッチ長 Lpが光源 51の配 列の周期性の最小単位の長さになっている。光源 51を構成する複数の LEDは、例 えば異なるスペクトルの発光波長を有している。あるいは、複数の LEDは発光量が異 なっている。
[0115] 図 52 (b)に示すように、導光板 20の光射出面 21の図中上方には、透過型拡散板( 光混合手段 B) 240等の光学シート類が配置され、さらに上方に液晶表示パネル 80 が配置されている。導光板 20の光射出面 21と透過型拡散板 240との間には、気体 空間 (光混合手段 A) 30が設けられている。導光板 20の図中下方には、反射シート( 反射手段 A) 10が配置されている。すなわち、ノ ックライトユニットは、反射シート 10、 導光板 20、気体空間 30及び透過型拡散板 240とがこの順に重ねられた構成を有し ている。導光板 20の反射シート 10側の面には、光取出し手段としての所定の散乱面 252力設けられている。
[0116] 気体空間 30の高さ Hと LED配列単位群 241のピッチ長 Lpとの間で 0≤ Lp/H≤ 2 . 5の関係が成り立つように、導光板 20と透過型拡散板 240とが配置されている。こう すると、後程説明するように、ノ ックライトユニット 2は光混合空間を設けなくても液晶 表示パネル 80の表示面を照射する領域での色ムラの発生が防止される。従って、色 均一性に優れたバックライトユニット及び液晶表示装置を得ることができる。
以下、本実施の形態によるノ ックライトユニット及びそれを備えた液晶表示装置に ついて、実施例を用いてより具体的に説明する。
[0117] (実施例 1)
本実施例によるノ ックライトユニット及びそれを備えた液晶表示装置について図 53 乃至図 56を用いて説明する。図 53乃至図 55は本実施例による液晶表示装置の概 略構成を示している。図 53 (a)乃至図 55 (a)は、液晶表示装置の断面を示し、図 53 (b)乃至図 55 (b)はバックライトユニットの光取出手段としての散乱面を拡大して示し ている。
[0118] 図 53 (a)乃至図 55 (a)に示すように、本実施例による液晶表示装置に備えられた バックライトユニット 2a、 2b、 2cは、図 52に示すバックライトユニット 2の基本構成に加 え、気体空間 30の側面に配置された側壁反射板 (反射手段 B) 245を有している。側 壁反射板 245は銀反射シート等の正反射ミラーシートである。これにより、導光板 20 力も気体空間 30に射出された光をロスすることなく利用することができる。透過型拡 散板 240は、例えば内部に分散された散乱物質で光を拡散するバルタ型であり、透 過率が 65%、板厚が 2mmに形成されている。
[0119] ノ ックライトユニット 2a、 2b、 2cは光取出手段の形状がそれぞれ異なっている。図 5 3 (a)及び図 53 (b)に示すように、バックライトユニット 2aの光取出手段は散乱印刷面 252aを有している。散乱印刷面 252aは、例えば酸ィ匕チタンの微粒子が混ぜられた 透明な榭脂(印刷インク)を導光板 20の反射シート 10側のほぼ全面にスクリーン印刷 すること〖こより形成される。
[0120] 図 54 (a)及び図 54 (b)に示すように、ノ ックライトユニット 2bの光取出手段は複数 の内部散乱型印刷面 252bを有している。例えば、内部散乱型印刷面 252bは酸ィ匕 チタンの微粒子が表面に露出しないように形成されている。また、内部散乱型印刷面 252bは入射した光が導光板 20の光射出面 21にほぼ直交する方向に反射しな 、よ うに、例えば反射シート 10側の表面が湾曲状に形成されている。これにより、ノ ックラ イトユニット 2bの光学特性は向上する。
[0121] 図 55 (a)及び図 55 (b)に示すように、ノ ックライトユニット 2cの光取出手段は複数 の透明レンズ 252cを有している。透明レンズ 252cは、入射した光が導光板 20の光 射出面 21にほぼ直交する方向に反射しないように、例えば反射シート 10側の表面 が湾曲状に形成されている。これにより、ノ ックライトユニット 2cの光学特性は向上す る。ノ ックライトユニット 2cの光取出手段として透明レンズ 252cに代えて透明ドットが 形成されていてもよい。
[0122] 図 56は、 LED配列単位群 241のピッチ長 Lpと気体空間 30の高さ Hとの比 LpZH と、ノ ックライトユニットの光射出面の色ムラとの関係を示すグラフである。横軸は比 L pZHを表し、縦軸は色ムラ(A xy)を表わしている。図中參印を結ぶ曲線は、ノ ック ライトユニット 2a (構造 1)の特性を示し、図中 X印を結ぶ曲線は、ノ ックライトユニット 2b (構造 2)の特性を示し、図中〇印を結ぶ曲線は、ノ ックライトユニット 2c (構造 3) の特性を示している。
[0123] xy色度座標系における、ノ ックライトユニットの光射出面内の異なる 2点の色度 (x、 y)を色度 (xl、 yl)及び色度 (x2、 y2)とすると、 Δ xyは以下のようにして求められる
[0124] Δ xy = { (xl -χ2) 2+ (yl -y2) 2} 1/2 · ' · (1)
[0125] バックライトユニットの光射出面内の複数箇所の色度 (χ、 y)を測定し、各測定点同 士の A xyが式(1)を用いて算出される。図 56における縦軸の色ムラには、こうして算 出された Δ xyの最大値が用いられて!/、る。
[0126] 別の実験検討結果によれば、ノ ックライトユニットに色ムラが視認される A xyの限界 値は 0. 01程度であることが判っている。そこで、図 56に示すように、構造 1乃至 3の 少なくともいずれかで、 A xyが 0. 01程度か、それ以下となるためには、 0≤LpZH ≤2. 5となるように LED配列単位群 241のピッチ長 Lp及び気体空間 30の高さ Hを 選択すればよい。例えば、 LEDのパッケージサイズの制約により LED配列単位群 2 41のピッチ長 Lpが決められている場合には、 0≤Lp/H≤2. 5となるように気体空 間 30の高さ Hが調整され、一方、ノ ックライトユニットの厚さの制約により気体空間 30 の高さ Hが決められている場合には、 0≤Lp/H≤2. 5となるように LED配列単位 群 241のピッチ長 Lpが調整される。これにより、ノ ックライトユニットの光射出面内の 色均一性が極めて向上する。
[0127] 以上説明したように、本実施例によれば、ノ ックライトユニット 2a、 2b、 2cは LED配 列単位群 241のピッチ長 Lpと気体空間 30の高さ Hとの比 LpZHを最適化することに より、光混合空間を設けなくても表示領域の色均一性及び輝度均一性を向上させる ことができる。これにより、ノ ックライトユニット 2a、 2b、 2cの小型化を図ることができる 。また、本実施例によるノ ックライトユニット 2a、 2b、 2cを用いることにより液晶表示装 置は表示品位が極めて向上し、且つ小型化を図ることができる。 [0128] (実施例 2)
本実施例によるノ ックライトユニット及びそれを備えた液晶表示装置について図 57 乃至図 59を用いて説明する。図 57は本実施例による液晶表示装置の概略構成を示 している。図 57 (a)は、液晶表示装置の表示画面側力も見た状態を示し、図 57 (b) は、図 57 (a)の仮想線 A— Aで切断した断面を示している。
[0129] 図 57 (a)及び図 57 (b)に示すように、本実施例による液晶表示装置は液晶表示パ ネル 80とバックライトユニット 3とを有している。ノ ックライトユニット 3は導光板 20の一 対の側端面近傍にそれぞれ配置された光源 51を有している。光源 51はピッチ長 Lp で周期的に配置された複数の LED配列単位群 241を有して 、る。 LED配列単位群 241は R発光 LED (R)、 G発光 LED (G)、 B発光 LED (B)及び G発光 LED (G)で 構成されている。また、ノ ックライトユニット 3は透過型拡散板 240に隣接して配置さ れたプリズムシート (反射手段 C) 254を有している。プリズムシート 254として、例えば 3M社製の BEFが用いられる。プリズムシート 254は長方形状の平板状に形成され て透過型拡散板 240と液晶表示パネル 80との間に配置されている。さらに、ノ ックラ イトユニット 3は散乱型の側壁反射板 247を有している。側壁反射板 247は白色の P ETやポリカーボネート榭脂で形成されて ヽる。
[0130] 次に、プリズムシート 254の効果について説明する。図 57 (a)に示すように、導光板 20の入光面近傍では R発光 LED (R)、 G発光 LED (G)及び B発光 LED (B) (3原 色光)から射出された光は十分に混ざり合っていない。例えば、点 Pの位置では、青 色が支配的な色になっている。光源 51から射出された光は導光板 20の散乱印刷面 252a又は反射シート 10で反射されて種々の方向に散乱される。図 57 (b)に示すよう に、例えば、図中左側の光源 51から射出されて点 Pで反射した光には、入射角とほ ぼ等しい反射角で反射される反射光 L1と、導光板 20の光射出面 21にほぼ直交する 方向に反射する反射光 L2とが含まれる。反射光 L 1は気体空間 30を斜めに伝播して 透過型拡散板 240に到達するまでの間に 3原色光が混合するので色ムラが低減され る。反射光 L1はプリズムシート 254で偏角されて射出されてプリズムシート 254に直 交する方向の表示輝度に寄与する際には色均一性のよい混合色になる。
[0131] ところで、図中左側に配置された光源 51近傍の表示領域は、図中右側に配置され た光源 51から射出して導光板 20及び気体空間 30を通過して R発光 LED (R)、 G発 光 LED (G)及び B発光 LED (B)が十分に混ざり合った所定色度の白色光により照 射される。従来のバックライトユニットのようにプリズムシート 254が配置されて!、な!/ヽ と、所定色度の白色光に反射光 L2が混ざるため、図中左側の光源 51近傍において 色ムラが生じてしまう。ところが、プリズムシート 254はほぼ直交する方向に入射する 色光分布を反射するように所定形状に形成されている。このため、反射光 L2はプリズ ムシート 254で反射して気体空間 30側に戻される。このため、図中左側の光源 51近 傍においてプリズムシート 254を透過した透過光の色均一性が向上する。これにより 、液晶表示装置の色ムラを低減することができる。
[0132] 次に、側壁反射板 247の効果について説明する。図中右側の光源 51から射出さ れて点 Rで反射した光には、側壁反射板 247の方向に反射される反射光 L3が含ま れる。上記実施例のバックライトユニット 2a乃至 2cのように側壁反射板が銀反射シー ト等の正反射ミラーシートであると、反射光 L3は側壁反射板で入射角とほぼ等 、反 射角で反射されて透過型拡散板 240に入射される。反射光 L3は 3原色光が十分に 混ざり合っていないので、プリズムシート 254が配置されていない場合には、透過型 拡散板 240を透過した反射光 L3により光源 51近傍に色ムラが生じる。ところが、散 乱型の側壁反射板 247とすることで、反射光 L3は種々の方向に反射されて拡散す るので、光源 51近傍の透過型拡散板 240に入射されて透過する反射光 L3の光量 は減少する。これにより、光源 51近傍の色ムラを低減することができる。
[0133] 図 58は、 LED配列単位群 241のピッチ長 Lpと気体空間 30の高さ Hとの比 LpZH と、ノ ックライトユニットの光射出面の色ムラとの関係を示すグラフである。横軸は比 L pZHを表し、縦軸は色ムラ(A xy)を表わしている。色ムラは上記実施例と同様の方 法で求められている。図中參印を結ぶ曲線は、ノ ックライトユニット 2a (構造 1)の特性 を示し、図中〇印を結ぶ曲線は、バックライトユニット 2aにプリズムシート 254のみを 追加したバックライトユニットの特性を示し、図中 X印を結ぶ曲線は、ノ ックライトュ- ット 2aの側壁反射板 245を側壁反射板 247 (拡散反射板)に変更したバックライトュ ニットの特性を示している。
[0134] 図 58に示すように、ノ ックライトユニット 2aにプリズムシート 254を追加したり散乱型 の側壁反射板 247を用いたりすることにより色ムラが減少するので、ノ ックライトュ-ッ トの色均一性を向上させることができる。
[0135] 図 57に示すように、プリズムシート 254と側壁反射板 247とを組み合わせて用いる とバックライトユニット 3の表示領域内の色ムラがさらに低減されるので、液晶表示装 置の表示品位をさらに向上させることができる。
[0136] 図 59は、透過型拡散板 240の透過率(%)及び板厚 (mm)と色ムラとの関係を示し ている。図中〇印は色ムラが殆ど視認できないことを表し、図中 X印は色ムラが視認 できることを表わしている。図 59に示すように、透過率が 80%以下、板厚が 2mm以 上の透過型拡散板 240を用いることにより、ノ ックライトユニット 3の表示領域の色ムラ をさらに低減することができる。
[0137] 以上説明したように、本実施例によれば、ノ ックライトユニット 3の色ムラが極めて低 減するので、色均一性に優れたバックライトユニット 3及び液晶表示装置が得られる。
[0138] 本実施の形態は、上記実施例に限らず種々の変形が可能である。 上記実施例 1 によるバックライトユニット 2a乃至 2cにおいても透過型拡散板 240の透過率を 80% 以下とし、板厚を 2mm以上とすることにより表示領域の色ムラを低減することができる
[0139] 〔第 4の実施の形態〕
本発明の第 4の実施の形態は、バックライトユニット (面照明装置)及びそれを備え た液晶表示装置に関する。
[0140] 液晶表示装置に備えられたバックライトユニットには、薄板直方体形状に形成され た導光板の一対の側面に白色 LEDを配列したエッジライト方式や当該導光板を用 いずに所定の間隙を設けて対向配置された白色 LEDを配列した中空方式が提案さ れている。さらに、ノ ックライトユニットには、異なる発光色の LEDを組み合わせた 3原 色 LEDセットを液晶表示パネルの表示面の反対側に配列した直下型方式や、異な る発光色の LEDを混合させるためのサブ導光板を用いたサブ導光板方式が提案さ れている。
[0141] 白色 LEDは黄色発光蛍光体と青色 (B)発光 LEDとが組み合わされており、発光 色の色バラツキが相対的に少ないという特徴を有している。赤色 (R)発光 LED、緑 色 (G)発光 LED及び B発光 LEDを組み合わせて使用する 3原色発光 LEDセットで は、 1個当たりの LEDの幅が 10mm程度と比較的大きいため、例えば R発光 LED、 G発光 LED及び B発光 LEDの順に繰り返し配置すると、同色 LEDは 30mm以上離 れて配設される。このため、各 LEDで発光された発光色を混ぜ合わせる工夫が必要 になる。発光色を混合するための導光領域を表示領域として使用しない方式 (サブ 導光板方式)のバックライトユニットが Lumileds Lighting社により提案されている。 また、直下型方式のノ¾ /クライトユニットでは、発光色が十分に混合されるように拡散 板までの空気層の厚さを 50mm以上設ける必要がある。
[0142] 従来のバックライトユニットでは、 LEDが実装される LEDモジュール基板の裏面を 強制的に空冷したりヒートシンクにより直接的に冷却したりしている。このため、 LED モジュール内での温度ムラが大きくなり、 LED毎の発光ムラが生じてしまう。これによ り、バックライトユニットの面照明領域に色ムラ及び輝度ムラが生じてしまうという問題 を有している。さらに、温度の高い LEDほど劣化し易いため、当該 LEDの輝度が他 の LEDの輝度より早く低下してしまう。これにより、ノ ックライトユニットの面照明領域 に経時による色ムラ及び輝度ムラが生じてしまうという問題を有している。
[0143] 直下型方式やサブ導光板方式のバックライトユニットでは、液晶表示パネルの背面 に LEDモジュールが配置されており、 LEDモジュール基板又は LEDモジュール基 板を保持する金属板の背面が直接冷却される。中空方式やエッジライト方式のノ ック ライトユニットは、面照明領域の端部に LEDモジュール光源が配置されている。サイ ドエミッタ型のバックライトユニットでは、 LEDが配設された LEDモジュール基板は液 晶表示パネルの背面に直接向けられるため、背面側から直接空冷されている。トップ ヴユー型の LEDが配設された LEDモジュール基板は導光板の側面に配置されるが 、 LEDモジュール基板を直接に外気に晒して強制空冷したりヒートシンクを取り付け て強制空冷したりしているため、液晶表示装置の額縁の幅が 50mm以上になって、 液晶表示装置が大型化してしまうと 、う問題を有して 、る。
[0144] 本実施の形態の目的は、色均一性に優れて狭額縁のバックライトユニット及びそれ を備えた液晶表示装置を提供することにある。
[0145] 上記目的は、異なるスペクトル又は異なる発光量の個別光源を有する離散光源手 段と、前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前 記光入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前 記光を射出する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝 導する熱伝導手段と、前記熱伝導手段の外表面の一部を覆って熱的に接触する接 触面を備えて前記熱伝導手段の温度をほぼ均一に保温する保温手段とを有すること を特徴とするノ ックライトユニットによって達成される。
[0146] 本実施の形態によれば、色均一性に優れて狭額縁のバックライトユニット及びそれ を備えた液晶表示装置が実現できる。
[0147] 本実施の形態によるバックライトユニット及びそれを備えた液晶表示装置について 図 60乃至図 69を用いて説明する。
(実施例 1)
本実施例によるノ ックライトユニット及び液晶表示装置について図 60乃至図 63を 用いて説明する。図 60及び図 61は、本実施の形態による液晶表示装置の概略の構 成を示している。図 60は、 LEDモジュール(離散光源手段) 201a、 201bが配置され た液晶表示装置を斜めから見た状態を模式的に示している。図 60では、理解を容易 にするためフロントカバー 101を破線で示し、且つ液晶表示パネルや導光板等を省 略して示している。図 61は、液晶表示装置の断面構成を示している。図 61では、フ ロントカバー 101を省略して示している。
