WO2004020470A1 - Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease - Google Patents

Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease Download PDF

Info

Publication number
WO2004020470A1
WO2004020470A1 PCT/JP2003/002346 JP0302346W WO2004020470A1 WO 2004020470 A1 WO2004020470 A1 WO 2004020470A1 JP 0302346 W JP0302346 W JP 0302346W WO 2004020470 A1 WO2004020470 A1 WO 2004020470A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
cysteine protease
treated
atelocollagen
treated collagen
Prior art date
Application number
PCT/JP2003/002346
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Morimoto
Ben'ichiro Tonomura
Takafumi Yoshikawa
Original Assignee
Tissue Engineering Initiative Co., Ltd.
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tissue Engineering Initiative Co., Ltd., Kinki University filed Critical Tissue Engineering Initiative Co., Ltd.
Priority to JP2004532678A priority Critical patent/JP4490268B2/en
Priority to AU2003211379A priority patent/AU2003211379A1/en
Publication of WO2004020470A1 publication Critical patent/WO2004020470A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/17Amino acids, peptides or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/65Collagen; Gelatin; Keratin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • A61L15/325Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/04Materials for stopping bleeding

Definitions

  • the present invention relates to collagen, a method for producing the same, and uses thereof. Specifically, it relates to cysteine protease-treated collagen, its production method, and its use. Background art
  • Collagen which is a main protein constituting connective tissue and bone tissue between cells in animals, is widely used in fields such as cosmetics, food additives and medical materials.
  • collagen-containing materials include, for example, food additives; cosmetic materials; solvents for preparing artificial skin, hemostatic sponges, bone reconstituting materials, and soft tissue fillers. Is being applied to medical materials.
  • collagen which is widely used at present, is often extracted and purified from dermis or bones of calves and pigs.
  • skins such as calves contain hairs and fats, so pretreatment is required to remove them.
  • the yield of acid-soluble collagen to be purified is not as high as about 5%.
  • Complicated operations may be required in some cases, such as the necessity of a process for removing the causative substances that cause infection and disease among livestock and an analysis process.
  • the amount of collagen obtained from one animal was relatively small. For this reason, while maintaining excellent functions, it is possible to apply collagen to biomaterials and the like by a simple method that does not require complicated steps caused by infection between livestock and the like. Appearance was also required.
  • the present invention has been made based on the background art as described above, and has excellent biocompatibility, excellent moisturizing effect, excellent hemostatic power, and excellent cell (embryo) culture technology in vitro. It is an object to provide a highly functional collagen having properties and a method for producing the same. Disclosure of the invention
  • cysteine protease-treated collagen The collagen obtained by contacting collagen or atelocollagen and cysteine protease (it may be hereafter called “cysteine protease-treated collagen") force Biocompatibility.
  • cysteine protease-treated collagen The collagen obtained by contacting collagen or atelocollagen and cysteine protease (it may be hereafter called “cysteine protease-treated collagen") force Biocompatibility.
  • cysteine protease-treated collagen Such cysteine protease-treated collagen has a unique network-like aggregate structure, and fibrosis is inhibited.
  • the method for producing collagen treated with cysteine protease according to the present invention is characterized by contacting collagen or atelocollagen with cysteine protease.
  • the collagen treated with cysteine protease according to the present invention is obtained by contacting collagen or atelocollagen with cysteine protease.
  • the collagen or atelocollagen is preferably fish or bird or mammal-derived collagen or atelocollagen, and more preferably fish-derived collagen or atelocollagen.
  • the cysteine protease-treated collagen has a triple helical structure in which one cysteine protease-treated collagen molecule is composed of three polypeptide chains, and a network-like aggregate structure is formed by a plurality of cysteine protease-treated collagen molecules.
  • the cysteine protease-treated collagen inhibits fibrosis into one fiber by a plurality of cysteine protease-treated collagen molecules.
  • the temperature at which the cysteine protease-treated collagen is denatured by heat is preferably 25 ° C. or higher.
  • the cosmetic according to the present invention is characterized by containing the cysteine protease-treated collagen.
  • the medical material according to the present invention is characterized by containing the cysteine protease-treated collagen.
  • the food additive according to the present invention is characterized by containing the cysteine protease-treated collagen.
  • the culture material for cells, tissues or embryos according to the present invention is characterized in that it contains the cysteine protease-treated collagen.
  • FIG. 1 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol ZL acetate buffer, H 4.0) of atelocollagen.
  • FIG. 2 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol / L acetate buffer, H 4.0) of cysteine protease-treated collagen.
  • FIG. 3 is a photograph showing an example of an electron micrograph image (40,000 times) of gelatin.
  • FIG. 4 is a schematic diagram showing an example of type I collagen that forms fibers existing between cells and type IV collagen that exists near the cell membrane. In FIG. 4, 1 indicates cells, 2 indicates cells, 3 indicates type I collagen, and 4 indicates type IV collagen.
  • FIG. 5 is a photograph showing the results of analysis of purified cysteine protease-treated collagen by 7.5% SDS polyacrylamide gel electrophoresis.
  • FIG. 6 is a chart showing peaks of ⁇ 1 and ⁇ 2 components of cysteine protease-treated collagen and ⁇ 1 and a2 components of atelocollagen measured by cation exchange chromatography.
  • Figure 7 shows the optical microscope of the collagen-containing solution treated with cysteine protease after air drying. It is a photograph by a mirror. (Magnification: 100 times)
  • FIG. 8 is a photograph taken by an optical microscope after the air-collagen-containing solution is air-dried. (Magnification: 100 times)
  • FIG. 9 is a photograph showing an example of an electron micrograph image (60,000-fold, 50 mmol ZL phosphate buffer, H7.4) of cysteine protease-treated collagen.
  • FIG. 10 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol / L phosphate buffer, ⁇ 7.4) of atelocollagen.
  • FIG. 11 is a graph showing the relative solubilities of atelocollagen and cysteine protease-treated collagen in ethanol.
  • FIG. 12 is a photograph showing the results of 5% SDS-polyacrylamide gel electrophoresis of atelocollagen and its cysteine protease-treated collagen from the tail of the rabbit's ear.
  • FIG. 13 is a photograph showing the results of 5% SDS-polyacrylamide gel electrophoresis of chicken cartilage-derived atelocollagen and its cysteine protease-treated collagen.
  • the cysteine protease-treated collagen according to the present invention (hereinafter sometimes referred to as “CP-collagen”) can be obtained by contacting collagen or atelocollagen with cystine protease.
  • the collagen used in the present invention includes, for example, mammals such as sea lions, pigs, and egrets, birds such as chickens, animal dermis, tendons, bones, fascia, etc., and fish such as sharks, koi, and tuna. Collagen derived from the skin, scales and the like.
  • the atelocollagen used in the present invention includes, for example, dermis, tendons, bones, and fascia of animals such as mammals such as horses, pigs, and egrets, and birds such as chickens.
  • Atelocollagen which uses collagen-rich tissue such as fish skin and scales such as shark, carp and tuna as raw materials, and removes the telopeptide region at the amino-terminal and carboxyl-terminal of the molecule with pepsin etc. Is mentioned.
  • fish-derived collagen or atelocollagen can be preferably used.
  • atrate collagen can be preferably used.
  • tuna such as yellowfin tuna, carp, and eel are mentioned, and of these, tuna can be more preferably used.
  • telocollagen those having a heat denaturation temperature of preferably 20 ° C. or higher, more preferably 25 ° C. or higher are desirable.
  • tuna such as yellowfin tuna and atelocollagen such as carp
  • the denaturation temperature of cysteine protease-treated collagen can be adjusted to preferably 20 ° C. or higher, more preferably 25 ° C. or higher, by using such a substance. It is possible to obtain collagen whose denaturation temperature is significantly higher than the denaturation temperature of collagen (about 20 ° C). Therefore, atelocollagen derived from tuna is excellent in storage stability and utility value. Furthermore, in the case of a mug, it is possible to obtain a large amount and uniform performance of cysteine protease-treated atelocollagen in a large amount and with uniform performance due to the large catches and uniformity of the catching period.
  • the atelocollagen used in the present invention is usually one fibrous association with atelocollagen molecules, as shown in the photograph taken with an electron microscope (600,000 magnification) in FIG. It is a fibrillated atelocollagen that forms a coalescence, with little intermolecular space.
  • the atelocollagen molecule is a portion having a stripe pattern in an electron microscope image.
  • the atelocollagen is usually composed of various components, and the composition ratio thereof is not limited because it differs depending on the raw material of the atelocollagen.
  • Such atelocollagen usually contains at least four kinds of components, i.e., ⁇ 2 components, i.e. and gamma component.
  • the constituent unit of the triple helix structure, ⁇ 1 component and 2 components are both single-stranded left-handed spirals, have different molecular weights, and ⁇ component has two ⁇ components covalently bonded between molecules.
  • the ⁇ component is a component of a dimer structure
  • the ⁇ component is a component of a trimeric structure in which three ⁇ components are covalently bonded between molecules.
  • these components of the atelocollagen molecule form a right-handed triple helical structure.
  • the molecular weight of the ⁇ component is usually preferably 90,000 to 130,000, the molecular weight of the component is usually 180,000 to 260,000, and the molecular weight of the ⁇ component is usually 270,000 to 390,000. 000 is desirable.
  • Each component can be easily separated by a known method such as electrophoresis.
  • the collagen or atelocollagen used in the present invention is usually insoluble in a neutral ⁇ aqueous solution.
  • Such collagen or atelocollagen can be extracted from animals or fish by a known method.
  • a tissue rich in collagen such as the dermis, tendons, bones, and fascia of the mammal, bird or fish, is put into an acidic solution of about ⁇ ⁇ 2 to 4, eluted, and pepsin is added thereto to add Remove the telopeptide region.
  • a salt such as sodium chloride is added to the acidic solution of atelocollagen to obtain a precipitate containing atelocollagen.
  • cysteine protease that can be used in the present invention is a known cystine protease, and the type thereof is not particularly limited. Among them, for example, cysteine protease has a larger amount of acidic amino acids than a basic amino acid. Among them, those which are active at the hydrogen ion concentration in the acidic region can be preferably used.
  • Acti-Dyne enables effective contact reaction, especially with atelocollagen derived from tuna, and significantly reduces or substantially reduces the content of i3 component and ⁇ component contained in the resulting cysteine protease-treated collagen. ] 3, ⁇ / component can be removed. As a result, it is possible to obtain uniform cysteine protease-treated collagen with a large amount of ⁇ component and high purity. It is also presumed that the covalent bond between the components of the cysteine protease-treated collagen molecule is lacking.
  • cysteine proteases can be obtained by known methods, for example, chemical synthesis, extraction from cells or tissues of bacteria and fungi, or various animals and plants, cultured cells thereof, and cysteine derived therefrom. It can be obtained from recombinant protein of protease by genetic engineering means.
  • the cysteine protease-treated collagen according to the present invention can be obtained by contacting the collagen or atelocollagen with the cysteine protease.
  • the contact between the cysteine protease and collagen or atelocollagen can be performed in a solvent.
  • a solvent for example, water can be used as the solvent.
  • the amount of the solvent is preferably in the range of 1 to 1000 parts by mass with respect to 1 part by mass of collagen or atelocollagen.
  • the amount of cysteine protease used for the contact is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of collagen or atelocollagen.
  • the conditions for contacting the cysteine protease with collagen or atelocollagen are not limited to pH, temperature, and treatment time, and the contact can be carried out in the same manner as a normal enzyme treatment.
  • pH is preferably 2. It is desirable to carry out in the range of 0 to 7.0, more preferably in the range of 3.0 to 5.0. In order to keep the pH constant, it is preferable to carry out the reaction in a buffer solution. By setting the pH within the above range, collagen or mouth-mouth collagen is uniformly dissolved, and there is an effect that the enzyme reaction proceeds efficiently.
  • the contact temperature is, for example, preferably in the range of about 15 to 4 ° C.
  • the contact time is, for example, preferably in the range of about 1 hour to 5 days.
  • a step of readjusting the pH and a step of inactivating the enzyme may be performed, if necessary. Further, a purification step for removing impurities may be performed.
  • a purification step for removing impurities may be performed.
  • the cysteine protease-treated collagen thus obtained preferably has a triple helical structure in which one cysteine protease-treated collagen molecule is composed of three polypeptide chains, and is formed into a network by a plurality of cysteine protease-treated collagen molecules. It is desirable that an aggregate structure is formed.
  • the cysteine protease-treated collagen of the present invention preferably inhibits fibrosis into a single fiber by a plurality of cysteine protease-treated collagen molecules, and preferably has a fibrous form such as the atelocollagen. Has substantially no aggregate structure.
  • Such cysteine protease-treated collagen has a stable three-dimensional network structure irrespective of changes in pH.
  • network refers to a structure in which molecules are connected to form a three-dimensional network by chemical bonding or Van der Waals bonding, and a gap is formed therebetween.
  • an association is defined as a case where the same kind of molecule is not formed by a covalent bond. More than one molecule interacts and binds to form one structural unit.
  • FIG. 2 is an electron micrograph (6000 ⁇ magnification) showing an example of the cysteine protease-treated collagen of the present invention.
  • the collagen of the cysteine protease-treated collagen of the present invention is a thin filamentous molecule. Is a structure that shows a three-dimensional network-like aggregate formed by irregularly binding, similar to collagen called fabril (Fabril associated collagens with interrupted triple helix), which inhibits the fibrosis of the three-dimensional structure.
  • the structure is similar to the type IV collagen present in the basement membrane morphologically, that is, it has many spatial gaps.
  • the fact that collagen has a triple helical structure can be easily confirmed by a known method, for example, a circularly polarized two-color spectrum.
  • the raw material atelocollagen is fibrotic atelocollagen in which atherocollagen molecules form a single fibrous aggregate, and the intermolecular space There is almost no.
  • the cysteine protease-treated collagen according to the present invention has a high water retention effect because water molecules are easily taken into the gaps between the cysteine protease-treated collagen, and also has an excellent hemostatic effect because it is easy to take in cells such as red blood cells and platelets. In addition, it has a unique property that it is highly effective as a material for culturing various cells and embryos in vitro.
  • type IV collagen 4 that forms a fiber such as the above-mentioned atelocollagen in the center between cells In the vicinity of the basement membrane between cells, type IV collagen 4 having a three-dimensional structure that does not form a fiber aggregate is present.
  • a method for extracting type I collagen from intercellular matrix has been established, but according to a study by the present inventors, it has a network-like aggregate structure like type IV collagen and inhibits fibrosis.
  • An effective preparation method has not been established for the collagen thus prepared, and the present invention is extremely useful as a means for easily providing a novel type IV collagen-like aggregate.
  • the cysteine protease-treated collagen according to the present invention contains ⁇ components such as ⁇ ⁇ component and ⁇ 2 component as components, and does not substantially contain i3 component and ⁇ component.
  • the molecular weight of the al and a2 components is preferably 90,000 to 130,000.
  • the cysteine protease-treated collagen according to the present invention is preferably dissolved in a neutral ⁇ aqueous solution. This is significantly different from the fact that the raw material aterocollagen is insoluble in neutral ⁇ aqueous solution, and that various collagens including natural fasit ⁇ type IV collagen are insoluble in neutral ⁇ aqueous solution. This is very different.
