WO2005100654A2 - Electrospinning of fibers using a rotatable spray head - Google Patents

Electrospinning of fibers using a rotatable spray head Download PDF

Info

Publication number
WO2005100654A2
WO2005100654A2 PCT/US2005/011035 US2005011035W WO2005100654A2 WO 2005100654 A2 WO2005100654 A2 WO 2005100654A2 US 2005011035 W US2005011035 W US 2005011035W WO 2005100654 A2 WO2005100654 A2 WO 2005100654A2
Authority
WO
WIPO (PCT)
Prior art keywords
spray head
collector
fibers
nanofibers
longitudinal axis
Prior art date
Application number
PCT/US2005/011035
Other languages
French (fr)
Other versions
WO2005100654A3 (en
Inventor
Anthony L. Andrady
David S. Ensor
J. Randall Newsome
Original Assignee
Research Triangle Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Triangle Institute filed Critical Research Triangle Institute
Priority to EP05732647A priority Critical patent/EP1733081A4/en
Priority to JP2007507382A priority patent/JP4975613B2/en
Publication of WO2005100654A2 publication Critical patent/WO2005100654A2/en
Publication of WO2005100654A3 publication Critical patent/WO2005100654A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/614Strand or fiber material specified as having microdimensions [i.e., microfiber]

Definitions

  • Nanofibers are useful in a variety of fields from clothing industry to military applications. For example, in the biosubstance field, there is a strong interest in developing structures based on nanofibers that provide a scaffolding for tissue growth effectively supporting living cells. In the textile field, there is a strong interest in nanofibers because the nanofibers have a high surface area per unit mass that provides light but highly wear-resistant garments. As a class, carbon nanofibers are being used for example in reinforced composites, in heat management, and in reinforcement of elastomers. Many potential applications for nanofibers are being developed as the ability to manufacture and control the chemical and physical properties improves. Electrospray/electrospinning techniques are used to form particles and fibers as small as one nanometer in a principal direction.
  • the phenomenon of electrospray involves the formation of a droplet of polymer melt at an end of a needle, the electric charging of that droplet, and an expulsion of parts of the droplet because of the repulsive electric force due to the electric charges.
  • electrospraying a solvent present in the parts of the droplet evaporates and small particles are formed but not fibers.
  • the electrospirming technique is similar to the electrospray technique. However, in electrospinning and during the expulsion, fibers are formed from the liquid as the parts are expelled. Glass fibers have existed in the sub-micron range for some time. Small micron diameter electrospun nanofibers have been manufactured and used commercially for air filtration applications for more than twenty years.
  • Electrospun nanofibers have a dimension less than l ⁇ m in one direction and preferably a dimension less than 100 nm in this one direction.
  • Nanofiber webs have typically been applied onto various substrates selected to provide appropriate mechanical properties and to provide complementary functionality to the nanofiber web. In the case of nanofiber filter media, substrates have been selected for pleating, filter fabrication, durability in use, and filter cleaning.
  • a basic electrospinning apparatus 10 is shown in Figure 1 for the production of nanofibers.
  • the apparatus 10 produces an electric field 12 that guides a polymer melt or solution 14 extruded from a tip 16 of a needle 18 to an electrode 20.
  • An enclosure/syringe 22 stores the polymer solution 14.
  • one end of a voltage source HV is electrically connected directly to the needle 18, and the other end of the voltage source HV is electrically connected to the electrode 20.
  • the electric field 12 created between the tip 16 and the electrode 20 causes the polymer solution 14 to overcome cohesive forces that hold the polymer solution together.
  • a jet of the polymer 14 is drawn from the tip 16 toward the electrode 20 by the electric field 12 (i.e. electric field extracted), and dries during flight from the needle 18 to the electrode 20 to form polymeric fibers.
  • the fibers are typically collected downstream on the electrode 20.
  • US 2002/0100725 Al describes, besides the solvents and substances used for nanofibers, the difficulties of large scale production of the nanofibers including the volatilization of solvents in small spaces. Huang et al. give a partial list of substances/solvents that can be used to produce the nanofibers.
  • U.S. Pat. No. 3,280,229 the entire contents of which are incorporated herein by reference, describes metal needles for electrospinning via single or multiple electrified needles. Alternatively, electrospinning can occur from a receptor having a narrow end through which the fluid can exit the receptor and a long pointed electrode immersed in the fluid to electrify the fluid. For example, U.S. Pat. No.
  • US 2002/0122840 A 1 shows an apparatus for electrospinning in which two conductor boards 26 and 30 make electrical contact to each needle 32. A high voltage is applied to each needle 32 through the conductor boards 26 and 30 that are in direct contact with the needles.
  • both U.S. Patent Publication Appl. No. 2002/0122840A1 and U.S. Pat. Publication Appl. No. US2002/0175449A1 describe electrospinning of polymer solutions through one or more charged conducting nozzles arranged on at least one conducting plate.
  • the background techniques using a multiplicity of individually electrified needles and/or a multiplicity of solution reservoirs are not conducive to large scale manufacturing.
  • the extrusion element includes a passage by which a substance from which the fibers are to be electrospun is provided to a tip of the extrusion element.
  • the extrusion element extends in a direction from the longitudinal axis and is configured to electrospin the fibers by electric field extraction of the substance from the tip of the extrusion element.
  • a novel method for electrospinning fibers which provides a substance from which the fibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis, rotates the spray head or a collector around the longitudinal axis, applies in a direction from the longitudinal axis of the spray head an electric field to the tip of the extrusion element to electrospin by electric field extraction the substance from the tip of the extrusion element to form the fibers, and collects the fibers on the collector.
  • Figure 1 is a schematic illustration of a conventional electrospray apparatus
  • Figure 2A is a schematic illustration showing a top view of one embodiment of an electrospinning apparatus of the present invention
  • Figure 2B is a schematic illustration showing a side view of the electrospinning apparatus of the present invention shown in Figure 2A
  • Figure 3 A is a schematic illustration of one embodiment of an extrusion element of the present invention
  • Figure 3B is a schematic illustration of another embodiment of an extrusion element of the present invention
  • Figure 4 is a schematic illustration showing a top view of another embodiment of an electrospinning apparatus of the present invention
  • Figure 5 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention with no angular rotation
  • Figure 6 is a replica of a fiber collection including an occurrence
  • Figure 2 A is a schematic illustration showing a top view of an electrospinning apparatus 21 of one embodiment of the present invention in which a rotatable spray head 22 including a reservoir 24 holding a substance from which the fibers are to be extruded.
  • Figure 2B shows a side view of the electrospinning apparatus 21.
  • the electrospray medium is shown illustratively being feed to the reservoir 24 along an axial direction of the electrospinning apparatus 21.
  • the electrospray medium 26 is electrospun from a plurality of extrusion elements 28.
  • the rotatable spray head 22 is preferably rotated about its center, and the spray of the electrospray medium 26 occurs radially from the extrusion elements 28 placed on the periphery of the rotatable spray head 22.
  • the rotatable spray head 22 is preferably a cylindrical structure, but other structures such as for example polygonal structures are suitable.
  • the rotatable spray head 22 includes a passage 30 for supplying the electrospray medium 26 to the reservoir 24.
  • An electric potential applied to the rotatable spray head 22 establishes an electric field 32 as shown in Figure 2A which extends to a collector 34 constituting an opposite electrode.
  • the electric field 32 existing about the rotatable spray head 22 then extracts the electrospray medium 26 from the reservoir 24 to a tip end of the extrusion elements 28.
  • the extracted medium 26 dries in the ambient about the rotatable spray head 22 to form fibers.
  • the electrospray medium 26 includes polymer solutions and/or melts known in the art for the extrusion of fibers including extrusions of nanofiber substances.
  • polymers and solvents suitable for the present invention include for example polystyrene in dimethylformamide or toluene, polycaprolactone in dimethylformamide/methylene chloride mixture (20/80 w/w), polyethyleneoxide in distilled water, polyacrylic acid in distilled water, poly (methyl methacrylate) PMMA in acetone, cellulose acetate in acetone, polyacrylonitrile in dimethylformamide, polylactide in dichloromethane or dimethylformamide, and polyvinylalcohol in distilled water.
  • the electrospun fibers collect on the collector 34.
  • the collected fibers are deposited on the surface of the collector 34 with a degree of orientation dependent on the speed of rotation, the electric potential of the rotatable spray head 22, and the viscosity of the solution.
  • the fiber characteristics as well as the orientation can be controlled by the centrifugal forces generated by the spinning of the rotatable spray head 22 to be discussed below.
  • the rotatable spray head 22 preferably includes individual extrusion elements 28 such as for example capillaries, bundles of capillaries, needles, bundles of needles, tubes, bundles of tubes, rods, bundles of rods, concentric tubes, frits, open-cell foams, combinations thereof, or otherwise channels of appropriate shape formed in the wall of the rotatable spray head 22.
  • the individual extrusion elements 28 can be made of metal, glass, or plastic capillary tubes appropriately sized to deliver the electrospray medium 26 from the reservoir 24 to an exterior of the extrusion elements 28, where the electrospray medium 26 is electrified.
  • the individual extrusion elements 28 can be made of, for example, non-conducting substances such as glass, ceramic, Teflon, or polyethylene. Further, the extrusion elements 28, in one embodiment of the present invention, as shown in Figure 2A preferably extend beyond the wall of the rotatable spray head 22. However, the spray elements in another embodiment of the present invention may not extend beyond the wall of the rotatable spray head 22.
  • Each extrusion element 28 has a first opening inside the wall of the rotatable spray head 22 and a second opening outside the wall of the rotatable spray head 22.
  • Figure 3 A shows for example an extrusion element 28 which has an inner diameter ID between 50-250 ⁇ m and an outer diameter OD about 260 ⁇ m.
  • the electric field 32 is produced between the rotatable spray head 22 and the collector by applying a high voltage power source HN, as shown in Figure 2A.
  • the high voltage power source HV can be commercial power source, such as for example Bertan Model 105-20R ( Bertan, Valhalla, ⁇ Y) or for example Gamma High Voltage Research Model ES30P ( Gamma High Voltage Research Inc., Ormond Beach).
  • the high voltage source HV is connected to the rotatable spray head 22 through a lead 40 and to the collector 34 through another lead 42.
  • the outside periphery of the rotatable spray head 22 is placed preferably 5 to 50 cm away from the collector 34.
  • an electric field strength between 2,000 and 400,000 V/m is established by the high voltage source.
  • the collector 34 is grounded, and the fibers produced by electrospinning are directed by the electric field 32 toward the collector 34.
  • the electrospun fibers are deposited on the collector 34, accumulate thereon, and are subsequently removed.
  • a rotating mechanism (not shown) rotates the rotatable spray head 22 at a preset angular speed.
  • a angular rotation speed of 1,000 - 10,000 ⁇ m is preferred.
  • the spray head 22 is made of a conducting substance such as for example aluminum or stainless steel.
