WO2005112856A1 - Intravaginal device with fluid transport plates - Google Patents

Intravaginal device with fluid transport plates Download PDF

Info

Publication number
WO2005112856A1
WO2005112856A1 PCT/US2005/017107 US2005017107W WO2005112856A1 WO 2005112856 A1 WO2005112856 A1 WO 2005112856A1 US 2005017107 W US2005017107 W US 2005017107W WO 2005112856 A1 WO2005112856 A1 WO 2005112856A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
storage element
fluid storage
plate
fluid transport
Prior art date
Application number
PCT/US2005/017107
Other languages
French (fr)
Inventor
Curt Binner
Samuel C. Carasso
David J. Chase
Erin Danyi
Tara Glasgow
David L. Kimball
Julia Kozorovitsky
Tony C. Ng
Original Assignee
Johnson & Johnson Consumer Companies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/848,257 external-priority patent/US20050277904A1/en
Priority claimed from US10/847,951 external-priority patent/US8247642B2/en
Priority to AU2005244893A priority Critical patent/AU2005244893B2/en
Priority to CA2566678A priority patent/CA2566678C/en
Priority to PL05749469T priority patent/PL1755515T3/en
Priority to EP05749469.2A priority patent/EP1755515B1/en
Priority to CN2005800201917A priority patent/CN1968666B/en
Priority to BRPI0510013A priority patent/BRPI0510013B8/en
Priority to JP2007513464A priority patent/JP5117186B2/en
Application filed by Johnson & Johnson Consumer Companies, Inc. filed Critical Johnson & Johnson Consumer Companies, Inc.
Publication of WO2005112856A1 publication Critical patent/WO2005112856A1/en
Priority to US11/444,792 priority patent/US7845380B2/en
Priority to US11/478,944 priority patent/US7861494B2/en
Priority to IL179267A priority patent/IL179267A0/en
Priority to NO20065608A priority patent/NO20065608L/en
Priority to US12/722,681 priority patent/US8697936B2/en
Priority to US12/722,699 priority patent/US8231753B2/en
Priority to US12/724,739 priority patent/US8028500B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/20Tampons, e.g. catamenial tampons; Accessories therefor
    • A61F13/2051Tampons, e.g. catamenial tampons; Accessories therefor characterised by the material or the structure of the inner absorbing core
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/20Tampons, e.g. catamenial tampons; Accessories therefor
    • A61F13/2082Apparatus or processes of manufacturing
    • A61F13/2085Catamenial tampons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • B29C65/7847Holding or clamping means for handling purposes using vacuum to hold at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81463General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a plurality of single pressing elements, e.g. a plurality of sonotrodes, or comprising a plurality of single counter-pressing elements, e.g. a plurality of anvils, said plurality of said single elements being suitable for making a single joint
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/748Joining plastics material to non-plastics material to natural products or their composites, not provided for in groups B29C66/742 - B29C66/746
    • B29C66/7485Natural fibres, e.g. wool, cotton

