WO2005050267A1 - Mirror with built-in display - Google Patents

Mirror with built-in display Download PDF

Info

Publication number
WO2005050267A1
WO2005050267A1 PCT/IB2004/052451 IB2004052451W WO2005050267A1 WO 2005050267 A1 WO2005050267 A1 WO 2005050267A1 IB 2004052451 W IB2004052451 W IB 2004052451W WO 2005050267 A1 WO2005050267 A1 WO 2005050267A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization
mirror
light
polarizing mirror
switchable
Prior art date
Application number
PCT/IB2004/052451
Other languages
French (fr)
Inventor
Rifat A. M. Hikmet
Jan B. A. M. Horsten
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to US10/579,932 priority Critical patent/US7362505B2/en
Priority to KR1020067009754A priority patent/KR101132344B1/en
Priority to JP2006540726A priority patent/JP4927557B2/en
Priority to EP04799169A priority patent/EP1690117A1/en
Publication of WO2005050267A1 publication Critical patent/WO2005050267A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers

Definitions

  • the invention relates to a polarizing mirror for viewing purposes having a first plane reflecting light of a first kind of polarization to a viewing side, the mirror passing light of a second kind of polarization and being provided with a display device at its non-viewing side, which display device during use provides light of the second kind of polarization, the polarizing mirror being switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization and a state passing light of both kinds of polarization.
  • a "mirror for viewing purposes” or “display mirror” in this application refers to a mirror, via which a person's eye (or an artificial eye like a (infra-red) camera lens) sees a reflected part of the outside world.
  • a mirror plane acts as a polarizing plane.
  • light within a certain range of a wavelength of light incident on a polarizing plane will be divided in two components one which is reflected by the polarizing plane and one of which passes through the polarizing plane.
  • light within a certain range of a wavelength of light incident on a polarizing plane will be divided in two components one which is reflected by the polarizing plane and one of which passes through the polarizing plane.
  • light within a certain range of a wavelength of light incident on a polarizing plane will be divided in two components one which is reflected by the polarizing plane and one of which passes through the polarizing plane.
  • the division of light in two components having linearly polarized, perpendicular directions of polarization are generally known.
  • light is generally supposed to be divided in right-handed and left-handed circular polarization but the invention is equally applicable to light being divided in linearly polarized, perpendicular directions of polarization.
  • the displays in examples based on circular polarization are supposed to provide light of the second kind of circular polarization, which does not exclude displays, which do emit or provide (e.g. an LCD having a backlight) linearly or non-polarized light.
  • Linearly polarized light as generally provided by LCDs may be converted into circularly polarized light by means of a quarter lambda plate, while non-polarized as generally provided by e.g.
  • (O)LED -displays or plasma displays may be converted into circularly polarized light by means of a 14 lambda plate (retarder).
  • the mirror function is obtained by introducing a polarizing mirror or reflective polarizer instead of a partly reflecting layer in front of a display device.
  • a polarizing mirror according to the invention has at its non- viewing side between the display device and the polarizing mirror a switchable polarizer
  • the switchable polarizer may be switchable between a state passing light of the first kind of polarization and reflecting light of the second kind of polarization and a state passing light of both kinds of polarization.
  • the polarizing mirror and switchable polarizers are cholesteric polarizers.
  • Figure 1 is a possible embodiment of a mirror device according to the invention
  • Figure 2 is a diagrammatic cross-section of a part of such a mirror device
  • Figures 3a, 3b are diagrammatic cross-sections of a part of a mirror device according to the invention
  • Figures 4a, 4b are diagrammatic cross-sections of a part of another mirror device according to the invention
  • Figure 5 shows the bandwidth of the cholesteric mirror as function of time during manufacture
  • Figure 6 shows the temperature dependency of the bandwidth of such a cholesteric mirror.
  • the Figures are diagrammatic and not drawn to scale. Corresponding elements are generally denoted by the same reference numerals.
  • Figure 1 shows a mirror device 1 for viewing purposes having on a glass plate or any other substrate 4 a mirror 2, in this example a cholesteric mirror, reflecting light, so a person 3 sees his image 3' (and further background, not shown).
  • the mirror (plane) in one state only reflects light of a first kind of polarization (twist, e.g. right-handed), but passes light of a second kind of polarization (the opposite twist, left- handed).
  • the mirror is provided with a display device 5 at its non- viewing side (see also Figure 2).
  • the display device 5 in this example is a liquid crystal display device having between two substrates (glass or plastic or any other suitable material) a liquid crystal material 7.
  • the display 5 Since most liquid crystal display devices are based on polarization effects the display 5 during use substantially emits polarized light. In general light from a backlight 10 is modulated by the liquid crystal display effect. Since the liquid crystal display device is based on a polarization effect the display device 5 comprises a first polarizer 8 and a second polarizer (or analyzer) 9, which passes light of a certain polarization (twist). If this light of a certain polarization twist has the same polarization twist as the second kind of polarization, it passes the mirror (plane) 2 without any loss of light (100 % transmission). Since most liquid crystal display devices are based on modulation of linearly polarized light, usually linear polarizers 8, 9 are used.
  • Figure 3a, 3b show a part of a mirror display device according to the invention in which the mirror 2 is switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization ( Figure 3b) and a state passing light of both kinds of polarization ( Figure 3a).
  • the mirror 2 is a switchable cholesteric polarizer.
  • a second switchable (cholesteric) polarizer 11 is provided between the display device 5 and the polarizing mirror 2, which switchable polarizer 11 is switchable between a state passing light of the first kind of polarization and reflecting light of the second kind of polarization and a state passing light of both kinds of polarization.
  • a liquid crystal display device 15 is used, comprising a further quarter lambda plate 6. Since most liquid crystal display devices are based on modulation of linearly polarized light, light from the display is given a circular polarization by means of a (not shown) quarter lambda plate.
  • FIG. 3a showing the display- mode
  • the display device 5 emits light of the second kind of polarization (circularly (left- handed) polarized light, arrow 20). Since both the switchable (cholesteric) polarizer 11 and the polarizing mirror 2 are in a state passing light of both kinds of polarization (off-state), this circularly (left-handed) polarized light passes both the polarizer 11 and the polarizing mirror 2 (arrows 20', 20"), leading to a transmission of (theoretically) 100%.
  • incident light 30 passes both the polarizing mirror 2 and the polarizer 11 (arrows 30', 30"), after which it is absorbed in the display device 5, although some (non -) polarized light 31 (or any other spurious light) may be reflected in this display-mode.
  • the display device 5 emits light of the second kind of polarization (circularly (left-handed) polarized light, arrow 20), while the switchable (cholesteric) polarizer 11 reflects of the second kind of polarization (arrow 20'), which is absorbed again in the display device 5.
  • the polarizing mirror 2 now partly (50%) reflects (one polarization twist (right-handed), in this example indicated by arrow 35) of the incident light (arrow 30) and passes circularly (left-handed) polarized light (arrow 30', the remaining 50%).
  • the switchable (cholesteric) polarizer 1 1 reflects said (left-handed) polarized light again, while the polarizing mirror 2 passes said light (arrows 35', 35"), leading to a reflection of (theoretically) 100%.
  • both the polarizing mirror 2 and polarizer 11 are switched off. In this case there is no mirror and the display can be observed without a reflection superimposed on it.
  • switchable cholesteric mirror 2 is shown in combination with a switchable cholesteric polarizer of the opposite sense (reflecting respectively left-handed and right-handed polarized light).
  • Figures 4a, 4b in a similar way show a device having a similar switchable cholesteric mirror 2 but this time in combination with switchable cholesteric polarizer of the same sense (both are reflecting left-handed (or right-handed ) polarized light). The same effect as described with respect to Figure 3 can now be obtained by introducing a V.
  • the V. lambda retarder 12 may be a broadband retarder but preferably is centered around wave-lengths of 570nm. As a result, substantially all incident light in principle is reflected in the display mode. Also the effects of spurious light are diminished. Light passing the cholesteric polarizers described above may become elliptically polarized at lager angles of incidence. In order to compensate for the elliptically it extra retarders can be used with a negative birefringence within the system.
  • Such a retarder can be placed for example underneath the l A lambda retarder of Figures 4a, 4b when cholesteric polarizers of the same sense is used.
  • cholesteric polarizers haveg the same sense, only a retarder with a negative birefringence is used without the need for Vi lambda retarder.
  • a switchable cholesteric polarizer (mirror) 2, 11 can be produced by polymerizing mono and diacrylates in the presence of non-reactive LC molecules in the chiral nematic phase. During polymerization some of the mixtures show the tendency of to phase separation This tendency could be influenced by various parameters.
  • the protective scope of the invention is not limited to the embodiments described.
  • the second polarizer (or analyzer) 9 in Figure 2 may be deleted, if wanted.
  • a backlit transmissive liquid crystal display device has been described, the use of reflective liquid crystal display devices is not excluded.
  • light from e.g. an (O)LED a plasma displays or electrophoretic display may be polarized or it may even be attractive to use other display effects to obtain the effect of a high contrast of displayed information with respect to reflected images in mirror applications.
  • more than one display 5 can be integrated in the mirror, whereas many other applications areas can be thought of (rear view mirrors, fitting rooms, etcetera).

Abstract

A mirror display device (1) which can be simultaneously used for display purposes, based on a display (5), which display device during use provides light of a first (circular) polarization, with a switchable polarizing mirror (2) placed in front of it. The reflectivity of such a mirror display device is enhanced by providing between the display device and the polarizing mirror a second switchable (circular) polarizer (11).

Description

Mirror with built-in display
The invention relates to a polarizing mirror for viewing purposes having a first plane reflecting light of a first kind of polarization to a viewing side, the mirror passing light of a second kind of polarization and being provided with a display device at its non-viewing side, which display device during use provides light of the second kind of polarization, the polarizing mirror being switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization and a state passing light of both kinds of polarization. A "mirror for viewing purposes" or "display mirror" in this application refers to a mirror, via which a person's eye (or an artificial eye like a (infra-red) camera lens) sees a reflected part of the outside world. As examples one may think of large mirrors, like bathroom mirrors, full-length mirrors in fitting rooms or even mirrored walls. Other examples are medium sized mirrors, like outside mirrors for trucks or dressing-table mirrors. By "having a first plane reflecting light of a first kind of polarization" it is meant that a mirror plane acts as a polarizing plane. When in use, light within a certain range of a wavelength of light incident on a polarizing plane will be divided in two components one which is reflected by the polarizing plane and one of which passes through the polarizing plane. Generally most known is the division of light in two components having linearly polarized, perpendicular directions of polarization. In this particular application light is generally supposed to be divided in right-handed and left-handed circular polarization but the invention is equally applicable to light being divided in linearly polarized, perpendicular directions of polarization. The displays in examples based on circular polarization are supposed to provide light of the second kind of circular polarization, which does not exclude displays, which do emit or provide (e.g. an LCD having a backlight) linearly or non-polarized light. Linearly polarized light as generally provided by LCDs may be converted into circularly polarized light by means of a quarter lambda plate, while non-polarized as generally provided by e.g. (O)LED -displays or plasma displays may be converted into circularly polarized light by means of a 14 lambda plate (retarder). A display mirror of the kind mentioned above is described in the pending European Applications Serial number 02076069.2, filed on March 18, 2002 and Serial number 02079306.3, filed on October 17, 2002 (= PH NL 02.1038). The mirror function is obtained by introducing a polarizing mirror or reflective polarizer instead of a partly reflecting layer in front of a display device. Although theoretically, in the display mode a full suppression of reflected light can be achieved with the present concepts while in the mirror mode full reflection of incident light is possible this is not achieved in practice. A wider range of possible embodiments is shown in the pending European Applications to select an optimal combination. A specific issue is that in the embodiments shown are based on industrially available polarizing mirrors (laminated retarder foils) in which the smoothness of the mirror surface is not guaranteed. Moreover the reflection in the embodiments is not optimal. The present invention has as one of its goals to overcome these problems at least partially. To this end a polarizing mirror according to the invention has at its non- viewing side between the display device and the polarizing mirror a switchable polarizer The switchable polarizer may be switchable between a state passing light of the first kind of polarization and reflecting light of the second kind of polarization and a state passing light of both kinds of polarization. It may on the other hand be switchable between a state passing light of the second kind of polarization and a state reflecting light of the first kind of polarization and a state passing light of both kinds of polarization. In the latter case a retarding layer is provided between the polarizing mirror and the switchable polarizer changing the kind of polarization from the first kind into the second kind or vice versa. The combination of the switchable polarizing mirror and the switchable polarizer guarantees a high reflection in the mirror state. Preferably the polarizing mirror and switchable polarizers are cholesteric polarizers.
These and other aspects of the invention are apparent from and will be elucidated with reference to the embodiments described hereinafter. In the drawings: Figure 1 is a possible embodiment of a mirror device according to the invention, while Figure 2 is a diagrammatic cross-section of a part of such a mirror device. Figures 3a, 3b are diagrammatic cross-sections of a part of a mirror device according to the invention, Figures 4a, 4b are diagrammatic cross-sections of a part of another mirror device according to the invention, while Figure 5 shows the bandwidth of the cholesteric mirror as function of time during manufacture and Figure 6 shows the temperature dependency of the bandwidth of such a cholesteric mirror. The Figures are diagrammatic and not drawn to scale. Corresponding elements are generally denoted by the same reference numerals.
Figure 1 shows a mirror device 1 for viewing purposes having on a glass plate or any other substrate 4 a mirror 2, in this example a cholesteric mirror, reflecting light, so a person 3 sees his image 3' (and further background, not shown). According to the invention the mirror (plane) in one state only reflects light of a first kind of polarization (twist, e.g. right-handed), but passes light of a second kind of polarization (the opposite twist, left- handed). Furthermore the mirror is provided with a display device 5 at its non- viewing side (see also Figure 2). The display device 5 in this example is a liquid crystal display device having between two substrates (glass or plastic or any other suitable material) a liquid crystal material 7. Since most liquid crystal display devices are based on polarization effects the display 5 during use substantially emits polarized light. In general light from a backlight 10 is modulated by the liquid crystal display effect. Since the liquid crystal display device is based on a polarization effect the display device 5 comprises a first polarizer 8 and a second polarizer (or analyzer) 9, which passes light of a certain polarization (twist). If this light of a certain polarization twist has the same polarization twist as the second kind of polarization, it passes the mirror (plane) 2 without any loss of light (100 % transmission). Since most liquid crystal display devices are based on modulation of linearly polarized light, usually linear polarizers 8, 9 are used. Since the mirror 2 is base on a circular polarization effect light from the display is given a circular polarization by means of a (not shown) quarter lambda plate. On the other hand in certain applications it may even be attractive to polarize light from e.g. an (O)LED or other display to obtain the effect of a high contrast of displayed information with respect to reflected images in mirror applications. Figure 3a, 3b show a part of a mirror display device according to the invention in which the mirror 2 is switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization (Figure 3b) and a state passing light of both kinds of polarization (Figure 3a). In this example the mirror 2 is a switchable cholesteric polarizer. According to the invention a second switchable (cholesteric) polarizer 11 is provided between the display device 5 and the polarizing mirror 2, which switchable polarizer 11 is switchable between a state passing light of the first kind of polarization and reflecting light of the second kind of polarization and a state passing light of both kinds of polarization. As the display device 5 a liquid crystal display device 15 is used, comprising a further quarter lambda plate 6. Since most liquid crystal display devices are based on modulation of linearly polarized light, light from the display is given a circular polarization by means of a (not shown) quarter lambda plate. In this case (Figure 3a, showing the display- mode) the display device 5 emits light of the second kind of polarization (circularly (left- handed) polarized light, arrow 20). Since both the switchable (cholesteric) polarizer 11 and the polarizing mirror 2 are in a state passing light of both kinds of polarization (off-state), this circularly (left-handed) polarized light passes both the polarizer 11 and the polarizing mirror 2 (arrows 20', 20"), leading to a transmission of (theoretically) 100%. For the same reason incident light 30 passes both the polarizing mirror 2 and the polarizer 11 (arrows 30', 30"), after which it is absorbed in the display device 5, although some (non -) polarized light 31 (or any other spurious light) may be reflected in this display-mode. In the mirror-mode (Figure 3b) the display device 5 emits light of the second kind of polarization (circularly (left-handed) polarized light, arrow 20), while the switchable (cholesteric) polarizer 11 reflects of the second kind of polarization (arrow 20'), which is absorbed again in the display device 5. The polarizing mirror 2 now partly (50%) reflects (one polarization twist (right-handed), in this example indicated by arrow 35) of the incident light (arrow 30) and passes circularly (left-handed) polarized light (arrow 30', the remaining 50%). The switchable (cholesteric) polarizer 1 1 reflects said (left-handed) polarized light again, while the polarizing mirror 2 passes said light (arrows 35', 35"), leading to a reflection of (theoretically) 100%. In the example of Figure 3 both the polarizing mirror 2 and polarizer 11 are switched off. In this case there is no mirror and the display can be observed without a reflection superimposed on it. If only the cholesteric mirror 2 is activated and becomes transparent all the light originating from the LCD becomes transmitted while half of the ambient light becomes reflected. In this mode the display can be used as a half mirror. In the example of Figure 3 switchable cholesteric mirror 2 is shown in combination with a switchable cholesteric polarizer of the opposite sense (reflecting respectively left-handed and right-handed polarized light). Figures 4a, 4b in a similar way show a device having a similar switchable cholesteric mirror 2 but this time in combination with switchable cholesteric polarizer of the same sense (both are reflecting left-handed (or right-handed ) polarized light). The same effect as described with respect to Figure 3 can now be obtained by introducing a V. lambda retarder 12 between the cholesteric mirror 2 and the switchable cholesteric polarizer 11. The V. lambda retarder 12 may be a broadband retarder but preferably is centered around wave-lengths of 570nm. As a result, substantially all incident light in principle is reflected in the display mode. Also the effects of spurious light are diminished. Light passing the cholesteric polarizers described above may become elliptically polarized at lager angles of incidence. In order to compensate for the elliptically it extra retarders can be used with a negative birefringence within the system. Such a retarder can be placed for example underneath the lA lambda retarder of Figures 4a, 4b when cholesteric polarizers of the same sense is used. When the cholesteric polarizers haveg the same sense, only a retarder with a negative birefringence is used without the need for Vi lambda retarder. A switchable cholesteric polarizer (mirror) 2, 11 can be produced by polymerizing mono and diacrylates in the presence of non-reactive LC molecules in the chiral nematic phase. During polymerization some of the mixtures show the tendency of to phase separation This tendency could be influenced by various parameters. For example factors determining the kinetic chain length such as the initiator concentration and the UV intensity had a profound influence on the width of the reflection band. As known with increasing molecular weight of the polymer, its miscibility with a monomer decreases. In the gels during polymerization such a phase separation leading to concentration fluctuations occurs. These fluctuations are fixed by the presence of the cross-links and the system further remains kinetically stable. As a function of time and temperature, no homogenization or change in the structure of the network is observed. Such a phase separation has also been observed for gels containing only diacrylate molecules. It was also found that when compounds referred to as excited state quenchers were added to the monomeric mixtures further increase in the bandwidth of the cholesteric mirror can be obtained. The change in the bandwidth of the cholesteric mirror as function of time for a system containing excited state quencher is shown in Figure 5. It can be seen that after a certain time the width of the band starts increasing before reaching a certain value where after it remains the same. The temperature dependency of the bandwidth of the cholesteric mirror is shown in Figure 6. With increasing temperature the position of the reflection band remains almost constant and only a slight decrease can be observed in the width of the reflection band. These broad band cholesteric gels could be switched reversibly between silver colored reflecting and non-reflecting transparent states. Upon application of the electric field, the cholesteric structure disappears and the cell becomes transparent. Upon removal of the voltage, the cell reverts to the silver colored reflecting state very rapidly. The protective scope of the invention is not limited to the embodiments described. For instance, since the mirror 2 has a polarizing effect the second polarizer (or analyzer) 9 in Figure 2 may be deleted, if wanted. Although a backlit transmissive liquid crystal display device has been described, the use of reflective liquid crystal display devices is not excluded. On the other hand as shown light from e.g. an (O)LED, a plasma displays or electrophoretic display may be polarized or it may even be attractive to use other display effects to obtain the effect of a high contrast of displayed information with respect to reflected images in mirror applications. Also more than one display 5 can be integrated in the mirror, whereas many other applications areas can be thought of (rear view mirrors, fitting rooms, etcetera). In some applications, if a matrix form is used, with adequate driving circuitry the switching between mirror-state and display state can be done locally. The invention resides in each and every novel characteristic feature and each and every combination of characteristic features. Reference numerals in the claims do not limit their protective scope. Use of the verb "to comprise" and its conjugations does not exclude the presence of elements other than those stated in the claims. Use of the article "a" or "an" preceding an element does not exclude the presence of a plurality of such elements.

Claims

CLAIMS:
1. A polarizing mirror (1) for viewing purposes having a first plane (2) reflecting light of a first kind of polarization (20') to a viewing side, the mirror passing light of a second kind of polarization (20") and being provided with a display device (5) at its non- viewing side, which display device during use provides light of the second kind of polarization, the polarizing mirror being switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization and a state passing light of both kinds of polarization the polarizing mirror having at the non viewing side between the display device and the polarizing mirror a switchable polarizer (11).
2. A polarizing mirror as claimed in claim 1, having at the non viewing side between the display device and the polarizing mirror a switchable polarizer being switchable between a state passing light of the first kind of polarization and reflecting light of the second kind of polarization and a state passing light of both kinds of polarization.
3. A polarizing mirror as claimed in claim 1, having at the non viewing side between the display device and the polarizing mirror a switchable polarizer being switchable between a state passing light of the second kind of polarization and reflecting light of the first kind of polarization and a state passing light of both kinds of polarization, a retarding layer (12) being provided between the polarizing mirror and the switchable polarizer changing the kind of polarization from the first kind of polarization into the second kind of polarization or vice versa.
4. A polarizing mirror as claimed in claim 3, the retarding layer comprising a '/. λ foil, λ having a value of 500 -600 nm
5. A polarizing mirror as claimed in claim 1, the polarizing mirror and switchable polarizers being cholesteric polarizers.
6. A polarizing mirror as claimed in claim 5, the display device comprising a partial display emitting polarized light having at the emitting side a 1/4 λ foil, λ having a value of 500 -600 nm.
7. A polarizing mirror as claimed in claim 5, the display device comprising a partial display emitting non-polarized light having at the emitting side a V2 λ foil, λ having a value of 500 -600 nm.
8. A polarizing mirror as claimed in claim 4, the retarding layer having a double layer comprising a retarder with a negative birefringence.
9. A polarizing mirror as claimed in claim 1 having a band width of at least 50nm.
10. A polarizing mirror as claimed in claim 1 reflecting in the visible range of the spectrum.
PCT/IB2004/052451 2003-11-24 2004-11-16 Mirror with built-in display WO2005050267A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/579,932 US7362505B2 (en) 2003-11-24 2004-11-16 Mirror with built-in display
KR1020067009754A KR101132344B1 (en) 2003-11-24 2004-11-16 Polarizing mirror for viewing purposes
JP2006540726A JP4927557B2 (en) 2003-11-24 2004-11-16 Mirror with built-in display
EP04799169A EP1690117A1 (en) 2003-11-24 2004-11-16 Mirror with built-in display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03104332 2003-11-24
EP03104332.6 2003-11-24

Publications (1)

Publication Number Publication Date
WO2005050267A1 true WO2005050267A1 (en) 2005-06-02

Family

ID=34610125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/052451 WO2005050267A1 (en) 2003-11-24 2004-11-16 Mirror with built-in display

Country Status (7)

Country Link
US (1) US7362505B2 (en)
EP (1) EP1690117A1 (en)
JP (1) JP4927557B2 (en)
KR (1) KR101132344B1 (en)
CN (1) CN1886679A (en)
TW (1) TWI354125B (en)
WO (1) WO2005050267A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502156B2 (en) 2004-07-12 2009-03-10 Gentex Corporation Variable reflectance mirrors and windows
US7815326B2 (en) 2002-06-06 2010-10-19 Donnelly Corporation Interior rearview mirror system
US7826123B2 (en) 2002-09-20 2010-11-02 Donnelly Corporation Vehicular interior electrochromic rearview mirror assembly
US7832882B2 (en) 2002-06-06 2010-11-16 Donnelly Corporation Information mirror system
US7864399B2 (en) 2002-09-20 2011-01-04 Donnelly Corporation Reflective mirror assembly
US7888629B2 (en) 1998-01-07 2011-02-15 Donnelly Corporation Vehicular accessory mounting system with a forwardly-viewing camera
US7898398B2 (en) 1997-08-25 2011-03-01 Donnelly Corporation Interior mirror system
US7906756B2 (en) 2002-05-03 2011-03-15 Donnelly Corporation Vehicle rearview mirror system
US7914188B2 (en) 1997-08-25 2011-03-29 Donnelly Corporation Interior rearview mirror system for a vehicle
US7916009B2 (en) 1998-01-07 2011-03-29 Donnelly Corporation Accessory mounting system suitable for use in a vehicle
US7926960B2 (en) 1999-11-24 2011-04-19 Donnelly Corporation Interior rearview mirror system for vehicle
US8179236B2 (en) 2000-03-02 2012-05-15 Donnelly Corporation Video mirror system suitable for use in a vehicle
US8282224B2 (en) 2004-07-12 2012-10-09 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
US8462204B2 (en) 1995-05-22 2013-06-11 Donnelly Corporation Vehicular vision system
EP3051338A1 (en) * 2015-02-02 2016-08-03 Nitto Denko Corporation Image display mirror for a vehicle
US9910310B2 (en) 2004-07-12 2018-03-06 Gentex Corporation Variable reflectance mirror system
US10427606B2 (en) 2008-07-10 2019-10-01 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US8294975B2 (en) 1997-08-25 2012-10-23 Donnelly Corporation Automotive rearview mirror assembly
US8288711B2 (en) 1998-01-07 2012-10-16 Donnelly Corporation Interior rearview mirror system with forwardly-viewing camera and a control
US6693517B2 (en) 2000-04-21 2004-02-17 Donnelly Corporation Vehicle mirror assembly communicating wirelessly with vehicle accessories and occupants
US6477464B2 (en) 2000-03-09 2002-11-05 Donnelly Corporation Complete mirror-based global-positioning system (GPS) navigation solution
EP1263626A2 (en) 2000-03-02 2002-12-11 Donnelly Corporation Video mirror systems incorporating an accessory module
US7370983B2 (en) 2000-03-02 2008-05-13 Donnelly Corporation Interior mirror assembly with display
US7167796B2 (en) 2000-03-09 2007-01-23 Donnelly Corporation Vehicle navigation system for use with a telematics system
ATE363413T1 (en) 2001-01-23 2007-06-15 Donnelly Corp IMPROVED VEHICLE LIGHTING SYSTEM
US7581859B2 (en) 2005-09-14 2009-09-01 Donnelly Corp. Display device for exterior rearview mirror
AU2003278863A1 (en) 2002-09-20 2004-04-08 Donnelly Corporation Mirror reflective element assembly
US7446924B2 (en) 2003-10-02 2008-11-04 Donnelly Corporation Mirror reflective element assembly including electronic component
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
ATE517368T1 (en) 2005-05-16 2011-08-15 Donnelly Corp VEHICLE MIRROR ARRANGEMENT WITH CHARACTER ON THE REFLECTIVE PART
CN101258050A (en) * 2005-09-05 2008-09-03 皇家飞利浦电子股份有限公司 Mirror device with a switchable cholesteric filter
US8154418B2 (en) 2008-03-31 2012-04-10 Magna Mirrors Of America, Inc. Interior rearview mirror system
KR101106294B1 (en) * 2008-05-22 2012-01-18 주식회사 엘지화학 Polarizer for oeld having improved brightness
US9487144B2 (en) 2008-10-16 2016-11-08 Magna Mirrors Of America, Inc. Interior mirror assembly with display
EP2947506A4 (en) 2013-01-16 2016-07-13 Sharp Kk Mirror display, half mirror plate, and electronic device
US10146086B2 (en) * 2013-08-05 2018-12-04 Sharp Kabushiki Kaisha Mirror display, half mirror plate, and electronic device
CN204241803U (en) * 2014-03-12 2015-04-01 群创光电股份有限公司 Mirror display
CN107077026B (en) * 2014-10-28 2021-01-01 夏普株式会社 Mirror display
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
CN104570463B (en) * 2015-01-22 2017-12-08 京东方科技集团股份有限公司 Display device and its manufacture method with mirror function
CN104749811B (en) * 2015-04-21 2018-09-21 京东方科技集团股份有限公司 A kind of liquid crystal display panel and display device
WO2017006787A1 (en) * 2015-07-08 2017-01-12 富士フイルム株式会社 Mirror equipped with image display function
WO2017170400A1 (en) 2016-03-29 2017-10-05 シャープ株式会社 Switching mirror panel and switching mirror device
CN112147808B (en) * 2020-10-23 2023-09-01 京东方科技集团股份有限公司 Intelligent glass, preparation method and display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194744A (en) * 1990-05-25 1993-03-16 Matsushita Electric Industrial Co., Ltd. Compact reticle/wafer alignment system
US5550661A (en) * 1993-11-15 1996-08-27 Alliedsignal Inc. Optical phase retardation film
WO1998038547A1 (en) * 1997-02-26 1998-09-03 Reveo, Inc. Electro-optical glazing structures having reflection and transparent modes of operation
WO2003079318A1 (en) * 2002-03-18 2003-09-25 Koninklijke Philips Electronics N.V. Mirror with built-in display
EP2076069A1 (en) 2007-12-27 2009-07-01 Thomson Telecom Belgium Method and system for performing service admission control
EP2079306A2 (en) 2006-10-03 2009-07-22 Accentia Biopharmaceuticals, Inc. Mucosally non-irritative amphotericin b formulations and methods for treating non-invasive fungus-induced mucositis

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419766B2 (en) * 2000-02-29 2003-06-23 株式会社日立製作所 Apparatus that can switch between image display state and mirror state, and equipment equipped with this
JP2002169155A (en) * 2000-12-04 2002-06-14 Toshiba Corp Liquid crystal display
JP2001343634A (en) * 2001-03-29 2001-12-14 Seiko Epson Corp Display device and electronic clock

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194744A (en) * 1990-05-25 1993-03-16 Matsushita Electric Industrial Co., Ltd. Compact reticle/wafer alignment system
US5550661A (en) * 1993-11-15 1996-08-27 Alliedsignal Inc. Optical phase retardation film
WO1998038547A1 (en) * 1997-02-26 1998-09-03 Reveo, Inc. Electro-optical glazing structures having reflection and transparent modes of operation
WO2003079318A1 (en) * 2002-03-18 2003-09-25 Koninklijke Philips Electronics N.V. Mirror with built-in display
EP2079306A2 (en) 2006-10-03 2009-07-22 Accentia Biopharmaceuticals, Inc. Mucosally non-irritative amphotericin b formulations and methods for treating non-invasive fungus-induced mucositis
EP2076069A1 (en) 2007-12-27 2009-07-01 Thomson Telecom Belgium Method and system for performing service admission control

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462204B2 (en) 1995-05-22 2013-06-11 Donnelly Corporation Vehicular vision system
US8842176B2 (en) 1996-05-22 2014-09-23 Donnelly Corporation Automatic vehicle exterior light control
US7898398B2 (en) 1997-08-25 2011-03-01 Donnelly Corporation Interior mirror system
US8309907B2 (en) 1997-08-25 2012-11-13 Donnelly Corporation Accessory system suitable for use in a vehicle and accommodating a rain sensor
US7914188B2 (en) 1997-08-25 2011-03-29 Donnelly Corporation Interior rearview mirror system for a vehicle
US7916009B2 (en) 1998-01-07 2011-03-29 Donnelly Corporation Accessory mounting system suitable for use in a vehicle
US7888629B2 (en) 1998-01-07 2011-02-15 Donnelly Corporation Vehicular accessory mounting system with a forwardly-viewing camera
US7926960B2 (en) 1999-11-24 2011-04-19 Donnelly Corporation Interior rearview mirror system for vehicle
US9019090B2 (en) 2000-03-02 2015-04-28 Magna Electronics Inc. Vision system for vehicle
US8179236B2 (en) 2000-03-02 2012-05-15 Donnelly Corporation Video mirror system suitable for use in a vehicle
US7906756B2 (en) 2002-05-03 2011-03-15 Donnelly Corporation Vehicle rearview mirror system
US7832882B2 (en) 2002-06-06 2010-11-16 Donnelly Corporation Information mirror system
US7815326B2 (en) 2002-06-06 2010-10-19 Donnelly Corporation Interior rearview mirror system
US7826123B2 (en) 2002-09-20 2010-11-02 Donnelly Corporation Vehicular interior electrochromic rearview mirror assembly
US7864399B2 (en) 2002-09-20 2011-01-04 Donnelly Corporation Reflective mirror assembly
US7502156B2 (en) 2004-07-12 2009-03-10 Gentex Corporation Variable reflectance mirrors and windows
US8282224B2 (en) 2004-07-12 2012-10-09 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
US7679809B2 (en) 2004-07-12 2010-03-16 Gentex Corporation Variable reflectance mirrors and windows
US7916380B2 (en) 2004-07-12 2011-03-29 Gentex Corporation Variable reflectance mirrors and windows
US9910310B2 (en) 2004-07-12 2018-03-06 Gentex Corporation Variable reflectance mirror system
US10466524B2 (en) 2004-07-12 2019-11-05 Gentex Corporation Variable reflectance mirror system
US10427606B2 (en) 2008-07-10 2019-10-01 Gentex Corporation Rearview mirror assemblies with anisotropic polymer laminates
EP3051338A1 (en) * 2015-02-02 2016-08-03 Nitto Denko Corporation Image display mirror for a vehicle
US9868400B2 (en) 2015-02-02 2018-01-16 Nitto Denko Corporation Image display mirror for a vehicle

Also Published As

Publication number Publication date
CN1886679A (en) 2006-12-27
EP1690117A1 (en) 2006-08-16
US20070064321A1 (en) 2007-03-22
TW200527008A (en) 2005-08-16
KR101132344B1 (en) 2012-04-05
JP2007517240A (en) 2007-06-28
US7362505B2 (en) 2008-04-22
KR20060103435A (en) 2006-09-29
TWI354125B (en) 2011-12-11
JP4927557B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US7362505B2 (en) Mirror with built-in display
US7379243B2 (en) Mirror with built-in display
EP1664911B1 (en) Mirror with built-in display
US6166790A (en) Polarizer, optical element, lighting device and liquid crystal display
US7903335B2 (en) Mirror with built-in display
CA2107952C (en) High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays
US6344887B1 (en) Full spectrum reflective choleterics display employing circular polarizers with the same polarity but different disposition
EP0889350A1 (en) Photoluminescent display devices (I)
JP2001510594A (en) Display device
EP1447688A4 (en) Circular polarizing plate and liquid crystal display device
JPH08201802A (en) Liquid crystal display element of wide visibility angle reflection type using mirror finished surface reflecting board and forward scattering board
JP3802658B2 (en) Liquid crystal display device and electronic apparatus using the same
USRE38500E1 (en) Polarizer, optical element, lighting device and liquid crystal display
JPH0728054A (en) Reflection type liquid crystal display device
JPH10177168A (en) Color liquid display device
JPH09218403A (en) Liquid crystal display element
KR20020002589A (en) Reflective type - fringe field switching lcd
JP2000258794A (en) Reflection type liquid crystal display element
JP2000284264A (en) Polymer dispersion type liquid crystal display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480034621.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004799169

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007064321

Country of ref document: US

Ref document number: 10579932

Country of ref document: US

Ref document number: 1020067009754

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006540726

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2307/CHENP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004799169

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009754

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10579932

Country of ref document: US