WO2004063780A1 - Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display - Google Patents

Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display Download PDF

Info

Publication number
WO2004063780A1
WO2004063780A1 PCT/JP2004/000068 JP2004000068W WO2004063780A1 WO 2004063780 A1 WO2004063780 A1 WO 2004063780A1 JP 2004000068 W JP2004000068 W JP 2004000068W WO 2004063780 A1 WO2004063780 A1 WO 2004063780A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
cholesteric liquid
crystal film
film
polymerizable
Prior art date
Application number
PCT/JP2004/000068
Other languages
French (fr)
Japanese (ja)
Inventor
Miki Shiraogawa
Takahiro Fukuoka
Naoki Takahashi
Kazutaka Hara
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2004063780A1 publication Critical patent/WO2004063780A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to a broadband cholesteric liquid crystal film and a method for producing the same.
  • the broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate (reflective polarizer).
  • the present invention provides a linear polarizer, a lighting device, and a liquid using the circularly polarizing plate.
  • the present invention relates to a crystal display device.
  • a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates.
  • a polarizer used for such a liquid crystal display is manufactured by adsorbing iodine, a dichroic dye, or the like on a polyvinyl alcohol film, and stretching the same in a certain direction.
  • the polarizer itself manufactured as described above absorbs light oscillating in one direction, and passes only light oscillating in the other direction to produce linearly polarized light. As a result, the efficiency of the polarizer cannot theoretically exceed 50%, which is the biggest factor in reducing the efficiency of liquid crystal displays.
  • the liquid crystal display device may destroy the polarizer due to heat generated by the heat conversion of the absorbed light, or may have a negative effect on the liquid crystal layer inside the cell. This causes adverse effects such as deterioration of display quality.
  • Cholesteric liquid crystals having a function of separating circularly polarized light have a selective reflection characteristic of reflecting only circularly polarized light whose wavelength is the helical pitch of the liquid crystal, in which the direction of rotation of the liquid crystal helix coincides with the direction of circular polarization.
  • This selective reflection characteristic only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remainder is reflected and reused, whereby a highly efficient polarizing film can be manufactured.
  • the transmitted circularly polarized light is converted into linearly polarized light by passing through a ⁇ / 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display.
  • a liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used. That is, when a cholesteric liquid crystal film is used as a linear polarizer in combination with a ⁇ / 4 wavelength plate, there is theoretically no loss of light, so a conventional absorption polarizer that absorbs 50% of light was used alone. Compared to the case, theoretically, the brightness can be improved twice.
  • the selective reflection characteristic of the cholesteric liquid crystal is limited only to a specific wavelength band, and it has been difficult to cover the entire visible light range.
  • the selective reflection wavelength range of the cholesteric liquid crystal is 80,
  • n o Refractive index of cholesteric liquid crystal molecules for normal light
  • n e refractive index of cholesteric liquid crystal molecules for extraordinary light
  • the width of the selective reflection wavelength region ⁇ ⁇ can be increased by increasing One-n0, but ne- ⁇ 0 is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient and practical use was difficult. Therefore, in practice, the selective reflection wavelength region width ⁇ was at most about 15 O nm. Most of the practically usable cholesteric liquid crystals were only about 30 to 100 nm. Also, the selective reflection center wavelength is
  • the pitch is constant, it depends on the average refractive index of the liquid crystal molecules and the pitch length. Therefore, in order to cover the entire visible light region, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch length is continuously changed in the thickness direction to form the existence distribution of the selective reflection center wavelength itself.
  • cholesteric liquid crystal films used in liquid crystal display devices are located on the optical path of strong transmitted light, and when such precipitates are generated, the deposited particles are directly visible, and the light utilization efficiency due to depolarization of the precipitates is reduced.
  • Optical problems such as a decrease in the light scattering distribution of the light source due to the haze at which the precipitates are generated or reduced are caused.
  • the cholesteric liquid crystal film is used in a room temperature environment, it is unlikely that this type of precipitate will occur.
  • deposition of an ultraviolet absorber is inevitable if the radiation from the light source of the backlight is strongly exposed for a long period of time.
  • Such precipitates are difficult to be visually recognized if they are uniformly deposited on the surface, and are not easily recognized as defects.However, the radiation heat from the light source has a large fluctuation with respect to the liquid crystal display device surface, and the radiation heat is wide. In some cases, the amount of precipitation increased only in a large part of the area, and the area was visually recognized as in-plane unevenness.
  • the display luminance required for liquid crystal display devices in recent years has exceeded 200 candela, and the light source side is exposed to a light irradiation intensity of about 10,000 ndera. Due to this irradiation intensity, the light source side of the liquid crystal display device is continuously heated to about 40 to 60 ° C depending on the ambient temperature. For this reason, precipitation of the UV absorber was observed not only in the heating reliability test but also in the continuous lighting test mounted on the liquid crystal display device.
  • an ultraviolet polymer obtained from a cholesteric liquid crystal composition to which an ultraviolet absorber is combined is used at 80 ° C.
  • Another object of the present invention is to provide a circularly polarizing plate using the broadband cholesteric liquid crystal film, and further to provide a linear polarizer, a lighting device, and a liquid crystal display using the circularly polarizing plate.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the following broadband cholesteric liquid crystal film and a method for producing the same, and have completed the present invention.
  • the present invention provides a method for applying a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and under an inert gas atmosphere,
  • the present invention relates to a cholesteric liquid crystal film obtained by ultraviolet polymerization, which has a reflection bandwidth of 20 O nm or more.
  • the broadband cholesteric liquid crystal film of the present invention is obtained by subjecting a polymerizable liquid crystal mixture to UV polymerization, and the reflection bandwidth of the selective reflection wavelength is as wide as 200 nm or more, which is an unprecedented broadband.
  • a reflection bandwidth of The reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm. Further, it is preferable that the reflection bandwidth is not less than 200 nm in a visible light region, particularly in a wavelength region of 400 to 800 nm.
  • the reflection bandwidth was measured by measuring the reflection spectrum of a broadband cholesteric liquid crystal film with a spectrophotometer (MCPD-200, instantaneous multi-photometry system, manufactured by Otsuka Electronics Co., Ltd.). Reflection band.
  • the broadband cholesteric liquid crystal film is a cholesteric liquid crystal film. It is preferable that the switch length is changed so as to continuously narrow from the ultraviolet radiation side. In the broadband cholesteric liquid crystal film, it is preferable that the polymerizable mesogen compound (a) has one polymerizable functional group and the polymerizable chiral agent (b) has two or more polymerizable functional groups.
  • a mesogenic compound having chirality is diffused to obtain a broadband cholesteric liquid crystal film having a continuous pitch change.
  • a mesogenic compound having chirality is diffused to obtain a broadband cholesteric liquid crystal film having a continuous pitch change.
  • a mesogen compound having one polymerizable functional group by diffusing a mesogen compound having one polymerizable functional group, a broadband cholesteric liquid crystal that continuously changes in pitch is obtained, so that the order of change in chiral bitch is reversed. That is, in the present invention, it is possible to obtain a broadband cholesteric liquid crystal film having a pitch change such that the pitch length continuously narrows from the ultraviolet irradiation side.
  • the pitch length is preferably changed so that the difference between the ultraviolet radiation side and the opposite side is at least 100 nm.
  • the pitch length was read from a cross-sectional TEM image of the broadband cholesteric liquid crystal film.
  • the obtained cholesteric liquid crystal film has a grunge yang structure in which the pitch length is continuously reduced from one side.
  • On the long pitch length side it is preferable to have a spiral structure having a pitch length showing reflection in the infrared region continuously or discontinuously or a layer in which the spiral is substantially eliminated.
  • the layer in which the spiral structure having a long pitch length or the spiral is almost eliminated is a retardation layer having a retardation value of 50 to 450 nm optically with respect to incident light from the front. Is preferred. Thus, it has a Grand Jean structure and can be used as a cholesteric liquid crystal.
  • This layer is a retardation layer as an optical property, and its retardation value is controllable between 50 and 45 O nm.
  • the retardation value is 100 to 16 O nm
  • light in the visible light region passing through the cholesteric liquid crystal film shows linearly polarized light.
  • the phase difference value is between 200 and 400 nm, it can be converted into a state of circularly polarized light that rotates in the opposite direction to the state of circularly polarized light transmitted through the cholesteric liquid crystal.
  • the polarization state of transmitted light can be freely controlled by the retardation value of the retardation layer of the broadband cholesteric liquid crystal film. Therefore, it is easy to use it as a polarizing plate according to the mode of the liquid crystal display to be used.
  • the liquid crystal mixture forming the broadband cholesteric liquid crystal film may not contain an ultraviolet absorber.
  • the broadband cholesteric liquid crystal film of the present invention can have a broadband reflection bandwidth without using an ultraviolet absorber. Therefore, it is possible to suppress an increase in haze, a decrease in the transmittance of polarized light, and visual observation of precipitated particles due to the use of an ultraviolet absorber, and the durability under a heated and humidified environment is good, and the reliability is excellent. .
  • the molar absorption coefficient of the polymerizable mesogen compound (a) is, 50 ⁇ 5 00 dm 3 mo 1 ⁇ cm '1 ® 36 5 nm Dearuko and are preferred. Those having the molar extinction coefficient have an ultraviolet absorbing ability. Molar absorption light coefficient is more preferably 100 ⁇ 2 5 0 dm 3 mo 1- i cm- '@ 3 6 5 nm. Molar extinction coefficient of 5 0 dm 3 mo l "1 cm- 1 ® 3 6 5 nm less than sufficient Polymerization speed difference is hardly wideband I spoon without stick.
  • the polymerization may not completely proceed and the curing may not be completed.
  • the molar extinction coefficient is obtained by measuring the spectrophotometric spectrum of each material and obtaining the absorbance at 365 nm. It is a measured value.
  • the present invention provides a method for applying a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and then applying the mixture under an inert gas atmosphere. And a method for producing a broadband cholesteric liquid crystal film by UV polymerization.
  • the broadband cholesteric liquid crystal film of the present invention can be manufactured by controlling the temperature, ultraviolet light irradiation, and irradiation time of ultraviolet light irradiation of the liquid crystal mixture applied on an alignment substrate in an inert gas atmosphere.
  • the present invention also relates to a circularly polarizing plate using the broadband cholesteric liquid crystal film.
  • the present invention also relates to a linear polarizer obtained by laminating a quarter-wave plate on the circularly polarizing plate.
  • the linear polarizer it is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the ⁇ / 4 plate so that the pitch length is continuously narrowed.
  • a linear polarizer obtained by bonding an absorption polarizer with its transmission axis direction aligned.
  • the four plates used for the linear polarizer have the in-plane principal refractive index nx, ny, and the principal refractive index in the thickness direction nz, where Nz is defined by the following formula: (nx—nz) / (nx_ny) It is preferable that the coefficient satisfies 0.5 to 12.5.
  • the present invention relates to a lighting device, characterized in that the circular polarizer or the linear polarizer is provided on the front side of a surface light source having a reflective layer on the back side.
  • the present invention relates to a liquid crystal display device having a liquid crystal cell on a light emission side of the lighting device.
  • linear polarizer As the linear polarizer, the illuminating device, and the liquid crystal display device, those in which all or a part of each forming layer is in close contact with an adhesive layer can be used.
  • the broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate, and a linear polarizer can be obtained by combining a ⁇ / 4 plate. Furthermore, the reliability of the liquid crystal display device can be improved by combining an absorbing polarizer and the like.
  • FIG. 1 is a conceptual diagram of a polarizing plate used in evaluations of Examples 1 to 3 and Comparative Examples 1 to 3.
  • 1 polarizing plate
  • 2 / 4 plate
  • 3 cholesteric liquid crystal film (circular polarizing plate), 4 adhesive layers.
  • FIG. 2 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 1.
  • FIG. 3 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 2.
  • FIG. 4 shows the reflection spectrum of the cholesteric liquid crystal film produced in Example 3.
  • FIG. 5 shows the reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 1.
  • FIG. 6 shows the reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example.
  • FIG. 7 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
  • the cholesteric liquid crystal film of the present invention is obtained by applying a liquid crystal mixture containing a polymerizable mesogen compound), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and then, under an inert gas atmosphere. It is obtained by ultraviolet polymerization.
  • a a compound having at least one polymerizable functional group and having a mesogen group comprising a cyclic unit or the like is preferably used.
  • the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group, and a vinyl ether group.
  • the polymerizable mesogen compound (a) preferably has a molar extinction coefficient of 50 to 500 dm 3 mo 1 cm -1 ® 365 nm.
  • the polymerizable mesogen compound (a) having such a molar extinction coefficient includes the following general formula (1):
  • polymerizable mesogen compound (a) examples include, for example, the following compounds.
  • Examples of the polymerizable chiral agent (b) include LC756 manufactured by BASF.
  • the amount of the polymerizable chiral agent (b) is 1 to 20 parts by weight based on 100 parts by weight of the polymerizable mesogen compound) and the polymerizable chiral agent (b) in total. ⁇ Is preferred and 3 to 7 parts by weight is more preferred.
  • the helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (a) and the polymerizable chiral agent (b). Before the percentage Within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover the entire visible range.
  • photopolymerization initiators (C) can be used without particular limitation.
  • irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Ciba Specialty Chemicals Co., Ltd. may be mentioned.
  • the amount of the photopolymerization initiator to be combined is preferably from 0.01 to 100 parts by weight per 100 parts by weight of the total of the polymerizable mesogen compound (a) and the polymerizable chiral agent (b). , 0.05 to 5 weight is more preferred.
  • a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) can be used as a solution in a solvent.
  • the solvent used is not particularly limited, methyl ethyl ketone, cyclohexanone, cyclopentanone and the like are preferable.
  • the concentration of the solution is usually about 3 to 50% by weight.
  • the production of the cholesteric liquid crystal film of the present invention is carried out by applying the liquid crystal mixture on an alignment substrate, and then performing ultraviolet polymerization under an inert gas atmosphere.
  • the alignment base material a conventionally known one can be used.
  • a thin film made of polyimide or polyvinyl alcohol is formed on a substrate, and the thin film is rubbed with rayon cloth or the like.
  • a light directing film or a stretched film irradiated with ultraviolet rays is used.
  • it can be oriented by magnetic field, electric field orientation, and shear stress operation.
  • the substrate may be a film made of a plastic such as polyethylene terephthalate, triacetyl cell mouth, norbornene resin, polyvinyl alcohol, polyimide, polyarylate, polycarbonate, polysulfone / polyethersulfone, a glass plate, quartz. Sheets are used.
  • a plastic such as polyethylene terephthalate, triacetyl cell mouth, norbornene resin, polyvinyl alcohol, polyimide, polyarylate, polycarbonate, polysulfone / polyethersulfone, a glass plate, quartz. Sheets are used.
  • the liquid crystal mixture is transferred to an inert gas atmosphere after being applied to the alignment substrate.
  • the liquid crystal mixture is a solution
  • the solution is applied to an alignment substrate, dried, and then transferred to an inert gas atmosphere.
  • the drying temperature for volatilizing the solvent may be any temperature as long as it is higher than the boiling point of the solvent.
  • the solvent species in the range of about 80 to 160 The temperature may be set according to the type.