Definitions

  • the present invention relates to devices for capturing and storing body fluid intravaginally. More particularly, the present invention relates to a method of capturing body fluid intravaginally via a fluid transport element and transporting the body fluid to a fluid storage element where the fluid is stored. Additionally, this application relates to methods of making such devices
  • Intravaginal tampons are the most common example of such devices.
  • Commercially available tampons are generally compressed cylindrical masses of absorbent fibers that may be over- wrapped with an absorbent or nonabsorbent cover layer. The tampon is inserted into the human vagina and retained there for a time for the purpose of capturing and storing intravaginal bodily fluids, most commonly menstrual fluid. As intravaginal bodily fluid contacts the tampon, it should be absorbed and retained by the absorbent material of the tampon.
  • tampon and its retained fluid is removed and disposed, and if necessary, another tampon is inserted.
  • a drawback often encountered with commercially available tampons is the tendency toward premature failure, which may be defined as bodily fluid leakage from the vagina while the tampon is in place, and before the tampon is completely saturated with the bodily fluid.
  • the patent art typically describes a problem believed to occur that an unexpended, compressed tampon is unable to immediately absorb fluid. Therefore, it presumes that premature leakage may occur when bodily fluid contacts a portion of the compressed tampon, and the fluid is not readily absorbed. The bodily fluid may bypass the tampon.
  • US Pat. No. 4,212,301 discloses a unitary constructed digital tampon having a lower portion compressed preferably in the radial direction to form a rigid, rod-like element, which provides a central rigidified elongated core and an upper portion left substantially uncompressed. After insertion, the uncompressed portion may be manipulated to contact the vaginal wall to provide an immediate seal against side leakage. The uncompressed portion allows for high absorbent capacity immediately upon insertion.
  • US Pat. No. 6,358,235 discloses a "hollow" bag-like tampon that may have an interior projection made from highly compressed absorbent material.
  • the interior projection is preferably attached to the inside surface of the head of the tampon.
  • the hollow tampon portion may include at least one pleat in the absorbent outer surface and is soft and conformable. The tampon is not pre- compressed to the point where the fibers temporarily "set” and re-expand upon the absorption of fluid.
  • US Pat. No. 6,177,608 discloses a tampon having nonwoven barrier strips that are outwardly spreadable from the tampon surface to reliably close the free spaces believed to exist within a vaginal cavity.
  • the nonwoven barrier strips extend about the tampon in a circumferential direction at the surface or in a helical configuration about the tampon and purportedly conduct menstrual fluid toward the tampon surface.
  • the nonwoven barrier strips are attached to the cover by means of gluing, heat bonding, needle punching, embossing or the like and form pleats.
  • the nonwoven barrier strips are attached to the tampon blank and the blank is embossed, forming grooves extending in a longitudinal direction. While this tampon purports to direct fluid to the core, it attempts to achieve this by forming pockets of absorbent nonwoven fabric. In order to function, it appears that these pockets would have to be opened during use to allow fluid to enter. However, based upon current understandings of vaginal pressures, it is not understood how the described structure could form such an opened volume. US Pat. No. 6,206,867 (Osborn) suggests that a desirable tampon has at least a portion of which is dry expanding to cover a significant portion of the vaginal interior immediately upon deployment.
  • a tampon having a compressed central absorbent core having at least one flexible panel attached along a portion of the side surface of the core.
  • the flexible panel appears to provide the "dry-expanding" function, and it extends outwardly from the core away from the point of attachment.
  • the flexible panel contacts the inner surfaces of the vagina when the tampon is in place and purportedly directs fluid toward the absorbent core.
  • the flexible panel is typically attached to the pledget prior to compression of the pledget to form the absorbent core and remains in an uncompressed state.
  • 5,817,077 discloses a method of preserving natural moisture of vaginal epithelial tissue while a using a tampon where the tampon has an initial capillary suction pressure at the outer surface of less than about 40 mm Hg. This allows the tampon to absorb vaginal secretions without substantially drying the vaginal epithelial tissue.
  • the multiple cover layers can be used to increase the thickness of the cover material. While this represents a significant advancement in the art, this invention does not address by-pass leakage.
  • US Pat. No. 5,545,155 discloses an external absorbent article that has a set of plates separated by spacer elements.
  • the plates may be treated to affect wettability so that fluid will flow easily across the surface.
  • Extending through the upper plate is a plurality of openings, which allow fluid to flow with little restriction into the space between the upper and lower plates.
  • this external absorbent article can contain fluid gushes, but it does not appear to address the problems relating in particular to intravaginal devices, such as a tampon.
  • the intravaginal device has a fluid storage element; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element, wherein at least a portion of the outwardly oriented surface of the first plate is capable of contacting a user's vaginal epithelium.
  • the intravaginal device has a fluid storage element having an insertion end and a withdrawal end and a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element.
  • the intravaginal device has a fluid storage element having an insertion end and withdrawal end; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and longitudinal sides therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and at least one longitudinal side therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and at least one longitudinal side therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action.
  • the intravaginal device has a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; and a fluid storage element in fluid communication with the fluid transport element, the fluid storage element has an insertion end and a withdrawal end and the fluid transport element is attached to the fluid storage element at the insertion end.
  • the fluid transport element may be thermobondable, attached longitudinally, and include multiple plates.
  • Fig. lb shows a cross-sectional view of the device in Fig. la taken along line b-b.
  • Fig. lc shows the transverse cross-section shown in lb, after the introduction of a fluid between the plates of the fluid acquisition element.
  • Figs. 2a-e show various aspects and orientations of an intravaginal device of the present invention.
  • FIG. 2a shows a perspective view of a tampon having a plurality of fluid transport elements extending therefrom that are formed from a folded sheet material.
  • Fig. 2b shows a side elevation of the tampon with a plurality of fluid transport elements wrapped around the fluid storage element.
  • Fig. 2c shows a transverse cross-section along line 2c-2c in Fig. 2b.
  • Fig. 2d shows a side elevation of the tampon of Fig. 2a.
  • Fig. 2e shows a top elevation of the tampon of Fig. 2a.
  • Fig. 3 shows a transverse cross-section of an alternate embodiment having a pair of fluid transport elements partially extending into the storage element.
  • Fig. 1 shows a perspective view of a tampon having a plurality of fluid transport elements extending therefrom that are formed from a folded sheet material.
  • Fig. 2b shows a side elevation of the tampon with a plurality of fluid transport elements wrapped
  • FIG. 4a shows a side elevation of an alternate embodiment of the present invention in which a cover material is bonded to itself in the form of a bag to form a fluid transport element in fluid communication with a fluid storage element.
  • Fig. 4b shows a cross-sectional view of the device in Fig. 4a taken along line 6b-6b.
  • Fig. 5 shows a side elevation of an embodiment of the present invention in which the fluid transport element envelops the fluid storage element and is bonded at the withdrawal end to the withdrawal string.
  • Fig. 6 shows a side elevation of an embodiment of the present invention in which the fluid transport element envelops the fluid storage element and is bonded to the base of the fluid storage element.
  • FIG. 7 shows a side elevation of an embodiment of the present invention in which the fluid transport element is attached to the insertion end of the fluid storage element.
  • Fig. 8 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded to the base of the fluid storage element.
  • Fig. 9 shows a bottom plan view of the embodiment shown in Fig. 8.
  • Fig. 10 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded to the longitudinal side of the fluid storage element in a series of aligned discrete bonds.
  • Fig. 11 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded in at least one attachment zone having discrete spots of bonds on the longitudinal side of the fluid storage element.
  • Fig. 12 shows an enlarged view of a section of the embodiment shown in Fig. 11.
  • Fig. 13 shows a schematic perspective view of apparatus according to the present invention useful to manufacture an intravaginal device.
  • Fig. 14 shows the schematic perspective view of apparatus of Fig. 13 including a fluid storage element and a sheet of material prior to formation of the fluid transport element.
  • Fig. 15 shows a schematic perspective view of a male tool useful in the apparatus of Fig. 13.
  • Fig. 16 shows a transverse cross-section of a human vagina with an intravaginal device according to Fig. 2b disposed therein with one fluid transport element extending away from the fluid storage element.
  • Fig. 17 shows a transverse cross-section of a human vagina with an intravaginal device according to Fig. 2b disposed therein with the fluid transport elements remaining wrapped around the fluid storage element.
  • Fig. 18 shows the device of Fig. 2 contained in an applicator device packaging element.
  • the term "bodily fluid” and variants thereof mean bodily exudates, especially liquids that are produced by, secreted by, emanate from, and/or discharged from a human body.
  • the term "fluids” and variants thereof relate to liquids, and especially bodily fluids.
  • the term "sheet” and variants thereof relates to a portion of something that is thin in comparison to its length and breadth.
  • parallel plate and variants thereof relates to a system of at least two relatively parallel sheets that are capable of moving fluids through inter-plate capillary action.
  • the individual "plates” in the system may be flexible and/or resilient in order to move within their environment. However, they may be maintained in a substantially facing relationship with relatively constant separation at least in a localized portion of their structure (as compared with their relative length and width).
  • two sheets could be fluted, but if the flutes were "nested", the sheets would generally remain generally parallel in any given localized portion.
  • inter-plate capillary action and variants thereof mean the movement of fluid due to a pressure difference across a liquid-air meniscus created within a gap between two substantially parallel plates.
  • the two plates need not be held apart a specific distance, although they should be separable to allow fluid to move between them by inter-plate capillary action.
  • the term "porous medium” and variants thereof relates to a connected 3-dimensional solid matrix with a highly ramified network of pores and pore throats in which fluids may flow.
  • the term "separable plates” and variants thereof mean any condition of separation of the first plate and the second plate, which allows fluid to move between the plates. This includes situations in which facing surfaces of adjacent first and second plates are touching one another in portions of or across substantially all of their facing surfaces.
  • the term "in fluid communication” and variants thereof relate to elements that are arranged and configured to allow fluid to move therebetween.
  • the term “coupled” and variants thereof relate to the relationship between two portions of an integral structure that are either portions of the same material (e.g., two portions of a folded sheet) or are materials that are joined together (e.g., two separate sheets that are bonded together).
  • fluid pervious and variants thereof relate to a material that permits fluid or moisture to pass through without additional processing, such as aperturing. Therefore, for example, an untreated woven or nonwoven material is fluid pervious and a continuous, plastic film or metal foil is not.
  • a nonwoven permits fluid flow via the interstices between fibers, such that fluid can flow through, either by capillary action and/or via a pressure differential from one side of the nonwoven to the other such as the pressure experienced by a tampon in use. Referring to Fig.
  • this invention provides an intravaginal device 10 having at least one fluid transport element 12 in fluid communication with a fluid storage element 14 (Figs, la-lc show two fluid transport elements 12 located on opposite sides of the fluid storage element 14).
  • the device may also include a * withdrawal mechanism, such as a string 16.
  • the fluid storage element can be any convenient shape including cylindrical, cup like, hourglass, spherical, etc. It can be an absorbent or a fluid collection device. It can be in separate sections with the fluid transport element(s) bridging or connecting the sections.
  • the storage element can be made of any material known in the art such as cotton, rayon, polyester, superabsorbent materials, and the like.
  • the fluid storage element can be made of any composition known in the art, such as compressed fibrous webs, rolled goods, foam, and the like.
  • the material may be formed as a unitary mass or a plurality of discrete particles or agglomerations.
  • the material may be compressed to maintain a relatively stable form, or it may be left relatively uncompressed.
  • the absorbent material may include a central portion of absorbent wood pulp material.
  • the pulp may be covered by a thin absorbent woven or nonwoven fabric and may be coterminous with the fluff pad or completely envelop it on all sides.
  • Absorbent materials which are uncompressed or of low density have a much higher holding capacity for fluids than high density materials.
  • the fluid storage element 14 is an absorbent tampon.
  • Absorbent tampons are usually substantially cylindrical masses of compressed absorbent material having a central axis and a radius that defines the outer circumferential surface of the tampon.
  • Such tampons are disclosed in e.g., Haas, US Pat. No. 1,926,900; Dostal, US Pat. No. 3,811,445; Wolff, US Pat. No. 3,422,496; Friese et al., US Pat. No. 6,310,296; Leutwyler et al, US Pat. No. 5,911,712, Truman, US Pat.
  • Tampons also usually include a fluid-permeable cover (which may include or be replaced by another surface treatment) and a withdrawal string or other removal mechanism.
  • Absorbent materials useful in the formation of the absorbent body include fiber, foam, superabsorbent, hydrogels, and the like.
  • Preferred absorbent material for the present invention includes foam and fiber.
  • Absorbent foams may include hydrophilic foams, foams that are readily wetted by aqueous fluids as well as foams in which the cell walls that form the foam themselves absorb fluid.
  • Fibers may be selected from cellulosic fiber, including natural fibers (such as cotton, wood pulp, jute, and the like) and synthetic fibers (such as regenerated cellulose, cellulose nitrate, cellulose acetate, rayon, polyester, polyvinyl alcohol, polyolefin, polyamine, polyamide, polyacrylonitrile, and the like).
  • the fluid storage element may also be in the form of a collection cup. Examples of such devices are disclosed in Zoller, US Pat. No. 3,845,766 and Contente et al., US Pat. No. 5,295,984. Collection devices are designed to assume a normally open, concave configuration, with an open side facing a user's cervix.
  • the collection devices may be folded, or otherwise manipulated, to facilitate insertion into the vaginal canal
  • the fluid transport element has at least a first plate 18 and a second plate 20.
  • the first and second plates combine to provide a set of parallel plates, and the fluid transport elements 12 are shown as extending radially away from the fluid storage element 14. Additional plates may also be incorporated into each fluid transport element 12.
  • the plates are configured and arranged to allow the introduction of bodily fluid 22 to separate a plate from adjacent plate(s) (Fig. lc). At least one opening 24 allows the introduction of bodily fluids 22.
  • one or more spacer elements 26 can be inserted to establish and to maintain space between adjacent plates.
  • Fig. lb shows a pair of parallel plates prior to the introduction of a fluid.
  • Fig. lc shows the set of parallel plates separated by a bodily fluid 22, providing an inter-plate capillary gap 28 between the inwardly oriented surface 30 of the first plate 18 and the first surface 32 of the second plate 20.
  • This inter-plate capillary gap 28 is sufficient to provide inter-plate capillary action to allow the fluid transport element 12 to acquire, to spread, and to move bodily fluids 22 from the vagina to the fluid storage element 14.
  • the first plate 18 also has an outwardly oriented surface 34
  • the second plate 20 also has an opposite surface 36.
  • the plates 18, 20 can be made of almost any hydrophobic or hydrophilic material, preferably sheet-like. The thickness of each plate is not critical.
  • the sheet-like material is a relatively smooth nonwoven material.
  • the two elements may be formed of the same material.
  • materials useful for forming the fluid transport element may have properties such as thermobondability to provide means to incorporate it into the intravaginal device.
  • a representative, non-limiting list of useful materials includes polyolefins, such as polypropylene and polyethylene; polyolefin copolymers, such as ethylenevinyl acetate (“EVA”), ethylene-propylene, ethyleneacrylates, and ethylene- acrylic acid and salts thereof; halogenated polymers; polyesters and polyester copolymers; polyamides and polyamide copolymers; polyurethanes and polyurethane copolymers; polystyrenes and polystyrene copolymers; and the like.
  • the fluid transport element may also be micro-embossed or apertured.
  • the fluid transport element 12 may also be constructed from a tissue or layers of tissue.
  • the fluid transport element may be made from a fibrous nonwoven material.
  • the nonwoven material can be made from natural fibers, synthetic fibers, or a blend of synthetic and natural fibers that permit fluid to pass through to a fluid storage element.
  • the nonwoven material can be hydrophilic or hydrophobic.
  • the cover material can be used as is or can be apertured by methods known in the art to be an apertured, fluid pervious material.
  • Apertures permit relatively viscous fluid, or fluid having some solids content, such as menses, to pass relatively umimpeded through the fluid pervious material such that it can be readily absorbed by the fluid storage element.
  • the apertures permit the fluid, such as menses, to penetrate deeper into the article to improve the masking property of the article. Therefore, the fluid pervious, preferably nonwoven, fluid transport element of the present invention permits fluid transport to and absorption into the fluid storage element.
  • the fluid transport element is hydrophobic, or rendered hydrophobic, such that absorbed fluid is attracted to, or remains in, the fluid storage element, not in the fluid transport element.
  • apertures provide for improved fluid flow into the core, and better visual appearance post use.
  • fluid absorption of relatively viscous fluid can be enhanced due to the lack of any obstruction to fluid absorption via the apertures.
  • the cover remains relatively free of menses, and appears less soiled and closer to it original appearance. This provides the appearance of overall cleanliness. It may be helpful to keep the exposed surface of the fluid transport element as smooth as possible. It may also be helpful to provide it with a low coefficient of friction.