[0148] 図 60に示すように、 LEDモジュール 201a、 201bはフロントカバー 101の長手方向 の側壁近傍にそれぞれ配置されている。 LEDモジュール 201a、 201bはフロント力 バー 101内で対向配置されている。 LEDモジュール 201a、 201bは長手方向の長さ 力Lmの薄板直方体形状の光源固定部材 115a、 115bと、光源固定部材 115a、 11 5bの長手方向にほぼ一直線上に並んで実装された複数の LED (個別光源) 113a, 113bとをそれぞれ有している。光源固定部材 115a、 115bは、例えばアルミニウム 等の熱伝導率の大きい金属で形成されている。光源固定部材 115a、 115bの表面 には、例えば膜厚が数十/ z m力 数百/ z mの絶縁層が形成され、当該絶縁層上に は導電性の所定の配線がパターユングされている。これにより、光源固定部材 115a 、 115bは LED113a、 113bの回路基板として機能する。 [0149] 図 61に示すように、液晶表示装置は、対向配置された一対の基板 (不図示)と、当 該一対の基板間に封止された液晶(不図示)とを備えた液晶表示パネル 102と、液 晶表示パネル 102の背面側に配置されたバックライトユニットとを有している。ノ ックラ イトユニットは対向配置された LEDモジュール 201a、 201bと、 LEDモジュール 201 a、 201bからそれぞれ射出した光を入射する光入射面 106a、 106a'と、導光領域 1 06bを導光した光を射出する光射出面 106cとを有する導光板 (導光手段) 106とを 有している。光入射面 106aは導光板 106の一端面に形成され、光入射面 106a'は 導光板 106の当該一端面に対向する対向面に形成されている。さらに、バックライト ユニットは LEDモジュール 201a、 20 lbでそれぞれ生じた熱を伝導する熱伝導手段 としての L型熱伝導咅材 200a、 200bと、 L型熱伝導咅材 200a、 200bの外表面の一 部をそれぞれ覆って熱的に接触して L型熱伝導部材 200a、 200bの温度をほぼ均 一に保温する保温部材(保温手段) 203a、 203bとを有している。保温部材 203a、 2 03bは、例えばポリカーボネート榭脂で図面の法線方向に延びる薄板直方体形状に 形成されている。保温部材 203a、 203bは L型熱伝導部材 200a、 200bと熱的に接 触する接触面 204a、 204bをそれぞれ有している。
[0150] L型熱伝導部材 200a、 200bは導光板 106の光射出面 106c及び保温部材 203a 、 203bの接触面 204a、 204bにそれぞれほぼ直交する面内で L字形状に形成され ている。 L型熱伝導部材 200a、 200bは例えばアルミニウム材料で形成されている。 L型熱伝導部材 200a、 200bは、光射出面 106cの裏面に対向する面の反対側に L EDモジュール 201a、 20 lbでそれぞれ生じた熱を放熱する放熱面 206a、 206bを 有している。放熱面 206a、 206bには、例えば赤外線放射率が高くなるようにアルマ イト処理や塗装処理等の表面処理が施されている。また、 L型熱伝導部材 200a、 20 Obは放熱面 206a、 206bを外気に触れさせることにより放熱性が高められている。
[0151] L型熱伝導部材 200a、 200bと光源固定部材 115a、 115bとの間には、熱抵抗を 小さくするために放熱シート等の変形性材料がそれぞれ挟み込まれて 、る。 L型熱 伝導部材 200a、 200bと光源固定部材 115a、 115bとの間の熱抵抗を低減する方法 としては放熱シート等の挟み込みに限られず、例えば、 L型熱伝導部材 200a、 200b と光源固定部材 115a、 115bとをネジ止めしたり、接着剤による接着、粘着材による 粘着又は銀ペースト材料による融着したりする方法でもよい。
[0152] 接触面 204aから接触面 204aの裏面側までの保温部材 203aの熱抵抗は、 LEDモ ジュール 201aで生じた熱の流入部から放熱面 206aまでの L型熱伝導部材 200aの 熱抵抗より高くなつている。さらに、保温部材 203aの当該熱抵抗は、接触面 204aに 平行な面内での L型熱伝導部材 200aの熱抵抗より高くなつている。同様に、接触面 204bから接触面 204bの裏面側までの保温部材 203bの熱抵抗は、 LEDモジユー ル 201bで生じた熱の流入部力も放熱面 206bまでの L型熱伝導部材 200bの熱抵抗 より高くなつている。さらに、保温部材 203bの当該熱抵抗は、接触面 204bに平行な 面内での L型熱伝導部材 200bの熱抵抗より高くなつている。
[0153] これにより、 L型熱伝導部材 200a、 200bを介して保温部材 203a、 203bに伝導し た熱は、外気に触れている接触面 204a、 204bの裏面側カゝら放熱し難くなり、保温部 材 203a、 203b内に保温される。 L型熱伝導部材 200a、 200bに伝導した熱は、保 温咅材 203a、 203b力酉己置されて!ヽな!ヽと放熱面 206a、 206bの他に LEDモジユー ル 201a、 20 lbとの接触面の裏面からも放熱される。このため、 L型熱伝導部材 200 a、 200b内で高温部から低温部に熱が伝わって温度が均一化される前に外部に放 熱してしまうので温度バラツキが生じ易くなる。ところが、本実施例のバックライトでは 保温咅材 203a、 203bにより LEDモジユーノレ 201a、 201bとの接虫面の裏面力らは 殆ど放熱されない。このため、 L型熱伝導部材 200a、 200b内の高温部力も低温部 に熱が伝わって、接触面 204a、 204bに平行な面内での温度ムラが緩和される。こ れにより、 L型熱伝導部材 200a、 200b内の温度はほぼ均一化される。また、 L型熱 伝導咅材 200a、 200bの温度均一ィ匕により、 LEDモジユーノレ 201a、 201b内の温度 もほぼ均一化される。
[0154] 従来のバックライトユニットでは、導光板の光入射面は粗い切削面に形成されてい る。これに対し、本実施例のバックライトユニットでは、 LED配列のミラー反転効果を 活用するために、光入射面 106a、 106a'は鏡面に形成されている。光入射面 106a 、 106a'の外側(導光板 106の側壁)に配設された不図示の反射シートは導光板 10 6を通り抜けた光を導光領域 106bに戻すように機能する。導光板 106の光射出面 1 06cの裏面はスクリーン印刷された散乱面になっている。当該散乱面側には、不図 示の反射シート及び L型熱伝導部材 200a、 200bを所定の間隙に支持する支持部 材 (支持手段) 208がこの順に配置されている。支持部材 208は、例えばアルミニウム 材料で薄板直方体形状に形成されている。支持部材 208は放熱面 206a、 206bの 裏面で L型熱伝導部材 200a、 200bに熱的に接触している。 L型熱伝導部材 200a、 200bと熱的に接触している支持部材 208の平面の少なくとも一部には、放熱面 206 a、 206bと同様の表面処理が施されている。これにより、ノ ックライトユニットは LEDモ ジュール 201a、 201bで生じた熱がより放熱され易くなる。
[0155] 導光板 106の光射出面 106cに対面して、厚さが 2mmに形成された薄板直方体形 状の透過型拡散板 202が配置されている。透過型拡散板 202の光射出面側には偏 光シートや拡散シート等の光学シート 205及び液晶表示パネル 102がこの順に配置 されている。
[0156] 図 62は、保温部材 203a、 203bの有無による LEDモジュール 201a、 201bの温度 ばらつきを示すグラフである。横軸は光源固定部材 115a、 115bの長さ Lmと、光源 固定基板 115a、 1151)の厚さ1;1及び]^型熱伝導部材200&、 200bの厚さ t2を合わ せた総厚さ tとの比(LmZt)を表し、縦軸は LEDモジュール 201a、 201b内での最 大温度と最小温度との温度差 (°C)を表わしている。図中參印を結ぶ曲線は保温部 材 203a、 203bを有する場合の特性を示し、図中〇印を結ぶ曲線は保温部材 203a 、 203bを有していない場合の特性を示している。
[0157] 図 62に示すように、厚さが 2mm、長さ Lmが 300mmの光源固定部材 115a、 115b では、保温部材 203a、 203bが配置されていると、 L型熱伝導部材 200a、 200bの温 度が均一化されるので、 LEDモジュール 201a、 201b内の温度差を約 4°Cにそれぞ れ抑えることができる。これに対し、保温部材 203a、 203bが配置されていないと、 L EDモジュール 201a、 201b内の温度差は約 9°Cと大きくなる。ところで、例えば LED モジュール 201a、 201b内の温度差が約 10°Cであると、赤色発光の LED (R発光 L ED)では発光量に約 12%の個体差が生じるのに対し青色発光の LED (B発光 LED )では発光量の個体差は約 0%と殆ど生じない。このため、これらの混合色の白色度 は xy色度座標系にお 、て 0.01以上異なってしま 、、
バックライトユニットが液晶表示パネル 102の表示領域を照射する照明領域 (面照明 領域)での色ムラ及び輝度ムラが明らかに視認される。
[0158] また、例えば R発光 LED毎に 10°Cの温度差が生じると、低温の R発光 LEDの発光 量に対する高温の R発光 LEDの発光量は、 5万時間経過後では約 5%減となり、 10 万時間経過後では約 10%減となる。 R発光 LEDの発光量の経時変化は面照明領 域内の色ムラ増大の原因となる。本実施の形態では、保温部材 203a、 203bにより L EDモジュール 201a、 201b内の温度差を約 4°Cにそれぞれ抑えることができるので 、ノックライトユニットの面照明領域での色ムラ及び輝度ムラを極めて低減することが できる。
[0159] 図 63は、 LEDモジュール 201a、 201b内の温度差が所定温度以下となる、光源固 定部材 115a、 115bの長さ Lmと総厚さ tの関係を示している。横軸は光源固定基板 115a, 1151)及びし型熱伝導部材200&、 200bの総厚さ tを表し、縦軸は光源固定 基板 115a、 115bの長さ Lm (mm)を表わしている。図中參印を結ぶ直線は温度差 力 S2°Cとなる特性を示し、図中〇印を結ぶ曲線は温度差力 °Cとなる特性を示してい る。
[0160] 図 63に示すように、光源固定基板 115a、 1151)及び]^型熱伝導部材200&、 200b の総厚さ tに対して光源固定基板 115a、 115bの長さ Lmを短くすると、温度差を小さ くすることができる。また、光源固定基板 115a、 115bの長さ Lmと光源固定基板 115 a、
Figure imgf000045_0001
200bの総厚さ t (mm)との間に、 Lm/t≤300 の関係が成り立つと、 LEDモジュール 201a、 201bの温度差を 4°C以下に抑えること 力 Sできる。当該関係式を満たすように LEDモジュール 201a、 201b及び L型熱伝導 部材 200a、 200bを形成することにより、ノ ックライトユニットの面照明領域での色ムラ 及び輝度ムラを極めて低減することができる。また、色ムラ及び輝度ムラの経時変化 も低減するので、ノ ックライトユニット及び液晶表示装置の長寿命化を図ることができ る。
[0161] 以上説明したように、本実施例によるノ ックライトユニットによれば、 L型熱伝導部材 200a, 200b【こ熱的【こそれぞれ接虫する保温咅材 203a、 203b【こより I^EDモジユー ル 201a、 201b内の温度差を小さくしてほぼ均一にすることができる。これにより、 LE D113a、 113b毎の発光ムラや発光量の経時変化が減少するので、バックライトュ- ットの面照明領域での色ムラ及び輝度ムラが極めて低減されてバックライトユニット及 びそれを備えた液晶表示装置の長寿命化を図ることができる。さらに、導光板 106の 光射出面 106cの裏面側に配置された L型熱伝導部材 200a、 200bの放熱面 206a 、 206bで熱を放熱できるので、導光板 106の光入射面 116a、 116a,側にヒートシン ク等の熱冷却手段を配置する必要がなぐバックライトユニット及び液晶表示装置の 狭額縁ィ匕を図ることができる。
[0162] (実施例 2)
次に、本実施の形態の実施例 2によるノ ックライトユニット及びそれを備えた液晶表 示装置について図 64を用いて説明する。図 64は本実施例による液晶表示装置の断 面を示している。図 64に示すように、本実施例による液晶表示装置に備えられたバッ クライトユニットは導光板 106の光入射面 106a、 106a'にほぼ平行な面内に折り返さ れて保温部材 203a、 203bをそれぞれ挟んで内包する内包型熱伝導部材 210a、 2 10bを備えた点に特徴を有している。内包型熱伝導部材 210a、 210bは、保温部材 203a, 203bの接虫面 204a、 204b【こま ίま、平行な面内で放熱面 206a、 206bをそれ ぞれ有している。放熱面 206a、 206bには、例えば赤外線放射率が高くなるようにァ ルマイト処理や塗装処理等の表面処理が施されている。内包型熱伝導部材 210a、 2 10bは放熱面 206a、 206bを外気に触れさせることにより放熱性が高められている。
[0163] 接触面 204a、 204b力も接触面 204a、 204bの裏面側までの保温部材 203a、 203 bのそれぞれの熱抵抗は、 LEDモジュール 201a、 20 lbでそれぞれ生じた熱の流入 部から放熱面 206a、 206bまでの内包型熱伝導部材 210a、 210bのそれぞれの熱 抵抗より高くなつている。これにより、内包型熱伝導部材 210a、 210b内の温度をほ ぼ均一にして放熱することができる。さらに、保温部材 203a、 203bの当該熱抵抗は 、接虫面 204a、 204b【こま ίま、平行な面内での内包型熱伝導咅材 210a、 210bの熱 抵抗より高くなつている。また、内包型熱伝導部材 210a、 210bに熱的に接触する支 持部材 208に熱が伝導するので、 LEDモジュール 201a、 201b内の温度をほぼ均 一に保持した状態で、 LEDモジュール 201a、 20 lb全体の温度を低減できる。これ により、本実施例によるノ ックライトユニットは上記実施例と同様の効果が得られる。
[0164] (実施例 3) 次に、本実施の形態の実施例 3によるノ ックライトユニットについて図 65を用いて説 明する。図 65は本実施例によるバックライトユニットの断面を示している。図 65に示 すように、本実施例によるバックライトユニットは、 LEDモジュール 201a、 201bの両 方で発生した熱を伝導するように一体ィ匕されて光射出面 106c及び接触面 204a、 20 4bにそれぞれほぼ直交する面内でコの字形状に形成されたコの字型熱伝導部材 2 12を備えた点に特徴を有して 、る。コの字型熱伝導部材 212は光射出面 106cの裏 面に対向する面の反対側に放熱面 118を有している。放熱面 118には、例えば赤外 線放射率が高くなるようにアルマイト処理や塗装処理等の表面処理が施されて!/ヽる。 コの字型熱伝導部材 212は放熱面 118を外気に触れさせることにより放熱性が高め られている。
[0165] 接触面 204a、 204b力も接触面 204a、 204bの裏面側までの保温部材 203a、 203b のそれぞれの熱抵抗は、 LEDモジュール 201a、 20 lbでそれぞれ生じた熱の流入 部から放熱面 118までのコの字型熱伝導部材 212の熱抵抗より高くなつている。さら に、保温部材 203a、 203bの当該熱抵抗は、接触面 204a、 204bにほぼ平行な面内 でのコの字型熱伝導部材 212の熱抵抗より高くなつている。これにより、本実施例に よるバックライトユニットは上記実施例と同様の効果が得られる。また、コの字型熱伝 導部材 212は熱伝導手段と支持手段とがー体ィ匕されているので、 LEDモジュール 2 Ola, 201bで生じた熱が光射出面 106cの裏面側に熱伝導し易い。さらに、光射出 面 106cの裏面側に位置するコの字型熱伝導部材 212の全面に放熱面 118を形成 することにより、上記実施例 1及び実施例 2に比べて効率よく熱を放熱でき、 LEDモ ジュール 201a、 20 lb全体の温度をより低減できる。
[0166] さらに、支持手段が不要になるためバックライトユニットの部品点数が削減され、熱 伝導手段と支持手段との組立工程も不要になるため、バックライトユニット及び液晶 表示装置の低コストィ匕を図ることができる。
[0167] (実施例 4)
次に、本実施の形態の実施例 4によるノ ックライトユニット及びそれを用いた液晶表 示装置について図 66乃至図 69を用いて説明する。図 66は、本実施例による液晶表 示装置を表示画面の裏面側力も見た状態を示している。図 66に示すように、本実施 例による液晶表示装置に備えられたバックライトユニットは、熱伝導手段としてのコの 字型熱伝導部材 212と、コの字型熱伝導部材 212を伝導した熱を放熱する放熱手 段としてのヒートシンク 214とを備えて 、る点に特徴を有して 、る。
[0168] 図 66に示すように、ヒートシンク 214の少なくとも一部は、 LEDモジュール 201a近 傍力も LEDモジュール 20 lb近傍まで延伸してコの字型熱伝導部材 212に一体化さ れている。また、ヒートシンク 214の放熱フィン 214aは LEDモジュール 201a近傍から LEDモジュール 20 lb近傍まで延伸して形成されている。ヒートシンク 214の外表面 の少なくとも一部は、上記実施例のコの字型熱伝導部材 212の放熱面 118と同様の 表面処理が施されている。コの字型熱伝導部材 212の図中ほぼ中央部には、 LED モジュール 201a、 201b等を駆動する所定の回路が実装された回路基板 (不図示) の配置領域が確保されている。当該回路基板は、放熱面 118と同様の表面処理がな された外表面を有する保護カバー 216で覆われている。
[0169] 図 67は、比較例としての液晶表示装置を表示画面の裏面側から見た状態を示して いる。図 67に示すように、当該液晶表示装置に備えられたバックライトユニットは、保 護カバー 216を長手方向に延長した領域に対してほぼ対称にコの字型熱伝導部材 212に配置されたヒートシンク 218を有して!/、る。ヒートシンク 218はバックライトュ-ッ トの短手方向に延伸する放熱フィン 218a、 218bを有し、コの字型熱伝導部材 212 に一体化されている。
[0170] 比較例のバックライトユニットでは、 LEDモジュール 201a、 201bの温度差力 ¾°Cで あるのに対し、本実施例のバックライトユニットでは、 LEDモジュール 201a、 201bの 温度差は 4°Cである。ヒートシンク 214を一体化することにより、 LEDモジュール 201a 、 201bの温度差をほぼ半減させることができる。従って、ノ ックライトユニットの光射 出面での色ムラ及び輝度ムラが極めて低減され、ノ ックライトユニット及びそれを備え た液晶表示装置の長寿命化を図ることができる。
[0171] さらに、 LEDモジュール 201a、 201b間の 4°Cの温度差をなくすために、従来のバ ックライトユニットでは、 LEDモジュール 201a、 201bに均等に投入されている電力( 32W)を、本実施例によるバックライトユニットでは、相対的に温度が高くなりがちな上 辺側に配設される LEDモジュール(例えば、 LEDモジュール 201a)では約 2W減ら して約 30Wとし、相対的に温度が低くなりがちな下辺側に配設される LEDモジユー ル(例えば LEDモジュール 201b)では約 2W増やして約 34Wとする。これにより、 LE Dモジュール 201aの LED113aの温度が約 2°C低下し、 LEDモジュール 201bの LE D113bの温度が約 2°C上昇するので、 LEDモジュール 201a、 201bの温度をほぼ 同一にすることができる。