  • the spray head 22 may be made of an electric-field permeable substance and have an interior electrode, as described in the above-noted U.S. Application Serial No. 10/819,942, filed on April 8, 2004, entitled “Electrospray/Electrospinning Apparatus and Method” and inco ⁇ orated herein by reference.
  • Figure 4 is a schematic illustration showing a top view of an electrospinning apparatus of the present invention having an interior electrode 44 and an electric field permeable wall 46.
  • the electrospray medium 26 being a viscous solution is forced into the extrusion elements 28 by rotation of the rotatable spray head 22.
  • the electric field 32 existing about the rotatable spray head 22 then extracts the electrospray medium 26 from the tip end of the extrusion elements 28.
  • the extracted medium 26 dries in the ambient about the rotatable spray head 22 to form fibers.
  • the distance between the collector 34 and the interior electrode 36 or the distance between the collector 34 and a periphery of the rotatable spray head 22 is determined based on a balance of a few factors such as for example a time for the solvent evaporation rate, the electric field strength, and a distance/time sufficient for a reduction of the fiber diameter. These factors and their determination are similar in the present invention to those in conventional single needle spray elements.
  • the present inventors have discovered that a rapid evaporation of the solvents results in larger than nm-size fiber diameters. Therefore, in one embodiment of the present invention, the evaporation of the solvent is controlled by control of the gaseous environment in the region about the extrusion elements 28 and in the region about where the fibers are being electrospun.
  • control of the gaseous environment about the extrusion elements 28 improves the process window available for the production of nanofibers. More specifically, the present inventors have discovered that the introduction into the gaseous environment about the extrusion elements of electronegative gases, ions, and energetic particles (as from radioisotopes) affects the electrospinning process.
  • control of the vapor pressure (and hence the drying rate) in the region in which the fibers are being electrospun improves the process window available for the production of nanofibers. Details of controlling the gaseous environment are described in more detail in related application U.S. Serial No. 10/819,945, filed April 8, 2004, ' ⁇ lectrospinning in a Controlled Gaseous Environment," Attorney Docket No. 241016US-2025-2025-20.
  • the present invention permits increases in the applied voltage and improved pulling of the liquid jet from the capillary.
  • electronegative gases appear to reduce the onset of a corona discharge (which would disrupt the electrospinning process) around the capillary thus permitting operation at higher voltages enhancing the electrostatic force. Further, according to the present invention, electronegative gases reduce the possibility of bleeding-off charge in the Rayleigh instability region, thereby enhancing the stretching and drawing of the fiber.
  • the drying rate for the electrospun fiber during the electrospinning process can be adjusted by altering the partial pressure of the liquid vapor in the gas surrounding the fiber. According to the present invention, retarding the drying rate is advantageous because the longer the residence time of the fiber in the region of instability the more prolonged is the stretching, and consequently the smaller the diameter of the resultant fiber.
  • the height of the containment chamber and separation of the capillary at high DC voltage from the ground need, according to the present invention, to be compatible with the drying rate of the fiber.
  • a rotatable spray head with an outside diameter of 20 mm; a polymer solution of a molecular weight of 350kg/mol, a solvent of dimethylformamide DMF, an extrusion element tip diameter of 500 ⁇ m, a cylindrical collector screen, ⁇ 1.5ml/hr pump rate providing the polymer solution, an electronegative gas flow of CO 2 at 8 1pm purging the environment about the rotatable spray head, an electric field strength of 2 KV/cm, a rotation speed of 1000 ⁇ m, and gap distance between the tip of the extrusion elements and the collector of 13 cm.
  • a decreased fiber size can be obtained by increasing the molecular weight of the polymer solution to lOOOkg/mol, and/or introducing a more electronegative gas (such as for example Freon), and/or increasing gas flow rate to for example 20 1pm, and/or decreasing tip diameter to 150 ⁇ m (e.g., as with a Teflon tip).
  • blended gases with different electrical properties can be used to according to the present invention.
  • One example of a blended gas includes CO 2 (at 4 1pm) blended with Argon (at 4 1pm).
  • blended gases suitable for the present invention include, but are not limited to, CO 2 (4 1pm) with Freon (4 1pm), CO 2 (41pm) with Nitrogen (41pm), CO 2 (41pm) with Air (4 1pm), CO 2 (7 1pm) with Argon (1 1pm), CO 2 (1 1pm) with Argon (7 1pm).
  • a solvent such as methylene chloride or a blend of solvents
  • the rate of evaporation of the solvent will depend on the vapor pressure gradient between the fiber and the surrounding gas.
  • the rate of evaporation of the solvent can be controlled by altering the concentration of solvent vapor in the gas.
  • the rate of evaporation affects the Rayleigh instability.
  • the electrical properties of the solvent and its vapor influence the electrospinning process.
  • the amount of solvent vapor present in the ambient about the electrospinning is controlled by altering temperature of chamber and/or pool, and thus controlling the partial pressure of solvent in the gaseous ambient about the electrospinning.
  • Having a solvent vapor in the electrospinning chamber affects the drying rate of the fibers, and alters the fiber surface characteristics when a solvent other than the one used in spinning solution is used in the chamber.
  • the present inventors have discovered that the rotational speed of the spray head 22 produces a fiber collection with preferential orientations.
  • the rotatable spray head when spun at higher angular speeds increases a preferred orientation of the deposited fibers.
  • Figure 5 depicts a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention with no angular rotation.
  • the occurrence histogram indicates that with no angular rotation the standard deviation of the deposited fibers is 44° relative to a vertical direction (i.e., relative to an angle of 90° on the constructed histogram).
  • Figure 6 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention when rotated at an angular rotation speed of 150 ⁇ m.
  • the occurrence histogram indicates that with the angular rotation speed of 150 ⁇ m the standard deviation of the deposited fibers is reduced to 30°.
  • Figures 7-9 are replicas of fiber collections and occurrence histograms produced by the electrospinning apparatus of the present invention when rotated at higher angular rotation speeds of 350, 600, and 950 ⁇ m, respectively.
  • the occurrence histograms indicate that, with the increased angular rotation speed, the standard deviation of the deposited fibers is further reduced yielding at an angular rotation speed of 950 ⁇ m a standard deviation of less than 10°.
  • the present invention provides a fiber collection in which the fibers overlay each other.
  • the fibers in the collection due to deposition under the above-noted centrifugal acceleration are preferentially oriented along a longitudinal axis of the mat.
  • Figures 6-9 show that the fibers are oriented with a principal axis of a majority of the fibers lying on average along the longitudinal axis.
  • the degree of orientation can be such that a majority of the fibers lie within 30°of the longitudinal axis, as in Figure 8. Under higher speed rotations, a majority of the fibers lie within 10° of the longitudinal axis, as in Figure 9.
  • the centrifugal force of the angular rotation adds to the force applied by the pump, helping the fluid to exit the extrusion element tips. Additionally, the centrifugal force helps to overcome the surface tension forces to aid in jet formation. Orientation of the randomly whipping fiber can be achieved at rotation speeds that are higher than the whipping speeds of the fiber, such improvements in the orientation being illustrated by Figures 6-9. Accordingly, a translation mechanism in the present invention can rotate the spray head and or the collector.
  • Figure 2B shows a rotary mechanism 23 connected in that instance to the rotatable spray head 22.
  • the rotary mechanism 23 can be any suitable drive by which the rotatable spray head can be rotated.
  • the rotary mechanism 23 can be a motor with a belt or gear drive driving a rotation shaft 25 connected to the rotatable spray head 22.
  • the rotary mechanism 23 can be an electric motor in which the rotor of the motor is directly coupled to the rotation shaft 25.
  • Other drive mechanisms known in the art are likewise applicable provided these drive mechanisms permit the prescribed rotational speeds to be obtained.
  • the rotary mechanism 23 can be also coupled to the collector 34 to drive the collector 34 at a prescribed angular speed.
  • a preferred embodiment of the present invention includes an apparatus for producing fibers which has a spray head having a reservoir configured to hold a substance from which the fibers are to be composed, and has plural extrusion elements provided in a peripheral wall of the spray head so as to communicate the substance from the reservoir.
  • the spray head in this embodiment is configured to electrospin the substance from the plural extrusion elements to form the fibers.
  • the collector can be rotated alone or in an opposite fashion to the spray head.
  • the collector can be a conveyor configured to convey a belt in an opposite direction to the tip of a stationary or a counter-rotating extrusion element.
  • the conveyor by translating the belt circumferentially about the spray head can produce on the belt deposited oriented fibers.
  • rotation of the collector at the angular speed given previously for the spray head yields oriented fibers even if the spray head is stationary.
  • the collector rotates or otherwise travels in a circumferential direction to collect the oriented fibers, and by making multiple passes permits a fiber collection to be deposited.
  • the present invention provides various apparatuses and methods for producing fibers.
  • the apparatus includes a spray head supported on a longitudinal axis and including at least one extrusion element disposed in a peripheral wall of the spray head.
  • step 1006 the method applies in a direction from the longitudinal axis of the spray head an electric field to the tip of the extrusion element to electrospin by electric field extraction the substance from the tip of the extrusion element to form the fibers.
  • step 1008 the method collects the fibers on the collector.
  • the spray head and the collector are preferably rotated at different and/or opposite angular velocities in a range of 1,000 - 10,000 ⁇ m.
  • the electrospinning electrospins the extruded substance to form fibers or nanofibers.
  • the electrospinning occurs preferably in an electric field strength of 2,000-400,000 V/m.
  • the fibers can be collected on a grounded collector.
  • the electrospinning can produce either fibers or nanofibers.
  • the fibers and nanofibers produced by the present invention include, but are not limited to, acrylonitrile/butadiene copolymer, cellulose, cellulose acetate, chitosan, collagen, DNA, fibrinogen, fibronectin, nylon, poly(acrylic acid), poly(chloro styrene), poly(dimethyl siloxane), poly(ether imide), poly(ether sulfone), poly(ethyl acrylate), poly(ethyl vinyl acetate), poly(ethyl-co-vinyl acetate), poly(ethylene oxide), poly(ethylene terephthalate), poly(lactic acid-co-glycolic acid), poly(methacrylic acid) salt, poly(methyl methacrylate), poly(methyl styrene), poly(styrene sulfonic acid) salt, poly(styrene sulfonyl fluoride), poly(s
  • polymer blends can also be produced as long as the two or more polymers are soluble in a common solvent.
  • a few examples would be: poly(vinylidene fluoride)-blend-poly(methyl methacrylate), polystyrene-blend-poly(vinylmethylether), poly(methyl methacrylate)-blend-poly(ethyleneoxide), poly(hydroxypropyl methacrylate)-blend poly(vinylpyrrolidone), poly(hydroxybutyrate) -blend-poly(ethylene oxide), protein blend-polyethyleneoxide, polylactide-blend-polyvinylpyrrolidone, polystyrene-blend-polyester, polyester-blend-poly(hyroxyethyl methacrylate), poly(ethylene oxide)-blend poly(methyl methacrylate), poly(hydroxystyrene)-blend-poly(ethylene oxide)) .