  • Plates 18 and 20 may provide at least two benefits: (1) the force required to insert the intravaginal device is reduced, and (2) it reduces the damage otherwise caused by scraping of soft, tender vaginal tissue during insertion, wearing and removal.
  • Plates 18 and 20 maybe made from the same material or alternately, plate 18 may be made from a different material than plate 20.
  • the parallel plates can have any physical structure to provide a resistance to fluid flow vector in the direction parallel to the inwardly oriented surface 30 of the first plate 18 and the first surface 32 of the second plate 20 that is less than the resistance to fluid flow vector in the direction perpendicular to the plates.
  • the plates are made from any smooth material with a non-fibrous surface and are able to transport fluid between the two layers.
  • the fluid transport element 12 should be strong enough to prevent rupturing during handling, insertion, and removal and to withstand vaginal pressures during use. It is preferable that the surfaces of the fluid transport element 12 are sufficiently wettable by the bodily fluids that the intravaginal device 10 is intended to collect (this results largely from a correlation of the surface energy of the plate surface and the bodily fluid(s)). Thus, the bodily fluid will easily wet the plate, and capillarity between the plates will draw these bodily fluids from a source to a fluid storage element that is in fluid communication with the fluid transport element. Surface treatments can be used to modify the surface energy of the plates 18, 20. In a preferred embodiment a surfactant is applied to increase the wettability of the outer or inner surfaces of the parallel plates.
  • the surfactant can be applied uniformly to either the inner or outer surfaces or it could be applied with varying coating weights in different regions.
  • a useful measure to determine the wettability of a plate surface is its contact angle with 1.0 % saline. Preferably, the contact angle with 1.0% saline is less than about 90 degrees.
  • the materials of plates can be chosen from those materials that are known in the art to have low energy surfaces.
  • a surface additive such as a non-ionic surfactant (e.g., ethoxylates), a diol, or mixtures thereof, in order to increase their wettability by bodily fluids.
  • a surface additive such as a non-ionic surfactant (e.g., ethoxylates), a diol, or mixtures thereof.
  • a non-ionic surfactant e.g., ethoxylates
  • diol e.g., a diol, or mixtures thereof
  • Other means of increasing wettability can also be used, such as by corona discharge treatment of, for example, polyethylene or polypropylene, or by caustic etching of, for example, polyester.
  • the parallel plates forming the fluid transport element can be of any flexibility as long as the material is able to transport fluid to the fluid storage element while the device is in use. It is also preferable that the fluid transport element be sufficiently flexible to provide the user with comfort while inserting, wearing, and removing the device.
  • the surfaces of the first and second plates facing each other can have a variety of surface textures, ranging from smooth to highly textured.
  • the texturing element may be included as a spacer 26.
  • the value of spacers 26 or texture may be based on the material's ability to withstand wet collapse when simultaneously subjected to compressive forces and fluid.
  • the spacer elements 26 can be separate elements applied to one or more of the plates, or they can be integral portions of a plate that extend away from one of the plate's major surfaces.
  • a representative list of such separate spacer elements includes, without limitation, foamed materials such as polystyrene foam; particles such as beads and crystals; discontinuous material such as netting, thread, wax, adhesive, any discrete element that causes a separation between the plates and the like.
  • Integral spacer elements can be thickened portions of the plate material or deformations of the plate material.
  • a representative list of such an integral spacer element includes, without limitation, nubbles, embossments, corrugations, deformations, and the like. Included in this definition are surface treatments that permanently bond a secondary material to a surface of a first. The spacer elements also increase the texture of the plates.
  • the texturing reduces the viscosity of the fluid being transported.
  • the texture can also be in a gradient.
  • the texture of the plates has a gradient from smooth near the edge of the plates where the fluid enters the fluid transport element to more textured where the fluid is absorbed.
  • the plates may be secured through means known to those of ordinary skill in the art.
  • a representative list of such securing means includes, without limitation, thermobonding, adhering, crimping, embossing, ultrasonic bonding or welding, and the like.
  • the adhesive may be applied between the spacer elements and the first and second plates.
  • the adhesive is wettable.
  • the first and second plates 18, 20 may be extensions of the same sheet-like material, e.g., formed by a fold in a sheet of material (as shown in Figs. 2a-2c), or they may be separate elements (i.e., adjacent to each other but not necessarily joined). In a folded embodiment, the material is preferably folded to form a pleat with the first and second plates facing each other.
  • FIG. 2a-2e A preferred embodiment with pleats is shown in Figs. 2a-2e, where the pleats 44 are folds in the cover material 46.
  • the pleats 44 create plates that are bendable about an infinite number of bending axes (b 1-; -b 1-; ) that are substantially parallel to the longitudinal axis (X-X) of the product, which longitudinal axis extends through the insertion end 48 and withdrawal end 50. These bending axes allow the plates to wrap around the product, either partially or completely.
  • One such bending axis ⁇ - b ⁇ ) is shown in Fig. 2a.
  • the fluid transport element 12 is in fluid communication with the fluid storage element 14 and directs fluid from the vagina to the storage element 14.
  • fluid will be directed from each fluid transport element 12 to a particular region of the fluid storage element associated with that fluid transport element.
  • the fluid will contact the fluid storage element in one interface 52. Therefore, additional fluid transport elements 12 directing fluid to additional locations of the fluid storage element 14 will improve the efficient usage of the fluid storage element 14.
  • two fluid transport elements 12 could be directed to opposite sides of the fluid storage element 14, as shown in Figs, la-lc.
  • Each additional fluid storage element 12 can direct fluid to additional interface locations 52 of the fluid storage element 14.
  • four evenly spaced fluid transport elements 12 allow fluid to be directed to each quarter of the fluid storage element 14 surface as shown in Figs 2a-e. Five or more elements would provide even more direct access.
  • the inter-plate capillary gap 28 formed by first plate 18 and second plate 20 can terminate at the interface 52 or can extend into and/or through the fluid storage element 14.
  • An example of the fluid transport element 12 extending into the fluid storage element 14 is shown in Fig. 3.
  • the first and second plates can have additional layers on top of them as long as these additional layers allow fluid to enter the plates.
  • the first and second plates can end at the boundary of the transport element or can extend into the fluid storage' element 14.
  • the fluid transport element 12 may be formed to extend from the surface of the fluid storage element 14 as in Figs, la-lc. It can be made in any convenient shape, including semicircular, triangular, square, hourglass etc.
  • the two plates of the element do not have to be completely coextensive, as long as they are at least partially in a facing relationship.
  • Parallel plates can be held in close proximity to the storage element in a variety of ways including directly or indirectly via an additional element to the storage element.
  • a variety of methods can be used to attach the fluid transport element 12 including but not limited to heat, adhesive, ultrasonic, sewing, and mechanically engaging the fluid storage element 14.
  • An example of a heat-bonded attachment 54 is shown in Fig. 2a.
  • the fluid transport element(s) 12 can be attached at the sides, insertion end 48, and/or withdrawal end 50 of the intravaginal device. Additionally, the fluid transport element(s) 12 may be attached to themselves and not to the storage element as in a relatively loose bag covering of the storage element.
  • the fluid transport element(s) 12 could also be attached to the withdrawal string.
  • the fluid transport element may be attached directly to the fluid storage element or may be attached to itself in one or more locations. Such attachment or adherence to itself or to the fluid storage element may be by any known means, including, for example, adhesive, ultrasonic, co-embossing, thermobonding, mechanical bonding (such as crimping), and the like.
  • the fluid transport element is formed of a material that is capable of being thermobonded. Alternately, the material may formed of two different materials having different melting points, at least one of which would also be capable of thermobonding. In an embodiment shown in Figs.
  • the cover material 46 substantially envelops the fluid storage element 14 (shown as a tampon), forming a bag or sack structure 56.
  • This structure provides a pair of fluid transport elements 12' formed by portions of the cover material 46.
  • the cover material 46 is draped over the insertion end 48 of the tampon with the edges of the material brought together about the withdrawal end 50 and then bonded to itself 54'.
  • the resulting fluid transport element 12' can then be folded around the tampon in the manner shown in Fig. 2b.
  • Other embodiments similar to that shown in Fig. 4 are possible.
  • Fig. 5 shows the attachment 54" of the fluid transport element 12 to the withdrawal string 16, and Fig.
  • the cover material 46 and the associated fluid transport element 12 substantially envelop the fluid storage element 14 but do not significantly affect the performance of the fluid storage element 14. For example, if the fluid storage element 14 had been compressed and expands upon exposure to fluid, the expansion of the fluid storage element 14 would not be affected or inhibited by the attachment or bonding of the fluid transport element 12 to the fluid storage element 14. In the embodiments described and shown in Figs. 4-6, it is not necessary for the fluid storage element 14 to be a unitary element. For example, the fluid storage element 14 may have multiple distinct portions or segments.
  • the segments may be attached together or may be discrete. Examples of discrete segments may be relatively loose absorbent material or compressed cellulosic tablets. However, these discrete segments could be at least partially contained to permit the fluid transport element 12 to form parallel plates, as described above.
  • the fluid transport element 12 and the fluid storage element 14 have an attachment 54 at the insertion end 48 of fluid storage element 14.
  • Pleats 44 formed in the fluid transport element 12 maybe folded around the tampon as previously shown in Fig. 2b.
  • the lower portions 60 of the sheet material may also be attached to withdrawal end 50 of the fluid storage element 14, as described above and below, to prevent inversion of the fluid transport element 12 upon withdrawal.
  • the sheet material used to form the fluid transport element 12 may initially be in a shape such that the sheet has at least one comer.
  • the sheet material is placed over the fluid storage element 14 such that at least one portion of the sheet extends away from the fluid storage element 14.
  • the sheet has a plurality of comers, and each comer may be attached to the withdrawal end 50 of the fluid storage element 14. For example, if four sets of parallel plates are desired, the sheet material may be a square.
  • the attachment may be on the outer most surface (non-embossed) or in the grooves. Attachment may take place before, during, and/or after fluid storage element 14 compression.
  • the embodiment of Figs. 8 and 9 is similar to that of Fig. 7.
  • the comers of the fluid transport element 12 are attached to the base 58 of the fluid storage element 14. As seen in Fig. 9, the comers preferably do not overlap the center of the circular base 58.
  • the fluid storage element 14 When a compressed tampon having grooves 60 is used as the fluid storage element 14, it is likely that the tampon performs optimally if permitted to expand without restriction by the fluid transport element. While some compressed tampons expand due to dry expansion, others expand when exposed to fluid.
  • a compressed tampon having grooves is the o.b.® tampon available from McNEIL-PPC, Inc., Skillman, NJ.
  • the fluid storage element 14 is a compressed tampon having an exterior surface 62 and grooves 60. Grooves 60 have an interior portion, which becomes part of the exterior surface 62 of the tampon upon absorption of fluids and the resultant tampon expansion.
  • the fluid transport element 12 is attached to the exterior surface 62 of the tampon at its withdrawal end 50, it does not extend into the tampon grooves 60. Thus, the fluid storage element 14 may expand without any interference from the fluid transport element 12. In other words, the fluid transport element 12 does not significantly limit the functionality of the fluid storage element 14.
  • Pleats 44' form in the fluid transport element 12 and may be similarly folded around the tampon as previously shown in Fig.2b. As shown in Fig. 10, a tampon having straight grooves is attached to the fluid transport element 12 using a series of heat bonds 54 along one or more single line(s) along the tampon.
  • the fluid transport element 12 may be readily attached along the longitudinal side without interfering with the expansion of the tampon.
  • the fluid transport element 12 may be attached along the longitudinal side of a tampon having spirally oriented grooves.
  • an attachment zone 64 of fluid transport element 12 extends from one lobe 66 and across groove 60 to adjacent lobe 66'.
  • Materials such as nonwoven webs have a certain amount of elasticity and may be designed to permit the tampon expansion, especially the material located within the interior portion of the grooves 60.
  • the attachment zone 64 may be oriented in any direction relative to the longitudinal axis X-X of the fluid storage element 14. As shown in Figs. 11 and 12, the attachment zone 64 comprises a matrix or other grouping of discrete bonds, such as dots or spots. This allows the interface between the fluid transport element 12 and the fluid storage element 14 to remain as open to fluid flow as possible. As previously mentioned and shown, the fluid transport element 12 may be attached to the fluid storage element 14 be any number of methods and embodiments. For example and with reference to Figs. 13-15, a tampon may be manufactured as shown in Friese, US Pat. No. 4,816,100, and either Friese et al., US Pat. No.
  • a vacuum is drawn across the forming tool 102 via a plurality of vacuum ports 116 on the face 118 of the forming tool 102 to hold the individual sheet 114 in place.
  • the blades 106 of the male tool 104 are shown arranged radially about the central aperture 112 in the male tool 104 (as shown in Fig. 15). The blades 106 cooperate to hold the fluid storage element 14 in line with the central aperture 112.
  • a pushrod (not shown) is arranged to penetrate the central aperture 112 of the male tool 104 and to bear on the base of the fluid storage element 14. In the preferred embodiment shown in Figs. 13-15, four blades 106 are arranged at equal angles about the central aperture 112.
  • Each blade 106 provides a guide edge 120 facing the fluid storage element 14 (when present) and a pleating edge 122 disposed radially outwards from the guide edge 120.
  • the pleating edge 122 may be an edge that is adjacent the guide edge 120, or it may be separated by one or ore intermediate portions of the blade 106.
  • the male tool 104 holding a fluid storage element 14 is moved along the machine axis (M-M) aligned with the central apertures 112, 112' toward the forming tool 102 carrying the individual sheet 114.
  • the insertion end 48 of the fluid storage element 14 contacts the individual sheet 114 and urges it through the central aperture 112' of the forming tool 102.
  • the pleating edges 112 of the blades 106 urge corresponding portions of the individual sheet 114 through the slots 110 of the forming tool 102 creating four sets of parallel plates 18, 20.
  • the ⁇ nobonding elements 108 extend into the space between the blades 106 to bond the four corners of the individual sheet 110 to the exterior surface 62 of the fluid storage element 14, forming the fluid transport element 12.
  • the pushrod may then continue to move the insertable device 10 into and through the central aperture 112' of the forming tool 102.
  • the fluid transport element 12 may then be folded about the fluid storage element 14.
  • the resulting insertable device may then be packaged in a hygienic overwrap as is well known in the art. While the process described above in reference to Figs. 13-15 employs blades 106 that have a guide edge 120 that is shorter than the fluid storage element 14, this relationship may be altered. For example, the blades 106 could be modified to have a guide edge 120 that is longer than the fluid storage element 14 or the system could otherwise be modified to allow the leading portions 124 to contact the individual sheet 114, first. This permits the formation of a small gap between the insertion end 48 of the tampon and the individual sheet 114 that may allow more free expansion of the tampon without restriction by the fluid transport element 14 during use.
  • fluid transport element(s) 12 can take on many configurations within the vagina.
  • a fluid transport element 12 may extend into the vagina away from the fluid storage element 14, as shown in Fig. 16.
  • the fluid transport element(s) 12 may remain wound about the fluid storage element 14, contacting the vaginal wall "W" only through the first surface 30 (Fig. 17).
  • a withdrawal mechanism such as withdrawal string 16, is preferably joined to the intravaginal device 10 for removal after use.
  • the withdrawal mechanism is preferably joined to at least the fluid storage element 14 and extends beyond at least its withdrawal end 50. Any of the withdrawal strings currently known in the art may be used as a suitable withdrawal mechanism, including without limitation, braided (or twisted) cord, yam, etc.
  • the withdrawal mechanism can take on other forms such as a ribbon, loop, tab, or the like (including combinations of currently used mechanisms and these other forms).
  • a ribbon may be twisted or braided to provide parallel plates structures.
  • Tampons are generally categorized in two classes: applicator tampons and digital tampons, and a certain amount of dimensional stability is useful for each type of tampon.
  • Applicator tampons use a relatively rigid device to contain and protect the tampon prior to use. To insert the tampon into a body cavity, the applicator containing the tampon is partially inserted into the body cavity, and the tampon can be expelled from the applicator into the body cavity.
  • digital tampons do not have an applicator to help guide them into the body cavity and require sufficient column strength to allow insertion without using an applicator. While the applicator tampon is protected by the rigid applicator device and the applicator tampon need not as have as high a degree of column strength as a digital tampon, applicator tampons do require dimensional stability (especially radial) to be acceptable for use. This dimensional stability provides assurance, for example, that the tampon will not prematurely grow and split its packaging material or become wedged in a tampon applicator. Further, the intravaginal device can be collapsed for packaging and insertion.
  • At least a portion of a major surface of the fluid transport element 12, such as the first surface 30, maybe in contact with at least a portion of an outer surface of the fluid storage element 14.
  • This can be achieved by wrapping the fluid transport element(s) around the fluid storage element 14 (as shown in Fig. 2b).
  • the fluid transport element(s) 12 may be folded or pleated (e.g., in an accordion-like manner) against the fluid storage element 14.
  • the thus-compacted device can then be packaged, (e.g., within an applicator or alone in a wrapper).
  • Fig. 18 shows a wrapped tampon within an applicator 68 (in phantom).

