WO2004114418A1 - Concentrating photovoltaic power generation system - Google Patents

Concentrating photovoltaic power generation system Download PDF

Info

Publication number
WO2004114418A1
WO2004114418A1 PCT/JP2004/009233 JP2004009233W WO2004114418A1 WO 2004114418 A1 WO2004114418 A1 WO 2004114418A1 JP 2004009233 W JP2004009233 W JP 2004009233W WO 2004114418 A1 WO2004114418 A1 WO 2004114418A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
light guide
power generation
generation system
Prior art date
Application number
PCT/JP2004/009233
Other languages
French (fr)
Japanese (ja)
Inventor
Tokutaro Komatsu
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Publication of WO2004114418A1 publication Critical patent/WO2004114418A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • G02B6/0048Tapered light guide, e.g. wedge-shaped light guide with stepwise taper
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0075Arrangements of multiple light guides
    • G02B6/0076Stacked arrangements of multiple light guides of the same or different cross-sectional area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic power generation system using a light guide.
  • a photovoltaic power generation system using a layered concentrator combining a photoconductive layer and a light deflecting layer has been proposed as a means for solving the above-mentioned problems of thickness and weight (for example, see Japanese Patent Application Laid-Open No. H11-157, 1987). 2 0 0—1 4 7 2 6 2).
  • the light deflecting layer has a saw-tooth shape on the lower surface provided with a reflective film, and is provided separately from the photoconductive layer. In such a configuration, the efficiency of trapping incident light in the photoconductive layer is extremely low, and most of the light leaks into the light deflection layer and becomes stray light.
  • the stray light is repeatedly reflected in the light deflection layer, and part of the light is re-emitted from the incident surface.
  • reflection by the reflective film always involves loss.
  • the reflectance in the vicinity of the visible region is about 98% for silver, the highest for reflectance, about 92% for aluminum, and about 60% for nickel. Due to the reflection loss and re-emission, the light-collecting efficiency of the light-collecting body at the end face is extremely low, and is at most about 1%. Disclosure of the invention
  • the present invention has been made to solve the above-mentioned problems of existing photovoltaic power generation systems. That is, the first problem to be solved in the present invention is to eliminate the need for a complicated tracking type light-collecting device which is likely to cause a failure, and to reduce the installation location of the photovoltaic power generation system and the strength of the supporting structure. To remove the restrictions on The second problem is to efficiently generate light regardless of the direction of the incident light and to increase the power generation efficiency by reducing the amount of lost light.
  • An object of the present invention is to provide a high-efficiency photovoltaic power generation system that solves these problems, has a simple structure, has no moving parts that cause a failure, and can be installed anywhere.
  • a photovoltaic power generation system includes a light guide having an incident surface on which external light is incident, and an exit surface that is not parallel to the incident surface but emits the external light, and
  • the photoelectric conversion element provided facing the emission surface has a basic configuration, a reflector is provided on a light guide, and external light is supplied to the photoelectric conversion element.
  • An object of the present invention is to provide a photovoltaic power generation system capable of collecting light incident from an incident surface having a larger area to a photoelectric conversion element having a smaller area by providing a function of guiding light in an existing direction.
  • the present invention develops a reflector shape that receives incident light at an angle greater than the critical angle and totally reflects the light, and enhances the light collecting effect of the light guide in combination with peripheral members, thereby simplifying the structure. It provides a highly efficient photovoltaic power generation system that can be installed anywhere.
  • the present invention provides a light guide having an incident surface through which external light enters, and an exit surface not parallel to the incident surface through which the external light exits, and a photoelectric member provided to face the exit surface.
  • a photovoltaic system having at least one conversion element, wherein the light guide reflects light incident into the light guide on at least one of an incident surface and an opposite surface thereof. It has a plurality of reflectors.
  • a light deflecting sheet for changing the direction of external light is provided to face the incident surface.
  • a reflector that reflects light emitted from other than the emission surface of the light guide is provided on a surface opposite to the incidence surface of the light guide.
  • the reflection plate has a surface inclined with respect to a normal direction of the incident surface and a surface inclined in a direction opposite to the surface.
  • the reflector preferably has an A surface inclined at 2 ° to 60 ° with respect to a normal direction of the incident surface, and a direction opposite to the A surface with respect to the normal direction of the incident surface. It preferably has a surface B inclined from 80 ° to 89 °. Further, according to the present invention, the reflector has an A surface inclined by 2 ° to 60 ° with respect to a normal direction of the incident surface, and an A surface opposite to the normal direction of the incident surface. It is preferable to have a surface B inclined 30 ° to 50 ° in the direction. Further, in the invention, it is preferable that the reflector has an angle of 40 ° with respect to a normal direction of the incident surface.
  • A-plane inclined at about 50 ° and a B-plane inclined at 40 ° to 50 ° in a direction opposite to the A-plane with respect to the normal direction of the incident surface it is preferable that a plane parallel to the incident plane be provided between the A plane and the B plane.
  • the light guide is an aggregate of a plurality of light guides, and the plurality of light guides are reflectors having a structure complementary to a surface where two adjacent light guides are in contact with each other. Is preferably provided.
  • FIG. 1 is a schematic sectional view showing a first embodiment of a photovoltaic power generation system including a light guide. '...
  • FIG. 2 is a schematic cross-sectional view illustrating a second embodiment of the photovoltaic power generation system according to the present invention including a light guide and a light deflection sheet formed by a prism, and the principle of light collection.
  • the dashed line represents the path taken by the incident light.
  • FIG. 3 is a diagram illustrating the relationship between the angle of the reflection surface of the light guide and the angle of incidence, which is required for the light incident on the light guide to be guided in the light guide by total internal reflection.
  • the refractive index of the light guide material was calculated as 1.58.
  • FIG. 4 is a schematic cross-sectional view illustrating an example of a photovoltaic power generation system according to a third embodiment of the present invention including a light guide and a reflector, and the principle of light collection. The broken line indicates the path of the incident light.
  • Fig. 5 is a cross-section showing the fourth embodiment of the photovoltaic power generation system according to the present invention using two light guides having adjacent structures with complementary structures and a light deflection sheet composed of prisms, and the principle of light collection. It is a schematic diagram. The dashed line indicates the path of the incident light. You.
  • FIG. 6 is a schematic cross-sectional view showing a fifth embodiment of a photovoltaic power generation system according to the present invention using a plurality of light guides whose adjacent surfaces have complementary structures, and the principle of light collection.
  • the dashed line represents the path taken by the incident light.
  • the photovoltaic system of the present invention has a light guide having an entrance surface 7 for receiving external light, and an exit surface 8 that is not parallel to the incident surface but emits the external light.
  • a body and a photoelectric conversion element provided to face the emission surface have a basic configuration.
  • the light guide is provided with a plurality of reflectors 5 for reflecting light incident on the inside of the light guide on at least one of the incident surface and the opposite surface, thereby guiding the traveling direction of the incident light. It can be converted to a waveable angle.
  • FIG. 1 shows an example in which a reflector is provided on the surface opposite to the incident surface. Since the incident light guided in the light guide is focused on the photoelectric conversion element on the end face, the power generation efficiency per unit area of the photoelectric conversion element can be improved.
  • the reflector 5 includes, as shown in FIG. 1, a ⁇ surface inclined at an angle ( ⁇ ⁇ ) with respect to the normal direction of the incident surface 7, and an A with respect to the normal direction of the incident surface 7. It is preferable to adopt a shape having an angle ( ⁇ 2) inclined B surface in the direction opposite to the surface. By doing so, the incident light is critical Since it is possible to receive the light at an angle greater than or equal to the angle and totally reflect the light, and to provide a reflector having a specific shape, the loss of light is small.
  • a method of forming a reflective film such as a metal vapor-deposited film on the surface of the reflector to form the reflector 5 can be used.
  • this method of providing a reflective film since the reflectance never reaches 100%, if the light guided in the light guide is reflected many times by the reflector, there is little reflection loss.
  • the final light collection efficiency may be greatly reduced, there is an advantage in that it is easy to manufacture. Which method is selected can be determined according to the application and the required photoelectric conversion capability. In the example of FIG.
  • a part of the light incident on the light guide 1 is totally reflected by one of the reflection surfaces 5 A of the reflector 5, and the light is incident on the light guide with respect to the normal to the incident surface. It is deflected in a direction that forms an angle greater than the critical angle. The deflected incident light propagates through the light guide and reaches the output surface 8 while being totally reflected by the upper and lower surfaces of the light guide. Even if the angle of the incident external light 6 changes, the light-collecting characteristics are not significantly affected. '
  • a light deflection sheet 3 can be further provided in the configuration of FIG. FIG. 2 shows an example in which a prism sheet is used as the light deflection sheet 3.
  • the operating principle of the light deflection sheet used in the present invention is not limited to refraction and total reflection by the downward prism.
  • Light deflection sheets using other principles include, for example, one using a light interference effect such as a diffraction grating, an array of micro optical elements such as a lens array, and one using refraction by an upward prism. Can be mentioned.
  • the reflectors 5 having the same shape are continuously provided, but reflectors having different shapes may be provided in a mixed manner.
  • the projectiles may be separated.
  • the reflector may be convex or concave with respect to the lower plane of the light guide plate.
  • the reflection at the light guide end face can be reduced, which is an intermediate between the light guide and the photoelectric conversion element. It is more preferable that the space is filled with a medium having a refractive index than that of the space.
  • the incident angle 0 2 becomes It is preferable to be within the angle range specified by the expression.
  • the condition for the reflected light to be totally reflected by the upper surface of the light guide (that is, the incident surface 7) and guided in the light guide is that the traveling direction of the reflected wave is in relation to the normal direction of the incident surface 7.
  • the angle to make ⁇ 3 is
  • polycarbonate having a refractive index of 1.58 is assumed as the material of the light guide, and the apex angle of the reflecting surface 5A is 8.8 °.
  • the present invention is not limited to these parameters.
  • the critical angle 0c is 39.27 °, it can be seen from equation (4) that 0> 73.08 ° is required.
  • the light incident on the photovoltaic system of the present embodiment mainly comes from the normal direction, it is possible to improve the efficiency by setting the angle of incidence on the light guide plate to 73.08 ° or more using a light deflection film. High light collection and photoelectric conversion are possible.
  • Figure 3 shows how the lower limit of the incident angle required for incident light to be guided in the light guide when the angle a that the reflecting surface makes with respect to the normal direction of the incident surface 7 is changed. It is illustrated whether it changes.
  • the refractive index of the light guide was 1.58.
  • the lower limit of the incident angle monotonically increases with respect to the angle ⁇ of the reflecting surface.
  • the angle ⁇ of the reflecting surface is small to some extent.
  • the inclination of the reflecting surface in order to guide vertically incident light, that is, light having an incident angle of 0 °, the inclination of the reflecting surface must be about 50 ° or less.
  • FIGS. show schematic diagrams when assuming that the light guide has a refractive index of 1.58. Is not limited to this refractive index value. Also, in the figure, a reflector having the same shape as a convex shape with respect to the light guide is depicted, but the reflector may be concave with respect to the light guide, and a reflector having a different shape may be used. They may be mixed.
  • a third embodiment of the photovoltaic power generation system of the present invention shown in FIG. 4 includes a light guide, a reflector that reflects light emitted from a portion other than the emission surface of the light guide, and a light guide that faces the emission surface of the light guide. It has a photoelectric conversion element provided.
  • the reflection plate may be a flat reflection surface, but has a surface inclined with respect to the normal direction of the incident surface and a surface inclined in a direction opposite to the surface as shown in FIG. It is preferable to use a reflection plate having a shape having the following shape.
  • the third embodiment shown in FIG. 4 is a schematic diagram in which ⁇ 1 and ⁇ 2 are set to 50 ° and 70 °, respectively.
  • the light that is directly incident on the light guide on path a is reflected by the reflection surface 5A with an inclination of ⁇ 1, is guided in the light guide by changing its traveling direction from horizontal to 10 ° upward, and exits from the light guide 8 Out of the device and reach the photoelectric conversion element.
  • the light incident on the path b is continuously reflected by the reflecting surface 5 ° with the inclination ⁇ 1 and the reflecting surface 5B with the inclination a2, and then changes its traveling direction to 50 ° upward with respect to the horizontal direction. It is guided through the light guide.
  • Light entering the light guide through paths c and d passes through the reflecting surface and temporarily leaks light.However, the traveling direction is changed in the horizontal direction by the reflecting plate with the inclined surface, and the light enters the light guide. It is collected, guided and reaches the end face.
  • the values of the angles ⁇ 1 and ⁇ 2 formed by the reflecting surfaces 5A and 5B constituting the reflector 5 with respect to the normal direction of the incident surface 7 are not particularly limited, and various combinations can be adopted. There are preferable values depending on the configuration of the entire photoelectric conversion system. For example, in order to achieve the light path shown in the third embodiment, when the refractive index of the material of the light guide is 1.58, ⁇ 1 is 45 ° to 50 °, and ⁇ 2 Is less than or equal to 120 ° — ⁇ , that is, 75 ° It is preferably about 70 °. Within this angle range, in paths a and b in FIG. 4, total reflection occurs on reflection surfaces 5A and 5B and the upper surface of the light guide, and light loss can be reduced.
  • ⁇ ⁇ is in the range of 2 ° to 60 ° and that ⁇ 2 is in the range of 80 ° to 89 °. If the range exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate, and if it is less than 2 °, the light passes through the reflective surface and goes out of the light guide plate. They tend to escape. Also, when the range of ⁇ 2 exceeds 89 °, the limit of the incident angle represented by the equation (4) becomes too severe, and when it is less than 80 °, the light condensing property tends to decrease.
  • ⁇ 1 is in the range of 2 ° to 60 ° and (3 ⁇ 42 is in the range of 30 ° to 50 °.
  • the angle exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate.
  • the angle is less than 2 °, the light passes through the reflective surface and escapes outside the light guide plate.
  • the range of ⁇ 2 exceeds 50 °, the proportion of incident light that escapes to the lower surface of the light guide without being totally reflected increases, and when it is less than 30 °, the reflection surface The ratio of light that does not enter the light source increases.
  • FIG. 5 shows a photovoltaic power generation system according to a fourth embodiment of the present invention that can collect leaked light with a plurality of light guides.
  • a light deflection sheet formed by a prism a first light guide provided with a reflector on the lower surface, and a second light guide provided adjacent to the lower side of the light guide are provided.
  • the first light guide 1 is provided with a reflector 5 only on the surface opposite to the incident surface, and the first light guide 1 includes a photoelectric conversion element provided so as to face the left and right emission surfaces of these light guides.
  • the reflector 5 is formed on both upper and lower surfaces of the light guide 1 ′.
  • the light deflection sheet 3 is not limited to the prism sheet as shown in the figure, and the shape of the reflector 5 is the shape shown in the figure. Is not limited to the above.
  • the positional relationship between the two light guides 1 and 1 ' is not particularly limited.
  • they may be partially or wholly in contact, or completely separated.
  • the shape of each reflector may be a shape that is matched by the opposing surfaces of 1 and 1 ′, and may not be.
  • the light guides 1 and 1 ′ may be light guides having different refractive indexes.
  • the shape of the reflectors be such that they face each other at 1 and 1 'as shown in FIG.
  • the vertically incident light that has been turned into oblique light by the light deflecting sheet enters the light guide through paths a and b.
  • the light incident on the path b is totally reflected by the reflection surface of the upper light guide and enters the lower second light guide.
  • the lower light guide has a reflector on each of the upper surface and the lower surface. Among them, the reflector on the upper surface has a shape complementary to that of the light guide on the upper side that is adjacent to the reflector. By making the adjacent reflectors complementary, the light can be collected by the lower light guide without changing the direction of the leaked light and can be guided effectively.
  • the leaked light incident on the lower light guide repeats total reflection by the upper and lower reflectors, and reaches the photoelectric conversion element on the left.
  • FIG. 6 shows a fifth embodiment of a photovoltaic system including a plurality of light guides capable of guiding vertically incident light and a photoelectric conversion element provided on the right end face of the light guide.
  • Reflectors having mutually complementary shapes are provided on the surfaces where the light guides are in contact with each other. It is assumed that the material of each light guide has a refractive index of 1.58. The bright effect is not limited to this refractive index value. Although reflectors having the same shape are provided at equal intervals in the drawing, reflectors having different shapes may be mixed, and the intervals between the reflectors may be unequal.
  • the reflection surface inclined to the right is set at an angle at which vertically incident light can be totally reflected.
  • the light incident on the path a is totally reflected by the uppermost light guide, is changed its traveling direction from horizontal to 10 ° upward, is guided in the uppermost light guide, and travels through the uppermost light guide to the photoelectric converter on the right end face.
  • the light incident on the path b passes through the reflecting surface inclined to the left and enters the second light guide. Since the reflectors in contact with the first light guide and the second light guide have complementary shapes, the incident light of b does not change its traveling direction and the reflection surface of the second light guide Incident on.
  • the positions of the reflectors provided on the lower surfaces of the respective light guides be shifted in the left-right direction in the drawing so that the leaked light can be efficiently captured.
  • the light of the path c is totally reflected for the first time in the third light guide, and is guided in the third light guide to reach the right end face.
  • the concentrating photovoltaic power generation system As described above, in the concentrating photovoltaic power generation system according to the present invention, most of the incident light is collected on the end face of the light guide, so that the power generation efficiency of the photoelectric conversion element provided on the end face of the light guide is improved. Can be increased. In addition, since high-efficiency light collection and power generation can be performed irrespective of the angle of incidence of the light beam, a tracking device that directs the power generation device in the direction of the incident light becomes unnecessary, and the device can be downsized. For this reason, the photovoltaic power generator can be provided in more various places, and the application to portable use becomes easy. In addition, the light collection ratio is about three times, the area required for expensive photoelectric conversion elements can be reduced to 13 and the equipment cost can be reduced.