Abstract

Apparatus and method for electrospinning fibers in which the apparatus includes a spray head having a longitudinal axis and including at least one extrusion element disposed in a peripheral wall of the spray head. The extrusion element includes a passage by which a substance from which the fibers are to be electrospun is provided to a tip of the extrusion element. The extrusion element extends in a direction from the longitudinal axis and is configured to electrospin the fibers by electric field extraction of the substance from the tip of the extrusion element. Accordingly, the method includes providing a substance from which the fibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis, rotating the spray head or a collector configured to receive the fibers around the longitudinal axis, applying in a direction from the longitudinal axis of the spray head an electric field to the tip of the extrusion element to electrospin by electric field extraction the substance from the tip of the extrusion element to form the fibers, and collecting the fibers on the collector.

Description

TITLE OF THE INVENTION
ELECTROSPINNING OF FIBERS USING A ROTATABLE SPRAY HEAD
Cross Reference to Related Applications This application is related to U.S. Application Serial No. 10/819,942, filed on April 8, 2004, entitled "Electrospray/Electrospinning Apparatus and Method," Attorney Docket No.241013US-2025-2025-20, the entire contents of which are incorporated herein by reference. This application is related to U.S. Application Serial No. 10/819,945, filed April 8, 2004, entitled "Electrospirming in a Controlled Gaseous Environment," Attorney Docket No. 245016US-2025-2025-20, the entire contents of which are incorporated herein by reference.
DISCUSSION OF THE BACKGROUND Field of the Invention This invention relates to the field of electrospirming of fibers from polymer solutions.
Background of the Invention Nanofibers are useful in a variety of fields from clothing industry to military applications. For example, in the biosubstance field, there is a strong interest in developing structures based on nanofibers that provide a scaffolding for tissue growth effectively supporting living cells. In the textile field, there is a strong interest in nanofibers because the nanofibers have a high surface area per unit mass that provides light but highly wear-resistant garments. As a class, carbon nanofibers are being used for example in reinforced composites, in heat management, and in reinforcement of elastomers. Many potential applications for nanofibers are being developed as the ability to manufacture and control the chemical and physical properties improves. Electrospray/electrospinning techniques are used to form particles and fibers as small as one nanometer in a principal direction. The phenomenon of electrospray involves the formation of a droplet of polymer melt at an end of a needle, the electric charging of that droplet, and an expulsion of parts of the droplet because of the repulsive electric force due to the electric charges. In electrospraying, a solvent present in the parts of the droplet evaporates and small particles are formed but not fibers. The electrospirming technique is similar to the electrospray technique. However, in electrospinning and during the expulsion, fibers are formed from the liquid as the parts are expelled. Glass fibers have existed in the sub-micron range for some time. Small micron diameter electrospun nanofibers have been manufactured and used commercially for air filtration applications for more than twenty years. Polymeric melt blown fibers have more recently been produced with diameters less than a micron. Several value-added nonwoven applications, including filtration, barrier fabrics, wipes, personal care, medical and pharmaceutical applications may benefit from the interesting technical properties of commercially available nanofibers and nanofiber webs. Electrospun nanofibers have a dimension less than lμm in one direction and preferably a dimension less than 100 nm in this one direction. Nanofiber webs have typically been applied onto various substrates selected to provide appropriate mechanical properties and to provide complementary functionality to the nanofiber web. In the case of nanofiber filter media, substrates have been selected for pleating, filter fabrication, durability in use, and filter cleaning. A basic electrospinning apparatus 10 is shown in Figure 1 for the production of nanofibers. The apparatus 10 produces an electric field 12 that guides a polymer melt or solution 14 extruded from a tip 16 of a needle 18 to an electrode 20. An enclosure/syringe 22 stores the polymer solution 14. Conventionally, one end of a voltage source HV is electrically connected directly to the needle 18, and the other end of the voltage source HV is electrically connected to the electrode 20. The electric field 12 created between the tip 16 and the electrode 20 causes the polymer solution 14 to overcome cohesive forces that hold the polymer solution together. A jet of the polymer 14 is drawn from the tip 16 toward the electrode 20 by the electric field 12 (i.e. electric field extracted), and dries during flight from the needle 18 to the electrode 20 to form polymeric fibers. The fibers are typically collected downstream on the electrode 20. The electrospirming process has been documented using a variety of polymers. One process of forming nanofibers is described for example in Structure Formation in Polymeric Fibers, by D. Salem, Hanser Publishers, 2001, the entire contents of which are incorporated herein by reference. By choosing a suitable polymer and solvent system, nanofibers with diameters less than 1 micron can be made. Examples of fluids suitable for electrospraying and electrospinning include molten pitch, polymer solutions, polymer melts, polymers that are precursors to ceramics, and/or molten glassy substances. These polymers can include nylon, fluoropolymers, polyolefins, polyimides, polyesters, and other engineering polymers or textile forming polymers. A variety of fluids or substances besides those listed above have been used to make fibers including pure liquids, solutions of fibers, mixtures with small particles and biological polymers. A review and a list of the substances used to make fibers are described in U.S. Patent Application Publications US 2002/0090725 Al and US 2002/0100725 Al, and in Huang et al, Composites Science and Technology, v63, 2003, the entire contents of which are incorporated herein by reference. U.S. Patent Application Publication No. US 2002/0090725 Al describes biological substances and bio-compatible substances to be electroprocessed, as well as solvents that can be used for these substances. U.S. Patent Application Publication No. US 2002/0100725 Al describes, besides the solvents and substances used for nanofibers, the difficulties of large scale production of the nanofibers including the volatilization of solvents in small spaces. Huang et al. give a partial list of substances/solvents that can be used to produce the nanofibers. Further, U.S. Pat. No. 3,280,229, the entire contents of which are incorporated herein by reference, describes metal needles for electrospinning via single or multiple electrified needles. Alternatively, electrospinning can occur from a receptor having a narrow end through which the fluid can exit the receptor and a long pointed electrode immersed in the fluid to electrify the fluid. For example, U.S. Pat. No. 705,691, the entire contents of which are incorporated herein by reference, describes a simple spray head as described above. Further, U.S. Patent Application Publication Nos. US 2002/0007869A1, US 2002/0090725 Al, US 2002/0100725 Al, US 2002/0122840A1, and US 2002/0175449A1, the entire contents of which are incorporated herein by reference, describe a plurality of electrified needles used to increase a spray area for nanofiber production. These patent applications disclose methods by which a polymer fiber is distributed to a plurality of needles, the needles being connected to one or more conductive boards that have a high voltage. For example, U.S. Patent Application Publication No. US 2002/0122840 A 1 shows an apparatus for electrospinning in which two conductor boards 26 and 30 make electrical contact to each needle 32. A high voltage is applied to each needle 32 through the conductor boards 26 and 30 that are in direct contact with the needles. Further, both U.S. Patent Publication Appl. No. 2002/0122840A1 and U.S. Pat. Publication Appl. No. US2002/0175449A1, describe electrospinning of polymer solutions through one or more charged conducting nozzles arranged on at least one conducting plate. Hence, the background techniques using a multiplicity of individually electrified needles and/or a multiplicity of solution reservoirs are not conducive to large scale manufacturing. Recent application, U.S. Pat. Application Publication No. US2003/106294 Al , the entire contents of which are incorporated herein by reference, describe an apparatus for electrospinning fibers utilizing a disc like spray head having multiple orifices being rotated about its center in which fibers are emitted from a face surface of the disk-like spray head. However, the emission of fibers from a face surface of a rotating spray head results in twisting and contorting of the extruded fibers due to the centripetal forces existing between the free end of the fiber and the end still attached to the extruding medium.
SUMMARY OF THE INVENTION One object of the present invention is to provide an apparatus and a method for the electrospinning fibers conducive to mass production. Another object is to provide an apparatus and a method which electrospins fibers in a parallel production process in which centrifugal forces supplement the electrospinning process. Accordingly, a further object of the present invention is to provide an apparatus and a method which simultaneously electrospins a plurality of fibers onto a collection surface. Thus, according to one embodiment of the present invention, there is provided a novel apparatus for electrospinning fibers which includes a spray head having a longitudinal axis and including at least one extrusion element disposed in a peripheral wall of the spray head. The extrusion element includes a passage by which a substance from which the fibers are to be electrospun is provided to a tip of the extrusion element. The extrusion element extends in a direction from the longitudinal axis and is configured to electrospin the fibers by electric field extraction of the substance from the tip of the extrusion element. According to another embodiment of the present invention, there is provided a novel method for electrospinning fibers which provides a substance from which the fibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis, rotates the spray head or a collector around the longitudinal axis, applies in a direction from the longitudinal axis of the spray head an electric field to the tip of the extrusion element to electrospin by electric field extraction the substance from the tip of the extrusion element to form the fibers, and collects the fibers on the collector.
BRIEF DESCRIPTION OF THE DRAWINGS A more complete appreciation of the present invention and many attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein: Figure 1 is a schematic illustration of a conventional electrospray apparatus; Figure 2A is a schematic illustration showing a top view of one embodiment of an electrospinning apparatus of the present invention; Figure 2B is a schematic illustration showing a side view of the electrospinning apparatus of the present invention shown in Figure 2A; Figure 3 A is a schematic illustration of one embodiment of an extrusion element of the present invention; Figure 3B is a schematic illustration of another embodiment of an extrusion element of the present invention; Figure 4 is a schematic illustration showing a top view of another embodiment of an electrospinning apparatus of the present invention; Figure 5 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention with no angular rotation; Figure 6 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention at an angular rotation speed of 150 m; Figure 7 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention at an angular rotation speed of 350 rpm; Figure 8 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention at an angular rotation speed of 600 rpm; Figure 9 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention at an angular rotation speed of 950 φm; and Figure 10 is a flowchart depicting a method of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now to the drawings, wherein like reference numerals designate identical, or corresponding parts throughout the several views, and more particularly to Figure 2A, Figure 2 A is a schematic illustration showing a top view of an electrospinning apparatus 21 of one embodiment of the present invention in which a rotatable spray head 22 including a reservoir 24 holding a substance from which the fibers are to be extruded. Figure 2B shows a side view of the electrospinning apparatus 21. In Figure 2B, the electrospray medium is shown illustratively being feed to the reservoir 24 along an axial direction of the electrospinning apparatus 21. The electrospray medium 26 is electrospun from a plurality of extrusion elements 28. The rotatable spray head 22 is preferably rotated about its center, and the spray of the electrospray medium 26 occurs radially from the extrusion elements 28 placed on the periphery of the rotatable spray head 22. The rotatable spray head 22 is preferably a cylindrical structure, but other structures such as for example polygonal structures are suitable. The rotatable spray head 22 includes a passage 30 for supplying the electrospray medium 26 to the reservoir 24. An electric potential applied to the rotatable spray head 22 establishes an electric field 32 as shown in Figure 2A which extends to a collector 34 constituting an opposite electrode. The geometrical arrangement of the rotatable spray head 22 and the collector 34 configures the electric field strength and distribution. An electric field strength of about 3 kV/cm in the present invention is preferred. In the present invention, the spray head 22 constitutes an electrifiable chamber (i.e., a chamber upon which an electric potential can be established). The electrospray medium 26 upon extraction from a tip of the plural extrusion elements 28 is guided along a direction of the electric field 32 toward the collector 34, but is deflected according to the centrifugal forces on the electrospun fibers. The rotatable spray head 22, shown for example in Figure 2A, can be a cylindrical vessel. On spinning, the electrospray medium 26 being a viscous solution is forced into the extrusion elements 28. The electric field 32 existing about the rotatable spray head 22 then extracts the electrospray medium 26 from the reservoir 24 to a tip end of the extrusion elements 28. The extracted medium 26 dries in the ambient about the rotatable spray head 22 to form fibers. The electrospray medium 26 includes polymer solutions and/or melts known in the art for the extrusion of fibers including extrusions of nanofiber substances. Indeed, polymers and solvents suitable for the present invention include for example polystyrene in dimethylformamide or toluene, polycaprolactone in dimethylformamide/methylene chloride mixture (20/80 w/w), polyethyleneoxide in distilled water, polyacrylic acid in distilled water, poly (methyl methacrylate) PMMA in acetone, cellulose acetate in acetone, polyacrylonitrile in dimethylformamide, polylactide in dichloromethane or dimethylformamide, and polyvinylalcohol in distilled water. Upon extrusion from the rotatable spray head 22, the electrospun fibers collect on the collector 34. The collected fibers are deposited on the surface of the collector 34 with a degree of orientation dependent on the speed of rotation, the electric potential of the rotatable spray head 22, and the viscosity of the solution. According to the present invention, the fiber characteristics as well as the orientation can be controlled by the centrifugal forces generated by the spinning of the rotatable spray head 22 to be discussed below. In one embodiment of the present invention, the rotatable spray head 22 preferably includes individual extrusion elements 28 such as for example capillaries, bundles of capillaries, needles, bundles of needles, tubes, bundles of tubes, rods, bundles of rods, concentric tubes, frits, open-cell foams, combinations thereof, or otherwise channels of appropriate shape formed in the wall of the rotatable spray head 22. The individual extrusion elements 28 can be made of metal, glass, or plastic capillary tubes appropriately sized to deliver the electrospray medium 26 from the reservoir 24 to an exterior of the extrusion elements 28, where the electrospray medium 26 is electrified. The individual extrusion elements 28 can be made of, for example, non-conducting substances such as glass, ceramic, Teflon, or polyethylene. Further, the extrusion elements 28, in one embodiment of the present invention, as shown in Figure 2A preferably extend beyond the wall of the rotatable spray head 22. However, the spray elements in another embodiment of the present invention may not extend beyond the wall of the rotatable spray head 22. Each extrusion element 28 has a first opening inside the wall of the rotatable spray head 22 and a second opening outside the wall of the rotatable spray head 22. Figure 3 A shows for example an extrusion element 28 which has an inner diameter ID between 50-250 μm and an outer diameter OD about 260 μm. Other cross-section shapes as for example a rectangular cross-section are also applicable for tubes, capillaries, needles, channels, etc. An inner dimension of 50 to 250 μm facilitates the electrospinning of nanofibers. Inner dimensions less than 400 μm for rectangular cross-sections are preferred. In another example, Figure 3B shows the extrusion elements 28 having the form of a tube with a frit 38 covering an opening of the tube. A pump (not shown) maintains a supply of the electrospray medium 26 to the reservoir 24. The centrifugal force of the rotatable spray head 22 assists