  • the coating thickness of the liquid crystal mixture (the coating thickness after drying the solvent in the case of a solution) is preferably 5 to 20 m 1 ⁇ , more preferably about 7 to 12 ⁇ m. If the coating thickness is thinner than 5 m, it may not be possible to form a helical pitch sufficient to cover the reflection bandwidth of 100 nm or more.If the coating thickness is thicker than 20 m, the alignment regulating force does not act sufficiently. Poor alignment may occur.
  • the inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture.
  • examples of such inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile and preferred. ⁇
  • the ultraviolet irradiation may be performed from either the alignment substrate side or the applied liquid crystal mixture side.
  • the polymerization temperature when irradiating ultraviolet rays is generally 140 ° C. or less. Specifically, the temperature is preferably about 60 to 140 ° C, and more preferably 80 ° to 120 ° C. Heating has the effect of accelerating the diffusion rate of the monomer component. If the temperature is lower than 60 ° C, the diffusion rate of the polymerizable mesogen compound (a) is very slow, and it takes a very long time to broaden the band.
  • Ultraviolet illuminance is preferably 0. l ⁇ 20mW / cm 2, l ⁇ 10mW / cm 2 is more preferable. If the UV illuminance exceeds 2 OmW / cm 2 , the polymerization reaction rate is higher than the diffusion rate, and it is not preferable because the band broadens better.
  • the irradiation time is as short as 5 minutes or less, preferably 3 minutes or less, and most preferably 1 minute or less.
  • the cholesteric liquid crystal film thus obtained is used without being separated from the substrate, and may be used while being separated from the substrate.
  • the broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate.
  • a linear polarizer can be obtained by laminating a ⁇ / 4 plate on a circularly polarizing plate. It is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the ⁇ ⁇ / 4 plate so that the pitch length is continuously narrowed.
  • the in-plane main refractive index is nx and ny, and the main refractive index in the thickness direction is nz.
  • the Nz coefficient defined by the formula: (nx-nz) / (nx-ny) satisfies 0.5 to -2.5.
  • stretch films made of suitable polymers such as polycarbonate, norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylates, and polyamides.
  • suitable polymers such as polycarbonate, norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylates, and polyamides.
  • suitable polymers such as polycarbonate, norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylates, and polyamides.
  • Examples include a birefringent film obtained by treatment, an alignment film made of a liquid crystal material such as a liquid crystal polymer, and an alignment layer of a liquid crystal material supported by a film.
  • the thickness of the quarter-wave plate is usually preferably 0.5 to 20 and particularly
  • a retarder functioning as a quarter-wave plate is, for example, for light-color light having a wavelength of 550 nm; a retarder functioning as an IZ four-wave plate and other positions It can be obtained by a method in which a phase difference layer exhibiting phase difference characteristics, for example, a phase difference layer functioning as a ⁇ / 2 wavelength plate is superposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. It is used with the transmission axis direction aligned.
  • the polarizer is not particularly limited, and various types can be used.
  • polarizers include hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and ethylene-vinyl acetate copolymer-based partially saponified films.
  • examples thereof include a uniaxially stretched film obtained by adsorbing a dichroic substance such as a dichroic dye, a dehydrated product of polyvinyl alcohol, a dehydrochlorinated product of polychlorinated vinyl, and a polyene-based oriented film.
  • a polarizer made of a polybutyl alcohol-based film and a dichroic substance such as iodine is preferable.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 m.
  • a polarizer which is obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is dyed, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine.
  • the polyvinyl alcohol-based film can be manufactured by stretching to 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further dyeing if necessary Before the color, the polyvinyl alcohol-based film may be immersed in water and washed. Rinse the polyvinyl alcohol-based film with water to remove dirt on the surface of the polyvinyl alcohol-based film and the anti-blocking agent, and swell the polyvinyl alcohol-based film to create unevenness such as uneven dyeing. It also has the effect of preventing Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • the polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like.
  • the transparent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, and cellulosic polymers such as diacetyl cellulose and triacetyl cellulose.
  • a film made of a transparent polymer such as an acrylic polymer such as a polycarbonate-based polymer or polymethyl methacrylate.
  • styrene-based polymers such as polystyrene, acrylonitrile-styrene copolymer, polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, olefin-based polymers such as ethylene-propylene copolymer, and salt-based butyl-based polymers
  • a film made of a transparent polymer such as an amide polymer such as nylon or an aromatic polyamide may be used.
  • imid-based polymers sulfone-based polymers, polyethersulfone-based polymers, and polyethers; 3-terketone-based polymers, polyphenylene sulfide-based polymers, butyl alcohol-based polymers, vinylidene chloride-based polymers, and vinyl butyral-based polymers
  • films made of transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers.
  • those having low optical birefringence are preferably used.
  • triacetyl cellulose, polycarbonate, atheryl polymer, cycloolefin resin, polyolefin having a norpolenene structure, and the like are preferable.
  • a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-3434929 for example, (A) side chain substituted and / or unsubstituted De group And (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl and a nitrile group in a side chain.
  • a specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • a film made of a mixed extruded product of a resin composition or the like can be used.
  • a transparent protective film that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface has been treated with an adhesive or the like.
  • the thickness of the transparent protective film can be determined as appropriate, but is generally from 10 to 500 m in consideration of workability such as ⁇ ⁇ handling and thinness.
  • the power is preferably 20 to 300 ⁇ m, and more preferably 30 to 200 m.
  • a protective film having a retardation value in the film thickness direction represented by the formula (1) of from 190 nm to 1075 nm is preferably used.
  • the thickness direction retardation value (Rth) is more preferably from 180 nm to 1060 nm, particularly preferably from 170 nm to 1445 nm.
  • a transparent protective film made of the same polymer material on the front and back sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
  • the surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer / reflection P blocking treatment, a treatment for preventing sticking, and a treatment for diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate.
  • a cured film having an excellent hardness and a sliding property by a suitable ultraviolet-curable resin such as an acrylic resin or a silicone resin is used as a transparent protective film. It can be formed by a method of adding to the surface of the substrate.
  • Anti-reflection treatment is to prevent reflection of external light on the polarizing plate surface This can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-stating treatment is performed to prevent adhesion to the adjacent layer.
  • the anti-glare treatment is performed to prevent external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate.
  • the transparent protective film It is formed by giving a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a sandblast method or an embossing method with a rough surface or a compounding method of transparent fine particles. can do.
  • the fine particles to be included in the formation of the surface fine irregularities include silica, alumina, titania, zirconia, tin oxide, indium oxide, oxidized power, and oxidized antimony having an average particle size of 0.5 to 50 m.
  • Transparent fine particles such as inorganic fine particles which may be conductive, such as inorganic fine particles, and organic fine particles formed of a crosslinked or uncrosslinked polymer or the like are used.
  • the amount of the fine particles used is generally 2 to 50 weight parts per 100 parts by weight of the transparent resin forming the fine surface unevenness structure; 25 parts by weight are preferred.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for dispersing the light transmitted through the polarizing plate and expanding the viewing angle and the like.
  • the anti-reflection layer, anti-stating layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or can be separately provided as an optical layer separately from the transparent protective layer.
  • the lamination of the linear polarizers and the lamination of the type ⁇ optical layers can also be performed by a method of sequentially laminating them sequentially in the process of manufacturing a liquid crystal display device or the like. It has an advantage that it is excellent in stability and assembling work and can improve a manufacturing process of a liquid crystal display device and the like. Appropriate bonding means such as an adhesive layer can be used for lamination.
  • their optical axes can be set at an appropriate arrangement angle according to the target retardation characteristics and the like.
  • the above-mentioned linear polarizer may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell.
  • the pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but includes, for example, an acryl polymer, a silicone polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer as a base polymer. Can be appropriately selected and used.
  • an acrylic adhesive having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties and having excellent weather resistance and heat resistance can be preferably used.
  • the foaming phenomenon due to moisture absorption is prevented, the phenomena are prevented from falling, the light property is reduced due to the difference in thermal expansion, etc., and the liquid crystal cell is prevented from warping.
  • an adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred. .
  • the adhesive layer is made of, for example, natural or synthetic resins, particularly, tackifier resins, fillers, pigments, coloring agents, and antioxidants made of glass fibers, glass beads, metal powders, and other inorganic powders.
  • the adhesive may contain an additive to be added to the pressure-sensitive adhesive layer. Further, it may be a pressure-sensitive adhesive layer containing fine particles and exhibiting light diffusibility.
  • the attachment of the adhesive layer can be performed by an appropriate method.
  • a pressure-sensitive adhesive prepared by dissolving or dispersing a base polymer or a composition thereof in a solvent consisting of an appropriate solvent alone or a mixture such as toluene or ethyl acetate.
  • a solution is prepared, and the solution is directly attached on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the above, and the solution is formed on an optical element. Transfer method to the public.
  • the adhesive layer may be provided as a superimposed layer of different compositions or types of layers.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use and adhesive strength, etc., and is generally 1 to 500 m, preferably 5 to 200 m, and particularly preferably 10 to 100 m. preferable.
  • a separator is temporarily attached to the exposed surface of the adhesive layer for the purpose of preventing contamination and the like until practical use, and is covered. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state.
  • a suitable thin leaf such as a plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foamed sheet or metal foil, or a laminate thereof is required as the separator.
  • an appropriate material according to the prior art such as a material coated with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide, may be used.
  • Each layer such as an adhesive layer may include, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or the like.
  • a material having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbent such as a nickel complex salt compound may be used.
  • the linear polarizer of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical element, and an illumination system as necessary and incorporating a drive circuit. There is no particular limitation except for using, and it can be in accordance with the prior art.
  • liquid crystal cell such as a TN type, STN type, or 7C type
  • an appropriate liquid crystal display device such as one using a reflection plate
  • the linear polarizer according to the present invention can be installed on one side or both sides of the liquid crystal cell.
  • linear polarizers are provided on both sides, they may be the same or different.
  • one layer of appropriate parts such as a diffusion plate, an anti-glare layer, an anti-reflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight is provided at an appropriate position.
  • two or more layers can be arranged.
  • Figure 2 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer).
  • the circularly polarizing plate had good circularly polarized light separation characteristics (reflection band) in the range of 450 to 890 nm.
  • the total thickness of the cholesteric liquid crystal layer (film) was about 9 m.
  • the pitch length of the obtained cholesteric liquid crystal layer is 0.54 m near the UV-irradiated surface (one layer below the UV-irradiated surface) and 0.1 mm near the opposite surface (1 mm below the opposite surface). 7 m.
  • the shells were forked by acrylic adhesive (thickness: 25 urn) so that they became narrower.
  • a broadband polarizing plate was obtained by laminating an absorption polarizing plate SEG14425DU manufactured by Nitto Denko with an adhesive.
  • Figure 3 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer).
  • the obtained circularly polarizing plate has good circularly polarized light separating characteristics in the range of 501 to 970 nm. Had.
  • the total thickness of the cholesteric liquid crystal layer (film) was about 9 m.
  • the pitch length of the obtained cholesteric liquid crystal layer is 0.57 m near the ultraviolet radiation surface (1 ⁇ m below the ultraviolet irradiation surface) and 0.3 ⁇ m near the opposite surface (1 ⁇ m below the opposite surface). 1 m.
  • a wide viewing angle obtained by biaxially stretching a polycarbonate resin film (80 m thick); in contrast to a 1/4 plate (Nz coefficient -1.2), the obtained circularly polarizing plate has a continuous pitch length. It was attached with an ataryl-based adhesive (5 m. Thick) so that it would be narrower. Further, an absorption type polarizing plate TEG 1465 DU manufactured by Nitto Denko was laminated on this with an adhesive material to obtain a broadband polarizing plate.
  • Fig. 4 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer).
  • the obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 520 to 920 nm.
  • the total thickness of the cholesteric liquid crystal layer and (film) was about 9 m.
  • the pitch length of the obtained cholesteric liquid crystal layer is 0.56 m near the UV-irradiated surface (1 m below the UV-irradiated surface) and 0.31 m near the opposite surface (1 m below the opposite surface). m.
  • Acrylic adhesive 25 m thick was used for each lamination. In this case, the transmission polarization axis is 10 degrees with respect to the axis of the L / 4 plate.
  • Photon SEG 14 25 DU was bonded in the same manner to obtain a broadband polarizing plate.
  • Figure 5 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer).
  • the obtained circularly polarizing plate had good circularly polarized light separating characteristics in the range of 710 to 880 nm.
  • the total thickness of the cholesteric liquid crystal layer (film) was about 9 m.
  • the pitch length of the obtained cholesteric liquid crystal layer is 0.52 m near the UV-irradiated surface (1 ⁇ m below the UV-irradiated surface) and 0.52 m near the opposite surface (1 m below the opposite surface). ym.
  • the obtained circularly polarizing plate has a continuously narrower pitch length.
  • the shells were forked by acrylic adhesive (25 m thick) in such a direction.
  • a polarizing plate was obtained by laminating an absorption polarizing plate SEG1425DU manufactured by Nitto Denko with an adhesive.
  • Figure 6 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). Show.
  • the obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 720 to 870 nm.
  • the total thickness of the cholesteric liquid crystal layer (film) was about 9 / m.
  • the pitch length of the obtained cholesteric liquid crystal layer was 0.52 m near the UV-irradiated surface (1 ⁇ m below the UV-irradiated surface) and 0.52 m near the opposite surface (1 m below the opposite surface). Um.
  • the substrate was irradiated with ultraviolet rays at 5 OmW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
  • Figure 7 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer).
  • the obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 710 to 860 nm.
  • the total thickness of the cholesteric liquid crystal layer (film) was about 9 m
  • the pitch length of the obtained cholesteric liquid crystal layer is 0.5 ⁇ 1 m near the UV-irradiated surface (1 ⁇ m below the UV-irradiated surface) and 0.5 mm near the opposite surface (1 m below the opposite surface). 1 ⁇ m.
  • the shells were forked by acrylic adhesive (thickness: 25 ⁇ m) in such a way as to achieve the desired orientation.
  • Nitto Denko's absorption type polarizer SEG 1 4 2 5 DU is used as an adhesive.
  • the viewing angle characteristics were evaluated based on the following criteria by deriving ⁇ with a viewing angle measuring device EZ-CONTRAST manufactured by EL DIM.
  • Color tone change Xy at a viewing angle of 60 ° is 0.04 or less.
  • the broadband polarizing plate or polarizing plate was put in an environment of 80 ° C. and 60 T: 90% RH for 500 hours, the presence or absence of a powdery substance precipitated on the surface was visually determined. In the case where a powdery substance is present, there is a problem as an optical application.
  • the broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflection type polarizer).
  • Circularly polarizing plates can be used for linear polarizers, lighting devices, liquid crystal display devices, and the like.