[0172] 図 68は、 LEDモジュール 201a、 201bへの投入電力に対する温度の変化を示す グラフである。横軸は、 LEDモジュール 201a (上辺側 LEDモジュール)の投入電力 と LEDモジュール 201b (下辺側 LEDモジュール)の投入電力との比(%)を表し、縦 軸は、 LEDモジュール 201a、 201bの温度(°C)を表わしている。図中參印を結ぶ曲 線は LEDモジュール 20 la (上辺側)の温度特性を示し、図中〇印を結ぶ曲線は LE Dモジュール 201b (下辺側)の温度特性を示し、図中 X印を結ぶ曲線は LEDモジュ ール 201a、 20 lbの温度差の特性を示している。
[0173] 図 68に示すように、 LEDモジュール 201a、 201bの投入電力が例えば各 32Wと等 しぐ電力比が 100%の場合には、 LEDモジュール 201a、 201bの温度差は約 4°C になる。この状態では、 LEDモジュール 201aの温度が LEDモジュール 201bの温度 より高くなつている。そこで、 LEDモジュール 201aの投入電力を約 2W低下させ、一 方、 LEDモジュール 201bの投入電力を約 2W上昇させて、 LEDモジュール 201a、 201bの投入電力の比を約 90%とする。これにより、 LEDモジュール 201a、 201bの 温度差をほぼ 0°Cにすることができる。 LEDモジュール 201aの最高温度は約 2°C低 減するのに対して LEDモジュール 201bの最高温度は約 2°C上昇してしまうが、 LED モジュール 201a、 201bの温度差をほぼ 0°Cにすることができるので、バックライトュ ニットの面照明領域での色ムラ及び輝度ムラが極めて低減され、ノ ックライトユニット 及びそれを備えた液晶表示装置の長寿命化を図ることができる。また、 LEDモジュ ール 201a、 201bに投入される総電力は 64Wと従来のバックライトユニットと変わらな V、ので、ノ ックライトユニットの輝度及び液晶表示装置の表示画面の輝度の増減は 殆ど生じない。
[0174] LEDモジュール 201a、 201bのそれぞれの投入電力を異ならせる方法として、 LE Dモジュール 201aに実装された全 LED113aへの総投入電力と、 LEDモジュール 2 0 lbに実装された全 LED113bへの総投入電力とを異ならせたり、 LEDモジュール 2 Olaに実装された全 LED113aのうちの所定の発光色 LED (例えば、 R発光 LED) への投入電力と、 LEDモジュール 201bに実装された全 LED113bのうちの当該所 定の発光色 LEDと同色の LED (例えば、 R発光色 LED)への投入電力のみを異なら せたりしてもよ ヽ。
[0175] 図 69は、コの字型熱伝導部材 212への保護カバー 216の取り付け構造を説明する ために、ノ ックライトユニットの要部断面を模式的に示している。図 69 (a)は、本実施 例によるノ ックライトユニットの要部断面を示し、図 69 (b)は、比較例としての従来の ノ ックライトユニットの要部断面を示している。なお、図 69 (a)は、理解を容易にする ためコの字型熱伝導部材 212の熱放射面の法線方向を回転軸としてヒートシンク 21 4を 90° 回転して示している。
[0176] 図 69 (b)に示すように、従来のバックライトユニットでは、保護カバー 230は支持部 材 232に形成された固定部 228に回路基板 220と共に固定されている。これに対し て、図 69 (a)に示すように、本実施例のバックライトユニットでは、保護カバー 216は 回路基板 220と異なる場所でコの字型熱伝導部材 212に固定されている。
[0177] 具体的には、コの字型熱伝導部材 212は回路基板 220を熱的に接触させて固定 する回路基板固定部 222と、回路基板固定部 222とは異なる場所で熱的に接触させ て回路基板 220の保護カバー 216を固定する保護カバー固定部 225とを有している 。回路基板固定部 222は、例えばコの字型熱伝導部材 212の一部を切り起こして形 成されている。回路基板 220はネジ 226により回路基板固定部 222にネジ止めされ ている。また、保護カバー 216はネジ 226で保護カバー固定部 225にネジ止めされ ている。これにより、保護カバー 216はコの字型熱伝導部材 212に直接接触されてい る。回路基板 220及び保護カバー 216の固定方法はネジ止めに限られず、例えば 回路基板 220及び保護カバー 216と各固定部 222、 225との間に熱抵抗を小さくす るための放熱シート等の変形性材料を挟み込んだり、回路基板 220及び保護カバー 216と各固定部 222、 225との間を接着剤による接着、粘着材による粘着又は銀ぺ 一スト材料による融着したりする方法でもよ 、。
[0178] 従来のバックライトユニットのように保護カバー 230が回路基板 220を介して支持部 材 232に固定される構造より、本実施例のノ ックライトユニットのように保護カバー 21 6がコの字型熱伝導部材 212に直接固定される構造の方が保護カバー 216への熱 伝導を向上させることができる。即ち、コの字型熱伝導部材 212と保護カバー 216と の熱抵抗は小さくなるので、コの字型熱伝導部材 212から保護カバー 216への大き な熱輸送が可能になる。
[0179] さらに、回路基板固定部 222等が形成されたコの字型熱伝導部材 212の表面、保 護カバー 216の表裏面及びヒートシンク 214の外表面の少なくとも一部には、例えば アルマイト処理や塗装等の赤外線放射率を向上させるための表面処理が施されてい る。これにより、ノ ックライトユニットの放熱効果を向上させることができる。
[0180] 赤外線放射率を向上させる表面処理を施すことにより、コの字型熱伝導部材 212 の室温力 の温度上昇は当該表面処理が施されていない場合に比べて 80%から 8 5%に低減される。具体的には、アルマイト処理を施す前の保護カバー 216及びヒー トシンク 214の温度上昇は各々 23°C及び 31°Cであるが、アルマイト処理を施すこと により温度上昇は 20°C及び 25°Cにそれぞれ低下する。さらに、保護カバー 216をコ の字型熱伝導部材 212に直接固定すると、保護カバー 216の温度上昇は 23°Cに増 加する力 LEDモジュール 201aに熱結合されるヒートシンク 214の温度上昇は 24°C に低下される。
[0181] 以上説明したように、本実施例によれば、 LEDモジュール 201a、 201bの温度をほ ぼ均一にして、且つ効率よく熱を放熱して冷却できるので、ノ ックライトユニット及び 液晶表示装置の色均一性及び輝度均一性が極めて向上し、且つ長寿命化を図るこ とがでさる。
[0182] 本実施の形態は、上記実施例に限らず種々の変形が可能である。
上記実施例では、ノ ックライトユニットは熱伝導手段としての L型熱伝導部材 200a 、 200b,内包型熱伝導部材 210a、 210b及びコの字型熱伝導部材 212のいずれか を有しているが本実施の形態はこれに限られない。例えば、ノ ックライトユニットは熱 伝導手段として光源固定部材 115a、 1151)が]^型熱伝導部材200&、 200b等と同様 の形状に形成されて放熱面を備えていてもよい。当該光源固定部材 115a、 115bに 保温部材 203a、 203bを熱的に接触させることにより、上記実施の形態と同様の効果 が得られる。
[0183] また、上記実施例 4によるバックライトユニットはコの字型熱伝導部材 212を有して いるが、本実施の形態はこれに限られない。例えば、ノ ックライトユニットは L型熱伝 導部材 200a、 200b又は内包型熱伝導部材 210a、 210bを有していても、上記実施 例 4と同様の効果が得られる。
図面の簡単な説明
[0184] [図 1]本発明の第 1の実施の形態によるバックライトユニットの基本構成を示す断面図 である。
[図 2]本発明の第 1の実施の形態の実施例 1によるバックライトユニットの構成を示す 断面図である。
[図 3]本発明の第 1の実施の形態の実施例 2によるバックライトユニットの構成を示す 断面図である。
[図 4]本発明の第 1の実施の形態の実施例 3によるバックライトユニットの導光板の構 成を示す図である。
[図 5]本発明の第 1の実施の形態の実施例 4によるバックライトユニットの導光板の構 成を示す図である。
[図 6]本発明の第 1の実施の形態の実施例 5によるバックライトユニットの導光板の構 成を示す図である。
[図 7]本発明の第 1の実施の形態の実施例 6によるバックライトユニットの導光板の構 成を示す図である。
[図 8]本発明の第 1の実施の形態の実施例 7によるバックライトユニットの構成を示す 図である。
[図 9]本発明の第 1の実施の形態の実施例 8によるバックライトユニットの構成を示す 図である。
[図 10]本発明の第 1の実施の形態の実施例 9によるバックライトユニットの構成を示す 図である。
[図 11]本発明の第 1の実施の形態の実施例 10によるバックライトユニットの LED実装 基板の構成を示す図である。 圆 12]本発明の第 1の実施の形態の実施例 11によるバックライトユニットの構成を示 す断面図である。
圆 13]本発明の第 1の実施の形態の実施例 12によるバックライトユニットの構成を示 す断面図である。
圆 14]本発明の第 1の実施の形態の実施例 13によるバックライトユニットの構成を示 す図である。
圆 15]本発明の第 1の実施の形態の実施例 14によるバックライトユニットの構成を示 す断面図である。
圆 16]本発明の第 1の実施の形態の実施例 15によるバックライトユニットの構成を示 す断面図である。
圆 17]本発明の第 1の実施の形態の実施例 16によるバックライトユニットの構成を示 す断面図である。
圆 18]本発明の第 1の実施の形態の実施例 17によるバックライトユニットの構成を示 す断面図である。
圆 19]本発明の第 1の実施の形態の実施例 18による液晶表示装置の構成を示す断 面図である。
圆 20]本発明の第 1の実施の形態の実施例 19による液晶表示装置の構成を示す図 である。
圆 21]本発明の第 1の実施の形態の実施例 20による液晶表示装置の構成を示す斜 視図である。
圆 22]本発明の第 1の実施の形態の実施例 21による液晶表示装置の構成を示す図 である。
圆 23]本発明の第 1の実施の形態の実施例 21による液晶表示装置の他の構成を示 す図である。
圆 24]本発明の第 1の実施の形態の実施例 22による液晶表示装置の構成を示す図 である。
圆 25]本発明の第 1の実施の形態の実施例 22による液晶表示装置の他の構成を示 す図である。 圆 26]本発明の第 1の実施の形態の実施例 23によるバックライトユニットの構成を示 す断面図である。
圆 27]本発明の第 1の実施の形態の実施例 23によるバックライトユニットの他の構成 を示す断面図である。
[図 28]本発明の第 1の実施の形態の実施例 23によるバックライトユニットのさらに他 の構成を示す断面図である。
[図 29]本発明の第 1の実施の形態の実施例 23によるノ ックライトユニットのまたさらに 他の構成を示す断面図である。
圆 30]本発明の第 1の実施の形態の実施例 24によるバックライトユニットの構成を示 す断面図である。
圆 31]本発明の第 1の実施の形態の実施例 24によるバックライトユニットの構成を示 す断面図である。
圆 32]本発明の第 1の実施の形態の実施例 24によるバックライトユニットの他の構成 を示す断面図である。
圆 33]本発明の第 1の実施の形態の実施例 25によるバックライトユニットの構成を示 す断面図である。
圆 34]本発明の第 1の実施の形態の実施例 25によるバックライトユニットの他の構成 を示す断面図である。
[図 35]従来のバックライトユニットの構成を示す図である。
圆 36]本発明の第 1の実施の形態の実施例 26によるバックライトユニットの構成を示 す断面図である。
圆 37]本発明の第 1の実施の形態の実施例 26によるバックライトユニットの他の構成 を示す断面図である。
[図 38]従来の液晶表示装置の概略構造を示す図である。
圆 39]本発明の第 2の実施の形態の実施例 1による液晶表示装置 130の構成を示す 図である。
圆 40]本発明の第 2の実施の形態の実施例 1による液晶表示装置 130の構成を示す 要部断面図である。 [図 41]本発明の第 2の実施の形態の実施例 1によるノ ックライトユニットの放熱部 109 bの構成を示す図である。
圆 42]本発明の第 2の実施の形態の実施例 1による液晶表示装置 130の構成を示す 要部断面図である。
圆 43]本発明の第 2の実施の形態の実施例 2によるバックライトユニットの構成を示す 要部断面図である。
圆 44]本発明の第 2の実施の形態の実施例 2によるバックライトユニットの他の構成を 示す要部断面図である。
圆 45]本発明の第 2の実施の形態の実施例 3による液晶表示装置 130の構成を示す 要部断面図である。
[図 46]本発明の第 2の実施の形態の実施例 4によるバックライトユニットの LED115a の構成を示す図である。
[図 47]従来のバックライトユニットの光源固定部材 170近傍の構成を示す図である。 圆 48]本発明の第 2の実施の形態の実施例 4によるバックライトユニットの光源固定部 材 115近傍の構成を示す図である。
[図 49]本発明の第 2の実施の形態の実施例 6によるモニタ装置用途向けの液晶表示 装置の構成を示す図である。
[図 50]本発明の第 2の実施の形態の実施例 6による液晶表示装置 130の他の構成を 示す図である。
圆 51]本発明の第 2の実施の形態の実施例 7による液晶表示装置 130の構成を示す 断面図である。
[図 52]本発明の第 3の実施の形態の実施例 1による液晶表示装置の概略の基本構 成を示す図である。
圆 53]本発明の第 3の実施の形態の実施例 1による液晶表示装置の概略構成を示 す図である。
圆 54]本発明の第 3の実施の形態の実施例 1による液晶表示装置の概略構成を示 す図である。
圆 55]本発明の第 3の実施の形態の実施例 1による液晶表示装置の概略構成を示 す図である。
[図 56]本発明の第 3の実施の形態の実施例 1によるバックライトユニットであって、 LE D配列単位群 241のピッチ長 Lpと気体空間 30の高さ Hとの比 LpZHと、ノ ックライト ユニットの光射出面の色ムラとの関係を示すグラフである。
圆 57]本発明の第 3の実施の形態の実施例 2による液晶表示装置の概略構成を示 す図である。
[図 58]本発明の第 3の実施の形態の実施例 2によるバックライトユニットであって、 LE D配列単位群 241のピッチ長 Lpと気体空間 30の高さ Hとの比 LpZHと、ノ ックライト ユニットの光射出面の色ムラとの関係を示すグラフである。
[図 59]本発明の第 3の実施の形態の実施例 2によるバックライトユニットであって、透 過型拡散板 240の透過率(%)及び板厚 (mm)と色ムラとの関係を示す図である。 圆 60]本発明の第 4の実施の形態による液晶表示装置の斜視図である。
圆 61]本発明の第 4の実施の形態の実施例 1による液晶表示装置の断面図である。
[図 62]本発明の第 4の実施の形態の実施例 1によるノ ックライトユニットであって、保 温部材 203a、 203bの有無〖こよる LEDモジュール 201a、 201bの温度ばらつきを示 すグラフである。
[図 63]本発明の第 4の実施の形態の実施例 1によるバックライトユニットであって、 LE Dモジュール 201a、 201b内の温度差が所定温度以下となる、光源固定部材 115a、 115bの長さ Lmと総厚さ との関係を示すグラフである。
圆 64]本発明の第 4の実施の形態の実施例 2による液晶表示装置の断面図である。 圆 65]本発明の第 4の実施の形態の実施例 3による液晶表示装置の断面図である。
[図 66]本発明の第 4の実施の形態の実施例 4による液晶表示装置を表示画面の裏 面側から見た状態を示す図である。
圆 67]本発明の第 4の実施の形態の実施例 4による液晶表示装置の比較例としての 液晶表示装置を表示画面の裏面側力 見た状態を示す図である。
[図 68]本発明の第 4の実施の形態の実施例 4によるバックライトユニットであって、 LE Dモジュール 201a、 201bへの投入電力に対する温度の変化を示すグラフである。
[図 69]本発明の第 4の実施の形態の実施例 4によるバックライトユニットであって、コ の字型熱伝導部材 212への保護カバー 216の取り付け構造を説明する図である。
[図 70]従来の液晶表示装置の概略構造を示す図である。
符号の説明
1、 2、 2a、 2b、 2c バックライトユニット
10、 107、 157 反射シー卜 20、 20a, 20b、 106、 156 導光板
21、 106c 光射出面
22 散乱ドット
23 入光面
24、 25 突起部
26 両面反射シート
27 対向面
28 両面拡散反射シート
30 気体空間
40 拡散板
42、 104、 154 拡散シード
44、 58 ミラー反射シート
46 ミラー反射板
48 光
50、 113、 113a, 113b, 159a LED
50a LED発光群
51 光源
52、 159、 201a, 201b LEDモジュール
54 リフレクタ
56 LED実装基板
60 ハウジング
64、 218a, 218b 放熱フィン
66 高赤外線放射率シート
70 カラーセンサ 72 センサ基板
73 光量センサ
74 TFT基板
76 対向基板
77 CF層
78 液晶層
79 BM
80、 102、 152 液晶表示パネル
81 表示領域
82 カバー
84 レンズシート
86、 103、 153 偏光シー卜
87 偏光板
88 シール材
90 スキャンドライバフレキ
92 データドライバフレキ
94 制御回路基板
96 フレキシブルフラットケーブル
108 背面板
109a, 109b 放熱部
130 液晶表示装置
101、 151 フロントカノ 一
105、 155 プラスチックフレーム
106a 光入射面
106b 導光領域
110 液晶駆動回路 l l la、 l l lb、 214、 218 ヒートシンク 112 熱伝導反射板
114a 熱連結部材 115、 115a, 115b, 170 光源固定部材 116 揷入孔部
117a, 117b, 200a, 200b L型熱伝導部材 118b, 119b 熱伝導シー卜
120 前面力パー
121 背面力パー
124 熱放射部
125、 126a, 126b ネジ止め部
140、 140' リード端子
159b, 161、 163 FPC
160 タツチパネル
172 反射板
202、 240 透過型拡散板
203aゝ 203b 保温咅附
204a, 204b 接触面
205 光学シート
206、 206a, 206b 放熱面
208, 232 支持部材
210a, 210b 内包型熱伝導部材
212 コの字型熱伝導部材
216、 230 保護カノ一
220 回路基板
222 回路基板固定部
225 保護カバー固定部
226 ネジ
228 固定部
241 LED配列単位群
245、 247 側壁反射板 252 散乱面
252a 散乱印刷面 252b 内部散乱型印刷面 252c 透明レンズ 254 プリズムシート