  • the cysteine protease-treated collagen according to the present invention usually has a triple helical structure due to heat denaturation, but does not gel. This is very different from the fact that collagen generally undergoes thermal transformation into gelatin (having a triple helical structure) and gels when cooled. In addition, as shown in an electron micrograph ( ⁇ 40000) showing an example of the structure of gelatin in FIG. 3, the fibrous structure or network structure of gelatin has collapsed.
  • collagen containing natural fasit and type IV collagen are different from the cysteine protease-treated collagen according to the present invention.
  • the ⁇ 1 component and the ct2 component of the cysteine protease-treated collagen according to the present invention are different in surface charge of each ⁇ component from those of the natural atelocollagen as a raw material. I have. For example, as shown in FIG.
  • the ⁇ 1 component and the ⁇ 2 component of the cysteine protease-treated collagen according to the present invention usually give a total of four peaks by cation exchange chromatography, and ⁇ alpha 1 terrorist in collagen, alpha 2 component is usually given a total of six peaks, elution time of these peaks are all different. Therefore, it can be inferred that the surface charges are different.
  • cysteine protease-treated collagen according to the present invention has remarkably improved solubility in alcohol such as ethanol as compared with atelocollagen. For this reason, it has excellent solubility in cosmetics and the like to which ethanol is added, and it is possible to add cysteine protease-treated collagen at a high concentration.
  • cysteine protease-treated collagen of the present invention is a raw material. It has properties that are not found in collagen or atelocollagen, indicating that the function that is the starting point of interaction with biological materials has been significantly changed.
  • the cysteine protease-treated collagen according to the present invention preferably has a denaturation temperature of 25 ° C. or higher, more preferably 28 ° C. or higher, by heat. Therefore, handling at room temperature is easy.
  • atelocollagen is derived from fish
  • tuna or the like as the raw fish in order to obtain cysteine protease-treated collagen at such a denaturation temperature.
  • the cysteine protease-treated collagen of the present invention can be crosslinked and used as polymerized cysteine protease-treated collagen.
  • the crosslinking treatment can be performed by a conventionally known method.
  • Examples of the method include a method using chemical crosslinking, a method of crosslinking by heat treatment, and a method of crosslinking by irradiation with radiation such as ultraviolet rays.
  • crosslinking agent used in the chemical crosslinking examples include water-soluble carpoimide compounds such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride; epichlorohydrin; diepoxy conjugates such as bisepoxydiethylene glycolone; And the like.
  • concentration of the crosslinking agent with respect to cis Tin protease treatment collagen preferably 1 0 one third to one approximately 0 wt%, preferably in the range of. 5 to 4 0 ° C, preferably about 3 to 4 8 hours,
  • the cysteine protease-treated collagen of the present invention is irradiated with ultraviolet rays, for example, by an ultraviolet lamp, usually at room temperature for about 3 to 48 hours to obtain crosslinked cysteine protease-treated collagen. Can be done.
  • the cysteine protease-treated collagen according to the present invention is heated under reduced pressure, preferably at a temperature of about 110 to 160 ° C., for about 3 to 48 hours, so that the cysteine protease-treated collagen is treated.
  • Collagen can be obtained.
  • Such cross-linked cysteine protease-treated collagen is resistant to collagenogen. Zinc properties and strength can be improved.
  • the collagen treated with cysteine protease according to the present invention has high solubility in alcohol such as ethanol.
  • alcohol such as ethanol
  • Examples of the type of chemical modification include, for example, Asinorei-Dani, Myristi / Rai-Dani, and polyethylene glycol modification.
  • succinylated cystine protease-treated collagen which is an acylation modification, reacts the cystine protease-treated collagen of the present invention with anhydrous succinic acid in a neutral pH solvent such as a phosphate buffer. You can get it. By saccharifying, the solubility of more neutral pH in a solvent can be improved, and the feel when used can be improved.
  • the cysteine protease-treated collagen modified with polyethylene glycol can be obtained by reacting with polyethylene dalicol activated with cyanuric chloride.
  • the cysteine protease-treated collagen according to the present invention can be suitably used for food additives, medical materials, cosmetic materials, cell or embryo culture materials, and the like.
  • the cysteine protease-treated collagen of the present invention can be used in cosmetics because it has excellent moisture uptake performance, a high moisturizing effect, and excellent biocompatibility.
  • it can be suitably used by adding to basic cosmetics and the like.
  • a cosmetic containing the cysteine protease-treated collagen of the present invention to inflamed skin, symptoms can be reduced.
  • the cysteine protease-treated collagen of the present invention has a high uptake performance of red blood cells and platelets, has a high hemostatic effect, and is excellent in biocompatibility, and thus can be suitably used as a medical material.
  • the cysteine protease-treated collagen of the present invention is excellent in biocompatibility, has no problem for food use, and can be suitably used as a food additive.
  • the cysteine protease-treated collagen of the present invention is expected to have an excellent effect on culturing various cells, tissues or embryos as an extracellular matrix, can be used safely, and can be used as a cell culture stabilizer. It is suitable.
  • tissue refers to a living organism that is surrounded by a membrane structure that isolates the outside world, has transit information with self-renewal capability inside, and has an expression mechanism.In a multicellular organism, it is a structural unit of tissue
  • tissue refers to a cell population that differentiates in a specific direction and has the same function and morphology
  • embryo refers to a multicellular organism at an early stage of ontogeny.
  • the cysteine protease-treated collagen according to the present invention has a network structure, is inhibited from fibrosis, has excellent ability to take in water molecules or erythrocytes, and is excellent in biocompatibility. Also, it has excellent moisturizing effect, hemostatic power and cell retention power.
  • sodium salt was added and dissolved at a concentration of 2.5 mol / L, left at 4 for 16 hours, and centrifuged at lOXOX g for 30 minutes to collect the precipitate. .
  • the mouth-collagen obtained in Preparation Example 1 was dialyzed three times with 4 against 100 volumes of 20 mmol / L citrate buffer (pH 3.0). After dialysis, a cysteine protease (actinidyne) was added to the atelocollagen so that the weight was 1.0 / 0 . The mixture was stirred at a temperature of 20 ° C. for 3 days to obtain a crude product.
  • a cysteine protease actinidyne
  • the resulting crude product was purified by cation exchange chromatography.
  • a TSKgel SP-Toyopearl 650M column (trade name: manufactured by Tosoh Corporation) obtained by equilibrating the crude product with 2 Ommol / L citrate buffer ( ⁇ 3.5) (hereinafter referred to as “ ⁇ solution”) ), And the components that did not adsorb to the gel were washed by flowing 30 A mL of solution A.
  • 2 Ommol / L citrate buffer containing 1.5 mol / L sodium chloride pH 3.5
  • the ⁇ 1, a2 components fractionated from the atelocollagen prepared in Preparation Example 1 and the purified cysteine protease-treated collagen were measured by cation chromatography.
  • the ⁇ 1 component and ⁇ 2 component contained in the atelocollagen usually give six peaks by cation chromatography or the like, whereas the cysteine proteinase-treated collagen according to the present invention usually has four peaks. Only one peak was given, and the elution times of atelocollagen and the ⁇ component of cysteine protease-treated collagen were all different.
  • the atelocollagen (FIG. 1) formed a typical fibrous aggregate structure in which the triple helical structure was regularly arranged, whereas the cysteine protease-treated collagen according to the present invention (FIG. 2). ) was confirmed to have an irregular, mesh-like aggregate structure with many gaps.
  • Atelocollagen and cysteine protease-treated collagen were separately dissolved in 5 O mmol / L acetate buffer (pH 4.0), and 1 O / z L was dropped on the slide glass. Leave to dry for 6 hours. Each dried sample was analyzed with an optical biological microscope (manufactured by Shimadzu Corporation). As a result, it was confirmed that the collagen treated with cystine protease (FIG. 7) exhibited a finer pattern than the atelocollagen (FIG. 8). In addition, when the viscosity of each was analyzed by surface tension (droplet weight method), it was confirmed that collagen treated with cysteine protease had higher viscosity than atelocollagen.
  • a 10-week-old Os Wistar rat was anesthetized with ether, anesthetized by intraperitoneal administration of chloral hydrate, the tip of the spleen was partially removed, and bleeding was performed with a 18-G needle.
  • Cysteine protease-treated collagen and atelocora at bleeding sites Each gen was placed and the bleeding stopped.
  • the average time required for hemostasis in each test group was 86 seconds for atelocollagen, 39 seconds for cysteine protease-treated collagen, and 91 seconds for collagen hemostat (commercially available).
  • FIGS. 9 and 10 show photographs of each dialysis solution obtained by treating cysteine protease-treated collagen and atelocollagen self-aggregate with different pH buffer solutions. From the electron micrographs of FIGS. 1, 2, 9, and 10, it was confirmed that the atelocollagen self-aggregate forms a fibrous structure even when the pH (4.0 to 7.4) is different. It was confirmed that the collagen treated with cysteine protease did not form a fibrous structure in this pH range but formed a three-dimensional network structure.
  • Ethanol was added to each of the cysteine protease-treated collagen solution and the atelocollagen solution to a final concentration of 0, 10, 15, 20, 40, 60, 80% (VV) and mixed. After leaving at 4 for 1 hour, the supernatant was separated by centrifugation at 10,000 g for 30 minutes. The concentration of collagen contained in the supernatant was determined by measuring the absorbance at 21 O nm.
  • the relative ratio (%) of the absorbance at each ethanol concentration was calculated with the absorbance at 210 nm of the cysteine protease-treated collagen supernatant solution and the atherocollagen solution at 0% ethanol concentration as 100%. That is, here, the relative ratio is expressed as being directly proportional to the solubility.
  • Figure 11 shows the results.
  • the relative ratio of atelocollagen solution was 15% at 15% ethanol concentration, but the relative ratio of cysteine protease treated at the same ethanol concentration was 100%. It was confirmed that the solubility of collagen at 0% and 15% ethanol concentration did not change. In addition, the relative ratio at 20% ethanol concentration was only 6% for atelocollagen but 80% for cysteine protease-treated collagen. The ethanol concentration giving 50% solubility showed a difference of about 10% between atelocollagen and cysteine protease-treated collagen.
  • high solubility in ethanol has the following advantages. That is, for example, in cosmetics, ethanol is often added, and the higher the solubility in ethanol, the higher the concentration of cysteine protease-treated collagen can be added. Therefore, cysteine protease-treated collagen The effect of the addition can be further enhanced.
  • cysteine protease-treated collagen according to the present invention has high solubility in ethanol even without special chemical modification as described above, and there is no fear of deterioration in properties due to the chemical modification.
  • cysteine protease-treated collagen is modified by acylation to ethanol. It is also possible to increase the solvability, in which case it is presumed that the higher the concentration, the smoother the touch, the less powdery and the more effective cosmetics.
  • the cysteine protease-treated collagen has a high solubility, it is possible to prepare a sample by uniformly dispersing it even in a high-concentration aqueous ethanol solution. Therefore, it can be used in various fields. Furthermore, by adding cystine protease-treated collagen to ethanol and evaporating the solvent, a uniformly dispersed solid can be obtained. This can be used for forming a multilayer film. Amount of water evaporation of collagen
  • Atelocollagen 0.5% atelocollagen solution dissolved in 20 mmol / L acetate buffer (pH 4.0)
  • one 24-well plastic plate (Libro, manufactured by ICN) with a 16-mm diameter (2.0 mm 2 ) was prepared, and the weight (tare) was measured.
  • Each plate was placed in an incubator at 22 ° C and a humidity of 50% to 60%, and was left as it was for 11 hours, 13 hours, 14 hours, 18 hours, 22 hours, 30 hours, and 37 hours.
  • the weight of each plate was measured with an electronic balance, the tare weight and the protein concentration were measured, and the amount of water evaporation was determined.
  • the protein weight 0.5 mg ZmL was subtracted from the weight of the solution of atelocollagen and cysteine protease-treated collagen (CP collagen) added at 0 hours, and the respective water amounts W (0).
  • W (0) force of atelocollagen and cysteine protease-treated collagen Calculate coefficients to be equal to W (0) of S control, correct W (t) at each time with each correction coefficient, and calculate W £ (t). Calculated.
  • dW '(t) was calculated by subtracting W (0) from the solution weight W' (t) at each time. Relative ratio of weight change dW '(t) of solution at each time, assuming dW (37) of control weight change after standing for 37 hours as 100%
  • atelocollagen showed a gradual decrease in the effect of inhibiting water evaporation from the control, from 6% after 13 hours, and showed little difference from the control after 18 hours. . In other words, the effect of suppressing water evaporation was lost over time.
  • cysteine protease-treated collagen showed a 10% reduction in water evaporation compared to the control after 13 hours. Even more surprisingly, this remarkable water evaporation suppression effect was 10.5% even after 22 hours, and it was confirmed for the first time that the water evaporation suppression effect lasted for a long time. From this experimental result, it was clarified that the water retention capacity of cysteine protease-treated collagen was significantly different from that of atelocollagen.
  • Eg of the heron 5.45 g and 18.2 g of the tail were each finely chopped, and 10 OmL of an O.lmol / L acetic acid aqueous solution was added, followed by pulverization with a Perling blender. After stirring at 4 ° C. for 3 days, the mixture was centrifuged at 10, OX g for 30 minutes to obtain a primary supernatant of each sample. Further, 10 OmL of a 10 Ommol / L acetic acid aqueous solution was added to the precipitated portion, and the mixture was stirred and centrifuged in the same manner to obtain a secondary supernatant.
  • porcine pepsin manufactured by Cygnet
  • bovine pepsin manufactured by Cygnet
  • the precipitate was collected with care.
  • a part of the atelocollagen of the egret ears and tail obtained in Preparation Example 2 was transferred to separate containers each having a lid.
  • Cysteine protease (acti-dyne) was activated at 25 ° C. for 1 hour in a 2 O mmol / L phosphate buffer (pH 6.5) containing 5 mmol / L dithiothreitol and 1 mmol / LEDTA. To each atelocollagen sample solution was added 3.0% (w / v) activated actinidyne. The mixture was stirred at 20 ° C for 7 days to obtain a crude product.
  • the prepared herring-derived cysteine protease-treated collagen (ear-derived and tail-derived) and acti-dyne were separated and purified by a patch method using an anion exchange gel. Specifically, an appropriate amount of TSKgel DEAE-Toyopearl 650C gel (manufactured by Tosoh Corporation) equilibrated with 20 mmol / L acetate buffer (pH 4.0) was added to the crude enzyme reaction product,
  • the crude product was analyzed by 5% SDS polyacrylamide gel electrophoresis.As a result, as shown in FIG. 12, the obtained cystine protease-treated collagen derived from egrets had a molecular weight of only 100,000 It was confirmed that it consisted of only components.
  • the purified cystine protease-treated collagen from the perforated ears and tail obtained was dialyzed three times against distilled water and then lyophilized.
  • the collagen-treated cysteine-mouth-tease-treated collagen and actinidain prepared as described above were separated and purified by a column method using an anion exchange gel.
  • the crude product of the enzymatic reaction was passed through a column filled with DEAE-Toyopearl 650C gel (manufactured by Tosoichi Co., Ltd.) to fractionate the CP-collagen derived from E.
  • the crude product was analyzed by 5% SDS polyacrylamide gel electrophoresis. As a result, it was confirmed that the crude product consisted of only the ⁇ - chain component having a molecular weight of about 100,000 without the J3 and ⁇ chains.
  • the cysteine protease (acti-dyne) activated as described above was added to the chicken atelocollagen solution obtained as described above to a concentration of 3.0% (w / v). The mixture was stirred at 30 ° C for 3 days to obtain a crude product. The crude product was analyzed by 5% SDS-polyacrylamide gel electrophoresis. It has been shown that it has no molecular weight of about 90,000 to 130,000.