in forcing the electrospray medium 26 from the reservoir 24 into the extrusion elements 28. A filter can be placed between the pump and the reservoir 24 to filter out impurities and/or particles having a dimension larger than a predetermined dimension of one of the extrusion elements 28. A supply of the electrospray medium 26 to each extrusion element 28 is preferably balanced with the electric field strength responsible for extracting the substance from which the fibers are to be composed so that a droplet shape exiting the extrusion element 28 is maintained constant. Generally, a smaller diameter tubes yield a narrower nanofiber. Also, while multiple tubes (spray heads) can be accommodated around the rotatable spray head 22, a certain minimum distance must be allowed between the adjacent tubes to avoid electrical interference between them. The minimum distance varies with one or more of the polymer/solvent system used, the electric field density, and the tube diameter. Tubes placed too close to each other can cause slower solvent removal rates affecting fiber quality. The electric field 32 is produced between the rotatable spray head 22 and the collector by applying a high voltage power source HN, as shown in Figure 2A. The high voltage power source HV can be commercial power source, such as for example Bertan Model 105-20R ( Bertan, Valhalla, ΝY) or for example Gamma High Voltage Research Model ES30P ( Gamma High Voltage Research Inc., Ormond Beach). The high voltage source HV is connected to the rotatable spray head 22 through a lead 40 and to the collector 34 through another lead 42. The outside periphery of the rotatable spray head 22 is placed preferably 5 to 50 cm away from the collector 34. Typically, an electric field strength between 2,000 and 400,000 V/m is established by the high voltage source. In one embodiment of the present invention, the collector 34 is grounded, and the fibers produced by electrospinning are directed by the electric field 32 toward the collector 34. The electrospun fibers are deposited on the collector 34, accumulate thereon, and are subsequently removed. A rotating mechanism (not shown) rotates the rotatable spray head 22 at a preset angular speed. A angular rotation speed of 1,000 - 10,000 φm is preferred. In one preferred embodiment of the present invention, the spray head 22 is made of a conducting substance such as for example aluminum or stainless steel. However, the spray head 22 may be made of an electric-field permeable substance and have an interior electrode, as described in the above-noted U.S. Application Serial No. 10/819,942, filed on April 8, 2004, entitled "Electrospray/Electrospinning Apparatus and Method" and incoφorated herein by reference. Such a configuration is shown in Figure 4. Figure 4 is a schematic illustration showing a top view of an electrospinning apparatus of the present invention having an interior electrode 44 and an electric field permeable wall 46. As in the previous embodiment, the electrospray medium 26 being a viscous solution is forced into the extrusion elements 28 by rotation of the rotatable spray head 22. The electric field 32 existing about the rotatable spray head 22 then extracts the electrospray medium 26 from the tip end of the extrusion elements 28. The extracted medium 26 dries in the ambient about the rotatable spray head 22 to form fibers. The distance between the collector 34 and the interior electrode 36 or the distance between the collector 34 and a periphery of the rotatable spray head 22 is determined based on a balance of a few factors such as for example a time for the solvent evaporation rate, the electric field strength, and a distance/time sufficient for a reduction of the fiber diameter. These factors and their determination are similar in the present invention to those in conventional single needle spray elements. The present inventors have discovered that a rapid evaporation of the solvents results in larger than nm-size fiber diameters. Therefore, in one embodiment of the present invention, the evaporation of the solvent is controlled by control of the gaseous environment in the region about the extrusion elements 28 and in the region about where the fibers are being electrospun. The present inventors have discovered that control of the gaseous environment about the extrusion elements 28 improves the process window available for the production of nanofibers. More specifically, the present inventors have discovered that the introduction into the gaseous environment about the extrusion elements of electronegative gases, ions, and energetic particles (as from radioisotopes) affects the electrospinning process. Further, control of the vapor pressure (and hence the drying rate) in the region in which the fibers are being electrospun improves the process window available for the production of nanofibers. Details of controlling the gaseous environment are described in more detail in related application U.S. Serial No. 10/819,945, filed April 8, 2004, 'Εlectrospinning in a Controlled Gaseous Environment," Attorney Docket No. 241016US-2025-2025-20. By appropriately controlling the gaseous environment surrounding the extrusion element 28, the present invention permits increases in the applied voltage and improved pulling of the liquid jet from the capillary. In particular, electronegative gases appear to reduce the onset of a corona discharge (which would disrupt the electrospinning process) around the capillary thus permitting operation at higher voltages enhancing the electrostatic force. Further, according to the present invention, electronegative gases reduce the possibility of bleeding-off charge in the Rayleigh instability region, thereby enhancing the stretching and drawing of the fiber.
Moreover, the drying rate for the electrospun fiber during the electrospinning process can be adjusted by altering the partial pressure of the liquid vapor in the gas surrounding the fiber. According to the present invention, retarding the drying rate is advantageous because the longer the residence time of the fiber in the region of instability the more prolonged is the stretching, and consequently the smaller the diameter of the resultant fiber. The height of the containment chamber and separation of the capillary at high DC voltage from the ground need, according to the present invention, to be compatible with the drying rate of the fiber.
As illustrative of the electrospinning process of the present invention, the following non-limiting examples are given to illustrate selection of the polymer, solvent, extrusion element to collection surface separation, solvent pump rate, and addition of electronegative gases. One illustrative example for selection, according to the present invention, of polymer, solvent, extrusion element, collection surface separation, solvent pump rate, and addition of electronegative gases is given below: a rotatable spray head with an outside diameter of 20 mm; a polymer solution of a molecular weight of 350kg/mol, a solvent of dimethylformamide DMF, an extrusion element tip diameter of 500 μm, a cylindrical collector screen, ~1.5ml/hr pump rate providing the polymer solution, an electronegative gas flow of CO2 at 8 1pm purging the environment about the rotatable spray head, an electric field strength of 2 KV/cm, a rotation speed of 1000 φm, and gap distance between the tip of the extrusion elements and the collector of 13 cm. A decreased fiber size can be obtained by increasing the molecular weight of the polymer solution to lOOOkg/mol, and/or introducing a more electronegative gas (such as for example Freon), and/or increasing gas flow rate to for example 20 1pm, and/or decreasing tip diameter to 150 μm (e.g., as with a Teflon tip). Further, blended gases with different electrical properties can be used to according to the present invention. One example of a blended gas includes CO2 (at 4 1pm) blended with Argon (at 4 1pm). Other examples of blended gases suitable for the present invention include, but are not limited to, CO2 (4 1pm) with Freon (4 1pm), CO2 (41pm) with Nitrogen (41pm), CO2 (41pm) with Air (4 1pm), CO2 (7 1pm) with Argon (1 1pm), CO2 (1 1pm) with Argon (7 1pm). Further, when a solvent such as methylene chloride or a blend of solvents is used to dissolve the polymer, the rate of evaporation of the solvent will depend on the vapor pressure gradient between the fiber and the surrounding gas. The rate of evaporation of the solvent can be controlled by altering the concentration of solvent vapor in the gas. The rate of evaporation affects the Rayleigh instability. In turn, the electrical properties of the solvent and its vapor influence the electrospinning process. For example, by maintaining a liquid solvent pool at the bottom of a chamber, the amount of solvent vapor present in the ambient about the electrospinning is controlled by altering temperature of chamber and/or pool, and thus controlling the partial pressure of solvent in the gaseous ambient about the electrospinning. Having a solvent vapor in the electrospinning chamber affects the drying rate of the fibers, and alters the fiber surface characteristics when a solvent other than the one used in spinning solution is used in the chamber. Further, the present inventors have discovered that the rotational speed of the spray head 22 produces a fiber collection with preferential orientations. For example, the rotatable spray head (e.g., the rotatable spray head referenced above having an outer diameter of 20 mm) when spun at higher angular speeds increases a preferred orientation of the deposited fibers. Indeed, Figure 5 depicts a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention with no angular rotation. The occurrence histogram indicates that with no angular rotation the standard deviation of the deposited fibers is 44° relative to a vertical direction (i.e., relative to an angle of 90° on the constructed histogram). Figure 6 is a replica of a fiber collection including an occurrence histogram produced by the electrospinning apparatus of the present invention when rotated at an angular rotation speed of 150 φm. The occurrence histogram indicates that with the angular rotation speed of 150 φm the standard deviation of the deposited fibers is reduced to 30°. Figures 7-9 are replicas of fiber collections and occurrence histograms produced by the electrospinning apparatus of the present invention when rotated at higher angular rotation speeds of 350, 600, and 950 φm, respectively. The occurrence histograms indicate that, with the increased angular rotation speed, the standard deviation of the deposited fibers is further reduced yielding at an angular rotation speed of 950 φm a standard deviation of less than 10°. As shown in Figure 9, a majority of the deposited fibers are aligned. As shown in Figures 5-9, the present invention provides a fiber collection in which the fibers overlay each other. The fibers in the collection due to deposition under the above-noted centrifugal acceleration are preferentially oriented along a longitudinal axis of the mat. Indeed, Figures 6-9 show that the fibers are oriented with a principal axis of a majority of the fibers lying on average along the longitudinal axis. The degree of orientation can be such that a majority of the fibers lie within 30°of the longitudinal axis, as in Figure 8. Under higher speed rotations, a majority of the fibers lie within 10° of the longitudinal axis, as in Figure 9. In the present invention, the centrifugal force of the angular rotation adds to the force applied by the pump, helping the fluid to exit the extrusion element tips. Additionally, the centrifugal force helps to overcome the surface tension forces to aid in jet formation. Orientation of the randomly whipping fiber can be achieved at rotation speeds that are higher than the whipping speeds of the fiber, such improvements in the orientation being illustrated by Figures 6-9. Accordingly, a translation mechanism in the present invention can rotate the spray head and or the collector. Figure 2B shows a rotary mechanism 23 connected in that instance to the rotatable spray head 22. The rotary mechanism 23 can be any suitable drive by which the rotatable spray head can be rotated. For example, the rotary mechanism 23 can be a motor with a belt or gear drive driving a rotation shaft 25 connected to the rotatable spray head 22. The rotary mechanism 23 can be an electric motor in which the rotor of the motor is directly coupled to the rotation shaft 25. Other drive mechanisms known in the art are likewise applicable provided these drive mechanisms permit the prescribed rotational speeds to be obtained. Accordingly, the rotary mechanism 23 can be also coupled to the collector 34 to drive the collector 34 at a prescribed angular speed. By rotating the spray head as discussed in relation to Figures 2A and 2B, a centrifugal force exists on the electrospun fibers aiding in the development of a fiber collection having a preferred orientation. Indeed, a preferred embodiment of the present invention includes an apparatus for producing fibers which has a spray head having a reservoir configured to hold a substance from which the fibers are to be composed, and has plural extrusion elements provided in a peripheral wall of the spray head so as to communicate the substance from the reservoir. The spray head in this embodiment is configured to electrospin the substance from the plural extrusion elements to form the fibers. While the present invention can be implemented using the structural configuration shown in Figures 2A and 2B, in another embodiment of the present invention, the collector can be rotated alone or in an opposite fashion to the spray head. In this embodiment, the collector can be a conveyor configured to convey a belt in an opposite direction to the tip of a stationary or a counter-rotating extrusion element. The conveyor by translating the belt circumferentially about the spray head can produce on the belt deposited oriented fibers. In the present invention, rotation of the collector at the angular speed given previously for the spray head yields oriented fibers even if the spray head is stationary. In this case, the collector rotates or otherwise travels in a circumferential direction to collect the oriented fibers, and by making multiple passes permits a fiber collection to be deposited. As described, the present invention provides various apparatuses and methods for producing fibers. In general, the apparatus includes a spray head supported on a longitudinal axis and including at least one extrusion element disposed in a peripheral wall of the spray head. The extrusion element includes a passage by which a substance from which the fibers are to be composed is provided to a tip of the extrusion element. The extrusion element extends in a direction from the longitudinal axis and is configured to electrospin the fibers by electric field extraction of the substance from the tip of the extrusion element. Similarly, as shown in Figure 10 in step 1002, one method of the present invention provides a substance from which the fibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis. In step 1004, the method rotates the spray head or a collector configured to receive the fibers around the longitudinal axis. In step 1006, the method applies in a direction from the longitudinal axis of the spray head an electric field to the tip of the extrusion element to electrospin by electric field extraction the substance from the tip of the extrusion element to form the fibers. In step 1008, the method collects the fibers on the collector. In step 1004, the spray head and the collector are preferably rotated at different and/or opposite angular velocities in a range of 1,000 - 10,000 φm. In step 1006, the electrospinning electrospins the extruded substance to form fibers or nanofibers. In step 1006, the electrospinning occurs preferably in an electric field strength of 2,000-400,000 V/m. In step 1008, the fibers can be collected on a grounded collector. The electrospinning can produce either fibers or nanofibers. The fibers and nanofibers produced by the present invention include, but are not limited to, acrylonitrile/butadiene copolymer, cellulose, cellulose acetate, chitosan, collagen, DNA, fibrinogen, fibronectin, nylon, poly(acrylic acid), poly(chloro styrene), poly(dimethyl siloxane), poly(ether imide), poly(ether sulfone), poly(ethyl acrylate), poly(ethyl vinyl acetate), poly(ethyl-co-vinyl acetate), poly(ethylene oxide), poly(ethylene terephthalate), poly(lactic acid-co-glycolic acid), poly(methacrylic acid) salt, poly(methyl methacrylate), poly(methyl styrene), poly(styrene sulfonic acid) salt, poly(styrene sulfonyl fluoride), poly(styrene-co-acrylonitrile), poly(styrene-co-butadiene), poly(styrene-co-divinyl benzene), poly(vinyl acetate), poly(vinyl alcohol), poly(vinyl chloride), poly(vinylidene fluoride), polyacrylamide, polyacrylonitrile, polyamide, polyaniline, polybenzimidazole,, polycaprolactone, polycarbonate, polydimethylsiloxane-co-polyethyleneoxide, polyetheretherketone, polyethylene, polyethyleneimine, polyimide, polyisoprene, polylactide, polypropylene, polystyrene, polysulfone, polyurethane, polyvinylpyrrolidone, proteins, SEBS copolymer, silk, and styrene/isoprene copolymer. Additionally, polymer blends can also be produced as long as the two or more polymers are soluble in a common solvent. A few examples would be: poly(vinylidene fluoride)-blend-poly(methyl methacrylate), polystyrene-blend-poly(vinylmethylether), poly(methyl methacrylate)-blend-poly(ethyleneoxide), poly(hydroxypropyl methacrylate)-blend poly(vinylpyrrolidone), poly(hydroxybutyrate) -blend-poly(ethylene oxide), protein blend-polyethyleneoxide, polylactide-blend-polyvinylpyrrolidone, polystyrene-blend-polyester, polyester-blend-poly(hyroxyethyl methacrylate), poly(ethylene oxide)-blend poly(methyl methacrylate), poly(hydroxystyrene)-blend-poly(ethylene oxide)) . By post treatment annealing, carbon fibers can be obtained from the electrospun polymer fibers. Numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein. UNITED STATES PATENT AND TRADEMARK OFFICE DOCUMENT CLASSIFICATION BARCODE SHEET
Figure imgf000017_0001
Figure imgf000017_0002
Figure imgf000017_0003
Figure imgf000017_0004
Figure imgf000017_0005