Claims

請求の範囲
[1] 離散光源手段と、反射手段と、導光手段と、光混合手段 Aと、光混合手段 Bとを有 し、
前記反射手段、前記導光手段、前記光混合手段 A、及び前記光混合手段 Bは、こ の順番に重ねられ、
前記離散光源手段は、異なるスペクトル又は異なる発光量の個別光源を前記導光 手段の入光面近傍に配列したものであり、
前記導光手段の前記反射手段に対向する面又は前記光混合手段 Aに対向する面 には、前記導光手段を伝播する光を前記反射手段側又は前記光混合手段 A側に取 り出す光取出し手段が設けられてあり、
前記光混合手段 Aは、異なるスペクトルの色光又は異なる光量の光を主として面内 方向にお 、て混合して均一化する手段であり、
前記光混合手段 Bは、異なる角度の光を面内の同一点において混合して角度的に 配光し直すことにより、照明光色と照明光量を面内で均一にする手段であること を特徴とするバックライトユニット。
[2] 請求項 1記載のバックライトユニットにおいて、
前記導光手段は、光射出面と対向する面側に前記光取出し手段を有し、 前記反射手段は、前記導光手段の前記光取出し手段側に配置され、
前記離散光源手段は、複数の LEDと、前記 LEDの周囲に配置されたリフレクタとを 有し、
前記光混合手段 Bは、前記導光手段の光射出面との間に所定の間隔を介して配 置されていること
を特徴とするバックライトユニット。
[3] 請求項 1又は 2に記載のバックライトユニットにおいて、
前記光混合手段 Aは、前記導光手段と前記光混合手段 Bとで挟まれた所定厚さの 気体空間であること
を特徴とするバックライトユニット。
[4] 請求項 3記載のバックライトユニットにおいて、 前記所定厚さは 2〜50mmであること
を特徴とするバックライトユニット。
[5] 請求項 1乃至 4のいずれか 1項に記載のバックライトユニットにおいて、
前記光取出し手段は、前記導光手段に印刷された散乱ドットであること を特徴とするバックライトユニット。
[6] 請求項 1乃至 4のいずれか 1項に記載のバックライトユニットにおいて、
前記光取出し手段は、微細な凹凸形状であること
を特徴とするバックライトユニット。
[7] 請求項 1乃至 4のいずれか 1項に記載のバックライトユニットにおいて、
前記光取出し手段は、微細なレンズ形状であること
を特徴とするバックライトユニット。
[8] 請求項 1乃至 7のいずれか 1項に記載のバックライトユニットにおいて、
前記光取出し手段は、前記入光面近傍では配置密度が低ぐ前記入光面から離れ るとともに配置密度が高くなるように配置されて 、ること
を特徴とするバックライトユニット。
[9] 請求項 1乃至 8のいずれか 1項に記載のバックライトユニットにおいて、
前記光取出し手段は、前記入光面力 所定距離までは設けられて 、な 、こと を特徴とするバックライトユニット。
[10] 請求項 9記載のバックライトユニットにおいて、
前記所定距離は 2〜50mmであること
を特徴とするバックライトユニット。
[11] 請求項 1乃至 10のいずれか 1項に記載のバックライトユニットにおいて、
前記離散光源手段は、 R発光 LED、 G発光 LED及び B発光 LEDをそれぞれ複数 有すること
を特徴とするバックライトユニット。
[12] 請求項 11記載のバックライトユニットにお 、て、
前記 R発光 LED、 G発光 LED及び B発光 LEDは、前記入光面の長手方向に沿つ て概ね均等間隔で直線状に配置されていること を特徴とするバックライトユニット。
[13] 請求項 11又は 12に記載のバックライトユニットにおいて、
前記 R発光 LED、 G発光 LED及び B発光 LEDは、 LED実装基板の長手方向に沿 つて直線状に実装され、前記 LED実装基板の短手方向の一方に偏って配置されて 、ること
を特徴とするバックライトユニット。
[14] 請求項 13記載のバックライトユニットにおいて、
前記 LED実装基板の前記導光手段側表面は、ミラー反射面又は拡散反射面であ ること
を特徴とするバックライトユニット。
[15] 請求項 1乃至 14のいずれか 1項に記載のバックライトユニットにおいて、
前記光混合手段 Bとして拡散板が用いられて 、ること
を特徴とするバックライトユニット。
[16] 請求項 1乃至 14のいずれ力 1項に記載のバックライトユニットにおいて、
前記光混合手段 Bとして拡散シートが用いられて 、ること
を特徴とするバックライトユニット。
[17] 請求項 1乃至 16のいずれか 1項に記載のバックライトユニットにおいて、
前記光混合手段 Aの側面がミラー反射面又は拡散反射面であること
を特徴とするバックライトユニット。
[18] 請求項 1乃至 17のいずれか 1項に記載のバックライトユニットにおいて、
前記光混合手段 Aの側面にカラーセンサが配置されていること
を特徴とするバックライトユニット。
[19] 請求項 18記載のバックライトユニットにおいて、
前記カラーセンサは、前記離散光源手段が配置されていない側の側面の概ね中 央部に配置されていること
を特徴とするバックライトユニット。
[20] 請求項 1乃至 17のいずれか 1項に記載のバックライトユニットにおいて、
前記導光手段の前記反射手段に対向する面側であって前記入光面から少なくとも 10mm以上離れた位置に、カラーセンサがセンサ面を前記導光手段側に向けて配 置されていること
を特徴とするバックライトユニット。
[21] 請求項 13又は 14に記載のバックライトユニットにおいて、
前記 LED実装基板の裏面側に放熱板又は放熱フィンを有すること
を特徴とするバックライトユニット。
[22] 請求項 21記載のバックライトユニットにおいて、
前記放熱板又は放熱フィンの表面には、高熱放射部材が設けられて 、ること を特徴とするバックライトユニット。
[23] 請求項 21又は 22に記載のバックライトユニットにおいて、
前記導光板を保持するハウジングを有し、
前記ハウジングは高熱放射部材で形成されていること
を特徴とするバックライトユニット。
[24] 請求項 13又は 14又は 21又は 22のいずれか 1項に記載のバックライトユニットにお いて、
前記導光板を保持するハウジングを有し、
前記 LED実装基板は L字状の形状を有し、前記ハウジングに密着して!/ヽること を特徴とするバックライトユニット。
[25] 請求項 24記載のバックライトユニットにおいて、
前記ハウジングは高熱放射部材で形成されていること
を特徴とするバックライトユニット。
[26] 請求項 1乃至 25のいずれか 1項に記載のバックライトユニットにおいて、
前記導光手段は 2つの導光板を有し、
前記 2つの導光板は、前記入光面に対向する対向面同士を突き合わせて配置され ていること
を特徴とするバックライトユニット。
[27] 請求項 26記載のバックライトユニットにおいて、
前記 2つの導光板は、前記入光面側の厚さが厚く前記対向面側の厚さが薄いくさ び形状を有すること
を特徴とするバックライトユニット。
[28] 請求項 26又は 27に記載のバックライトユニットにおいて、
前記 2つの導光板の前記対向面間にミラー反射部材又は拡散反射部材を有するこ と
を特徴とするバックライトユニット。
[29] 請求項 1乃至 25のいずれか 1項に記載のバックライトユニットにおいて、 前記導光 手段は、前記入光面側の厚さが厚ぐ前記入光面に対向する対向面側の厚さが薄い くさび形状の導光板を有すること
を特徴とするバックライトユニット。
[30] 請求項 29記載のバックライトユニットにおいて、
前記導光板の前記光射出面は、前記光混合手段 Bとの間に所定の間隙を介して 配置されていること
を特徴とするバックライトユニット。
[31] 請求項 29又は 30に記載のバックライトユニットにおいて、
前記導光板は、前記光混合手段 Bに対し、前記光射出面が傾斜し、前記光射出面 に対向する面がほぼ平行に配置されて 、ること
を特徴とするバックライトユニット。
[32] 請求項 29乃至 31のいずれか 1項に記載のバックライトユニットにおいて、
前記導光板を 2つ有し、
前記 2つの導光板は、前記対向面間に所定の間隙を設けて配置されていること を特徴とするバックライトユニット。
[33] 請求項 32記載のバックライトユニットにおいて、
前記反射手段は、面内中央部近傍で前記光混合手段 Bとの距離が最小となるよう に凸状に形成されていること
を特徴とするバックライトユニット。
[34] 請求項 1乃至 16又は 21乃至 25のいずれか 1項に記載のバックライトユニットにお いて、 前記導光手段は、前記導光手段の前記反射手段に対向する面に対して所定の角 度で傾斜する、断面が山状の前記光射出面を有すること
を特徴とするバックライトユニット。
[35] 請求項 11乃至 34のいずれ力 1項に記載のバックライトユニットにおいて、
前記 R発光 LED、前記 G発光 LED及び前記 B発光 LEDは、前記入光面の一端部 から他端部まで長手方向に沿って、前記 G発光 LED、前記 R発光 LED及び前記 B 発光 LEDがこの順に隣接して並び、さらに前記 B発光 LEDに隣接して、前記 R発光 LED,前記 G発光 LED及び前記 B発光 LEDが所定の順序で複数隣接して配置さ れて ヽる LED発光群が複数並び、さらに前記 LED発光群に隣接して前記 R発光 LE D及び前記 G発光 LEDがこの順に隣接して配置されていること
を特徴とするバックライトユニット。
[36] 請求項 35記載のバックライトユニットにおいて、
前記 LED発光群は、前記一端部側から前記他端部側に向かって、前記 G発光 LE D、前記 R発光 LED、前記 G発光 LED及び前記 B発光 LEDがこの順に隣接して配 置されていること
を特徴とするバックライトユニット。
[37] 請求項 35記載のバックライトユニットにおいて、
前記 LED発光群は、前記一端部側から前記他端部側に向かって、前記 R発光 LE D、前記 G発光 LED、前記 R発光 LED及び前記 B発光 LEDがこの順に隣接して配 置されていること
を特徴とするバックライトユニット。
[38] 導光板と光源部とを備えたバックライトユニットと、前記導光板の光射出面側に配置 された液晶表示パネルとを有する液晶表示装置であって、
前記バックライトユニットとして、請求項 1乃至 28のいずれか 1項に記載のバックライ トユニットが用いられて 、ること
を特徴とする液晶表示装置。
[39] 請求項 38記載の液晶表示装置において、
前記バックライトユニットと前記液晶表示パネルとの間に、レンズシート又は偏光シ ートが配置されていること
を特徴とする液晶表示装置。
[40] 導光板と前記導光板の少なくとも 1つの側端面近傍に配置された光源部とを備えた サイドライト型のバックライトユニットと、前記導光板の光射出面側に配置された液晶 表示パネルとを有する液晶表示装置であって、
前記液晶表示パネルの周辺部にはフレキシブル基板又はプリント基板が配置され ており、
前記フレキシブル基板又はプリント基板は、前記光源部を覆わな!/ヽように配置され ていること
を特徴とする液晶表示装置。
[41] 請求項 40記載の液晶表示装置において、
前記フレキシブル基板又はプリント基板は、前記光源部の上部近傍に折り畳まれて 配置されていること
を特徴とする液晶表示装置。
[42] 請求項 40又は 41に記載の液晶表示装置にお 、て、
前記フレキシブル基板又はプリント基板は、前記導光板の前記光源部が配置され て 、な ヽ側端面側に引き出され、前記液晶表示パネルを駆動する制御回路部に接 続されていること
を特徴とする液晶表示装置。
[43] 請求項 40乃至 42のいずれか 1項に記載の液晶表示装置において、
前記光源部は、前記導光板の入光面の辺に沿う方向に配列した複数の LEDを有 すること
を特徴とする液晶表示装置。
[44] 導光板と光源部と制御部とを備えたバックライトユニットと、前記導光板の光射出面 側に配置された液晶表示パネルとを有する液晶表示装置であって、
前記液晶表示パネルは、前記バックライトユニット側から R光、 G光、 B光がそれぞ れ射出する微小領域を表示画素とは別に有しており、前記微小領域の観察者側に は光量を検出する光量センサがそれぞれ配置されており、 前記制御部は、前記光量に基づ!、て前記光源部を制御すること
を特徴とする液晶表示装置。
[45] 異なるスペクトル又は異なる発光量の個別光源を有する離散光源手段と、
前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前記光 入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前記光 を射出する光射出面とを有する導光手段と、
前記離散光源手段で生じた熱を伝導する熱伝導手段と、
前記光射出面の裏面側に配置され、前記熱伝導手段を伝導した前記熱を放熱す る放熱手段と
を有することを特徴とするバックライトユニット。
[46] 請求項 45記載のバックライトユニットにおいて、
前記熱伝導手段は、前記導光手段に沿って曲げられて、断面が L字形状に形成さ れた L型熱伝導部材を有することを特徴とするバックライトユニット。
[47] 請求項 45又は 46に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記導光手段に沿って曲げられて、断面が L字形状に形成さ れた、前記離散光源手段を固定する光源固定部材を有することを特徴とするバックラ イトユニット。
[48] 請求項 47記載のバックライトユニットにお 、て、
前記 L型熱伝導部材又は前記光源固定部材の少なくとも一方は、前記放熱手段に 熱的に接触して 、ることを特徴とするノ ックライトユニット。
[49] 請求項 45乃至 48のいずれ力 1項に記載のバックライトユニットにおいて、
前記導光手段と前記放熱手段との間に、前記導光手段を保護する保護手段を有し 前記保護手段は、前記熱伝導手段に熱的に接触していることを特徴とするバックラ イトユニット。
[50] 請求項 49記載のバックライトユニットにおいて、
前記保護手段は、前記 L型熱伝導部材又は前記光源固定部材の少なくとも一方に 熱的に接触して 、ることを特徴とするノ ックライトユニット。
[51] 請求項 45乃至 50のいずれ力 1項に記載のバックライトユニットにおいて、 前記離散光源手段は、 LEDを有することを特徴とするバックライトユニット。
[52] 請求項 51記載のバックライトユニットにおいて、
前記 LEDは、 DIP型であることを特徴とするバックライトユニット。
[53] 請求項 45乃至 52のいずれ力 1項に記載のバックライトユニットにおいて、
前記離散光源手段は、熱伝導率の高い材料で形成され、発生した前記熱を前記 熱伝導手段に伝導すると共に、射出光を反射して前記導光手段に導ぐ前記光の射 出側が開口された熱伝導反射部材で覆われていることを特徴とするバックライトュ- ッ卜。
[54] 請求項 53記載のバックライトユニットにおいて、
前記熱伝導反射部材は、前記離散光源手段を覆う内壁面に光反射手段を有する ことを特徴とするバックライトユニット。
[55] 異なるスペクトル又は異なる発光量の個別光源を有する離散光源手段と、前記離 散光源手段から射出した光を入射する光入射面を備えた一端面と、前記光入射面 から入射した前記光を導光する導光領域と、前記導光領域を導光した前記光を射出 する光射出面とを有する導光手段と、前記離散光源手段で生じた熱を伝導する熱伝 導手段と、前記光射出面の裏面側に配置され、前記熱伝導手段を伝導した前記熱 を放熱する放熱手段とを有するバックライトユニットと、 前記バックライトユニットの光 射出面側に配置された液晶表示パネルと、
熱放射性の高い材料で形成され、前記バックライトユニットと熱的に接触して前記 離散光源手段で生じた熱を放熱する、前記バックライトユニットと前記液晶表示パネ ルとを収納する収納手段と
を有することを特徴とする液晶表示装置。
[56] 請求項 55記載の液晶表示装置において、