Abstract

An intravaginal device has a fluid storage element and at least one fluid transport element in fluid communication with the fluid storage element. The at least one fluid transport element has a first plate and a second plate coupled to the first plate. The second plate is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The at least one fluid transport element is bendable about an axis substantially parallel to the longitudinal axis of the fluid storage element. The invention also includes methods and apparatus useful in the production of an intravaginal device.

Description

Intravaginal Device with Fluid Transport Plates
Cross-Reference to Related Applications This invention is related to the following copending applications filed on even date herewith: "Intravaginal Device with Fluid Acquisition Plates and Method of Making" (US Ser. No. 60/572,055; Atty Docket No. PPC-5072), "Intravaginal Device with Fluid Acquisition Plates" (US Ser. No. 10/847,952; Atty Docket No. PPC-5070), "Fluid Management Device with Fluid Transport Element for use within a Body" (US Ser. No. 10/847,951; Atty Docket No. PPC-5071 G-2a), "Method of Using Intravaginal Device with Fluid Transport Plates" (US Ser. No. 10/848,347; Atty Docket No. PPC-5076), "Tampon with Flexible Panels" (US Ser. No. 10/848,257; Atty Docket No. PPC-5074), and "Method of Using an Intravaginal Device with Fluid Transport Plates" (US Ser. No. 10/848,208; Atty Docket No. PPC-5075), the content of each of which is incorporated herein.
Field of the Invention The present invention relates to devices for capturing and storing body fluid intravaginally. More particularly, the present invention relates to a method of capturing body fluid intravaginally via a fluid transport element and transporting the body fluid to a fluid storage element where the fluid is stored. Additionally, this application relates to methods of making such devices
Background of the Invention Devices for capturing and storing bodily fluid intravaginally are commercially available and known in the literature. Intravaginal tampons are the most common example of such devices. Commercially available tampons are generally compressed cylindrical masses of absorbent fibers that may be over- wrapped with an absorbent or nonabsorbent cover layer. The tampon is inserted into the human vagina and retained there for a time for the purpose of capturing and storing intravaginal bodily fluids, most commonly menstrual fluid. As intravaginal bodily fluid contacts the tampon, it should be absorbed and retained by the absorbent material of the tampon. After a time, the tampon and its retained fluid is removed and disposed, and if necessary, another tampon is inserted. A drawback often encountered with commercially available tampons is the tendency toward premature failure, which may be defined as bodily fluid leakage from the vagina while the tampon is in place, and before the tampon is completely saturated with the bodily fluid. The patent art typically describes a problem believed to occur that an unexpended, compressed tampon is unable to immediately absorb fluid. Therefore, it presumes that premature leakage may occur when bodily fluid contacts a portion of the compressed tampon, and the fluid is not readily absorbed. The bodily fluid may bypass the tampon. To overcome this problem of premature leakage, extra elements have been incorporated into a basic tampon to try to direct and control the flow of fluid toward the absorbent core. For example, US Pat. No. 4,212,301 (Johnson) discloses a unitary constructed digital tampon having a lower portion compressed preferably in the radial direction to form a rigid, rod-like element, which provides a central rigidified elongated core and an upper portion left substantially uncompressed. After insertion, the uncompressed portion may be manipulated to contact the vaginal wall to provide an immediate seal against side leakage. The uncompressed portion allows for high absorbent capacity immediately upon insertion. While this tampon may allow for a certain amount of protection from bypass leakage, the uncompressed portion may become saturated before the compressed portion has a chance to expand and become absorbent. US Pat. No. 6,358,235 (Osborn et al.) discloses a "hollow" bag-like tampon that may have an interior projection made from highly compressed absorbent material. The interior projection is preferably attached to the inside surface of the head of the tampon. The hollow tampon portion may include at least one pleat in the absorbent outer surface and is soft and conformable. The tampon is not pre- compressed to the point where the fibers temporarily "set" and re-expand upon the absorption of fluid. The absorbent portions of the tampon can saturate locally, which leads to bypass leakage. US Pat. No. 6,177,608 (Weinstrauch) discloses a tampon having nonwoven barrier strips that are outwardly spreadable from the tampon surface to reliably close the free spaces believed to exist within a vaginal cavity. The nonwoven barrier strips extend about the tampon in a circumferential direction at the surface or in a helical configuration about the tampon and purportedly conduct menstrual fluid toward the tampon surface. The nonwoven barrier strips are attached to the cover by means of gluing, heat bonding, needle punching, embossing or the like and form pleats. The nonwoven barrier strips are attached to the tampon blank and the blank is embossed, forming grooves extending in a longitudinal direction. While this tampon purports to direct fluid to the core, it attempts to achieve this by forming pockets of absorbent nonwoven fabric. In order to function, it appears that these pockets would have to be opened during use to allow fluid to enter. However, based upon current understandings of vaginal pressures, it is not understood how the described structure could form such an opened volume. US Pat. No. 6,206,867 (Osborn) suggests that a desirable tampon has at least a portion of which is dry expanding to cover a significant portion of the vaginal interior immediately upon deployment. To address this desire, it discloses a tampon having a compressed central absorbent core having at least one flexible panel attached along a portion of the side surface of the core. The flexible panel appears to provide the "dry-expanding" function, and it extends outwardly from the core away from the point of attachment. The flexible panel contacts the inner surfaces of the vagina when the tampon is in place and purportedly directs fluid toward the absorbent core. The flexible panel is typically attached to the pledget prior to compression of the pledget to form the absorbent core and remains in an uncompressed state. US Pat. No. 5,817,077 (Foley et al.) discloses a method of preserving natural moisture of vaginal epithelial tissue while a using a tampon where the tampon has an initial capillary suction pressure at the outer surface of less than about 40 mm Hg. This allows the tampon to absorb vaginal secretions without substantially drying the vaginal epithelial tissue. The multiple cover layers can be used to increase the thickness of the cover material. While this represents a significant advancement in the art, this invention does not address by-pass leakage. Additionally, US Pat. No. 5,545,155 (Hseih et al.) discloses an external absorbent article that has a set of plates separated by spacer elements. The plates may be treated to affect wettability so that fluid will flow easily across the surface. Extending through the upper plate is a plurality of openings, which allow fluid to flow with little restriction into the space between the upper and lower plates. When the fluid flows downward in the z-direction from the upper plate to the lower plate, it will then flow laterally in the x- and y-directions. Therefore, this external absorbent article can contain fluid gushes, but it does not appear to address the problems relating in particular to intravaginal devices, such as a tampon. While the prior art is replete with examples of sanitary protection articles that capture bodily fluids both externally and intravaginally, these examples do not overcome the problem of premature failure often identified as by-pass leakage that commonly occurs while using internal sanitary protection devices. Many solutions to this problem have involved increasing the rate of expansion of a highly compressed absorbent article. Summary of the Invention Surprisingly, we have found a novel way to address the problem of premature failure. This invention is not dependent on the expansion of the compressed absorbent but rather incorporating an element, which is adaptable to the vagina. In our invention, we increase the contact area of the absorbent device and thereby reduce by-pass leakage. In one aspect of the invention, the intravaginal device has a fluid storage element; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element, wherein at least a portion of the outwardly oriented surface of the first plate is capable of contacting a user's vaginal epithelium. In another aspect of the invention, the intravaginal device has a fluid storage element having an insertion end and a withdrawal end and a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element. A withdrawal string is attached to the fluid storage element such that the fluid transport element is bonded to the withdrawal string at the withdrawal end of the fluid storage element, wherein at least a portion of the outwardly oriented surface of the first plate is capable of contacting a user's vaginal epithelium. In still another aspect of the invention, the intravaginal device has a fluid storage element having an insertion end and withdrawal end; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element, wherein the fluid storage element is attached to the withdrawal end of the fluid storage element. In yet another aspect of the invention, the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and longitudinal sides therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element is in fluid communication with the fluid storage element and substantially encases the fluid storage element, and wherein the fluid transport element is attached to the fluid storage element on at least one longitudinal side. In still yet another aspect of the invention, the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and at least one longitudinal side therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element in fluid communication with the fluid storage element wherein the fluid transport element is attached to the fluid storage' element on at least one longitudinal side. In still yet another aspect of the invention, the intravaginal device has a fluid storage element having an insertion end, a withdrawal end, and at least one longitudinal side therebetween; a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action. The fluid transport element is in fluid communication with the fluid storage element wherein the at least one longitudinal side has at least one outward surface and one inward surface and the fluid transport element is attached to the outward surface of the fluid storage element. In still yet another aspect of the invention, the intravaginal device has a fluid transport element having a first plate having an outwardly oriented surface and an inwardly oriented surface; a second plate that has a first surface disposed in facing relationship with the inwardly oriented surface of the first plate, and an opposite surface, and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; and a fluid storage element in fluid communication with the fluid transport element, the fluid storage element has an insertion end and a withdrawal end and the fluid transport element is attached to the fluid storage element at the insertion end. The fluid transport element may be thermobondable, attached longitudinally, and include multiple plates. Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying drawings. Brief Description of the Drawing Fig la shows a side elevation of an intravaginal device having a fluid transport element in fluid communication with a fluid storage element. Fig. lb shows a cross-sectional view of the device in Fig. la taken along line b-b. Fig. lc shows the transverse cross-section shown in lb, after the introduction of a fluid between the plates of the fluid acquisition element. Figs. 2a-e show various aspects and orientations of an intravaginal device of the present invention. Fig. 2a shows a perspective view of a tampon having a plurality of fluid transport elements extending therefrom that are formed from a folded sheet material. Fig. 2b shows a side elevation of the tampon with a plurality of fluid transport elements wrapped around the fluid storage element. Fig. 2c shows a transverse cross-section along line 2c-2c in Fig. 2b. Fig. 2d shows a side elevation of the tampon of Fig. 2a. Fig. 2e shows a top elevation of the tampon of Fig. 2a. Fig. 3 shows a transverse cross-section of an alternate embodiment having a pair of fluid transport elements partially extending into the storage element. Fig. 4a shows a side elevation of an alternate embodiment of the present invention in which a cover material is bonded to itself in the form of a bag to form a fluid transport element in fluid communication with a fluid storage element. Fig. 4b shows a cross-sectional view of the device in Fig. 4a taken along line 6b-6b. Fig. 5 shows a side elevation of an embodiment of the present invention in which the fluid transport element envelops the fluid storage element and is bonded at the withdrawal end to the withdrawal string. Fig. 6 shows a side elevation of an embodiment of the present invention in which the fluid transport element envelops the fluid storage element and is bonded to the base of the fluid storage element. Fig. 7 shows a side elevation of an embodiment of the present invention in which the fluid transport element is attached to the insertion end of the fluid storage element. Fig. 8 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded to the base of the fluid storage element. Fig. 9 shows a bottom plan view of the embodiment shown in Fig. 8. Fig. 10 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded to the longitudinal side of the fluid storage element in a series of aligned discrete bonds. Fig. 11 shows a side elevation of an embodiment of the present invention in which the fluid transport element is bonded in at least one attachment zone having discrete spots of bonds on the longitudinal side of the fluid storage element. Fig. 12 shows an enlarged view of a section of the embodiment shown in Fig. 11. Fig. 13 shows a schematic perspective view of apparatus according to the present invention useful to manufacture an intravaginal device. Fig. 14 shows the schematic perspective view of apparatus of Fig. 13 including a fluid storage element and a sheet of material prior to formation of the fluid transport element. Fig. 15 shows a schematic perspective view of a male tool useful in the apparatus of Fig. 13. Fig. 16 shows a transverse cross-section of a human vagina with an intravaginal device according to Fig. 2b disposed therein with one fluid transport element extending away from the fluid storage element. Fig. 17 shows a transverse cross-section of a human vagina with an intravaginal device according to Fig. 2b disposed therein with the fluid transport elements remaining wrapped around the fluid storage element. Fig. 18 shows the device of Fig. 2 contained in an applicator device packaging element.
Detailed Description of the Preferred Embodiments As used herein in the Specification and the Claims, the term "bodily fluid" and variants thereof mean bodily exudates, especially liquids that are produced by, secreted by, emanate from, and/or discharged from a human body. As used herein in the Specification and the Claims, the term "fluids" and variants thereof relate to liquids, and especially bodily fluids. As used herein in the Specification and the Claims, the term "sheet" and variants thereof relates to a portion of something that is thin in comparison to its length and breadth. As used herein in the Specification and the Claims, the term "parallel plate" and variants thereof relates to a system of at least two relatively parallel sheets that are capable of moving fluids through inter-plate capillary action. The individual "plates" in the system may be flexible and/or resilient in order to move within their environment. However, they may be maintained in a substantially facing relationship with relatively constant separation at least in a localized portion of their structure (as compared with their relative length and width). Thus, two sheets could be fluted, but if the flutes were "nested", the sheets would generally remain generally parallel in any given localized portion. As used herein in the Specification and the Claims, the term "inter-plate capillary action" and variants thereof mean the movement of fluid due to a pressure difference across a liquid-air meniscus created within a gap between two substantially parallel plates. The two plates need not be held apart a specific distance, although they should be separable to allow fluid to move between them by inter-plate capillary action. A general equation providing the rise of a fluid between parallel plates is reported as: h = 2σ * cos θ p * g * d in which: h is rise of fluid between plates σ is the surface tension of fluid in contact w/ plate θ is contact angle p is density d is distance between plates, and g is the gravitational constant
Therefore, as long as the contact angle, θ, is less than 90°, there will be some capillary attraction. As used herein in the Specification and the Claims, the term "porous medium" and variants thereof relates to a connected 3-dimensional solid matrix with a highly ramified network of pores and pore throats in which fluids may flow. As used herein in the Specification and the Claims, the term "separable plates" and variants thereof mean any condition of separation of the first plate and the second plate, which allows fluid to move between the plates. This includes situations in which facing surfaces of adjacent first and second plates are touching one another in portions of or across substantially all of their facing surfaces. This also includes situations in which the facing surfaces of the adjacent first and second plates are separably joined together such that upon contact with fluid, the surfaces separate enough to provide for fluid to move between them. This further includes situations in which facing surfaces of adjacent first and second plates are joined together, as long as fluid may still move freely between the surfaces. As used herein in the Specification and the Claims, the term "in fluid communication" and variants thereof relate to elements that are arranged and configured to allow fluid to move therebetween. As used herein in the Specification and the Claims, the term "coupled" and variants thereof relate to the relationship between two portions of an integral structure that are either portions of the same material (e.g., two portions of a folded sheet) or are materials that are joined together (e.g., two separate sheets that are bonded together). As used herein in the Specification and the Claims, the term "fluid pervious" and variants thereof relate to a material that permits fluid or moisture to pass through without additional processing, such as aperturing. Therefore, for example, an untreated woven or nonwoven material is fluid pervious and a continuous, plastic film or metal foil is not. A nonwoven permits fluid flow via the interstices between fibers, such that fluid can flow through, either by capillary action and/or via a pressure differential from one side of the nonwoven to the other such as the pressure experienced by a tampon in use. Referring to Fig. la-lc, this invention provides an intravaginal device 10 having at least one fluid transport element 12 in fluid communication with a fluid storage element 14 (Figs, la-lc show two fluid transport elements 12 located on opposite sides of the fluid storage element 14). The device may also include a * withdrawal mechanism, such as a string 16. The fluid storage element can be any convenient shape including cylindrical, cup like, hourglass, spherical, etc. It can be an absorbent or a fluid collection device. It can be in separate sections with the fluid transport element(s) bridging or connecting the sections. The storage element can be made of any material known in the art such as cotton, rayon, polyester, superabsorbent materials, and the like. The fluid storage element can be made of any composition known in the art, such as compressed fibrous webs, rolled goods, foam, and the like. The material may be formed as a unitary mass or a plurality of discrete particles or agglomerations. The material may be compressed to maintain a relatively stable form, or it may be left relatively uncompressed. For example, the absorbent material may include a central portion of absorbent wood pulp material. The pulp may be covered by a thin absorbent woven or nonwoven fabric and may be coterminous with the fluff pad or completely envelop it on all sides. Absorbent materials which are uncompressed or of low density have a much higher holding capacity for fluids than high density materials. A consideration for using uncompressed materials is the bulk or volume that may be required in order to achieve sufficient absorbency. In one preferred embodiment, the fluid storage element 14 is an absorbent tampon. Absorbent tampons are usually substantially cylindrical masses of compressed absorbent material having a central axis and a radius that defines the outer circumferential surface of the tampon. Such tampons are disclosed in e.g., Haas, US Pat. No. 1,926,900; Dostal, US Pat. No. 3,811,445; Wolff, US Pat. No. 3,422,496; Friese et al., US Pat. No. 6,310,296; Leutwyler et al, US Pat. No. 5,911,712, Truman, US Pat. No. 3,983,875; Agyapong et al, US Pat. No. 6,554,814. Tampons also usually include a fluid-permeable cover (which may include or be replaced by another surface treatment) and a withdrawal string or other removal mechanism. Absorbent materials useful in the formation of the absorbent body include fiber, foam, superabsorbent, hydrogels, and the like. Preferred absorbent material for the present invention includes foam and fiber. Absorbent foams may include hydrophilic foams, foams that are readily wetted by aqueous fluids as well as foams in which the cell walls that form the foam themselves absorb fluid. Fibers may be selected from cellulosic fiber, including natural fibers (such as cotton, wood pulp, jute, and the like) and synthetic fibers (such as regenerated cellulose, cellulose nitrate, cellulose acetate, rayon, polyester, polyvinyl alcohol, polyolefin, polyamine, polyamide, polyacrylonitrile, and the like). The fluid storage element may also be in the form of a collection cup. Examples of such devices are disclosed in Zoller, US Pat. No. 3,845,766 and Contente et al., US Pat. No. 5,295,984. Collection devices are designed to assume a normally open, concave configuration, with an open side facing a user's cervix. The collection devices may be folded, or otherwise manipulated, to facilitate insertion into the vaginal canal The fluid transport element has at least a first plate 18 and a second plate 20. The first and second plates combine to provide a set of parallel plates, and the fluid transport elements 12 are shown as extending radially away from the fluid storage element 14. Additional plates may also be incorporated into each fluid transport element 12. The plates are configured and arranged to allow the introduction of bodily fluid 22 to separate a plate from adjacent plate(s) (Fig. lc). At least one opening 24 allows the introduction of bodily fluids 22. Optionally, one or more spacer elements 26 can be inserted to establish and to maintain space between adjacent plates. Fig. lb shows a pair of parallel plates prior to the introduction of a fluid. In this view, the facing surfaces of the adjacent plates 18, 20 are in contact. On the other hand, Fig. lc shows the set of parallel plates separated by a bodily fluid 22, providing an inter-plate capillary gap 28 between the inwardly oriented surface 30 of the first plate 18 and the first surface 32 of the second plate 20. This inter-plate capillary gap 28 is sufficient to provide inter-plate capillary action to allow the fluid transport element 12 to acquire, to spread, and to move bodily fluids 22 from the vagina to the fluid storage element 14. The first plate 18 also has an outwardly oriented surface 34, and the second plate 20 also has an opposite surface 36. The plates 18, 20 can be made of almost any hydrophobic or hydrophilic material, preferably sheet-like. The thickness of each plate is not critical. However, it can preferably be selected from the range of from about 0.005 to about 0.050 inch. The materials of construction and the thickness of the plates should be designed so that they are sufficiently stiff and/or resistant to wet collapse when exposed to fluid. Preferably, the sheet-like material is a relatively smooth nonwoven material. If the fluid storage element has properties appropriate for the fluid transport element, the two elements may be formed of the same material. In particular, materials useful for forming the fluid transport element may have properties such as thermobondability to provide means to incorporate it into the intravaginal device. A representative, non-limiting list of useful materials includes polyolefins, such as polypropylene and polyethylene; polyolefin copolymers, such as ethylenevinyl acetate ("EVA"), ethylene-propylene, ethyleneacrylates, and ethylene- acrylic acid and salts thereof; halogenated polymers; polyesters and polyester copolymers; polyamides and polyamide copolymers; polyurethanes and polyurethane copolymers; polystyrenes and polystyrene copolymers; and the like. The fluid transport element may also be micro-embossed or apertured. The fluid transport element 12 may also be constructed from a tissue or layers of tissue. One suitable tissue is an airlaid tissue available from Fort Howard Tissue Company of Green Bay, Wisconsin, and having a basis weight of about 35 lbs./3000 ft2. Another suitable airlaid tissue is available from Merfin Hygenic Products, Ltd., of Delta, British Columbia, Canada, having a basis weight of about 61 lbs./ 3000 ft2 and having the designation grade number 176. As previously stated, the fluid transport element may be made from a fibrous nonwoven material. In one embodiment, the nonwoven material can be made from natural fibers, synthetic fibers, or a blend of synthetic