Abstract

A photovoltaic power generation system has a light incident surface into which external light enters, a light-guiding body having a light emission surface, not parallel to the incident surface, for emitting the external light, and at least one photoelectric conversion element provided so as to face the light emission surface. The light-guiding body has reflection bodies for reflecting light entered into inside the light-guiding body to at least either the light incident surface or the light emission surface. The system is simple in structure, has no movable parts, which tend to cause failure, and can be installed at any place.

Description

明細書 集光型光発電システム 技術分野  Description Condenser type photovoltaic system Technical field
この発明は、 導光体を利用した光発電システムに関する。 背景技術  The present invention relates to a photovoltaic power generation system using a light guide. Background art
光発電システムの発電効率を向上させるためには、 できるだけ多くの 光線を単位面積当たりの光電変換素子に集める必要がある。 このように 光線を光電変換素子に集めるシステムとして、 レンズ、 プリズム、 集光 鏡、 光ファイバなどの集光装置を使用したシステムが知られている (例 えば、 特開平 6 - 3 7 3 4 4号公報、 特開平 1 0— 2 6 4 8 9 9号公 報、 特開平 5— 2 1 1 3 4 3号公報) 。  In order to improve the power generation efficiency of the photovoltaic power generation system, it is necessary to collect as many rays as possible on the photoelectric conversion elements per unit area. As a system for collecting light rays into a photoelectric conversion element in this manner, a system using a light-collecting device such as a lens, a prism, a light-collecting mirror, or an optical fiber is known (for example, see Japanese Patent Application Laid-Open No. Hei 6-37334). Publication, Japanese Patent Application Laid-Open No. 10-264989, Japanese Patent Application Laid-Open No. 5-214134).
しかし、 これらの集光装置を用いたシステムでは、 光源がずれると集 光点もまたずれるため、 効率よく光線を集めるためには光源の移動を追 尾して集光装置の向きを変化させる駆動装置が不可欠であり、 制御が複 雑で大きなシステムになってしまう。 また、 光発電システムを大型化す ると、 レンズ等の集光装置の焦点距離が増大するため、 厚さが非常に大 きく、 重量も大きな設備になってしまう。 このため、 高効率光発電シス テムの設置場所や支持構造体に著しい制約が課せられてしまうことが、 光発電システムの普及を妨げる要因の 1つとなっている。  However, in systems using these light concentrators, if the light source shifts, the light converging point also shifts.Therefore, in order to collect light rays efficiently, a drive that changes the direction of the light concentrator by tracking the movement of the light source The equipment is indispensable, and the control becomes complicated and the system becomes large. In addition, when the photovoltaic power generation system is increased in size, the focal length of a light condensing device such as a lens increases, so that the equipment becomes extremely thick and heavy. This places significant restrictions on the installation location and support structure of the high-efficiency photovoltaic system, which is one of the factors that hinders the spread of the photovoltaic system.
一方、 上記の厚さ ·重量の問題を解決するための手段として、 光伝導 層 ·光偏向層を組み合わせた層状の集光体を用いた光発電システムが提 案されている (例えば、 特開 2 0 0 0— 1 4 7 2 6 2号公報) 。 この場合の光偏向層は、 反射膜を付けた鋸歯形状を下面に有するもの で、 光伝導層とは別に設けられている。 このような形態では、 入射光を 光伝導層中に閉じこめる効率は極めて低く、 大部分の光は光偏向層へ漏 れて迷光となる。 迷光は、 光偏向層中で反射を繰り返し、 一部は入射面 から再出射されてしまう。 また、 反射膜による反射は必ず損失を伴う。 例えば、 可視領域近傍の反射率は、 最も反射率の高い銀で 9 8 %、 アル ミニゥムで 9 2 %、 ニッケルで 6 0 %程度である。 これらの反射損失と 再出射のため、 当該集光体では端面の受光部への集光効率が極めて低い 値となり、 高々 1 %程度にとどまる。 発明の開示 On the other hand, a photovoltaic power generation system using a layered concentrator combining a photoconductive layer and a light deflecting layer has been proposed as a means for solving the above-mentioned problems of thickness and weight (for example, see Japanese Patent Application Laid-Open No. H11-157, 1987). 2 0 0—1 4 7 2 6 2). In this case, the light deflecting layer has a saw-tooth shape on the lower surface provided with a reflective film, and is provided separately from the photoconductive layer. In such a configuration, the efficiency of trapping incident light in the photoconductive layer is extremely low, and most of the light leaks into the light deflection layer and becomes stray light. The stray light is repeatedly reflected in the light deflection layer, and part of the light is re-emitted from the incident surface. In addition, reflection by the reflective film always involves loss. For example, the reflectance in the vicinity of the visible region is about 98% for silver, the highest for reflectance, about 92% for aluminum, and about 60% for nickel. Due to the reflection loss and re-emission, the light-collecting efficiency of the light-collecting body at the end face is extremely low, and is at most about 1%. Disclosure of the invention
本発明は、 既存の光発電システムが抱える上記問題点を解決すべくな されたものである。 すなわち、 本発明に於いて解決されるべき第マの課 題は、 複雑で故障原因となりやすく重量が大きい追尾型集光装置を不要 のものとし、 光発電システムの設置場所と支持構造体の強度に関する制 約を取り除くことである。 第二の課題は、 入射光の向きに依らずに光を 効率よく光電変換素子に入射させ、 さらに損失する光の量を減少させる ことにより発電効率を高めることである。 本発明は、 これらの課題を解 決することにより、 構造が簡単で故障原因となる可動部分がなく、 かつ 設置場所を選ばない高効率光発電システムを提供することを目的とす る。  The present invention has been made to solve the above-mentioned problems of existing photovoltaic power generation systems. That is, the first problem to be solved in the present invention is to eliminate the need for a complicated tracking type light-collecting device which is likely to cause a failure, and to reduce the installation location of the photovoltaic power generation system and the strength of the supporting structure. To remove the restrictions on The second problem is to efficiently generate light regardless of the direction of the incident light and to increase the power generation efficiency by reducing the amount of lost light. An object of the present invention is to provide a high-efficiency photovoltaic power generation system that solves these problems, has a simple structure, has no moving parts that cause a failure, and can be installed anywhere.
上記の目的を達成するため、 本発明による光発電システムは、 外部光 を入射する入射面と、 入射面と平行でなく、 前記外部光を出射する出射 面とを有する導光体、 及ぴ、 上記出射面に対向して設けられた光電変換 素子を基本構成とし、 導光体に反射体を設け、 外部光を光電変換素子の 存在する方向に導波させる機能を持たせることにより、 より広い面積を 有する入射面から入射した光を小面積の光電変換素子に集めることがで きる光発電システムを提供するものである。 In order to achieve the above object, a photovoltaic power generation system according to the present invention includes a light guide having an incident surface on which external light is incident, and an exit surface that is not parallel to the incident surface but emits the external light, and The photoelectric conversion element provided facing the emission surface has a basic configuration, a reflector is provided on a light guide, and external light is supplied to the photoelectric conversion element. An object of the present invention is to provide a photovoltaic power generation system capable of collecting light incident from an incident surface having a larger area to a photoelectric conversion element having a smaller area by providing a function of guiding light in an existing direction.
さらに本発明は、 入射光を臨界角以上の角度で受けて全反射するよう な反射体形状を策定するとともに、 周辺部材と組み合わせて導光体の集 光効果を高めることで、 構造が簡単で設置場所を選ばない高効率光発電 システムを提供するものである。  Furthermore, the present invention develops a reflector shape that receives incident light at an angle greater than the critical angle and totally reflects the light, and enhances the light collecting effect of the light guide in combination with peripheral members, thereby simplifying the structure. It provides a highly efficient photovoltaic power generation system that can be installed anywhere.
すなわち本発明は、 外部光を入射する入射面と、 前記外部光を出射す る入射面と平行でない出射面とを有する導光体、 及ぴ、 上記出射面に対 向して設けられた光電変換素子を少なくとも一つ有してなる光発電シス テムであって、 前記導光体は、 入射面及びその反対面の少なく ともどち らかに、 導光体内部に入射した光を反射させる複数の反射体を有してな るものであ 。 ' - また本発明は、 外部光の方向を変換する光偏向シートを、 上記入射面 に対向して設けてなることが好ましい。  That is, the present invention provides a light guide having an incident surface through which external light enters, and an exit surface not parallel to the incident surface through which the external light exits, and a photoelectric member provided to face the exit surface. A photovoltaic system having at least one conversion element, wherein the light guide reflects light incident into the light guide on at least one of an incident surface and an opposite surface thereof. It has a plurality of reflectors. -In the present invention, it is preferable that a light deflecting sheet for changing the direction of external light is provided to face the incident surface.
また本発明は、 導光体の出射面以外から出射した光を反射する反射板 を、 導光体の入射面の反対面に設けてなることが好ましい。  Further, in the present invention, it is preferable that a reflector that reflects light emitted from other than the emission surface of the light guide is provided on a surface opposite to the incidence surface of the light guide.
また本発明は、 上記反射板は、 上記入射面の法線方向に対して傾斜し た面と、 その面とは反対の方向に傾斜した面とを有してなることが好ま しい。  In the present invention, it is preferable that the reflection plate has a surface inclined with respect to a normal direction of the incident surface and a surface inclined in a direction opposite to the surface.
また本発明は、 上記反射体は、 上記入射面の法線方向に対して 2 ° 〜 6 0 ° 傾斜した A面と、 上記入射面の法線方向に対して A面とは反対の 方向に 8 0 ° 〜 8 9 ° 傾斜した B面とを有してなることが好ましい。 また本発明は、 上記反射体は、 上記入射面の法線方向に対して 2 ° 〜 6 0 ° 傾斜した A面と、 上記入射面の法線方向に対して A面とは反対の 方向に 3 0 ° 〜 5 0 ° 傾斜した B面とを有してなることが好ましい。 また本発明は、 上記反射体は、 上記入射面の法線方向に対して 4 0 °Also, in the present invention, the reflector preferably has an A surface inclined at 2 ° to 60 ° with respect to a normal direction of the incident surface, and a direction opposite to the A surface with respect to the normal direction of the incident surface. It preferably has a surface B inclined from 80 ° to 89 °. Further, according to the present invention, the reflector has an A surface inclined by 2 ° to 60 ° with respect to a normal direction of the incident surface, and an A surface opposite to the normal direction of the incident surface. It is preferable to have a surface B inclined 30 ° to 50 ° in the direction. Further, in the invention, it is preferable that the reflector has an angle of 40 ° with respect to a normal direction of the incident surface.