前記バックライトユニットは、請求項 46乃至 54のいずれか 1項に記載のバックライト ユニットが用いられて 、ることを特徴とする液晶表示装置。
[57] 請求項 55又は 56に記載の液晶表示装置において、
前記収納手段は、前記導光手段と前記放熱手段との間に配置された、前記導光手 段を保護する保護手段に熱的に接触していることを特徴とする液晶表示装置。
[58] 請求項 55乃至 57のいずれか 1項に記載の液晶表示装置において、
前記収納手段は、前記放熱手段に熱的に接触して 、ることを特徴とする液晶表示 装置。
[59] 請求項 57又は 58に記載の液晶表示装置において、
前記保護手段又は前記放熱手段の少なくとも一方は、前記収納手段にネジ止めさ れて固着されていることを特徴とする液晶表示装置。
[60] 請求項 55乃至 59のいずれか 1項に記載の液晶表装置において、
前記バックライトユニットは、前記導光手段と前記液晶表示パネルとの間に拡散手 段を有し、
前記導光手段の前記光射出面の面積は、前記液晶表示パネルの表示領域の面 積又は前記拡散手段の面積より小さいことを特徴とする液晶表示装置。
[61] 請求項 60記載の液晶表示装置において、
前記導光手段の前記光入射面と、前記光入射面に対向する面との長さは、同方向 に測った前記液晶表示パネルの表示領域の長さ又は前記拡散手段の長さより短い ことを特徴とする液晶表示装置。
[62] 請求項 60又は 61に記載の液晶表示装置にお!、て、
前記バックライトユニットは、前記導光手段と前記拡散手段との間に、前記導光手 段側の開口面積が前記拡散手段側の開口面積より狭い枠状部材を有することを特 徴とする液晶表示装置
[63] 離散光源手段と、反射手段 Aと、導光手段と、光混合手段 Aと、光混合手段 Bとを 有し、
前記反射手段 A、前記導光手段、前記光混合手段 A、及び前記光混合手段 Bは、 この順番に重ねられ、
前記離散光源手段は、異なるスペクトル又は異なる発光量の個別光源を前記導光 手段の入光面近傍に配列したものであり、
前記導光手段の前記反射手段 Aに対向する面又は前記光混合手段 Aに対向する 面には、前記導光手段を伝播する光を前記反射手段 A側又は前記光混合手段 A側 に取り出す光取出し手段が設けられてあり、
前記光混合手段 Aの高さを Hとし、前記離散光源手段の配列の周期性の最小単位 の長さを Lpとすると、 0≤LpZH≤2. 5の関係が成り立つこと
を特徴とするバックライトユニット。
[64] 請求項 63記載のバックライトユニットにおいて、
前記光混合手段 Aは、前記導光手段と前記光混合手段 Bとで挟まれた気体空間で あることを特徴とするノ ックライトユニット。
[65] 請求項 63又は 64に記載のバックライトユニットにおいて、
前記光混合手段 Aの側面に配置された反射手段 Bをさらに有することを特徴とする ノ ックライトユニット。
[66] 請求項 65記載のバックライトユニットにおいて、
前記反射手段 Bは、散乱型の反射板であることを特徴とするバックライトユニット。
[67] 請求項 66記載のバックライトユニットにおいて、
前記反射板は、ポリカーボネート榭脂で形成されて ヽることを特徴とするバックライト ユニット。
[68] 請求項 63乃至 67のいずれ力 1項に記載のバックライトユニットにおいて、
前記光混合手段 Bは、透過型拡散板であることを特徴とするバックライトユニット。
[69] 請求項 68記載のバックライトユニットにおいて、
前記透過型拡散板は、透過率が 80%以下であり、板厚が 2mm以上のバルタ型で あることを特徴とするノ ックライトユニット。
[70] 請求項 63乃至 69のいずれ力 1項に記載のバックライトユニットにおいて、
前記離散光源手段は、 R発光 LED、 G発光 LED及び B発光 LEDをそれぞれ複数 有することを特徴とするノ ックライトユニット。
[71] 請求項 70記載のバックライトユニットにおいて、
前記離散光源手段の配列の周期性の最小単位の長さ Lpは、前記 R発光 LED、前 記 G発光 LED及び前記 B発光 LEDの少なくとも 1つを有する LED配列単位群の配 置ピッチであることを特徴とするバックライトユニット。
[72] 請求項 63乃至 71のいずれ力 1項に記載のバックライトユニットにおいて、 前記光混合手段 Bに隣接して配置されてほぼ直交する方向に入射する光を反射す る反射手段 Cをさらに有することを特徴とするバックライトユニット。
[73] 請求項 72記載のバックライトユニットにおいて、
前記反射手段 Cは、プリズムシートであることを特徴とするバックライトユニット。
[74] 対向配置された一対の基板と、前記一対の基板間に封止された液晶とを備えた液 晶表示パネルと、
前記液晶表示パネルの背面に配置された請求項 1乃至 73のいずれか 1項に記載 のノ ックライトユニットと
を有することを特徴とする液晶表示装置。
[75] 異なるスペクトル又は異なる発光量の個別光源を有する離散光源手段と、
前記離散光源手段から射出した光を入射する光入射面を備えた一端面と、前記光 入射面から入射した前記光を導光する導光領域と、前記導光領域を導光した前記光 を射出する光射出面とを有する導光手段と、
前記離散光源手段で生じた熱を伝導する熱伝導手段と、
前記熱伝導手段の外表面の一部を覆って熱的に接触する接触面を備えて前記熱 伝導手段の温度をほぼ均一に保温する保温手段と
を有することを特徴とするバックライトユニット。
[76] 請求項 75記載のバックライトユニットにおいて、
前記熱伝導手段は、前記熱を放熱する放熱面を有することを特徴とするバックライ トユニット。
[77] 請求項 76記載のバックライトユニットにおいて、
前記放熱面は、赤外線放射率が高くなるように表面処理が施されて 、ることを特徴 とするバックライトユニット。
[78] 請求項 77記載のバックライトユニットにおいて、
前記表面処理は、アルマイト処理であることを特徴とするバックライトユニット。
[79] 請求項 77記載のバックライトユニットにおいて、
前記表面処理は、塗装であることを特徴とするノ ックライトユニット。
[80] 請求項 76乃至 79のいずれ力 1項に記載のバックライトユニットにおいて、 前記接触面から前記接触面の裏面側までの前記保温手段の熱抵抗は、前記熱の 流入部から前記放熱面までの前記熱伝導手段の熱抵抗より高いことを特徴とするバ ックライトユニット。
[81] 請求項 80記載のバックライトユニットにおいて、
前記保温手段の前記熱抵抗は、前記接触面に平行な面内での前記熱伝導手段の 熱抵抗より高いことを特徴とするノ ックライトユニット。
[82] 請求項 75乃至 81のいずれ力 1項に記載のバックライトユニットにおいて、
前記保温手段は、ポリカーボネート榭脂で形成されて 、ることを特徴とするバックラ イトユニット。
[83] 請求項 76乃至 82のいずれ力 1項に記載のバックライトユニットにおいて、
前記導光手段は、前記一端面の対向面に前記光入射面をさらに有し、 前記離散光源手段は、前記一端面側及び前記対向面側にそれぞれ配置されてい ることを特徴とするノ ックライトユニット。
[84] 請求項 83記載のバックライトユニットにおいて、
前記一端面側に配置された前記離散光源手段に投入される総電力は、前記対向 面側に配置された前記離散光源手段に投入される総電力と異なっていることを特徴 とするバックライトユニット。
[85] 請求項 83又は 84に記載のバックライトユニットにおいて、
前記離散光源手段の前記異なるスペクトル又は異なる発光量の個別光源毎にそれ ぞれ供給される電力は、前記一端面側に配置された前記離散光源手段と、前記対 向面側に配置された前記離散光源手段とで異なっていることを特徴とするバックライ トユニット。
[86] 請求項 83乃至 85のいずれ力 1項に記載のバックライトユニットにおいて、
前記光射出面の裏面側に配置されて前記熱伝導手段を所定の間隙に保持する保 持手段をさらに有することを特徴とするバックライトユニット。
[87] 請求項 86記載のバックライトユニットにおいて、
前記保持手段は、前記熱伝導手段に熱的に接触していることを特徴とするバックラ イトユニット。
[88] 請求項 86又は 87に記載のバックライトユニットにおいて、
前記保持手段は、前記導光手段の裏面に対向する面の反対側に前記放熱面を有 することを特徴とするノ ックライトユニット。
[89] 請求項 76乃至 88のいずれ力 1項に記載のバックライトユニットにおいて、
前記光射出面の裏面側に配置されて前記熱伝導手段を伝導した前記熱を放熱す る放熱手段をさらに有することを特徴とするバックライトユニット。
[90] 請求項 83乃至 88のいずれ力 1項に記載のバックライトユニットにおいて、
前記光射出面の裏面側に配置されて前記熱伝導手段を伝導した前記熱を放熱す る放熱手段をさらに有し、
前記放熱手段は、前記一端面側及び前記対向面側にそれぞれ配置された前記離 散光源手段近傍まで延びて形成されていることを特徴とするバックライトユニット。
[91] 請求項 89又は 90に記載のバックライトユニットにおいて、
前記放熱手段の外表面の少なくとも一部は、前記放熱面を有することを特徴とする ノ ックライトユニット。
[92] 請求項 89乃至 91のいずれ力 1項に記載のバックライトユニットにおいて、
前記放熱手段は、ヒートシンクを有することを特徴とするノ ックライトユニット。
[93] 請求項 92記載のバックライトユニットにおいて、
前記ヒートシンクの外表面の少なくとも一部は、前記放熱面を有することを特徴とす るバックライトュ-ッ卜。
[94] 請求項 76乃至 93のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記光射出面及び前記接触面にそれぞれほぼ直交する面内 で L字形状に形成された L型熱伝導部材を有することを特徴とするバックライトュニッ
[95] 請求項 94記載のバックライトユニットにおいて、
前記 L型熱伝導部材は、前記光射出面の裏面に対向する面の反対側に前記放熱 面を有することを特徴とするバックライトユニット。
[96] 請求項 76乃至 93のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記保温手段を挟んで内包する内包型熱伝導部材を有する ことを特徴とするバックライトユニット。
[97] 請求項 96記載のバックライトユニットにおいて、
前記内包型熱伝導部材は、前記接触面にほぼ平行な面内で前記放熱面を有する ことを特徴とするバックライトユニット。
[98] 請求項 83乃至 90のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記一端面側及び前記対向面側にそれぞれ配置された前記 離散光源手段の両方で発生した前記熱を伝導するように一体化されて前記光射出 面及び前記接触面にそれぞれほぼ直交する面内でコの字形状に形成されたコの字 型熱伝導部材を有することを特徴とするバックライトユニット。
[99] 請求項 98記載のバックライトユニットにおいて、
前記コの字型熱伝導部材は、前記光射出面の裏面に対向する面の反対側に前記 放熱面を有することを特徴とするバックライトユニット。
[100] 請求項 76乃至 93のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記光射出面及び前記接触面にそれぞれほぼ直交する面内 で L字形状に形成されて前記離散光源手段を固定する L型光源固定部材を有するこ とを特徴とするバックライトユニット。
[101] 請求項 100記載のバックライトユニットにおいて、
前記 L型光源固定部材は、前記光射出面の裏面に対向する面の反対側に前記放 熱面を有することを特徴とするバックライトユニット。
[102] 請求項 83乃至 90のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段は、前記一端面側及び前記対向面側にそれぞれ配置された前記 離散光源手段が固定されて前記光射出面及び前記接触面にそれぞれほぼ直交す る面内でコの字形状に形成されたコの字型光源固定部材を有することを特徴とする ノ ックライトユニット。
[103] 請求項 102記載のバックライトユニットにおいて、
前記コの字型光源固定部材は、前記光射出面の裏面に対向する面の反対側に前 記放熱面を有することを特徴とするバックライトユニット。
[104] 請求項 76乃至 103のいずれ力 1項に記載のバックライトユニットにおいて、 前記放熱面は、所定の電気回路が実装された回路基板を熱的に接触させて固定 する回路基板固定部と、
前記回路基板固定部とは異なる場所で熱的に接触させて前記回路基板の保護力 バーを固定する保護カバー固定部と
を有することを特徴とするバックライトユニット。
[105] 請求項 104記載のバックライトユニットにおいて、
前記保護カバーの表裏面の少なくとも一部は、前記放熱面を有することを特徴とす るバックライトュ-ッ卜。
[106] 請求項 75乃至 105のいずれ力 1項に記載のバックライトユニットにおいて、
前記熱伝導手段の厚さを tlとし、前記離散光源手段を固定する光源固定部材の 厚さを t2とし、前記個別光源の配列方向の前記光源固定部材の長さを Lm (但し、 tl 、 t2及び Lmは同じ単位)とすると、
Lm/ (tl +t2)≤300
の関係式が成り立つことを特徴とするバックライトユニット。
[107] 対向配置された一対の基板と、前記一対の基板間に封止された液晶とを備えた液 晶表示パネルと、
前記液晶表示パネルの背面に配置された請求項 75乃至 106のいずれか 1項に記 載のバックライトユニットと を有することを特徴とする液晶表示装置。
PCT/JP2005/005952 2004-05-21 2005-03-29 バックライトユニット及びそれを備えた液晶表示装置 WO2005114045A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB0623872A GB2430071B (en) 2004-05-21 2005-03-29 Backlight unit and liquid crystal display device having the same
DE112005001170T DE112005001170B4 (de) 2004-05-21 2005-03-29 Hinterleuchtungseinheit und Flüssigkristalldisplay mit dieser
US11/562,181 US7488104B2 (en) 2004-05-21 2006-11-21 Backlight unit and liquid crystal display device having the same
US12/023,311 US7513661B2 (en) 2004-05-21 2008-01-31 Backlight unit and liquid crystal display device having the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004151963 2004-05-21
JP2004-151963 2004-05-21
JP2004-322184 2004-11-05
JP2004322184 2004-11-05
JP2005-053978 2005-02-28
JP2005053978A JP4590283B2 (ja) 2004-05-21 2005-02-28 バックライトユニット及びそれを備えた液晶表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/562,181 Continuation US7488104B2 (en) 2004-05-21 2006-11-21 Backlight unit and liquid crystal display device having the same