Abstract

A broad-band-cholesteric liquid-crystal film which is obtained by applying a liquid-crystal mixture comprising a polymerizable mesogenic compound (a), a polymerizable chiral reagent (b), and a photopolymerization initiator (c) to an alignment substrate and polymerizing the coating with ultraviolet in an inert gas atmosphere, and which has a reflection band width of 200 nm or more. The broad-band-cholesteric liquid-crystal film has a broad reflection band and satisfactory durability.

Description

広帯域コレステリック液晶フィルムおよびその製造方法、 円偏光板、 直線偏光子 、照明装置および液晶表示装置 技術分野 Broadband cholesteric liquid crystal film and manufacturing method thereof, circular polarizer, linear polarizer, lighting device, and liquid crystal display device
•本発明は広帯域コレステリック液晶フィルムおよびその製造方法に関する。 本 発明の広帯域コレステリック液晶フィルムは円偏光板 (反射型偏光子) として有 明  The present invention relates to a broadband cholesteric liquid crystal film and a method for producing the same. The broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate (reflective polarizer).
用である。 また本発明は、 当該円偏光板を用いた直線偏光子、照明装置および液 It is for. Further, the present invention provides a linear polarizer, a lighting device, and a liquid using the circularly polarizing plate.
 One
晶表示装置に関する。 背景技術 The present invention relates to a crystal display device. Background art
一般に、液晶ディスプレイは、透明電極を形成したガラス板の間に液晶を注入 し、上記ガラス板の前後に偏光子を配置した構造を有する。 このような液晶ディ スプレイに用いられる偏光子は、 ポリビニルアルコールフィルムにヨウ素や二色 性染料などを吸着させ、 これを一定方向に延伸することにより製造される。 の ように製造された偏光子それ自体は一方方向に振動する光を吸収し、他の一方方 向に振動する光だけを通過させて直線偏光を作る。 そのため、 偏光子の効率は理 論的に 5 0 %を超えることができず、液晶デイスプレイの効率を低下させる一番 大きい要因となっている。 また、 この吸収光線のため、液晶表示装置は光源出力 の増大をある程度以上まで行うと吸収光線の熱変換による発熱で偏光子が破壊さ れたり、 .またはセル内部の液晶層への熱影響にて表示品位が劣化する等の弊害を 招いていた。  Generally, a liquid crystal display has a structure in which liquid crystal is injected between glass plates on which transparent electrodes are formed, and polarizers are arranged before and after the glass plates. A polarizer used for such a liquid crystal display is manufactured by adsorbing iodine, a dichroic dye, or the like on a polyvinyl alcohol film, and stretching the same in a certain direction. The polarizer itself manufactured as described above absorbs light oscillating in one direction, and passes only light oscillating in the other direction to produce linearly polarized light. As a result, the efficiency of the polarizer cannot theoretically exceed 50%, which is the biggest factor in reducing the efficiency of liquid crystal displays. Also, due to the absorbed light, if the output of the light source is increased to a certain degree or more, the liquid crystal display device may destroy the polarizer due to heat generated by the heat conversion of the absorbed light, or may have a negative effect on the liquid crystal layer inside the cell. This causes adverse effects such as deterioration of display quality.
円偏光分離機能を有するコレステリック液晶は、液晶の螺旋の回転方向と円偏 光方向とがー致し、波長が液晶の螺旋ピッチであるような円偏光の光だけを反射 する選択反射特性がある。 この選択反射特性を用いて、 一定した波長帯域の自然 光の特定の円偏光のみを透過分離し、残りを反射し再利用することにより高効率 の偏光膜の製造が可能である。 この時、透過した円偏光は、 义/ 4波長板を通過 することにより直線偏光に変換され、 この直線偏光の方向を液晶ディスプレイに 用いる吸収型偏光子の透過方向と揃えることで高透過率の液晶表示装置を得るこ とができる。 すなわち、 コレステリック液晶フィルムを λ/4波長板と組み合わ せて直線偏光子として用いると理論的に光の損失がないため、 5 0%の光を吸収 する従来の吸収型偏光子を単独で用いた場合に比べて理論上は 2倍の明るさ向上 を得ることができる。 Cholesteric liquid crystals having a function of separating circularly polarized light have a selective reflection characteristic of reflecting only circularly polarized light whose wavelength is the helical pitch of the liquid crystal, in which the direction of rotation of the liquid crystal helix coincides with the direction of circular polarization. By using this selective reflection characteristic, only specific circularly polarized light of natural light in a certain wavelength band is transmitted and separated, and the remainder is reflected and reused, whereby a highly efficient polarizing film can be manufactured. At this time, the transmitted circularly polarized light is converted into linearly polarized light by passing through a 义 / 4 wavelength plate, and the direction of the linearly polarized light is transmitted to the liquid crystal display. A liquid crystal display device with high transmittance can be obtained by adjusting the transmission direction of the absorption polarizer used. That is, when a cholesteric liquid crystal film is used as a linear polarizer in combination with a λ / 4 wavelength plate, there is theoretically no loss of light, so a conventional absorption polarizer that absorbs 50% of light was used alone. Compared to the case, theoretically, the brightness can be improved twice.
しかし、 コレステリック液晶の選択反射特性は特定の波長帯域のみに限定され 、可視光線全域のカバ一を行うのは困難であった。 コレステリック液晶の選択反 射波長領域巾八义は、  However, the selective reflection characteristic of the cholesteric liquid crystal is limited only to a specific wavelength band, and it has been difficult to cover the entire visible light range. The selective reflection wavelength range of the cholesteric liquid crystal is 80,
Δλ = 2 Α - (n e— n 0 ) / (n e+no)  Δλ = 2 Α-(n e— n 0) / (n e + no)
n o :コレステリック液晶分子の正常光に対する屈折率  n o: Refractive index of cholesteric liquid crystal molecules for normal light
n e :コレステリック液晶分子の異常光に対する屈折率  n e: refractive index of cholesteric liquid crystal molecules for extraordinary light
λ:選択反射の中心波長  λ: center wavelength of selective reflection
で表され、 コレステリック液晶そのものの分子構造に依存する。 上記式よ One 一 n 0を大きくすれば選択反射波長領域巾△ λは広げられるが、 n e— η 0は通 常 0. 3以下である。 この値を大きくすると液晶としての他の機能 (配向特性、 液晶温度など) が不十分となり実用は困難であった。 したがって、現実には選択 反射波長領域巾 Δλは最も大きくても 1 5 O nm程度であった。 コレステリック 液晶として実用可能なものの多くは 3 0〜 1 00 nm程度でしかなかった。 また、選択反射中心波長えは、 It depends on the molecular structure of the cholesteric liquid crystal itself. According to the above equation, the width of the selective reflection wavelength region △ λ can be increased by increasing One-n0, but ne-η0 is usually 0.3 or less. If this value is increased, other functions (alignment characteristics, liquid crystal temperature, etc.) of the liquid crystal become insufficient and practical use was difficult. Therefore, in practice, the selective reflection wavelength region width Δλ was at most about 15 O nm. Most of the practically usable cholesteric liquid crystals were only about 30 to 100 nm. Also, the selective reflection center wavelength is
λ= (ne + no) P/2  λ = (ne + no) P / 2
P:コレステリック液晶一回転ねじれに要する螺旋ピッチ長  P: Spiral pitch length required for one turn of cholesteric liquid crystal
で表され、 ピッチ一定であれば液晶分子の平均屈折率とピッチ長に依存する。 したがって、 可視光全域をカバーするには、異なる選択反射中心波長を有する 複数層を積層するか、 ピッチ長を厚み方向で連続変化させ選択反射中心波長その ものの存在分布を形成することが行われていた。 If the pitch is constant, it depends on the average refractive index of the liquid crystal molecules and the pitch length. Therefore, in order to cover the entire visible light region, a plurality of layers having different selective reflection center wavelengths are laminated, or the pitch length is continuously changed in the thickness direction to form the existence distribution of the selective reflection center wavelength itself. Was.
例えば、厚み方向でピッチ長を連続変ィヒさせる手法があげられる (たとえば、 特開平 6— 2 8 18 14号公報、特許第 327266 8号明細書、特開平 1 1一 24 894 3号公報参照。 ) 。 この手法はコレステリック液晶組成物を紫外線露 光で硬化させる際に、露光面側と出射面側の露光弓敏に差を付け、重合速度に差 を付けることで、反応速度の異なる液晶組成物の組成比変ィヒを厚み方向で設ける というものである。 For example, there is a method of continuously changing the pitch length in the thickness direction (for example, see Japanese Patent Application Laid-Open No. Hei 6-218814, Japanese Patent No. 3272668, Japanese Patent Application Laid-Open No. 11-248943). )). In this method, when the cholesteric liquid crystal composition is cured by UV exposure, the difference between the exposure speed and the exposure speed on the exposure surface side and the polymerization speed is different. By adding, the composition ratio change of the liquid crystal compositions having different reaction rates is provided in the thickness direction.
この手法のボイントは露光面側と出射面側の露光強度の差を大きく取ることで ある。 そのため、 前述の先行技術の実施例の多くの場合には紫外線吸収剤を液晶 組成物に混合し、厚み方向で吸収を発生させ、光路長による露光量の差を増幅す る手法力採られていた。  The point of this method is to take a large difference in exposure intensity between the exposure surface side and the emission surface side. Therefore, in many cases of the above-mentioned prior art examples, a technique of mixing an ultraviolet absorber into a liquid crystal composition to generate absorption in a thickness direction and amplify a difference in exposure amount due to an optical path length is employed. Was.
しかしながら、前述の先行技術を追試して得られるコレステリック液晶フィル ムは、耐久試験 (加熱試験や加湿試験) 中に、紫外線吸収剤がコレステリック液 晶フィルム表面や他の層との貼り合わせ界面に析出する現象が見られた。 これは 紫外線吸収剤が低分子量であり、長期間の耐久試験中にフィルム内を移動し、凝 集した物と見られる。 一般的な工業素材用途であればこの程度の表面析出は外観 異常として関知されないし、界面に析出しても界面剝離に至るほどの問題ではな かった。 しかしながら、液晶表示装置に用いるコレステリック液晶フィルムは強 い透過光線の光路上に位置し、 このような析出物が発生すると析出粒子が直接目 視される他、析出物の偏光解消による光利用効率の低下、 または析出物の発生す るヘイズによる光源の光散乱分布の変ィヒなどの光学的問題を生じていた。  However, in the cholesteric liquid crystal film obtained by additional testing of the above-mentioned prior art, during an endurance test (heating test or humidification test), an ultraviolet absorber precipitates on the cholesteric liquid crystal film surface or the bonding interface with other layers. Was observed. This is considered to be due to the low molecular weight of the UV absorber, which migrated through the film during the long-term durability test and aggregated. For general industrial material applications, this level of surface precipitation was not recognized as an abnormal appearance, and even if it was deposited on the interface, it was not a problem that led to interface separation. However, cholesteric liquid crystal films used in liquid crystal display devices are located on the optical path of strong transmitted light, and when such precipitates are generated, the deposited particles are directly visible, and the light utilization efficiency due to depolarization of the precipitates is reduced. Optical problems such as a decrease in the light scattering distribution of the light source due to the haze at which the precipitates are generated or reduced are caused.
コレステリック液晶フィルムが、 常温環境下で用いられる用途であれば、本来 はこの種の析出物の発生に至ることはほとんどない。 しかし、液晶表示装置に組 み込まれて用いられる場合、 バックライトの光源からの幅射熱が強く長期暴露さ れると紫外線吸収剤の析出が避けられない。 このような析出物は面内に均一に析 出すれば視認されにくく、 欠点として認識されにくいが、光源からの幅射熱が液 晶表示装置面内に対してノ ラツキが大きく、 幅射熱の多くかかつた領域のみ析出 量が増えるために面内のムラとして視認されてしまうケースが見られた。 しかも 近年の液晶表示装置に求められる表示輝度は 2 0 0カンデラを超えており、 光源 側は 1万力ンデラ程度の光照射強度に曝されている。 この照射強度のために液晶 表示装置の光源側は使用環境温度にもよるが 4 0〜6 0 °C程度の熱が付与され続 けている。 このため加熱信頼性試験だけでなく、液晶表示装置に実装した連続点 灯試験においても紫外線吸収剤の析出が認められた。 例えば、紫外線吸収剤を配 合したコレステリック液晶組成物から得られる紫外線重合体を、 8 0 °C X 5 0 0 時間、 6 0 °C、 9 0 % R H X 5 0 0時間の環境下に投入すると白濁、 If the cholesteric liquid crystal film is used in a room temperature environment, it is unlikely that this type of precipitate will occur. However, when used in a liquid crystal display device, deposition of an ultraviolet absorber is inevitable if the radiation from the light source of the backlight is strongly exposed for a long period of time. Such precipitates are difficult to be visually recognized if they are uniformly deposited on the surface, and are not easily recognized as defects.However, the radiation heat from the light source has a large fluctuation with respect to the liquid crystal display device surface, and the radiation heat is wide. In some cases, the amount of precipitation increased only in a large part of the area, and the area was visually recognized as in-plane unevenness. In addition, the display luminance required for liquid crystal display devices in recent years has exceeded 200 candela, and the light source side is exposed to a light irradiation intensity of about 10,000 ndera. Due to this irradiation intensity, the light source side of the liquid crystal display device is continuously heated to about 40 to 60 ° C depending on the ambient temperature. For this reason, precipitation of the UV absorber was observed not only in the heating reliability test but also in the continuous lighting test mounted on the liquid crystal display device. For example, an ultraviolet polymer obtained from a cholesteric liquid crystal composition to which an ultraviolet absorber is combined is used at 80 ° C. X 500 Time, 60 ° C, 90% RHX
、表面への粉体析出が に見られた。 発明の開示 In addition, powder deposition on the surface was observed. Disclosure of the invention
本発明は、 広帯域の反射帯域を有する広帯域コレステリック液晶フィルムおよ びその製造方法を提供することを目的とする。 また本発明は、 広帯域の反射帯域 を有し、 かつ耐久性の良好な、 広帯域コレステリック液晶フィルムおよびその製 造方法を提供することを目的とする。  An object of the present invention is to provide a broadband cholesteric liquid crystal film having a broadband reflection band and a method for producing the same. Another object of the present invention is to provide a broadband cholesteric liquid crystal film having a broadband reflection band and excellent durability, and a method for producing the same.
また本発明は、 当該広帯域コレステリック液晶フィルムを用いた円偏光板を提 供すること、 さらには当該円偏光板を用いた直線偏光子、照明装置および液晶表 示装置を提供することを目的とする。  Another object of the present invention is to provide a circularly polarizing plate using the broadband cholesteric liquid crystal film, and further to provide a linear polarizer, a lighting device, and a liquid crystal display using the circularly polarizing plate.
本発明者らは上記課題を解決するために鋭意検討した結果、 以下に示す広帯域 コレステリック液晶フィルムおよびその製造方法により上記目的を達成できるこ とを見出し本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the following broadband cholesteric liquid crystal film and a method for producing the same, and have completed the present invention.
すなわち本発明は、重合性メソゲン化合物 (a ) 、重合性カイラル剤 (b ) お よび光重合開始剤 ( c ) を含む液晶混合物を、配向基材上に塗布し、不活性ガス 雰囲気下で、紫外線重合して得られるコレステリック液晶フィルムであって、反 射帯域巾が 2 0 O n m以上を有することを特徴とする広帯域コレステリック液晶 フィルム、 に関する。  That is, the present invention provides a method for applying a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and under an inert gas atmosphere, The present invention relates to a cholesteric liquid crystal film obtained by ultraviolet polymerization, which has a reflection bandwidth of 20 O nm or more.
上記本発明の広帯域コレステリック液晶フィル厶は、 重合性の液晶混合物を紫 外線重合することにより得られるものであり、 その選択反射波長の反射帯域巾が 2 0 0 n m以上と広く、従来にない広帯域の反射帯域巾を有する。 反射帯域巾は 、 3 0 O n m以上、 さらには 4 0 0 n m以上であるのが好ましい。 また 2 0 O n m以上の反射帯域巾は可視光領域、特に 4 0 0〜8 0 0 n mの波長領域において 有することが好ましい。 '  The broadband cholesteric liquid crystal film of the present invention is obtained by subjecting a polymerizable liquid crystal mixture to UV polymerization, and the reflection bandwidth of the selective reflection wavelength is as wide as 200 nm or more, which is an unprecedented broadband. Has a reflection bandwidth of The reflection bandwidth is preferably at least 300 nm, more preferably at least 400 nm. Further, it is preferable that the reflection bandwidth is not less than 200 nm in a visible light region, particularly in a wavelength region of 400 to 800 nm. '