Claims

CLAIMS: 1. An apparatus for producing fibers, comprising: a spray head having a longitudinal axis and including, at least one extrusion element having a tip, and disposed in a peripheral wall of the spray head, said extrusion element having a passage by which a substance from which the fibers are to be composed is provided to the tip of the extrusion element, and said extrusion element extending in a direction from the longitudinal axis and configured to electrospin said fibers by electric field extraction of the substance from the tip of the extrusion element.
2. The apparatus of Claim 1, further comprising: a collector configured to receive said fibers from the spray head.
3. The apparatus of Claim 2, further comprising: a rotary mechanism configured to rotate at least one of the spray head and the collector around the longitudinal axis.
4. The apparatus of Claim 3, wherein the rotary mechanism is configured to rotate the spray head and the collector at different angular speeds.
5. The apparatus of Claim 3, wherein the rotary mechanism is configured to rotate the spray head and the collector in opposite angular directions.
6. The apparatus of Claim 3, wherein said spray head comprises: a rotatable spray head configured to rotate about the longitudinal axis.
7. The apparatus of Claim 6, wherein said rotatable spray head comprises: at least one of a cylindrical or polygonal structure.
8. The apparatus of Claim 6, wherein said rotatable spray head is configured to rotate at an angular speed of 1,000 - 10,000 φm.
9. The apparatus of Claim 3, wherein said collector comprises a rotatable collector configured to rotate about the longitudinal axis.
15
10. The apparatus of Claim 9, wherein said rotatable collector is configured to rotate at an angular speed of 1,000 - 10,000 φm.
11. The apparatus of Claim 6, wherein the at least one extrusion element comprises: plural extrusion elements disposed equidistant along said peripheral wall.
12. The apparatus of Claim 10, wherein said plural extrusion elements define openings through the peripheral wall having an inner dimension in a range of 50-250 μm.
13. The apparatus of Claim 10, wherein said plural extrusion elements comprise tubes.
14. The apparatus of Claim 13, wherein one of said tubes has an interior cross sectional area of 1900 - 50,000 μm2.
15. The apparatus of Claim 13, wherein one of said tubes has an outer dimension of less than 400 μm.
16. The apparatus of Claim 10, wherein said plural extrusion elements comprise at least one of capillaries, frits, needles, and foams.
17. The apparatus of Claim 10, wherein at least one of said plural extrusion elements extends past said peripheral wall of said rotatable spray head.
18. The apparatus of Claim 10, wherein at least one of said plural extrusion elements comprises a metallic member.
19. The apparatus of Claim 10, wherein at least one of said plural extrusion elements comprises an insulating member.
20. The apparatus of Claim 1, wherein said spray head comprises:
16 a reservoir configured to hold the substance from which the fibers are to be composed.
21. The apparatus of Claim 1, wherein said spray head comprises: an electrically permeable vessel including a reservoir configured to hold the substance from which the fibers are to be composed; and an interior electrode located inside said vessel.
22. The apparatus of Claim 21, wherein said electrically permeable vessel comprises an insulator.
23. The apparatus of Claim 21, wherein said electrically permeable substance comprises at least one of a rubber and a plastic substance.
24. The apparatus of Claim 2, wherein said collector is circumferentially disposed about the spray head.
25. The apparatus of Claim 2, wherein said collector is at a ground potential.
26. The apparatus of Claim 2, wherein the spray head and the collector are at opposite electric potentials.
27. The apparatus of Claim 2, wherein said collector comprises at least one of a plate and a screen.
28. The apparatus of Claim 2, wherein said collector is separated 5-50 cm from said spray head.
29. The apparatus of Claim 2, further comprising: a power source electrically connected between said spray head and said collector to generate an electric field between said spray head and said collector.
30. The apparatus of Claim 29, wherein said power source is configured to generate an electric field strength of 2,000-400,000 V/m between said spray head and said collector.
17
31. A system for producing fibers, comprising: a spray head having a longitudinal axis and including, at least one extrusion element having a tip, and disposed in a peripheral wall of the spray head, said extrusion element having a passage by which a substance from which the fibers are to be composed is provided to the tip of the extrusion element, and said extrusion element extending in a direction from the longitudinal axis and configured to electrospin said fibers by electric field extraction of the substance from the tip of the extrusion element; a collector configured to collect said fibers; and a rotary mechanism configured to rotate at least one of the spray head and the collector.
32. The system of Claim 31 , wherein the rotary mechanism is configured to rotate the spray head and the collector at different angular speeds.
33. The system of Claim 31 , wherein the rotary mechanism is configured to rotate the spray head and the collector in opposite angular directions.
34. The system of Claim 31, wherein said at least one extrusion element defines an opening through the peripheral wall having an inner dimension in a range of 50-250 μm.
35. The system of Claim 31, further comprising: a power supply configured to establish an electric field between the spray head and the collector.
36. The system of Claim 35, wherein said power supply is configured to produce said electric field having an electric field strength of 2,000-400,000 V/m.
37. A method for producing fibers, comprising: providing a substance from which the fibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis;
18 rotating at least one of the spray head and a collector configured to receive the fibers around the longitudinal axis; applying, in a direction from the longitudinal axis of the spray head, an electric field to the tip of the extrusion element to electrospin by electric field extraction said substance from the tip of the extrusion element to form said fibers; and collecting said fibers on the collector.
38. The apparatus of Claim 37, wherein the rotating comprises: rotating the spray head and the collector at different angular speeds.
39. The method of Claim 37, wherein the rotating comprises: rotating the spray head and the collector in opposite angular directions.
40. The method of Claim 37, wherein said applying comprises: forming nanofibers from said substance.
41. The method of Claim 37, wherein said applying comprises: electrospinning said substance in an electric field strength of 2,000-400,000 V/m.
42. The method of Claim 37, wherein the applying comprises: electrospinning polymeric fibers.
43. The method of Claim 42, further comprising: annealing said polymeric fibers to form carbon fibers.
44. The method of Claim 37, wherein the applying comprises: electrospinning polymeric nanofibers.
45. The method of Claim 44, further comprising: annealing said polymeric nanofibers to form carbon nanofibers.
46. A fiber collection comprising: a plurality of nanofibers deposited in relation to each other, said nanofibers in said fiber collection being preferentially oriented along a longitudinal axis of the fiber collection.
19
47. The collection of Claim 46, wherein said nanofibers are oriented with a principal axis of a majority of the fibers lying on average along the longitudinal axis.
48. The collection of Claim 46, wherein said nanofibers are oriented with a principal axis of a majority of the nanofibers lying within 30° of the longitudinal axis.
49. The collection of Claim 46, wherein said nanofibers are oriented with a principal axis of a majority of the nanofibers lying within 10° of the longitudinal axis.
50. The collection of Claim 46, wherein said nanofibers are produced by a method comprising: providing a substance from which the nanofibers are to be composed to a tip of an extrusion element in a peripheral wall of a spray head having a longitudinal axis; rotating at least one of the spray head and a collector configured to receive the nanofibers around the longitudinal axis; applying, in a direction from the longitudinal axis of the spray head, an electric field to the tip of the extrusion element to electrospin by electric field extraction said substance from the tip of the extrusion element to form said nanofibers; and collecting said nanofibers on the collector.
51. The collection of Claim 50, wherein said nanofibers are produced by the step of: rotating said spray head at an angular speed of 1,000 - 10,000 φm.
52. The collection of Claim 50, wherein said nanofibers are produced by the step of: rotating said collector at an angular speed of 1,000 - 10,000 φm.
53. The collection of Claim 50, wherein said nanofibers are produced by the step of: rotating the spray head and the collector at different angular speeds.
54. The collection of Claim 50, wherein said nanofibers are produced by the step of: rotating the spray head and the collector in opposite angular directions.
20
PCT/US2005/011035 2004-04-08 2005-04-01 Electrospinning of fibers using a rotatable spray head WO2005100654A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05732647A EP1733081A4 (en) 2004-04-08 2005-04-01 Electrospinning of fibers using a rotatable spray head
JP2007507382A JP4975613B2 (en) 2004-04-08 2005-04-01 Electrospinning of fibers using a rotatable spray head

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/819,916 US7134857B2 (en) 2004-04-08 2004-04-08 Electrospinning of fibers using a rotatable spray head
US10/819,916 2004-04-08

Publications (2)

Publication Number Publication Date
WO2005100654A2 true WO2005100654A2 (en) 2005-10-27
WO2005100654A3 WO2005100654A3 (en) 2006-06-08