Publications (1)

Publication Number Publication Date
WO2005114045A1 true WO2005114045A1 (ja) 2005-12-01

Family

ID=35428460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005952 WO2005114045A1 (ja) 2004-05-21 2005-03-29 バックライトユニット及びそれを備えた液晶表示装置

Country Status (6)

Country Link
US (2) US7488104B2 (ja)
JP (1) JP4590283B2 (ja)
DE (2) DE112005003799B4 (ja)
GB (1) GB2430071B (ja)
TW (1) TWI303739B (ja)
WO (1) WO2005114045A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286467A (ja) * 2006-04-19 2007-11-01 Nec Lcd Technologies Ltd バックライト装置及び液晶表示装置
JP2008165101A (ja) * 2007-01-04 2008-07-17 Hitachi Displays Ltd Led照明装置及びこれを用いた液晶表示装置
EP2063174A1 (en) * 2006-09-13 2009-05-27 Sharp Kabushiki Kaisha Backlight device and display device using same
US7600908B2 (en) * 2006-02-10 2009-10-13 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Light source module and backlight system using the same
US8061884B2 (en) * 2006-08-25 2011-11-22 Philips Lumileds Lighting Company, Llc Backlight using LED parallel to light guide surface
CN104471305A (zh) * 2012-07-30 2015-03-25 夏普株式会社 照明装置、显示装置以及电视接收装置
WO2016179699A1 (en) * 2015-05-14 2016-11-17 Fluxwerx Illumination Inc. Light emitting panel assemblies with bottom-mounted light source and light guides therefor
CN106647039A (zh) * 2017-03-01 2017-05-10 武汉亿维登科技发展有限公司 一种透红外的背光模组