〜 5 0 ° 傾斜した A面と、 上記入射面の法線方向に対して A面とは反対 の方向に 4 0 ° 〜 5 0 ° 傾斜した B面とを有してなることが好ましい。 また本発明は、 A面と B面の間に、 入射面と平行な面を有してなるこ とが好ましい。 It is preferable to have an A-plane inclined at about 50 ° and a B-plane inclined at 40 ° to 50 ° in a direction opposite to the A-plane with respect to the normal direction of the incident surface. In the present invention, it is preferable that a plane parallel to the incident plane be provided between the A plane and the B plane.
また本発明は、 上記導光体が複数の導光体の集合体であり、 該複数の 導光体は、 隣接する 2枚の導光体の相接する面に相補的な構造の反射体 が設けられてなることが好ましい。 図面の簡単な説明  Further, in the present invention, the light guide is an aggregate of a plurality of light guides, and the plurality of light guides are reflectors having a structure complementary to a surface where two adjacent light guides are in contact with each other. Is preferably provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 導光体を含む光発電システムの第 1の形態を示す断面模式図 である。 ' …  FIG. 1 is a schematic sectional view showing a first embodiment of a photovoltaic power generation system including a light guide. '…
図 2は、 導光体とプリズムによる光偏向シートを含む、 本発明に関わ る光発電システムの第 2の形態およ 'びその集光の原理を説明する断面模 式図である。 破線は入射光のたどる経路を表す。  FIG. 2 is a schematic cross-sectional view illustrating a second embodiment of the photovoltaic power generation system according to the present invention including a light guide and a light deflection sheet formed by a prism, and the principle of light collection. The dashed line represents the path taken by the incident light.
図 3は、 導光体への入射光が、 導光体中を全反射により導波するため に要求される、 導光体の反射面の角度と入射角度の関係を例示した図で ある。 導光体素材の屈折率は 1 . 5 8として計算した。  FIG. 3 is a diagram illustrating the relationship between the angle of the reflection surface of the light guide and the angle of incidence, which is required for the light incident on the light guide to be guided in the light guide by total internal reflection. The refractive index of the light guide material was calculated as 1.58.
図 4は、 導光体と反射板を含む、 本発明に関わる第 3の形態の光発電 システムの実施例とその集光の原理を説明する断面模式図である。 破線 は入射光のたどる経路を表す。  FIG. 4 is a schematic cross-sectional view illustrating an example of a photovoltaic power generation system according to a third embodiment of the present invention including a light guide and a reflector, and the principle of light collection. The broken line indicates the path of the incident light.
図 5は、 隣接面が相補的構造を持つ 2枚の導光体とプリズムによる光 偏向シートを用いた、 本発明に関わる第 4の形態の光発電システムとそ の集光の原理を示す断面模式図である。 破線は入射光のたどる経路を表 す。 Fig. 5 is a cross-section showing the fourth embodiment of the photovoltaic power generation system according to the present invention using two light guides having adjacent structures with complementary structures and a light deflection sheet composed of prisms, and the principle of light collection. It is a schematic diagram. The dashed line indicates the path of the incident light. You.
図 6は、 隣接面が相補的構造を持つ複数の導光体を用いた、 本発明に 関わる第 5の形態の光発電システムとその集光の原理を示す断面模式図 である。 破線は入射光のたどる経路を表す。 発明を実施するための最良の形態  FIG. 6 is a schematic cross-sectional view showing a fifth embodiment of a photovoltaic power generation system according to the present invention using a plurality of light guides whose adjacent surfaces have complementary structures, and the principle of light collection. The dashed line represents the path taken by the incident light. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に関わる集光型光発電システムを実施するための最良の 形態と動作原理を添付図面に基づいて詳述する。 但し、 それぞれの図面 は断面模式図であり、 装置全体に対する各構成の寸法は発明の内容を理 解しやすい大きさに書き直したもので、 実際の寸法を反映したものでは ない。  Hereinafter, the best mode and operating principle for implementing a concentrating photovoltaic power generation system according to the present invention will be described in detail with reference to the accompanying drawings. However, each drawing is a schematic cross-sectional view, and the dimensions of each component with respect to the entire apparatus are rewritten to a size that makes it easy to understand the contents of the invention, and do not reflect actual dimensions.
本発明の光発電システムは、 図 1に示すように、 外部光を,入射する入 射面 7と、 入射面と平行でなく、 前記外部光を出射する出射面 8と'を有 する導光体、 及び、 上記出射面に対向して設けられた光電変換素子を基 本構成とする。  As shown in FIG. 1, the photovoltaic system of the present invention has a light guide having an entrance surface 7 for receiving external light, and an exit surface 8 that is not parallel to the incident surface but emits the external light. A body and a photoelectric conversion element provided to face the emission surface have a basic configuration.
前記導光体は、 入射面及びその反対面の少なくともどちらかに、 導光 体内部に入射した光を反射させる複数の反射体 5が設けられており、 こ れにより入射光の進行方向を導波可能な角度に変換することができる。 図 1では入射面の反対面に反射体を設けた例を示している。 導光体中を 導波した入射光は端面の光電変換素子に集光されるため、 光電変換素子 の単位面積当たりの発電効率を向上させることができる。  The light guide is provided with a plurality of reflectors 5 for reflecting light incident on the inside of the light guide on at least one of the incident surface and the opposite surface, thereby guiding the traveling direction of the incident light. It can be converted to a waveable angle. FIG. 1 shows an example in which a reflector is provided on the surface opposite to the incident surface. Since the incident light guided in the light guide is focused on the photoelectric conversion element on the end face, the power generation efficiency per unit area of the photoelectric conversion element can be improved.
上記の反射体 5としては、 図 1に示すような、 入射面 7の法線方向に 対してある角度 (α ΐ ) 傾斜した Α面と、 上記入射面 7の法線方向に対 して A面と反対の方向にある角度 (《 2 ) 傾斜した B面とを有してなる 形状とすることが好ましい。 このようにすることにより、 入射光を臨界 角以上の角度で受けて全反射させることが可能となり、 特定形状の反射 体を設ける方法は光のロスが少ないため、 高い光収集効率を達成できる 点で好ましい。 The reflector 5 includes, as shown in FIG. 1, a Α surface inclined at an angle (α 対) with respect to the normal direction of the incident surface 7, and an A with respect to the normal direction of the incident surface 7. It is preferable to adopt a shape having an angle (<< 2) inclined B surface in the direction opposite to the surface. By doing so, the incident light is critical Since it is possible to receive the light at an angle greater than or equal to the angle and totally reflect the light, and to provide a reflector having a specific shape, the loss of light is small.
また、 この他にも、 例えば、 金属蒸着膜等の反射膜を反射体表面に形 成し反射体 5とする方法等が挙げられる。 この反射膜を設ける方法は、 反射率は決して 1 0 0 %に達することはないため、 導光体中を導波する 光が反射体で何度も反射される場合、 わずかな反射ロスであっても最終 的な集光効率を大きく低下させてしまうおそれがある点で前者の例より 劣るものの、 製造が容易であるメリッ トがある。 どちらの方法を選択す るかは用途や要求される光電変換能力に応じて決めることができる。 図 1の例では、 導光体 1中に入射した光の一部'は、 反射体 5の一方の 反射面 5 Aで全反射を受け、 導光体の入射面の'法線に対して臨界角以上 の角度をなす方向へ偏向される。 偏向された入射光は、 導光体の上下面 で全反射ざれながら導光体中を導波して出射面 8,に至る。 入射する外部 光 6の角度が変わっても、 集光特性はあまり影響されない。 '  In addition to the above, for example, a method of forming a reflective film such as a metal vapor-deposited film on the surface of the reflector to form the reflector 5 can be used. In this method of providing a reflective film, since the reflectance never reaches 100%, if the light guided in the light guide is reflected many times by the reflector, there is little reflection loss. However, although it is inferior to the former example in that the final light collection efficiency may be greatly reduced, there is an advantage in that it is easy to manufacture. Which method is selected can be determined according to the application and the required photoelectric conversion capability. In the example of FIG. 1, a part of the light incident on the light guide 1 is totally reflected by one of the reflection surfaces 5 A of the reflector 5, and the light is incident on the light guide with respect to the normal to the incident surface. It is deflected in a direction that forms an angle greater than the critical angle. The deflected incident light propagates through the light guide and reaches the output surface 8 while being totally reflected by the upper and lower surfaces of the light guide. Even if the angle of the incident external light 6 changes, the light-collecting characteristics are not significantly affected. '
本発明の光発電システムの第 2の形態として、 図 1の構成にさらに光 偏向シート 3を設けることができる。 図 2は、 光偏向シート 3としてプ リズムシ一トを採用した例を示す。  As a second embodiment of the photovoltaic system of the present invention, a light deflection sheet 3 can be further provided in the configuration of FIG. FIG. 2 shows an example in which a prism sheet is used as the light deflection sheet 3.
ただし、 本発明に用いる光偏向シー トの動作原理は、 下向きプリズム による屈折と全反射に限るものではない。 他の原理を用いた光偏向シー トとしては、 例えば、 回折格子など光の干渉効果を用いるものや、 レン ズァレイのような微小光学素子を配列したもの、 上向きプリズムによる 屈折を用いたもの等を挙げることができる。  However, the operating principle of the light deflection sheet used in the present invention is not limited to refraction and total reflection by the downward prism. Light deflection sheets using other principles include, for example, one using a light interference effect such as a diffraction grating, an array of micro optical elements such as a lens array, and one using refraction by an upward prism. Can be mentioned.
また、 図 1及び 2では、 同一形状の反射体 5が連続して設けられてい るが、 形状の異なる反射体が混在して設けられていても良く、 また、 反 射体間が離れていても良い。 また、 反射体は、 導光板下側平面に対して 凸状であってもよく、 凹状であっても良い。 In addition, in FIGS. 1 and 2, the reflectors 5 having the same shape are continuously provided, but reflectors having different shapes may be provided in a mixed manner. The projectiles may be separated. Further, the reflector may be convex or concave with respect to the lower plane of the light guide plate.