Family

ID=35150571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/011035 WO2005100654A2 (en) 2004-04-08 2005-04-01 Electrospinning of fibers using a rotatable spray head

Country Status (4)

Country Link
US (1) US7134857B2 (en)
EP (2) EP2351879A1 (en)
JP (1) JP4975613B2 (en)
WO (1) WO2005100654A2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031624A (en) * 2006-07-05 2008-02-14 Matsushita Electric Ind Co Ltd Method and apparatus for producing nanofiber and polymeric web
JP2008038312A (en) * 2006-08-10 2008-02-21 Japan Vilene Co Ltd Polymer solution feed member, electrostatic spinning apparatus, and method for producing electrospun nonwoven fabric
JP2008050719A (en) * 2006-08-25 2008-03-06 Japan Vilene Co Ltd Polymer solution feeding member, electrostatic spinning apparatus and method for producing nonwoven fabric by electrostatic spinning
DE102006048292A1 (en) * 2006-10-12 2008-04-17 Irema-Filter Gmbh Process to form produce a non-woven fleece from molten polymer spun onto to a ribbon substrate under high voltage
JP2008127726A (en) * 2006-11-24 2008-06-05 Matsushita Electric Ind Co Ltd Apparatus for producing nanofiber
JP2008150769A (en) * 2006-11-24 2008-07-03 Matsushita Electric Ind Co Ltd Process and apparatus for producing nanofiber and polymer web
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
JP2008248422A (en) * 2007-03-30 2008-10-16 Snt Co Electrospinning apparatus
EP1998798A2 (en) * 2006-03-28 2008-12-10 Gustavo Larsen Method of manufacturing fibrous hemostatic bandages
JP2009007716A (en) * 2007-06-29 2009-01-15 Panasonic Corp Apparatus for producing nanofiber
WO2009055413A1 (en) * 2007-10-23 2009-04-30 Ppg Industries Ohio, Inc. Fiber formation by electrical-mechanical spinning
JP2009097112A (en) * 2007-10-17 2009-05-07 Panasonic Corp Method and apparatus for producing nanofiber and polymer web
EP2094885A1 (en) * 2006-12-22 2009-09-02 Body Organ Biomedical Corp. Device for manufacturing fibrils and method thereof
JP2010513934A (en) * 2006-12-22 2010-04-30 リサーチ・トライアングル・インスティチュート Polymer nanofiber based electronic nose
JP2011503387A (en) * 2007-11-20 2011-01-27 ダウ・コーニング・コーポレイション Article containing fiber and method for producing the same
US8277711B2 (en) 2007-03-29 2012-10-02 E I Du Pont De Nemours And Company Production of nanofibers by melt spinning
CN103114342A (en) * 2013-03-05 2013-05-22 青岛大学 Simple and efficient electrostatic spinning device for preparing directional nanofibers
EP2126166B2 (en) 2007-03-02 2014-10-22 Gelita Ag Fiber matting
US8916086B2 (en) 2007-04-17 2014-12-23 Stellenbosch University Process for the production of fibers
CN106119992A (en) * 2016-08-11 2016-11-16 广东工业大学 The electrostatic spinning nozzle of face of cylinder triangular compartments array and electrospinning process
CN106119991A (en) * 2016-08-11 2016-11-16 广东工业大学 The electrostatic spinning nozzle of a kind of face of cylinder triangular wave array and electrospinning process
CN106167920A (en) * 2016-08-11 2016-11-30 广东工业大学 The electrostatic spinning nozzle of face of cylinder triangular shaft symmetric array and electrospinning process
CN106167921A (en) * 2016-08-11 2016-11-30 广东工业大学 The electrostatic spinning nozzle of face of cylinder tetragon symmetric array and electrospinning process
CN110387587A (en) * 2018-04-20 2019-10-29 株式会社东芝 Electrospinning head and electrospinning device
EP3882385A1 (en) * 2020-03-04 2021-09-22 Universidade de Aveiro Automated manufacturing of three-dimensional cell matrices with nanofibres of controlled alignment and uniform cell distribution

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10260149A1 (en) 2002-12-20 2004-07-01 BSH Bosch und Siemens Hausgeräte GmbH Device for determining the conductivity of laundry, clothes dryer and method for preventing layer formation on electrodes
US7517479B2 (en) * 2003-12-04 2009-04-14 Bango Joseph J Method of utilizing MEMS based devices to produce electrospun fibers for commercial, industrial and medical use
US7390760B1 (en) 2004-11-02 2008-06-24 Kimberly-Clark Worldwide, Inc. Composite nanofiber materials and methods for making same
US20060094320A1 (en) * 2004-11-02 2006-05-04 Kimberly-Clark Worldwide, Inc. Gradient nanofiber materials and methods for making same
CZ299537B6 (en) * 2005-06-07 2008-08-27 Elmarco, S. R. O. Method of and apparatus for producing nanofibers from polymeric solution using electrostatic spinning
JP5264492B2 (en) * 2005-10-25 2013-08-14 エボニック デグサ ゲーエムベーハー Preparations containing hyperbranched polymers
US8303874B2 (en) * 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
US20090127748A1 (en) * 2006-07-05 2009-05-21 Panasonic Corporation Method and apparatus for producing nanofibers and polymeric webs
US20100129656A1 (en) * 2006-10-05 2010-05-27 Technion Research & Develpment Foundation Ltd Microtubes and methods of producing same
KR100833550B1 (en) * 2006-11-07 2008-05-29 인하대학교 산학협력단 SAW based Chipless Passive RFID Tag Using Cellulose Paper as the Substrate and Method for Manufaturing the Cellulose Paper
DE112007002799T5 (en) * 2006-11-24 2009-10-01 Panasonic Corp., Kadoma Method and device for producing nanofibers and a polymer fleece
JP4811248B2 (en) * 2006-11-28 2011-11-09 パナソニック株式会社 Antistatic method and apparatus for metal equipment
US7629030B2 (en) * 2006-12-05 2009-12-08 Nanostatics, Llc Electrospraying/electrospinning array utilizing a replacement array of individual tip flow restriction
US7857608B2 (en) * 2006-12-08 2010-12-28 Spindynamics, Inc. Fiber and nanofiber spinning apparatus
JP4867672B2 (en) * 2007-01-18 2012-02-01 パナソニック株式会社 Polymer fiber production method and apparatus, polymer web production method and apparatus using them
JP4833238B2 (en) 2007-03-27 2011-12-07 ジョン−チョル パック Electrospinning equipment for mass production of nanofibers
EP1982698A1 (en) * 2007-04-18 2008-10-22 Evonik Degussa GmbH Preparations for controlled release of natural bioactive materials
WO2008136581A1 (en) 2007-05-07 2008-11-13 Finetex Technology Global Limited Method for producing nano-fiber with uniformity
US20090326128A1 (en) * 2007-05-08 2009-12-31 Javier Macossay-Torres Fibers and methods relating thereto
WO2008142845A1 (en) * 2007-05-21 2008-11-27 Panasonic Corporation Process for producing nanofiber and apparatus for producing nanofiber
JP2008303496A (en) * 2007-06-07 2008-12-18 Panasonic Corp Device for producing nanofiber, apparatus for producing nonwoven fabric, and method for producing nanofiber
JP4834612B2 (en) * 2007-06-07 2011-12-14 パナソニック株式会社 Nanofiber manufacturing apparatus, non-woven fabric manufacturing apparatus, and nanofiber manufacturing method
US9096845B2 (en) * 2007-08-29 2015-08-04 Technion Research & Development Foundation Limited Encapsulation of bacteria and viruses in electrospun fibers
US20090091065A1 (en) * 2007-10-09 2009-04-09 Indian Institute Of Technology Kanpur Electrospinning Apparatus For Producing Nanofibers and Process Thereof
JP4853452B2 (en) * 2007-10-17 2012-01-11 パナソニック株式会社 Nanofiber manufacturing equipment
US7967588B2 (en) * 2007-11-20 2011-06-28 Clarcor Inc. Fine fiber electro-spinning equipment, filter media systems and methods
US7815427B2 (en) * 2007-11-20 2010-10-19 Clarcor, Inc. Apparatus and method for reducing solvent loss for electro-spinning of fine fibers
JP5468548B2 (en) 2007-11-20 2014-04-09 クラーコア インコーポレーテッド Filtration media, fine fibers less than 100 nanometers and methods
US8795577B2 (en) 2007-11-30 2014-08-05 Cook Medical Technologies Llc Needle-to-needle electrospinning
US7799261B2 (en) * 2007-11-30 2010-09-21 Cook Incorporated Needle-to-needle electrospinning
US9834865B2 (en) 2007-12-17 2017-12-05 E I Du Pont De Nemours And Company Centrifugal solution spun nanofiber process
JP5422128B2 (en) * 2008-02-01 2014-02-19 公益財団法人神奈川科学技術アカデミー Manufacturing method of fibrous structure
JP4907571B2 (en) * 2008-02-14 2012-03-28 パナソニック株式会社 Nanofiber manufacturing equipment, non-woven fabric manufacturing equipment
US9469919B2 (en) * 2008-02-21 2016-10-18 Technion Research & Development Foundation Ltd. Method of attaching a cell-of-interest to a microtube
JP4987755B2 (en) * 2008-02-26 2012-07-25 Jfeケミカル株式会社 Method for producing fibrous pitch and method for producing carbon fiber
CA2718897A1 (en) * 2008-03-17 2009-09-17 The Board Of Regents Of The University Of Texas System Superfine fiber creating spinneret and uses thereof
US20090266759A1 (en) * 2008-04-24 2009-10-29 Clarcor Inc. Integrated nanofiber filter media
US8048361B2 (en) * 2008-05-20 2011-11-01 National Taiwan University Method for forming porous bio-mimicking scaffold
JP5215106B2 (en) * 2008-10-01 2013-06-19 パナソニック株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
WO2010038362A1 (en) * 2008-10-02 2010-04-08 パナソニック株式会社 Method and apparatus for manufacturing nanofiber
US8188452B2 (en) * 2008-12-31 2012-05-29 Slinkard Michael D Methods and apparel for attenuating electromagnetic fields emanating from a hunter
US20110079257A1 (en) * 2008-12-31 2011-04-07 Slinkard Michael D Methods and hunting blind for attenuating electromagnetic fields emanating from a hunter
TWI392642B (en) * 2009-01-05 2013-04-11 Chuh Yung Chen Nanocomposite material apparatus and method for fabricating thereof, and nano material apparatus and nano material
US8172092B2 (en) * 2009-01-22 2012-05-08 Clarcor Inc. Filter having melt-blown and electrospun fibers
JP2010203014A (en) * 2009-03-04 2010-09-16 Panasonic Corp Nanofiber-producing apparatus, nanofiber-producing method
JP5215213B2 (en) * 2009-03-04 2013-06-19 パナソニック株式会社 Nanofiber manufacturing equipment
US8212229B2 (en) * 2009-04-23 2012-07-03 Slinkard Michael D Methods and apparel for attenuating electromagnetic fields emanating from an animal handler
US8203129B2 (en) * 2009-08-28 2012-06-19 Slinkard Michael D Methods and apparel for attenuating electromagnetic fields emanating from a person in or on a body of water
US8405058B2 (en) * 2010-02-05 2013-03-26 Michael D. Slinkard Methods and apparel for simultaneously attenuating electromagnetic fields and odors emanating from a person
JP5385981B2 (en) * 2009-06-25 2014-01-08 パナソニック株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2011102455A (en) * 2009-10-15 2011-05-26 Tokyo Institute Of Technology Electrospinning method and electrospinning apparatus
US8637109B2 (en) * 2009-12-03 2014-01-28 Cook Medical Technologies Llc Manufacturing methods for covering endoluminal prostheses
US20110210081A1 (en) * 2010-02-26 2011-09-01 Clarcor Inc. Fine fiber liquid particulate filter media
US8410461B2 (en) 2010-04-22 2013-04-02 Michael D. Slinkard Methods and apparel for attenuating electromagnetic fields emanating from a person in a human adversarial situation
EP3741896A1 (en) 2010-06-17 2020-11-25 Washington University Biomedical patches with aligned fibers
US9101036B2 (en) 2010-08-20 2015-08-04 Research Triangle Institute Photoluminescent nanofiber composites, methods for fabrication, and related lighting devices
WO2012024607A2 (en) 2010-08-20 2012-02-23 Research Triangle Institute, International Lighting devices utilizing optical waveguides and remote light converters, and related methods
US9562671B2 (en) 2010-08-20 2017-02-07 Research Triangle Institute Color-tunable lighting devices and methods of use
US20130215599A1 (en) 2010-08-20 2013-08-22 Research Triangle Institute, International Lighting devices with color-tuning materials and methods for tuning color output of lighting devices
US20130312638A1 (en) * 2010-11-17 2013-11-28 President And Fellows Of Harvard College Systems, devices and methods for the fabrication of polymeric fibers
CN102061530B (en) * 2010-12-17 2013-03-13 多氟多化工股份有限公司 Centrifugal electrostatic spinning device
JP6203639B2 (en) 2011-01-28 2017-09-27 メリット・メディカル・システムズ・インコーポレイテッドMerit Medical Systems,Inc. Electrospun PTFE coated stent and method of use
US8658067B2 (en) * 2011-02-07 2014-02-25 Fiberio Technology Corporation Apparatuses and methods for the deposition of microfibers and nanofibers on a substrate
BR112013023067A2 (en) * 2011-03-09 2017-07-25 Univ Texas fiber production apparatus and methods
US20120248658A1 (en) * 2011-03-30 2012-10-04 Seth Gleiman System and Method for Formation of Biodegradable Ultra-Porous Hollow Fibers and Use Thereof
US9175427B2 (en) 2011-11-14 2015-11-03 Cook Medical Technologies Llc Electrospun patterned stent graft covering
CN104114201A (en) 2012-01-16 2014-10-22 美国医疗设备有限公司 Rotational spun material covered medical appliances and methods of manufacture
CN102704193A (en) * 2012-06-25 2012-10-03 威程(天津)科技有限公司 Non-woven cloth production device for multiple solid pin electrode nano fiber
WO2014025790A1 (en) 2012-08-06 2014-02-13 Fiberio Technology Corporation Systems and methods of heating a fiber producing device
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
CA3066269C (en) 2012-09-21 2022-03-29 Washington University Multilayered biomedical structures configured to separate after a predetermined time or upon exposure to an environmental condition
KR101478184B1 (en) * 2012-09-21 2014-12-31 (주)우리나노필 Electro-spinning nozzle pack and electro-spinning system comprising the same
WO2014100213A2 (en) 2012-12-18 2014-06-26 Sabic Innovative Plastics Ip B.V. High temperature melt integrity battery separators via spinning
US10154918B2 (en) 2012-12-28 2018-12-18 Cook Medical Technologies Llc Endoluminal prosthesis with fiber matrix
EP3988278A1 (en) 2013-03-13 2022-04-27 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
WO2014189780A2 (en) * 2013-05-20 2014-11-27 Tufts University Apparatus and method for forming a nanofiber hydrogel composite
CN103774252A (en) * 2014-02-13 2014-05-07 苏州大学 Centrifugal electrostatic spinning device for large-scale preparation of orientational nanofibers
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
CN104762700B (en) * 2015-03-19 2017-03-29 上海工程技术大学 A kind of nanoscale electrostatic Siro-spinning method
US10278685B2 (en) 2015-04-01 2019-05-07 Covidien Lp Electrospinning device and method for applying polymer to tissue
CN104887282B (en) * 2015-05-25 2017-03-08 东华大学 A kind of vascular repair device
GB201513328D0 (en) 2015-07-29 2015-09-09 Univ Surrey An Electrospinning Device and Configuration Method
US20170130365A1 (en) * 2015-11-10 2017-05-11 California State Polytechnic University, Pomona Nanostructured energy harvesting material manufacturing system
CN105350093B (en) * 2015-11-13 2018-04-17 广东工业大学 A kind of negative pressure array centrifuges pneumoelectric device for spinning
EP3400132A4 (en) 2016-01-08 2019-08-07 Clarcor Inc. Use of microfibers and/or nanofibers in apparel and footwear
US11890384B2 (en) 2016-02-12 2024-02-06 Tricol Biomedical, Inc. Chitosan superfine fiber systems
US10632228B2 (en) 2016-05-12 2020-04-28 Acera Surgical, Inc. Tissue substitute materials and methods for tissue repair
US20170362740A1 (en) * 2016-06-16 2017-12-21 Eurekite Holding BV Flexible ceramic fibers and polymer composite and method of making the same
JP6322688B1 (en) * 2016-12-02 2018-05-09 株式会社東芝 Nozzle head and electrospinning apparatus
WO2018129244A1 (en) * 2017-01-06 2018-07-12 Sabic Global Technolgies B.V. Apparatus for continuous needleless electrospinning a nanoscale or submicron scale polymer fiber web onto a substrate
US10870928B2 (en) * 2017-01-17 2020-12-22 Ian McClure Multi-phase, variable frequency electrospinner system
CA3074944A1 (en) 2017-09-08 2019-03-14 Board Of Regents Of The University Of Texas System Mechanoluminescence polymer doped fabrics and methods of making
US11174570B2 (en) 2018-02-05 2021-11-16 Fermi Research Alliance, Llc Methods and systems for electrospinning using low power voltage converter
US11253824B1 (en) * 2018-03-29 2022-02-22 Trusscore Inc. Apparatus, methods, and systems for mixing and dispersing a dispersed phase in a medium
US20230038283A1 (en) * 2018-05-03 2023-02-09 Jack L. Skinner Hybrid electrospinner for core-shell fiber fabrication
CN113302347A (en) * 2018-11-19 2021-08-24 奥克泰特医疗公司 Devices, systems, and methods for administering therapeutic solutions to a treatment site
US11427937B2 (en) 2019-02-20 2022-08-30 The Board Of Regents Of The University Of Texas System Handheld/portable apparatus for the production of microfibers, submicron fibers and nanofibers
CN113718349B (en) * 2021-09-14 2022-11-04 鑫合德(清远)智能科技发展有限公司 Electrostatic spinning spray head structure based on capillary principle and using method thereof