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
KR100687926B1 (ko) 2005-06-13 2007-02-27 삼성전자주식회사 액정표시장치
TWI266125B (en) * 2005-07-15 2006-11-11 Au Optronics Corp Direct type backlight module
KR100978045B1 (ko) 2006-03-13 2010-08-26 삼성전자주식회사 액정패널조립체 및 이를 포함하는 액정표시장치
EP2439565A3 (en) * 2006-07-21 2013-04-10 Fujifilm Corporation Unitary light guide plate, light guide plate unit, planar lighting device and liquid crystal display device
WO2008023542A1 (fr) * 2006-08-23 2008-02-28 Nippon Seiki Co., Ltd. Dispositif d'affichage à cristaux liquides
JP4851283B2 (ja) * 2006-09-22 2012-01-11 富士フイルム株式会社 撮影装置および発光方法
US8031292B2 (en) * 2006-11-21 2011-10-04 Samsung Electronics Co., Ltd. Liquid crystal display comprising first and second point light source assemblies wherein a first support substrate is larger than the second support substrate, and a first groove of a lower container is deeper than a second groove
JP2010510639A (ja) * 2006-11-22 2010-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 照明システム及びディスプレイ装置
CN101191951A (zh) * 2006-12-01 2008-06-04 鸿富锦精密工业(深圳)有限公司 背光模组
TWI324278B (en) 2006-12-06 2010-05-01 Au Optronics Corp Backlight module
CN101196590A (zh) * 2006-12-07 2008-06-11 鸿富锦精密工业(深圳)有限公司 导光板及具有该导光板的背光模组
KR101341123B1 (ko) * 2006-12-15 2013-12-13 삼성디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정표시장치
CN101583824B (zh) 2007-01-24 2012-03-21 夏普株式会社 背光结构
JP4973213B2 (ja) * 2007-01-31 2012-07-11 三菱電機株式会社 光源装置、面状光源装置および表示装置
US8226259B2 (en) * 2007-04-17 2012-07-24 Koninklijke Philips Electronics N.V. Textile light emitting device
TWI439641B (zh) * 2007-05-20 2014-06-01 3M Innovative Properties Co 用於側面發光型背光之準直光注入器
CN101681056B (zh) 2007-05-20 2013-03-27 3M创新有限公司 中空光循环腔型显示器背光源
TW200916916A (en) * 2007-05-20 2009-04-16 3M Innovative Properties Co White light backlights and the like with efficient utilization of colored LED sources
TWI467283B (zh) 2007-05-20 2015-01-01 3M Innovative Properties Co 具有半反射鏡組件之再循環背光
CN101681057B (zh) 2007-05-20 2012-07-04 3M创新有限公司 光循环型薄壁中空腔体背光源
JP4589368B2 (ja) * 2007-05-31 2010-12-01 株式会社 日立ディスプレイズ 液晶表示装置
US8089582B2 (en) 2007-05-31 2012-01-03 Hitachi Displays, Ltd. Liquid crystal display device comprising at least one groove having an end portion that stops short of the non-adjacent opposite side surfaces and extends in a direction perpendicular to the non-adjacent side surfaces
JP4945325B2 (ja) * 2007-06-01 2012-06-06 株式会社日立製作所 液晶表示装置
JP5135908B2 (ja) * 2007-06-20 2013-02-06 三菱電機株式会社 表示装置および液晶表示装置
JP4877552B2 (ja) * 2007-07-13 2012-02-15 Necディスプレイソリューションズ株式会社 照明装置
JP5111972B2 (ja) * 2007-08-07 2013-01-09 株式会社ジャパンディスプレイイースト 液晶表示装置
CN201093372Y (zh) * 2007-08-31 2008-07-30 群康科技(深圳)有限公司 光源单元及采用该光源单元的显示模组
JP2009058768A (ja) * 2007-08-31 2009-03-19 Showa Denko Kk 表示装置、発光装置
US20090059378A1 (en) * 2007-09-05 2009-03-05 Brian Thompson Devices, Systems, and/or Methods for Providing Illumination
DE102007042104A1 (de) * 2007-09-05 2009-03-12 Osram Opto Semiconductors Gmbh Display-Anordnung sowie Verfahren zur Ansteuerung einer Displayeinheit einer Displayanordnung
US20100214510A1 (en) * 2007-10-12 2010-08-26 Yasumori Kuromizu Backlight unit and liquid crystal display device
JP2009099271A (ja) * 2007-10-12 2009-05-07 Harison Toshiba Lighting Corp 中空式面照明装置
US7661865B2 (en) * 2007-10-17 2010-02-16 Nec Lcd Technologies, Ltd. Liquid crystal display backlight and liquid crystal display device
TW200921207A (en) 2007-11-06 2009-05-16 Ind Tech Res Inst Light-emitting module
JP2009123489A (ja) * 2007-11-14 2009-06-04 Sony Corp 面光源装置及び液晶表示装置
JP4968014B2 (ja) * 2007-11-22 2012-07-04 ソニー株式会社 バックライト装置及び液晶表示装置
TW200928465A (en) * 2007-12-18 2009-07-01 Mintek Thin Film Corp Light guide plate and backlight module
KR101448905B1 (ko) * 2007-12-28 2014-10-13 삼성디스플레이 주식회사 백라이트 어셈블리 및 이를 포함하는 표시 장치
EP2255231A1 (en) * 2008-02-07 2010-12-01 3M Innovative Properties Company Hollow backlight with structured films
WO2009105450A1 (en) * 2008-02-22 2009-08-27 3M Innovative Properties Company Backlights having selected output light flux distributions and display systems using same
TWI390284B (zh) * 2008-05-15 2013-03-21 Wintek Corp 背光模組
US8757858B2 (en) 2008-06-04 2014-06-24 3M Innovative Properties Company Hollow backlight with tilted light source
US8301002B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
TWI384293B (zh) * 2008-08-06 2013-02-01 Au Optronics Corp 背光模組及液晶顯示裝置
US20110134346A1 (en) * 2008-08-22 2011-06-09 Sharp Kabushiki Kaisha Display device and television receiver
JP2010054718A (ja) * 2008-08-27 2010-03-11 Sony Corp 表示装置
JP4627796B2 (ja) * 2008-09-18 2011-02-09 株式会社日立製作所 液晶表示装置
CN101676769B (zh) 2008-09-18 2011-12-21 株式会社日立制作所 液晶显示装置
USD631183S1 (en) 2008-09-23 2011-01-18 Lsi Industries, Inc. Lighting fixture
US8215799B2 (en) * 2008-09-23 2012-07-10 Lsi Industries, Inc. Lighting apparatus with heat dissipation system
AU2012216275B9 (en) * 2008-09-23 2013-07-25 Lsi Industries, Inc. Lighting apparatus with heat dissipation system
JP5287084B2 (ja) * 2008-09-24 2013-09-11 凸版印刷株式会社 面発光装置及び表示装置
JP5271649B2 (ja) * 2008-09-25 2013-08-21 株式会社日立製作所 液晶表示装置
JP2010086670A (ja) * 2008-09-29 2010-04-15 Stanley Electric Co Ltd 面光源装置
JP5106341B2 (ja) 2008-10-02 2012-12-26 株式会社ジャパンディスプレイイースト 表示装置
GB2464916B (en) 2008-10-21 2013-07-31 Iti Scotland Ltd Light Guides
JP5525537B2 (ja) * 2008-11-05 2014-06-18 コーニンクレッカ フィリップス エヌ ヴェ 発光装置
KR20100054414A (ko) * 2008-11-14 2010-05-25 삼성전자주식회사 백라이트 어셈블리 및 이를 포함하는 액정표시 장치
JP2010146784A (ja) * 2008-12-17 2010-07-01 Sony Corp 平面発光装置
US11256025B2 (en) 2009-01-26 2022-02-22 Azumo, Inc. Film-based lightguide with adhered component between fold region and extraction region
JP2010177076A (ja) * 2009-01-30 2010-08-12 Hitachi Ltd タンデム型面光源装置及びそれを用いた液晶表示装置
WO2010100786A1 (ja) * 2009-03-02 2010-09-10 シャープ株式会社 光源装置および液晶表示装置
EP2404202B1 (en) * 2009-03-05 2016-08-10 Design LED Products Limited Light guides
WO2010100504A1 (en) 2009-03-05 2010-09-10 Iti Scotland Limited Light guides
US8328406B2 (en) * 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
TW201040433A (en) * 2009-05-14 2010-11-16 Young Lighting Technology Corp Illumination apparatus
JP5413272B2 (ja) * 2009-05-28 2014-02-12 豊田合成株式会社 車両用ルームランプ
KR20120052289A (ko) 2009-07-09 2012-05-23 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 자유 형태 조명 모듈
EP2452217B1 (en) 2009-07-10 2020-05-06 Signify Holding B.V. Lighting module
GB0912676D0 (en) * 2009-07-22 2009-08-26 Lpa Excil Electronics A luminaire
CA2769018A1 (en) * 2009-07-23 2011-01-27 Planar Systems, Inc. Field serviceable display device
CN102472453A (zh) * 2009-07-30 2012-05-23 夏普株式会社 边光式照明装置、液晶显示装置以及电视接收装置
KR20110012780A (ko) * 2009-07-31 2011-02-09 엘지디스플레이 주식회사 액정표시장치
TWI392927B (zh) * 2009-08-11 2013-04-11 Au Optronics Corp 低電磁式觸控感應干擾之背光模組及顯示裝置
KR101580921B1 (ko) * 2009-08-14 2015-12-30 삼성디스플레이 주식회사 표시 장치
CN101994933B (zh) * 2009-08-14 2013-01-09 鸿富锦精密工业(深圳)有限公司 照明装置
BR112012003745A2 (pt) * 2009-08-21 2019-09-24 3M Innovantive Properties Company métodos e produtos para iluminação de tecidos
KR20110020055A (ko) * 2009-08-21 2011-03-02 엘지이노텍 주식회사 백라이트 유닛
KR101607572B1 (ko) 2009-10-12 2016-03-31 삼성디스플레이 주식회사 백라이트 어셈블리 및 그를 포함하는 표시 장치
US8570270B2 (en) * 2009-10-19 2013-10-29 Apple Inc. Backlight unit color compensation techniques
KR20110050270A (ko) * 2009-11-06 2011-05-13 삼성전자주식회사 도광판, blu 및 디스플레이 장치
JP5472798B2 (ja) * 2009-11-30 2014-04-16 日本精機株式会社 表示装置
KR101744906B1 (ko) * 2010-01-20 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 표시 장치의 구동 방법
JP5028501B2 (ja) 2010-01-20 2012-09-19 株式会社ジャパンディスプレイイースト 液晶表示装置
KR101073439B1 (ko) * 2010-02-05 2011-10-17 우리조명 주식회사 엘이디 조명장치
US8858052B2 (en) * 2010-03-31 2014-10-14 Global Lighting Technology Inc. Backlight module
TWI435144B (zh) * 2010-04-12 2014-04-21 Young Lighting Technology Corp 背光模組
US9651729B2 (en) 2010-04-16 2017-05-16 Flex Lighting Ii, Llc Reflective display comprising a frontlight with extraction features and a light redirecting optical element
TWI408305B (zh) * 2010-04-27 2013-09-11 Wintek Corp 光源模組
KR101025543B1 (ko) * 2010-05-03 2011-04-04 엘지이노텍 주식회사 백라이트 유닛 및 이를 포함하는 디스플레이 장치
KR101054768B1 (ko) 2010-06-11 2011-08-05 엘지이노텍 주식회사 백라이트 유닛 및 표시장치
CN102971579B (zh) * 2010-06-28 2015-02-04 松下液晶显示器株式会社 液晶显示装置以及电视接收器
CN101943357A (zh) * 2010-07-14 2011-01-12 深圳市华星光电技术有限公司 可动态调整亮度的背光模块及其方法
JP5948025B2 (ja) * 2010-08-06 2016-07-06 株式会社半導体エネルギー研究所 液晶表示装置
JP5533611B2 (ja) * 2010-12-03 2014-06-25 日立コンシューマエレクトロニクス株式会社 バックライトユニット及びこれを用いた映像表示装置
TWI459060B (zh) * 2010-12-20 2014-11-01 Pegatron Corp 導光體
TWI406058B (zh) 2010-12-20 2013-08-21 Au Optronics Corp 背光模組
US8646953B2 (en) * 2011-01-11 2014-02-11 Nittoh Kogaku K.K. Light guiding body and light emitting device
DE102011003569B4 (de) * 2011-02-03 2013-03-21 Leica Microsystems (Schweiz) Ag Flächenlichtquelle für eine Durchlichtbeleuchtungseinrichtung eines Mikroskops
KR101791152B1 (ko) * 2011-03-29 2017-10-30 삼성디스플레이 주식회사 광공급 어셈블리 및 이를 갖는 양방향 대화형 표시장치
JP5234138B2 (ja) * 2011-05-06 2013-07-10 船井電機株式会社 放熱板
TWI531840B (zh) 2011-05-24 2016-05-01 友達光電股份有限公司 背光模組
US20130070189A1 (en) * 2011-09-20 2013-03-21 Shenzhen China Star Optoelectronics Technology Co. Ltd. Liquid crystal display device
US8797480B2 (en) * 2011-10-18 2014-08-05 Dai Nippon Printing Co., Ltd. Light guide plate, surface light source device, and display device
WO2013060351A1 (de) * 2011-10-24 2013-05-02 Osram Ag Beleuchtungseinrichtung mit einer optischen anordnung zur farbmischung von lichtquellen
US9621838B2 (en) 2011-10-25 2017-04-11 Funai Electric Co., Ltd. Display device and television apparatus
JP5654137B2 (ja) * 2011-10-25 2015-01-14 三菱電機株式会社 照明ユニット及びそれを用いた画像読取装置
US9256311B2 (en) * 2011-10-28 2016-02-09 Atmel Corporation Flexible touch sensor
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US8508694B2 (en) * 2011-12-13 2013-08-13 Apple Inc. Display with dual-edge light-emitting-diode backlight
WO2013121998A1 (ja) * 2012-02-17 2013-08-22 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
US20130258641A1 (en) * 2012-03-29 2013-10-03 Yuchun Hsiao Backplane and Backlight Module Comprising Backplane
TWI491835B (zh) * 2012-04-13 2015-07-11 Radiant Opto Electronics Corp 照明燈具與照明設備
TWI510743B (zh) * 2012-04-13 2015-12-01 Radiant Opto Electronics Corp 照明燈具與照明設備
CN202629814U (zh) * 2012-05-31 2012-12-26 京东方科技集团股份有限公司 侧入式背光模组
US9857519B2 (en) 2012-07-03 2018-01-02 Oree Advanced Illumination Solutions Ltd. Planar remote phosphor illumination apparatus
JP6130164B2 (ja) * 2012-08-07 2017-05-17 株式会社エンプラス 面光源装置および表示装置
US20150212261A1 (en) * 2012-08-08 2015-07-30 Sharp Kabushiki Kaisha Lighting apparatus, display apparatus, and television receiver
CN102901006A (zh) * 2012-08-28 2013-01-30 深圳市华星光电技术有限公司 液晶显示装置及其背光模组和背板
CN102840523A (zh) * 2012-09-07 2012-12-26 史勇 一种led吸顶灯
WO2014054510A1 (ja) * 2012-10-03 2014-04-10 シャープ株式会社 光源装置及びそれを備える表示装置
KR101429487B1 (ko) * 2012-10-19 2014-08-13 희성전자 주식회사 도광판 및 이를 구비하는 백라이트 장치
CN104736919B (zh) * 2012-10-26 2017-03-08 夏普株式会社 背光源和显示装置
KR102072429B1 (ko) * 2013-02-04 2020-02-03 엘지이노텍 주식회사 차량용 조명장치, 방열장치 및 조명장치
US20140240643A1 (en) * 2013-02-22 2014-08-28 Kevin Joseph Hathaway Thermal design for high output led backlights
US11009646B2 (en) 2013-03-12 2021-05-18 Azumo, Inc. Film-based lightguide with interior light directing edges in a light mixing region
US20140267981A1 (en) * 2013-03-12 2014-09-18 Sunheng Technology Co., Ltd. Backlight module and liquid crystal display device having the same
JP5657727B2 (ja) * 2013-03-22 2015-01-21 シャープ株式会社 液晶表示装置及びテレビ受信装置
TWI490568B (zh) 2013-03-22 2015-07-01 E Ink Holdings Inc 顯示裝置及其前光模組
JP5867740B2 (ja) 2013-04-26 2016-02-24 コニカミノルタ株式会社 発光装置及び画像形成装置
KR102103904B1 (ko) * 2013-04-30 2020-04-23 엘지디스플레이 주식회사 디스플레이 장치
CN103438368B (zh) * 2013-07-30 2015-09-23 达亮电子(苏州)有限公司 板灯模组及背光模组
US20150309248A1 (en) * 2014-04-24 2015-10-29 Axlen, Inc. Led-based lighting devices and systems based on light panels having transparent waveguides
CN105225628B (zh) * 2014-06-19 2017-10-24 元太科技工业股份有限公司 显示装置、显示模块及其像素结构
KR20160000500A (ko) * 2014-06-24 2016-01-05 삼성디스플레이 주식회사 백라이트 어셈블리 및 그를 포함하는 표시장치
JP6393101B2 (ja) 2014-07-16 2018-09-19 株式会社日立エルジーデータストレージ 光モジュールおよび投写型画像表示装置
KR102246296B1 (ko) * 2014-12-19 2021-04-30 삼성디스플레이 주식회사 표시 장치
CN104566023A (zh) * 2014-12-24 2015-04-29 深圳市华星光电技术有限公司 背光模组及显示器
TWI567717B (zh) * 2015-01-23 2017-01-21 明基電通股份有限公司 用來偵測面板模組之背光強度之感應裝置及面板設備
CN204460089U (zh) * 2015-02-13 2015-07-08 杭州康榕进出口有限公司 导光板以及led灯具
KR20170004205A (ko) * 2015-07-01 2017-01-11 엘지전자 주식회사 도광판 및 이를 포함하는 면광원 장치
US20170052310A1 (en) * 2015-08-17 2017-02-23 Ledyoung Technology Corporation Light-emitting signboard
US9798068B2 (en) 2015-08-20 2017-10-24 Keio University Illumination module
US10208935B2 (en) 2015-12-15 2019-02-19 Wangs Alliance Corporation LED lighting apparatus with adjustable beam angle lens
US10941924B2 (en) 2015-12-15 2021-03-09 Wangs Alliance Corporation LED lighting methods and apparatus
US11686459B2 (en) 2015-12-15 2023-06-27 Wangs Alliance Corporation LED lighting methods and apparatus
DE102015225722A1 (de) * 2015-12-17 2017-06-22 Continental Automotive Gmbh Touchscreen mit einer haptischen Rückmeldevorrichtung
US11150516B2 (en) * 2016-04-05 2021-10-19 Saturn Licensing Llc Display and electronic apparatus
US10356963B2 (en) * 2016-04-08 2019-07-16 Shenzhen China Star Optoelectronics Technology Co., Ltd. Ultrathin LCD module and liquid crystal display
US10820455B2 (en) 2016-11-22 2020-10-27 Samsung Display Co., Ltd. Display device
TWI612251B (zh) 2017-01-03 2018-01-21 聯嘉光電股份有限公司 發光裝置
US11812525B2 (en) 2017-06-27 2023-11-07 Wangs Alliance Corporation Methods and apparatus for controlling the current supplied to light emitting diodes
CN108102918B (zh) * 2018-01-03 2020-07-07 京东方科技集团股份有限公司 一种培养皿装置及细胞膜片的培养方法
CN113287061A (zh) * 2019-01-07 2021-08-20 3M创新有限公司 用于图像形成设备的包括由相对的冷镜和热镜形成的光学腔体的背光源
US10952323B2 (en) * 2019-06-27 2021-03-16 Dus Operating Inc. Cable assembly for in-molded electronics assembly
US10857885B1 (en) * 2019-06-27 2020-12-08 Aptiv Technologies Limited In-vehicle display
US11513274B2 (en) 2019-08-01 2022-11-29 Azumo, Inc. Lightguide with a light input edge between lateral edges of a folded strip
TWI813920B (zh) 2019-12-06 2023-09-01 美商伊路米納有限公司 電子裝置及其封閉件
CN110985903B (zh) 2019-12-31 2020-08-14 江苏舒适照明有限公司 一种灯模组
US11598517B2 (en) 2019-12-31 2023-03-07 Lumien Enterprise, Inc. Electronic module group
WO2021150462A1 (en) * 2020-01-20 2021-07-29 1/1Leia Inc. Micro-slit scattering element-based backlight, multiview display, and method provding light exclusion zone
WO2021163082A1 (en) * 2020-02-10 2021-08-19 Red Bank Technologies Llc Led down lights
CN111503556B (zh) 2020-04-23 2020-11-27 江苏舒适照明有限公司 一种射灯结构
CN112015006B (zh) * 2020-09-14 2022-07-12 武汉华星光电技术有限公司 可弯折背光模组及显示面板
DE202020004269U1 (de) 2020-10-10 2022-01-26 Hermedia Verlag Gmbh Löschbares Grafikfeld als Schiefertafelersatzprodukt
DE102020006228A1 (de) 2020-10-10 2022-04-14 Hermedia Verlag Gmbh Löschbares Grafikfeld als Schiefertafelersatzprodukt
US11874559B2 (en) 2021-09-23 2024-01-16 Apple Inc. Display modules with direct-lit backlight units
US11802682B1 (en) 2022-08-29 2023-10-31 Wangs Alliance Corporation Modular articulating lighting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341797A (ja) * 2001-05-11 2002-11-29 Victor Co Of Japan Ltd 表示装置
JP2003344662A (ja) * 2002-05-30 2003-12-03 Teikoku Printing Inks Mfg Co Ltd バックライトユニット用導光板の製造方法、及び紫外線硬化型インキ
JP2004022347A (ja) * 2002-06-17 2004-01-22 Casio Comput Co Ltd 面光源及びそれを用いた表示装置
JP2004079461A (ja) * 2002-08-22 2004-03-11 Sanyo Electric Co Ltd 面光源装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503290A (ja) * 1993-11-28 1998-03-24 スマートライト・リミテッド 透視装置およびワークステーション
JP3368110B2 (ja) * 1995-08-01 2003-01-20 キヤノン株式会社 光源装置及び光学機器
JPH09189908A (ja) 1996-01-10 1997-07-22 Casio Comput Co Ltd 液晶表示装置
JPH11295714A (ja) * 1998-04-08 1999-10-29 Enplas Corp 液晶表示パネル、液晶表示装置及びシート部材
US6134092A (en) * 1998-04-08 2000-10-17 Teledyne Lighting And Display Products, Inc. Illumination device for non-emissive displays
DE10065728B4 (de) * 2000-12-29 2009-04-23 Robert Bosch Gmbh Hinterleuchtungsvorrichtung und Flüssigkristallanzeige sowie deren Verwendung in einem Kraftfahrzeug
US6697130B2 (en) * 2001-01-16 2004-02-24 Visteon Global Technologies, Inc. Flexible led backlighting circuit
US6717559B2 (en) * 2001-01-16 2004-04-06 Visteon Global Technologies, Inc. Temperature compensated parallel LED drive circuit
US6930737B2 (en) * 2001-01-16 2005-08-16 Visteon Global Technologies, Inc. LED backlighting system
US7262752B2 (en) * 2001-01-16 2007-08-28 Visteon Global Technologies, Inc. Series led backlight control circuit
JP4815675B2 (ja) 2001-02-02 2011-11-16 ソニー株式会社 液晶表示装置及び液晶表示素子用のバックライト装置
CN1213335C (zh) * 2001-02-19 2005-08-03 皇家菲利浦电子有限公司 照明系统和显示装置
JP4115844B2 (ja) * 2001-05-08 2008-07-09 ルミレッズ ライティング ネザーランズ ベスローテン フェンノートシャップ 照明システム及びディスプレイ装置
EP1423641B1 (en) * 2001-08-27 2007-09-26 Koninklijke Philips Electronics N.V. Light panel with enlarged viewing window
JP3980890B2 (ja) 2002-01-23 2007-09-26 シャープ株式会社 導光板並びにそれを備えた光源装置及び表示装置
JP2003331628A (ja) * 2002-03-05 2003-11-21 Seiko Epson Corp 照明装置、液晶装置及び電子機器
US6753661B2 (en) * 2002-06-17 2004-06-22 Koninklijke Philips Electronics N.V. LED-based white-light backlighting for electronic displays
JP2004095390A (ja) * 2002-08-30 2004-03-25 Fujitsu Display Technologies Corp 照明装置及び表示装置
AU2002330310A1 (en) * 2002-09-19 2004-04-08 Matsushita Electric Industrial Co., Ltd. Illumination unit and liquid crystal display comprising it
KR100852579B1 (ko) * 2003-03-31 2008-08-14 샤프 가부시키가이샤 면 조명 장치 및 그것을 이용한 액정 표시 장치
JP4489423B2 (ja) * 2003-12-26 2010-06-23 シャープ株式会社 バックライト及び液晶表示装置
US6966674B2 (en) * 2004-02-17 2005-11-22 Au Optronics Corp. Backlight module and heat dissipation structure thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002341797A (ja) * 2001-05-11 2002-11-29 Victor Co Of Japan Ltd 表示装置
JP2003344662A (ja) * 2002-05-30 2003-12-03 Teikoku Printing Inks Mfg Co Ltd バックライトユニット用導光板の製造方法、及び紫外線硬化型インキ
JP2004022347A (ja) * 2002-06-17 2004-01-22 Casio Comput Co Ltd 面光源及びそれを用いた表示装置
JP2004079461A (ja) * 2002-08-22 2004-03-11 Sanyo Electric Co Ltd 面光源装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7600908B2 (en) * 2006-02-10 2009-10-13 Hong Fu Jin Precision Industry (Shenzhen) Co., Ltd. Light source module and backlight system using the same
JP2007286467A (ja) * 2006-04-19 2007-11-01 Nec Lcd Technologies Ltd バックライト装置及び液晶表示装置
US8259281B2 (en) * 2006-04-19 2012-09-04 Nlt Technologies, Ltd. LCD backlight unit having a heat sink and a heat receiving member
US8061884B2 (en) * 2006-08-25 2011-11-22 Philips Lumileds Lighting Company, Llc Backlight using LED parallel to light guide surface
EP2063174A1 (en) * 2006-09-13 2009-05-27 Sharp Kabushiki Kaisha Backlight device and display device using same
EP2063174A4 (en) * 2006-09-13 2011-01-26 Sharp Kk BACKLIGHTING DEVICE AND THIS USE DISPLAY DEVICE
US8192055B2 (en) 2006-09-13 2012-06-05 Sharp Kabushiki Kaisha Backlight device and display device using the same
JP2008165101A (ja) * 2007-01-04 2008-07-17 Hitachi Displays Ltd Led照明装置及びこれを用いた液晶表示装置
CN104471305A (zh) * 2012-07-30 2015-03-25 夏普株式会社 照明装置、显示装置以及电视接收装置
WO2016179699A1 (en) * 2015-05-14 2016-11-17 Fluxwerx Illumination Inc. Light emitting panel assemblies with bottom-mounted light source and light guides therefor
US10830415B2 (en) 2015-05-14 2020-11-10 Lumenpulse Group Inc./Group Lumenpulse Inc. Light emitting panel assemblies with bottom-mounted light source and light guides therefor
CN106647039A (zh) * 2017-03-01 2017-05-10 武汉亿维登科技发展有限公司 一种透红外的背光模组

Also Published As

Publication number Publication date
GB2430071B (en) 2009-06-24
DE112005001170T5 (de) 2007-04-12
US20080129927A1 (en) 2008-06-05
TW200600927A (en) 2006-01-01
GB0623872D0 (en) 2007-01-10
DE112005003799B4 (de) 2012-07-12
JP2006156324A (ja) 2006-06-15
GB2430071A (en) 2007-03-14
US20070153548A1 (en) 2007-07-05
JP4590283B2 (ja) 2010-12-01
DE112005001170B4 (de) 2012-07-12
TWI303739B (en) 2008-12-01
US7488104B2 (en) 2009-02-10
US7513661B2 (en) 2009-04-07

Similar Documents

Publication Publication Date Title
JP4590283B2 (ja) バックライトユニット及びそれを備えた液晶表示装置
JP5064528B2 (ja) バックライトユニット及びそれを備えた液晶表示装置
JP4482473B2 (ja) 液晶表示装置
KR101398499B1 (ko) 백라이트 유닛 및 표시 기기
JP4640188B2 (ja) 面状光源装置
TWI432846B (zh) 背光單元及具有此背光單元的液晶顯示器
TWI408440B (zh) 背光裝置及液晶顯示裝置(一)
KR101529556B1 (ko) 방열이 용이한 액정표시소자
US8704964B2 (en) Liquid crystal display device
KR101777527B1 (ko) 백라이트 모듈 및 이를 이용한 액정 디스플레이 모듈
US8259281B2 (en) LCD backlight unit having a heat sink and a heat receiving member
US10424691B2 (en) Display apparatus having quantum dot unit or quantum dot sheet and method for manufacturing quantum dot unit
KR20120117137A (ko) 발광다이오드어셈블리 및 그를 포함한 액정표시장치
US9733408B2 (en) Display device and television device
KR100896093B1 (ko) 직하형 백라이트 유닛
US20120188747A1 (en) Lighting device and display device
KR101818464B1 (ko) 액정표시장치
JP5098778B2 (ja) 照明装置、液晶表示装置及び電子機器
JP4760699B2 (ja) 面状光源装置およびこれを用いた画像表示装置
US10754085B2 (en) Lighting device and display device
KR101770640B1 (ko) 백라이트 유닛 및 이를 포함하는 액정표시장치
US20150177446A1 (en) Display device and television device
KR102177238B1 (ko) 엘이디 어셈블리 및 이를 구비한 백라이트 유닛
KR20120122756A (ko) 방열이 용이한 액정표시소자
KR102146288B1 (ko) 엘이디 어셈블리 및 이를 구비한 백라이트 유닛

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1120050011704

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 0623872.9

Country of ref document: GB

Ref document number: 0623872

Country of ref document: GB

RET De translation (de og part 6b)

Ref document number: 112005001170

Country of ref document: DE

Date of ref document: 20070412

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112005001170

Country of ref document: DE

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607