本発明の光発電システムにおいて、 導光体の出射面 8と光電変換素子 2の受光面 9の間は、 導光体端面での反射を低減できる点で、 導光体と 光電変換素子の中間の屈折率を有する媒体で満たされている方が空間と なっているよりも好ましい。  In the photovoltaic power generation system of the present invention, between the light emitting surface 8 of the light guide and the light receiving surface 9 of the photoelectric conversion element 2, the reflection at the light guide end face can be reduced, which is an intermediate between the light guide and the photoelectric conversion element. It is more preferable that the space is filled with a medium having a refractive index than that of the space.
次に図 2を用いて、 導光体に入射した光が導波しうるための入射光角 度と反射体形状の条件を述べ、 導光体による集光の原理を解説する。 光偏向シートにより偏向され入射面 7の法線方向に対して 0 1の角度 で入射した外部光 6は入射面で屈折されて、 法線方向に対して 0 2の角 度をもって進行する。  Next, referring to Fig. 2, we describe the conditions of the incident light angle and reflector shape so that the light incident on the light guide can be guided, and explain the principle of light collection by the light guide. External light 6 deflected by the light deflecting sheet and incident at an angle of 0 1 with respect to the normal direction of the incident surface 7 is refracted at the incident surface and travels at an angle of 0 2 with respect to the normal direction.
導光体の屈折率を nとし、 導光体の下面に設けた反射体一方の反射面 5 Aが入射面 7の法線方向となす角を αとすれば、 入射角 0 2は、 次式 で指定される角度範囲内にあることが好ましい。  Assuming that the refractive index of the light guide is n and the angle between the reflection surface 5A of one of the reflectors provided on the lower surface of the light guide and the normal direction of the incident surface 7 is α, the incident angle 0 2 becomes It is preferable to be within the angle range specified by the expression.
<92 +(90° - > ョ sin -1 (丄) . . . (1) <9 2 + (90 °-> sin sin- 1 (丄)... (1)
n  n
(式中、 0 cは当該導光体の材質の臨界角である。 ) (In the formula, 0 c is the critical angle of the material of the light guide.)
反射光がさらに導光体上面 (すなわち入射面 7) で全反射されて導光 体中を導波するための条件は、 反射波の進行方向が、 入射面 7の法線方 向に対してなす角 Θ 3が、  The condition for the reflected light to be totally reflected by the upper surface of the light guide (that is, the incident surface 7) and guided in the light guide is that the traveling direction of the reflected wave is in relation to the normal direction of the incident surface 7. The angle to make Θ 3 is
θ32+2(9 α - )>θα · . , (2) θ 3 = θ 2 +2 (9 α -)> θ α ·., (2)
となることである。 9 0° —ひ > 0であるから、 式 ( 1 ) が成立す れば式 (2) は自動的に満足される。 It is to become. Since 9 0 °-h> 0, if equation (1) holds, equation (2) is automatically satisfied.
スネルの法則から、 θ 1と Θ 2には  From Snell's law, θ 1 and Θ 2
sm0l =ns 0 · · · (3) の関係があるから、 入射光が導光体中を導波するための条件は式 ( 1 ) 、 (3 ) より sm0 l = ns 0 From the equations (1) and (3), the condition for the incident light to be guided in the light guide is
> «sin[<9c -(90° -a)] · · . (4) > «Sin [<9 c- (90 ° -a)] · ·. (4)
となる。 It becomes.
図 2では、 導光体の材質として屈折率 1. 5 8のポリカーボネートを 想定し、 反射面 5 Aの頂角ひを 8 8° としている。 ただし、 本発明はこ れらのパラメータに限定されるものではない。 この場合、 臨界角 0 cは 3 9. 2 7° であるから、 式 (4 ) より 0 1 > 7 3. 0 8° である ことが要求されることがわかる。 本実施例の光発電システムに入射する 光が主に法線方向から来る場合、 光偏向フィルムを用いて導光板への入 射角を 7 3. 0 8° 以上に設定することで、 効率的な集光と光電変換が 可能である。  In FIG. 2, polycarbonate having a refractive index of 1.58 is assumed as the material of the light guide, and the apex angle of the reflecting surface 5A is 8.8 °. However, the present invention is not limited to these parameters. In this case, since the critical angle 0c is 39.27 °, it can be seen from equation (4) that 0> 73.08 ° is required. When the light incident on the photovoltaic system of the present embodiment mainly comes from the normal direction, it is possible to improve the efficiency by setting the angle of incidence on the light guide plate to 73.08 ° or more using a light deflection film. High light collection and photoelectric conversion are possible.
図 3に、 反射面が入射面 7の法線方向に対してなす角度 aを変えた時 に、 導光体中を入射光が導波するために要求される入射角の下限がどの ように変化するかを例示した。 導光体の屈折率は 1. 5 8とした。 図か ら直ちに分かるように、 反射面の角度 αに対して入射角下限は単調増加 している。 すなわち、 反射面の角度 が大きいほど、 導光体によって集 光される光の角度範囲は強い制限を受ける。 従って、 反射面の角度 αは ある程度小さい方が好ましい。 また、 図中矢印で示したように、 垂直入 射光すなわち入射角が 0° の光を導波するためには、 反射面の傾きは約 5 0° 以下でなければならない。  Figure 3 shows how the lower limit of the incident angle required for incident light to be guided in the light guide when the angle a that the reflecting surface makes with respect to the normal direction of the incident surface 7 is changed. It is illustrated whether it changes. The refractive index of the light guide was 1.58. As can be seen immediately from the figure, the lower limit of the incident angle monotonically increases with respect to the angle α of the reflecting surface. In other words, the larger the angle of the reflecting surface, the more the angle range of the light collected by the light guide is more restricted. Therefore, it is preferable that the angle α of the reflecting surface is small to some extent. Also, as shown by the arrow in the figure, in order to guide vertically incident light, that is, light having an incident angle of 0 °, the inclination of the reflecting surface must be about 50 ° or less.
導光体の反射面で全反射しなかった入射光は、 導光体の下面を抜けて 漏れ光となる。 このような漏れ光を回収する方法として、 図 4から図 5 に示すような形態にすることが好ましい。 これらの図面は、 導光体がい ずれも屈折率 1. 5 8と想定した場合の模式図を示しているが、 本発明 の効果はこの屈折率値に限定されるものではない。 また、 図中では導光 体に対して凸形状の、 同一形状の反射体が描かれているが、 反射体は導 光体に対して凹形状であっても良く、 異なる形状の反射体が混在してい ても良い。 Incident light that has not been totally reflected by the reflection surface of the light guide passes through the lower surface of the light guide and becomes leaked light. As a method for collecting such leakage light, it is preferable to adopt a form as shown in FIGS. These drawings show schematic diagrams when assuming that the light guide has a refractive index of 1.58. Is not limited to this refractive index value. Also, in the figure, a reflector having the same shape as a convex shape with respect to the light guide is depicted, but the reflector may be concave with respect to the light guide, and a reflector having a different shape may be used. They may be mixed.
図 4に示す本発明の光発電システムの第 3の形態は、 導光体と、 導光 体の出射面以外から出射した光を反射する反射板と、 導光体の出射面に 対向して設けられた光電変換素子を有してなる。 上記反射板は、 平板状 反射面でも良いが、 図 4に示すような、 上記入射面の法線方向に対して 傾斜した面と、 その面とは反対の方向に傾斜した面とを有してなる形状 を有する反射板を用いることが好ましい。  A third embodiment of the photovoltaic power generation system of the present invention shown in FIG. 4 includes a light guide, a reflector that reflects light emitted from a portion other than the emission surface of the light guide, and a light guide that faces the emission surface of the light guide. It has a photoelectric conversion element provided. The reflection plate may be a flat reflection surface, but has a surface inclined with respect to the normal direction of the incident surface and a surface inclined in a direction opposite to the surface as shown in FIG. It is preferable to use a reflection plate having a shape having the following shape.
図 4に示す第 3の形態は、 α 1及び α 2をそれぞれ 5 0 ° と 7 0 ° と した模式図である。 経路 aで導光体に直接入射した光は、 傾き《 1の反 射面 5 Aで反射され、 水平から上向き 1 0 ° に進行方向を変えて導光体 中を導波し、 出射面 8から出射し、 光電変換素子に至る。 経路 bで入射 した光は、 傾き α 1の反射面 5 Αと傾き a 2の反射面 5 Bで連続して反 射された後、 水平方向に対して上向き 5 0 ° に進行方向を変えて導光体 中を導波する。 経路 c及び dで導光体中に入射した光は、 反射面を透過 して一旦漏れ光となるが、 傾斜面をもつ反射板により水平方向へ進行方 向を変更され、 導光体中へ回収されて導波し、 端面に至る。  The third embodiment shown in FIG. 4 is a schematic diagram in which α1 and α2 are set to 50 ° and 70 °, respectively. The light that is directly incident on the light guide on path a is reflected by the reflection surface 5A with an inclination of << 1, is guided in the light guide by changing its traveling direction from horizontal to 10 ° upward, and exits from the light guide 8 Out of the device and reach the photoelectric conversion element. The light incident on the path b is continuously reflected by the reflecting surface 5 ° with the inclination α1 and the reflecting surface 5B with the inclination a2, and then changes its traveling direction to 50 ° upward with respect to the horizontal direction. It is guided through the light guide. Light entering the light guide through paths c and d passes through the reflecting surface and temporarily leaks light.However, the traveling direction is changed in the horizontal direction by the reflecting plate with the inclined surface, and the light enters the light guide. It is collected, guided and reaches the end face.
反射体 5を構成する反射面 5 Aと 5 Bのそれぞれが入射面 7の法線方 向となす角度 α 1及び α 2の値には特に制限はなく種々の組み合わせを とることができるが、 光電変換システム全体の構成をどのようにするか によって、 好ましい値が存在する。 例えば、 第 3の形態に示す光の経路 を達成するためには、 導光体の材質の屈折率が 1 . 5 8である場合、 α 1は 4 5 ° 〜 5 0 ° であり、 α 2は 1 2 0 ° — α ΐ以下すなわち 7 5 ° 〜 7 0° であることが好ましい。 この角度範囲であれば、 図 4の経路 a、 bにおいて、 反射面 5 Aと 5 Bおよぴ導光体上面で全反射が起こ り、 光のロスを低減することができる。 The values of the angles α1 and α2 formed by the reflecting surfaces 5A and 5B constituting the reflector 5 with respect to the normal direction of the incident surface 7 are not particularly limited, and various combinations can be adopted. There are preferable values depending on the configuration of the entire photoelectric conversion system. For example, in order to achieve the light path shown in the third embodiment, when the refractive index of the material of the light guide is 1.58, α 1 is 45 ° to 50 °, and α 2 Is less than or equal to 120 ° — αΐ, that is, 75 ° It is preferably about 70 °. Within this angle range, in paths a and b in FIG. 4, total reflection occurs on reflection surfaces 5A and 5B and the upper surface of the light guide, and light loss can be reduced.