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US705691A (en) * 1900-02-20 1902-07-29 William James Morton Method of dispersing fluids.
GB364780A (en) * 1929-12-07 1932-01-14 Anton Formhals Improvements in or relating to processes and apparatus for the production of artificial filaments
US2048651A (en) * 1933-06-23 1936-07-21 Massachusetts Inst Technology Method of and apparatus for producing fibrous or filamentary material
US2160962A (en) * 1936-07-01 1939-06-06 Richard Schreiber Gastell Method and apparatus for spinning
US2187306A (en) * 1937-07-28 1940-01-16 Richard Schreiber Gastell Artificial thread and method of producing same
US2349950A (en) * 1937-08-18 1944-05-30 Formhals Anton Method and apparatus for spinning
US2323025A (en) * 1939-05-13 1943-06-29 Formhals Anton Production of artificial fibers from fiber forming liquids
GB674014A (en) * 1949-01-28 1952-06-18 William Carl Huebner Filament forming apparatus
US3280229A (en) * 1963-01-15 1966-10-18 Kendall & Co Process and apparatus for producing patterned non-woven fabrics
US3475198A (en) * 1965-04-07 1969-10-28 Ransburg Electro Coating Corp Method and apparatus for applying a binder material to a prearranged web of unbound,non-woven fibers by electrostatic attraction
US3490115A (en) * 1967-04-06 1970-01-20 Du Pont Apparatus for collecting charged fibrous material in sheet form
JPS4422498Y1 (en) * 1967-04-25 1969-09-22
US3670486A (en) * 1970-12-09 1972-06-20 North American Rockwell Electrostatic spinning head funnel
US3994258A (en) * 1973-06-01 1976-11-30 Bayer Aktiengesellschaft Apparatus for the production of filters by electrostatic fiber spinning
CS189112B1 (en) * 1973-06-07 1979-04-30 Vaclav Safar Apparatus for spinning yarns from fibrous material
CH570493A5 (en) * 1973-08-16 1975-12-15 Battelle Memorial Institute
GB1527592A (en) * 1974-08-05 1978-10-04 Ici Ltd Wound dressing
GB1522605A (en) * 1974-09-26 1978-08-23 Ici Ltd Preparation of fibrous sheet product
DE2960875D1 (en) * 1978-04-19 1981-12-10 Ici Plc A method of preparing a tubular product by electrostatic spinning
DE2965672D1 (en) * 1978-10-10 1983-07-21 Ici Plc Production of electrostatically spun products
EP0011437B1 (en) * 1978-11-20 1983-06-22 Imperial Chemical Industries Plc A process for setting a product comprising electrostatically spun fibres, and products prepared according to this process
GB2121286B (en) * 1982-06-02 1985-11-06 Ethicon Inc Improvements in synthetic vascular grafts, and methods of manufacturing such grafts
US4468922A (en) * 1983-08-29 1984-09-04 Battelle Development Corporation Apparatus for spinning textile fibers
DE3437183C2 (en) * 1984-10-10 1986-09-11 Fa. Carl Freudenberg, 6940 Weinheim Microporous multilayer nonwoven for medical purposes and processes for the production thereof
KR880001739B1 (en) * 1985-10-29 1988-09-10 닛또오보오세끼 가부시끼가이샤 Melt-spinning methods
JPH0735608B2 (en) * 1985-11-05 1995-04-19 電気化学工業株式会社 Method for producing alumina-silica fiber precursor
JPS62129072U (en) * 1986-02-10 1987-08-15
JPS62191517A (en) * 1986-02-12 1987-08-21 Nitto Boseki Co Ltd Sheet-formed carbon fiber product and production thereof
US4650506A (en) * 1986-02-25 1987-03-17 Donaldson Company, Inc. Multi-layered microfiltration medium
EP0343903A3 (en) * 1988-05-23 1990-10-17 Imperial Chemical Industries Plc Liquid crystal devices
US4965110A (en) * 1988-06-20 1990-10-23 Ethicon, Inc. Electrostatically produced structures and methods of manufacturing
US5024789A (en) * 1988-10-13 1991-06-18 Ethicon, Inc. Method and apparatus for manufacturing electrostatically spun structure
US5866217A (en) * 1991-11-04 1999-02-02 Possis Medical, Inc. Silicone composite vascular graft
US5522879A (en) * 1991-11-12 1996-06-04 Ethicon, Inc. Piezoelectric biomedical device
US5637357A (en) * 1995-12-28 1997-06-10 Philips Electronics North America Corporation Rotary electrostatic dusting method
US6099960A (en) * 1996-05-15 2000-08-08 Hyperion Catalysis International High surface area nanofibers, methods of making, methods of using and products containing same
CA2296334C (en) 1996-07-23 2010-03-16 Electrosols Ltd. A dispensing device and method for forming material
US6433154B1 (en) * 1997-06-12 2002-08-13 Bristol-Myers Squibb Company Functional receptor/kinase chimera in yeast cells
US6106913A (en) * 1997-10-10 2000-08-22 Quantum Group, Inc Fibrous structures containing nanofibrils and other textile fibers
US6110590A (en) * 1998-04-15 2000-08-29 The University Of Akron Synthetically spun silk nanofibers and a process for making the same
US6265333B1 (en) * 1998-06-02 2001-07-24 Board Of Regents, University Of Nebraska-Lincoln Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
WO2000022207A2 (en) * 1998-10-01 2000-04-20 The University Of Akron Process and apparatus for the production of nanofibers
US6265466B1 (en) * 1999-02-12 2001-07-24 Eikos, Inc. Electromagnetic shielding composite comprising nanotubes
US20020090725A1 (en) * 2000-11-17 2002-07-11 Simpson David G. Electroprocessed collagen
US6558422B1 (en) * 1999-03-26 2003-05-06 University Of Washington Structures having coated indentations
DE19919809C2 (en) * 1999-04-30 2003-02-06 Fibermark Gessner Gmbh & Co Dust filter bag containing nanofiber fleece
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
EP1212107B1 (en) 1999-08-31 2005-06-08 Virginia Commonwealth University Intellectual Property Foundation Engineered muscle
US6486379B1 (en) * 1999-10-01 2002-11-26 Kimberly-Clark Worldwide, Inc. Absorbent article with central pledget and deformation control
US6492574B1 (en) * 1999-10-01 2002-12-10 Kimberly-Clark Worldwide, Inc. Center-fill absorbent article with a wicking barrier and central rising member
US20020096246A1 (en) * 1999-10-06 2002-07-25 Michael S. Sennet Non-woven elastic microporous membranes
US6375886B1 (en) * 1999-10-08 2002-04-23 3M Innovative Properties Company Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid
WO2001027368A1 (en) 1999-10-08 2001-04-19 The University Of Akron Insoluble nanofibers of linear poly(ethylenimine) and uses therefor
CA2386810C (en) 1999-10-08 2013-09-03 The University Of Akron Electrospun skin masks and uses thereof
US6753454B1 (en) 1999-10-08 2004-06-22 The University Of Akron Electrospun fibers and an apparatus therefor
US6737447B1 (en) 1999-10-08 2004-05-18 The University Of Akron Nitric oxide-modified linear poly(ethylenimine) fibers and uses thereof
ATE417660T1 (en) * 1999-10-29 2009-01-15 Hollingsworth & Vose Co FILTER MATERIAL
AU5287501A (en) 2000-01-06 2001-07-24 Drexel University Electrospinning ultrafine conductive polymeric fibers
US6800155B2 (en) * 2000-02-24 2004-10-05 The United States Of America As Represented By The Secretary Of The Army Conductive (electrical, ionic and photoelectric) membrane articlers, and method for producing same
WO2001068228A1 (en) 2000-03-13 2001-09-20 The University Of Akron Method and apparatus of mixing fibers
AU4439101A (en) 2000-04-03 2001-10-15 Electrosols Ltd Devices and formulations
CA2409093C (en) * 2000-05-16 2009-07-21 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
WO2001089023A1 (en) 2000-05-19 2001-11-22 Korea Institute Of Science And Technology A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method
US7279251B1 (en) 2000-05-19 2007-10-09 Korea Institute Of Science And Technology Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method
DE10040897B4 (en) 2000-08-18 2006-04-13 TransMIT Gesellschaft für Technologietransfer mbH Nanoscale porous fibers of polymeric materials
EP1315756A2 (en) * 2000-09-01 2003-06-04 Virginia Commonwealth University Intellectual Property Foundation Electroprocessed fibrin-based matrices and tissues
US6743273B2 (en) * 2000-09-05 2004-06-01 Donaldson Company, Inc. Polymer, polymer microfiber, polymer nanofiber and applications including filter structures
DE10053263A1 (en) * 2000-10-26 2002-05-08 Creavis Tech & Innovation Gmbh Oriented meso and nanotube fleece
NZ508818A (en) 2000-12-12 2002-10-25 Humatro Corp Electro-spinning process for making starch filaments for flexible structure
US20020084178A1 (en) 2000-12-19 2002-07-04 Nicast Corporation Ltd. Method and apparatus for manufacturing polymer fiber shells via electrospinning
KR100406981B1 (en) 2000-12-22 2003-11-28 한국과학기술연구원 Apparatus of Polymer Web by Electrospinning Process and Fabrication Method Therefor
US20020128680A1 (en) * 2001-01-25 2002-09-12 Pavlovic Jennifer L. Distal protection device with electrospun polymer fiber matrix
KR20020063020A (en) * 2001-01-26 2002-08-01 한국과학기술연구원 Method for Preparing Thin Fiber -Structured Polymer Webs
EP1277857A4 (en) 2001-03-14 2005-06-08 Japan Government Method for producing fiber and film of silk and silk-like material
ATE473082T1 (en) 2001-03-20 2010-07-15 Nicast Ltd PORTABLE ELECTROSPINNER DEVICE
US6685956B2 (en) 2001-05-16 2004-02-03 The Research Foundation At State University Of New York Biodegradable and/or bioabsorbable fibrous articles and methods for using the articles for medical applications
US6713011B2 (en) 2001-05-16 2004-03-30 The Research Foundation At State University Of New York Apparatus and methods for electrospinning polymeric fibers and membranes
WO2003004735A1 (en) 2001-07-04 2003-01-16 Hag-Yong Kim An electronic spinning apparatus, and a process of preparing nonwoven fabric using the thereof
US6520425B1 (en) * 2001-08-21 2003-02-18 The University Of Akron Process and apparatus for the production of nanofibers
US6790455B2 (en) * 2001-09-14 2004-09-14 The Research Foundation At State University Of New York Cell delivery system comprising a fibrous matrix and cells
US20030100944A1 (en) * 2001-11-28 2003-05-29 Olga Laksin Vascular graft having a chemicaly bonded electrospun fibrous layer and method for making same
DE10210626A1 (en) * 2002-03-11 2003-09-25 Transmit Technologietransfer Process for the production of hollow fibers
US20030017208A1 (en) * 2002-07-19 2003-01-23 Francis Ignatious Electrospun pharmaceutical compositions
KR100458946B1 (en) * 2002-08-16 2004-12-03 (주)삼신크리에이션 Electrospinning apparatus for producing nanofiber and electrospinning nozzle pack for the same
CN100411979C (en) * 2002-09-16 2008-08-20 清华大学 Carbon nano pipe rpoe and preparation method thereof
WO2005042813A1 (en) * 2003-10-30 2005-05-12 Clean Air Technology Corp. Electrostatic spinning equipment and method of preparing nano fiber using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1733081A4 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598282B2 (en) 2004-04-08 2017-03-21 Research Triangle Institute Polymer nanofiber-based electronic nose
EP1998798A4 (en) * 2006-03-28 2010-04-14 Gustavo Larsen Method of manufacturing fibrous hemostatic bandages
EP1998798A2 (en) * 2006-03-28 2008-12-10 Gustavo Larsen Method of manufacturing fibrous hemostatic bandages
JP2008031624A (en) * 2006-07-05 2008-02-14 Matsushita Electric Ind Co Ltd Method and apparatus for producing nanofiber and polymeric web
JP2008038312A (en) * 2006-08-10 2008-02-21 Japan Vilene Co Ltd Polymer solution feed member, electrostatic spinning apparatus, and method for producing electrospun nonwoven fabric
JP2008050719A (en) * 2006-08-25 2008-03-06 Japan Vilene Co Ltd Polymer solution feeding member, electrostatic spinning apparatus and method for producing nonwoven fabric by electrostatic spinning
DE102006048292A1 (en) * 2006-10-12 2008-04-17 Irema-Filter Gmbh Process to form produce a non-woven fleece from molten polymer spun onto to a ribbon substrate under high voltage
JP2008150769A (en) * 2006-11-24 2008-07-03 Matsushita Electric Ind Co Ltd Process and apparatus for producing nanofiber and polymer web
JP2008127726A (en) * 2006-11-24 2008-06-05 Matsushita Electric Ind Co Ltd Apparatus for producing nanofiber
EP2094885A1 (en) * 2006-12-22 2009-09-02 Body Organ Biomedical Corp. Device for manufacturing fibrils and method thereof
EP2094885A4 (en) * 2006-12-22 2010-03-03 Body Organ Biomedical Corp Device for manufacturing fibrils and method thereof
JP2010513934A (en) * 2006-12-22 2010-04-30 リサーチ・トライアングル・インスティチュート Polymer nanofiber based electronic nose
JP2008174853A (en) * 2007-01-16 2008-07-31 Matsushita Electric Ind Co Ltd Nozzle for producing polymer fiber and polymer fiber production apparatus using the nozzle
EP2126166B2 (en) 2007-03-02 2014-10-22 Gelita Ag Fiber matting
US8277711B2 (en) 2007-03-29 2012-10-02 E I Du Pont De Nemours And Company Production of nanofibers by melt spinning
JP2008248422A (en) * 2007-03-30 2008-10-16 Snt Co Electrospinning apparatus
US8916086B2 (en) 2007-04-17 2014-12-23 Stellenbosch University Process for the production of fibers
JP2009007716A (en) * 2007-06-29 2009-01-15 Panasonic Corp Apparatus for producing nanofiber
JP2009097112A (en) * 2007-10-17 2009-05-07 Panasonic Corp Method and apparatus for producing nanofiber and polymer web
WO2009055413A1 (en) * 2007-10-23 2009-04-30 Ppg Industries Ohio, Inc. Fiber formation by electrical-mechanical spinning
JP2011503387A (en) * 2007-11-20 2011-01-27 ダウ・コーニング・コーポレイション Article containing fiber and method for producing the same
CN103114342A (en) * 2013-03-05 2013-05-22 青岛大学 Simple and efficient electrostatic spinning device for preparing directional nanofibers
CN106119992A (en) * 2016-08-11 2016-11-16 广东工业大学 The electrostatic spinning nozzle of face of cylinder triangular compartments array and electrospinning process
CN106119991A (en) * 2016-08-11 2016-11-16 广东工业大学 The electrostatic spinning nozzle of a kind of face of cylinder triangular wave array and electrospinning process
CN106167920A (en) * 2016-08-11 2016-11-30 广东工业大学 The electrostatic spinning nozzle of face of cylinder triangular shaft symmetric array and electrospinning process
CN106167921A (en) * 2016-08-11 2016-11-30 广东工业大学 The electrostatic spinning nozzle of face of cylinder tetragon symmetric array and electrospinning process
CN110387587A (en) * 2018-04-20 2019-10-29 株式会社东芝 Electrospinning head and electrospinning device
CN110387587B (en) * 2018-04-20 2022-03-22 株式会社东芝 Electrospinning head and electrospinning device
EP3882385A1 (en) * 2020-03-04 2021-09-22 Universidade de Aveiro Automated manufacturing of three-dimensional cell matrices with nanofibres of controlled alignment and uniform cell distribution