なお、反射帯域巾は、広帯域コレステリック液晶フィルムの反射スペクトルを 分光光度計 (大塚電子株式会社製、 瞬間マルチ測光システム M C P D— 2 0 0 0 ) にて測定し、最大反射率の半分の反射率を有する反射帯域とした。  The reflection bandwidth was measured by measuring the reflection spectrum of a broadband cholesteric liquid crystal film with a spectrophotometer (MCPD-200, instantaneous multi-photometry system, manufactured by Otsuka Electronics Co., Ltd.). Reflection band.
前記広帯域コレステリック液晶フィルムは、 コレステリック液晶フィルムのピ ッチ長が、紫外線放射側から連続的に狭くなるように変化していることが好まし い。 . また前記広帯域コレステリック液晶フィルムでは、重合性メソゲン化合物 ( a ) が重合性官能基を 1つ有し、重合性カイラル剤 (b) が重合性官能基を 2っ以 上有することが好ましい。 The broadband cholesteric liquid crystal film is a cholesteric liquid crystal film. It is preferable that the switch length is changed so as to continuously narrow from the ultraviolet radiation side. In the broadband cholesteric liquid crystal film, it is preferable that the polymerizable mesogen compound (a) has one polymerizable functional group and the polymerizable chiral agent (b) has two or more polymerizable functional groups.
Br o e rら, Na tur e, 37 8巻, 4 67項 ( 1 9 9 5) で開示された ように、 キラリティーを有するメソゲン化合物を拡散させ、 連続的にピッチ変化 する広帯域コレステリック液晶フィルムが得られている。 一方、 本発明において は、重合性官能基を 1つ有するメソゲン化合物を拡散させることで、連続的にピ ツチ変化する広帯域コレステリック液晶を得ているため、 キラルビッチの変化の 序列が逆転している。 すなわち、 本発明においては、 ピッチ長が、紫外線照射側 から連続的に狭くなるようなピッチ変化を有する広帯域コレステリック液晶フィ ルムを得ることができる。 また、 ピッチ長は、 紫外線放射側とその反対側での差 が少なくとも 1 00 nmとなるように変化していることが好ましい。 なお、 ピッ チ長は、 広帯域コレステリック液晶フィルムの断面 TEM像から読み取った。 得られたコレステリック液晶フィルムは、 ピッチ長が一方の側から連続的に狭 くなるように変ィ匕しているグランジヤン構造を有する。 長ピッチ長側には連続的 または不連続的に、赤外領域の反射を示すピッチ長の螺旋構造または螺旋がほぼ 解消された層を有することが好ましい。 上記広帯域コレステリック液晶フィルム において、長ピッチ長の螺旋構造または螺旋がほぼ解消された層は、正面からの 入射光に対して光学的に 50〜4 50 nmの位相差値を有する位相差層であるこ とが好ましい。 このようにグランジャン構造を有し、 コレステリック液晶として し  As disclosed in Broer et al., Nature, 378, pp. 467 (1995), a mesogenic compound having chirality is diffused to obtain a broadband cholesteric liquid crystal film having a continuous pitch change. Has been. On the other hand, in the present invention, by diffusing a mesogen compound having one polymerizable functional group, a broadband cholesteric liquid crystal that continuously changes in pitch is obtained, so that the order of change in chiral bitch is reversed. That is, in the present invention, it is possible to obtain a broadband cholesteric liquid crystal film having a pitch change such that the pitch length continuously narrows from the ultraviolet irradiation side. Further, the pitch length is preferably changed so that the difference between the ultraviolet radiation side and the opposite side is at least 100 nm. The pitch length was read from a cross-sectional TEM image of the broadband cholesteric liquid crystal film. The obtained cholesteric liquid crystal film has a grunge yang structure in which the pitch length is continuously reduced from one side. On the long pitch length side, it is preferable to have a spiral structure having a pitch length showing reflection in the infrared region continuously or discontinuously or a layer in which the spiral is substantially eliminated. In the above-mentioned broadband cholesteric liquid crystal film, the layer in which the spiral structure having a long pitch length or the spiral is almost eliminated is a retardation layer having a retardation value of 50 to 450 nm optically with respect to incident light from the front. Is preferred. Thus, it has a Grand Jean structure and can be used as a cholesteric liquid crystal.
可視領域 ( 3 80〜 780 nm) において選択反射を示す部分を有するとともに 、選択反射を示す部分とは全く異なるピッチの層を長ピッチ長側に有している。 当該層は光学的な特性として位相差層であり、 その位相差値は 50〜4 5 O nm の間で制御可能である。 たとえば、 この位相差値が 1 00〜16 O nmとなると きは、 コレステリック液晶フィルムを通過する可視光域の光は直線偏光を示す。 —方、位相差値が 200〜 400 nmとなるときはコレステリック液晶を透過し た円偏光の状態とは逆の回転の円偏光の状態に変換することができる。 これによ り、 広帯域コレステリック液晶フィルムの有する位相差層の位相差値によって、 透過光の偏光状態を自由にコントロールすることが可能である。 したがって、 使 用せする液晶ディスプレイのモ一ドに合わせた偏光板として使用することが容易 である。 It has a portion exhibiting selective reflection in the visible region (380 to 780 nm), and has a layer having a pitch completely different from that of the portion exhibiting selective reflection on the long pitch length side. This layer is a retardation layer as an optical property, and its retardation value is controllable between 50 and 45 O nm. For example, when the retardation value is 100 to 16 O nm, light in the visible light region passing through the cholesteric liquid crystal film shows linearly polarized light. On the other hand, when the phase difference value is between 200 and 400 nm, it can be converted into a state of circularly polarized light that rotates in the opposite direction to the state of circularly polarized light transmitted through the cholesteric liquid crystal. This Thus, the polarization state of transmitted light can be freely controlled by the retardation value of the retardation layer of the broadband cholesteric liquid crystal film. Therefore, it is easy to use it as a polarizing plate according to the mode of the liquid crystal display to be used.
前記広帯域コレステリック液晶フィルムを形成する液晶混合物は、紫外線吸収 剤を含有していなくてもよい。  The liquid crystal mixture forming the broadband cholesteric liquid crystal film may not contain an ultraviolet absorber.
本発明の広帯域コレステリック液晶フィルムは、紫外線吸収剤を用いなくても 広帯域の反射帯域巾のものが得られる。 したがって、 紫外線吸収剤を用いること によるヘイズの上昇、偏光透過率の低下、析出粒子の目視ィヒなどを抑えることが でき、加熱'加湿環境下での耐久性が良好であり、信頼性に優れる。  The broadband cholesteric liquid crystal film of the present invention can have a broadband reflection bandwidth without using an ultraviolet absorber. Therefore, it is possible to suppress an increase in haze, a decrease in the transmittance of polarized light, and visual observation of precipitated particles due to the use of an ultraviolet absorber, and the durability under a heated and humidified environment is good, and the reliability is excellent. .
前記広帯域コレステリック液晶フィルムにおいて、 重合性メソゲン化合物 ( a ) のモル吸光係数は、 50〜5 00 dm3 mo 1 ^cm'1® 36 5 nmであるこ とが好ましい。 前記モル吸光係数を有するものは紫外線吸収能を有する。 モル吸 光係数は、 100〜2 5 0 dm3 mo 1— i cm— '@ 3 6 5 nmがより好適である 。 モル吸光係数が 5 0 dm3 mo l"1 cm-1® 3 6 5 nmより小さいと十分な重 合速度差がつかずに広帯域ィ匕し難い。 一方、 500 dm3 mo 1一1 cm— 36 5 nmより大きいと重合が完全に進行せずに硬化が終了しない場合がある。 なお 、 モル吸光係数は、各材料の分光光度スぺクトルを測定し、得られた 36 5 nm の吸光度から測定した値である。 In the broad band cholesteric liquid crystal film, the molar absorption coefficient of the polymerizable mesogen compound (a) is, 50~5 00 dm 3 mo 1 ^ cm '1 ® 36 5 nm Dearuko and are preferred. Those having the molar extinction coefficient have an ultraviolet absorbing ability. Molar absorption light coefficient is more preferably 100~2 5 0 dm 3 mo 1- i cm- '@ 3 6 5 nm. Molar extinction coefficient of 5 0 dm 3 mo l "1 cm- 1 ® 3 6 5 nm less than sufficient Polymerization speed difference is hardly wideband I spoon without stick. Meanwhile, 500 dm 3 mo 1 one 1 cm- If it is larger than 365 nm, the polymerization may not completely proceed and the curing may not be completed.The molar extinction coefficient is obtained by measuring the spectrophotometric spectrum of each material and obtaining the absorbance at 365 nm. It is a measured value.
前記重合性メソゲン化合物 (a) としては、下記一般式 ( 1 ) :  As the polymerizable mesogen compound (a), the following general formula (1):
Figure imgf000007_0001
Figure imgf000007_0001
(但し、 は水素原子またはメチル基を示す。 nは 1〜5の整数を表す。 ) で 表される化合物が好適である。 また本発明は、重合性メソゲン化合物 (a) 、重合性カイラル剤 (b) および 光重合開始剤 (c) を含む液晶混合物を、 配向基材上に塗布し、 次いで不活性ガ ス雰囲気下で、 紫外線重合することを特徴とする編己広帯域コレステリック液晶 フィルムの ®t方法、 に関する。 本発明の広帯域コレステリック液晶フィルムは 、配向基材上に塗布した前記液晶混合物を、不活性ガス雰囲気下で、紫外線照射 にあたっての温度、 紫外線照 、照射時間を制御することにより製造することが できる。 (However, represents a hydrogen atom or a methyl group. N represents an integer of 1 to 5.). Further, the present invention provides a method for applying a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and then applying the mixture under an inert gas atmosphere. And a method for producing a broadband cholesteric liquid crystal film by UV polymerization. The broadband cholesteric liquid crystal film of the present invention can be manufactured by controlling the temperature, ultraviolet light irradiation, and irradiation time of ultraviolet light irradiation of the liquid crystal mixture applied on an alignment substrate in an inert gas atmosphere.
また本発明は、前記広帯域コレステリック液晶フィルムを用いた円偏光板、 に 関する。  The present invention also relates to a circularly polarizing plate using the broadband cholesteric liquid crystal film.
また本発明は、前記円偏光板に、 义/4板を積層して得られる直線偏光子、 に 関する。 前記直線偏光子において、 円偏光板であるコレステリック液晶フィルム は、 义/4板に対し、 ピッチ長が連続的に狭くなるように積層するのが好ましい また本発明は前記直線偏光子の透過軸に、 吸収型偏光子をその透過軸方向を合 わせて貼り合わせて得られる直線偏光子、 に関する。  The present invention also relates to a linear polarizer obtained by laminating a quarter-wave plate on the circularly polarizing plate. In the linear polarizer, it is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the 長 / 4 plate so that the pitch length is continuously narrowed. And a linear polarizer obtained by bonding an absorption polarizer with its transmission axis direction aligned.
前記直線偏光子に用いる 4板は、面内の主屈折率を nx、 ny、 厚さ方向 の主屈折率を nzとしたとき、式: (nx— nz) / (nx_ny) で定義され る Nz係数が一0. 5〜一 2. 5を満足するものが好ましい。  The four plates used for the linear polarizer have the in-plane principal refractive index nx, ny, and the principal refractive index in the thickness direction nz, where Nz is defined by the following formula: (nx—nz) / (nx_ny) It is preferable that the coefficient satisfies 0.5 to 12.5.
また本発明は、裏面側に反射層を有する面光源の表面側に前記円偏光板または 直線偏光子を有することを特徴とする照明装置、 に関する。  In addition, the present invention relates to a lighting device, characterized in that the circular polarizer or the linear polarizer is provided on the front side of a surface light source having a reflective layer on the back side.
さらには本発明は、 前記照明装置の光出射側に、液晶セルを有することを特徴 とする液晶表示装置、 に関する。  Furthermore, the present invention relates to a liquid crystal display device having a liquid crystal cell on a light emission side of the lighting device.
前記直線偏光子、照明装置、液晶表示装置は、各形成層の全部又は一部が接着 層を介して密着したものを使用できる。  As the linear polarizer, the illuminating device, and the liquid crystal display device, those in which all or a part of each forming layer is in close contact with an adhesive layer can be used.
また、本発明の広帯域コレステリック液晶フィルムは円偏光板として用いられ 、 λ/4板を組み合わせることで直線偏光子を得ることができる。 さらには吸収 型偏光子を組み合わせる等して液晶表示装置の信頼性を向上させることができる 図面の簡単な説明 The broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate, and a linear polarizer can be obtained by combining a λ / 4 plate. Furthermore, the reliability of the liquid crystal display device can be improved by combining an absorbing polarizer and the like. BRIEF DESCRIPTION OF THE FIGURES
図 1は、実施例 1〜 3および比較例 1〜 3の評価で使用した偏光板の概念図で ある。 1 :偏光板、 2 : / 4板、 3 :コレステリック液晶フィルム (円偏光板 )、 4粘着層、 である。  FIG. 1 is a conceptual diagram of a polarizing plate used in evaluations of Examples 1 to 3 and Comparative Examples 1 to 3. 1: polarizing plate, 2: / 4 plate, 3: cholesteric liquid crystal film (circular polarizing plate), 4 adhesive layers.
図 2は、実施例 1で作製したコレステリック液晶フィルムの反射スぺクトルで ある。  FIG. 2 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 1.
図 3は、 実施例 2で作製したコレステリック液晶フィルムの反射スぺクトルで ある。  FIG. 3 is a reflection spectrum of the cholesteric liquid crystal film produced in Example 2.
図 4は、実施例 3で作製したコレステリック液晶フィルムの反射スぺクトルで める。  FIG. 4 shows the reflection spectrum of the cholesteric liquid crystal film produced in Example 3.
図 5は、 比較例 1で作製したコレステリック液晶フィルムの反射スぺクトルで める。  FIG. 5 shows the reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 1.
図 6は、 比較例 で作製したコレステリック液晶フィルムの反射スぺクトルで あ 。  FIG. 6 shows the reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example.
図 7は、 比較例 3で作製したコレステリック液晶フィルムの反射スぺクトルで あ 。 発明を実施するための最良の形態  FIG. 7 is a reflection spectrum of the cholesteric liquid crystal film produced in Comparative Example 3. BEST MODE FOR CARRYING OUT THE INVENTION
本発明のコレステリック液晶フィルムは、 重合性メソゲン化合物 ) 、重合 性カイラル剤 (b ) および光重合開始剤 ( c ) を含む液晶混合物を、配向基材上 に塗布し、 次いで不活性ガス雰囲気下で紫外線重合して得られるものである。 重合性メソゲン化合物 (a ) は、重合性官能基を少なくとも 1つ有し、 これに 環状単位等からなるメソゲン基を有するものが好適に用いられる。 重合性官能基 としては、 ァクリロイル基、 メタクリロイル基、 エポキシ基、 ビニルエーテル基 等があげられるが、 これらのなかでァクリロイル基、 メタクリロイル基が好適で ある。 また、重合性メソゲン化合物 (a ) は、前述の通り、 モル吸光係数が、 5 0〜5 0 0 d m 3 m o 1 c m- 1 ® 3 6 5 n mであるものが好ましい。 かかるモ ル吸光係数を有する重合性メソゲン化合物 (a ) としては、 前述の通り、下記一 般式 ( 1 ) :
Figure imgf000010_0001
The cholesteric liquid crystal film of the present invention is obtained by applying a liquid crystal mixture containing a polymerizable mesogen compound), a polymerizable chiral agent (b) and a photopolymerization initiator (c) on an alignment substrate, and then, under an inert gas atmosphere. It is obtained by ultraviolet polymerization. As the polymerizable mesogen compound (a), a compound having at least one polymerizable functional group and having a mesogen group comprising a cyclic unit or the like is preferably used. Examples of the polymerizable functional group include an acryloyl group, a methacryloyl group, an epoxy group, and a vinyl ether group. Of these, an acryloyl group and a methacryloyl group are preferable. As described above, the polymerizable mesogen compound (a) preferably has a molar extinction coefficient of 50 to 500 dm 3 mo 1 cm -1 ® 365 nm. As described above, the polymerizable mesogen compound (a) having such a molar extinction coefficient includes the following general formula (1):
Figure imgf000010_0001
(但し、 は水素原子またはメチル基を示す。 ηは 1〜5の整数を表す。 ) で 表される化合物が好適である。 (However, represents a hydrogen atom or a methyl group. Η represents an integer of 1 to 5.).
かかる重合性メソゲン化合物 (a) の具体例として、 たとえば、下記に示され るィ匕合物があげられる。  Specific examples of the polymerizable mesogen compound (a) include, for example, the following compounds.
Figure imgf000010_0002
Figure imgf000010_0002
Figure imgf000010_0003
また、 重合性カイラル剤 (b) としては、 たとえば、 BASF社製 LC 7 56 があげられる。
Figure imgf000010_0003
Examples of the polymerizable chiral agent (b) include LC756 manufactured by BASF.
上記重合性カイラル剤 (b) の配合量は、 重合性メソゲン化合物 ) と重合 性カイラル剤 (b) の合計 100重量部に対して、 1〜20重量部禾! ^が好まし く、 3〜 7重量部がより好適である。 重合性メソゲン化合物 (a) と重合性カイ ラル剤 (b) の割合により螺旋ねじり力 (HTP) が制御される。 前記割合を前 記範囲内とすることで、得られるコレステリック液晶フィルムの反射スぺクトル が可視全域をカバーできるように反射帯域を選択することができる。 The amount of the polymerizable chiral agent (b) is 1 to 20 parts by weight based on 100 parts by weight of the polymerizable mesogen compound) and the polymerizable chiral agent (b) in total. ^ Is preferred and 3 to 7 parts by weight is more preferred. The helical torsional force (HTP) is controlled by the ratio of the polymerizable mesogen compound (a) and the polymerizable chiral agent (b). Before the percentage Within the above range, the reflection band can be selected so that the reflection spectrum of the obtained cholesteric liquid crystal film can cover the entire visible range.