また、 整列させて一方光に導くためには、 α ΐが 2° 〜 6 0° 、 ひ 2 が 8 0° 〜 8 9° の範囲であることが好ましい。 の範囲が 6 0° を 超えると導光板中の光を全反射して導光板外へ散乱してしまう傾向があ り、 2° 未満であると光が反射面を透過して導光板外へ逃散する傾向が ある。 また、 α 2の範囲が 8 9° を超えると、 式 (4) で示される入射角 度の制限が厳しくなりすぎ、 8 0° 未満であると集光性が低下する傾向 がある。  Further, in order to align and guide the light to one side, it is preferable that α ΐ is in the range of 2 ° to 60 ° and that ひ 2 is in the range of 80 ° to 89 °. If the range exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate, and if it is less than 2 °, the light passes through the reflective surface and goes out of the light guide plate. They tend to escape. Also, when the range of α2 exceeds 89 °, the limit of the incident angle represented by the equation (4) becomes too severe, and when it is less than 80 °, the light condensing property tends to decrease.
また、 広い角度範囲の入射光を集光するためには、 《 1が 2° 〜 6 0° 、 (¾ 2が 3 0° 〜 5 0° の範囲であることが好ましい。 α 1の範囲 が 6 0° を超えると導光板中の光を全反射して導光板外へ散乱してしま' う傾向があり、 2° '未満であると光が反射面を透過して導光板外へ逃散 する傾向がある。 また、 α 2の範囲が 5 0° を超えると、 入射光のうち 全反射されずに導光体下面へ逃散するものの割合が増加し、 3 0° 未満 であると反射面に入射しない光の割合が大きくなる。  In order to condense the incident light in a wide angle range, it is preferable that << 1 is in the range of 2 ° to 60 ° and (¾2 is in the range of 30 ° to 50 °. When the angle exceeds 60 °, the light in the light guide plate tends to be totally reflected and scattered outside the light guide plate. When the angle is less than 2 °, the light passes through the reflective surface and escapes outside the light guide plate. When the range of α 2 exceeds 50 °, the proportion of incident light that escapes to the lower surface of the light guide without being totally reflected increases, and when it is less than 30 °, the reflection surface The ratio of light that does not enter the light source increases.
図 5に、 複数の導光体で漏れ光を回収することのできる本発明の第 4 の形態の光発電システムを示した。 第 4の形態は、 プリズムによる光偏 向シートと、 下面に反射体を設けた第一の導光体と、 当該導光体の下側 に隣接して設けられた第二の導光体と、 これらの導光体の左右の出射面 に対向するように設けられた光電変換素子からなり、 第 1の導光体 1は 入射面と反対側の面だけに反射体 5が掲載され、 第 2の導光体 1 ' は上 下両面に反射体 5が形成されている。 光偏向シート 3が図示するような プリズムシートに制限されないことや、 反射体 5の形状が図示した形状 に限定されない点は前述の通りである。 FIG. 5 shows a photovoltaic power generation system according to a fourth embodiment of the present invention that can collect leaked light with a plurality of light guides. In a fourth mode, a light deflection sheet formed by a prism, a first light guide provided with a reflector on the lower surface, and a second light guide provided adjacent to the lower side of the light guide are provided. The first light guide 1 is provided with a reflector 5 only on the surface opposite to the incident surface, and the first light guide 1 includes a photoelectric conversion element provided so as to face the left and right emission surfaces of these light guides. The reflector 5 is formed on both upper and lower surfaces of the light guide 1 ′. The light deflection sheet 3 is not limited to the prism sheet as shown in the figure, and the shape of the reflector 5 is the shape shown in the figure. Is not limited to the above.
第 4の形態において、 2つの導光体 1及び 1 ' の位置関係は特に限定 されるものではない。 例えば、 部分的にまたは全体が接していても良い し、 または完全に離れていても良い。 またそれぞれの反射体の形状は、 1及ぴ 1 ' の対向する面で合わさる形状であってもよく、 そうでなくて も良い。 また、 導光体 1及び 1 ' はそれぞれ屈折率の異なる導光体であ つても良い。 しかし、 製造のしゃすさや光の収集効率等の点で、 図 5に 示すように反射体の形状が 1及び 1 ' の対向する面で合わさる形状でる ことが好ましい。  In the fourth embodiment, the positional relationship between the two light guides 1 and 1 'is not particularly limited. For example, they may be partially or wholly in contact, or completely separated. Also, the shape of each reflector may be a shape that is matched by the opposing surfaces of 1 and 1 ′, and may not be. Further, the light guides 1 and 1 ′ may be light guides having different refractive indexes. However, from the viewpoint of manufacturing ease and light collection efficiency, it is preferable that the shape of the reflectors be such that they face each other at 1 and 1 'as shown in FIG.
光偏向シートにより斜め光となった垂直入射光は、 経路 a及ぴ bで導 光体中に入射する。 経路 aで入射した光は、 上側の導光体中で全反射を 繰り返しながら導波し、 右側の光電変換素子 :至る:。 :方、 経路 bで入 '射した光は、 上側の導光体の反射面で全反射で:きな :た.め、 下側の第二 の'導光体へ入射する。 下側の導光体は、 上面と下'面のそれぞれに反射体 が設けられている。 そのうち上面の反射体は、 相接する上側の導光体の 反射体と相補的な形状となっている。 相接する反射体を相補的な形状と することにより、 漏れ光の向きを変えることなく下側の導光体で回収 し、 効果的に導波させることができる。 下側の導光体中に入射した漏れ 光は、 上下面の反射体で全反射を繰り返して、 左側の光電変換素子へ至 る。 The vertically incident light that has been turned into oblique light by the light deflecting sheet enters the light guide through paths a and b. Light incident on the path a while repeating total reflection by the upper light guide in guided, right photoelectric conversion element: lead:. : The light incident on the path b is totally reflected by the reflection surface of the upper light guide and enters the lower second light guide. The lower light guide has a reflector on each of the upper surface and the lower surface. Among them, the reflector on the upper surface has a shape complementary to that of the light guide on the upper side that is adjacent to the reflector. By making the adjacent reflectors complementary, the light can be collected by the lower light guide without changing the direction of the leaked light and can be guided effectively. The leaked light incident on the lower light guide repeats total reflection by the upper and lower reflectors, and reaches the photoelectric conversion element on the left.
図 6には、 垂直入射光を導波させうる複数の導光体と、 導光体の右側 端面に設けられた光電変換素子からなる光発電システムの第 5の形態を 示した。  FIG. 6 shows a fifth embodiment of a photovoltaic system including a plurality of light guides capable of guiding vertically incident light and a photoelectric conversion element provided on the right end face of the light guide.
導光体の相接する面には、 互いに相補的な形状の反射体が設けられて いる。 各導光体の素材は 1 . 5 8の屈折率を有すると想定したが、 本発 明の効果はこの屈折率の値に限られるものではない。 また、 図中では同 —形状の反射体が等間隔で設けられているが、 形状の異なる反射体が混 在していても良く、 反射体の間隔が不均等であっても良い。 Reflectors having mutually complementary shapes are provided on the surfaces where the light guides are in contact with each other. It is assumed that the material of each light guide has a refractive index of 1.58. The bright effect is not limited to this refractive index value. Although reflectors having the same shape are provided at equal intervals in the drawing, reflectors having different shapes may be mixed, and the intervals between the reflectors may be unequal.
第 5の形態において、 右側に傾斜した反射面のみが垂直入射光を全反 射できる角度に設定されている。 経路 aで入射した光は、 最上部の導光 体で全反射を受け、 水平から上向き 1 0 ° に進行方向を変更されて、 最 上部の導光体中を導波して右端端面の光電変換素子へ至る。 経路 bで入 射した光は、 左側へ傾斜した反射面を透過して、 第二の導光体中へ入射 する。 第一の導光体と第二の導光体の相接する反射体は相補的な形状と なっているため、 bの入射光は進行方向を変えずに第二の導光体の反射 面へ入射する。 漏れ光を効率的に捕捉できるように、 それぞれの導光体 の下面に設けられた反射体の位置が図中の左右方向へずれていることが 好ましい。 経路 cで入射した光は; 第一の導光体の下側水平面と、 第二 : の導光体の左側へ傾斜した反射面を透過して、 第三の導光体へ至る。 経 路 cの光は、 第三の導光体中で初めて全反射され、 第三の導光体中を導 波して右側端面に達する。 In the fifth mode, only the reflection surface inclined to the right is set at an angle at which vertically incident light can be totally reflected. The light incident on the path a is totally reflected by the uppermost light guide, is changed its traveling direction from horizontal to 10 ° upward, is guided in the uppermost light guide, and travels through the uppermost light guide to the photoelectric converter on the right end face. To the conversion element. The light incident on the path b passes through the reflecting surface inclined to the left and enters the second light guide. Since the reflectors in contact with the first light guide and the second light guide have complementary shapes, the incident light of b does not change its traveling direction and the reflection surface of the second light guide Incident on. It is preferable that the positions of the reflectors provided on the lower surfaces of the respective light guides be shifted in the left-right direction in the drawing so that the leaked light can be efficiently captured. The light incident on the path c; and a lower horizontal surface of the first light guide member, the second: passes through the reflecting surface inclined to the left side of the light guide body, leading to the third light guide. The light of the path c is totally reflected for the first time in the third light guide, and is guided in the third light guide to reach the right end face.
以上のように、 本発明に関わる集光型光発電システムでは、 入射され た光の大部分を導光体の端面に集めることで、 導光体の端面に設けられ た光電変換素子の発電効率を高めることができる。 また、 光線の入射角 に関係なく高効率の集光と発電が行えるため、 発電装置を入射光方向に 向ける追尾装置が不要となり、 装置が小形化される。 このため、 より多 彩な場所に光発電装置を設けることが可能となると共に、 携帯用途など への応用も容易になる。 また、 光線の集光比率が約 3倍で、 高価な光電 変換素子の必要面積を 1 3に抑えることができるとともに、 設備コス トも低減できる。  As described above, in the concentrating photovoltaic power generation system according to the present invention, most of the incident light is collected on the end face of the light guide, so that the power generation efficiency of the photoelectric conversion element provided on the end face of the light guide is improved. Can be increased. In addition, since high-efficiency light collection and power generation can be performed irrespective of the angle of incidence of the light beam, a tracking device that directs the power generation device in the direction of the incident light becomes unnecessary, and the device can be downsized. For this reason, the photovoltaic power generator can be provided in more various places, and the application to portable use becomes easy. In addition, the light collection ratio is about three times, the area required for expensive photoelectric conversion elements can be reduced to 13 and the equipment cost can be reduced.