Also Published As

Publication number Publication date
EP2351879A1 (en) 2011-08-03
EP1733081A4 (en) 2008-12-31
JP2007532790A (en) 2007-11-15
JP4975613B2 (en) 2012-07-11
EP1733081A2 (en) 2006-12-20
WO2005100654A3 (en) 2006-06-08
US20060228435A1 (en) 2006-10-12
US7134857B2 (en) 2006-11-14

Similar Documents

Publication Publication Date Title
US7134857B2 (en) Electrospinning of fibers using a rotatable spray head
US7762801B2 (en) Electrospray/electrospinning apparatus and method
US8052407B2 (en) Electrospinning in a controlled gaseous environment
Niu et al. Fiber generators in needleless electrospinning
KR100458946B1 (en) Electrospinning apparatus for producing nanofiber and electrospinning nozzle pack for the same
Shepa et al. Electrospinning through the prism of time
EP1637637B1 (en) Method and apparatus of producing fibrous aggregate
US20090123591A1 (en) Apparatus for electro-blowing or blowing-assisted electro-spinning technology and process for post treatment of electrospun or electroblown membranes
WO2010038362A1 (en) Method and apparatus for manufacturing nanofiber
WO2005033381A2 (en) Electro-blowing technology for fabrication of fibrous articles and its applications of hyaluronan
JP2010265575A (en) Method and apparatus for producing polymer web
US11162193B2 (en) Apparatus and process for uniform deposition of polymeric nanofibers on substrate
JP4877140B2 (en) Nanofiber manufacturing method and apparatus
JP4922143B2 (en) Method and apparatus for producing composite yarn
JP4880550B2 (en) Nanofiber compounding method and apparatus
Figen History, basics, and parameters of electrospinning technique
JP5225827B2 (en) Nanofiber manufacturing equipment
JP5135638B2 (en) Nanofiber compounding method and apparatus
JP2013124426A (en) Spinneret for producing nanofiber
JP4922237B2 (en) Nanofiber compounding method and apparatus
JP2010133039A (en) Method and apparatus for producing nanofiber
CN106555234B (en) A kind of composite screw fiber spinning apparatus and its spinning process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005732647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007507382

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005732647

Country of ref document: EP