and natural fibers that permit fluid to pass through to a fluid storage element. The nonwoven material can be hydrophilic or hydrophobic. The cover material can be used as is or can be apertured by methods known in the art to be an apertured, fluid pervious material. Apertures permit relatively viscous fluid, or fluid having some solids content, such as menses, to pass relatively umimpeded through the fluid pervious material such that it can be readily absorbed by the fluid storage element. The apertures permit the fluid, such as menses, to penetrate deeper into the article to improve the masking property of the article. Therefore, the fluid pervious, preferably nonwoven, fluid transport element of the present invention permits fluid transport to and absorption into the fluid storage element. In one embodiment, the fluid transport element is hydrophobic, or rendered hydrophobic, such that absorbed fluid is attracted to, or remains in, the fluid storage element, not in the fluid transport element. Because of the relatively poor wicking propensity of the hydrophobic fluid transport element, the fluid transport element remains relatively free of menses, giving a cleaner visual appearance to the post-use intravaginal device. In one embodiment, apertures provide for improved fluid flow into the core, and better visual appearance post use. By providing apertures in the fluid transport element, fluid absorption of relatively viscous fluid can be enhanced due to the lack of any obstruction to fluid absorption via the apertures. The cover remains relatively free of menses, and appears less soiled and closer to it original appearance. This provides the appearance of overall cleanliness. It may be helpful to keep the exposed surface of the fluid transport element as smooth as possible. It may also be helpful to provide it with a low coefficient of friction. These characteristics may provide at least two benefits: (1) the force required to insert the intravaginal device is reduced, and (2) it reduces the damage otherwise caused by scraping of soft, tender vaginal tissue during insertion, wearing and removal. Plates 18 and 20 maybe made from the same material or alternately, plate 18 may be made from a different material than plate 20. The parallel plates can have any physical structure to provide a resistance to fluid flow vector in the direction parallel to the inwardly oriented surface 30 of the first plate 18 and the first surface 32 of the second plate 20 that is less than the resistance to fluid flow vector in the direction perpendicular to the plates. Preferably, the plates are made from any smooth material with a non-fibrous surface and are able to transport fluid between the two layers. The fluid transport element 12 should be strong enough to prevent rupturing during handling, insertion, and removal and to withstand vaginal pressures during use. It is preferable that the surfaces of the fluid transport element 12 are sufficiently wettable by the bodily fluids that the intravaginal device 10 is intended to collect (this results largely from a correlation of the surface energy of the plate surface and the bodily fluid(s)). Thus, the bodily fluid will easily wet the plate, and capillarity between the plates will draw these bodily fluids from a source to a fluid storage element that is in fluid communication with the fluid transport element. Surface treatments can be used to modify the surface energy of the plates 18, 20. In a preferred embodiment a surfactant is applied to increase the wettability of the outer or inner surfaces of the parallel plates. This will increase the rate at which the bodily fluids are drawn into and spread between a pair of plates. The surfactant can be applied uniformly to either the inner or outer surfaces or it could be applied with varying coating weights in different regions. A useful measure to determine the wettability of a plate surface is its contact angle with 1.0 % saline. Preferably, the contact angle with 1.0% saline is less than about 90 degrees. In order to accomplish this, the materials of plates can be chosen from those materials that are known in the art to have low energy surfaces. It is also possible and useful to coat materials that have high-energy surfaces with a surface additive, such as a non-ionic surfactant (e.g., ethoxylates), a diol, or mixtures thereof, in order to increase their wettability by bodily fluids. Such additives are well known in the art, and examples include those described in Yang et al., US App. No. 2002- 0123731-A1, and US Pat. No. 6,570,055. Other means of increasing wettability can also be used, such as by corona discharge treatment of, for example, polyethylene or polypropylene, or by caustic etching of, for example, polyester. The parallel plates forming the fluid transport element can be of any flexibility as long as the material is able to transport fluid to the fluid storage element while the device is in use. It is also preferable that the fluid transport element be sufficiently flexible to provide the user with comfort while inserting, wearing, and removing the device. The surfaces of the first and second plates facing each other can have a variety of surface textures, ranging from smooth to highly textured. The texturing element may be included as a spacer 26. The value of spacers 26 or texture may be based on the material's ability to withstand wet collapse when simultaneously subjected to compressive forces and fluid. The spacer elements 26 can be separate elements applied to one or more of the plates, or they can be integral portions of a plate that extend away from one of the plate's major surfaces. A representative list of such separate spacer elements includes, without limitation, foamed materials such as polystyrene foam; particles such as beads and crystals; discontinuous material such as netting, thread, wax, adhesive, any discrete element that causes a separation between the plates and the like. Integral spacer elements can be thickened portions of the plate material or deformations of the plate material. A representative list of such an integral spacer element includes, without limitation, nubbles, embossments, corrugations, deformations, and the like. Included in this definition are surface treatments that permanently bond a secondary material to a surface of a first. The spacer elements also increase the texture of the plates. While not wishing to be held to this theory, it is believed that the texturing reduces the viscosity of the fluid being transported. The texture can also be in a gradient. For example, in one embodiment, the texture of the plates.has a gradient from smooth near the edge of the plates where the fluid enters the fluid transport element to more textured where the fluid is absorbed. In order to maintain stability against sliding of the plates with respect to each other and changing of the space between them, it is acceptable, and may be preferable, to secure some local areas of contact between the spacer elements 26 and the adjacent plate or even between spacer elements 26 of two adjacent plates. The plates may be secured through means known to those of ordinary skill in the art. A representative list of such securing means includes, without limitation, thermobonding, adhering, crimping, embossing, ultrasonic bonding or welding, and the like. The adhesive may be applied between the spacer elements and the first and second plates. Preferably, the adhesive is wettable. Referring for example, to Figs. 2 and 3, the first and second plates 18, 20 may be extensions of the same sheet-like material, e.g., formed by a fold in a sheet of material (as shown in Figs. 2a-2c), or they may be separate elements (i.e., adjacent to each other but not necessarily joined). In a folded embodiment, the material is preferably folded to form a pleat with the first and second plates facing each other. A preferred embodiment with pleats is shown in Figs. 2a-2e, where the pleats 44 are folds in the cover material 46. The pleats 44 create plates that are bendable about an infinite number of bending axes (b1-;-b 1-;) that are substantially parallel to the longitudinal axis (X-X) of the product, which longitudinal axis extends through the insertion end 48 and withdrawal end 50. These bending axes allow the plates to wrap around the product, either partially or completely. One such bending axis ι- b\) is shown in Fig. 2a. The fluid transport element 12 is in fluid communication with the fluid storage element 14 and directs fluid from the vagina to the storage element 14. Generally, fluid will be directed from each fluid transport element 12 to a particular region of the fluid storage element associated with that fluid transport element. Thus, if the device has only one fluid transport element 12, the fluid will contact the fluid storage element in one interface 52. Therefore, additional fluid transport elements 12 directing fluid to additional locations of the fluid storage element 14 will improve the efficient usage of the fluid storage element 14. For example, two fluid transport elements 12 could be directed to opposite sides of the fluid storage element 14, as shown in Figs, la-lc. Each additional fluid storage element 12 can direct fluid to additional interface locations 52 of the fluid storage element 14. For example, four evenly spaced fluid transport elements 12 allow fluid to be directed to each quarter of the fluid storage element 14 surface as shown in Figs 2a-e. Five or more elements would provide even more direct access. This can allow the fluid to contact the fluid storage element 14 uniformly and help to prevent or reduce local saturation of the fluid storage element 14. While the above description provides for direct fluid communication between a fluid transport element 12 and the fluid storage element 14, direct fluid contact is not necessary. There can be fluid communication through an intermediate element, such as a porous medium (e.g., a foam or fibrous structure), a hollow tube, and the like. Enlarging the area of the interface 52 between the fluid transport element 12 and fluid storage element 14 can also help to maximize the fluid communication. For example, elongating the interface by increasing the length of the fluid transport element 12 allows more fluid to flow into the fluid storage element 14. The fluid transport element 12 may extend in any orientation from the surface of the fluid storage element 14. It is not necessary for the fluid transport element to be on the surface of the fluid storage element. The inter-plate capillary gap 28 formed by first plate 18 and second plate 20 can terminate at the interface 52 or can extend into and/or through the fluid storage element 14. An example of the fluid transport element 12 extending into the fluid storage element 14 is shown in Fig. 3. The first and second plates can have additional layers on top of them as long as these additional layers allow fluid to enter the plates. The first and second plates can end at the boundary of the transport element or can extend into the fluid storage' element 14. The fluid transport element 12 may be formed to extend from the surface of the fluid storage element 14 as in Figs, la-lc. It can be made in any convenient shape, including semicircular, triangular, square, hourglass etc. Additionally the two plates of the element do not have to be completely coextensive, as long as they are at least partially in a facing relationship. Parallel plates can be held in close proximity to the storage element in a variety of ways including directly or indirectly via an additional element to the storage element. A variety of methods can be used to attach the fluid transport element 12 including but not limited to heat, adhesive, ultrasonic, sewing, and mechanically engaging the fluid storage element 14. An example of a heat-bonded attachment 54 is shown in Fig. 2a. The fluid transport element(s) 12 can be attached at the sides, insertion end 48, and/or withdrawal end 50 of the intravaginal device. Additionally, the fluid transport element(s) 12 may be attached to themselves and not to the storage element as in a relatively loose bag covering of the storage element. The fluid transport element(s) 12 could also be attached to the withdrawal string. The fluid transport element may be attached directly to the fluid storage element or may be attached to itself in one or more locations. Such attachment or adherence to itself or to the fluid storage element may be by any known means, including, for example, adhesive, ultrasonic, co-embossing, thermobonding, mechanical bonding (such as crimping), and the like. In one embodiment, the fluid transport element is formed of a material that is capable of being thermobonded. Alternately, the material may formed of two different materials having different melting points, at least one of which would also be capable of thermobonding. In an embodiment shown in Figs. 4a and 4b, the cover material 46 substantially envelops the fluid storage element 14 (shown as a tampon), forming a bag or sack structure 56. This structure provides a pair of fluid transport elements 12' formed by portions of the cover material 46. In this embodiment, the cover material 46 is draped over the insertion end 48 of the tampon with the edges of the material brought together about the withdrawal end 50 and then bonded to itself 54'. The resulting fluid transport element 12' can then be folded around the tampon in the manner shown in Fig. 2b. Other embodiments similar to that shown in Fig. 4 are possible. For example, Fig. 5 shows the attachment 54" of the fluid transport element 12 to the withdrawal string 16, and Fig. 6 shows the attachment 54'" at the withdrawal end 50, especially to the base 58 of the fluid storage element 14 (the base 58 being the generally circular surface from which the withdrawal string 16 may extend). In all of these embodiments, the cover material 46 and the associated fluid transport element 12 substantially envelop the fluid storage element 14 but do not significantly affect the performance of the fluid storage element 14. For example, if the fluid storage element 14 had been compressed and expands upon exposure to fluid, the expansion of the fluid storage element 14 would not be affected or inhibited by the attachment or bonding of the fluid transport element 12 to the fluid storage element 14. In the embodiments described and shown in Figs. 4-6, it is not necessary for the fluid storage element 14 to be a unitary element. For example, the fluid storage element 14 may have multiple distinct portions or segments. The segments may be attached together or may be discrete. Examples of discrete segments may be relatively loose absorbent material or compressed cellulosic tablets. However, these discrete segments could be at least partially contained to permit the fluid transport element 12 to form parallel plates, as described above. In an alternate embodiment of the invention shown in Fig. 7, the fluid transport element 12 and the fluid storage element 14 have an attachment 54 at the insertion end 48 of fluid storage element 14. Pleats 44 formed in the fluid transport element 12 maybe folded around the tampon as previously shown in Fig. 2b. Additionally, the lower portions 60 of the sheet material may also be attached to withdrawal end 50 of the fluid storage element 14, as described above and below, to prevent inversion of the fluid transport element 12 upon withdrawal. In embodiments where the fluid transport element 12 is bonded or gathered at the withdrawal end 50 of the fluid storage element 14, it is preferable to minimize bunching of the fluid transport element 12 material to limit interference during insertion and withdrawal of the device. Although not required, the sheet material used to form the fluid transport element 12 may initially be in a shape such that the sheet has at least one comer. The sheet material is placed over the fluid storage element 14 such that at least one portion of the sheet extends away from the fluid storage element 14. In one embodiment, the sheet has a plurality of comers, and each comer may be attached to the withdrawal end 50 of the fluid storage element 14. For example, if four sets of parallel plates are desired, the sheet material may be a square. If the fluid storage element 14 is a compressed tampon having embossed grooves such as those disclosed in US Pat. No. 5,165,152 the disclosure of which is hereby incorporated by reference, the attachment may be on the outer most surface (non-embossed) or in the grooves. Attachment may take place before, during, and/or after fluid storage element 14 compression. The embodiment of Figs. 8 and 9 is similar to that of Fig. 7. In particular, the comers of the fluid transport element 12 are attached to the base 58 of the fluid storage element 14. As seen in Fig. 9, the comers preferably do not overlap the center of the circular base 58. When a compressed tampon having grooves 60 is used as the fluid storage element 14, it is likely that the tampon performs optimally if permitted to expand without restriction by the fluid transport element. While some compressed tampons expand due to dry expansion, others expand when exposed to fluid. One example of such a compressed tampon having grooves is the o.b.® tampon available from McNEIL-PPC, Inc., Skillman, NJ. In the embodiments shown in Figs. 10-12, the fluid storage element 14 is a compressed tampon having an exterior surface 62 and grooves 60. Grooves 60 have an interior portion, which becomes part of the exterior surface 62 of the tampon upon absorption of fluids and the resultant tampon expansion. Because the fluid transport element 12 is attached to the exterior surface 62 of the tampon at its withdrawal end 50, it does not extend into the tampon grooves 60. Thus, the fluid storage element 14 may expand without any interference from the fluid transport element 12. In other words, the fluid transport element 12 does not significantly limit the functionality of the fluid storage element 14. Pleats 44' form in the fluid transport element 12 and may be similarly folded around the tampon as previously shown in Fig.2b. As shown in Fig. 10, a tampon having straight grooves is attached to the fluid transport element 12 using a series of heat bonds 54 along one or more single line(s) along the tampon. This provides easier alignment of the attachment 54 and the exterior surface 62 of the tampon as the bond line may be registered accurately to avoid coinciding with the grooves 60. Thus, the fluid transport element 12 may be readily attached along the longitudinal side without interfering with the expansion of the tampon. In a similar embodiment shown in Figs. 11 and 12, the fluid transport element 12 may be attached along the longitudinal side of a tampon having spirally oriented grooves. In this embodiment an attachment zone 64 of fluid transport element 12 extends from one lobe 66 and across groove 60 to adjacent lobe 66'. Materials such as nonwoven webs have a certain amount of elasticity and may be designed to permit the tampon expansion, especially the material located within the interior portion of the grooves 60. If desired, the attachment zone 64 may be oriented in any direction relative to the longitudinal axis X-X of the fluid storage element 14. As shown in Figs. 11 and 12, the attachment zone 64 comprises a matrix or other grouping of discrete bonds, such as dots or spots. This allows the interface between the fluid transport element 12 and the fluid storage element 14 to remain as open to fluid flow as possible. As previously mentioned and shown, the fluid transport element 12 may be attached to the fluid storage element 14 be any number of methods and embodiments. For example and with reference to Figs. 13-15, a tampon may be manufactured as shown in Friese, US Pat. No. 4,816,100, and either Friese et al., US Pat. No. 6,310,269, or Leutwyler et al., US Pat. No. 5,911,712. However, after the tampon is formed and prior to packaging, an additional process employing a forming tool 102, a male tool 104 having a plurality of blades 106, and thermobonding elements 108 applies a fluid transport element 12 to the fluid storage element 14. The tools are aligned in a manner that the blades 106 of the male tool 104 cooperate with corresponding slots 110 in the forming tool 102. In addition, each of the tools has a central aperture 112, 112' through which a fluid storage element 14 may pass during processing. In somewhat more detail, an individual sheet 114 of material is separated from a supply (not shown) and placed on the forming tool 102. A vacuum is drawn across the forming tool 102 via a plurality of vacuum ports 116 on the face 118 of the forming tool 102 to hold the individual sheet 114 in place. The blades 106 of the male tool 104 are shown arranged radially about the central aperture 112 in the male tool 104 (as shown in Fig. 15). The blades 106 cooperate to hold the fluid storage element 14 in line with the central aperture 112. A pushrod (not shown) is arranged to penetrate the central aperture 112 of the male tool 104 and to bear on the base of the fluid storage element 14. In the preferred embodiment shown in Figs. 13-15, four blades 106 are arranged at equal angles about the central aperture 112. Each blade 106 provides a guide edge 120 facing the fluid storage element 14 (when present) and a pleating edge 122 disposed radially outwards from the guide edge 120. The pleating edge 122 may be an edge that is adjacent the guide edge 120, or it may be separated by one or ore intermediate portions of the blade 106. In operation, the male tool 104 holding a fluid storage element 14 is moved along the machine axis (M-M) aligned with the central apertures 112, 112' toward the forming tool 102 carrying the individual sheet 114. The insertion end 48 of the fluid storage element 14 contacts the individual sheet 114 and urges it through the central aperture 112' of the forming tool 102. The pleating edges 112 of the blades 106 urge corresponding portions of the individual sheet 114 through the slots 110 of the forming tool 102 creating four sets of parallel plates 18, 20. Once the fluid storage element 14 is inserted into the central aperture 112' of the forming tool 102 with only a portion of the withdrawal end 50 remaining exposed, theπnobonding elements 108 extend into the space between the blades 106 to bond the four corners of the individual sheet 110 to the exterior surface 62 of the fluid storage element 14, forming the fluid transport element 12. The pushrod may then continue to move the insertable device 10 into and through the central aperture 112' of the forming tool 102. The fluid transport element 12 may then be folded about the fluid storage element 14. The resulting insertable device may then be packaged in a hygienic overwrap as is well known in the art. While the process described above in reference to Figs. 13-15 employs blades 106 that have a guide edge 120 that is shorter than the fluid storage element 14, this relationship may be altered. For example, the blades 106 could be modified to have a guide edge 120 that is longer than the fluid storage element 14 or the system could otherwise be modified to allow the leading portions 124 to contact the individual sheet 114, first. This permits the formation of a small gap between the insertion end 48 of the tampon and the individual sheet 114 that may allow more free expansion of the tampon without restriction by the fluid transport element 14 during use. During use, fluid transport element(s) 12 can take on many configurations within the vagina. For example, a fluid transport element 12 may extend into the vagina away from the fluid storage element 14, as shown in Fig. 16. Alternatively, and the fluid transport element(s) 12 may remain wound about the fluid storage element 14, contacting the vaginal wall "W" only through the first surface 30 (Fig. 17). A withdrawal mechanism, such as withdrawal string 16, is preferably joined to the intravaginal device 10 for removal after use. The withdrawal mechanism is preferably joined to at least the fluid storage element 14 and extends beyond at least its withdrawal end 50. Any of the withdrawal strings currently known in the art may be used as a suitable withdrawal mechanism, including without limitation, braided (or twisted) cord, yam, etc. In addition, the withdrawal mechanism can take on other forms such as a ribbon, loop, tab, or the like (including combinations of currently used mechanisms and these other forms). For example, several ribbons may be twisted or braided to provide parallel plates structures. Tampons are generally categorized in two classes: applicator tampons and digital tampons, and a certain amount of dimensional stability is useful for each type of tampon. Applicator tampons use a relatively rigid device to contain and protect the tampon prior to use. To insert the tampon into a body cavity, the applicator containing the tampon is partially inserted into the body cavity, and the tampon can be expelled from the applicator into the body cavity. In contrast, digital tampons do not have an applicator to help guide them into the body cavity and require sufficient column strength to allow insertion without using an applicator. While the applicator tampon is protected by the rigid applicator device and the applicator tampon need not as have as high a degree of column strength as a digital tampon, applicator tampons do require dimensional stability (especially radial) to be acceptable for use. This dimensional stability provides assurance, for example, that the tampon will not prematurely grow and split its packaging material or become wedged in a tampon applicator. Further, the intravaginal device can be collapsed for packaging and insertion. For example, at least a portion of a major surface of the fluid transport element 12, such as the first surface 30, maybe in contact with at least a portion of an outer surface of the fluid storage element 14. This can be achieved by wrapping the fluid transport element(s) around the fluid storage element 14 (as shown in Fig. 2b). Alternatively, the fluid transport element(s) 12 may be folded or pleated (e.g., in an accordion-like manner) against the fluid storage element 14. The thus-compacted device can then be packaged, (e.g., within an applicator or alone in a wrapper). Fig. 18 shows a wrapped tampon within an applicator 68 (in phantom).
The specification and embodiments above are presented to aid in the complete and non-limiting understanding of the invention disclosed herein. Since many variations and embodiments of the invention can be made without departing from its spirit and scope, the invention resides in the claims hereinafter appended.

Claims

What is claimed is:
1. A fluid management device for use in a mammalian body, the device comprising at least one fluid transport element capable of interfacing with a body element to provide a substantially uninterrupted fluid conduit to a fluid storage element in fluid communication therewith; wherein the fluid transport element comprises at least a sheet-like first plate having an outwardly oriented surface and an inwardly oriented surface, and a distal portion of the at least one fluid transport element is capable of extending away from the fluid storage element.
2. The device of claim 1 wherein the fluid transport element comprises a nonwoven material.
3. An intravaginal device comprising: a. a fluid storage element having a longitudinal axis, an insertion end, and a withdrawal end; and b. at least one fluid transport element being in fluid communication with the fluid storage element, the at least one fluid transport element comprising: i. a first plate having an outwardly oriented surface and an inwardly oriented surface; ii. a second plate coupled to the first plate; that has a first surface disposed and maintained in facing relationship with the inwardly oriented surface of the first plate and an opposite surface; and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; wherein at least one of the first and second plates comprises a sheet-like material, and the at least one fluid transport element is bendable about an axis substantially parallel to the longitudinal axis of the fluid storage element, and the fluid transport element is attached to the withdrawal end of the fluid storage element.
4. The device of claim 3 wherein the fluid transport element is attached to the base of the fluid storage element.
5. The device of claim 3 wherein the fluid transport element comprises a nonwoven material.
6. An intravaginal device comprising: a. a fluid storage element having a longitudinal axis, an insertion end, a withdrawal end, and at least one longitudinal side between the insertion and withdrawal ends; and b. at least one fluid transport element being in fluid communication with the fluid storage element, the at least one fluid transport element comprising: i. a first plate having an outwardly oriented surface and an inwardly oriented surface; ii. a second plate coupled to the first plate; that has a first surface disposed and maintained in facing relationship with the inwardly oriented surface of the first plate and an opposite surface; and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; and wherein at least one of the first and second plates comprises a nonwoven material, and the at least one fluid transport element is bendable about an axis substantially parallel to the longitudinal axis of the fluid storage element, and the fluid transport element is attached on at least one longitudinal side of the fluid storage element.
7. The device of claim 6 wherein the fluid transport element is attached at the withdrawal end of the fluid storage element.
8. An intravaginal device comprising: a. a fluid storage element having a longitudinal axis, an insertion end, a withdrawal end, and at least one longitudinal side between the insertion and withdrawal ends; and b. at least one fluid transport element being in fluid communication with the fluid storage element, the at least one fluid transport element comprising: i. a first plate having an outwardly oriented surface and an inwardly oriented surface; ii. a second plate coupled to the first plate; that has a first surface disposed and maintained in facing relationship with the inwardly oriented surface of the first plate and an opposite surface; and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; and wherein at least one of the first and second plates comprises a nonwoven material, and the at least one fluid transport element is bendable about an axis substantially parallel to the longitudinal axis of the fluid storage element, and fluid transport element is attached to itself proximate the withdrawal end of the fluid storage element.
9. The device of claim 8 wherein the fluid transport element is attached at the withdrawal end of the fluid storage element.
10. An intravaginal device comprising: a. a fluid storage element having a longitudinal axis, an insertion end, a withdrawal end, and at least one longitudinal side between the insertion and withdrawal ends; and b. at least one fluid transport element being in fluid communication with the fluid storage element, the at least one fluid transport element comprising: i. a first plate having an outwardly oriented surface and an inwardly oriented surface; ii. a second plate coupled to the first plate; that has a first surface disposed and maintained in facing relationship with the inwardly oriented surface of the first plate and an opposite surface; and that is capable of separating from the first plate sufficiently to provide inter-plate capillary action; and wherein at least one of the first and second plates comprises a nonwoven material, and the at least one fluid transport element is bendable about an axis substantially parallel to the longitudinal axis of the fluid storage element, and wherein the fluid transport element is attached to the withdrawal string to substantially envelop the fluid storage element.
11. The device of claim 10 wherein the fluid transport element is attached at the withdrawal end of the fluid storage element.
12. A method of producing an intravaginal devices comprising the steps of: a. providing an individual sheet of nonwoven material having properties useful to move bodily fluids; b. attaching the individual sheet to a fluid storage element having a longidutinal axis to form at least one fluid transport element capable of extending radially away from the fluid storage element; c. folding the at least one fluid transport element about an axis parallel to longidutinal axis of the fluid storage element; and d. packaging the resultant intravaginal device.
13. A method of producing an intravaginal device comprising the steps of: a. separating an individual sheet from a supply of nonwoven material having properties useful to move bodily fluids; b. providing a fluid storage element having a longitudinal axis, longitudinal sides, an insertion end, and a withdrawal end; c. engaging the individual sheet with the insertion end of the fluid storage element and with pleating edges of forming blades; d. urging the individual sheet through a forming tool with relative movement of the forming tool in relation to the fluid storage element and the pleating edges of forming blades; e. bonding at least a portion of the individual sheet to the fluid storage element to form at least a portion of the individual sheet into at least one fluid transport element capable of extending radially away from the fluid storage element; f. folding the at least one fluid transport element about an axis parallel to longitudinal axis of the fluid storage element; and g. packaging the resultant intravaginal device.
14. Apparatus for producing an intravaginal device comprising: a. a forming tool comprising: i. a holding plate having a plurality of vacuum ports formed in a face thereof; ii. a substantially circular aperture disposed on the plate having a plurality of slots connected to and extending therefrom; b. a male tool comprising a plurality of forming blades, each blade having a guide edge, arranged radially about an aperture; c. at least one bonding element moveable toward the aperture in the forming tool; and d. at least one pushrod moveable through the apertures of each of the forming tool and the male tool; wherein the apertures of the forming tool and male tool are aligned along a machine axis to permit the pushrod to move fluid storage element through each aperture, the forming blades of the male tool are aligned with the slots of the forming tool, and the guide edges of the forming blades are arranged and configured to accommodate a fluid storage element aligned with the aperture of the male tool.
15. Apparatus of claim 14 wherein each forming blade has a pleating edge engageable with a sheet held on the face of the holding plate.
16. Apparatus of claim 15 wherein the pleating edge is adjacent the guide edge.
17. Apparatus of claim 15 wherein the pleating edge is separated from the guide edge by at least one intermediate portion of the forming blade.
18. Apparatus of claim 14 wherein the at least one bonding element is moveable in a plane parallel to the face of the holding plate.
19. Apparatus of claim 18, wherein the at least one bonding element is moveable to extend into a space between adjacent forming blades when the forming tool and male tools are in an engaged position.
20. Apparatus of claim 14 wherein the at least one bonding element is a thermobonding element.
21. Apparatus of claim 14 wherein the fluid storage element has a length, and the guide edge of each forming blade has a length that is not greater than the length of the fluid storage element.
22. Apparatus of claim 14 wherein the fluid storage element has a length, and the guide edge of each forming blade has a length that is greater than the length of the fluid storage element.
PCT/US2005/017107 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates WO2005112856A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AU2005244893A AU2005244893B2 (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates
CA2566678A CA2566678C (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates
PL05749469T PL1755515T3 (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates
EP05749469.2A EP1755515B1 (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates
CN2005800201917A CN1968666B (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates
BRPI0510013A BRPI0510013B8 (en) 2004-05-14 2005-05-13 intravaginal device for use in a mammalian body, method of producing an intravaginal device and apparatus for producing an intravaginal device
JP2007513464A JP5117186B2 (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transfer element
US11/444,792 US7845380B2 (en) 2004-05-14 2006-06-01 Intravaginal device with fluid transport plates
US11/478,944 US7861494B2 (en) 2004-05-14 2006-06-30 Intravaginal device with fluid transport plates
IL179267A IL179267A0 (en) 2004-05-14 2006-11-14 Intravaginal device with fluid transport plates
NO20065608A NO20065608L (en) 2004-05-14 2006-12-05 Intravaginal device with fluid transport plates.
US12/722,681 US8697936B2 (en) 2004-05-14 2010-03-12 Intravaginal device with fluid transport plates
US12/722,699 US8231753B2 (en) 2004-05-14 2010-03-12 Intravaginal device with fluid transport plates
US12/724,739 US8028500B2 (en) 2004-05-14 2010-03-16 Intravaginal device with fluid transport plates

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US57205404P 2004-05-14 2004-05-14
US10/847,951 US8247642B2 (en) 2004-05-14 2004-05-14 Fluid management device with fluid transport element for use within a body
US10/847,951 2004-05-14
US10/848,257 US20050277904A1 (en) 2004-05-14 2004-05-14 Tampon with flexible panels
US60/572,054 2004-05-14
US10/848,257 2004-05-14

Related Parent Applications (5)

Application Number Title Priority Date Filing Date
US10/848,257 Continuation-In-Part US20050277904A1 (en) 2004-05-14 2004-05-14 Tampon with flexible panels
US10/848,257 Continuation US20050277904A1 (en) 2004-05-14 2004-05-14 Tampon with flexible panels
US57205404P Continuation 2004-05-14 2004-05-14
US10/847,951 Continuation-In-Part US8247642B2 (en) 2004-05-14 2004-05-14 Fluid management device with fluid transport element for use within a body
US11/478,944 Continuation US7861494B2 (en) 2004-05-14 2006-06-30 Intravaginal device with fluid transport plates

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/444,792 Continuation-In-Part US7845380B2 (en) 2004-05-14 2006-06-01 Intravaginal device with fluid transport plates
US11/444,792 Continuation US7845380B2 (en) 2004-05-14 2006-06-01 Intravaginal device with fluid transport plates

Publications (1)

Publication Number Publication Date
WO2005112856A1 true WO2005112856A1 (en) 2005-12-01

Family

ID=34969681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/017107 WO2005112856A1 (en) 2004-05-14 2005-05-13 Intravaginal device with fluid transport plates

Country Status (11)

Country Link
US (2) US7861494B2 (en)
EP (1) EP1755515B1 (en)
JP (1) JP5117186B2 (en)
CN (1) CN1968666B (en)
AU (1) AU2005244893B2 (en)
BR (1) BRPI0510013B8 (en)
CA (1) CA2566678C (en)
IL (1) IL179267A0 (en)
NO (1) NO20065608L (en)
PL (1) PL1755515T3 (en)
WO (1) WO2005112856A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008005009A1 (en) * 2006-06-30 2008-01-10 Personal Products Company Method and apparatus to make an intravaginal device with fluid transport plates
JP2010527281A (en) * 2007-05-17 2010-08-12 プレイテックス プロダクツ エルエルシー Tampump Ledget for enhanced prevention of bypass leaks
US8864640B2 (en) 2004-05-14 2014-10-21 Mcneil-Ppc, Inc. Methods of packaging intravaginal device
US9035126B2 (en) 2004-05-14 2015-05-19 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US9662249B2 (en) 2002-09-12 2017-05-30 Edgewell Personal Care Brands, Llc. Ergonomic tampon applicator
US9687389B2 (en) 2006-11-08 2017-06-27 Edgewell Personal Care Brands, Llc. Tampon pledget for increased bypass leakage protection
US9820890B2 (en) 2006-06-12 2017-11-21 Edgewell Personal Care Brands, Llc. Tampon assembly providing proper bodily placement of pledget
US9883975B2 (en) 2008-05-06 2018-02-06 Edgewell Personal Care Brands, Llc Tampon pledget with improved by-pass leakage protection
US10028864B2 (en) 2009-04-15 2018-07-24 Edgewell Personal Care Brands, Llc Tampon pledget with improved by-pass leakage protection
US10105266B2 (en) 2003-05-02 2018-10-23 Edgewell Personal Care Brands, Llc. Tampon assembly having a shaped pledget
WO2020253971A1 (en) * 2019-06-21 2020-12-24 Johnson & Johnson Gmbh Tampon for feminine hygiene

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277904A1 (en) * 2004-05-14 2005-12-15 Chase David J Tampon with flexible panels
EP1755516B1 (en) * 2004-05-14 2014-03-12 Johnson & Johnson Consumer Companies, Inc. Methods of packaging intravaginal device
US8653322B2 (en) * 2004-05-14 2014-02-18 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates
US7845380B2 (en) * 2004-05-14 2010-12-07 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates
US8247642B2 (en) * 2004-05-14 2012-08-21 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US20050256484A1 (en) 2004-05-14 2005-11-17 Chase David J Method of using an intravaginal device with fluid transport plates
US8480833B2 (en) * 2004-05-14 2013-07-09 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates and methods of making
US20050256485A1 (en) 2004-05-14 2005-11-17 Samuel Carasso Method of using intravaginal device with fluid transport plates
PL1755515T3 (en) * 2004-05-14 2019-04-30 Johnson & Johnson Consumer Inc Intravaginal device with fluid transport plates
US8702670B2 (en) * 2004-06-30 2014-04-22 Mcneil-Ppc, Inc. Intravaginal device with controlled expansion
US20070293838A1 (en) * 2006-06-16 2007-12-20 The Procter & Gamble Company High surface energy tampon
US20070293836A1 (en) * 2006-06-16 2007-12-20 The Procter & Gamble Company High surface energy tampon
AT508682B1 (en) * 2009-08-24 2015-11-15 Ruggli Projects Ag PRESS FOR THE MANUFACTURE OF A TAMPON
US8756901B2 (en) * 2009-12-10 2014-06-24 Vlad Carey V-pack
US10159550B2 (en) 2013-12-20 2018-12-25 Kimberly-Clark Worldwide, Inc. Vaginal insert method of manufacture
US9475671B2 (en) * 2013-12-20 2016-10-25 Kimberly-Clark Worldwide, Inc. Vaginal insert method of manufacture
GB2590903A (en) * 2019-12-16 2021-07-14 Calla Lily Personal Care Ltd Devices for insertion into a vaginal or rectal cavity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351339A (en) * 1981-04-14 1982-09-28 Sneider Vincent R Tampon with a protective accordion-style cover
WO1999000096A1 (en) * 1997-06-30 1999-01-07 Mcneil-Ppc, Inc. Tampon having an apertured film cover
WO2001001906A1 (en) * 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Multilayered apertured film for absorbent article
US6177608B1 (en) * 1994-06-30 2001-01-23 Kimberly-Clark Worldwide, Inc. Tampon
US6206867B1 (en) * 1998-07-29 2001-03-27 The Procter & Gamble Company Tampon with flexible panels