光重合開始剤 (C ) としては各種のものを特に制限なく使用できる。 例えば、 チバスペシャルティケミカルズ社製のィルガキュア 1 8 4、 ィルガキュア 9 0 7 、 ィルガキュア 3 6 9、 ィルガキュア 6 5 1等があげられる。 光重合開始剤の配 合量は、重合性メソゲン化合物 ( a ) と重合性カイラル剤 (b ) の合計 1 0 0重 量部に対して、 0 . 0 1〜丄 0重量部禾號が好ましく、 0 . 0. 5〜 5重量 がよ り好適である。  Various photopolymerization initiators (C) can be used without particular limitation. For example, irgacure 184, irgacure 907, irgacure 369, and irgacure 651 manufactured by Ciba Specialty Chemicals Co., Ltd. may be mentioned. The amount of the photopolymerization initiator to be combined is preferably from 0.01 to 100 parts by weight per 100 parts by weight of the total of the polymerizable mesogen compound (a) and the polymerizable chiral agent (b). , 0.05 to 5 weight is more preferred.
また本発明においては、 重合性メソゲン化合物 ( a ) 、重合性カイラル剤 ( b ) および光重合開始剤 (c ) を含有する液晶混合物を溶媒に溶解した溶液として 用いることができる。 使用する溶媒としては、特に制限されないが、 メチルェチ ルケトン、 シクロへキサノン、 シクロペンタノン等が好ましい。 溶液の濃度は、 通常 3〜 5 0重量%程度である。  Further, in the present invention, a liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) can be used as a solution in a solvent. Although the solvent used is not particularly limited, methyl ethyl ketone, cyclohexanone, cyclopentanone and the like are preferable. The concentration of the solution is usually about 3 to 50% by weight.
本発明のコレステリック液晶フィルムの製造は、前記液晶混合物を、 配向基材 上に塗布し、次いで不活性ガス雰囲気下で紫外線重合することにより行う。 配向基材としては、 従来知られているものを採用できる。 たとえば、 基板上に ポリイミ ドゃポリビニルアルコール等からなる薄膜を形成して、 それをレーヨン 布等でラビング処理したラビング膜、斜方蒸着膜、 シンナメートゃァゾベンゼン など光架橋基を有するポリマーあるいはポリイミドに偏光紫外線を照射した光配 向膜、延伸フィルムなどが用いられる。 その他、 磁場、 電場配向、 ずり応力操作 により配向させることもできる。  The production of the cholesteric liquid crystal film of the present invention is carried out by applying the liquid crystal mixture on an alignment substrate, and then performing ultraviolet polymerization under an inert gas atmosphere. As the alignment base material, a conventionally known one can be used. For example, a thin film made of polyimide or polyvinyl alcohol is formed on a substrate, and the thin film is rubbed with rayon cloth or the like. A light directing film or a stretched film irradiated with ultraviolet rays is used. In addition, it can be oriented by magnetic field, electric field orientation, and shear stress operation.
なお、前言己基板としては、 ポリエチレンテレフタレ一ト、 トリァセチルセル口 —ス、 ノルボルネン樹脂、 ポリビニルアルコール、 ポリイミ ド、 ポリアリレート 、 ポリカーボネート、 ポリスルホンゃポリエ一テルスルホン等のプラスチックか らなるフィルム、 ガラス板、石英シートが用いられる。  The substrate may be a film made of a plastic such as polyethylene terephthalate, triacetyl cell mouth, norbornene resin, polyvinyl alcohol, polyimide, polyarylate, polycarbonate, polysulfone / polyethersulfone, a glass plate, quartz. Sheets are used.
前記液晶混合物は、配向基材に塗布した後に、 不活性ガス雰囲気下に移行させ る。 前記液晶混合物が溶液の場合には、 当該溶液を配向基材に塗布、乾燥した後 に、 不活性ガス雰囲気下に移行させる。 溶媒を揮発させる乾燥温度としては、溶 媒の沸点以上の温度であればよい。 通常、 8 0〜 1 6 0で程度の範囲で溶媒の種 類に応じて温度を設定すればよい。 The liquid crystal mixture is transferred to an inert gas atmosphere after being applied to the alignment substrate. When the liquid crystal mixture is a solution, the solution is applied to an alignment substrate, dried, and then transferred to an inert gas atmosphere. The drying temperature for volatilizing the solvent may be any temperature as long as it is higher than the boiling point of the solvent. Usually, the solvent species in the range of about 80 to 160 The temperature may be set according to the type.
前記液晶混合物の塗布厚み (溶液の場合は溶媒乾燥後の塗布厚み) は 5〜2 0 m禾 1 ^が好ましく、 7〜 1 2〃m程度がより好適である。 塗布厚みが 5 mよ り薄いと、 100 nm以上の反射帯域巾をカバ一するだけの螺旋ピッチが形成で きなくなる場合があり、 2 0 mより厚いと配向規制力が十分に作用せずに配向 不良を生じるおそれがある。  The coating thickness of the liquid crystal mixture (the coating thickness after drying the solvent in the case of a solution) is preferably 5 to 20 m 1 ^, more preferably about 7 to 12 μm. If the coating thickness is thinner than 5 m, it may not be possible to form a helical pitch sufficient to cover the reflection bandwidth of 100 nm or more.If the coating thickness is thicker than 20 m, the alignment regulating force does not act sufficiently. Poor alignment may occur.
不活性ガスは、前記液晶混合物の紫外線重合に影響を及ぼさないものであれば 特に制限されない。 かかる不活性ガスとしては、 窒素、 アルゴン、 ヘリウム、 ネ オン、 キセノン、 クリプトン等があげらる。 これらのなかでも、 窒素が最も汎用 '性が高く好ましい。 ·  The inert gas is not particularly limited as long as it does not affect the ultraviolet polymerization of the liquid crystal mixture. Examples of such inert gas include nitrogen, argon, helium, neon, xenon, and krypton. Of these, nitrogen is the most versatile and preferred. ·
紫外線照射は、配向基材側、 塗布した液晶混合物の側のいずれの側から行って もよい。  The ultraviolet irradiation may be performed from either the alignment substrate side or the applied liquid crystal mixture side.
紫外線を照射する際の重合温度としては、 140°C以下が一般的に好適である 。 具体的には 6 0〜1 40°C程度が好ましく、 8 Οΐ:〜 1 2 0°Cが好適である。 加熱によりモノマー成分の拡散速度を促進させる効果がある。 温度が 60°Cより 低いと、 重合性メソゲン化合物 (a) の拡散速度が非常に遅く、 広帯域化するの に非常に長時間を要することになる。  The polymerization temperature when irradiating ultraviolet rays is generally 140 ° C. or less. Specifically, the temperature is preferably about 60 to 140 ° C, and more preferably 80 ° to 120 ° C. Heating has the effect of accelerating the diffusion rate of the monomer component. If the temperature is lower than 60 ° C, the diffusion rate of the polymerizable mesogen compound (a) is very slow, and it takes a very long time to broaden the band.
紫外線照度は、 0. l〜20mW/cm2 が好ましく、 l〜10mW/cm2 がより好適である。 紫外線照度が 2 OmW/ cm2 を超えると重合反応速度が拡 散速度より大きくなり、広帯域ィ匕しよくなるため好ましくない。 また、照射時間 としては 5分間以下の短い時間、好ましくは 3分間以下、極めて好ましくは 1分 間以下である。 Ultraviolet illuminance is preferably 0. l~20mW / cm 2, l~10mW / cm 2 is more preferable. If the UV illuminance exceeds 2 OmW / cm 2 , the polymerization reaction rate is higher than the diffusion rate, and it is not preferable because the band broadens better. The irradiation time is as short as 5 minutes or less, preferably 3 minutes or less, and most preferably 1 minute or less.
こうして得られるコレステリック液晶フィルムは、 基材から剝離することなく 用いられる他、基材から剝離して用いてもよい。  The cholesteric liquid crystal film thus obtained is used without being separated from the substrate, and may be used while being separated from the substrate.
本発明の広帯域コレステリック液晶フィルムは円偏光板として用いられる。 円 偏光板には、 λ/4板を積層して直線偏光子とすることができる。 円偏光板であ るコレステリック液晶フィルムは、 ぇ/4板に対し、 ピッチ長が連続的に狭くな るように積層するのが好ましい。 The broadband cholesteric liquid crystal film of the present invention is used as a circularly polarizing plate. A linear polarizer can be obtained by laminating a λ / 4 plate on a circularly polarizing plate. It is preferable that the cholesteric liquid crystal film, which is a circularly polarizing plate, is laminated on the 連 続 / 4 plate so that the pitch length is continuously narrowed.
iZ4板は、面内の主屈折率を nx、 ny、厚さ方向の主屈折率を n zとした とき、式: (n x— n z ) / ( n x— n y ) で定義される N z係数が一 0 . 5〜 - 2 . 5を満足するものが好適である。 In the iZ4 plate, the in-plane main refractive index is nx and ny, and the main refractive index in the thickness direction is nz. In this case, it is preferable that the Nz coefficient defined by the formula: (nx-nz) / (nx-ny) satisfies 0.5 to -2.5.
ス / 4板としては、 ポリ力一ボネ一ト、 ノルボルネン系樹脂、 ポリビニルアル コール、 ポリスチレン、 ポリメチルメタクリレート、 ポリプロピレンやその他の ポリオレフイン、 ポリアリレ一ト、 ポリアミドの如き適宜なポリマーからなるフ ィルムを延伸処理してなる複屈折性フィルムゃ液晶ポリマーなどの液晶材料から なる配向フィルム、液晶材料の配向層をフィルムにて支持したものなどがあげら れる。 义 / 4波長板の厚きは、通常 0 . 5 ~ 2 0 であることが好ましく、 特に 1〜; L 0 0 mであることが好ましい。  For the 4th plate, stretch films made of suitable polymers such as polycarbonate, norbornene resin, polyvinyl alcohol, polystyrene, polymethyl methacrylate, polypropylene and other polyolefins, polyarylates, and polyamides. Examples include a birefringent film obtained by treatment, an alignment film made of a liquid crystal material such as a liquid crystal polymer, and an alignment layer of a liquid crystal material supported by a film. The thickness of the quarter-wave plate is usually preferably 0.5 to 20 and particularly preferably 1 to L 0 m.
可視光域等の広い波長範囲で; 1 / 4波長板として機能する位相差板は、例えば 波長 5 5 0 n mの淡色光に対して; I Z 4波長板として機能する位相差層と他の位 相差特性を示す位相差層、例えば λ / 2波長板として機能する位相差層とを重畳 する方式などにより得ることができる。 従って、 偏光板と輝度向上フィルムの間 に配置する位相差板は、 1層又は 2層以上の位相差層からなるものであってよい 前記直線偏光子の透過軸に、 吸収型偏光子をその透過軸方向を合わせて貼り合 わせて用いられる。  In a wide wavelength range such as a visible light region; a retarder functioning as a quarter-wave plate is, for example, for light-color light having a wavelength of 550 nm; a retarder functioning as an IZ four-wave plate and other positions It can be obtained by a method in which a phase difference layer exhibiting phase difference characteristics, for example, a phase difference layer functioning as a λ / 2 wavelength plate is superposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or two or more retardation layers. It is used with the transmission axis direction aligned.
偏光子は、特に制限されず、各種のものを使用できる。 偏光子としては、 たと えば、 ポリビニルアルコール系フィルム、部分ホルマ一ル化ポリビュルアルコ一 ル系フィルム、 エチレン '酢酸ビニ?レ共重合体系部分ケン化フィルム等の親水性 高分子フィルムに、 ョゥ素ゃ二色性染料等の二色性物質を吸着させて一軸延伸し たもの、 ポリビニルアルコールの脱水処理物やポリ塩化ビュルの脱塩酸処理物等 ポリェン系配向フィルム等があげられる。 これらのなかでもポリビュルアルコー ル系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。 これら偏 光子の厚さは特に制限されないが、 一般的に、 5〜8 0 m程度である。  The polarizer is not particularly limited, and various types can be used. Examples of polarizers include hydrophilic polymer films such as polyvinyl alcohol-based films, partially formalized polyvinyl alcohol-based films, and ethylene-vinyl acetate copolymer-based partially saponified films. Examples thereof include a uniaxially stretched film obtained by adsorbing a dichroic substance such as a dichroic dye, a dehydrated product of polyvinyl alcohol, a dehydrochlorinated product of polychlorinated vinyl, and a polyene-based oriented film. Among these, a polarizer made of a polybutyl alcohol-based film and a dichroic substance such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 m.
ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、 た とえば、 ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し A polarizer which is obtained by dyeing a polyvinyl alcohol-based film with iodine and uniaxially stretching is dyed, for example, by immersing polyvinyl alcohol in an aqueous solution of iodine.
、元長の 3〜 7倍に延伸することで作製することができる。 必要に応じてホウ酸 やヨウ化カリウムなどの水溶液に浸漬することもできる。 さらに必要に応じて染 色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。 ポリ ビニルアルュ一ル系フィルムを水洗することでポリビニルアルコ一ル系フイルム 表面の汚れゃブロッキング防止剤を洗净することができるほかに、 ポリビニルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果 もある。 延伸はヨウ素で染色した後に行っても良いし、 染色しながら延伸しても よし、 また延伸してからヨウ素で染色してもよい。 ホウ酸やヨウ化カリウムなど の水溶液中や水浴中でも延伸することができる。 It can be manufactured by stretching to 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution of boric acid or potassium iodide. Further dyeing if necessary Before the color, the polyvinyl alcohol-based film may be immersed in water and washed. Rinse the polyvinyl alcohol-based film with water to remove dirt on the surface of the polyvinyl alcohol-based film and the anti-blocking agent, and swell the polyvinyl alcohol-based film to create unevenness such as uneven dyeing. It also has the effect of preventing Stretching may be performed after dyeing with iodine, or may be performed while dyeing, or may be dyed with iodine after stretching. Stretching can be performed in an aqueous solution of boric acid or potassium iodide or in a water bath.
前記偏光子は、 通常、 片側または両側に透明保護フィルムが設けられ偏光板と して用いられる。 透明保護フィルムは透明性、 機械的強度、 熱安定性、 水分遮蔽 性、 等方性などに優れるものが好ましい。 透明保護フィルムとしては、 例えばポ リエチレンテレフタレート、 ポリエチレンナフタレート等のポリエステル系ポリ マ一、 ジァセチルセルロース、 トリァセチルセルロース等のセルロース系ポリマ The polarizer is usually provided with a transparent protective film on one or both sides and used as a polarizing plate. It is preferable that the transparent protective film is excellent in transparency, mechanical strength, heat stability, moisture shielding property, isotropy and the like. Examples of the transparent protective film include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, and cellulosic polymers such as diacetyl cellulose and triacetyl cellulose.
―、 ポリ力一ボネート系ポリマー、 ポリメチルメタクリレート等のアクリル系ポ リマ一等の透明ポリマ一からなるフィルムがあげられる。 またポリスチレン、 ァ クリロニトリル ·スチレン共重合体等のスチレン系ポリマ一、 ポリェチレン、 ポ リプロピレン、 環 ないしノルボルネン構造を有するポリオレフイン、 エチレン 'プロピレン共重合体等のォレフィン系ポリマー、 塩ィ匕ビュル系ポリマー、 ナイ ロンや芳香族ポリアミ ド等のアミ ド系ポリマ一等の透明ポリマーからなるフィル ムもあげられる。 さらにイミ ド系ポリマー、 スルホン系ポリマー、 ポリエーテル スルホン系ポリマー、 ポリエーテル; 3—テルケトン系ポリマー、 ポリフエ二レン スルフィ ド系ポリマー、 ビュルアルコール系ポリマー、 塩化ビニリデン系ポリマ 一、 ビニルブチラ一ル系ポリマ一、ァリレート系ポリマー、 ポリオキシメチレン 系ポリマ一、 ェポキシ系ポリマ一や前記ポリマ一のブレンド物等の透明ポリマー からなるフィルムなどもあげられる。 特に光学的に複屈折の少ないものが好適に 用いられる。 偏光板の保護フィルムの観点よりは、 トリァセチルセルロース、 ボ リ力—ボネート、 アタリル系ポリマー、 シクロォレフィン系樹脂、 ノルポルネン 構造を有するポリオレフインなどが好適である。 —, A film made of a transparent polymer such as an acrylic polymer such as a polycarbonate-based polymer or polymethyl methacrylate. Also, styrene-based polymers such as polystyrene, acrylonitrile-styrene copolymer, polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, olefin-based polymers such as ethylene-propylene copolymer, and salt-based butyl-based polymers Also, a film made of a transparent polymer such as an amide polymer such as nylon or an aromatic polyamide may be used. Furthermore, imid-based polymers, sulfone-based polymers, polyethersulfone-based polymers, and polyethers; 3-terketone-based polymers, polyphenylene sulfide-based polymers, butyl alcohol-based polymers, vinylidene chloride-based polymers, and vinyl butyral-based polymers And films made of transparent polymers such as arylate polymers, polyoxymethylene polymers, epoxy polymers and blends of the above polymers. In particular, those having low optical birefringence are preferably used. From the viewpoint of the protective film of the polarizing plate, triacetyl cellulose, polycarbonate, atheryl polymer, cycloolefin resin, polyolefin having a norpolenene structure, and the like are preferable.
また、 特開 2 0 0 1— 3 4 3 5 2 9号公報 (W O 0 1 Z 3 7 0 0 7 ) に記載の ポリマ一フィルム、 たとえば、 (A) 側鎖に置換および/または非置換イミ ド基 を有する熱可塑性樹脂と、 (B) 側鎖に置換および/非置換フヱニルならびに二 トリル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。 具体例とし てはイソブチレンと N—メチルマレイミドからなる交互共重合体とァクリロニト リル ·スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。 フィ ルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。 偏光特性や耐久性などの点より、特に好ましく用いることができる透明保護フ イルムは、表面をアル力リなどでケンィ匕処理したトリァセチルセルロースフィル ムである。 透明保護フィルムの厚さは、 適宜に決定しうるが、一般には^^ゃ取 扱性等の作業性、薄層性などの点より 10〜 5 00 m禾號である。 特に 20〜 300 um力好ましく、 3 0〜200 mがより好ましい。 Further, a polymer film described in Japanese Patent Application Laid-Open Publication No. 2001-3434929 (WO01Z37007), for example, (A) side chain substituted and / or unsubstituted De group And (B) a thermoplastic resin having a substituted and / or unsubstituted phenyl and a nitrile group in a side chain. A specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a film made of a mixed extruded product of a resin composition or the like can be used. A transparent protective film that can be particularly preferably used in view of polarization characteristics and durability is a triacetyl cellulose film whose surface has been treated with an adhesive or the like. The thickness of the transparent protective film can be determined as appropriate, but is generally from 10 to 500 m in consideration of workability such as ^^ ゃ handling and thinness. In particular, the power is preferably 20 to 300 μm, and more preferably 30 to 200 m.