Abstract

It is intended to provide a highly functional collagen which has a high biocompatibility and is excellent in humidifying performance, hemostatic effect and cell retention power. A process for producing a collagen having been treated with cysteine protease characterized by comprising bringing collagen or atelocollagen into contact with cysteine protease.

Description

システィンプロテアーゼ処理コラーゲンの製造方法およびシスティンプロテア一 ゼ処理コラーゲン 技術分野 Method for producing collagen treated with cysteine protease and collagen treated with cysteine protease
本発明は、 コラーゲン、 その製造方法おょぴその用途に関する。 詳しくは、 シ スティンプロテアーゼ処理コラーゲン、 その製造方法おょぴその用途に関する。 背景技術  The present invention relates to collagen, a method for producing the same, and uses thereof. Specifically, it relates to cysteine protease-treated collagen, its production method, and its use. Background art
動物において細胞間の結合組織や骨組織を構成する主なタンパク質であるコラ 一ゲンは、 化粧品、 食品添加剤あるいは医療用材料などの分野において、 広く利 用されている。  Collagen, which is a main protein constituting connective tissue and bone tissue between cells in animals, is widely used in fields such as cosmetics, food additives and medical materials.
このようなコラーゲン素材において求められる特性は、 たとえば、 組織再生、 構築などにおける生体材料としての良好な機械的性質、 生体適合性、 生物学的分 角早性、 止血力などが挙げられる。 このようなコラーゲンが発揮しうる特性に着目 して、 コラーゲンを含む材料として、 たとえば、 食品添加剤;化粧品材料;人工 皮膚調製用の溶剤、 止血スポンジ、 骨再構成材料、 軟部組織の充填材などの医療 材料への適用が試みられている。  Properties required of such a collagen material include, for example, good mechanical properties as a biomaterial in tissue regeneration, construction, etc., biocompatibility, rapid biological angle separation, and hemostatic power. Focusing on the properties that such collagen can exhibit, collagen-containing materials include, for example, food additives; cosmetic materials; solvents for preparing artificial skin, hemostatic sponges, bone reconstituting materials, and soft tissue fillers. Is being applied to medical materials.
このようにコラーゲンは産業上非常に重要な生体材料となりつつあるが、 その 一方でさらなる生体との適合性、 保湿性、 止血力などの諸機能の向上が求められ ていた。  As described above, collagen is becoming a very important biomaterial in industry, but on the other hand, further improvements in various functions such as compatibility with living bodies, moisturizing properties, and hemostatic power have been required.
さらに、 現在、 広く利用されているコラーゲンは、 子ゥシ、 ブタなどの真皮ま たは骨などから抽出精製したものが多い。 し力 し、 たとえば、 子ゥシなどの皮に は毛や脂肪などが混在するためそれらを除去する前処理が必要であり、 精製され る酸可溶性コラーゲンの収量は 5 %程度と高くないこと、 家畜間で感染し発病す る原因物質を除去する工程、 分析工程などが必要になってきているなど、 その利 用に際し、 煩雑な操作が必要な場合もある。 また、 子ゥシの場合、 1頭から得ら れるコラーゲンの量が比較的少ないという課題もあった。 このため、 優れた機能を保持しつつ、 さらに、 家畜間の感染などに起因する煩 雑な工程を要しない簡便な方法で生体材料等にも適用が可能で、 しかも大量入手 が可能なコラーゲンの出現も求められていた。 Furthermore, collagen, which is widely used at present, is often extracted and purified from dermis or bones of calves and pigs. For example, skins such as calves contain hairs and fats, so pretreatment is required to remove them.The yield of acid-soluble collagen to be purified is not as high as about 5%. Complicated operations may be required in some cases, such as the necessity of a process for removing the causative substances that cause infection and disease among livestock and an analysis process. In addition, in the case of calves, there was a problem that the amount of collagen obtained from one animal was relatively small. For this reason, while maintaining excellent functions, it is possible to apply collagen to biomaterials and the like by a simple method that does not require complicated steps caused by infection between livestock and the like. Appearance was also required.
したがって、本発明は、上記のような背景技術に基づきなされたものであって、 生体適合性に優れるとともに、 保湿効果、 止血力に優れ、 また in vitroでの細胞 (胚) 培養技術に優れた性質を有する、 高機能なコラーゲンおよびその製造方法 を提供することを課題とする。 発明の開示  Therefore, the present invention has been made based on the background art as described above, and has excellent biocompatibility, excellent moisturizing effect, excellent hemostatic power, and excellent cell (embryo) culture technology in vitro. It is an object to provide a highly functional collagen having properties and a method for producing the same. Disclosure of the invention
本発明者らは、 上記課題を解決すべく鋭意研究し、 コラーゲンまたはァテロコ ラーゲンとシスティンプロテアーゼとを接触させて得られるコラーゲン(以下「シ スティンプロテアーゼ処理コラーゲン」 ということがある。) 力 生体適合性に優 れるとともに、 保湿効果、 止血力に優れることを見出し本発明を完成するに至つ た。 このようなシスティンプロテアーゼ処理コラーゲンは、 独特の網目状の会合 体構造を有し、 線維化が阻害されている。  MEANS TO SOLVE THE PROBLEM The present inventors researched hard in order to solve the said subject, The collagen obtained by contacting collagen or atelocollagen and cysteine protease (it may be hereafter called "cysteine protease-treated collagen") force Biocompatibility. In addition, the present invention was found to be excellent in moisture retention and hemostatic power, and completed the present invention. Such cysteine protease-treated collagen has a unique network-like aggregate structure, and fibrosis is inhibited.
すなわち、 本発明の概要は以下のとおりである。  That is, the outline of the present invention is as follows.
本発明に係るシスティンプロテアーゼ処理コラーゲンの製造方法は、 コラーゲ ンまたはァテロコラーゲンとシスティンプロテア一ゼとを接触させることを特徴 としている。  The method for producing collagen treated with cysteine protease according to the present invention is characterized by contacting collagen or atelocollagen with cysteine protease.
本発明に係るシスティンプロテアーゼ処理コラーゲンは、 コラーゲンまたはァ テロコラーゲンとシスティンプロテア一ゼとを接触して得られることを特徴とし ている。  The collagen treated with cysteine protease according to the present invention is obtained by contacting collagen or atelocollagen with cysteine protease.
前記コラーゲンまたはァテロコラーゲンは、 魚類、 鳥類またはほ乳類由来のコ ラーゲンまたはァテロコラーゲンであることが好ましく、 魚類由来のコラーゲン またはァテロコラーゲンであることがさらに好ましい。  The collagen or atelocollagen is preferably fish or bird or mammal-derived collagen or atelocollagen, and more preferably fish-derived collagen or atelocollagen.
前記システィンプロテアーゼ処理コラーゲンは、 該システィンプロテアーゼ処 理コラーゲン分子 1つが 3本のポリぺプチド鎖からなる 3重螺旋構造を有し、 複 数のシスティンプロテアーゼ処理コラーゲン分子により網目状の会合体構造を形 成していることが好ましい。 前記システィンプロテアーゼ処理コラーゲンは、 複数のシスティンプロテア一 ゼ処理コラーゲン分子による 1本の線維への線維化が阻害されていることが好ま しい。 The cysteine protease-treated collagen has a triple helical structure in which one cysteine protease-treated collagen molecule is composed of three polypeptide chains, and a network-like aggregate structure is formed by a plurality of cysteine protease-treated collagen molecules. Preferably. It is preferable that the cysteine protease-treated collagen inhibits fibrosis into one fiber by a plurality of cysteine protease-treated collagen molecules.
前記システィンプロテアーゼ処理コラーゲンが熱により変性する温度は、 2 5 °C以上であることが好ましい。  The temperature at which the cysteine protease-treated collagen is denatured by heat is preferably 25 ° C. or higher.
本発明に係る化粧品は、 前記システィンプロテアーゼ処理コラーゲンを含有す ることを特徴としている。  The cosmetic according to the present invention is characterized by containing the cysteine protease-treated collagen.
本発明に係る医療用材料は、 前記システィンプロテアーゼ処理コラーゲンを含 有することを特徴としている。  The medical material according to the present invention is characterized by containing the cysteine protease-treated collagen.
本発明に係る食品添加剤は、 前記システィンプロテアーゼ処理コラーゲンを含 有することを特徴としている。  The food additive according to the present invention is characterized by containing the cysteine protease-treated collagen.
本発明に係る細胞、 組織または胚の培養材料は、.前記システィンプロテアーゼ 処理コラーゲンを含有することを特徴としている。 図面の簡単な説明  The culture material for cells, tissues or embryos according to the present invention is characterized in that it contains the cysteine protease-treated collagen. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ァテロコラーゲンの電子顕微鏡写真像 (60,000倍、 50mmolZ L酢酸 緩衝液、 H 4 . 0 ) の一例を示す写真である。  FIG. 1 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol ZL acetate buffer, H 4.0) of atelocollagen.
図 2は、 システィンプロテアーゼ処理コラーゲンの電子顕微鏡写真像 (60,000 倍、 50mmol/ L酢酸緩衝液、 H 4 . 0 ) の一例を示す写真である。  FIG. 2 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol / L acetate buffer, H 4.0) of cysteine protease-treated collagen.
図 3は、 ゼラチンの電子顕微鏡写真像 (40,000倍) の一例を示す写真である。 図 4は、 細胞と細胞の間に存在する線維を形成する I型コラーゲンと細胞膜付 近に存在する IV型コラーゲンの例を示す模式図である。 図 4中、 1は細胞、 2 は細胞、 3は I型コラーゲン、 4は I V型コラーゲンを示す。  FIG. 3 is a photograph showing an example of an electron micrograph image (40,000 times) of gelatin. FIG. 4 is a schematic diagram showing an example of type I collagen that forms fibers existing between cells and type IV collagen that exists near the cell membrane. In FIG. 4, 1 indicates cells, 2 indicates cells, 3 indicates type I collagen, and 4 indicates type IV collagen.
図 5は、精製したシスティンプロテアーゼ処理コラーゲンの 7.5% S D Sポリア クリルアミドゲル電気泳動による分析結果を示す写真である。  FIG. 5 is a photograph showing the results of analysis of purified cysteine protease-treated collagen by 7.5% SDS polyacrylamide gel electrophoresis.
図 6は、 システィンプロテアーゼ処理コラーゲンの α 1成分、 α 2成分および ァテロコラーゲンの α 1成分、 a 2成分を、 陽イオン交換クロマトグラフィーで 測定したピークを示すチヤ一トである。 FIG. 6 is a chart showing peaks of α1 and α2 components of cysteine protease-treated collagen and α1 and a2 components of atelocollagen measured by cation exchange chromatography.
図 7は、 システィンプロテアーゼ処理コラーゲン含有溶液の風乾後の光学顕微 鏡による写真である。 (倍率: 100倍) Figure 7 shows the optical microscope of the collagen-containing solution treated with cysteine protease after air drying. It is a photograph by a mirror. (Magnification: 100 times)
図 8は、 ァテ口コラーゲン含有溶液の風乾後の光学顕微鏡による写真である。 (倍率: 100倍)  FIG. 8 is a photograph taken by an optical microscope after the air-collagen-containing solution is air-dried. (Magnification: 100 times)
図 9は、 システィンプロテアーゼ処理コラーゲンの電子顕微鏡写真像 (60,000 倍、 50mmolZ Lリン酸緩衝液、 H 7 . 4 ) の一例を示す写真である。  FIG. 9 is a photograph showing an example of an electron micrograph image (60,000-fold, 50 mmol ZL phosphate buffer, H7.4) of cysteine protease-treated collagen.
図 1 0は、 ァテロコラーゲンの電子顕微鏡写真像 (60,000倍、 50mmol/ Lリ ン酸緩衝液、 ρ Η 7 · 4 ) の一例を示す写真である。  FIG. 10 is a photograph showing an example of an electron micrograph image (60,000 times, 50 mmol / L phosphate buffer, ρΗ7.4) of atelocollagen.
図 1 1は、 ァテロコラーゲンと、 システィンプロテアーゼ処理コラーゲンのェ タノールに対する相対溶解度を示すグラフである。  FIG. 11 is a graph showing the relative solubilities of atelocollagen and cysteine protease-treated collagen in ethanol.
図 1 2は、 ゥサギ耳おょぴ尾部由来についてのァテロコラーゲンおよびそのシ スティンプロテアーゼ処理コラーゲンの 5 % S D S—ポリアクリルアミ ドゲル電 気泳動の結果を示す写真である。  FIG. 12 is a photograph showing the results of 5% SDS-polyacrylamide gel electrophoresis of atelocollagen and its cysteine protease-treated collagen from the tail of the rabbit's ear.
図 1 3は、 ニヮトリ軟骨由来ァテロコラーゲンとそのシスティンプロテアーゼ 処理コラーゲンの 5 % S D S—ポリアクリルァミドゲル電気泳動の結果を示す写 真である。 発明を実施するための最良の形態  FIG. 13 is a photograph showing the results of 5% SDS-polyacrylamide gel electrophoresis of chicken cartilage-derived atelocollagen and its cysteine protease-treated collagen. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係るシスティンプロテアーゼ処理コラーゲン (以下 「C P—コラーゲ ン」 と表記することがある。) は、 コラーゲンまたはァテロコラーゲンとシスティ ンプロテアーゼとを接触させて得ることができる。  The cysteine protease-treated collagen according to the present invention (hereinafter sometimes referred to as “CP-collagen”) can be obtained by contacting collagen or atelocollagen with cystine protease.
以下、 本発明で用いるコラーゲン、 ァテロコラーゲン、 システィンプロテア一 ゼ、 システィンプロテアーゼ処理コラーゲン、 その製造方法について詳説する。  Hereinafter, the collagen, atelocollagen, cysteine protease, collagen treated with cysteine protease used in the present invention, and a method for producing the same will be described in detail.
コラーゲンまたはァテロコラーゲン  Collagen or atelocollagen
本発明で用いられるコラーゲンとしては、 たとえば、 ゥシ、 ブタ、 ゥサギなど のほ乳類、 ニヮトリなどの鳥類などの、 動物の真皮、 腱、 骨、 筋膜など、 あるい はサメ、 コィ、 マグロなど魚類の皮膚、 鱗などに由来するコラーゲンが挙げられ る。  The collagen used in the present invention includes, for example, mammals such as sea lions, pigs, and egrets, birds such as chickens, animal dermis, tendons, bones, fascia, etc., and fish such as sharks, koi, and tuna. Collagen derived from the skin, scales and the like.
また、本発明で用いられるァテロコラーゲンとしては、たとえば、ゥシ、ブタ、 ゥサギなどのほ乳類、 ニヮトリなどの鳥類などの、 動物の真皮、 腱、 骨、 筋膜な 5 The atelocollagen used in the present invention includes, for example, dermis, tendons, bones, and fascia of animals such as mammals such as horses, pigs, and egrets, and birds such as chickens. Five
ど、 あるいはサメ、 コィ、 マグロなど魚類の皮膚、 鱗などのコラーゲンが豊富に 含まれる組織を原料とし、 ペプシンなどにより、 分子のァミノ末端おょぴカルポ キシル末端のテロペプチド領域を除去したァテロコラーゲンが挙げられる。 Atelocollagen, which uses collagen-rich tissue such as fish skin and scales such as shark, carp and tuna as raw materials, and removes the telopeptide region at the amino-terminal and carboxyl-terminal of the molecule with pepsin etc. Is mentioned.
これらのうちでは、 魚類に由来するコラーゲンまたはァテロコラーゲンを好ま しく用いることができる。 また、 コラーゲンとァテロコラーゲンのうちではァテ 口コラーゲンを好ましく用いることができる。  Among these, fish-derived collagen or atelocollagen can be preferably used. In addition, among collagen and atelocollagen, atrate collagen can be preferably used.
魚類に由来するコラーゲンまたはァテロコラーゲンを用いることにより、 原料 を簡便、 安全にかつ大量に入手可能であり、 ヒ トに対してより安全なシスティン プロテアーゼ処理コラーゲンを得ることができる。  By using fish-derived collagen or atelocollagen, raw materials can be obtained simply, safely and in large quantities, and cysteine protease-treated collagen that is safer to humans can be obtained.
魚類のうちでは、 具体的には、 たとえば、 キハダマグロなどのマグロ、 コィ、 ゥナギなどが挙げられ、 これらのうちでは、 マグロをより好ましく用いることが できる。  Among the fish, specifically, for example, tuna such as yellowfin tuna, carp, and eel are mentioned, and of these, tuna can be more preferably used.
このようなァテロコラーゲンのうちでは、 熱による変性温度が、 好ましくは 2 0 °C以上、 より好ましくは 2 5 °C以上であるものが望ましい。  Among such atelocollagen, those having a heat denaturation temperature of preferably 20 ° C. or higher, more preferably 25 ° C. or higher are desirable.
このため、 魚類のうちでは、 キハダマグロなどのマグロ、 コィなどのァテロコ ラーゲンの熱変性温度が 2 5 °C以上のものを原料とすることが好ましい。 このよ うな原科を用いることにより、 システィンプロテアーゼ処理コラーゲンの変性温 度を、 好ましくは 2 0 °C以上、 より好ましくは 2 5 °C以上となるようにすること ができ、 たとえばタイに由来するコラーゲンの変性温度 (2 0 °C程度) に比べて 著しく変性温度の高いコラーゲンを得ることができる。 したがって、 マグロに由 来するァテロコラーゲンの場合、 貯蔵安定性、 利用価値に優れる。 さらに、 マグ 口の場合、 漁獲量の多さ、 捕獲期間の均一性などから、 大量に、 しかも、 均一な 性能でシスティンプロテアーゼ処理ァテロコラーゲンを量的に安定に得ることが 可能である。  For this reason, among fish, it is preferable to use tuna such as yellowfin tuna and atelocollagen such as carp as raw materials having a heat denaturation temperature of 25 ° C or higher. The denaturation temperature of cysteine protease-treated collagen can be adjusted to preferably 20 ° C. or higher, more preferably 25 ° C. or higher, by using such a substance. It is possible to obtain collagen whose denaturation temperature is significantly higher than the denaturation temperature of collagen (about 20 ° C). Therefore, atelocollagen derived from tuna is excellent in storage stability and utility value. Furthermore, in the case of a mug, it is possible to obtain a large amount and uniform performance of cysteine protease-treated atelocollagen in a large amount and with uniform performance due to the large catches and uniformity of the catching period.
このような本発明で用いられるァテロコラーゲンは、 図 1の電子顕微鏡で撮影 ( 6 0 0 0 0倍) した写真に示すように、 通常、 ァテロコラーゲン分子が寄り添 つて 1本の線維状の会合体を形成している線維化ァテロコラーゲンであり、 分子 間の空間がほとんどない。 なお、 図 1中、 ァテロコラーゲン分子は、 電子顕微鏡 像の縞模様をもつ部分である。 また、 前記ァテロコラーゲンは、 通常、 多種成分からなり、 その構成比も、 ァ テロコラーゲンの原料により異なり、 限定されない。 The atelocollagen used in the present invention is usually one fibrous association with atelocollagen molecules, as shown in the photograph taken with an electron microscope (600,000 magnification) in FIG. It is a fibrillated atelocollagen that forms a coalescence, with little intermolecular space. In FIG. 1, the atelocollagen molecule is a portion having a stripe pattern in an electron microscope image. Further, the atelocollagen is usually composed of various components, and the composition ratio thereof is not limited because it differs depending on the raw material of the atelocollagen.
このようなァテロコラーゲンは、 通常、 成分、 《 2成分、 成分および γ 成分の少なくとも 4種の成分を含有している。 なお、 三重螺旋構造の構成単位で ある《 1成分、 2成分はともに左巻き螺旋の 1本鎖であり、 その分子量が異な つており、 β成分は 2つの α成分が分子間で共有結合しているダイマー構造の成 分であり、 γ成分は 3つの α成分が分子間で共有結合しているトリマー構造の成 分である。 ァテロコラーゲン分子は、 通常、 これらの成分が全体として右卷きの 3重螺旋構造を形成している。  Such atelocollagen usually contains at least four kinds of components, i.e., <2 components, i.e. and gamma component. In addition, the constituent unit of the triple helix structure, << 1 component and 2 components are both single-stranded left-handed spirals, have different molecular weights, and β component has two α components covalently bonded between molecules. The γ component is a component of a dimer structure, and the γ component is a component of a trimeric structure in which three α components are covalently bonded between molecules. Generally, these components of the atelocollagen molecule form a right-handed triple helical structure.
α成分の分子量は、 通常、 好ましくは 90, 000〜 130, 000、 成分 の分子量は、 通常、 好ましくは 180, 000〜 260, 000、 γ成分の分子 量は、 通常、 270, 000〜 390, 000であることが望ましい。  The molecular weight of the α component is usually preferably 90,000 to 130,000, the molecular weight of the component is usually 180,000 to 260,000, and the molecular weight of the γ component is usually 270,000 to 390,000. 000 is desirable.
なお、 各成分は、 公知の方法、 たとえば、 電気泳動などにより容易に分離させ ることができる。  Each component can be easily separated by a known method such as electrophoresis.
本発明で用いられるコラーゲンまたはァテロコラーゲンは、 通常、 中性 ρΗの 水溶液に不溶である。  The collagen or atelocollagen used in the present invention is usually insoluble in a neutral ρΗ aqueous solution.
このようなコラーゲンまたはァテロコラーゲンは、 公知の方法により、 動物ま たは魚類から抽出可能である。 たとえば、 前記ほ乳類、 鳥類または魚類の真皮、 腱、 骨、 筋膜等コラーゲンが豊富に含まれる組織を、 ρΗ2〜4程度の酸性溶液 に投入、 溶出させ、 ペプシンなどを添加して、 分子末端のテロペプチド領域を除 去する。 その後、 このァテロコラーゲンの酸性溶液に塩化ナトリウムなどの塩を 加えて、 ァテロコラーゲンを含む沈殿物を得ることができる。  Such collagen or atelocollagen can be extracted from animals or fish by a known method. For example, a tissue rich in collagen, such as the dermis, tendons, bones, and fascia of the mammal, bird or fish, is put into an acidic solution of about ρ 溶液 2 to 4, eluted, and pepsin is added thereto to add Remove the telopeptide region. Thereafter, a salt such as sodium chloride is added to the acidic solution of atelocollagen to obtain a precipitate containing atelocollagen.
システィンプロテアーゼ  Cysteine protease
本発明で用いることのできるシスティンプロテアーゼは、 公知のシスティンプ 口テアーゼであって、 その種類は特に限定されないが、 このうち、 たとえば、 シ スティンプロテアーゼとしては、 塩基性アミノ酸量より酸性アミノ酸量が多いも の、 酸性領域の水素イオン濃度において活性であるものを好ましく用いることが できる。  The cysteine protease that can be used in the present invention is a known cystine protease, and the type thereof is not particularly limited. Among them, for example, cysteine protease has a larger amount of acidic amino acids than a basic amino acid. Among them, those which are active at the hydrogen ion concentration in the acidic region can be preferably used.
このようなシスティンプロテアーゼとしては、ァクチニダイン [EC 3.4.22. 2346 Actinidyne [EC 3.4.22. 2346
7 7
14]、 パパイン [EC 3.4.22.2]、 フイシン [EC 3.4.22.3]、 ブロメライ ン [EC 3.4.22.32]、カテブシン B[EC 3.4.22.1 ]、 カテブシン L[E C 3.4.22.15]、 カテブシン S[EC 3.4.22.27]、 カテブシン K[EC 3. 4.22.38]、 カテブシン H[EC 3.4.22.16]、 アロライン、 カルシウム依 存性プロテアーゼなどが挙げられる。 これらのうちでは、 好ましくはァクチニダ イン、 アロライン、 ブロメライン、 さらに好ましくはァクチ二ダインを用いるこ とが望ましい。  14], papain [EC 3.4.22.2], fusin [EC 3.4.22.3], bromelain [EC 3.4.22.32], cathepsin B [EC 3.4.22.1], cathepsin L [EC 3.4.22.15], cathepsin S [EC 3.4.22.27], cathepsin K [EC 3. 4.22.38], cathepsin H [EC 3.4.22.16], alloline, calcium-dependent protease and the like. Among these, it is preferable to use actinidyne, alloline, bromelain, and more preferably, actinidyne.
ァクチ-ダインを用いると、 特にマグロ由来のァテロコラーゲンとの接触反応 を有効に行うことができ、 得られるシスティンプロテアーゼ処理コラーゲン中に 含まれる、 i3成分、 γ成分の含有量を著しく低減、 あるいは実質的に ]3、 τ /成分 を除去できる。 その結果、 α成分量の多い純度の高い均一なシスティンプロテア ーゼ処理コラーゲンを得ることができる。 また、 システィンプロテアーゼ処理コ ラーゲン分子の成分間の共有結合は欠けていると推察される。  The use of Acti-Dyne enables effective contact reaction, especially with atelocollagen derived from tuna, and significantly reduces or substantially reduces the content of i3 component and γ component contained in the resulting cysteine protease-treated collagen. ] 3, τ / component can be removed. As a result, it is possible to obtain uniform cysteine protease-treated collagen with a large amount of α component and high purity. It is also presumed that the covalent bond between the components of the cysteine protease-treated collagen molecule is lacking.
このようなシスティンプロテアーゼは、公知の方法により入手することができ、 たとえば、 化学的な合成、 細菌や真菌、 あるいは各種動植物の細胞または組織か らの抽出、 それらの培養細胞、 これらに由来するシスティンプロテア一ゼの遣伝 子組換体から遺伝子工学的手段により得ることができる。  Such cysteine proteases can be obtained by known methods, for example, chemical synthesis, extraction from cells or tissues of bacteria and fungi, or various animals and plants, cultured cells thereof, and cysteine derived therefrom. It can be obtained from recombinant protein of protease by genetic engineering means.
-ゼ処理コラーゲン、 その製造方法  -Zeta-treated collagen, its production method
本発明に係るシスティンプロテァーゼ処理コラーゲンは、 前記コラーゲンまた はァテロコラーゲンと前記システィンプロテア一ゼとを接触させて得ることがで さる。  The cysteine protease-treated collagen according to the present invention can be obtained by contacting the collagen or atelocollagen with the cysteine protease.
システィンプロテアーゼとコラーゲンまたはァテロコラーゲンとの接触は、 溶 媒中で行うことができる。 溶媒中で接触させる場合、 溶媒としては、 たとえば、 水などを用いることができる。 溶媒の量は、 コラーゲンまたはァテロコラーゲン 1質量部に対して、 好ましくは 1〜1000質量部の範囲で用いることが望まし い。  The contact between the cysteine protease and collagen or atelocollagen can be performed in a solvent. When the contact is performed in a solvent, for example, water can be used as the solvent. The amount of the solvent is preferably in the range of 1 to 1000 parts by mass with respect to 1 part by mass of collagen or atelocollagen.
接触に用いるシスティンプロテア一ゼの量は、 コラーゲンまたはァテロコラー ゲン 100質量部に対して、好ましくは 0. 1〜10質量部、より好ましくは 0. 5〜 5質量部の量であることが望ましい。 システィンプロテアーゼと、 コラーゲンまたはァテロコラーゲンとの接触条件 として、 p H、 温度、 処理時間は限定されず、 通常の酵素処理と同様に行うこと ができ、 たとえば、 p Hは、 たとえば、 好ましくは 2 . 0〜7 . 0、 さらに好ま しくは 3 . 0〜5 . 0の範囲で行うことが望ましい。 p Hを一定に保っため、 緩 衝液中で行うことが好ましい。 p Hを上記範囲とすることにより、 コラーゲンま たはァテ口コラーゲンが均一に溶解し、 酵素反応が効率よく進むという効果があ る。 The amount of cysteine protease used for the contact is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of collagen or atelocollagen. The conditions for contacting the cysteine protease with collagen or atelocollagen are not limited to pH, temperature, and treatment time, and the contact can be carried out in the same manner as a normal enzyme treatment.For example, pH is preferably 2. It is desirable to carry out in the range of 0 to 7.0, more preferably in the range of 3.0 to 5.0. In order to keep the pH constant, it is preferable to carry out the reaction in a buffer solution. By setting the pH within the above range, collagen or mouth-mouth collagen is uniformly dissolved, and there is an effect that the enzyme reaction proceeds efficiently.
接触温度は、 たとえば、 好ましくは 1 5〜 4◦ °C程度の範囲で行うことが望ま しレ、。 接触時間は、 たとえば、 好ましくは 1時間〜 5日程度の範囲で行うことが 望ましい。  The contact temperature is, for example, preferably in the range of about 15 to 4 ° C. The contact time is, for example, preferably in the range of about 1 hour to 5 days.
反応終了後、 必要に応じ、 p Hを再調整する工程、 酵素を失活させる工程など を経てもよい。 また、 不純物を除去する精製工程などを経てもよい。 この場合、 タンパク質あるいはぺプチドの精製、 分画等のための通常の工程を経ることがで き、 たとえば、 透析、 ゲル濾過クロマトグラフィー、 等電点沈殿、 イオン交換ク 口マトグラフィー、 疎水性相互作用クロマトグラフィーなどの工程を経ることが できる。  After the completion of the reaction, a step of readjusting the pH and a step of inactivating the enzyme may be performed, if necessary. Further, a purification step for removing impurities may be performed. In this case, it is possible to go through the usual steps for protein or peptide purification, fractionation, etc., for example, dialysis, gel filtration chromatography, isoelectric focusing, ion-exchange chromatography, hydrophobic interaction. It can go through steps such as action chromatography.
このようにして得られるシスティンプロテアーゼ処理コラーゲンは、 好ましく はシスティンプロテアーゼ処理コラーゲン分子 1つが 3本のポリぺプチド鎖から なる 3重螺旋構造を有し、 複数のシスティンプロテアーゼ処理コラーゲン分子に より網目状の会合体構造が形成されていることが望ましい。 そして、 本発明のシ スティンプロテアーゼ処理コラーゲンは、 好ましくは複数のシスティンプロテア ーゼ処理コラーゲン分子による 1本の線維への線維化が阻害されており、 好まし くは前記ァテロコラーゲンのような線維状の会合体構造を実質的に有していない。 このようなシスティンプロテアーゼ処理コラーゲンは、 p Hの変化にかかわらず 立体的な網目構造が安定に存在する。  The cysteine protease-treated collagen thus obtained preferably has a triple helical structure in which one cysteine protease-treated collagen molecule is composed of three polypeptide chains, and is formed into a network by a plurality of cysteine protease-treated collagen molecules. It is desirable that an aggregate structure is formed. The cysteine protease-treated collagen of the present invention preferably inhibits fibrosis into a single fiber by a plurality of cysteine protease-treated collagen molecules, and preferably has a fibrous form such as the atelocollagen. Has substantially no aggregate structure. Such cysteine protease-treated collagen has a stable three-dimensional network structure irrespective of changes in pH.
なお、 本明細書において、 網目状とは、 化学結合またはファンデルワールス結 合などにより分子が連なって立体的な網目をつくり、 その間に隙間ができている 構造をいう。  In this specification, the term “network” refers to a structure in which molecules are connected to form a three-dimensional network by chemical bonding or Van der Waals bonding, and a gap is formed therebetween.
また、 本明細書において、 会合体とは、 同種の分子が共有結合によらないで 2 分子以上が相互作用して結合し、 1つの構造単位となっているものである。 Also, in this specification, an association is defined as a case where the same kind of molecule is not formed by a covalent bond. More than one molecule interacts and binds to form one structural unit.
具体的には、 たとえば、 図 2は本発明のシスティンプロテアーゼ処理コラーゲ ンの一例を示す電子顕微鏡写真 (6 0 0 0 0倍) であるが、 本発明のシスティン プロテアーゼ処理コラーゲンは、 細い糸状の分子が不規則に結合してできた立体 的な網目状の会合体を示す構造物であり、 ファシッ ト (Fabril associated collagens with interrupted triple helix) と呼ばれる 3次元構造の線維化が阻害 されるコラーゲンと類似の性質を示し、 形態的には基底膜に存在する I V型コラ 一ゲンとも類似している構造、 つまり、 空間的に隙間を多く有している。 なお、 コラーゲンが 3重螺旋構造を有することは、 公知の方法、 たとえば円偏光二色ス ぺクトルにより容易に確認することができる。  Specifically, for example, FIG. 2 is an electron micrograph (6000 × magnification) showing an example of the cysteine protease-treated collagen of the present invention. The collagen of the cysteine protease-treated collagen of the present invention is a thin filamentous molecule. Is a structure that shows a three-dimensional network-like aggregate formed by irregularly binding, similar to collagen called fabril (Fabril associated collagens with interrupted triple helix), which inhibits the fibrosis of the three-dimensional structure. The structure is similar to the type IV collagen present in the basement membrane morphologically, that is, it has many spatial gaps. In addition, the fact that collagen has a triple helical structure can be easily confirmed by a known method, for example, a circularly polarized two-color spectrum.
これに対し、 前述のとおり、 図 1に示すように、 原料となるァテロコラーゲン は、 ァテロコラーゲン分子が寄り添って 1本の線維状の会合体を形成した線維化 ァテロコラーゲンであり、 分子間の空間がほとんどない。  On the other hand, as described above, as shown in FIG. 1, the raw material atelocollagen is fibrotic atelocollagen in which atherocollagen molecules form a single fibrous aggregate, and the intermolecular space There is almost no.
このため、 本発明に係るシスティンプロテアーゼ処理コラーゲンでは、 システ ィンプロテアーゼ処理コラーゲンの隙間に水分子をとりこみやすいので保水効果 が高く、 また、 赤血球や血小板などの細胞を取り込みやすいので止血効果にも優 れ、 また各種細胞ゃ胚を in vitroで培養する材料として効果が高いという特異な 性質を有する。  For this reason, the cysteine protease-treated collagen according to the present invention has a high water retention effect because water molecules are easily taken into the gaps between the cysteine protease-treated collagen, and also has an excellent hemostatic effect because it is easy to take in cells such as red blood cells and platelets. In addition, it has a unique property that it is highly effective as a material for culturing various cells and embryos in vitro.
なお、 図 4に示すように、 通常、 細胞 1と細胞 2の間にコラーゲンが存在する 力 この場合、 細胞間の中心部に前述のァテロコラーゲンのような線維を形成す るコラーゲン (I型) 3が存在し、 細胞間の基底膜近傍には線維会合体を形成し ない 3次元構造を有する I V型コラーゲン 4が存在している。 これまで、 細胞間 基質などから I型コラーゲンの抽出法は確立されているが、 本発明者らの調査に よれば、 I V型コラーゲンのような網目状の会合体構造を有する、 線維化が阻害 されたコラーゲンに関しては有効な調製法は確立されておらず、 本発明は、 新規 な I V型コラーゲン様会合体を、簡便に提供する手段としても極めて有用である。 また、 本発明に係るシスティンプロテアーゼ処理コラーゲンは、 成分として、 α ΐ成分、 α 2成分など α成分を含有し、 i3成分、 γ成分を実質的に含有してい ない。 α ΐ成分と α 2成分の構成比は原料コラーゲンにより異なり、 限定されな いが、 たとえば、 好ましくは、 α 1 : α 2 = 1 : 1〜3 : 1の範囲にあることが 望ましい。 In addition, as shown in FIG. 4, usually, the force that collagen exists between cells 1 and 2 In this case, collagen (type I) that forms a fiber such as the above-mentioned atelocollagen in the center between cells In the vicinity of the basement membrane between cells, type IV collagen 4 having a three-dimensional structure that does not form a fiber aggregate is present. Until now, a method for extracting type I collagen from intercellular matrix has been established, but according to a study by the present inventors, it has a network-like aggregate structure like type IV collagen and inhibits fibrosis. An effective preparation method has not been established for the collagen thus prepared, and the present invention is extremely useful as a means for easily providing a novel type IV collagen-like aggregate. Further, the cysteine protease-treated collagen according to the present invention contains α components such as α α component and α2 component as components, and does not substantially contain i3 component and γ component. The composition ratio of α ΐ component and α 2 component depends on the raw collagen, and is not limited. However, for example, it is preferable that α 1: α 2 = 1: 1 to 3: 1.
このような a l、 a 2成分の分子量は、 通常、 好ましくは 9 0, 0 0 0〜1 3 0, 0 0 0であることが望ましい。  Usually, the molecular weight of the al and a2 components is preferably 90,000 to 130,000.
本発明に係るシスティンプロテアーゼ処理コラーゲンは、 好ましくは中性 ρ Η の水溶液に溶解する。 これは、 原料のァテロコラーゲンが中性 ρ Ηの水溶液に不 溶であることと大きく相違し、 また、 天然のファシットゃ I V型コラーゲンを含 む各種コラーゲンが中性 ρ Ηの水溶液に不溶であることとも大きく相違している。 また、 本発明に係るシスティンプロテアーゼ処理コラーゲンは、 通常、 熱変性 により 3重螺旋構造が壌れるがゲル化しない。 これは、 一般にコラーゲンが熱変 性してゼラチンとなり (3重螺旋構造が壌れている)、冷やすとゲル化するのと大 きく相違する。 また、 図 3のゼラチンの構造の一例を示す電子顕微鏡写真 (4 0 0 0 0倍) に示すように、 ゼラチンでは、 線維構造あるいは網目状構造は崩壊し ている。  The cysteine protease-treated collagen according to the present invention is preferably dissolved in a neutral ρΗ aqueous solution. This is significantly different from the fact that the raw material aterocollagen is insoluble in neutral ρΗ aqueous solution, and that various collagens including natural fasit ゃ type IV collagen are insoluble in neutral ρΗ aqueous solution. This is very different. In addition, the cysteine protease-treated collagen according to the present invention usually has a triple helical structure due to heat denaturation, but does not gel. This is very different from the fact that collagen generally undergoes thermal transformation into gelatin (having a triple helical structure) and gels when cooled. In addition, as shown in an electron micrograph (× 40000) showing an example of the structure of gelatin in FIG. 3, the fibrous structure or network structure of gelatin has collapsed.
すなわち、 天然のファシットを含むコラーゲンや I V型コラーゲンと、 本発明 に係るシスティンプロテアーゼ処理コラーゲンとは異なるコラーゲンである。 さらに、 通常、 本発明に係るシスティンプロテアーゼ処理コラーゲンの α 1成 分、 ct 2成分は、 原料となる天然のァテロコラーゲン中の α 1、 ひ 2成分とは、 各 α成分の表面電荷が異なっている。 たとえば、 図 6に示すように、 本発明に係 るシスティンプロテアーゼ処理コラーゲンの α 1成分、 α 2成分は、 通常、 陽ィ オン交換クロマトグラフィーで、 合計 4つのピークを与えるが、 その原料となつ たァテロコラーゲン中の α 1、 α 2成分は、 通常、 合計 6つのピークを与え、 こ れらのピークの溶出時間は全て異なっている。 このため表面電荷が異なるものと 推測することができる。 In other words, collagen containing natural fasit and type IV collagen are different from the cysteine protease-treated collagen according to the present invention. Further, usually, the α1 component and the ct2 component of the cysteine protease-treated collagen according to the present invention are different in surface charge of each α component from those of the natural atelocollagen as a raw material. I have. For example, as shown in FIG. 6, the α1 component and the α2 component of the cysteine protease-treated collagen according to the present invention usually give a total of four peaks by cation exchange chromatography, and § alpha 1 terrorist in collagen, alpha 2 component is usually given a total of six peaks, elution time of these peaks are all different. Therefore, it can be inferred that the surface charges are different.
また、 本発明にかかるシスティンプロテアーゼ処理コラーゲンは、 ァテロコラ ゲンと比較し、 エタノールなどのアルコールに対する溶解度が著しく向上して いる。 このため、 エタノールを添加する化粧品等への溶解性に優れ、 高濃度でシ スティンプロテアーゼ処理コラーゲンを添加することもできる。  In addition, the cysteine protease-treated collagen according to the present invention has remarkably improved solubility in alcohol such as ethanol as compared with atelocollagen. For this reason, it has excellent solubility in cosmetics and the like to which ethanol is added, and it is possible to add cysteine protease-treated collagen at a high concentration.
以上のことは、 太発明のシスティンプロテアーゼ処理コラーゲンが、 原料とな るコラーゲンまたはァテロコラーゲンにない性質を有し、 生体物質との相互作用 の起点となる機能が著しく変化したことを示すものである。 The above results indicate that the cysteine protease-treated collagen of the present invention is a raw material. It has properties that are not found in collagen or atelocollagen, indicating that the function that is the starting point of interaction with biological materials has been significantly changed.
本発明に係る前記システィンプロテァーゼ処理コラーゲンは、 熱により変性す る温度が、 好ましくは 2 5 °C以上、 さらに好ましくは 2 8 °C以上であることが望 ましい。 このため、 常温における取り扱いが容易である。 前述のとおり、 ァテロ コラーゲンが魚類由来のものである場合、 このような変性温度のシスティンプロ テアーゼ処理コラーゲンを得るために、 マグロなどを原料魚類とすることが好ま しい。  The cysteine protease-treated collagen according to the present invention preferably has a denaturation temperature of 25 ° C. or higher, more preferably 28 ° C. or higher, by heat. Therefore, handling at room temperature is easy. As described above, when the atelocollagen is derived from fish, it is preferable to use tuna or the like as the raw fish in order to obtain cysteine protease-treated collagen at such a denaturation temperature.
本発明のシスティンプロテアーゼ処理コラーゲンは、 架橋処理して、 重合した システィンプロテアーゼ処理コラーゲンとして用いることもできる。  The cysteine protease-treated collagen of the present invention can be crosslinked and used as polymerized cysteine protease-treated collagen.
架橋処理は、 従来公知の方法により行うことができる。 たとえば、 化学架橋を 使用する方法、 熱処理により架橋する方法、 紫外線等放射線照射により架橋する 方法などが挙げられる。  The crosslinking treatment can be performed by a conventionally known method. Examples of the method include a method using chemical crosslinking, a method of crosslinking by heat treatment, and a method of crosslinking by irradiation with radiation such as ultraviolet rays.
化学架橋で用いる架橋剤としては、 たとえば、 1ーェチルー 3— (3—ジメチ ルァミノプロピル) カルポジィミド塩酸塩などの水溶性カルポジィミド化合物; ェピクロロヒ ドリン; ビスエポキシジエチレングリコーノレなどのジエポキシィ匕合 物、 N a B H4などが挙げられる。 架橋剤の濃度は、 システィンプロテアーゼ処 理コラーゲンに対して、 好ましくは 1 0一3〜 1 0質量%程度で、 好ましくは 5〜 4 0 °Cの範囲で、 好ましくは 3〜4 8時間程度、 システィンプロテアーゼ処理コ ラーゲンと架橋剤とを接触させることにより、 架橋したシスティンプロテアーゼ 処理コラーゲンを得ることができる。 Examples of the crosslinking agent used in the chemical crosslinking include water-soluble carpoimide compounds such as 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride; epichlorohydrin; diepoxy conjugates such as bisepoxydiethylene glycolone; And the like. The concentration of the crosslinking agent with respect to cis Tin protease treatment collagen, preferably 1 0 one third to one approximately 0 wt%, preferably in the range of. 5 to 4 0 ° C, preferably about 3 to 4 8 hours, By contacting the cysteine protease-treated collagen with a crosslinking agent, crosslinked cysteine protease-treated collagen can be obtained.
紫外線により架橋する場合、 本発明に係るシスティンプロテアーゼ処理コラー ゲンに、 たとえば紫外線ランプなどにより紫外線を、 通常、 室温で、 3〜4 8時 間程度照射して、 架橋したシスティンプロテアーゼ処理コラーゲンを得ることが できる。  In the case of crosslinking with ultraviolet rays, the cysteine protease-treated collagen of the present invention is irradiated with ultraviolet rays, for example, by an ultraviolet lamp, usually at room temperature for about 3 to 48 hours to obtain crosslinked cysteine protease-treated collagen. Can be done.
熱架橋する場合は、 本発明に係るシスティンプロテアーゼ処理コラーゲンを、 減圧下、好ましくは 1 1 0〜1 6 0 °C程度の温度で、 3〜4 8時間程度加熱して、 架橋したシスティンプロテアーゼ処理コラーゲンを得ることができる。  In the case of thermal crosslinking, the cysteine protease-treated collagen according to the present invention is heated under reduced pressure, preferably at a temperature of about 110 to 160 ° C., for about 3 to 48 hours, so that the cysteine protease-treated collagen is treated. Collagen can be obtained.
このような架橋したシスティンプロテアーゼ処理コラーゲンは、 耐コラゲナー ゼ性、 強度を向上させることができる。 Such cross-linked cysteine protease-treated collagen is resistant to collagenogen. Zinc properties and strength can be improved.
なお、 本発明に係るシスティンプロテアーゼ処理コラーゲンは、 前述の通り、 エタノールなどのアルコールに対する溶解度が高く、 たとえば、 溶解性向上のた めに他の化学修飾をする必要がないが、 該システィンプロテアーゼ処理コラーゲ ンの目的を阻害しない範囲で、 必要に応じ、 化学修飾されていてもよい。 化学修 飾の種類としては、 たとえば、 アシノレイ匕、 ミリスチ /レイ匕、 ポリエチレングリコー ル修飾などが挙げられる。  As described above, the collagen treated with cysteine protease according to the present invention has high solubility in alcohol such as ethanol. For example, it is not necessary to perform another chemical modification to improve the solubility. If necessary, they may be chemically modified as long as they do not interfere with the purpose of the application. Examples of the type of chemical modification include, for example, Asinorei-Dani, Myristi / Rai-Dani, and polyethylene glycol modification.
このうち、 たとえば、 ァシル化修飾であるサクシニル化したシスティンプロテ ァーゼ処理コラーゲンは、 本発明のシスティンプロテアーゼ処理コラーゲンと無 水コハク酸とを、 リン酸緩衝液などの中性 p Hの溶媒中で反応させて得ることが できる。 サクシ-ル化することにより、 より中性 p Hの溶媒に対する溶解度を向 上させ、 使用した際の肌触りを向上できる。  Among them, for example, succinylated cystine protease-treated collagen, which is an acylation modification, reacts the cystine protease-treated collagen of the present invention with anhydrous succinic acid in a neutral pH solvent such as a phosphate buffer. You can get it. By saccharifying, the solubility of more neutral pH in a solvent can be improved, and the feel when used can be improved.
また、 ポリエチレングリコール修飾したシスティンプロテアーゼ処理コラーゲ ンは、 塩化シァヌルで活性化したポリエチレンダリコールと反応させることによ り得ることができる。  The cysteine protease-treated collagen modified with polyethylene glycol can be obtained by reacting with polyethylene dalicol activated with cyanuric chloride.
用途  Use
本発明に係るシスティンプロテアーゼ処理コラーゲンは、 食品添加剤、 医療材 料、 化粧品材料、 細胞または胚の培養材料などに好適に用いることができる。 たとえば、 本発明のシスティンプロテアーゼ処理コラーゲンは、 水分の取り込 み性能に優れ保湿効果が高く、 生体適合性に優れることから、 化粧品に用いるこ とができる。 このうち、 たとえば基礎化粧品などに添加して好適に用いることが できる。 また、 炎症を起こしている皮膚に本発明のシスティンプロテアーゼ処理 コラーゲンを含有する化粧品を塗布することにより、 症状を軽減することもでき る。  The cysteine protease-treated collagen according to the present invention can be suitably used for food additives, medical materials, cosmetic materials, cell or embryo culture materials, and the like. For example, the cysteine protease-treated collagen of the present invention can be used in cosmetics because it has excellent moisture uptake performance, a high moisturizing effect, and excellent biocompatibility. Among them, for example, it can be suitably used by adding to basic cosmetics and the like. In addition, by applying a cosmetic containing the cysteine protease-treated collagen of the present invention to inflamed skin, symptoms can be reduced.
また、 たとえば、 本発明のシスティンプロテアーゼ処理コラーゲンは、 赤血球 や血小板の取り込み性能が高いので、 止血効果が高く、 生体適合性に優れること から、 医療材料としても好適に用いることができる。  Further, for example, the cysteine protease-treated collagen of the present invention has a high uptake performance of red blood cells and platelets, has a high hemostatic effect, and is excellent in biocompatibility, and thus can be suitably used as a medical material.
さらに、 本発明のシスティンプロテアーゼ処理コラーゲンは、 生体適合性に優 れ、 食用として問題なく、 食品添加剤としても好適に用いることができる。 加えて、 本発明のシスティンプロテアーゼ処理コラーゲンは、 細胞外マトリツ' クスとして各種の細胞、 組織あるいは胚の培養に優れた効果が期待され、 また安 全に用いることができ、 細胞培養安定化剤として好適である。 Furthermore, the cysteine protease-treated collagen of the present invention is excellent in biocompatibility, has no problem for food use, and can be suitably used as a food additive. In addition, the cysteine protease-treated collagen of the present invention is expected to have an excellent effect on culturing various cells, tissues or embryos as an extracellular matrix, can be used safely, and can be used as a cell culture stabilizer. It is suitable.
なお、 ここで 「細胞」 とは、 外界を隔離する膜構造に囲まれ、 内部に自己再生 能を備えた遣伝情報とその発現機構を持つ生命体であり、 多細胞生物では組織の 構成単位であり、 「組織」 とは、特定の方向に分化し同一の機能、形態を有する細 胞集団を意味し、 「胚」 とは、 多細胞生物の個体発生初期のものを意味している。 産業上の利用可能性  The term “cell” used herein refers to a living organism that is surrounded by a membrane structure that isolates the outside world, has transit information with self-renewal capability inside, and has an expression mechanism.In a multicellular organism, it is a structural unit of tissue The term “tissue” refers to a cell population that differentiates in a specific direction and has the same function and morphology, and the term “embryo” refers to a multicellular organism at an early stage of ontogeny. Industrial applicability
本発明に係るシスティンプロテアーゼ処理コラーゲンは、 網目状構造を有し、 線維化が阻害されており、 水分子あるいは赤血球等の取り込み能力に優れ、 生体 適合性に優れる。 また、 保湿効果、 止血力、 細胞保持力に優れる。 実施例  The cysteine protease-treated collagen according to the present invention has a network structure, is inhibited from fibrosis, has excellent ability to take in water molecules or erythrocytes, and is excellent in biocompatibility. Also, it has excellent moisturizing effect, hemostatic power and cell retention power. Example
以下、 本発明を実施例により説明するが、 本発明は、 これらの実施例により何 ら制限されるものではない。  Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
【調製例 1】  [Preparation Example 1]
キハダマグ口皮部からのァテロコラーゲンの抽出 Extraction of atelocollagen from the skin of yellowfin mag
50 Ommol/L クェン酸緩衝液 (pH2. 5) 1 10 OmL の入ったワーリン ダブレンダ一に、 キハダマグロ皮部 534 gを投入し粉碎した。 4°Cで 3日間撹 拌後、 l O O O O X gで 30分間遠心し、 1次上澄みを得た。 沈殿部分に 500 mmol/L クェン酸緩衝液 (pH2. 5) 60 OmL を加え、 3時間撹拌後、 10 O O O X gで 30分間遠心し、 2次上澄みを得た。  To a Warinda blender containing 110 OmL of 50 Ommol / L citrate buffer (pH 2.5) was added 534 g of yellowfin tuna skin and ground. After stirring at 4 ° C for 3 days, the mixture was centrifuged at lOOOOXg for 30 minutes to obtain a primary supernatant. To the precipitate was added 60 OmL of 500 mmol / L citrate buffer (pH 2.5), and the mixture was stirred for 3 hours and centrifuged at 10 OO X g for 30 minutes to obtain a secondary supernatant.
1次および 2次上澄みを集め、 ブタ 'ペプシン (シグマ社製) を最終濃度 1 0 OU/mLになるように添加して、 4°Cで 3日間撹拌した。  Primary and secondary supernatants were collected, and pig'pepsin (Sigma) was added to a final concentration of 10 OU / mL, followed by stirring at 4 ° C for 3 days.
これに、 塩ィ匕ナトリウムを 2. 5 mol/Lの濃度となるように加えて溶解させ、 さらに、 4でで 1 6時間放置した後、 l O O O O X gで 30分間遠心して沈殿物 を集めた。  To this, sodium salt was added and dissolved at a concentration of 2.5 mol / L, left at 4 for 16 hours, and centrifuged at lOXOX g for 30 minutes to collect the precipitate. .
集めた沈殿物に、 2 Ommol/Lの酢酸緩衝液 (pH4. 0) を、 沈殿が溶解す る量を加えた。 得られたァテロコラーゲン量は、 1 3 9 g (収率 2 6%) であつ た。 2 Ommol / L acetate buffer (pH 4.0) is dissolved in the collected precipitate. Was added. The amount of obtained atelocollagen was 139 g (yield 26%).
【実施例 1】  [Example 1]
システィンプロテアーゼ処理コラーゲンの製造 Manufacture of collagen treated with cysteine protease
調製例 1で得たァテ口コラーゲンを 4でで 1 0 0倍容量の 2 0 mmol/L クェン 酸緩衝液 (p H 3. 0) で、 3回透析した。透析後、 ァテロコラーゲンに対して、 1. 0重量0 /0となるようにシスティンプロテアーゼ (ァクチニダイン) を添加し た。 温度を 2 0°Cにして 3日間撹拌し、 粗精製物を得た。 The mouth-collagen obtained in Preparation Example 1 was dialyzed three times with 4 against 100 volumes of 20 mmol / L citrate buffer (pH 3.0). After dialysis, a cysteine protease (actinidyne) was added to the atelocollagen so that the weight was 1.0 / 0 . The mixture was stirred at a temperature of 20 ° C. for 3 days to obtain a crude product.
得られた粗精製物を、陽ィオン交換ク口マトグラフィ一で精製した。詳しくは、 粗精製物を 2 Ommol/Lのクェン酸緩衝液 (ρ Η 3 · 5) (以下 「Α液」 という。) で平衡化した TSKgel SP-Toyopearl 650Mカラム (商品名 :東ソー株式会社製) に注入し、 A液を 3 0 OmL流してゲルに吸着しない成分を洗浄した。次に、 1. 5mol/L塩化ナトリウムを含む 2 Ommol/Lクェン酸緩衝液 (p H 3. 5) (以下 The resulting crude product was purified by cation exchange chromatography. For details, a TSKgel SP-Toyopearl 650M column (trade name: manufactured by Tosoh Corporation) obtained by equilibrating the crude product with 2 Ommol / L citrate buffer (ρΗ3.5) (hereinafter referred to as “Αsolution”) ), And the components that did not adsorb to the gel were washed by flowing 30 A mL of solution A. Next, 2 Ommol / L citrate buffer containing 1.5 mol / L sodium chloride (pH 3.5)
「B液」 という。) を 3 0 OmL流入し、 システィンプロテアーゼ処理コラーゲンIt is called "B liquid." ) 30 OmL inflow, cysteine protease treated collagen
(「CPコラーゲン) ということがある。) を分画した。 画分を 7. 5 % S D S - ポリアクリルアミ ドゲル電気泳動で分析したところ、 分子量約 1 0万の成分のみ からなることが確認できた(図 5)。得られた精製システィンプロテアーゼ処理コ ラーゲン 6 3 gを、 蒸留水で 3回透析した後、 凍結乾燥した。 収率 1 1. 8%。 システィンプロテアーゼ処理コラーゲンの陽イオンクロマトグラフィー分析 The fraction was analyzed by 7.5% SDS-polyacrylamide gel electrophoresis, and it was confirmed that the fraction consisted of only components with a molecular weight of about 100,000. (Fig. 5) 63 g of the purified collagen treated with cysteine protease was dialyzed three times against distilled water and freeze-dried Yield 11.8% Cation chromatography of collagen treated with cysteine protease Analysis
調製例 1で調製したァテロコラーゲンから分画した α 1、 a 2成分と、 前記精 製したシスティンプロテアーゼ処理コラーゲンとを、 それぞれ陽イオンクロマト グラフィ一で測定した。 図 6に示すように、 ァテロコラーゲンに含まれる α 1成 分、 α2成分は、 陽イオンクロマトグラフィー等により通常 6つのピークを与え るが、 本発明に係るシスティンプロテァーゼ処理コラーゲンは通常 4つのピーク を与えるのみであり、 また、 ァテロコラーゲンとシスティンプロテアーゼ処理コ ラーゲンの α成分は、 すべて溶出時間が異なっていた。 The α1, a2 components fractionated from the atelocollagen prepared in Preparation Example 1 and the purified cysteine protease-treated collagen were measured by cation chromatography. As shown in FIG. 6, the α1 component and α2 component contained in the atelocollagen usually give six peaks by cation chromatography or the like, whereas the cysteine proteinase-treated collagen according to the present invention usually has four peaks. Only one peak was given, and the elution times of atelocollagen and the α component of cysteine protease-treated collagen were all different.
-ゼ処理コラーゲンの電子顕微鏡撮影 ァテロコラーゲンとシスティンプロテアーゼ処理コラーゲンとを、 それぞれ 別々に 5 O mmol/L 酢酸緩衝液 ( p H 4 . 0 ) で溶解し、 常法に従いセルディス クにダルタルアルデヒドを用いて固定化した。 固定化したァテロコラーゲンとシ スティンプロテアーゼ処理コラーゲンとを、 電子顕微鏡 (S-900, 10kV、 株式会 社日立製作所製) で倍率 6万倍で撮影した (図 1, 2 )。 -Electron microscopy of collagen treated with zeolite Atelocollagen and cysteine protease-treated collagen were separately dissolved in 5 O mmol / L acetate buffer (pH 4.0) and immobilized on a cell disk using dartartaldehyde according to a conventional method. The immobilized atelocollagen and collagen treated with cysteine protease were photographed with an electron microscope (S-900, 10 kV, manufactured by Hitachi, Ltd.) at a magnification of 60,000 (FIGS. 1 and 2).
その結果、 ァテロコラーゲン (図 1 ) では、 3重螺旋構造が規則的に配列した 典型的な線維状の会合体構造を形成していたのに対し、 本発明に係るシスティン プロテアーゼ処理コラーゲン (図 2 ) は、 不規則で網目状の隙間の多い会合体構 造となっていることが確認できた。  As a result, the atelocollagen (FIG. 1) formed a typical fibrous aggregate structure in which the triple helical structure was regularly arranged, whereas the cysteine protease-treated collagen according to the present invention (FIG. 2). ) Was confirmed to have an irregular, mesh-like aggregate structure with many gaps.
この会合体構造の違レ、は、 システィンプロテァーゼ処理コラーゲンのポリぺプ チド主鎖末端構造が、 ァテロコラーゲンのそれとは異なるためであると推測され る。 システィンプロテアーゼ処理コラーゲンの風乾処理試験  It is presumed that this difference in the structure of the aggregate is due to the fact that the terminal structure of the polypeptide main chain of the collagen treated with cysteine protein is different from that of the atelocollagen. Air drying test of cysteine protease-treated collagen
ァテロコラーゲンとシスティンプロテアーゼ処理コラーゲンとを、 それぞれ 別々に 5 O mmol/L酢酸緩衝液 ( p H 4 . 0 ) で溶解し、 スライ ドガラス上に 1 O /z L滴下し、 4 °C下で 1 6時間放置して乾燥させた。 乾燥したそれぞれの試料 を、 光学生物顕微鏡 (株式会社島津製作所製) で分析した。 その結果、 システィ ンプロテアーゼ処理コラーゲン (図 7 ) は、 ァテロコラーゲン (図 8 ) よりも緻 密な紋様を示すことが確認できた。また、それぞれの粘ちよう性を、表面張力(液 滴重量法)によって分析したところ、システィンプロテアーゼ処理コラーゲンが、 ァテロコラーゲンより粘ちよう性が高いことが確認された。  Atelocollagen and cysteine protease-treated collagen were separately dissolved in 5 O mmol / L acetate buffer (pH 4.0), and 1 O / z L was dropped on the slide glass. Leave to dry for 6 hours. Each dried sample was analyzed with an optical biological microscope (manufactured by Shimadzu Corporation). As a result, it was confirmed that the collagen treated with cystine protease (FIG. 7) exhibited a finer pattern than the atelocollagen (FIG. 8). In addition, when the viscosity of each was analyzed by surface tension (droplet weight method), it was confirmed that collagen treated with cysteine protease had higher viscosity than atelocollagen.
この結果、 システィンプロテアーゼ処理コラーゲンは、 ァテロコラーゲンと比 較して、 ヒ ト肌表面への浸透と保護に有効であることが確認された。 システィンプロテァーゼ処理コラーゲンの止血性能評価  As a result, it was confirmed that the collagen treated with cysteine protease was more effective in permeating and protecting human skin than in atherocollagen. Evaluation of hemostatic performance of cysteine protein treated collagen
1 0週令のォス Wistar ラットをエーテルで導入麻酔し、 抱水クロラールの腹 腔内投与により麻酔し、 脾臓の先端を一部削除および 1 8 Gの注射針で穿針をし て出血させた。 出血部位にシスティンプロテアーゼ処理コラーゲン、 ァテロコラ 一ゲンをそれぞれ置き、 止血させた。 それぞれの試験群における止血に要した平 均時間は、 ァテロコラーゲンで 8 6秒、 システィンプロテアーゼ処理コラーゲン で 3 9秒、 コラーゲン止血剤 (市販品) で 9 1秒であつた。 A 10-week-old Os Wistar rat was anesthetized with ether, anesthetized by intraperitoneal administration of chloral hydrate, the tip of the spleen was partially removed, and bleeding was performed with a 18-G needle. Was. Cysteine protease-treated collagen and atelocora at bleeding sites Each gen was placed and the bleeding stopped. The average time required for hemostasis in each test group was 86 seconds for atelocollagen, 39 seconds for cysteine protease-treated collagen, and 91 seconds for collagen hemostat (commercially available).
コントロールは無処置とした。 止血までの時間 (秒) を測定した結果を表 1に 示す。 この結果、 システィンプロテアーゼ処理コラーゲンは、 ァテロコラーゲン や市販品コラーゲン止血剤の半分以下の時間 (秒) で有意に止血できることが示 され、 著しい止血性能の向上が確認された。 皮下埋入試験  Controls were untreated. Table 1 shows the results of measuring the time (seconds) until hemostasis. As a result, it was shown that cysteine protease-treated collagen can significantly reduce hemostasis in less than half the time (second) of atelocollagen or a commercially available collagen hemostatic agent, and a remarkable improvement in hemostatic performance was confirmed. Subcutaneous implantation test
1 0週令のォス Wistar ラットをエーテルで導入麻酔し、 抱水クロラールの腹 腔内投与により麻酔し、 背部に皮膚切開を入れ、 皮下に 2 0 mg のシスティンプ 口テアーゼ処理コラーゲン、 ァテロコラーゲンをそれぞれ一塊にして埋入した。 4週間後の埋入した部位を切開したところ、 システィンプロテアーゼ処理コラー ゲン、 ァテロコラーゲンは吸収され、 肉眼では確認できなかった。 また、 組織の 炎症や癒着などの異物反応は肉眼では確認できなかった。  10-week-old Os Wistar rats were anesthetized with ether, anesthetized by intraperitoneal administration of chloral hydrate, a skin incision was made in the back, and 20 mg of cysteine-lipase-treated collagen and atelocollagen were subcutaneously injected. Each was lumped and embedded. When the implanted site was incised 4 weeks later, the cystine protease-treated collagen and atelocollagen were absorbed and could not be visually confirmed. In addition, foreign body reactions such as tissue inflammation and adhesions could not be confirmed with the naked eye.
表 1 止血効果  Table 1 Hemostatic effect
Figure imgf000017_0001
Figure imgf000017_0001
>300は, 300秒経っても止血されないことを示す. N D =not done 中性 pHの緩衝液で調製したシスティンプロテアーゼ処理コラーゲンとァテロコ ラーゲンの評価 > 300 indicates that the bleeding is not stopped after 300 seconds. ND = not done Evaluation of cysteine protease-treated collagen and atelocollagen prepared in neutral pH buffer
調製例 1で製造したァテロコラーゲンと、 前記システィンプロテアーゼ処理コ ラーゲンとの、 中性 pHにおける超分子構造の形態学的特徴を下記の通り評価し た。  The morphological characteristics of the supramolecular structure at neutral pH of the atelocollagen produced in Preparation Example 1 and the cysteine protease-treated collagen were evaluated as follows.
走査型電子顕微鏡観察のために中性 p Hに緩衝能を有する溶液を用意した。 溶液条件: 50 mmol/Lリン酸緩衝液 (pH7. 4)  A solution having a buffering capacity at neutral pH was prepared for scanning electron microscope observation. Solution conditions: 50 mmol / L phosphate buffer (pH 7.4)
走査型電子顕微鏡撮影のため、各 1. Omg/mLのシスティンプロテアーゼ処 理コラーゲンとァテロコラーゲンを上記溶液にてそれぞれ透析した。 24ゥエル プレートの各ゥエルにセルディスクを入れ、 そのゥエルに透析後の各試料溶液を 加えて、 4°Cにてー晚放置後、 ダルタルアルデヒドでコラーゲン自己会合物をセ ルディスクに固定化した。  For scanning electron microscopy, 1.Omg / mL of cysteine protease-treated collagen and atelocollagen were each dialyzed against the above solution. Place a cell disk in each well of the 24-well plate, add each sample solution after dialysis to the wells, and leave it at 4 ° C. Then immobilize the collagen self-association product on the cell disk with daltonaldehyde. did.
それぞれのコラーゲン透析試料を走査型電子顕微鏡(Hitachi S-900) にて 6万 倍にて撮影した。 各透析溶液のシスティンプロテアーゼ処理コラーゲンとァテロ コラーゲン自己会合物の異なる pHの緩衝液で処理した写真を図 9、 10に示す。 図 1、 図 2、 図 9、 図 10の電子顕微鏡写真から、 ァテロコラーゲン自己会合 物は pH (4. 0〜7. 4)が異なっても線維構造を形成することが確認された。 システィンプロテアーゼ処理コラーゲンは、 この pH範囲において線維構造を形 成せず立体的な網目構造を形成することが確認された。  Each collagen dialysis sample was photographed with a scanning electron microscope (Hitachi S-900) at a magnification of 60,000. FIGS. 9 and 10 show photographs of each dialysis solution obtained by treating cysteine protease-treated collagen and atelocollagen self-aggregate with different pH buffer solutions. From the electron micrographs of FIGS. 1, 2, 9, and 10, it was confirmed that the atelocollagen self-aggregate forms a fibrous structure even when the pH (4.0 to 7.4) is different. It was confirmed that the collagen treated with cysteine protease did not form a fibrous structure in this pH range but formed a three-dimensional network structure.
コラーゲン自己会合物の超分子構造の違いは、 システィンプロテアーゼ処理コ ラーゲンとァテロコラーゲン分子の自己会合に関係するアミノ酸配列などが影響 していると推定される。 なぜなら、 システィンプロテアーゼ処理コラーゲンはシ スティンプロテアーゼにより限定加水分解を受けているからである。  It is presumed that the difference in the supramolecular structure of the collagen self-association is influenced by the amino acid sequences involved in the self-association of the cysteine protease-treated collagen and the atelocollagen molecule. This is because collagen treated with cysteine protease has undergone limited hydrolysis by cysteine protease.
これらの結果から、システィンプロテアーゼ処理コラーゲンは PH4.0〜7. 4の範囲内で立体的な網目構造を保持し、 また、 ァテロコラーゲンと異なる超分 子構造体であることが確認された。 システィンプロテアーゼ処理コラーゲンのェタノールに対する溶解度  From these results, it was confirmed that the collagen treated with cysteine protease had a three-dimensional network structure within the range of pH 4.0 to 7.4, and was a supermolecular structure different from that of atelocollagen. Solubility of cysteine protease-treated collagen in ethanol
調製例 1で製造したァテロコラーゲンと、 前記システィンプロテアーゼ処理コ ラーゲンとのエタノールに対する溶解度を評価した。 The atelocollagen produced in Preparation Example 1 and the cysteine protease-treated The solubility of Lagen in ethanol was evaluated.
これらコラーゲンを 2 Ommol/L酢酸緩衝液 (pH4. 0) に溶解し、 1. 0% のシスティンプロテァーゼ処理コラーゲン溶液とァテロコラーゲン溶液を調製し た。  These collagens were dissolved in a 2 O mmol / L acetate buffer (pH 4.0) to prepare a 1.0% cysteine proteinase-treated collagen solution and an atelocollagen solution.
各システィンプロテアーゼ処理コラーゲン溶液とァテロコラーゲン溶液に、 ェ タノールを最終濃度が 0、 10、 1 5、 20、 40、 60、 80% (VV) にな るように加えて混和した。 4 で 1時間放置後、 10、 O O O X gで 30分間遠 心して上清を分離した。 上清に含まれるコラーゲン濃度を 21 O nmの吸光度を 測定して求めた。  Ethanol was added to each of the cysteine protease-treated collagen solution and the atelocollagen solution to a final concentration of 0, 10, 15, 20, 40, 60, 80% (VV) and mixed. After leaving at 4 for 1 hour, the supernatant was separated by centrifugation at 10,000 g for 30 minutes. The concentration of collagen contained in the supernatant was determined by measuring the absorbance at 21 O nm.
0 %ェタノール濃度でのシスティンプロテアーゼ処理コラーゲン上清溶液とァ テロコラーゲン上淸溶液の 210 nmの吸光度を 100%として、 各エタノール 濃度での吸光度の相対比 (%) を計算した。 すなわち、 ここでは、 相対比は溶解 度に正比例するものとして表される。 図 11にその結果を示す。  The relative ratio (%) of the absorbance at each ethanol concentration was calculated with the absorbance at 210 nm of the cysteine protease-treated collagen supernatant solution and the atherocollagen solution at 0% ethanol concentration as 100%. That is, here, the relative ratio is expressed as being directly proportional to the solubility. Figure 11 shows the results.
図 1 1から明らかなように、 ァテロコラーゲン溶液は 15%エタノール濃度で' の相対比は 55%であるが、 同エタノール濃度でのシスティンプロテアーゼ処理 コラーゲンの相対比は 100%であり、 システィンプロテアーゼ処理コラーゲン は 0%と 15%エタノール濃度での溶解度が変わらないことが確認できた。 さら に、 20%エタノール濃度での相対比は、 ァテロコラーゲンで僅か 6%であるが システィンプロテアーゼ処理コラーゲンでは 80%であった。 溶解度 50%を与 えるエタノール濃度は、 ァテロコラーゲンとシスティンプロテアーゼ処理コラー ゲンで約 10%の差が示された。  As is clear from Fig. 11, the relative ratio of atelocollagen solution was 15% at 15% ethanol concentration, but the relative ratio of cysteine protease treated at the same ethanol concentration was 100%. It was confirmed that the solubility of collagen at 0% and 15% ethanol concentration did not change. In addition, the relative ratio at 20% ethanol concentration was only 6% for atelocollagen but 80% for cysteine protease-treated collagen. The ethanol concentration giving 50% solubility showed a difference of about 10% between atelocollagen and cysteine protease-treated collagen.
これらの結果から、 システィンプロテアーゼ処理コラーゲンは、 ァテロコラー ゲンに比して、.エタノールに対する溶解度がきわめて高いことが確認された。 こ の結果は、 システィンプロテアーゼ処理コラーゲンがァテロコラーゲンとは異な る表面構造をもつことが原因であると考えられる。  From these results, it was confirmed that the collagen treated with cysteine protease had an extremely higher solubility in ethanol than that of atelocollagen. This result is considered to be due to the fact that collagen treated with cysteine protease has a surface structure different from that of atelocollagen.
また、エタノールに対する溶解度が高いことは、下記のような優位性を有する。 すなわち、 たとえば、 化粧品では、 エタノールを添加する場合が多く、 エタノー ルに対する溶解度が高ければ、 それだけ高濃度でシスティンプロテアーゼ処理コ ラーゲンを添加できる。 したがって、 システィンプロテアーゼ処理コラーゲンを 添加する効果をより高めることができる。 Further, high solubility in ethanol has the following advantages. That is, for example, in cosmetics, ethanol is often added, and the higher the solubility in ethanol, the higher the concentration of cysteine protease-treated collagen can be added. Therefore, cysteine protease-treated collagen The effect of the addition can be further enhanced.
また、 本発明に係るシスティンプロテアーゼ処理コラーゲンは、 このように特 殊な化学修飾をしていなくても、 ェタノールに対する溶解性が高く、 化学修飾に よる性質劣化の心配がない。 なお、 たとえば、 システィンプロテアーゼ処理コラ 一ゲンをァシル化修飾してエタノールに対する?容解度を高めることも可能であり、 この場合、 濃度がより高まるため、 肌触りがより滑らかとなり、 粉っぽい感じが 少なくなり、 化粧品としてより有効なものとなると推定される。  Further, the cysteine protease-treated collagen according to the present invention has high solubility in ethanol even without special chemical modification as described above, and there is no fear of deterioration in properties due to the chemical modification. In addition, for example, cysteine protease-treated collagen is modified by acylation to ethanol. It is also possible to increase the solvability, in which case it is presumed that the higher the concentration, the smoother the touch, the less powdery and the more effective cosmetics.
さらに、 化粧品、 医療用材料等において、 水に難溶な他の化合物を溶解させる 場合、 溶剤としてエタノール含量の比率が高くなるが、 その場合でも、 十分量の システィンプロテアーゼ処理コラーゲンを共存させることが可能である。  Furthermore, in the case of dissolving other water-insoluble compounds in cosmetics, medical materials, etc., the ratio of ethanol content as a solvent increases, but even in this case, a sufficient amount of cysteine protease-treated collagen can coexist. It is possible.
そして、 システィンプロテアーゼ処理コラーゲンは溶解度が高いため、 高濃度 のェタノール水溶液中でも均一に分散させて試料を調製することが可能となる。 よって、 多様な分野で利用することが可能である。 さらに、 エタノール中にシス ティンプロテアーゼ処理コラーゲンを添加して溶媒を蒸発させることにより、 均 一に分散した固形物を得ることができる。 これは、 多層フィルムの形成等に利用 可能である。 ーゼ処理コラーゲンの水分蒸発量  Since the cysteine protease-treated collagen has a high solubility, it is possible to prepare a sample by uniformly dispersing it even in a high-concentration aqueous ethanol solution. Therefore, it can be used in various fields. Furthermore, by adding cystine protease-treated collagen to ethanol and evaporating the solvent, a uniformly dispersed solid can be obtained. This can be used for forming a multilayer film. Amount of water evaporation of collagen
調製例 1で製造したァテロコラーゲンと、 前記システィンプロテアーゼ処理コ ラーゲンとの水分蒸発量を評価した。  The water evaporation of the atelocollagen produced in Preparation Example 1 and the cysteine protease-treated collagen was evaluated.
まず、 下記の 3つの溶液を調製した。  First, the following three solutions were prepared.
コント口ール: 20 mmol/L酢酸緩衝液 (pH4. 0)、  Control: 20 mmol / L acetate buffer (pH 4.0),
ァテロコラーゲン: 20 mmol/L酢酸緩衝液 (pH4. 0 ) に溶解した 0. 5 % ァテロコラーゲン溶液、  Atelocollagen: 0.5% atelocollagen solution dissolved in 20 mmol / L acetate buffer (pH 4.0)
-ゼ処理コラーゲン: 20 mmolL酢酸緩衝液 (pH4. -Zeta-treated collagen: 20 mmolL acetate buffer (pH 4.
0) に溶解した 0. 5%CP-コラーゲン溶液 0.5% CP-collagen solution dissolved in (0)
各溶液につき、 ゥエル直径 1 6 mm (2. 0 mm2) の 24ゥエル'プラスチ ックプレート (I CN社製、 L i b r o) を 1枚づっ用意し、 その重量 (風袋) を測定した。 それぞれのプラスチックプレートの各ゥエルに、 同じ溶液を 200 μ L加えてその重量を電子天秤で測定した。 具体的には風袋重量との差から、 そ れぞれのプレートに加えた溶液の重量 (mg) を計算して求めた。 For each solution, one 24-well plastic plate (Libro, manufactured by ICN) with a 16-mm diameter (2.0 mm 2 ) was prepared, and the weight (tare) was measured. Add 200 ml of the same solution to each well of each plastic plate. μL was added and the weight was measured with an electronic balance. Specifically, the weight (mg) of the solution added to each plate was calculated from the difference from the tare weight.
各プレートを 22°C、 湿度 50 %〜 60 %の保温庫に入れて、 そのまま 1 1時 間、 13時間、 14時間、 18時間、 22時間、 30時間、 37時間静置した。 各時間毎に各プレートの重量を電子天枰にて測定して、 風袋重量とタンパク質 濃度の捕正を行い水分蒸発量を求めた。 具体的には、 0時間に加えたァテロコラ 一ゲンとシスティンプロテアーゼ処理コラーゲン (CPコラーゲン) の溶液重量 から、 タンパク質重量 (0.5mgZmL) を差し引き、 それぞれの水量 W (0) と した。 ァテロコラーゲンとシスティンプロテアーゼ処理コラーゲンの W (0) 力 S コントロールの W (0) と等しくなるように係数を求め、 それぞれの補正係数で 各時間の W (t) を補正し W £(t) を算出した。 次に、 各時間の溶液重量 W' (t) から W (0) を引き算して dW '(t) を計算した。 37時間放置後のコントロール の重量変化 dW(37)を 100%として、 各時間の溶液の重量変化 dW'(t)の相対比Each plate was placed in an incubator at 22 ° C and a humidity of 50% to 60%, and was left as it was for 11 hours, 13 hours, 14 hours, 18 hours, 22 hours, 30 hours, and 37 hours. At each time, the weight of each plate was measured with an electronic balance, the tare weight and the protein concentration were measured, and the amount of water evaporation was determined. Specifically, the protein weight (0.5 mg ZmL) was subtracted from the weight of the solution of atelocollagen and cysteine protease-treated collagen (CP collagen) added at 0 hours, and the respective water amounts W (0). W (0) force of atelocollagen and cysteine protease-treated collagen Calculate coefficients to be equal to W (0) of S control, correct W (t) at each time with each correction coefficient, and calculate W £ (t). Calculated. Next, dW '(t) was calculated by subtracting W (0) from the solution weight W' (t) at each time. Relative ratio of weight change dW '(t) of solution at each time, assuming dW (37) of control weight change after standing for 37 hours as 100%
(%) (=dW*(t) X 100÷dW(37)を計算して、 放置時間 (時間) と水分蒸発 相対比 (%) の推移を評価した。 つまり、 コントロールの 37時間後の蒸発量を 100として、 すべてをその相対値として表した。 (%) (= dW * (t) x 100 ÷ dW (37) was calculated to evaluate the changes in the standing time (hour) and the relative ratio of water evaporation (%). All were expressed as relative values, with the amount as 100.
その結果を表 2に示す。  The results are shown in Table 2.
¾2から明らかなように、 ァテロコラーゲンはコントロールに対して、 水分蒸 発の抑制効果は 13時間後の 6%から徐々に低下し、 18時間以降はコントロー ルとほとんど差がないことが示された。 つまり、 時間経過に伴い、 水分蒸発抑制 効果は失われる結果であった。一方、システィンプロテアーゼ処理コラーゲンは、 13時間後のコントロールに対して 10%も水分蒸発量が抑制されていることが 示された。 さらに驚くべきことに、 この著しい水分蒸発抑制効果は 22時間経過 後でも 10. 5 %であり、 水分蒸発抑制効果は長時間持続することが初めて確認 された。 この実験結果より、 システィンプロテアーゼ処理コラーゲンの水分保持 力は、 ァテロコラーゲンのそれと大きく異なることが明確となった。  As is evident from ¾2, atelocollagen showed a gradual decrease in the effect of inhibiting water evaporation from the control, from 6% after 13 hours, and showed little difference from the control after 18 hours. . In other words, the effect of suppressing water evaporation was lost over time. On the other hand, cysteine protease-treated collagen showed a 10% reduction in water evaporation compared to the control after 13 hours. Even more surprisingly, this remarkable water evaporation suppression effect was 10.5% even after 22 hours, and it was confirmed for the first time that the water evaporation suppression effect lasted for a long time. From this experimental result, it was clarified that the water retention capacity of cysteine protease-treated collagen was significantly different from that of atelocollagen.
く前記 「13時間の6%」 の算出法 >  How to calculate “6% of 13 hours” above>
表の数値を 13時間で比べて、 コントロールは 37. 4%, ァテロコラーゲン は 35. 3%, システィンプロテアーゼ処理コラーゲンは 33. 6%である。 前 記 6%とは、蒸発量変化の差である 2 · 1 (=37. 4一 35. 3) を分子とし、 37. 4を分母とした場合の割合を示している。 表 2 放置時間に対する相対的な水分蒸発量変化 Comparing the values in the table at 13 hours, the control is 37.4%, the atelocollagen is 35.3%, and the collagen treated with cysteine protease is 33.6%. Previous The above 6% indicates the ratio when the difference in evaporation change, 2 · 1 (= 37.4-35.3), is used as the numerator and 37.4 is used as the denominator. Table 2 Changes in water evaporation relative to storage time
Figure imgf000022_0001
Figure imgf000022_0001
【調製例 2】 [Preparation Example 2]
ゥサギの耳および尾からのァテロコラーゲンの抽出  Extraction of atelocollagen from the ears and tail of a heron
ゥサギの耳 5. 45gと尾部 18. 2 gをそれぞれ細かに細断して、 O.lmol/L 酢酸水溶液 10 OmLを加えて、 ヮーリングブレンダ一にて粉碎した。 4°Cにて 3日間撹拌後、 10,O O OX gにて 30分間遠心し各試料の一次上清を得た。 さ らに沈澱部分に 10 OmLの 10 Ommol/L酢酸水溶液を加えて、 撹拌後、 同様 に遠心して二次上清を得た。  5. Eg of the heron 5.45 g and 18.2 g of the tail were each finely chopped, and 10 OmL of an O.lmol / L acetic acid aqueous solution was added, followed by pulverization with a Perling blender. After stirring at 4 ° C. for 3 days, the mixture was centrifuged at 10, OX g for 30 minutes to obtain a primary supernatant of each sample. Further, 10 OmL of a 10 Ommol / L acetic acid aqueous solution was added to the precipitated portion, and the mixture was stirred and centrifuged in the same manner to obtain a secondary supernatant.
これら一次、 二次上清を集めて、 それぞれの試料溶液にブタ ·ペプシン (シグ マネ土製) を最終濃度 3 OU/mLになるように添カ卩し、 4°Cにて 3日間撹拌した。 同条件で遠心後の上清全量に対して、 最終濃度 2. 5mol/Lになるように塩化 ナトリウムを加えて溶解し、 4°Cにて 1時間放置後、 10,000 Xgで 30分間 遠心して沈澱を集めた。沈澱を 2 Ommol/L酢酸緩衝液 (pH4.0) を適量加えて 溶解し、 これらを耳由来ァテロコラーゲン試料と尾部由来ァテロコラーゲン試料 とした。 These primary and secondary supernatants were collected, and porcine pepsin (manufactured by Cygnet) was added to each sample solution to a final concentration of 3 OU / mL, followed by stirring at 4 ° C for 3 days. Add sodium chloride to the total supernatant after centrifugation under the same conditions to a final concentration of 2.5 mol / L, dissolve, leave at 4 ° C for 1 hour, and centrifuge at 10,000 Xg for 30 minutes The precipitate was collected with care. Add the appropriate amount of 2 Ommol / L acetate buffer (pH 4.0) to the precipitate. After dissolution, these were used as an ear-derived atelocollagen sample and a tail-derived atelocollagen sample.
【実施例 2】  [Example 2]
ゥサギ耳由来と尾部由来システィンプロテアーゼ処理コラーゲンの調製 調製 Preparation of cysteine protease-treated collagen from heron ear and tail
調製例 2にて得たゥサギ耳おょぴ尾のァテロコラーゲンの一部をそれぞれ別々 の蓋付き容器に移した。  A part of the atelocollagen of the egret ears and tail obtained in Preparation Example 2 was transferred to separate containers each having a lid.
システィンプロテアーゼ (ァクチ-ダイン) は、 5mmol/L ジチオスレィ トー ルと lmmol/LEDTAを含む 2 Ommol/Lリン酸緩衝液(pH 6.5 )中で 25°C, 1時間放置して活性ィ匕した。 各ァテロコラーゲン試料溶液に 3. 0% (w/v) 活 性化ァクチニダインとなるように添加した。 20°Cにて 7日間撹拌し粗生成物を 得た。  Cysteine protease (acti-dyne) was activated at 25 ° C. for 1 hour in a 2 O mmol / L phosphate buffer (pH 6.5) containing 5 mmol / L dithiothreitol and 1 mmol / LEDTA. To each atelocollagen sample solution was added 3.0% (w / v) activated actinidyne. The mixture was stirred at 20 ° C for 7 days to obtain a crude product.
ゥサギ耳由来と尾部由来システィンプロテアーゼ処理コラーゲンの精製  Purification of cysteine protease-treated collagen from heron ear and tail
調製したゥサギ由来システィンプロテアーゼ処理コラーゲン (耳由来と尾部由 来)とァクチ-ダインは、陰イオン交換ゲルを用いるパッチ法にて分離精製した。 詳しくは、酵素反応粗生成物に 20 mmol/L酢酸緩衝液 (pH4.0) にて平衡化 した TSKgel DEAE-Toyopearl 650Cゲル(東ソ一株式会社製)を適量添加して、 The prepared herring-derived cysteine protease-treated collagen (ear-derived and tail-derived) and acti-dyne were separated and purified by a patch method using an anion exchange gel. Specifically, an appropriate amount of TSKgel DEAE-Toyopearl 650C gel (manufactured by Tosoh Corporation) equilibrated with 20 mmol / L acetate buffer (pH 4.0) was added to the crude enzyme reaction product,
25 °Cにて 1時間放置後、 10,O O O X gにて 30分間遠心して上清にシスティ ンプロテアーゼ処理コラーゲンを得た。 After standing at 25 ° C for 1 hour, the mixture was centrifuged at 10, OOOX g for 30 minutes to obtain cystine protease-treated collagen in the supernatant.
この粗精製物を 5 % S D S ポリアクリルアミドゲル電気泳動にて分析した結 果、 図 12に示すように、 得られたゥサギ由来のシスティンプロテアーゼ処理コ ラーゲンは、 α鎖のみからなる分子量約 10万の成分のみから成ることが確認で きた。 得られたゥサギ耳および尾部由来の精製システィンプロテアーゼ処理コラ 一ゲンは蒸留水に 3回透析した後、 凍結乾燥した。  The crude product was analyzed by 5% SDS polyacrylamide gel electrophoresis.As a result, as shown in FIG. 12, the obtained cystine protease-treated collagen derived from egrets had a molecular weight of only 100,000 It was confirmed that it consisted of only components. The purified cystine protease-treated collagen from the perforated ears and tail obtained was dialyzed three times against distilled water and then lyophilized.
【実施例 3】 [Embodiment 3]
ゥシ酸可溶性コラーゲン (タイプ I) 由来システィンプロテアーゼ処理コラーゲ ンの調製  Preparation of collagen treated with cysteine protease derived from citrate-soluble collagen (type I)
市販品のゥシ酸可溶性コラーゲン(タイプ I) (ナカライテスタ、品番 #093 50 34) が 1.0mg/mL濃度になるよう 2 Ommol/L酢酸緩衝液 (pH4.0) を加えて溶解した。あらかじめ 5 mmol/Lジチオスレィトールと l mmol/LE D T Aを含む 2 0 mmol/Lリン酸緩衝液(pH 6 . 5 )で 2 5 °Cで 1時間放置して活性ィ匕 したシスティンプロテアーゼ (ァクチ-ダイン) を、 ゥシ酸可溶性コラーゲン試 料溶液に 1 · 0 % (w/v ) となるように添加した。 2 0 °Cにて 7日間撹拌し粗生 成物を得た。 2 Ommol / L acetate buffer (pH 4.0) so that commercially available citrate-soluble collagen (Type I) (Nacalai Tester, Part No. # 093 50 34) has a concentration of 1.0 mg / mL. Was added and dissolved. A cysteine protease that had been activated in advance by leaving it in a 20 mmol / L phosphate buffer (pH 6.5) containing 5 mmol / L dithiothreitol and 1 mmol / LE DTA at 25 ° C for 1 hour (Acti-dyne) was added to the citrate-soluble collagen sample solution at a concentration of 1.0% (w / v). The mixture was stirred at 20 ° C for 7 days to obtain a crude product.
ゥシ酸可溶性コラーゲン由来システィンプロテァーゼ処理コラーゲンの精製 Purification of cystine-protease-treated collagen derived from citrate-soluble collagen
前述のようにして調製したゥシ由来システィンプ口テアーゼ処理コラーゲンと ァクチニダインを、 陰イオン交換ゲルを用いるカラム法にて分離精製した。  The collagen-treated cysteine-mouth-tease-treated collagen and actinidain prepared as described above were separated and purified by a column method using an anion exchange gel.
詳しくは、 2 0 mmol/L 酢酸緩衝液 (pH 4 . 0 ) にて平衡化した TSKgel Specifically, TSKgel equilibrated with 20 mmol / L acetate buffer (pH 4.0)
DEAE-Toyopearl 650Cゲル (東ソ一株式会社製) をつめたカラムに、 酵素反応 粗生成物を流してゥシ由来 CP-コラーゲンを分画した。 The crude product of the enzymatic reaction was passed through a column filled with DEAE-Toyopearl 650C gel (manufactured by Tosoichi Co., Ltd.) to fractionate the CP-collagen derived from E.
この粗精製物を 5 % S D S ポリアクリルアミ ドゲル電気泳動にて分析した結 果、 J3鎖と γ鎖のない分子量約 1 0万の α鎖成分のみから成ることが確認できた。 The crude product was analyzed by 5% SDS polyacrylamide gel electrophoresis. As a result, it was confirmed that the crude product consisted of only the α- chain component having a molecular weight of about 100,000 without the J3 and γ chains.
【実施例 4】 [Example 4]
ニヮトリ由来ァテロコラーゲンの調製 Preparation of chicken-derived atelocollagen
ニヮトリの軟骨 9 3 gを細断して、 0 . 5 mol/L酢酸水溶液 1 0 0 O mLを加え て、 ワーリンダブレンダ一にて粉碎した。 4 °Cにて 2日間撹拌後、 1 0, 0 0 0 X gにて 3 0分間遠心して上清を集めた。 上清溶液にブタ ·ペプシン (シグマ社 製) を最終濃度 3 0 U/mLになるように添カ卩し、 3 0 °Cにて 3日間撹拌した。 同 条件で遠心後の上清全量に対して、 最終濃度 2 . 5 mol/Lになるように塩化ナト リウムを加えて溶解して 1時間放置後、 1 0, 0 0 0 X gで 3 0分間遠心して沈 澱を集めた。 沈澱を 2 0 mmol/L酢酸緩衝液 (pH 5 . 0 ) を適量加えて溶解し、 これらを-ヮトリ由来ァテロコラーゲン試料とした。  Ninety-three grams of chicken cartilage was cut into small pieces, 100 mL of a 0.5 mol / L acetic acid aqueous solution was added, and the mixture was pulverized with a Warlinda blender. After stirring at 4 ° C for 2 days, the mixture was centrifuged at 100,000 X g for 30 minutes to collect the supernatant. Porcine pepsin (manufactured by Sigma) was added to the supernatant solution to a final concentration of 30 U / mL, and the mixture was stirred at 30 ° C for 3 days. Add sodium chloride to the total supernatant after centrifugation under the same conditions to a final concentration of 2.5 mol / L, dissolve, allow to stand for 1 hour, and add 100,000 X g The precipitate was collected by centrifugation for minutes. The precipitate was dissolved by adding an appropriate amount of a 20 mmol / L acetate buffer (pH 5.0), and these were used as a sample of atelocollagen derived from -Petria.
ニヮトリ由来システィンプロテアーゼ処理コラーゲンの調製  Preparation of Collagen Treated with Cysteine Protease from Chickens
前述のようにして得たニヮトリのァテロコラーゲン溶液に前述のように活性化 したシスティンプロテアーゼ (ァクチ-ダイン) を 3 . 0 %(w/v)になるように添 加した。 3 0 °Cにて 3日間撹拌し粗生成物を得た。 この粗精製物を 5 % S D S— ポリアクリルアミ ドゲル電気泳動にて分析した結果、 図 1 3に示すように、 鎖 のない分子量約 9万〜 1 3万の ο;鎖成分のみから成ることが示された。 The cysteine protease (acti-dyne) activated as described above was added to the chicken atelocollagen solution obtained as described above to a concentration of 3.0% (w / v). The mixture was stirred at 30 ° C for 3 days to obtain a crude product. The crude product was analyzed by 5% SDS-polyacrylamide gel electrophoresis. It has been shown that it has no molecular weight of about 90,000 to 130,000.

Claims

請求の範囲 The scope of the claims
1 . コラーゲンまたはァテロコラーゲンとシスティンプロテア一ゼとを接触さ せる、 システィンプロテアーゼ処理コラーゲンの製造方法。 1. A method for producing cysteine protease-treated collagen, wherein collagen or atelocollagen is brought into contact with cysteine protease.
2 . 前記コラーゲンまたはァテロコラーゲンが、 魚類、 鳥類またはほ乳類由来 のァテロコラーゲンであることを特徴とする請求項 1に記載のシスティンプロテ ァーゼ処理コラーゲンの製造方法。  2. The method for producing cysteine protease-treated collagen according to claim 1, wherein the collagen or atelocollagen is fish, bird, or mammal-derived atelocollagen.
3 . 前記コラーゲンまたはァテロコラーゲンが、 魚類由来のァテロコラーゲン であることを特徴とする請求項 1または 2に記載のシスティンプロテアーゼ処理 コラーゲンの製造方法。  3. The method for producing collagen treated with cysteine protease according to claim 1 or 2, wherein the collagen or atelocollagen is fish-derived atelocollagen.
4 . コラーゲンまたはァテ口コラーゲンとシスティンプロテア一ゼとを接角虫し て得られるシスティンプロテアーゼ処理コラーゲン。  4. Collagen or collagen that has been treated with cysteine protease obtained by contacting cysteine protease with cysteine protease.
5 . 前記コラーゲンまたはァテロコラーゲンが、 魚類、 鳥類またはほ乳類由来 のァテロコラーゲンであることを特徴とする請求項 4に記載のシスティンプロテ ァーゼ処理コラーゲンの製造方法。  5. The method for producing cysteine protein-treated collagen according to claim 4, wherein the collagen or atelocollagen is fish, bird or mammal-derived atelocollagen.
6 . 前記コラーゲンまたはァテロコラーゲンが、 魚類由来のァテロコラーゲン であることを特徴とする請求項 4または 5に記載のシスティンプロテアーゼ処理 コラーゲン。  6. The cysteine protease-treated collagen according to claim 4, wherein the collagen or atelocollagen is fish-derived atelocollagen.
7 . 前記システィンプロテアーゼ処理コラーゲンが、 該システィンプロテア一 ゼ処理コラーゲン分子 1つが 3本のポリぺプチド鎖からなる 3重螺旋構造を有し、 複数のシスティンプロテアーゼ処理コラーゲン分子により網目状の会合体構造を 形成していることを特徴とする請求項 4〜 6のいずれかに記載のシスティンプロ テアーゼ処理コラーゲン。  7. The cysteine protease-treated collagen has a triple helical structure in which one cysteine protease-treated collagen molecule is composed of three polypeptide chains, and a network-like aggregate structure formed by a plurality of cysteine protease-treated collagen molecules. The cysteine protease-treated collagen according to any one of claims 4 to 6, wherein the collagen is formed.
8 . 前記システィンプロテアーゼ処理コラーゲンが、 複数のシスティンプロテ ァーゼ処理コラーゲン分子による 1本の線維への線維化が阻害されていることを 特徴とする請求項 4〜 7のいずれかに記載のシスティンプロテアーゼ処理コラー ゲン。  8. The cysteine protease-treated collagen according to any one of claims 4 to 7, wherein the cysteine protease-treated collagen inhibits fibrosis into one fiber by a plurality of cysteine protease-treated collagen molecules. Collagen.
9 . 前記システィンプロテアーゼ処理コラーゲンが熱により変性する温度が、 2 5 °C以上であることを特徴とする請求項 4〜 8のいずれかに記載のシスティン プロテアーゼ処理コラーゲン。 9. The cysteine according to any one of claims 4 to 8, wherein the temperature at which the cysteine protease-treated collagen is denatured by heat is 25 ° C or more. Protease-treated collagen.
1 0 . 請求項 4〜 9のいずれかに記載のシスティンプロテアーゼ処理コラーゲ ンを含有する化粧品。  10. A cosmetic containing the cysteine protease-treated collagen according to any one of claims 4 to 9.
1 1 . 請求項 4〜9のいずれかに記載のシスティンプロテアーゼ処理コラーゲ ンを含有する医療用材料。  11. A medical material containing the cysteine protease-treated collagen according to any one of claims 4 to 9.
1 2 . 請求項 4〜 9のいずれかに記載のシスティンプロテアーゼ処理コラーゲ ンを含有する食品添加剤。  12. A food additive containing the cysteine protease-treated collagen according to any one of claims 4 to 9.
1 3 . 請求項 4〜 9のいずれかに記載のシスティンプロテアーゼ処理コラーゲ ンを含有する細胞、 組織または胚の培養材料。  13. A culture material for cells, tissues or embryos containing the cysteine protease-treated collagen according to any one of claims 4 to 9.
PCT/JP2003/002346 2002-08-28 2003-02-28 Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease WO2004020470A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004532678A JP4490268B2 (en) 2002-08-28 2003-02-28 Method for producing cysteine protease-treated collagen and cysteine protease-treated collagen
AU2003211379A AU2003211379A1 (en) 2002-08-28 2003-02-28 Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/248696 2002-08-28
JP2002248696 2002-08-28

Publications (1)

Publication Number Publication Date
WO2004020470A1 true WO2004020470A1 (en) 2004-03-11

Family

ID=31972531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002346 WO2004020470A1 (en) 2002-08-28 2003-02-28 Process for producing collagen treated with cysteine protease and collagen treated with cysteine protease

Country Status (3)

Country Link
JP (1) JP4490268B2 (en)
AU (1) AU2003211379A1 (en)
WO (1) WO2004020470A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875136B1 (en) 2008-04-16 2008-12-22 주식회사 다림바이오텍 The method of producing an adhesive hemostatic agent using the porcine-source esterified atelocollagen
JP2010168292A (en) * 2009-01-20 2010-08-05 Kyoei Kagaku Kogyo Kk Crosslinked collagen or the like, and cosmetic comprising the same
JP2011526304A (en) * 2009-07-27 2011-10-06 國立成功大學 Method for preparing porous collagen matrix
JP2014514118A (en) * 2011-04-28 2014-06-19 ライフセル コーポレーション Method for enzyme treatment of tissue products
WO2015167004A1 (en) * 2014-04-30 2015-11-05 学校法人近畿大学 Composition for inducing differentiation
CN105087728A (en) * 2015-08-14 2015-11-25 浙江省海洋开发研究院 Preparation method of selenium-chelated collagen peptide with tuna bone collagen serving as source
CN105087729A (en) * 2015-08-14 2015-11-25 浙江省海洋开发研究院 Tuna bone collagen peptide preparation method
US9592254B2 (en) 2013-02-06 2017-03-14 Lifecell Corporation Methods for localized modification of tissue products
WO2017073785A1 (en) * 2015-10-30 2017-05-04 学校法人近畿大学 Differentiation inducer and method for inducing differentiation, and decomposed bone tissue production method used therefor
WO2017073761A1 (en) * 2015-10-28 2017-05-04 学校法人近畿大学 Method for forming embryoid body of pluripotent stem cells and composition for forming embryoid body of pluripotent stem cells
US9957477B2 (en) 2011-04-28 2018-05-01 Lifecell Corporation Method for enzymatic treatment of tissue products
US10207025B2 (en) 2011-04-28 2019-02-19 Lifecell Corporation Method for enzymatic treatment of tissue products
US10307510B2 (en) 2013-11-04 2019-06-04 Lifecell Corporation Methods of removing alpha-galactose
US10413634B2 (en) 2017-01-30 2019-09-17 Lifecell Corporation Transglutaminase treated products
JPWO2020122198A1 (en) * 2018-12-12 2020-06-18
US10792394B2 (en) 2016-06-03 2020-10-06 Lifecell Corporation Methods for localized modification of tissue products
US10940184B2 (en) 2017-01-30 2021-03-09 Lifecell Corporation Tissue matrix materials and enzymatic adhesives

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823979A (en) * 1994-07-15 1996-01-30 Terumo Corp Human collagen expression vector and production of human collagen
WO1999046588A1 (en) * 1998-03-12 1999-09-16 Isao Karube Apparatus for automatically measuring minute membrane potential
JP2001026753A (en) * 1999-07-14 2001-01-30 Sunstar Inc Composition for prophylaxis or treatment of hypertension
JP2001031586A (en) * 1999-07-14 2001-02-06 Sunstar Inc Composition for prophylaxis or therapy of both arteriosclerosis and disease caused thereby
WO2001010903A2 (en) * 1999-08-09 2001-02-15 Incyte Genomics, Inc. Proteases and protease inhibitors
JP2001055366A (en) * 1999-08-12 2001-02-27 Kissei Pharmaceut Co Ltd Biarylacetic amide derivative
JP2001089383A (en) * 1999-09-14 2001-04-03 Lion Corp Composition for oral cavity and ophthalmology
WO2001030772A1 (en) * 1999-10-26 2001-05-03 Astrazeneca Ab Compounds and their use as cysteine protease inhibitors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823979A (en) * 1994-07-15 1996-01-30 Terumo Corp Human collagen expression vector and production of human collagen
WO1999046588A1 (en) * 1998-03-12 1999-09-16 Isao Karube Apparatus for automatically measuring minute membrane potential
JP2001026753A (en) * 1999-07-14 2001-01-30 Sunstar Inc Composition for prophylaxis or treatment of hypertension
JP2001031586A (en) * 1999-07-14 2001-02-06 Sunstar Inc Composition for prophylaxis or therapy of both arteriosclerosis and disease caused thereby
WO2001010903A2 (en) * 1999-08-09 2001-02-15 Incyte Genomics, Inc. Proteases and protease inhibitors
JP2001055366A (en) * 1999-08-12 2001-02-27 Kissei Pharmaceut Co Ltd Biarylacetic amide derivative
JP2001089383A (en) * 1999-09-14 2001-04-03 Lion Corp Composition for oral cavity and ophthalmology
WO2001030772A1 (en) * 1999-10-26 2001-05-03 Astrazeneca Ab Compounds and their use as cysteine protease inhibitors

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100875136B1 (en) 2008-04-16 2008-12-22 주식회사 다림바이오텍 The method of producing an adhesive hemostatic agent using the porcine-source esterified atelocollagen
JP2010168292A (en) * 2009-01-20 2010-08-05 Kyoei Kagaku Kogyo Kk Crosslinked collagen or the like, and cosmetic comprising the same
JP2011526304A (en) * 2009-07-27 2011-10-06 國立成功大學 Method for preparing porous collagen matrix
US9957477B2 (en) 2011-04-28 2018-05-01 Lifecell Corporation Method for enzymatic treatment of tissue products
JP2014514118A (en) * 2011-04-28 2014-06-19 ライフセル コーポレーション Method for enzyme treatment of tissue products
US10207025B2 (en) 2011-04-28 2019-02-19 Lifecell Corporation Method for enzymatic treatment of tissue products
US9956316B2 (en) 2011-04-28 2018-05-01 Lifecell Corporation Method for enzymatic treatment of tissue products
US10568988B2 (en) 2013-02-06 2020-02-25 Lifecell Corporation Methods for localized modification of tissue products
US9592254B2 (en) 2013-02-06 2017-03-14 Lifecell Corporation Methods for localized modification of tissue products
US10307510B2 (en) 2013-11-04 2019-06-04 Lifecell Corporation Methods of removing alpha-galactose
JPWO2015167004A1 (en) * 2014-04-30 2017-04-20 学校法人近畿大学 Differentiation-inducing composition
US10155804B2 (en) 2014-04-30 2018-12-18 Kinki University Composition for inducing differentiation
WO2015167004A1 (en) * 2014-04-30 2015-11-05 学校法人近畿大学 Composition for inducing differentiation
CN105087729A (en) * 2015-08-14 2015-11-25 浙江省海洋开发研究院 Tuna bone collagen peptide preparation method
CN105087728A (en) * 2015-08-14 2015-11-25 浙江省海洋开发研究院 Preparation method of selenium-chelated collagen peptide with tuna bone collagen serving as source
JPWO2017073761A1 (en) * 2015-10-28 2018-08-23 学校法人近畿大学 Embryoid body formation method of pluripotent stem cells and composition for embryoid body formation of pluripotent stem cells
WO2017073761A1 (en) * 2015-10-28 2017-05-04 学校法人近畿大学 Method for forming embryoid body of pluripotent stem cells and composition for forming embryoid body of pluripotent stem cells
JPWO2017073785A1 (en) * 2015-10-30 2018-08-16 学校法人近畿大学 Differentiation-inducing agent, differentiation-inducing method, and method for producing bone tissue degradation product used therein
WO2017073785A1 (en) * 2015-10-30 2017-05-04 学校法人近畿大学 Differentiation inducer and method for inducing differentiation, and decomposed bone tissue production method used therefor
JP6991570B2 (en) 2015-10-30 2022-02-03 学校法人近畿大学 Differentiation inducer, differentiation induction method, and method for producing bone tissue decomposition products used for these.
US10792394B2 (en) 2016-06-03 2020-10-06 Lifecell Corporation Methods for localized modification of tissue products
US10413634B2 (en) 2017-01-30 2019-09-17 Lifecell Corporation Transglutaminase treated products
US10814033B2 (en) 2017-01-30 2020-10-27 Lifecell Corporation Transglutaminase treated products
US10940184B2 (en) 2017-01-30 2021-03-09 Lifecell Corporation Tissue matrix materials and enzymatic adhesives
US11724004B2 (en) 2017-01-30 2023-08-15 Lifecell Corporation Transglutaminase treated products
JPWO2020122198A1 (en) * 2018-12-12 2020-06-18
WO2020122198A1 (en) * 2018-12-12 2020-06-18 学校法人近畿大学 Collagen solid, method for producing collagen solid, biomaterial, and ex vivo material
JP7414284B2 (en) 2018-12-12 2024-01-16 学校法人近畿大学 Collagen solids, methods for producing collagen solids, biomaterials, and in vitro materials

Also Published As

Publication number Publication date
JPWO2004020470A1 (en) 2005-12-15
JP4490268B2 (en) 2010-06-23
AU2003211379A8 (en) 2004-03-19
AU2003211379A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
Avila Rodríguez et al. Collagen: A review on its sources and potential cosmetic applications
JP4490268B2 (en) Method for producing cysteine protease-treated collagen and cysteine protease-treated collagen
US7781158B2 (en) Method of separating collagen from the various animal tissues for producing collagen solution and product using the same
CA2277896C (en) Preparation of collagen
AU2003229362B9 (en) Collagen and method for producing same
US8338375B2 (en) Packaged product
US20030203008A1 (en) Preparation of collagen
JPS6237020B2 (en)
CN1997408A (en) Wound care products containing keratin
JP2903182B2 (en) Collagen, its production method and cosmetics
US7192926B2 (en) Use of recombinant gelatin-like proteins as plasma expanders and compositions suitable for plasma substitution
KR102623698B1 (en) Chitosan-collagen polymer complex and preparing method thereof
RU2433828C1 (en) Injection heterogenic biopolymer hydrogel for substitutional and regenerative surgery and method of its obtaining
TWI236501B (en) Process for extracting soluble collagen from animal tissue and products containing soluble collagen prepared therefrom
JP2721941B2 (en) Natural type reinforced collagen fiber membrane and method for preparing the same
AU2005201970B2 (en) Collagen and method for producing same
CN113462736A (en) Preparation method for obtaining atelocollagen from pigskin and collagen
JP2008161495A (en) Collagen composition and method for producing the same
Germany Collagen manufacturers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004532678

Country of ref document: JP

122 Ep: pct application non-entry in european phase