Family Cites Families (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US398015A (en) * 1889-02-19 Mills
US732729A (en) * 1898-12-21 1903-07-07 Zachary T French Thread-waxing device for sewing-machines.
US735729A (en) * 1903-03-14 1903-08-11 James Dowling Paper folding or plaiting machine.
US867176A (en) * 1906-11-24 1907-09-24 George T Warwick Machine for wrapping oranges and other spherical objects.
US1731665A (en) * 1927-12-03 1929-10-15 Huebsch Marie Hygienic device
US1926900A (en) * 1931-11-19 1933-09-12 Earle C Haas Catamenial device
US1941717A (en) * 1933-08-09 1934-01-02 Miriam E Rabell Sanitary appliance
US2099931A (en) * 1935-04-15 1937-11-23 Int Cellucotton Products Tampon
US2188923A (en) 1937-10-20 1940-02-06 Vera E Robinson Tampon
US2265636A (en) * 1939-11-16 1941-12-09 Pneumatic Scale Corp Bag forming apparatus
US2301106A (en) * 1940-03-09 1942-11-03 Wingfoot Corp Packaging
US2306406A (en) * 1940-07-19 1942-12-29 Frank Nichols Tampon
BE475102A (en) * 1942-06-02
US2394219A (en) * 1944-06-15 1946-02-05 Boston Machine Works Co Folding machine
US2412861A (en) * 1944-07-31 1946-12-17 Beadle George William Catamenial device
US2464310A (en) * 1945-08-25 1949-03-15 Int Cellucotton Products Method of making tampons
US2624993A (en) * 1949-04-27 1953-01-13 Robert B Stevens Article wrapping device
US2830417A (en) * 1954-09-29 1958-04-15 Triangle Package Machinery Co Machine for producing contoured wrapped packages
US3055369A (en) * 1957-08-15 1962-09-25 Personal Products Corp Absorbent product
US3007377A (en) * 1959-03-11 1961-11-07 Henry W Muller Fluted paper cups and machine for making same
US3135262A (en) * 1960-11-16 1964-06-02 Kobler Werner Tampon
US3340874A (en) 1964-09-08 1967-09-12 Johnson & Johnson Tampon having concentric layers with different properties
NL142066B (en) * 1964-09-14 1974-05-15 Hahn Carl Dr Kg DEVICE FOR MANUFACTURING TAMPONS.
US3431909A (en) * 1965-11-04 1969-03-11 Scott Paper Co Uncompressed tampon and applicator
US3610243A (en) * 1968-04-11 1971-10-05 Jones Sr John L Reticulated paper tampon
US3618605A (en) * 1969-11-12 1971-11-09 Jacob A Glassman Catamenial tampon
US3811445A (en) 1970-01-22 1974-05-21 Int Playtex Corp Absorbent material and methods of making the same
US3732866A (en) 1971-02-18 1973-05-15 L Accavallo Catamenial device
USRE28674E (en) * 1971-02-18 1976-01-06 Catamenial device
US3710793A (en) * 1971-05-17 1973-01-16 J Glassman Catamenial tampon
US3731687A (en) 1971-07-16 1973-05-08 J Glassman Catamenial tampon
SE363734B (en) * 1972-06-09 1974-02-04 Moelnlycke Ab
US3851440A (en) * 1972-11-13 1974-12-03 Fmc Corp Packaging method
SE393293B (en) * 1974-05-15 1977-05-09 Mo Och Domsjoe Ab INTRAVAGINAL MENSTRUATION PROTECTION
US3929135A (en) 1974-12-20 1975-12-30 Procter & Gamble Absorptive structure having tapered capillaries
JPS5610345Y2 (en) * 1975-08-01 1981-03-09
US3983875A (en) * 1976-02-05 1976-10-05 Kimberly-Clark Corporation Tampon-inserter stick combination with a modified stick-receiving socket
JPS53163894U (en) 1977-05-30 1978-12-21
US4341214A (en) 1977-07-01 1982-07-27 Kimberly-Clark Corporation Sleeve-enclosed hydrophilic foam tampon with improved after-use withdrawal characteristics
US4381326A (en) 1977-11-03 1983-04-26 Chicopee Reticulated themoplastic rubber products
US4211225A (en) 1978-07-19 1980-07-08 Dan Sibalis Tampon with a collapsible and invertible shroud
US4212301A (en) * 1978-08-14 1980-07-15 Kimberly-Clark Corporation Digital tampon
DE2855179C2 (en) * 1978-12-20 1982-06-09 Dr. Carl Hahn GmbH, 4000 Düsseldorf Feminine hygiene tampon
US4508256A (en) * 1979-03-05 1985-04-02 The Procter & Gamble Company Method of constructing a three dimensional tubular member
GR67004B (en) 1979-03-05 1981-05-18 Procter & Gamble
US4342314A (en) * 1979-03-05 1982-08-03 The Procter & Gamble Company Resilient plastic web exhibiting fiber-like properties
JPS5690225U (en) * 1979-12-12 1981-07-18
US4335720A (en) * 1980-04-09 1982-06-22 Glassman Jacob A Catamenial tampon with hollow core
US4372312A (en) * 1981-05-26 1983-02-08 Kimberly-Clark Corporation Absorbent pad including a microfibrous web
IT1145649B (en) * 1981-12-30 1986-11-05 Ferrero Spa PROCEDURE AND MACHINE FOR WRAPING WITH A THIN ALUMINUM SHEET A SPHERICAL OBJECT PROVIDED WITH SMALL PROJECTS DISTRIBUTED ON ITS SURFACE
JPS59500897A (en) 1982-04-15 1984-05-24 フオルスマン ラルス オステン Absorbent products and their manufacturing methods and equipment
US4525983A (en) * 1982-10-12 1985-07-02 Mitchell Libow Wrapping and sealing apparatus
US4543098A (en) * 1982-12-23 1985-09-24 Kimberly-Clark Corporation Tampon with resilient component and microfiber insert
DE3347649A1 (en) * 1983-12-30 1985-07-11 Johnson & Johnson GmbH, 4000 Düsseldorf TAMPON FOR WOMEN'S HYGIENE AND METHOD AND DEVICE FOR PRODUCING THE SAME
JPS60171044A (en) * 1984-02-15 1985-09-04 花王株式会社 Tampon molding apparatus
DE3418521A1 (en) * 1984-05-18 1985-11-21 Henkel KGaA, 4000 Düsseldorf MENSTRUALTAMPON
US4710186A (en) 1984-07-20 1987-12-01 Personal Products Company Clean and dry appearance facing
JPS62155835U (en) * 1986-03-22 1987-10-03
AT401610B (en) * 1989-01-03 1996-10-25 Johnson & Johnson Ges M B H METHOD AND DEVICE FOR PRODUCING WRAPPED, IN ESSENTIAL CYLINDRICAL ITEMS, IN PARTICULAR TAMPONS
US5403300A (en) 1989-03-31 1995-04-04 Smith & Nephew P.L.C. Tampons
US5972505A (en) * 1989-04-04 1999-10-26 Eastman Chemical Company Fibers capable of spontaneously transporting fluids
US5004467A (en) * 1989-10-04 1991-04-02 Hauni Richmond, Inc. Tampon
DE3934153A1 (en) * 1989-10-12 1991-04-18 Johnson & Johnson Gmbh TAMPON, ESPECIALLY FOR WOMEN'S HYGIENE, AND METHOD AND DEVICE FOR PRODUCING THE SAME
US5295984A (en) * 1989-12-07 1994-03-22 Ultrafem, Inc. Vaginal discharge collection device and intravaginal drug delivery system
US5273596A (en) * 1990-03-21 1993-12-28 Fiberweb North America, Inc. Nonwoven fabric for diaper top sheet and method of making the same
TW273531B (en) 1991-08-14 1996-04-01 Chicopee Textile-like apertured plastic films
JP2823402B2 (en) 1991-12-04 1998-11-11 ユニ・チャーム株式会社 Body fluid absorbent articles
DE4304505C2 (en) * 1993-02-15 1995-05-18 Johnson & Johnson Gmbh Tampon, in particular for feminine hygiene, and method and device for producing the same
US5500270A (en) * 1994-03-14 1996-03-19 The Procter & Gamble Company Capillary laminate material
US5545155A (en) 1994-03-30 1996-08-13 Mcneil-Ppc, Inc. Absorbent article with plates
CA2149498A1 (en) 1994-05-31 1995-12-01 Theodore A. Foley Vaginal moisture balanced tampon and process
GB2292526B (en) 1994-07-16 1999-01-06 Smith & Nephew Sanitary products
US5759569A (en) 1995-01-10 1998-06-02 The Procter & Gamble Company Biodegradable articles made from certain trans-polymers and blends thereof with other biodegradable components
CN1200020A (en) 1995-09-01 1998-11-25 麦克尼尔-Ppc公司 Absorbent products
IT1279668B1 (en) * 1995-10-20 1997-12-16 Gd Spa METHOD AND MACHINE FOR THE OVERWRAPPING OF CIGARETTE PACKAGES.
US5688260A (en) * 1995-11-03 1997-11-18 Blanton; Catherine Carroll Reusable fabric feminine hygiene device
US6433246B1 (en) 1995-12-22 2002-08-13 Mcneil-Ppc, Inc. Tampon having improved early expansion characteristics
CH691255A5 (en) * 1996-04-15 2001-06-15 Soremartec Sa Wrapping machine with sheet material.
US5928184A (en) * 1997-04-14 1999-07-27 Tampax Corporation Multi-layer absorbent article
SE9702462L (en) 1997-06-26 1998-11-16 Elekta Ab Method and apparatus for testing a brain electrode
JPH11120830A (en) * 1997-10-09 1999-04-30 Hitachi Ltd Flat multi-conductor cable connecting structure
DE19753665C2 (en) * 1997-12-03 2000-05-18 Johnson & Johnson Gmbh Tampon for feminine hygiene or medical purposes and process for the production thereof
US6743212B1 (en) 1997-12-23 2004-06-01 Mcneil, Ppc, Inc. Multi-layered tampon cover
US6191341B1 (en) * 1998-04-21 2001-02-20 Ronald D. Shippert Medical absorbent pack substantially free of unwanted adhesion properties
US6358235B1 (en) 1998-07-29 2002-03-19 The Procter & Gamble Company Soft conformable hollow bag tampon
US6183436B1 (en) 1998-09-11 2001-02-06 Ultracell Medical Technologies Of Connecticut, Inc Article for packing body cavities
FR2788987B1 (en) 1999-02-03 2001-05-04 Bernard Chaffringeon SINGLE-USE DEVICE FOR TRANSFERRING AN ACTIVE LIQUID IN AN INTRACORPOREAL CAVITY
US6554814B1 (en) 1999-05-10 2003-04-29 The Procter & Gamble Company Protection tampon and method of making
JP3725370B2 (en) * 1999-07-02 2005-12-07 ユニ・チャーム株式会社 Sanitary tampons
US6436328B1 (en) 1999-09-15 2002-08-20 Kimberly-Clark Worldwide, Inc. Method for forming an absorbent structure
US6479728B1 (en) 1999-09-15 2002-11-12 Kimberly-Clark Worldwide, Inc. Absorbent structure with angularly orientated absorbent members
US6595974B1 (en) 1999-10-07 2003-07-22 Playtex Products, Inc. Rapid expansion tampon pledget
US7160279B2 (en) * 1999-10-07 2007-01-09 Playtex Products, Inc. Rapid expansion tampon pledget comprising inverted coverstock and pleats
EP1108408A1 (en) * 1999-12-14 2001-06-20 The Procter & Gamble Company Digital tampon with uneven number of ribs
US6953456B2 (en) * 1999-12-14 2005-10-11 The Procter & Gamble Company Tampon having an oval form after expansion and process for producing the same
CA2293599A1 (en) 1999-12-29 2001-06-29 Peter F. Nelson Unknown
US20020012373A1 (en) * 2000-07-28 2002-01-31 The Furukawa Electric Co., Ltd. Semiconductor laser device and method of fabricating same
US6610904B1 (en) * 2000-09-22 2003-08-26 Tredegar Film Products Corporation Acquisition distribution layer having void volumes for an absorbent article
US6570055B2 (en) 2000-12-21 2003-05-27 Mcneil-Ppc, Inc Apertured polymeric film web with surfactant mixture additive
US6860874B2 (en) 2001-02-15 2005-03-01 Johnson & Johnson Gmbh Tampon, particularly for feminine hygiene
US6773422B2 (en) 2001-03-22 2004-08-10 Mcneil-Ppc, Inc. Folded compact tampon applicator
US6635800B2 (en) 2001-04-20 2003-10-21 Playtex Products, Inc. Segmented tampon pledget
JP4224303B2 (en) * 2001-05-22 2009-02-12 ユニ・チャーム株式会社 Interlabial pad and its packaging
US6840927B2 (en) * 2001-11-16 2005-01-11 The Proctor & Gamble Company Tampon with fluid wicking overwrap with skirt portion
US20030135180A1 (en) 2002-01-10 2003-07-17 Nguyen Hien Vu Absorbent device with a lubricious cover
US7101358B2 (en) * 2002-05-23 2006-09-05 The Procter & Gamble Company Tampon wrapper with opening means comprising stopper
US20030229328A1 (en) * 2002-06-11 2003-12-11 Rogerio Costa Absorbent tampon having outer petals
NO318007B1 (en) * 2002-11-01 2005-01-17 Annette Torkildsen Aid for the use of tampons
US7179952B2 (en) * 2003-08-25 2007-02-20 Kimberly-Clark Worldwide, Inc. Absorbent article formed with microlayered films
US20050256482A1 (en) 2004-04-30 2005-11-17 The Procter & Gamble Company Tampon comprising a plurality of strips or cords
US20050277904A1 (en) * 2004-05-14 2005-12-15 Chase David J Tampon with flexible panels
US7618403B2 (en) 2004-05-14 2009-11-17 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US8480833B2 (en) 2004-05-14 2013-07-09 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates and methods of making
US20050256484A1 (en) * 2004-05-14 2005-11-17 Chase David J Method of using an intravaginal device with fluid transport plates
US8864640B2 (en) 2004-05-14 2014-10-21 Mcneil-Ppc, Inc. Methods of packaging intravaginal device
US8247642B2 (en) * 2004-05-14 2012-08-21 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
PL1755515T3 (en) * 2004-05-14 2019-04-30 Johnson & Johnson Consumer Inc Intravaginal device with fluid transport plates
US8653322B2 (en) 2004-05-14 2014-02-18 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates
US7845380B2 (en) * 2004-05-14 2010-12-07 Mcneil-Ppc, Inc. Intravaginal device with fluid transport plates
US20050256485A1 (en) * 2004-05-14 2005-11-17 Samuel Carasso Method of using intravaginal device with fluid transport plates

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351339A (en) * 1981-04-14 1982-09-28 Sneider Vincent R Tampon with a protective accordion-style cover
US6177608B1 (en) * 1994-06-30 2001-01-23 Kimberly-Clark Worldwide, Inc. Tampon
WO1999000096A1 (en) * 1997-06-30 1999-01-07 Mcneil-Ppc, Inc. Tampon having an apertured film cover
US6206867B1 (en) * 1998-07-29 2001-03-27 The Procter & Gamble Company Tampon with flexible panels
WO2001001906A1 (en) * 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Multilayered apertured film for absorbent article

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662249B2 (en) 2002-09-12 2017-05-30 Edgewell Personal Care Brands, Llc. Ergonomic tampon applicator
US9737443B2 (en) 2002-09-12 2017-08-22 Edgewell Personal Care Brands, Llc Ergonomic tampon applicator
US10383776B2 (en) 2003-05-02 2019-08-20 Edgewell Personal Care Brands, Llc Tampon assembly having a shaped pledget
US10105267B2 (en) 2003-05-02 2018-10-23 Edgewell Personal Care Brands, LLC> Tampon assembly having a shaped pledget
US10105266B2 (en) 2003-05-02 2018-10-23 Edgewell Personal Care Brands, Llc. Tampon assembly having a shaped pledget
US9035126B2 (en) 2004-05-14 2015-05-19 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US9035124B2 (en) 2004-05-14 2015-05-19 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US9044354B2 (en) 2004-05-14 2015-06-02 Mcneil-Ppc, Inc. Fluid management device with fluid transport element for use within a body
US8864640B2 (en) 2004-05-14 2014-10-21 Mcneil-Ppc, Inc. Methods of packaging intravaginal device
US11564850B2 (en) 2006-06-12 2023-01-31 Edgewell Personal Care Brands, Llc Tampon assembly providing proper bodily placement of a pledget
US9820890B2 (en) 2006-06-12 2017-11-21 Edgewell Personal Care Brands, Llc. Tampon assembly providing proper bodily placement of pledget
US10575994B2 (en) 2006-06-12 2020-03-03 Edgewell Personal Care Brands, Llc Tampon assembly providing proper bodily placement of pledget
WO2008005009A1 (en) * 2006-06-30 2008-01-10 Personal Products Company Method and apparatus to make an intravaginal device with fluid transport plates
AU2006345731B2 (en) * 2006-06-30 2012-05-31 Johnson & Johnson Consumer Inc. Method and apparatus to make an intravaginal device with fluid transport plates
JP2009542317A (en) * 2006-06-30 2009-12-03 マクニール−ピーピーシー・インコーポレイテッド Method and apparatus for manufacturing an intravaginal device with a fluid transport plate
CN101541280B (en) * 2006-06-30 2012-04-18 麦克内尔-Ppc股份有限公司 An intravaginal device with fluid transport plates
US10076452B2 (en) 2006-11-08 2018-09-18 Edgewell Personal Care Brands, Llc. Tampon pledget for increased bypass leakage protection
US10596046B2 (en) 2006-11-08 2020-03-24 Edgewell Personal Care Brands, Llc Tampon pledget for increased bypass leakage protection
US9687389B2 (en) 2006-11-08 2017-06-27 Edgewell Personal Care Brands, Llc. Tampon pledget for increased bypass leakage protection
US11819390B2 (en) 2006-11-08 2023-11-21 Edgewell Personal Care Brands, Llc Tampon pledget for increased bypass leakage protection
JP2010527281A (en) * 2007-05-17 2010-08-12 プレイテックス プロダクツ エルエルシー Tampump Ledget for enhanced prevention of bypass leaks
US9877877B2 (en) 2007-05-17 2018-01-30 Edgewell Personal Care Brands, Llc Tampon pledget for increased bypass leakage protection
US11154430B2 (en) 2007-05-17 2021-10-26 Edgewell Personal Care Brands, Llc Tampon pledget for increased bypass leakage protection
US9883975B2 (en) 2008-05-06 2018-02-06 Edgewell Personal Care Brands, Llc Tampon pledget with improved by-pass leakage protection
US10028864B2 (en) 2009-04-15 2018-07-24 Edgewell Personal Care Brands, Llc Tampon pledget with improved by-pass leakage protection
US10835424B2 (en) 2009-04-15 2020-11-17 Edgewell Personal Care Brands, Llc Tampon pledget with improved by-pass leakage protection
WO2020253971A1 (en) * 2019-06-21 2020-12-24 Johnson & Johnson Gmbh Tampon for feminine hygiene

Also Published As

Publication number Publication date
BRPI0510013B1 (en) 2016-12-20
IL179267A0 (en) 2007-03-08
US20100170069A1 (en) 2010-07-08
US8028500B2 (en) 2011-10-04
EP1755515B1 (en) 2018-10-17
CA2566678C (en) 2013-06-18
CA2566678A1 (en) 2005-12-01
JP2007537018A (en) 2007-12-20
CN1968666A (en) 2007-05-23
EP1755515A1 (en) 2007-02-28
BRPI0510013B8 (en) 2022-08-30
US20070010388A1 (en) 2007-01-11
JP5117186B2 (en) 2013-01-09
CN1968666B (en) 2010-11-10
AU2005244893B2 (en) 2011-07-28
PL1755515T3 (en) 2019-04-30
US7861494B2 (en) 2011-01-04
NO20065608L (en) 2007-02-08
AU2005244893A1 (en) 2005-12-01
BRPI0510013A (en) 2007-09-18

Similar Documents

Publication Publication Date Title
CA2566678C (en) Intravaginal device with fluid transport plates
US8231753B2 (en) Intravaginal device with fluid transport plates
US8480833B2 (en) Intravaginal device with fluid transport plates and methods of making
CA2566790A1 (en) Tampon with flexible panels
EP1755516B1 (en) Methods of packaging intravaginal device
US20130165308A1 (en) Methods of packaging intravaginal devices
CA2566683C (en) Intravaginal device with fluid transport plates and methods of making
CA2656416C (en) Intravaginal device with fluid transport plates
AU2011206950B2 (en) Intravaginal device with fluid transport plates
AU2011206948B2 (en) Intravaginal device with fluid transport plates
AU2011207948B2 (en) Intravaginal device with fluid transport plates and methods of making
AU2011206951B2 (en) Intravaginal device with fluid transport plates and methods of making

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11444792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005244893

Country of ref document: AU

Ref document number: 2007513464

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2566678

Country of ref document: CA

Ref document number: 179267

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005749469

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005244893

Country of ref document: AU

Date of ref document: 20050513

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005244893

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200610453

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 200580020191.7

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005749469

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11444792

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0510013

Country of ref document: BR