Claims

請求の範囲 The scope of the claims
1 . 外部光を入射する入射面と、 1. An incident surface for receiving external light,
前記外部光を出射する入射面と平行でない出射面とを有する導光体、 及 び、 上記出射面に対向して設けられた光電変換素子を少なく とも一つ有 してなる光発電システムであって、 A light guide having an incident surface that emits the external light and an exit surface that is not parallel, and a photovoltaic system that includes at least one photoelectric conversion element provided to face the exit surface. hand,
前記導光体は、 入射面及びその反対面の少なく ともどちらかに、 導光体 内部に入射した光を反射させる複数の反射体を有してなる The light guide has a plurality of reflectors for reflecting light incident inside the light guide on at least one of an incident surface and an opposite surface thereof.
光発電システム。 Light generation system.
2 . 外部光の方向を変換する光偏向シートを、 上記入射面に対向して 設けてなる請求の範囲第 1項に記載の光発電システム。  2. The photovoltaic power generation system according to claim 1, wherein a light deflection sheet for changing a direction of external light is provided to face the incident surface.
3 . 導光体の出射面以外から出射した光を反射する反射板を、 導光体 の入射面の反対面 設けてなる請求の範囲第 1項又は第 2項に記載の光 発電システム。 - 3. The photovoltaic power generation system according to claim 1, wherein a reflection plate that reflects light emitted from a portion other than the emission surface of the light guide is provided on a surface opposite to the incidence surface of the light guide. -
4 . 上記反射板は、 上記入射面の法線方向に対して傾斜した面と、 そ の面とは反対の方向に傾斜した面とを有してなる請求の範囲第 3項に記 載の光発電システム。 4. The reflector according to claim 3, wherein the reflector has a surface inclined with respect to a normal direction of the incident surface and a surface inclined in a direction opposite to the surface. Light generation system.
5 . 上記反射体は、 上記入射面の法線方向に対して 2 ° 〜6 0 ° 傾斜 した A面と、 上記入射面の法線方向に対して A面とは反対の方向に 8 0 ° 〜8 9 ° 傾斜した B面とを有してなる請求の範囲第 1項乃至第 4項 のいずれかに記載の光発電システム。  5. The reflector has an A surface inclined at 2 ° to 60 ° with respect to the normal direction of the incident surface, and 80 ° in a direction opposite to the A surface with respect to the normal direction of the incident surface. The photovoltaic power generation system according to any one of claims 1 to 4, wherein the photovoltaic power generation system has a surface B inclined by ~ 89 °.
6 . 上記反射体は、 上記入射面の法線方向に対して 2 ° 〜6 0 ° 傾斜 した A面と、 上記入射面の法線方向に対して A面とは反対の方向に 3 0 ° 〜5 0 ° 傾斜した B面とを有してなる請求の範囲第 1項乃至第 4項 のいずれかに記載の光発電システム。 6. The reflector has an A surface inclined at 2 ° to 60 ° with respect to the normal direction of the incident surface, and 30 ° in a direction opposite to the A surface with respect to the normal direction of the incident surface. The photovoltaic power generation system according to any one of claims 1 to 4, wherein the photovoltaic power generation system has a B surface inclined by up to 50 °.
7. 上記反射体は、 上記入射面の法線方向に対して 4 0° 〜 5 0° 傾 斜した A面と、 上記入射面の法線方向に対して A面とは反対の方向に 4 0° 〜5 0° 傾斜した B面とを有してなる請求の範囲第 1項乃至第 4項 のいずれかに記載の光発電システム。 7. The reflector has an A surface inclined at 40 ° to 50 ° with respect to the normal direction of the incident surface, The photovoltaic system according to any one of claims 1 to 4, comprising a B surface inclined from 0 ° to 50 °.
8. A面と B面の間に、 入射面と平行な面を有してなる請求の範囲第 5項乃至第 7項のいずれかに記載の光発電システム。  8. The photovoltaic system according to any one of claims 5 to 7, comprising a plane parallel to the incident plane between the A plane and the B plane.
9. 上記導光体が複数の導光体の集合体であり、 該複数の導光体は、 隣接する 2枚の導光体の相接する面に相補的な構造の反射体が設けられ てなる請求の範囲第 1項乃至第 8項のいずれかに記載の光発電システ ム。  9. The light guide is an aggregate of a plurality of light guides, and the plurality of light guides is provided with a reflector having a complementary structure on a surface where two adjacent light guides are in contact with each other. The photovoltaic system according to any one of claims 1 to 8, comprising:
PCT/JP2004/009233 2003-06-23 2004-06-23 Concentrating photovoltaic power generation system WO2004114418A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003177521A JP2007027150A (en) 2003-06-23 2003-06-23 Concentrating photovoltaic power generation system
JP2003-177521 2003-06-23