また、透明保護フィルムは、 できるだけ色付きがないことが好ましい。 したが つて、 Rt h= [ (nx + ny) /2 -n z] · d (ただし、 nx、 nyはフィ ルム平面内の主屈折率、 n zはフィルム厚方向の屈折率、 dはフィルム厚みであ る) で表されるフィルム厚み方向の位相差値が一 90 nm〜十 75 nmである保 護フィルムが好ましく用いられる。 かかる厚み方向の位相差値 (Rt h) が一 9 0 nm〜十 75 nmのものを使用することにより、保護フィルムに起因する偏光 板の着色 (光学的な着色) をほぼ解消することができる。 厚み方向位相差値 (R t h) は、 さらに好ましくは一 80 nm〜十 60 nm、 特に一 70 nm〜十 4 5 nmが好ましい。  Further, it is preferable that the transparent protective film has as little coloring as possible. Therefore, Rt h = [(nx + ny) / 2 -nz] · d (where nx and ny are the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness. A protective film having a retardation value in the film thickness direction represented by the formula (1) of from 190 nm to 1075 nm is preferably used. By using such a retardation value (Rth) in the thickness direction of 190 nm to 1075 nm, coloring (optical coloring) of the polarizing plate due to the protective film can be almost eliminated. . The thickness direction retardation value (Rth) is more preferably from 180 nm to 1060 nm, particularly preferably from 170 nm to 1445 nm.
前記透明保護フィルムは、表裏で同じポリマ一材料からなる透明保護フィルム を用いてもよく、異なるポリマ一材料等からなる透明保護フィルムを用いてもよ い。  As the transparent protective film, a transparent protective film made of the same polymer material on the front and back sides may be used, or a transparent protective film made of a different polymer material or the like may be used.
前記透明保護フィルムの偏光子を接着させない面には、ハードコ一ト層ゃ反射 P方止処理、 ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を 施したものであつてもよい。  The surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer / reflection P blocking treatment, a treatment for preventing sticking, and a treatment for diffusion or anti-glare.
ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり 、例えばアクリル系、 シリコーン系などの適宜な紫外線硬化型樹脂による硬度や 滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて 形成することができる。 反射防止処理は偏光板表面での外光の反射防止を目的に 施されるものであり、従来に準じた反射防止膜などの形成により達成することが できる。 また、 ステイツキング防止処理は隣接層との密着防止を目的に施される またァンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドプラスト方式 やエンボス加工方式による粗面ィヒ方式や透明微粒子の配合方式などの適宜な方式 にて透明保護フィルムの表面に -細凹凸構造を付与することにより形成すること ができる。 前記表面微細凹凸構 の形成に含有させる微粒子としては、 例えば平 均粒径が 0 . 5〜5 0 mのシリカ、 アルミナ、 チタニア、 ジルコニァ、酸化錫 、酸化インジウム、酸化力 ドミゥム、酸ィ匕アンチモン等からなる導電性のことも ある無機系微粒子、架橋又は未架橋のポリマ一等からなる有 «微粒子などの透 明微粒子が用いられる。 表面微細凹凸構造を形成する場合、微粒子の使用量は、 表面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2〜 5 0重 量部禾! ^であり、 5〜2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光 を披散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもの であってもよい。 The hard coat treatment is performed for the purpose of preventing scratches on the surface of the polarizing plate. For example, a cured film having an excellent hardness and a sliding property by a suitable ultraviolet-curable resin such as an acrylic resin or a silicone resin is used as a transparent protective film. It can be formed by a method of adding to the surface of the substrate. Anti-reflection treatment is to prevent reflection of external light on the polarizing plate surface This can be achieved by forming an anti-reflection film or the like according to the related art. The anti-stating treatment is performed to prevent adhesion to the adjacent layer. The anti-glare treatment is performed to prevent external light from being reflected on the surface of the polarizing plate and hindering the visibility of light transmitted through the polarizing plate. It is formed by giving a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a sandblast method or an embossing method with a rough surface or a compounding method of transparent fine particles. can do. Examples of the fine particles to be included in the formation of the surface fine irregularities include silica, alumina, titania, zirconia, tin oxide, indium oxide, oxidized power, and oxidized antimony having an average particle size of 0.5 to 50 m. Transparent fine particles such as inorganic fine particles which may be conductive, such as inorganic fine particles, and organic fine particles formed of a crosslinked or uncrosslinked polymer or the like are used. When forming the fine surface unevenness structure, the amount of the fine particles used is generally 2 to 50 weight parts per 100 parts by weight of the transparent resin forming the fine surface unevenness structure; 25 parts by weight are preferred. The anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for dispersing the light transmitted through the polarizing plate and expanding the viewing angle and the like.
なお、 前記反射防止層、 ステイツキング防止層、拡散層やアンチグレア層等は 、透明保護フィルムそのものに設けることができるほか、 別途光学層として透明 保護層とは別体のものとして設けることもできる。  The anti-reflection layer, anti-stating layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or can be separately provided as an optical layer separately from the transparent protective layer.
前記直線偏光子の積層、 さらには务種光学層の積層は、液晶表示装置等の製造 過程で順次別個に積層する方式にても行うことができるが、 これらを予め積層し たのものは、 品質の安定性や組立作業等に優れていて液晶表示装置などの製造ェ 程を向上させうる利点がある。 積層には粘着層等の適宜な接着手段を用いうる。 The lamination of the linear polarizers and the lamination of the type 光学 optical layers can also be performed by a method of sequentially laminating them sequentially in the process of manufacturing a liquid crystal display device or the like. It has an advantage that it is excellent in stability and assembling work and can improve a manufacturing process of a liquid crystal display device and the like. Appropriate bonding means such as an adhesive layer can be used for lamination.
l己接着に際し、 それらの光学軸は目的とする位相差特性などに応じて適宜な配 置角度とすることができる。  l In self-adhesion, their optical axes can be set at an appropriate arrangement angle according to the target retardation characteristics and the like.
前述した直線偏光子には、液晶セル等の他部材と接着するための粘着層を設け ることもできる。 粘着層を形成する粘着剤は特に制限されないが、例えばアタリ ル系重合体、 シリコーン系ポリマ一、 ポリエステル、 ポリウレタン、 ポリアミ ド 、 ポリエーテル、 フッ素系やゴム系などのポリマーをベースポリマーとするもの を適宜に選択して用いることができる。 特に、 アクリル系粘着剤の如く光学的透 明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱 性などに優れるものが好ましく用いうる。 The above-mentioned linear polarizer may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell. The pressure-sensitive adhesive that forms the pressure-sensitive adhesive layer is not particularly limited, but includes, for example, an acryl polymer, a silicone polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer as a base polymer. Can be appropriately selected and used. In particular, an acrylic adhesive having excellent optical transparency, exhibiting appropriate wettability, cohesiveness and adhesive adhesive properties and having excellent weather resistance and heat resistance can be preferably used.
また上記に加えて、 吸湿による発泡現象ゃ剝がれ現象の防止、 熱膨張差等によ る光 性の低下や液晶セルの反り防止、 ひいては高品質で耐久性に優れる液晶 表示装置の形成性などの点より、 吸湿率が低くて耐熱性に優れる粘着層が好まし い。 .  In addition to the above, the foaming phenomenon due to moisture absorption is prevented, the phenomena are prevented from falling, the light property is reduced due to the difference in thermal expansion, etc., and the liquid crystal cell is prevented from warping. In view of the above, an adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred. .
粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、 ガラス 繊維、 ガラスビーズ、 金属粉、 その他の無機粉末等からなる充塡剤や顔料、着色 剤、酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。 また微粒子を含有して光拡散性を示す粘着層などであつてもよい。  The adhesive layer is made of, for example, natural or synthetic resins, particularly, tackifier resins, fillers, pigments, coloring agents, and antioxidants made of glass fibers, glass beads, metal powders, and other inorganic powders. The adhesive may contain an additive to be added to the pressure-sensitive adhesive layer. Further, it may be a pressure-sensitive adhesive layer containing fine particles and exhibiting light diffusibility.
粘着層の付設は、 適宜な方式で行いうる。 その例としては、例えばトルエンや 酢酸ェチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベ一スポリマーま たはその組成物を溶解又は分散させた 1 0 〜 4 0重量%程度の粘着剤溶液を調製 し、 それを流延方式や塗工方式等の適宜な展開方式で前記偏光子上に直接付設す る方式、 あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上 に移着する方式などがあげられる。 粘着層は、各層で異なる組成又は種類等のも のの重畳層として設けることもできる。 粘着層の厚さは、使用目的や接着力など に応じて適宜に決定でき、一般には 1 〜 5 0 0 mであり、 5 〜 2 0 0 が好 ましく、特に 1 0 〜 1 0 0 が好ましい。  The attachment of the adhesive layer can be performed by an appropriate method. For example, about 10 to 40% by weight of a pressure-sensitive adhesive prepared by dissolving or dispersing a base polymer or a composition thereof in a solvent consisting of an appropriate solvent alone or a mixture such as toluene or ethyl acetate. A solution is prepared, and the solution is directly attached on the polarizer by an appropriate developing method such as a casting method or a coating method, or an adhesive layer is formed on a separator according to the above, and the solution is formed on an optical element. Transfer method to the public. The adhesive layer may be provided as a superimposed layer of different compositions or types of layers. The thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use and adhesive strength, etc., and is generally 1 to 500 m, preferably 5 to 200 m, and particularly preferably 10 to 100 m. preferable.
粘着層の露出面に対しては、実用に供するまでの間、 その汚染防止等を目的に セパレータが仮着されてカバ一される。 これにより、 通例の取扱状態で粘着層に 接触することを防止できる。 セパレータとしては、上記厚さ条件を除き、例えば フ 'ラスチックフィルム、 ゴムシ一ト、紙、 布、不織布、 ネット、 発泡シートや金 属箔、 それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長 鎖アルキル系、 フッ素系や硫化モリブデン等の適宜な剝離剤でコート処理したも のなどの、 従来に準じた適宜なものを用いうる。  A separator is temporarily attached to the exposed surface of the adhesive layer for the purpose of preventing contamination and the like until practical use, and is covered. This can prevent the adhesive layer from coming into contact with the adhesive layer in a normal handling state. Except for the above thickness conditions, a suitable thin leaf such as a plastic film, rubber sheet, paper, cloth, nonwoven fabric, net, foamed sheet or metal foil, or a laminate thereof is required as the separator. Depending on the type, an appropriate material according to the prior art, such as a material coated with an appropriate release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfide, may be used.
なお、 粘着層などの各層には、 例えばサリチル酸エステル系化合物やべンゾフ ェノール系化合物、 ベンゾトリアゾール系化合物やシァノアクリレート系化合物 、 二ッケル錯塩系ィヒ合物等の紫外線吸収剤で処理する方式などの方式により紫外 線吸収能をもたせたものなどであつてもよい。 Each layer such as an adhesive layer may include, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or the like. Alternatively, a material having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbent such as a nickel complex salt compound may be used.
本発明の直線偏光子は液晶表示装置等の各種装置の形成などに好ましく用いる ことができる。 液晶表示装置の形成は、従来に準じて行いうる。 すなわち液晶表 示装置は一般に、液晶セルと光学素子、及び必要に応じての照明システム等の構 成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明 の直線偏光子を用いる点を除いて特に限定はなく、従来に準じうる。 液晶セルに ついても、例えば T N型や S T N型、 7C型などの任意なタイプのものを用いうる 液晶セルの片側又は両側に前記直線偏光子を配置した液晶表示装置や、照明シ ステムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を 形成することができる。 その場合、本発明による直線偏光子は液晶セルの片側又 は両側に設置することができる。 両側に直線偏光子を設ける場合、 それらは同じ ものであってもよいし、異なるものであってもよい。 さらに、液晶表示装置の形 成に際しては、例えば拡散板、 アンチグレア層、反射防止膜、保護板、 プリズム アレイ、 レンズアレイシート、 光拡散板、 バックライトなどの適宜な部品を適宜 な位置に 1層又は 2層以上配置することができる。 実施例  The linear polarizer of the present invention can be preferably used for forming various devices such as a liquid crystal display device. The formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical element, and an illumination system as necessary and incorporating a drive circuit. There is no particular limitation except for using, and it can be in accordance with the prior art. Any type of liquid crystal cell, such as a TN type, STN type, or 7C type, can be used.A liquid crystal display device in which the linear polarizer is disposed on one or both sides of the liquid crystal cell, or a backlight for an illumination system Alternatively, an appropriate liquid crystal display device such as one using a reflection plate can be formed. In that case, the linear polarizer according to the present invention can be installed on one side or both sides of the liquid crystal cell. When linear polarizers are provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, one layer of appropriate parts such as a diffusion plate, an anti-glare layer, an anti-reflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight is provided at an appropriate position. Alternatively, two or more layers can be arranged. Example
以下、実施例、比較例をあげて本 明を説明するが、 本発明はこれらの実施例 に限定されるものではない。  Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
なお、各例中、重合性メソゲン化合物(a ) として、 下記化合物を用いた。  In each example, the following compounds were used as the polymerizable mesogen compound (a).
Figure imgf000018_0001
モル吸光係数は、 2 2 0 d m3 m o 1 c m—1 ® 3 6 5 n mであった また、 重 合性カイラル剤 (b ) として、 B A S F社製 L C 7 5 6を用いた。 実施例 1
Figure imgf000018_0001
Molar extinction coefficient, 2 2 0 dm 3 mo 1 cm- 1 ® 3 6 5 nm and which was also a heavy polymerizable chiral agent (b), was used from BASF LC 7 5 6. Example 1
上記で示した重合性メソゲン化合物 (a) 9 6重量部、上記重合性カイラル剤 (b) 4重量部および光重合開始剤 (c) としてィルガキュア 1 84 (チバスべ シャルティケミカルズ社 ) 5重量部からなる混合物のシクロペンタノン溶液 ( 3 0重量%固体含有量) を調製した。 上記溶液を、延伸ポリエチレンテレフタレ 一ト基材にキャストし、 1 00°Cで 2分間乾燥させて溶媒を除去した。 次いで、 窒素雰囲気下で 1 1 0°Cで加熱しながら、基材側より 3mW/cm2 で 5分間紫 外線照射し、 目的のコレステリック液晶フィルムを得た。 96 parts by weight of the polymerizable mesogen compound (a) shown above, 4 parts by weight of the above-mentioned polymerizable chiral agent (b), and 5 parts by weight of Irgacure 184 (Cibas Specialty Chemicals) as a photopolymerization initiator (c) A cyclopentanone solution (30 wt% solids content) of a mixture consisting of was prepared. The solution was cast on a stretched polyethylene terephthalate substrate and dried at 100 ° C. for 2 minutes to remove the solvent. Subsequently, while heating at 110 ° C. in a nitrogen atmosphere, the substrate was irradiated with ultraviolet light at 3 mW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 2に 示す。—円偏光板は 4 5 0〜89 0 nmの範囲で良好な円偏光分離特性(反射帯域 ) を有していた。 コレステリック液晶層 (フィルム) の総合厚みは約 9〃mであ つた。 また、得られたコレステリック液晶層のピッチ長は紫外線照射面近傍 (紫 外線照射面から 1 下層) で 0. 5 4 mであり、反対面近傍 (反対面から 1 〃m下層) で 0. 1 7 mであった。  Figure 2 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). — The circularly polarizing plate had good circularly polarized light separation characteristics (reflection band) in the range of 450 to 890 nm. The total thickness of the cholesteric liquid crystal layer (film) was about 9 m. The pitch length of the obtained cholesteric liquid crystal layer is 0.54 m near the UV-irradiated surface (one layer below the UV-irradiated surface) and 0.1 mm near the opposite surface (1 mm below the opposite surface). 7 m.
ポリカーボネ一ト樹脂フィルム (厚み 8 0〃πι) を二軸延伸して得られる広視 野角 /4板(Νζ係数 =— 1. 2) に対し、得られた円偏光板を、 ピッチ長が 連続的に狭くなるような向きに、 アクリル系粘着材 (厚み 2 5 urn) にて貝占り合 わせた。 さらに、 これに日東電工製吸収型偏光板 S E G 1 4 2 5 DUを粘着材に て積層して広帯域偏光板を得た。  The pitch of the obtained circularly polarizing plate is continuous compared to the wide viewing angle / 4 plate (Νζ coefficient = —1.2) obtained by biaxially stretching a polycarbonate resin film (thickness: 80〃πι). The shells were forked by acrylic adhesive (thickness: 25 urn) so that they became narrower. Further, a broadband polarizing plate was obtained by laminating an absorption polarizing plate SEG14425DU manufactured by Nitto Denko with an adhesive.
実施例 2 , Example 2,
上記で示した重合性メソゲン化合物 (a) 9 6重量部、上記重合性カイラル剤 (b) 4重量部および光重合開始剤 (c) としてィルガキュア 9 0 7 (チバスべ シャルティケミカルズ社製) 0. 5重量部からなる混合物のシクロペンタノン溶 液 (3 0重量%固体含有量) を調製した。 上記溶液を、 延伸ポリエチレンテレフ タレ一ト基材にキャストし、 1 0 0°Cで 2分間乾燥させて溶媒を除去した。 次い で、窒素雰囲気下で 1 2 0°Cで加熱しながら、基材側より 3mW/cm2 で 5分 間紫外線照射し、 目的のコレステリック液晶フィルムを得た。 96 parts by weight of the polymerizable mesogen compound (a) shown above, 4 parts by weight of the above-mentioned polymerizable chiral agent (b), and Irgacure 907 as a photopolymerization initiator (c) (manufactured by Ciba Specialty Chemicals) 0 A cyclopentanone solution (30% by weight solids content) of a mixture consisting of .5 parts by weight was prepared. The solution was cast on a stretched polyethylene terephthalate substrate and dried at 100 ° C. for 2 minutes to remove the solvent. Next, while heating at 120 ° C. in a nitrogen atmosphere, ultraviolet irradiation was performed from the substrate side at 3 mW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 3に 示す。 得られた円偏光板は 5 1 0〜9 7 0 nmの範囲で良好な円偏光分離特性を 有していた。 コレステリック液晶層 (フィルム) の総合厚みは約 9 mであった 。 また、 得られたコレステリック液晶層のピッチ長は紫外線廡射面近傍 (紫外線 照射面から 1 u m下層) で 0. 57 mであり、 反対面近傍 (反対面から 1〃 m 下層) で 0. 3 1 mであった。 Figure 3 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). The obtained circularly polarizing plate has good circularly polarized light separating characteristics in the range of 501 to 970 nm. Had. The total thickness of the cholesteric liquid crystal layer (film) was about 9 m. The pitch length of the obtained cholesteric liquid crystal layer is 0.57 m near the ultraviolet radiation surface (1 μm below the ultraviolet irradiation surface) and 0.3 μm near the opposite surface (1 μm below the opposite surface). 1 m.
ポリカーボネート樹脂フィルム (厚み 80 m) を二軸延伸して得られる'広視 野角; 1/4板 (Nz係数 =ー 1. 2) に対し、得られた円偏光板を、 ピッチ長が 連続的に狭くなるような向きに、 アタリル系粘着材 (厚み 5 m.) にて貼り合 わせた。 さらに、 これに日東電工製吸収型偏光板 T EG 1465 DUを粘着材に て積層して広帯域偏光板を得た。  A wide viewing angle obtained by biaxially stretching a polycarbonate resin film (80 m thick); in contrast to a 1/4 plate (Nz coefficient = -1.2), the obtained circularly polarizing plate has a continuous pitch length. It was attached with an ataryl-based adhesive (5 m. Thick) so that it would be narrower. Further, an absorption type polarizing plate TEG 1465 DU manufactured by Nitto Denko was laminated on this with an adhesive material to obtain a broadband polarizing plate.
実施例 3 Example 3
上記で示した重合性メソゲン化合物 (a) 96重量部、上記重合性カイラル剤 96 parts by weight of the above polymerizable mesogen compound (a), the above polymerizable chiral agent
(b) 4重量部および光重合開始剤 (c) としてィルガキュア 36 9 (チバスべ シャルティケミカルズネ ±¾) 0. 0 5重量部からなる混合物のシクロべンタノン 溶液 (30重量%固体含有量) を調製した。 上記溶液を、延伸ポリエチレンテレ フタレート基材にキャストし、 1 00でで 2分間乾燥させて溶媒を除去した。 次 いで、窒素雰囲気下で 1 20°Cで加熱しながら、基材側より 1 lmW/cm2 で 5分間紫外線照射し、 目的のコレステリック液晶フィルムを得た。 (b) 4 parts by weight of a photopolymerization initiator and (c) irgacure 369 (Cibas chartical chemicals ± ズ) 0.0 0.05 part by weight of a mixture of cyclopentanone (30% by weight solid content) Was prepared. The solution was cast on a stretched polyethylene terephthalate substrate and dried at 100 for 2 minutes to remove the solvent. Next, while heating at 120 ° C. in a nitrogen atmosphere, the substrate was irradiated with ultraviolet light at 1 lmW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 4に 示す。 得られた円偏光板は 520〜9 20 nmの範囲で良好な円偏光分離特性を 有していた。 コレステリック液晶層,(フィルム) の総合厚みは約 9 mであった 。 また、 得られたコレステリック液晶層のピッチ長は紫外線照射面近傍 (紫外線 照射面から 1 m下層) で 0. 56 mであり、反対面近傍 (反対面から 1 m 下層) で 0. 3 1〃mであった。  Fig. 4 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). The obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 520 to 920 nm. The total thickness of the cholesteric liquid crystal layer and (film) was about 9 m. The pitch length of the obtained cholesteric liquid crystal layer is 0.56 m near the UV-irradiated surface (1 m below the UV-irradiated surface) and 0.31 m near the opposite surface (1 m below the opposite surface). m.
义/4板 (日東電工製 NRFフィルム An= 140 nm, Nz係数 =— 1. 2 ) に対し、得られた円偏光板を、 ピッチ長が連続的に狭くなるような向きに積層 し、 この軸角度に対して 1 17. 5度で /2板 (日東電工製 NRZフィルム△ n= 2 70 nm, Nz{¾=.0. 5, 視野角特性補償型) を配置した。 積層はそ れぞれアクリル系粘着材 (厚み 2 5 m) を用いた。 この場合の透過偏光軸は L /4板の軸に対して 1 0度となるので、 この方向に合わせて日東電工製吸収型偏 光子 SEG 14 2 5 DUを同様にして貼り合わせて広帯域偏光板を得た。 The obtained circularly polarizing plate is laminated on a 义 / 4 plate (Nitto Denko NRF film An = 140 nm, Nz coefficient = —1.2), in such a direction that the pitch length is continuously narrowed. A 1/2 plate (NRZ film made by Nitto Denko, n = 270 nm, Nz {¾ = .0.5, viewing angle characteristic compensation type) was placed at 17.5 degrees with respect to the axis angle. Acrylic adhesive (25 m thick) was used for each lamination. In this case, the transmission polarization axis is 10 degrees with respect to the axis of the L / 4 plate. Photon SEG 14 25 DU was bonded in the same manner to obtain a broadband polarizing plate.
比較例 1 Comparative Example 1
上記で示した重合性メソゲン化合物 (a) 96重量部、上記重合性カイラル剤 (b) 4重量部および光重合開始剤 (c) としてィルガキュア 1 84 (チバスべ シャルティケミカルズ社製) 5重量部からなる混合物のシクロペンタノン溶液 ( 30重量%固体含有量) を調製した。 上記溶液を、延伸ポリエチレンテレフタレ 一ト基材にキャストし、 1 0 (TCで 2分間乾燥させて溶媒を除去した。 次いで、 窒素雰囲気下で 80°Cで加熱しながら、基材側より 5 OmW/cm2 で 5分間紫 外線照射し、 目的のコレステリック液晶フィルムを得た。 96 parts by weight of the above polymerizable mesogen compound (a), 4 parts by weight of the above polymerizable chiral agent (b), and 5 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator (c) A cyclopentanone solution (30% by weight solids content) of a mixture consisting of was prepared. The above solution was cast on a stretched polyethylene terephthalate base material, and the solvent was removed by drying at 10 (TC for 2 minutes. Then, while heating at 80 ° C under a nitrogen atmosphere, 5 ° C was applied from the base material side. Irradiation with OmW / cm 2 was performed for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 5に 示す。 得られた円偏光板は 7 10〜880 nmの範囲で良好な円偏光分離特性を 有していた。 コレステリック液晶層 (フィルム) の総合厚みは約 9 mであった 。 また、 得られたコレステリック液晶層のピッチ長は紫外線照射面近傍 (紫外線 照射面から 1 u m下層) で 0. 5 2 mであり、反対面近傍 (反対面から 1 m 下層) で 0. 5 2 y mであった。  Figure 5 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). The obtained circularly polarizing plate had good circularly polarized light separating characteristics in the range of 710 to 880 nm. The total thickness of the cholesteric liquid crystal layer (film) was about 9 m. The pitch length of the obtained cholesteric liquid crystal layer is 0.52 m near the UV-irradiated surface (1 μm below the UV-irradiated surface) and 0.52 m near the opposite surface (1 m below the opposite surface). ym.
ポリカーボネート樹脂フィルム (厚み 80 ιη) を二軸延伸して得られる広視 野角; ΙΖ4板 (Νζ係数 =ー1. 2) に対し、得られた円偏光板を、 ピッチ長が 連続的に狭くなるような向きに、 アクリル系粘着材 (厚み 2 5 m) にて貝占り合 わせた。 さらに、 これに日東電工製吸収型偏光板 S E G 14 2 5 DUを粘着材に て積層して偏光板を得た。 ,  Wide viewing angle obtained by biaxially stretching a polycarbonate resin film (thickness 80 ιη); 円 4 plate (Νζ coefficient = -1.2), the obtained circularly polarizing plate has a continuously narrower pitch length. The shells were forked by acrylic adhesive (25 m thick) in such a direction. Further, a polarizing plate was obtained by laminating an absorption polarizing plate SEG1425DU manufactured by Nitto Denko with an adhesive. ,
比較例 2 Comparative Example 2
上記で示した重合性メソゲン化合物 (a) 96重量部、上記重合性力ィラル剤 (b) 4重量部および光重合開始剤 (c) としてィルガキュア 1 84 (チバスべ シャルティケミカルズ社製) 5重量部からなる混合物のシクロペンタノン溶液 ( 30重量%固体含有量) を調製した。 上記溶液を、延伸ポリエチレンテレフタレ 一ト基材にキャストし、 100°Cで 2分間乾燥させて溶媒を除去した。 次いで、 窒素雰囲気下で 40 °Cで加熱しながら、基材側より 3 mW/ cm2 で 5分間紫外 線照射し、 目的のコレステリック液晶フィルムを得た。 96 parts by weight of the polymerizable mesogen compound (a) shown above, 4 parts by weight of the above-mentioned polymerizable power agent (b), and 5 parts by weight as a photopolymerization initiator (c) Irgacure 184 (manufactured by Ciba Specialty Chemicals) A cyclopentanone solution (30% by weight solids content) of a mixture consisting of two parts was prepared. The solution was cast on a stretched polyethylene terephthalate substrate and dried at 100 ° C. for 2 minutes to remove the solvent. Next, while heating at 40 ° C. under a nitrogen atmosphere, the substrate was irradiated with ultraviolet light at 3 mW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 6に 示す。 得られた円偏光板は 72 0〜8 70 nmの範囲で良好な円偏光分離特性を 有していた。 コレステリック液晶層 (フィルム) の総合厚みは約 9 / mであった 。 また、得られたコレステリック液晶層のピッチ長は紫外線照射面近傍 (紫外線 照射面から 1 u m下層) で 0. 5 2 mであ 、反対面近傍 (反対面から 1 m 下層) で 0. 5 2; umであった。 Figure 6 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). Show. The obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 720 to 870 nm. The total thickness of the cholesteric liquid crystal layer (film) was about 9 / m. The pitch length of the obtained cholesteric liquid crystal layer was 0.52 m near the UV-irradiated surface (1 μm below the UV-irradiated surface) and 0.52 m near the opposite surface (1 m below the opposite surface). Um.
ポリカーボネート樹脂フィルム (厚み 80 m) を二軸延伸して得られる広視 野角 1/4板 (Nz係数=ー l . 2) に対し、 得られた円偏光板を、 ピッチ長が 連続的に狭くなるような向きに、 アクリル系粘着材 (厚み 2 5 urn) にて貝占り合 わせた。 さらに、 これに日東電工製吸収型偏光板 S EG 1 4 2 5 DUを粘着材に て積層して偏光板を得た。  In contrast to the wide viewing angle 1/4 plate (Nz coefficient = -1.2) obtained by biaxially stretching a polycarbonate resin film (80 m thick), the pitch of the obtained circularly polarizing plate is continuously narrowed. The shells were forked by acrylic adhesive (thickness: 25 urn). Furthermore, a polarizing plate was obtained by laminating an absorption polarizing plate SEG14425DU manufactured by Nitto Denko with an adhesive.
比較例 3 Comparative Example 3
上記で示した重合性メソゲン化合物 (a) 9 6重量部、上記重合性カイラル剤 96 parts by weight of the polymerizable mesogen compound (a) shown above, the polymerizable chiral agent
(b) 4重量部、 光重合開始剤 (c) としてィルガキュア 1 84 (チバスぺシャ ルティケミカルズ社製) 5重量部およびチヌビン 4 0 0 (チ, スぺシャルティ一 ケミカル社製, 紫外線吸収剤) 1重量部からなる混合物のシクロべ (b) 4 parts by weight, photopolymerization initiator (c) 5 parts by weight of irgacure 184 (manufactured by Ciba-Salty Chemicals) and Tinuvin 400 (manufactured by CHI-SPECIALI CHEMICALS, an ultraviolet absorber) 1 part by weight of the mixture
(3 0重量%固体含有量) を調製した。 上記溶液を、延伸ポ  (30 wt% solids content) was prepared. The above solution is drawn
レート基材にキャストし、 1 0 0°Cで 2分間乾燥させて溶媒を除去した。 次いで It was cast on a rate substrate and dried at 100 ° C. for 2 minutes to remove the solvent. Then
、窒素雰囲気下で 80°Cで加熱しながら、基材側より 5 OmW/cm2 で 5分間 紫外線照射し、 目的のコレステリック液晶フィルムを得た。 While heating at 80 ° C. under a nitrogen atmosphere, the substrate was irradiated with ultraviolet rays at 5 OmW / cm 2 for 5 minutes to obtain a target cholesteric liquid crystal film.
得られたコレステリック液晶フィルム (円偏光板) の反射スペクトルを図 7に 示す。 得られた円偏光板は 7 1 0〜8 6 0 nmの範囲で良好な円偏光分離特性を 有していた。 コレステリック液晶層 (フィルム) の総合厚みは約 9 mであった Figure 7 shows the reflection spectrum of the obtained cholesteric liquid crystal film (circular polarizer). The obtained circularly polarizing plate had good circularly polarized light separation characteristics in the range of 710 to 860 nm. The total thickness of the cholesteric liquid crystal layer (film) was about 9 m
。 また、 得られたコレステリック液晶層のピッチ長は紫外線照射面近傍 (紫外線 照射面から 1 u m下層) で 0. 5 1〃 mであり、反対面近傍 (反対面から 1 m 下層) で 0. 5 1〃mであった。 . The pitch length of the obtained cholesteric liquid crystal layer is 0.5〃1 m near the UV-irradiated surface (1 μm below the UV-irradiated surface) and 0.5 mm near the opposite surface (1 m below the opposite surface). 1〃m.
ポリカーボネート樹脂フィルム (厚み 80 m) を二軸延伸して得られる広視 野角义ダ4板 (Nz係数 =— 1. 2) に対し、 得られた円偏光板を、 ピッチ長が 連続的に狭くなるような向きに、 アクリル系粘着材 (厚み 2 5 ^m) にて貝占り合 わせた。 さらに、 これに日東電工製吸収型偏光板 S E G 1 4 2 5 DUを粘着材に て積層して偏光板を得た。 The pitch of the obtained circularly polarizing plate is continuously narrowed compared to the wide viewing angle 义 4 plate (Nz coefficient = 1.2) obtained by biaxially stretching a polycarbonate resin film (80 m thick). The shells were forked by acrylic adhesive (thickness: 25 ^ m) in such a way as to achieve the desired orientation. In addition, Nitto Denko's absorption type polarizer SEG 1 4 2 5 DU is used as an adhesive. To obtain a polarizing plate.
実施例および比較例で得られた (広帯域) 偏光板について下記評価を行った。 結果を表 1に示す。  The following evaluations were performed on the (wideband) polarizing plates obtained in Examples and Comparative Examples. Table 1 shows the results.
(輝度向上率)  (Brightness improvement rate)
(広帯域) 偏光板を、 1 5インチ TFT液晶表示装置に実装したときの輝度を 、 TOPCON社製 BM7により測定した。 広帯域コレステリック液晶フィルム 無しの輝度に比べて、 上昇した輝度の倍率を算出した。  (Broadband) The brightness when the polarizing plate was mounted on a 15-inch TFT liquid crystal display device was measured by BM7 manufactured by TOPCON. The magnification of the increased luminance was calculated as compared to the luminance without the broadband cholesteric liquid crystal film.
(視野角特性:色調変化)  (Viewing angle characteristics: color change)
視野角特性は、 E L D I M社製視野角測定機 E Z— CONTRASTにより、 Δχγを導き下記基準で評価した。  The viewing angle characteristics were evaluated based on the following criteria by deriving Δχγ with a viewing angle measuring device EZ-CONTRAST manufactured by EL DIM.
Δχγ= ( (χ。 — X l " + (y。 一 ) 2 ) °" 5 Δχγ = ((χ. — X l "+ (y. One) 2 ) °" 5
正面色度 (x。 , y。 ) 、 60° 色度 (X ! , y: ) Front chromaticity (x., Y.), 60 ° chromaticity (X !, y :)
i:視野角 6 0 ° における色調変ィ匕△ X yが 0. 04以下。  i: Color tone change Xy at a viewing angle of 60 ° is 0.04 or less.
不良:視野角 600 における色調変化 Δ X yが 0. 04以上。 Poor: color change Δ X y is 0.04 or more in the field of view angle of 60 0.
獻性)  Belief)
広帯域偏光板または偏光板を、 80°Cおよび 6 0T:、 90%RHの環境下で 5 00時間投入したのち、表面に析出した粉状物質の有無を目視で判定した。 なお 、粉状物質が有の場合には光学用途として問題がある。 After the broadband polarizing plate or polarizing plate was put in an environment of 80 ° C. and 60 T: 90% RH for 500 hours, the presence or absence of a powdery substance precipitated on the surface was visually determined. In the case where a powdery substance is present, there is a problem as an optical application.
表 i Table i
Figure imgf000024_0001
Figure imgf000024_0001
産業上の利用可能性 Industrial applicability
本発明の広帯域コレステリック液晶フィルムは、 円偏光板 (反射型偏光子) と して有用である。 円偏光板は直線偏光子、照明装置および液晶表示装置等に利用 できる。  The broadband cholesteric liquid crystal film of the present invention is useful as a circularly polarizing plate (reflection type polarizer). Circularly polarizing plates can be used for linear polarizers, lighting devices, liquid crystal display devices, and the like.

Claims

請求の範囲 The scope of the claims
1. 重合性メソゲン化合物 (a) 、重合性カイラル剤 (b) および光重合開始 剤 (c) を含む液晶混合物を、 配向基材上に塗布し、 不活性ガス雰囲気下で、 紫 外線重合して得られるコレステリック液晶フィルムであって、反射帯域巾が 20 0 nm以上を有することを特徴とする広帯域コレステリック液晶フィルム。 1. A liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b) and a photopolymerization initiator (c) is applied on an alignment substrate, and subjected to ultraviolet polymerization under an inert gas atmosphere. A cholesteric liquid crystal film obtained by the above method, having a reflection bandwidth of 200 nm or more.
2. コレステリック液晶フィルムのピッチ長が、紫外線放射側から連続的に狭 くなるように変化していることを特徴とする請求の範囲第 1項に記載の広帯域コ レステリック液晶フィルム。  2. The broadband cholesteric liquid crystal film according to claim 1, wherein the pitch length of the cholesteric liquid crystal film changes so as to continuously narrow from the ultraviolet radiation side.
3. 重合性メソゲン化合物 (a) が重合性官能基を 1つ有し、 重合性カイラル 剤 (b) が重合性官能基を 2つ以上有することを特徴とする請求の範囲第 1項ま たは第 2項に記載の広帯域コレステリック液晶フィルム。  3. The polymerizable mesogen compound (a) has one polymerizable functional group, and the polymerizable chiral agent (b) has two or more polymerizable functional groups. Is a broadband cholesteric liquid crystal film according to item 2.
4. 液晶混合物が、 紫外線吸収剤を含有していないことを特徴とする請求の範 囲第 1項〜第 3項のいずれかに記載の広帯域コレステリック液晶フイルム。  4. The broadband cholesteric liquid crystal film according to any one of claims 1 to 3, wherein the liquid crystal mixture does not contain an ultraviolet absorber.
5. 重合性メソゲンィ匕合物 ) のモル吸光係数が、 5 0〜5 00 dm3 mo 1一1 cm— '@ 36 5 nmであることを特徴とする請求の範囲第 1項〜第 4項のい ずれかに記載の広帯域コレステリック液晶フィルム。 5. The polymerizable mesogen conjugate has a molar extinction coefficient of 50 to 500 dm 3 mo 1 to 1 cm — '@ 365 nm, wherein the molar extinction coefficient is 50 to 500 dm 3 mo 1 to 1 cm —' @ 365 nm. The broadband cholesteric liquid crystal film according to any of the above.
6. 重合性メソゲン化合物 (a) が、 下記一般式 ( 1) :  6. The polymerizable mesogen compound (a) has the following general formula (1):
Figure imgf000025_0001
Figure imgf000025_0001
(但し、 は水素原子またはメチル基を示す。 nは 1〜5の整数を表す。 ) で 表されるィ匕合物であることを特徴とする請求の範囲第 1項〜第 5項のいずれかに 記載の広帯域コレステリック液晶フィルム。 (Wherein represents a hydrogen atom or a methyl group; n represents an integer of 1 to 5). A compound according to any one of claims 1 to 5, wherein The broadband cholesteric liquid crystal film according to any of the above-mentioned items.
7. 重合性メソゲン化合物 (a) 、 重合性カイラル剤 (b) および光重合開始 剤 (c) を含む液晶混合物を、 配向基材上に塗布し、次いで不活性ガス雰囲気下 で、紫外線重合重合することを特徴とする請求の範囲第 1項〜第 6項のいずれか に記載の広帯域コレステリック液晶フィルムの製造方法。 7. A liquid crystal mixture containing a polymerizable mesogen compound (a), a polymerizable chiral agent (b), and a photopolymerization initiator (c) is applied on an alignment substrate, and then in an inert gas atmosphere. The method for producing a broadband cholesteric liquid crystal film according to any one of claims 1 to 6, wherein ultraviolet polymerization is performed.
8. 請求の範囲第 1項〜第 6項のいずれかに記載の広帯域コレステリック液晶 フィルムを用いた円偏光板。 .  8. A circularly polarizing plate using the broadband cholesteric liquid crystal film according to any one of claims 1 to 6. .
9. 請求の範囲第 8項に記載の円偏光板に、 λ/4板を積層して得られる直線 光チ。  9. A linear light beam obtained by laminating a λ / 4 plate on the circularly polarizing plate according to claim 8.
10. 円偏光板であるコレステリック液晶フィルムを、 λ/4板に対し、 ピッ チ長が連続的に狭くなるように積層して得られる請求の範囲第 9項に記載の直線 偏光子。  10. The linear polarizer according to claim 9, which is obtained by laminating a cholesteric liquid crystal film, which is a circularly polarizing plate, on a λ / 4 plate so that the pitch length is continuously narrowed.
1 1. 請求の範囲第 9項または第 1 0項に記載の直線偏光子の透過軸に、 吸収 型偏光子をその透過軸方向を合わせて貼り合わせて得られる直線偏光子。  1 1. A linear polarizer obtained by attaching an absorption polarizer to the transmission axis of the linear polarizer according to claim 9 or 10 so that the transmission axis direction thereof is aligned.
1 2. ス/4板が、 面内の主屈折率を nx、 ny、厚さ方向の主屈折率を nz としたとき、式: (n x-n z) / (nx-ny) で定義される N z係数が一 0 . 5— 2. 5を満足する'ものであることを特徴とする請求の範囲第 9項〜第 1 1項のいずれかに記載の直線偏光子。  1 2. Assuming that the in-plane principal refractive index is nx and ny and the principal refractive index in the thickness direction is nz, the s / 4 plate is defined by the formula: (n xn z) / (nx-ny) The linear polarizer according to any one of claims 9 to 11, wherein the Nz coefficient satisfies 0.5-2.5.
1 3. 裏面側に反射層を有する面光源の表面側に請求の範囲 8記載の円偏光板 または請求の範囲第 9項〜第 1 1項のいずれかに記載の直線偏光子を有すること を特徴とする照明装置。  1 3. A circular polarizer according to claim 8 or a linear polarizer according to any one of claims 9 to 11 on the front side of a surface light source having a reflective layer on the back side. Lighting device characterized by the following.
14. 請求の範囲第 1 3項に記載の照明装置の光出射側に、液晶セルを有する ことを特徴とする液晶表示装置。 ,  14. A liquid crystal display device comprising a liquid crystal cell on the light emission side of the lighting device according to claim 13. ,
PCT/JP2004/000068 2003-01-10 2004-01-08 Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display WO2004063780A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003004406 2003-01-10
JP2003-004406 2003-01-10

Publications (1)

Publication Number Publication Date
WO2004063780A1 true WO2004063780A1 (en) 2004-07-29

Family

ID=32708952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000068 WO2004063780A1 (en) 2003-01-10 2004-01-08 Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display

Country Status (2)

Country Link
TW (1) TW200419197A (en)
WO (1) WO2004063780A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597942B2 (en) 2004-09-06 2009-10-06 Merck Patent Gmbh Polymerisable liquid crystal material
CN104834144A (en) * 2015-05-12 2015-08-12 北京科技大学 Method for preparing wide-wave reflecting film by utilizing ultraviolet polymerization synergistic effect and application of wide-wave reflecting film
WO2019073974A1 (en) * 2017-10-11 2019-04-18 富士フイルム株式会社 Reflective sheet, decorative sheet, and reflective sheet production method
CN115066637A (en) * 2020-02-06 2022-09-16 富士胶片株式会社 Optical film, liquid crystal film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI393933B (en) * 2005-04-14 2013-04-21 Merck Patent Gmbh Cholesteric film and homeotropic alignment layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506704A (en) * 1993-01-11 1996-04-09 U.S. Philips Corporation Cholesteric polarizer and the manufacture thereof
US5691789A (en) * 1995-10-30 1997-11-25 Li; Le Single-layer reflective super broadband circular polarizer and method of fabrication therefor
US6099758A (en) * 1997-09-17 2000-08-08 Merck Patent Gesellschaft Mit Beschrankter Haftung Broadband reflective polarizer
JP2002308832A (en) * 2001-04-12 2002-10-23 Nitto Denko Corp Polymerizable liquid crystal compound and optical film
JP2003262732A (en) * 2002-03-12 2003-09-19 Dainippon Printing Co Ltd Circularly polarizing element and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506704A (en) * 1993-01-11 1996-04-09 U.S. Philips Corporation Cholesteric polarizer and the manufacture thereof
US5691789A (en) * 1995-10-30 1997-11-25 Li; Le Single-layer reflective super broadband circular polarizer and method of fabrication therefor
US6099758A (en) * 1997-09-17 2000-08-08 Merck Patent Gesellschaft Mit Beschrankter Haftung Broadband reflective polarizer
JP2002308832A (en) * 2001-04-12 2002-10-23 Nitto Denko Corp Polymerizable liquid crystal compound and optical film
JP2003262732A (en) * 2002-03-12 2003-09-19 Dainippon Printing Co Ltd Circularly polarizing element and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597942B2 (en) 2004-09-06 2009-10-06 Merck Patent Gmbh Polymerisable liquid crystal material
CN104834144A (en) * 2015-05-12 2015-08-12 北京科技大学 Method for preparing wide-wave reflecting film by utilizing ultraviolet polymerization synergistic effect and application of wide-wave reflecting film
CN104834144B (en) * 2015-05-12 2018-01-02 北京科技大学 Method and the application of wide wave reflective film are prepared using ultraviolet polymerization synergy
WO2019073974A1 (en) * 2017-10-11 2019-04-18 富士フイルム株式会社 Reflective sheet, decorative sheet, and reflective sheet production method
JPWO2019073974A1 (en) * 2017-10-11 2020-11-05 富士フイルム株式会社 Reflective sheet, decorative sheet, and manufacturing method of reflective sheet
US10852459B2 (en) 2017-10-11 2020-12-01 Fujifilm Corporation Reflective sheet, decorative sheet, and method of manufacturing reflective sheet
CN115066637A (en) * 2020-02-06 2022-09-16 富士胶片株式会社 Optical film, liquid crystal film
CN115066637B (en) * 2020-02-06 2024-03-08 富士胶片株式会社 Optical film and liquid crystal film
US11966008B2 (en) 2020-02-06 2024-04-23 Fujifilm Corporation Optical film and liquid crystal film

Also Published As

Publication number Publication date
TW200419197A (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP4008358B2 (en) Method for producing broadband cholesteric liquid crystal film
US7365816B2 (en) Liquid crystal display
KR101017887B1 (en) Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
WO2009150779A1 (en) Elliptical light polarizing plate and vertically oriented liquid crystal display device using the same
WO2004090590A1 (en) Optical element, polarization element, and illuminating device and liquid crystal display unit
US20070064168A1 (en) Optical element, light condensation backlight system, and liquid crystal display
JP2008129175A (en) Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same
TWI383181B (en) Method for manufacturing a wide-frequency twisted layer liquid crystal film, a circularly polarizing plate, a linear polarizing element, a lighting device, and a liquid crystal display device (2)
JP2004287416A (en) Method of manufacturing inclined alignment film, inclined alignment film and image display device
WO2004088366A1 (en) Process for producing wideband cholesteric liquid crystal film, circular polarization plate, linear polarizer, lighting apparatus and liquid crystal display
WO2005116700A1 (en) Elliptical polarizing plate and image display
JP4404623B2 (en) High brightness polarizing plate and image display device
JP4133839B2 (en) Method for producing broadband cholesteric liquid crystal film
KR100910954B1 (en) Optical element, condensing backlight system and liquid crystal display unit
JP2004233988A (en) Wide-band cholesteric liquid crystal film, its manufacturing method, circular polarizing plate, linear polarizer, illumination apparatus and liquid crystal display
JP2004198478A (en) Optical retardation film, luminance-improving film, optical film, and image display device
JP2004302075A (en) Method for manufacturing wideband cholesteric liquid crystal film, circularly polarizing plate, linearly polarizing element, lighting device and liquid crystal display
JP2005308988A (en) Circularly polarized reflection polarizing plate, optical element, convergent back light system, and liquid crystal display apparatus
WO2004063780A1 (en) Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JP2004258613A (en) Method for manufacturing optical retardation plate
JP2004279438A (en) Optical film and image display device
JP2004219522A (en) Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device
JP4233443B2 (en) Optical film and image display device
JP2004212911A (en) Method of manufacturing wide band cholesteric liquid crystal film, circular polarizing plate, linear polarizer, lighting device and liquid crystal display device
JP2004219540A (en) Wide band cholesteric liquid crystal film, its manufacture method, circularly polarizing plate, linear polarizer, illuminator and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP