WO2004096047A2 - Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie - Google Patents

Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie Download PDF

Info

Publication number
WO2004096047A2
WO2004096047A2 PCT/FR2004/000987 FR2004000987W WO2004096047A2 WO 2004096047 A2 WO2004096047 A2 WO 2004096047A2 FR 2004000987 W FR2004000987 W FR 2004000987W WO 2004096047 A2 WO2004096047 A2 WO 2004096047A2
Authority
WO
WIPO (PCT)
Prior art keywords
densities
core
elements
phantom
quality control
Prior art date
Application number
PCT/FR2004/000987
Other languages
English (en)
Other versions
WO2004096047A3 (fr
Inventor
Jean-Noël FOULQUIER
Hanna El-Balaa
Dimitri Lefkopoulos
Original Assignee
Assistance Publique - Hopitaux De Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Assistance Publique - Hopitaux De Paris filed Critical Assistance Publique - Hopitaux De Paris
Priority to US10/553,781 priority Critical patent/US7397024B2/en
Priority to DK04742562T priority patent/DK1615560T3/da
Priority to EP04742562A priority patent/EP1615560B1/fr
Priority to DE602004006736T priority patent/DE602004006736T2/de
Priority to PL04742562T priority patent/PL1615560T3/pl
Priority to CA2523215A priority patent/CA2523215C/fr
Priority to SI200430409T priority patent/SI1615560T1/sl
Publication of WO2004096047A2 publication Critical patent/WO2004096047A2/fr
Publication of WO2004096047A3 publication Critical patent/WO2004096047A3/fr
Priority to CY20071101125T priority patent/CY1106832T1/el

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom

Definitions

  • the present invention relates to the field of radiotherapy. More specifically, it relates to a device of the type known as a "ghost" used for the preparation of the apparatus during virtual simulation operations preparing the execution of a radiotherapy treatment by means of a scanner or similar.
  • a device of the type known as a "ghost" used for the preparation of the apparatus during virtual simulation operations preparing the execution of a radiotherapy treatment by means of a scanner or similar.
  • the treatment of tumors by radiotherapy is now possible using devices which include a medical imaging device such as a scanner, coupled to a radiation emitting device used for the treatment of the patient.
  • a medical imaging device such as a scanner
  • a radiation emitting device used for the treatment of the patient.
  • the preparation of these devices, before the effective realization of the irradiation of the patient comprises a step called “virtual simulation”.
  • This term refers to a set of software that allows the user to define or calculate what is called the “treatment isocenter", that is the point area where the radiation must converge before destroy the tumor and then simulate the treatment to be performed using reconstructed X-rays.
  • Two software components are used during the virtual simulation phase: software that defines the contours of the tumor to be treated and, secondly, the organisms that it is important not to reach during the emission. radiation;
  • the device providing the virtual simulation proposes all the movements of a particle accelerator using the parameterized software. But classically, the relevance of the data provided by these software can be controlled only during a simulation performed in the presence of the patient, which is binding for the latter. It is therefore desirable to have a tool which makes it possible to carry out a control of the relevance of the operation of the virtual simulation software outside the presence of the patient.
  • ghosts For the calibration of scanners, devices called "ghosts". They are constituted by a volume of known dimensions of a material (water, polystyrene of various densities, plexiglass) behaving essentially in the same way as the human tissue which is concerned by the examination, from the point of view of the absorption and scattering of the radiation used. These known phantoms are not adapted to the realization of a virtual simulation as we have just defined it.
  • the aim of the invention is to propose a phantom for testing all the virtual simulation functions of a radiotherapy system using an imaging device such as a scanner, during a minimum number of minutes. operations.
  • the subject of the invention is a phantom for the quality control of a virtual simulation system of a radiotherapy treatment comprising a medical imaging device, characterized in that it comprises: a support box,
  • a core disposed in said support box and constituted by a plurality of elements of different shapes, dimensions and densities, said densities simulating the densities of various organs and environments of the human body, two of these elements being constituted by two truncated pyramids of different densities nested one inside the other, at least one of them not having a total symmetry with respect to its longitudinal axis,
  • the phantom is of cubic general shape.
  • one of the beads is placed in the center of the core.
  • the phantom has six removable lateral faces enclosing metal wires defining geometrical figures.
  • the phantom according to the invention is composed in the first place of a support box, preferably of cubic form.
  • a support box preferably of cubic form.
  • On this support box are mounted at least two plates on which is embodied a geometrical figure using metal wires which are drowned, placed opposite each other on the support box. These two plates are used to verify that the divergence of the reconstructed image is correct.
  • all the faces of the support box include such plates, so that it is possible to perform a maximum of divergence tests during a single operation.
  • the box is lined internally by volumes with remarkable geometric shapes and different densities, to simulate the densities of various organs (such as breast, muscle, bone, lungs filled with air).
  • One of these volumes in particular, consists of interlocking pyramid trunks.
  • FIG. 1 shows in perspective an example of a support box for a phantom according to the invention and the side faces associated therewith;
  • the support casing 1 shown in FIG. 1 is constituted by the assembly of two elements which, in the example shown, constitute a cube of 19 cm side.
  • the first element 2 is an open box on its upper face, whose base is a square of 19 cm side and whose side faces have a height of 18 cm.
  • the second element 3 is a 19 cm square and 1 cm thick square plate which is disposed at the upper part of the box 1 so as to form a cover for the first element 2.
  • These two elements 2, 3 are a material such as impact polystyrene (density 1.05), but could also be polymethylmethacrylate (PMMA) for example.
  • PMMA polymethylmethacrylate
  • the support box 2 is intended to enclose a core 4, an example of which is shown in FIG. 2.
  • This core 4 is constituted by a cubic assembly 17 cm apart, composed of elements some of which possess remarkable geometric properties, and presenting various densities representative of the densities of the various organs and media of the human body that the radiation of the radiotherapy device are likely to cross.
  • these elements are four cubes 5, 6, 7, 8 of 3.5 cm side each occupying a vertex of the core 4. Two of these cubes 5, 6 are placed on two diagonally opposite vertices. These cubes 5, 6, 7, 8 are all of different densities.
  • cube 5 has a density of 0.991 simulating that of the breast
  • cube 6 has a density of 1.609 simulating that of bone
  • cube 7 has a density of 1.062 simulating that of muscle
  • cube 8 has a density of 0.465 simulating that of the exhaled lung
  • non-radiolucent material such as steel 9, 10 for simulating treatment isocenters. Steel is chosen in preference to other materials because it is clearly visible in the images rebuilt and does not cause too many artifacts on this image.
  • These two elements 11, 12 have different densities.
  • the assembly formed by these two elements 11, 12 is intended to form the central part of the core 4. It has a length "L" of 13.5 cm, therefore less than the length of an edge of the core 4 that it do not cross right through.
  • a steel ball 13 simulating a treatment isocenter is chosen to that the ball 13 is exactly in the center of the cube formed by the assembled core 4.
  • the remaining 17 of the cubic core 4, in which are placed the various elements 5, 6, 7, 8, 11, 12, 14, 15, 16, is constituted by a polystyrene body.
  • the casing 1 is coated on its six faces by plates 18, 19, 20, 21, 22, 23 square 20 cm side and 0.5 cm thick which are fixed removably by screws 1 cm in length in a material that is diotransparent such as nylon.
  • These plates 18-23 are made of Plexiglas, and they include, embedded in their mass, son of a metal such as copper which draw geometric figures such as those shown in Figure 1.
  • Each of these figures can be dedicated to the verification of one or more particular functions of the software, in view of the way in which the software has restored their form.
  • the fact of having six such removable plates 18-23 is advantageous in that it makes it possible to test a maximum of anointings during a single test. It would remain in the spirit of the invention to provide a lower number of removable plates.
  • a minimum of two plates 18-23 disposed on two opposite faces of the core 4 is necessary to verify that the divergence of the reconstructed image is correct. For this purpose patterns forming circles as shown on the plates 18, 21 of Figure 1 are particularly indicated.
  • the ghost just described and represented is only an example; In particular, it would remain in the spirit of the invention to give it a shape other than cubic.
  • the cube has the advantage of great ease of handling and interchangeability of the plates 18-23 constituting its outer faces.
  • the shapes and dimensions of the elements forming the core 4 may be different from those which have been described. However, the presence of elements nested in pyramid trunks 11, 12 of different densities is indispensable. This allows to check:

Abstract

L'invention concerne un fantôme pour le contrôle qualité d'un système de simulation virtuelle d'un traitement de radiothérapie comportant un dispositif d'imagerie médicale, caractérisé en ce qu'il comporte : - un caisson support (1), - un noyau (4) disposé dans ledit caisson support (1) et constitué par une pluralité d'éléments (5, 6, 7, 8, 11, 12, 14, 15, 16, 17) de formes, dimensions et densités différentes, lesdites densités simulant les densités de divers organes et milieux du corps humain, deux de ces éléments (11, 12) étant constitués par deux troncs de pyramides de densités différentes emboîtés l'un dans l'autre, l'un d'entre eux au moins ne présentant pas une totale symétrie par rapport à son axe longitudinal, - des billes (9, 10, 13), en un matériau non radiotransparent disposées dans ledit noyau (4), - au moins deux faces latérales amovibles (18, 21) opposées l'une à l'autre renfermant des fils métalliques définissant des figures géométriques.

Description

Fantôme pour le contrôle qualité d'un système de simulation virtuelle d'un traitement de radiothérapie.
La présente invention concerne le domaine de la radiothérapie. Plus précisément, elle concerne un dispositif du type connu sous le nom de "fantôme" utilisé pour la pré- paration de l'appareillage lors des opérations de simulation virtuelle préparant l'exécution d'un traitement de radiothérapie au moyen d'un scanner ou analogue.
Le traitement des tumeurs par radiothérapie est aujourd'hui possible en utilisant des appareils qui compren- nent un dispositif d'imagerie médicale- tel qu'un scanner, couplé à un dispositif d'émission du rayonnement utilisé pour le traitement du patient. La préparation de ces appareils, avant la réalisation effective de l'irradiation du patient comporte une étape dite de "simulation virtuelle". Ce terme se réfère à un ensemble de logiciels qui permet à l'utilisateur de définir ou de calculer ce que l'on appelle l' "isocentre de traitement", c'est-à-dire la zone ponctuelle où doit converger le rayonnement devant détruire la tumeur, puis de simuler le traitement à effectuer à l'aide de clichés radiologiques reconstruits. Deux composantes logicielles sont utilisées lors de la phase de simulation virtuelle: des logiciels qui définissent les contours d'une part de la tumeur à traiter et d'autre part des orga- nés qu'il importe de ne pas atteindre lors de l'émission du rayonnement ;
- et des logiciels qui permettent de placer les faisceaux grâce à la vision des clichés radiologiques reconstruits et de positionner les caches ou les lames du col- limateur.
Le dispositif assurant la simulation virtuelle propose tous les mouvements d'un accélérateur de particules à l'aide des logiciels paramétrés. Mais classiquement, la pertinence des données fournies par ces logiciels ne peut être contrôlée que lors d'une simulation effectuée en présence du patient, ce qui est contraignant pour ce dernier. Il est donc souhaitable de disposer d'un outil qui permet- trait de réaliser un contrôle de la pertinence du fonctionnement des logiciels de simulation virtuelle en dehors de la présence du patient.
Il est connu d'utiliser, pour l'étalonnage des scanners, des dispositifs appelés "fantômes". Ils sont cons- titués par un volume de dimensions connues d'un matériau (eau, polystyrène de diverses densités, plexiglas) se comportant essentiellement de la même façon que le tissu humain qui est concerné par l'examen, du point de vue de l'absorption et de la diffusion du rayonnement utilisé. Ces fantô- mes connus ne sont pas adaptés à la réalisation d'une simulation virtuelle telle qu'on vient de la définir.
Il a été proposé dans le document "A quality assurance phantom for digitally reconstructed radiograph (DRRs) Med Phys 1994 . 21, 902", d'utiliser un fantôme cons- titué d'un cadre de polystyrène de 15 cm de côté, comportant quatre faces test. Il permet de réaliser une évaluation de la résolution spatiale de l'appareil. Sur la face principale sont gravées des formes géométriques qui permettent de mesurer la fonction de transfert de modulation, la finesse du contraste, la linéarité spatiale des clichés radiologiques reconstruits et la qualité de l'algorithme de reconstruction des clichés radiologiques reconstruits pour un faisceau divergent. Mais ce fantôme ne permet pas de réaliser toutes les opérations nécessaires pour vérifier la qualité de la simulation virtuelle. Il est donc toujours nécessaire, pour contrôler la qualité d'une simulation virtuelle dans son ensemble, de réaliser plusieurs analyses successives d'objets tests différents, ce qui demande une disponibilité importante du scanner et de la console de simulation virtuelle. Le but de l'invention est de proposer un fantôme permettant de tester l'ensemble des fonctions de simulation virtuelle d'un système de radiothérapie utilisant un dispositif d'imagerie tel qu'un scanner, au cours d'un nombre mi- nimal d'opérations.
A cet effet, l'invention a pour objet un fantôme pour le contrôle qualité d'un système de simulation virtuelle d'un traitement de radiothérapie comportant un dispositif d'imagerie médicale, caractérisé en ce qu'il comporte: - un caisson support,
- un noyau disposé dans ledit caisson support et constitué par une pluralité d'éléments de formes, dimensions et densités différentes, lesdites densités simulant les densités de divers organes et milieux du corps humain, deux de ces éléments étant constitués par deux troncs de pyramides de densités différentes emboîtés l'un dans l'autre, l'un d'entre eux au moins ne présentant pas une totale symétrie par rapport à son axe longitudinal,
- des billes en un matériau non radiotransparent disposées dans ledit noyau,
- au moins deux faces latérales amovibles opposées l'une à l'autre renfermant des fils métalliques définissant des figures géométriques.
De préférence, le fantôme est de forme générale cubique.
De préférence, l'une des billes est placée au centre du noyau.
De préférence, le fantôme comporte six faces latérales amovibles renfermant des fils métalliques définis- sant des figures géométriques.
Comme on l'aura compris, le fantôme selon l'invention se compose en premier lieu d'un caisson support, de préférence de forme cubique. Sur ce caisson support sont montées au moins deux plaques sur lesquelles est matériali- sée une figure géométrique à l'aide de fils métalliques qui y sont noyés, placées à l'opposé l'une de l'autre sur le caisson support. Ces deux plaques servent à vérifier que la divergence de l'image reconstruite est correcte. Avantageusement, toutes les faces du caisson support comportent de telles plaques, de sorte qu'il est possible de réaliser un maximum de tests de divergence au cours d'une seule opération. Le caisson est garni intérieurement par des volumes présentant des formes géométriques remarquables ainsi que des densités différentes, permettant de simuler les densités de divers organes (tels que le sein, les muscles, les os, les poumons remplis d'air). L'un de ces volumes, en particulier, est constitué par des troncs de pyramide emboîtés. A l'intérieur de ces volumes sont placées un certain nombre de billes métalliques, de préférence en acier, à des positions définies. De préférence, l'une de ces billes est placée au centre du fantôme. Ces billes constituent des repères d' isocentres de traitement. La comparaison entre l'image des volumes garnissant le caisson et la réalité permet de vérifier le bon étalonnage des logiciels de simulation virtuelle. L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures suivantes :
- la figure 1, qui représente en perspective un exemple de caisson support pour un fantôme selon l'invention et les faces latérales qui lui sont associées ;
- la figure 2, qui représente en perspective un exemple de noyau destiné à être inséré dans ledit caisson support ;
- la figure 3, qui représente vu en coupe selon III-III (figure 3a) et en coupe selon IV-IV (figure 3b) une partie dudit noyau ;
- la figure 4, qui représente en perspective une autre partie dudit noyau.
Le caisson support 1 représenté sur la figure 1 est constitué par l'assemblage de deux éléments qui, dans l'exemple représenté, constituent un cube de 19 cm de côté. Le premier élément 2 est une boîte ouverte sur sa face supérieure, dont la base est un carré de 19 cm de côté et dont les faces latérales ont une hauteur de 18 cm. Le deuxième élément 3 est une plaque carrée de 19 cm de côté et de 1 cm d'épaisseur qui est disposée à la partie supérieure du caisson 1 de manière à former un couvercle pour le premier élément 2. Ces deux éléments 2, 3 sont en un matériau tel que le polystyrène choc (de densité 1,05), mais pourraient aussi être en polymethylmethacrylate (PMMA) par exemple. Ces deux éléments 2, 3 sont solidarisés au moyen de vis en un matériau tel que le nylon, de longueur 2 cm.
Le caisson support 2 est destiné à renfermer un noyau 4 dont un exemple est représenté sur la figure 2. Ce noyau 4 est constitué par un assemblage cubique de 17 cm de côté, composé d'éléments dont certains possèdent des propriétés géométriques remarquables, et présentant des densités diverses représentatives des densités des divers organes et milieux du corps humain que les rayonne- ments du dispositif de radiothérapie sont susceptibles de traverser. Parmi ces éléments se trouvent quatre cubes 5, 6, 7, 8 de 3,5 cm de côté qui occupent chacun un sommet du noyau 4. Deux de ces cubes 5, 6 sont placés sur deux sommets diagonalement opposés. Ces cubes 5, 6, 7, 8 sont tous de densités différentes. Par exemple, le cube 5 a une densité de 0,991 simulant celle du sein, le cube 6 a une densité de 1,609 simulant celle de l'os, le cube 7 a une densité de 1,062 simulant celle du muscle et le cube 8 a une densité de 0,465 simulant celle du poumon exhalé Sur les sommets des cubes 5, 6 situés aux points ayant les coordonnées (5; 5; 5) et (-5; -5, -5) dans le repère ayant pour origine le centre du noyau 4 sont placées des billes en un matériau non radiotransparent tel que l'acier 9, 10 destinées à simuler des isocentres de traitement. L'acier est choisi de préférence à d'autres matériaux car il est bien visible sur les images reconstruites et ne provoque pas trop d'artefacts sur cette image .
D'autres de ces éléments sont constitués par un élément 11 en forme de tronc de pyramide de longueur "L" = 13,5 cm, dont la grande base est un carré de 5,5 cm de côté, et par un élément 12 qui enveloppe l'élément 11 et possède une forme extérieure non totalement symétrique par rapport à son axe longitudinal. Il entoure l'élément 11 sur une épaisseur "e'" = 1 cm selon trois des côtés de sa grande base et sur une épaisseur "e" = 0,5 cm selon le quatrième côté. Ces deux éléments 11, 12 ont des densités différentes. L'ensemble formé par ces deux éléments 11, 12 est destiné à former la partie centrale du noyau 4. Il a une longueur "L" de 13,5 cm, donc inférieure à la longueur d'une arête du noyau 4 qu'il ne traverse donc pas de part en part. De préférence, au sein de l'élément 11, à une distance "d" de la grande base égale à 8,5 cm, se trouve une bille d'acier 13 simulant un isocentre de traitement, la distance "d" est choisie pour que la bille 13 se trouve exactement au centre du cube formé par le noyau 4 assemblé.
Dans la partie du noyau 4 située en retrait des éléments en tronc de pyramide 11, 12, on intègre également trois éléments 14, 15, 16 parallélépipédiques de longueur "1" = 6 cm, et de largeur et épaisseur égales à 2 cm. Ces éléments sont disposés en étant superposés et décalés longi- tudinalement les uns par rapport aux autres. Là encore, ils ont chacun des densités différentes simulant divers constituants du corps humain.
Le restant 17 du noyau 4 cubique, dans lequel sont placés les différents éléments 5, 6, 7, 8, 11, 12, 14, 15, 16, est constitué par un corps en polystyrène.
Enfin, le caisson 1 est revêtu sur ses six faces par des plaques 18, 19, 20, 21, 22, 23 carrées de 20 cm de côté et de 0,5 cm d'épaisseur qui lui sont fixées de manière amovible par des vis de 1 cm de longueur en un matériau ra- diotransparent tel que du nylon. Ces plaques 18-23 sont en plexiglas, et elles comportent, noyés dans leur masse, des fils en un métal tel que du cuivre qui dessinent des figures géométriques telles que celles représentées sur la figure 1. Chacune de ces figures peut être dédiée à la vérification d'une ou de plusieurs fonctions particulières du logiciel, au vu de la manière dont le logiciel a restitué leur forme. Le fait d'avoir six telles plaques amovibles 18-23 est avantageux en ce qu'il permet de tester un maximum de onctions au cours d'un seul essai. Il demeurerait dans l'esprit de l'invention de prévoir un nombre de plaques amovibles moins élevé. Toutefois, un minimum de deux plaques 18-23 disposées sur deux faces opposées du noyau 4 est nécessaire pour vérifier que la divergence de l'image reconstruite est correcte. A cet effet, des motifs dessinant des cercles comme représenté sur les plaques 18, 21 de la figure 1 sont particulièrement indiqués.
Le fantôme qui vient d'être décrit et représenté n'est qu'un exemple; En particulier, il demeurerait dans l'esprit de l'invention de lui conférer une forme autre que cubique. Le cube présente l'avantage d'une grande facilité de manipulation et d'une interchangeabilité des plaques 18- 23 constituant ses faces extérieures. Les formes et les dimensions des éléments formant le noyau 4 peuvent être diffé- rentes de celles qui ont été décrites. Toutefois, la présence d'éléments emboîtés en troncs de pyramide 11, 12 de densités différentes est indispensable. Cela permet de vérifier :
- la capacité du logiciel à effectuer avec pré- cision des contourages automatiques d'organes de différentes densités ;
- la précision des marges de sécurité qui peuvent être affectées à un organe qui va bouger en cours de traitement ; le fait que l'élément 12 soit dissymétrique est voulu pour vérifier une expansion d'organe non symétrique ; connaissant les épaisseurs des éléments 11 et 12 il est possible de comparer la mesure de ces éléments au calcul de la marge fait par le logiciel qui doit correspondre à l'épaisseur du matériau de l'élément extérieur 12 ; la capacité du logiciel à interpoler des contours différents, on peut ainsi estimer la précision de la reconstruction du volume.

Claims

REVENDICATIONS
1. Fantôme pour le contrôle qualité d'un système de simulation virtuelle d'un traitement de radiothérapie comportant un dispositif d'imagerie médicale, caractérisé en ce qu'il comporte :
- un caisson support (1),
- un noyau (4) disposé dans ledit caisson sup- port (1) et constitué par une pluralité d'éléments (5, 6, 7,
8, 11, 12, 14, 15, 16, 17) de formes, dimensions et densités différentes, lesdites densités simulant les densités de divers organes et milieux du corps humain, deux de ces éléments (11, 12) étant constitués par deux troncs de pyramides de densités différentes emboîtés l'un dans l'autre, l'un d'entre eux au moins ne présentant pas une totale symétrie par rapport à son axe longitudinal,
- des billes (9, 10, 13), en un matériau non radiotransparent disposées dans ledit noyau (4), - au moins deux faces latérales amovibles (18,
21) opposées l'une à l'autre renfermant des fils métalliques définissant des figures géométriques.
2. Fantôme selon la revendication 1, caractérisé en ce qu'il est de forme générale cubique.
3. Fantôme selon la revendication 1 ou 2, caractérisé en ce que l'une (13) des billes est placée au centre du noyau (4) .
4. Fantôme selon l'une des revendications 1 à 3, caractérisé en ce qu'il comporte six faces latérales (18-23) amovibles renfermant des fils métalliques définissant des figures géométriques.
PCT/FR2004/000987 2003-04-23 2004-04-22 Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie WO2004096047A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/553,781 US7397024B2 (en) 2003-04-23 2004-04-22 Phantom for the quality control of a radiotherapy treatment virtual simulation system
DK04742562T DK1615560T3 (da) 2003-04-23 2004-04-22 Fantom til kvalitetskontrol af et system til virtuel simulering af en stråleterapeutisk behandling
EP04742562A EP1615560B1 (fr) 2003-04-23 2004-04-22 Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie
DE602004006736T DE602004006736T2 (de) 2003-04-23 2004-04-22 Phantom für die qualitätskontrolle eines systems zur virtuellen simulation einer radiotherapeutischen behandlung
PL04742562T PL1615560T3 (pl) 2003-04-23 2004-04-22 Fantom do kontroli jakości systemu symulacji wirtualnej do radioterapii
CA2523215A CA2523215C (fr) 2003-04-23 2004-04-22 Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie
SI200430409T SI1615560T1 (sl) 2003-04-23 2004-04-22 Fantom za kontrolo kakovosti sistema za virtualnosimulacijo zdravljenja z radioterapijo
CY20071101125T CY1106832T1 (el) 2003-04-23 2007-08-28 Ομοιωμα για τον ελεγχο ποιοτητας ενος συστηματος εικονικης προσομοιωσης μιας θεραπειας με χρηση ακτινοβολιας

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304987A FR2854050B1 (fr) 2003-04-23 2003-04-23 Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie
FR0304987 2003-04-23

Publications (2)

Publication Number Publication Date
WO2004096047A2 true WO2004096047A2 (fr) 2004-11-11
WO2004096047A3 WO2004096047A3 (fr) 2005-01-06

Family

ID=33104340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/000987 WO2004096047A2 (fr) 2003-04-23 2004-04-22 Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie

Country Status (13)

Country Link
US (1) US7397024B2 (fr)
EP (1) EP1615560B1 (fr)
AT (1) ATE363230T1 (fr)
CA (1) CA2523215C (fr)
CY (1) CY1106832T1 (fr)
DE (1) DE602004006736T2 (fr)
DK (1) DK1615560T3 (fr)
ES (1) ES2288260T3 (fr)
FR (1) FR2854050B1 (fr)
PL (1) PL1615560T3 (fr)
PT (1) PT1615560E (fr)
SI (1) SI1615560T1 (fr)
WO (1) WO2004096047A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081662A2 (fr) * 2006-01-05 2007-07-19 Koninklijke Philips Electronics, N.V. Fantôme réglable

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7356120B2 (en) * 2005-09-23 2008-04-08 Accuray Incorporated Integrated quality assurance for in image guided radiation treatment delivery system
US7594753B2 (en) 2007-03-29 2009-09-29 Accuray Incorporated Phantom insert for quality assurance
GB0712682D0 (en) * 2007-06-29 2007-08-08 King S College Hospital Nhs Fo Phantom for imaging apparatuses
US7967507B2 (en) * 2008-03-14 2011-06-28 The United States of America as represented by the Secretary of Commerce, NIST Dimensional reference for tomography
WO2016049589A1 (fr) * 2014-09-26 2016-03-31 Battelle Memorial Institute Article de test de qualité d'image
WO2016049585A1 (fr) 2014-09-26 2016-03-31 Battelle Memorial Institute Ensemble article de test de qualité d'image
CZ306069B6 (cs) * 2015-10-06 2016-07-20 Fakultní nemocnice Ostrava Mechanický fantom simulace pohybu ozařovaného ložiska tumoru
CN107753050B (zh) * 2017-10-27 2021-12-24 厦门市领汇医疗科技有限公司 一种用于测试cbs-ct机性能和图像质量的综合模体
WO2023003994A1 (fr) * 2021-07-22 2023-01-26 The University Of Toledo Dispositif fantôme solide pour balayage de faisceau
CN116359257A (zh) * 2021-12-27 2023-06-30 同方威视技术股份有限公司 标定组件、标定模体及标定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055771A (en) * 1976-10-26 1977-10-25 Alderson Research Laboratories, Inc. Test body for a scanning tomographic analytical apparatus
US5416816A (en) * 1994-01-27 1995-05-16 Boston Test Tool Company Calibration template for computed radiography
DE19819928A1 (de) * 1998-05-05 1999-11-11 Philips Patentverwaltung Verfahren für ein Schichtbilder erzeugendes Abbildungssystem
US6409515B1 (en) * 1999-08-03 2002-06-25 General Electric Company Imaging system phantom

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594241A (en) * 1979-01-11 1980-07-17 Hitachi Medical Corp Xxray transverse layer device
US4646334A (en) * 1982-11-30 1987-02-24 Zerhouni Elias A Radiographic test phantom for computed tomographic lung nodule analysis
US4613754A (en) * 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4985906A (en) * 1987-02-17 1991-01-15 Arnold Ben A Calibration phantom for computer tomography system
US4873707A (en) * 1987-09-11 1989-10-10 Brigham & Women's Hospital X-ray tomography phantoms, method and system
US6231231B1 (en) * 1999-06-24 2001-05-15 General Electric Company Modular interchangeable phantoms for multiple x-ray systems
US6674834B1 (en) * 2000-03-31 2004-01-06 Ge Medical Systems Global Technology Company, Llc Phantom and method for evaluating calcium scoring
US6697451B2 (en) * 2001-09-05 2004-02-24 Ge Medical Systems Global Technology Company, Llc Dynamic phantom and method for evaluating calcium scoring
US7127096B2 (en) * 2001-11-20 2006-10-24 Accuimage Diagnostics Corp. Method and software for improving coronary calcium scoring consistency
US7387439B2 (en) * 2006-02-15 2008-06-17 Carestream Health, Inc. X-ray beam calibration for bone mineral density assessment using mammography system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055771A (en) * 1976-10-26 1977-10-25 Alderson Research Laboratories, Inc. Test body for a scanning tomographic analytical apparatus
US5416816A (en) * 1994-01-27 1995-05-16 Boston Test Tool Company Calibration template for computed radiography
DE19819928A1 (de) * 1998-05-05 1999-11-11 Philips Patentverwaltung Verfahren für ein Schichtbilder erzeugendes Abbildungssystem
US6409515B1 (en) * 1999-08-03 2002-06-25 General Electric Company Imaging system phantom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081662A2 (fr) * 2006-01-05 2007-07-19 Koninklijke Philips Electronics, N.V. Fantôme réglable
WO2007081662A3 (fr) * 2006-01-05 2008-02-07 Koninkl Philips Electronics Nv Fantôme réglable
US7738624B2 (en) 2006-01-05 2010-06-15 Koninklijke Philips Electronics N.V. Adjustable phantom

Also Published As

Publication number Publication date
WO2004096047A3 (fr) 2005-01-06
US20060239414A1 (en) 2006-10-26
PL1615560T3 (pl) 2007-10-31
ATE363230T1 (de) 2007-06-15
FR2854050A1 (fr) 2004-10-29
US7397024B2 (en) 2008-07-08
EP1615560B1 (fr) 2007-05-30
DE602004006736D1 (de) 2007-07-12
SI1615560T1 (sl) 2007-10-31
DE602004006736T2 (de) 2008-01-31
EP1615560A2 (fr) 2006-01-18
CY1106832T1 (el) 2012-05-23
FR2854050B1 (fr) 2005-07-22
CA2523215A1 (fr) 2004-11-11
DK1615560T3 (da) 2007-10-01
ES2288260T3 (es) 2008-01-01
CA2523215C (fr) 2011-09-06
PT1615560E (pt) 2007-09-05

Similar Documents

Publication Publication Date Title
Ljungberg et al. Comparison of four scatter correction methods using Monte Carlo simulated source distributions
EP1615560B1 (fr) Fantome pour le controle qualite d'un systeme de simulation virtuelle d'un traitement de radiotherapie
Midgley et al. A feasibility study for megavoltage cone beam CT using a commercial EPID
US8314796B2 (en) Method of reconstructing a tomographic image using a graphics processing unit
EP1844439B1 (fr) Procede et systeme de simulation ou de synthese numerique d'images echographiques
Pretorius et al. Reducing the influence of the partial volume effect on SPECT activity quantitation with 3D modelling of spatial resolution in iterative reconstruction
Kadrmas et al. Simultaneous technetium-99m/thallium-201 SPECT imaging with model-based compensation for cross-contaminating effects
EP3410939B1 (fr) Fantome thyroidien, procede de fabrication correspondant, fantome global comprenant un tel fantome thyroidien et familles de fantomes correspondantes
JPH10506298A (ja) X線疑似模型装置
WO2006077337A1 (fr) Procede et systeme de simulation ou de synthese numerique d'images echographiques
Craig et al. A quality assurance phantom for three-dimensional radiation treatment planning
Kadrmas et al. Truncation artifact reduction in transmission CT for improved SPECT attenuation compensation
Tornai et al. Design and development of a fully 3D dedicated x-ray computed mammotomography system
Hutton et al. Application of distance-dependent resolution compensation and post-reconstruction filtering for myocardial SPECT
FR3043247A1 (fr) Collimateur pour la spectrometrie de diffraction x, dispositif associe et son utilisation
Wang et al. Voxelized ray-tracing simulation dedicated to multi-pinhole molecular breast tomosynthesis
CN101292270B (zh) 用于检查所关注对象的检查设备和方法
EP2952227A1 (fr) Objet-test pour correction des mouvements parasites d'imageur de sortie equipant un appareil de traitement par radiotherapie externe lorsque celui-ci est en mouvement
Axelsson et al. Studies of a technique for attenuation correction in single photon emission computed tomography
Tenney et al. Uranium pinhole collimators for 511-keV photon SPECT imaging of small volumes
Tornai et al. Anthropomorphic breast phantoms for preclinical imaging evaluation with transmission or emission imaging
Lee Performance comparison of convex-nonquadratic priors for Bayesian tomographic reconstruction
Oldham et al. Initial experience with optical-CT scanning of RadBall Dosimeters
Zhu et al. Quantitative simultaneous In-111/Tc-99m planar imaging in a long-bone infection phantom
Kamphuis et al. The use of offset cone-beam collimators in a dual head system for combined emission transmission brain SPECT: a feasibility study

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2523215

Country of ref document: CA

Ref document number: 2004742562

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004742562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006239414

Country of ref document: US

Ref document number: 10553781

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10553781

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004742562

Country of ref document: EP