Publications (1)

Publication Number Publication Date
WO2004114418A1 true WO2004114418A1 (en) 2004-12-29

Family

ID=33534960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009233 WO2004114418A1 (en) 2003-06-23 2004-06-23 Concentrating photovoltaic power generation system

Country Status (3)

Country Link
JP (1) JP2007027150A (en)
TW (1) TW200510868A (en)
WO (1) WO2004114418A1 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034397A2 (en) * 2005-09-19 2007-03-29 Koninklijke Philips Electronics N.V. Luminaire with stack of flat panel light guides
EP1988332A1 (en) 2007-04-30 2008-11-05 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
EP2061092A1 (en) 2007-11-16 2009-05-20 Qualcomm Mems Technologies, Inc. Thin film planar solar concentrator/collector
WO2009102670A1 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/ collector
WO2010051570A1 (en) * 2008-11-04 2010-05-14 Al Systems Gmbh Light guide element for a lighting device
EP2201309A2 (en) * 2007-09-10 2010-06-30 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
US7873257B2 (en) 2007-05-01 2011-01-18 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
WO2011062020A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Solar cell module, solar power generating apparatus, and window
EP2326889A2 (en) * 2008-09-19 2011-06-01 The Regents Of The University Of California System and method for solar energy capture and related method of manufacturing
CN102160196A (en) * 2008-09-18 2011-08-17 高通Mems科技公司 Increasing angular range of light collection in solar collectors/concentrators
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device
WO2012053379A1 (en) * 2010-10-18 2012-04-26 シャープ株式会社 Solar battery module and solar power generator
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
WO2012066935A1 (en) * 2010-11-16 2012-05-24 シャープ株式会社 Solar cell module and solar power generation device
WO2012070533A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Solar cell module and photovolatic power generation device
WO2012115248A1 (en) * 2011-02-25 2012-08-30 シャープ株式会社 Solar cell module and solar generator device
WO2012144431A1 (en) * 2011-04-20 2012-10-26 シャープ株式会社 Solar cell module and solar power generation apparatus
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Stepped light collection and collection system, components thereof, and methods
US8328403B1 (en) 2012-03-21 2012-12-11 Morgan Solar Inc. Light guide illumination devices
US8346048B2 (en) 2008-05-28 2013-01-01 Qualcomm Mems Technologies, Inc. Front light devices and methods of fabrication thereof
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
WO2013047424A1 (en) * 2011-09-26 2013-04-04 シャープ株式会社 Solar photovoltaic power generation device
WO2013069785A1 (en) * 2011-11-11 2013-05-16 シャープ株式会社 Light guide body, solar cell module, and photovoltaic power generation device
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
EP2635929A2 (en) * 2010-11-04 2013-09-11 Banyan Energy, Inc. Compact optics for concentration and illumination systems
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8885995B2 (en) 2011-02-07 2014-11-11 Morgan Solar Inc. Light-guide solar energy concentrator
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9040808B2 (en) 2007-05-01 2015-05-26 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9229144B2 (en) 2007-09-10 2016-01-05 Banyan Energy Inc. Redirecting optics for concentration and illumination systems
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9337373B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Light-guide solar module, method of fabrication thereof, and panel made therefrom
CN105823006A (en) * 2016-05-20 2016-08-03 常州大学 CPC light condensation light guide lighting ventilation system
US9482850B2 (en) 2011-04-01 2016-11-01 The Regents Of The University Of California Monocentric imaging
US9960296B2 (en) * 2008-11-06 2018-05-01 Industrial Technology Research Institute Solar energy collecting module

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8115987B2 (en) 2007-02-01 2012-02-14 Qualcomm Mems Technologies, Inc. Modulating the intensity of light from an interferometric reflector
FR2914754B1 (en) * 2007-04-05 2009-07-17 Commissariat Energie Atomique PLAN LIGHT CONCENTRATION DEVICE WITH REDUCED THICKNESS
US7643202B2 (en) 2007-05-09 2010-01-05 Qualcomm Mems Technologies, Inc. Microelectromechanical system having a dielectric movable membrane and a mirror
US7630121B2 (en) 2007-07-02 2009-12-08 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
EP2183623A1 (en) 2007-07-31 2010-05-12 Qualcomm Mems Technologies, Inc. Devices for enhancing colour shift of interferometric modulators
US8058549B2 (en) 2007-10-19 2011-11-15 Qualcomm Mems Technologies, Inc. Photovoltaic devices with integrated color interferometric film stacks
JP5209727B2 (en) 2007-10-19 2013-06-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Display with integrated photovoltaic device
JP2011504243A (en) 2007-10-23 2011-02-03 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Adjustable transmissive MEMS-based device
WO2009063416A2 (en) * 2007-11-13 2009-05-22 Koninklijke Philips Electronics, N.V. Thin and efficient collecting optics for solar system
US8164821B2 (en) 2008-02-22 2012-04-24 Qualcomm Mems Technologies, Inc. Microelectromechanical device with thermal expansion balancing layer or stiffening layer
US7944604B2 (en) 2008-03-07 2011-05-17 Qualcomm Mems Technologies, Inc. Interferometric modulator in transmission mode
US7612933B2 (en) 2008-03-27 2009-11-03 Qualcomm Mems Technologies, Inc. Microelectromechanical device with spacing layer
US8023167B2 (en) 2008-06-25 2011-09-20 Qualcomm Mems Technologies, Inc. Backlight displays
US20100051089A1 (en) * 2008-09-02 2010-03-04 Qualcomm Mems Technologies, Inc. Light collection device with prismatic light turning features
US20100108133A1 (en) * 2008-11-03 2010-05-06 Venkata Adiseshaiah Bhagavatula Thin Film Semiconductor Photovoltaic Device
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
KR101057790B1 (en) * 2009-02-03 2011-08-19 테라웨이브 주식회사 Concentrating solar power module
US8270056B2 (en) 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same
WO2010131250A1 (en) * 2009-05-14 2010-11-18 Yair Salomon Enterprises Ltd. Light collection system and method
US8498505B2 (en) * 2009-06-24 2013-07-30 University Of Rochester Dimpled light collection and concentration system, components thereof, and methods
US8270062B2 (en) 2009-09-17 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with at least one movable stop element
US8488228B2 (en) 2009-09-28 2013-07-16 Qualcomm Mems Technologies, Inc. Interferometric display with interferometric reflector
US20120236599A1 (en) * 2009-12-17 2012-09-20 Tsuyoshi Maeda Electronic device
US20130000697A1 (en) * 2010-03-30 2013-01-03 Sharp Kabushiki Kaisha Solar cell module and solar photovoltaic device
WO2011126953A1 (en) 2010-04-09 2011-10-13 Qualcomm Mems Technologies, Inc. Mechanical layer of an electromechanical device and methods of forming the same
WO2012011307A1 (en) * 2010-07-22 2012-01-26 シャープ株式会社 Solar cell module and solar photovoltaic power generation device
WO2012014539A1 (en) * 2010-07-26 2012-02-02 シャープ株式会社 Solar cell module and solar power generation device
WO2012024238A1 (en) 2010-08-17 2012-02-23 Qualcomm Mems Technologies, Inc. Actuation and calibration of a charge neutral electrode in an interferometric display device
US9057872B2 (en) 2010-08-31 2015-06-16 Qualcomm Mems Technologies, Inc. Dielectric enhanced mirror for IMOD display
WO2012077661A1 (en) * 2010-12-07 2012-06-14 シャープ株式会社 Solar power generator
JP2014112571A (en) * 2011-03-24 2014-06-19 Sharp Corp Solar cell module, photovoltaic apparatus, and method of installing solar cell module
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
KR101327211B1 (en) * 2011-06-03 2013-11-11 주식회사 리온아이피엘 High-concentrated photovoltaic module
JP2014167947A (en) * 2011-06-27 2014-09-11 Sharp Corp Photovoltaic power generation device
US8736939B2 (en) 2011-11-04 2014-05-27 Qualcomm Mems Technologies, Inc. Matching layer thin-films for an electromechanical systems reflective display device
WO2014112620A1 (en) * 2013-01-21 2014-07-24 合同会社Holomedia Light-concentrating mechanism, photovoltaic power generation device, window structure, and window glass
WO2015173924A1 (en) * 2014-05-15 2015-11-19 一戸 照章 Vertical solar cell unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146008A (en) * 1997-07-25 1999-02-16 Toyota Motor Corp Sunlight collector
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000231803A (en) * 1999-02-09 2000-08-22 Nobuyuki Higuchi Lighting system utilizing solar light power generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1146008A (en) * 1997-07-25 1999-02-16 Toyota Motor Corp Sunlight collector
JPH11340493A (en) * 1998-05-22 1999-12-10 Toyota Motor Corp Sunlight condensing device
JP2000231803A (en) * 1999-02-09 2000-08-22 Nobuyuki Higuchi Lighting system utilizing solar light power generation

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9025235B2 (en) 2002-12-25 2015-05-05 Qualcomm Mems Technologies, Inc. Optical interference type of color display having optical diffusion layer between substrate and electrode
US9019590B2 (en) 2004-02-03 2015-04-28 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8111445B2 (en) 2004-02-03 2012-02-07 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8045252B2 (en) 2004-02-03 2011-10-25 Qualcomm Mems Technologies, Inc. Spatial light modulator with integrated optical compensation structure
US8861071B2 (en) 2004-09-27 2014-10-14 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
US8169688B2 (en) 2004-09-27 2012-05-01 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US8111446B2 (en) 2004-09-27 2012-02-07 Qualcomm Mems Technologies, Inc. Optical films for controlling angular characteristics of displays
US8045256B2 (en) 2004-09-27 2011-10-25 Qualcomm Mems Technologies, Inc. Method and device for compensating for color shift as a function of angle of view
WO2007034397A2 (en) * 2005-09-19 2007-03-29 Koninklijke Philips Electronics N.V. Luminaire with stack of flat panel light guides
WO2007034397A3 (en) * 2005-09-19 2008-10-30 Koninkl Philips Electronics Nv Luminaire with stack of flat panel light guides
US9019183B2 (en) 2006-10-06 2015-04-28 Qualcomm Mems Technologies, Inc. Optical loss structure integrated in an illumination apparatus
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
US8107155B2 (en) 2006-10-06 2012-01-31 Qualcomm Mems Technologies, Inc. System and method for reducing visual artifacts in displays
US8061882B2 (en) 2006-10-06 2011-11-22 Qualcomm Mems Technologies, Inc. Illumination device with built-in light coupler
US8368981B2 (en) 2006-10-10 2013-02-05 Qualcomm Mems Technologies, Inc. Display device with diffractive optics
EP1988332A1 (en) 2007-04-30 2008-11-05 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
CN102354012A (en) * 2007-04-30 2012-02-15 高通Mems科技公司 Dual film light guide for illuminating displays
EP1988333A1 (en) 2007-04-30 2008-11-05 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
WO2008137299A1 (en) * 2007-04-30 2008-11-13 Qualcomm Mems Technologies, Inc. Dual film light guide for illuminating displays
EP2645426A1 (en) * 2007-05-01 2013-10-02 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9040808B2 (en) 2007-05-01 2015-05-26 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9335530B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Planar solar energy concentrator
US8152339B2 (en) 2007-05-01 2012-04-10 Morgan Solar Inc. Illumination device
US7991261B2 (en) 2007-05-01 2011-08-02 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
US9337373B2 (en) 2007-05-01 2016-05-10 Morgan Solar Inc. Light-guide solar module, method of fabrication thereof, and panel made therefrom
US7873257B2 (en) 2007-05-01 2011-01-18 Morgan Solar Inc. Light-guide solar panel and method of fabrication thereof
AU2008299119B2 (en) * 2007-09-10 2012-06-14 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
EP2201309A2 (en) * 2007-09-10 2010-06-30 Banyan Energy, Inc Compact optics for concentration, aggregation and illumination of light energy
EP2201309A4 (en) * 2007-09-10 2010-12-01 Banyan Energy Inc Compact optics for concentration, aggregation and illumination of light energy
KR101455892B1 (en) * 2007-09-10 2014-11-04 반얀 에너지, 인크 Compact Optics for Concentration, Aggregation and Illumination of Light Energy
JP2010539428A (en) * 2007-09-10 2010-12-16 バンヤン エナジー,インコーポレイテッド Compact optical system for collecting, integrating and irradiating light energy
US9229144B2 (en) 2007-09-10 2016-01-05 Banyan Energy Inc. Redirecting optics for concentration and illumination systems
EP2061093A1 (en) 2007-11-16 2009-05-20 Qualcomm Mems Technologies, Inc. Planar thin film solar concentrator/collector
US8941631B2 (en) 2007-11-16 2015-01-27 Qualcomm Mems Technologies, Inc. Simultaneous light collection and illumination on an active display
WO2009064701A1 (en) * 2007-11-16 2009-05-22 Qualcomm Mems Technologies, Inc. Thin film solar concentrator/collector
EP2061092A1 (en) 2007-11-16 2009-05-20 Qualcomm Mems Technologies, Inc. Thin film planar solar concentrator/collector
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US8798425B2 (en) 2007-12-07 2014-08-05 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
JP2011515017A (en) * 2008-02-12 2011-05-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Two-layer thin film holographic solar collector and solar concentrator
WO2009102671A2 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Thin film holographic solar concentrator/collector
WO2009102671A3 (en) * 2008-02-12 2009-10-29 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/collector
WO2009102670A1 (en) * 2008-02-12 2009-08-20 Qualcomm Mems Technologies, Inc. Dual layer thin film holographic solar concentrator/ collector
JP2011515018A (en) * 2008-02-12 2011-05-12 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Two-layer thin film holographic solar collector and solar concentrator
US8654061B2 (en) 2008-02-12 2014-02-18 Qualcomm Mems Technologies, Inc. Integrated front light solution
JP2013080966A (en) * 2008-02-12 2013-05-02 Qualcomm Mems Technologies Inc Bilayer thin film holographic solar collector and solar concentrator
JP2013080967A (en) * 2008-02-12 2013-05-02 Qualcomm Mems Technologies Inc Bilayer thin film holographic solar collector and solar concentrator
JP2014003309A (en) * 2008-02-12 2014-01-09 Qualcomm Mems Technologies Inc Dual-layer thin-film holographic solar collector and solar concentrator
US8049951B2 (en) 2008-04-15 2011-11-01 Qualcomm Mems Technologies, Inc. Light with bi-directional propagation
US8346048B2 (en) 2008-05-28 2013-01-01 Qualcomm Mems Technologies, Inc. Front light devices and methods of fabrication thereof
US8358266B2 (en) 2008-09-02 2013-01-22 Qualcomm Mems Technologies, Inc. Light turning device with prismatic light turning features
CN102160196A (en) * 2008-09-18 2011-08-17 高通Mems科技公司 Increasing angular range of light collection in solar collectors/concentrators
EP2326889A2 (en) * 2008-09-19 2011-06-01 The Regents Of The University Of California System and method for solar energy capture and related method of manufacturing
EP2326889A4 (en) * 2008-09-19 2013-07-03 Univ California System and method for solar energy capture and related method of manufacturing
US8292487B2 (en) 2008-11-04 2012-10-23 Al Systems Gmbh Light guide element for a lighting device
WO2010051570A1 (en) * 2008-11-04 2010-05-14 Al Systems Gmbh Light guide element for a lighting device
US9960296B2 (en) * 2008-11-06 2018-05-01 Industrial Technology Research Institute Solar energy collecting module
US9121979B2 (en) 2009-05-29 2015-09-01 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
US8979349B2 (en) 2009-05-29 2015-03-17 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
JP2012531623A (en) * 2009-06-24 2012-12-10 ユニバーシティー オブ ロチェスター Stepped light collection and collection system, components thereof, and methods
US9246038B2 (en) 2009-06-24 2016-01-26 University Of Rochester Light collecting and emitting apparatus, method, and applications
US9036963B2 (en) 2009-06-24 2015-05-19 University Of Rochester Light collecting and emitting apparatus, method, and applications
WO2011062020A1 (en) * 2009-11-18 2011-05-26 シャープ株式会社 Solar cell module, solar power generating apparatus, and window
US20130125955A1 (en) * 2010-06-02 2013-05-23 Sharp Kabushiki Kaisha Solar cell module, and solar photovoltaic device with same
WO2012050059A1 (en) * 2010-10-15 2012-04-19 シャープ株式会社 Solar cell module and solar power generation device
WO2012053379A1 (en) * 2010-10-18 2012-04-26 シャープ株式会社 Solar battery module and solar power generator
AU2011323696B2 (en) * 2010-11-04 2016-09-29 Banyan Energy, Inc. Compact optics for concentration and illumination systems
EP2635929A2 (en) * 2010-11-04 2013-09-11 Banyan Energy, Inc. Compact optics for concentration and illumination systems
EP2635929A4 (en) * 2010-11-04 2014-11-12 Banyan Energy Inc Compact optics for concentration and illumination systems
WO2012066935A1 (en) * 2010-11-16 2012-05-24 シャープ株式会社 Solar cell module and solar power generation device
WO2012070533A1 (en) * 2010-11-24 2012-05-31 シャープ株式会社 Solar cell module and photovolatic power generation device
US8902484B2 (en) 2010-12-15 2014-12-02 Qualcomm Mems Technologies, Inc. Holographic brightness enhancement film
US8885995B2 (en) 2011-02-07 2014-11-11 Morgan Solar Inc. Light-guide solar energy concentrator
WO2012115248A1 (en) * 2011-02-25 2012-08-30 シャープ株式会社 Solar cell module and solar generator device
US9482850B2 (en) 2011-04-01 2016-11-01 The Regents Of The University Of California Monocentric imaging
WO2012144431A1 (en) * 2011-04-20 2012-10-26 シャープ株式会社 Solar cell module and solar power generation apparatus
WO2013047424A1 (en) * 2011-09-26 2013-04-04 シャープ株式会社 Solar photovoltaic power generation device
WO2013069785A1 (en) * 2011-11-11 2013-05-16 シャープ株式会社 Light guide body, solar cell module, and photovoltaic power generation device
JPWO2013069785A1 (en) * 2011-11-11 2015-04-02 シャープ株式会社 Light guide, solar cell module and solar power generation device
US8328403B1 (en) 2012-03-21 2012-12-11 Morgan Solar Inc. Light guide illumination devices
US8657479B2 (en) 2012-03-21 2014-02-25 Morgan Solar Inc. Light guide illumination devices
CN105823006A (en) * 2016-05-20 2016-08-03 常州大学 CPC light condensation light guide lighting ventilation system

Also Published As

Publication number Publication date
TW200510868A (en) 2005-03-16
JP2007027150A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2004114418A1 (en) Concentrating photovoltaic power generation system
US20240027675A1 (en) Thin and flexible edge-lit waveguide illumination systems with complex surface topologies and light converting properties
US7160522B2 (en) Device for concentrating or collimating radiant energy
US7664350B2 (en) Compact optics for concentration, aggregation and illumination of light energy
US7672549B2 (en) Solar energy concentrator
US8498505B2 (en) Dimpled light collection and concentration system, components thereof, and methods
JP5944398B2 (en) Turning optics for heat collection and lighting systems
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
US8749898B2 (en) Stepped flow-line concentrators and collimators
JP5825582B2 (en) Light-emitting solar condensing system
US9985156B2 (en) Optical concentrator/diffuser using graded index waveguide
JPH11340493A (en) Sunlight condensing device
WO2010131250A1 (en) Light collection system and method
US10907774B2 (en) Light source unit
JP3185719B2 (en) Solar concentrator
TWI574043B (en) A light collecting device, a photovoltaic device and a light and heat conversion device
RU2134849C1 (en) Solar photoelectric module with concentrator
JP2009198524A (en) Solar lens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP