WO2004004092A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2004004092A1
WO2004004092A1 PCT/JP2003/008260 JP0308260W WO2004004092A1 WO 2004004092 A1 WO2004004092 A1 WO 2004004092A1 JP 0308260 W JP0308260 W JP 0308260W WO 2004004092 A1 WO2004004092 A1 WO 2004004092A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
electric machine
rotating electric
rotor
stator
Prior art date
Application number
PCT/JP2003/008260
Other languages
French (fr)
Japanese (ja)
Inventor
Toshio Kohno
Yoshiyuki Shibata
Original Assignee
Toyoda Koki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002192091A external-priority patent/JP2004040871A/en
Priority claimed from JP2002197079A external-priority patent/JP2004040948A/en
Priority claimed from JP2002209103A external-priority patent/JP2004056884A/en
Application filed by Toyoda Koki Kabushiki Kaisha filed Critical Toyoda Koki Kabushiki Kaisha
Publication of WO2004004092A1 publication Critical patent/WO2004004092A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Definitions

  • the present invention relates to a rotating electric machine in which coils are wound around a plurality of teeth formed on a core constituting a stator or a rotor, respectively.
  • the conventional motor 1 is such that a rotor 2 made of a permanent magnet or an armature (armature) is inserted into a stator 3, the stator 3 is fitted to a housing 4, and the rotor 2 is And the rotor 2 is rotated by electromagnetic force.
  • the stator 3 is configured by winding a coil 7 around a plurality of teeth 6 protruding inside a core 5.
  • the core 5 is configured by joining a plurality of core pieces 8 in a circumferential direction, and each core piece 8 has a structure in which a plurality of steel plates 9 are laminated. After the electric wire 15 is wound around the teeth 6 formed on each core piece 8 and the coil 7 is provided for each tooth 6, the adjacent core pieces 8, 8 are joined together.
  • Each core piece 8 is opposed to the outer peripheral surface of the rotor 2 at the facing surface b of the tip of the tooth 6, and the wire 15 is wound around the neck 6 by providing a neck portion a substantially at the center of the height (thickness) of the tooth 6. It is easily formed.
  • a plurality of back yokes c formed on the core piece 8 are gathered in the circumferential direction to form a cylindrical side surface outside the stator 3.
  • FIG. 23 shows a perspective view (a) of one core piece 8 of the conventional stator 3 described above, a side view (b) viewed from the direction A in the perspective view (a), and a neck portion a of the tooth 6.
  • the perspective view (c) showing the space occupied by the wire 15 to be wound is shown.
  • the length 1 ⁇ of the facing surface b of the teeth 6 formed on each core piece 8 in the longitudinal direction coincides with the height of the above-mentioned cylindrical shape.
  • the width t 3 of the side view (b) of the core piece 8 when the cross section (cross-sectional area S 2 ) of the back yoke C in the perspective view (a) is viewed from the C direction includes the thickness of the back yoke c.
  • the height of the core piece 8 is shown. This total height t 3 corresponds to the radial thickness of the substantially cylindrical stator 3.
  • each steel plate 2 is formed, for example, by punching from a sheet metal, the central portion of the joining surface 9A of the steel plate 9 and the edge portion 9E do not become flush as shown in FIG.
  • the substantial contact area between the core pieces 8 in which the plurality of steel plates 9 were laminated was reduced and varied by the edge portion 9E of each steel plate 9.
  • the magnetic resistance is large and varied as compared with the non-split type core, which causes a problem that the motor output torque is reduced or the cogging torque is increased.
  • FIG. 24 shows the positional relationship between the substantially rectangular confronting surface b of the stator 3 core piece 8 and the cross section of the neck portion a (the cross-sectional area S 1).
  • the confronting surface b of the tooth 6 faces the confronting surface b. It indicates the direction of movement relative to the target (in this case, the rotor).
  • the cross-sectional area S 1 magnetic-path cross-sectional area of the neck portion a should be secured to a certain value or more. For this reason, when winding the electric wire 15 around the teeth 6 formed on the core piece 8, as shown in FIGS.
  • the height ⁇ 1 at which the electric wire 15 is wound is restricted.
  • the amount of magnetic flux (upper limit value) that can pass through the cross-sectional area S1 (magnetic-path cross-sectional area) of the neck part a must be kept at a certain level or more. There must be. In other words, the diameter and the number of turns of the electric wire 15 also have necessary values for securing magnetic flux.
  • the core of a motor that has been widely used is a force S formed by laminating steel plates.
  • the degree of freedom of the shape of the core is low, and therefore, Japanese Patent Application Laid-Open No. 2000-152525 As disclosed, cores composed of magnetic powder have been developed.
  • the entire core is made of magnetic powder, the shape of the core is greatly restricted, and the manufacturing cost is high. Therefore, the development of an inexpensive core with a high degree of freedom in shape has been required.
  • the present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the size and weight of a core having a smaller and less scattered magnetic resistance and a core having such a core as compared with a conventional core. It is intended to provide a possible rotating electric machine.
  • Another object of the present invention is to improve the manufacturing efficiency of the rotating electric machine and to suppress cogging.
  • Still another object of the present invention is to provide a core and a rotating electric machine which have a high degree of freedom in shape and can be manufactured at low cost. Disclosure of the invention
  • a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a mouth
  • the core is divided into a plurality of core pieces.
  • a rotating electrical machine characterized in that at least a part of the core is formed of a composite material of a magnetic powder and an insulating member.
  • the composite material of the magnetic powder and the insulating member is both a magnetic material and an insulating material, it constitutes a magnetic circuit in which eddy current loss is suppressed without having a laminated structure. be able to.
  • the core piece according to the present invention is formed of the composite material as described above, the flatness of the joint surface between the core pieces can be increased as compared with the conventional multilayer structure.
  • both the magnetoresistance and the variation in the magnetoresistance can be reduced as compared with the conventional core.
  • the output torque is increased and the cogging torque can be suppressed as compared with the rotating electric machine having the conventional core.
  • the core is divided into a plurality of core pieces, the degree of freedom of the shape is higher than that of the conventional case where the entire core is integrally formed.
  • both the motor and the generator individually correspond to each other.
  • the present invention converts work between electric energy and kinetic energy, which are arranged in series with respect to the direction of relative movement of the teeth of the core constituting a part of the rotor or the stator.
  • the present invention can be applied to any type of rotating electric machine as long as it is a rotating electric machine.
  • the present invention relates to the structure of an armature (particularly, the shape, arrangement, and material of a core), and the armature may be either a rotor or a stator. That is, the present invention can be applied to both the rotor and the stator at the same time, or can be applied to only one of them.
  • a second invention is the rotating electric machine according to the first invention described above, wherein the magnetic powder is iron powder. Since the powder is made of iron powder, it is superior in function and cost.
  • a third invention is the rotating electric machine according to the above-mentioned first invention, wherein the magnetic powder has a surface insulated with an inorganic oxide.
  • the magnetic powder is a magnetic material and its surface is insulated, it is possible to configure a magnetic circuit in which eddy current loss is suppressed without having a laminated structure.
  • a fourth invention is the rotating electric machine according to the second invention described above, wherein the size of the iron powder is 20 to 100 im. Thereby, the surface of the core can be formed into a flat shape corresponding to the inner surface of the mold.
  • the fifth invention is directed to any one of the above-described first to fourth inventions.
  • the insulating member is a synthetic resin.
  • the magnetic powder can be insulated, and the core can be easily formed of the composite material.
  • the winding portion of the electric wire is depressed in a concave shape on both end faces in the axial direction of the core.
  • the rotating electric machine since the winding portion of the electric wire is depressed in a concave shape on both end surfaces in the axial direction of the core, the electric wire is accommodated in the concave portion, and the core is in comparison with the conventional one.
  • the projecting amount of the electric wire at the end face of the second member is suppressed.
  • the motor can be made compact in the axial direction. Also, since the electric wire is housed and protected in the concave portion of the core, the possibility of contact with other components is reduced, and the handling of the core is facilitated.
  • the core constitutes a stator, and teeth formed on the core are rotated by a magnetic force generating portion provided on the rotor.
  • the length of the winding portion is made shorter than the length of the magnetic force generating portion by making the winding portion of the electric wire concavely depressed out of both end surfaces in the axial direction of the core.
  • the length of the wound portion of the electric wire is made shorter than the length of the magnetic force generating portion of the rotor by making the wound portion of the electric wire concave and depressed on both end surfaces of the core. Therefore, copper loss is reduced and motor efficiency can be improved. Accordingly, when the output torque is the same between the conventional rotating electric machine and the rotating electric machine of the present invention, the rotating electric machine of the present invention can be downsized because of the higher efficiency. .
  • An eighth invention is the rotating electric machine according to the sixth or seventh invention described above, wherein both end faces in the axial direction of the winding part of the electric wire have a substantially rectangular shape, a substantially circular shape, and a substantially positive shape with an angle close to a circle.
  • a rotating electric machine having a polygonal shape or a substantially elliptical shape.
  • the length of the circumference of the neck section can be shortened more effectively without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck section a, so that the length of the distribution line is more effective. Can be shortened. For this reason, the diameter of the electric wire can be reduced as much as possible while keeping the electric resistance value of the electric wire below the conventional value. Therefore, the radial thickness of the space occupied by the electric wire wound around the tooth neck portion a can be reduced more effectively.
  • the teeth formed on the core forming one of the stator and the rotor have a facing surface facing the other side of the stator or the rotor. And a neck portion of the tooth around which the electric wire is wound is shorter than half the length of the facing surface in the axial direction of the facing surface, and is arranged in a distributed manner. It is.
  • the above-mentioned facing surface means that when the core on which the teeth are formed constitutes a part of the rotor, the stator is positioned on the surface of the teeth with respect to the stator. Refers to the side facing you. In the case where the core on which the teeth are formed constitutes a part of the stator, the surface of the teeth facing the rotor is referred to as the facing surface.
  • the facing surface As can be seen from FIG. 24, the height ⁇ 1 at which the wire is wound around the neck portion a in the relative movement direction X between the stator 3 and the rotor 2 was conventionally strongly restricted. Thus, the restriction on the height ⁇ 1 can be greatly reduced.
  • the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth can be made smaller than in the conventional case, so that the motor can be easily downsized.
  • the circumference of the neck section can be made shorter than before without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck part a compared to the conventional one, so that the wire length can be reduced accordingly. Can be shortened. For this reason, the diameter of the electric wire can be reduced while the electric resistance value of the electric wire is kept below the conventional value. With this function, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth formed on the core can be made smaller than before.
  • the core has a plurality of back yoke portions connected in a direction in which the stator and the rotor can move relative to each other. Are periodically selected and are integrally fixed to any one of the back yoke portions via the neck portion, so that all of the opposing surfaces are mutually engaged without excess or shortage.
  • a rotating electric machine characterized in that a magnetic flux path of an armature is formed by combining the back yoke portions of the steps.
  • the neck portions of the teeth formed on the core can be arranged at intervals of n (n ⁇ l). Therefore, the coil can be efficiently wound around the neck portion of the teeth using a simple device such as a nozzle-type winding machine. Further, according to the above configuration, every n neck portions of the teeth can be arranged at intervals of n (n ⁇ l). Therefore, the coil can be efficiently wound around the neck portion of the teeth using a simple device such as a nozzle-type winding machine. Further, according to the above configuration, every n neck portions of the teeth
  • the outer shape of the armature consisting of the facing surfaces of the armature can be accurately or easily manufactured into a desired shape.
  • the above-mentioned back yoke portion can be formed around the rotation axis.
  • the back yoke portion becomes substantially ring-shaped, and has a shape that is directly connected to the relative movement direction of the motor. You don't have to be a cave.
  • the radius of such a substantially ring-shaped hollow portion (the above-mentioned cavity) is
  • the shape of the back yoke can be regarded as a shape connected in the relative movable direction even if the rotating shaft is buried with a magnetic material or the like. Can be.
  • the eleventh invention is directed to the rotating electric machine according to the ninth or tenth invention, wherein a plurality of the neck parts are periodically dispersed and arranged obliquely with respect to a relative movable direction of the stator and the rotor. It is a rotating electric machine characterized by being performed.
  • the neck portion and the coil of the tooth can be relatively and densely and efficiently dispersed on the back side of the facing surface of the tooth formed on the core.
  • the space behind the surface can be used efficiently. Therefore, it is possible to effectively reduce the size of the rotating electric machine.
  • the neck portions are alternately arranged left and right. (Staggered arrangement). Since the necks are arranged in a staggered manner, the necks and the coils can be relatively densely and efficiently distributed.
  • the core is formed by laminating a powder core member formed of a composite material of a magnetic powder and an insulating member, and a steel plate.
  • the core of the rotating electrical machine is constituted by a powder core structure made of a magnetic composite material,
  • the part which does not require the degree of freedom of the shape was constituted by a steel core structure.
  • the degree of freedom of the shape is higher than when the entire core is made of a steel plate, and the core can be manufactured at a lower cost than when the entire core is integrally formed of a composite material.
  • a fourteenth invention is directed to the rotating electric machine according to the thirteenth invention, wherein the rotating electric machine is provided for the powder-made core structure, and is provided at both ends of the steel structure in the stacking direction of the steel plates.
  • a rotary electric machine wherein the core members made of powder are joined to each other.
  • the core structure made of powder is joined to both ends of the steel core structure in the stacking direction of the steel plates, so that the size of the core in the axial direction is increased.
  • the number of steel sheets is changed, it can be easily dealt with by changing the number of stacked steel sheets in the steel core structure.
  • a fifteenth invention is directed to a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor, wherein the electric wire is formed on both axial end surfaces of the core.
  • the rotating electric machine is characterized in that the winding part of the above is depressed in a concave shape.
  • the rotating electric machine since the winding portion of the electric wire is concavely depressed at both end surfaces in the axial direction of the core, the electric wire is accommodated in the concave portion, and the core is more squeezed than the conventional one. The projecting amount of the electric wire at the end face of the second member is suppressed. Thus, the motor can be made compact in the axial direction. Also, since the wire is housed in the concave portion of the core and protected, the possibility of contact with other components is reduced, and the handling of the core is facilitated.
  • the core forms a stator, and the teeth formed on the core are arranged on a shaft by a magnetic force generating portion provided on the rotor.
  • the length of the winding portion is made shorter than the length of the magnetic force generating portion by making the winding portion of the electric wire concave and depressed at both end surfaces in the axial direction of the core. It is a rotating electric machine characterized by the above.
  • the length of the winding portion of the electric wire is shorter than the length of the magnetic force generating portion of the rotor by making the winding portion of the electric wire concave and concave on both end surfaces of the core.
  • the rotating electric machine of the present invention can be downsized because of its higher efficiency.
  • a seventeenth invention is the rotating electric machine according to the fifteenth or sixteenth invention, wherein both end faces in the axial direction of the winding portion of the electric wire have a substantially rectangular shape, a substantially circular shape having a nearly circular angle, and a substantially circular shape. , A substantially regular polygon, or a substantially elliptical shape.
  • both ends of the winding portion of the electric wire in the core are formed in a shape close to a circle, so that the electric wire can be wound smoothly and stress on the electric wire is suppressed.
  • the perimeter of the neck section can be shortened more effectively without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck section a, so that the wire length can be shortened more effectively. it can.
  • the diameter of the electric wire can be reduced as much as possible while maintaining the electric resistance of the electric wire at a value equal to or lower than the conventional value. Therefore, the radial thickness of the space occupied by the electric wire wound around the tooth neck portion a can be reduced more effectively.
  • An eighteenth invention is directed to a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor, the electric machine being formed on a core constituting one of the stator and the rotor.
  • the tooth has a facing surface facing the other of the stator and the rotor, and the neck portion of the tooth around which the wire is wound is shorter than half the length of the facing surface in the axial direction of the facing surface.
  • a rotating electric machine characterized by being distributedly arranged.
  • the perimeter of the cross section of the neck portion can be made shorter than before without making the cross-sectional area (magnetic path cross-sectional area) of the neck portion a smaller than in the past, so that the length of the electric wire is reduced accordingly Can be shortened. For this reason, the diameter of the electric wire can be reduced while the electric resistance value of the electric wire is kept below the conventional value. With this function, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth formed on the core can be made smaller than before.
  • a nineteenth invention is directed to the rotating electric machine according to the eighteenth invention, further comprising a plurality of back yoke portions connected in a direction in which the core force, the stator and the rotor are relatively movable, and a plurality of the facing surfaces. Are selected periodically, and are integrally fixed to the back yoke portion via the neck portion in a single step, so that all the opposing surfaces are mutually intact without excess or shortage.
  • a rotating electric machine is characterized in that a magnetic flux path of an armature is formed by combining a plurality of stages of the back yoke portions.
  • the neck portions of the teeth formed on the core can be arranged every ⁇ ( ⁇ 1). Therefore, the coil can be efficiently wound around the neck portion of the teeth using a simple device such as a nozzle-type winding machine. Furthermore, according to the above configuration, the neck portions of the teeth can be integrated at every ⁇ teeth ( ⁇ 1), so that the outer shape of the armature formed by the facing surfaces of the armature can be accurately manufactured into a desired shape. Possible or easy.
  • the rotor of the motor or the generator is constituted by the armature having the above-mentioned core, the above-mentioned back yoke portion can be formed around the rotation axis.
  • the back yoke portion becomes substantially ring-shaped, and has a shape that is directly connected to the relative movement direction of the motor. It doesn't need to be a cave.
  • the shape of the back yoke portion at the limit where the radius of such a substantially ring-shaped hollow portion (the above-described cavity) becomes zero, even if the rotating shaft is buried with a magnetic material or the like, the The shape of the yoke portion can be seen as a shape connected in the relative movable direction.
  • the neck portion is periodically arranged by being obliquely arranged in a plurality with respect to a relative movable direction of the stator and the rotor.
  • a rotating electric machine characterized by being arranged.
  • the neck portion and the coil of the teeth can be relatively densely and efficiently dispersed on the back side of the facing surface of the teeth formed on the core.
  • the space behind the surface can be used efficiently. Therefore, it is possible to effectively reduce the size of the rotating electric machine.
  • the neck portion is alternately distributed to the left and right.
  • a rotating electric machine characterized by being arranged (staggered arrangement). Since the necks are arranged in a staggered manner, the necks and the coils can be relatively densely and efficiently distributed.
  • FIG. 1 is a perspective view of a core and a rotor of a stator of a rotating electric machine according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of the core
  • FIG. FIG. 4 is a conceptual view of a composite material with members
  • FIG. 4 is a partially enlarged side view showing a joined state of core pieces
  • FIG. 5 is a core and a core according to a second embodiment of the present invention.
  • FIG. 6 is a perspective view of the core piece
  • FIG. 7 is a side sectional view of the core piece
  • FIG. 8 is a perspective view of the core piece taken along a line AA in FIG. FIG.
  • FIG. 9 is a partial perspective view of the core (101, 102) when assembling the rotary motor according to the third embodiment of the present invention.
  • Figure 0 is a perspective view (a) of one tooth portion of the core (101) viewed from the substantially rectangular facing surface b, a side view of the magnetic core viewed in the B direction (b), and the tooth.
  • FIG. 11 is a perspective view (c) showing a space occupied by an electric wire wound around a neck portion a of FIG. 11;
  • FIG. 11 is a sectional view of a substantially rectangular confronting surface b of the teeth of a core (101);
  • FIG. 12 is an exploded plan view showing a positional relationship with (: cross-sectional area S 3).
  • FIG. 13 is an exploded plan view showing the positional relationship between the confronting surface b and the cross section of the neck part a.
  • FIG. 13 is a plan view of a substantially rectangular confronting surface b of the teeth of the core according to a modification of the fourth embodiment of the present invention.
  • FIG. 14 is an exploded plan view showing the positional relationship between the neck portion a and the cross section.
  • FIG. 14 is a perspective view of the core when assembling the rotary motor according to the fifth embodiment of the present invention.
  • FIG. 5 is a partial perspective view of the core when assembling the rotary motor according to the sixth embodiment of the present invention.
  • FIG. 16 is an assembly of the rotary motor according to the fifth embodiment of the present invention.
  • FIG. 17 is a partial perspective view of the core at the time, FIG.
  • FIG. 17 is a perspective view of the core according to the seventh embodiment of the present invention, and FIG. 18 is an exploded perspective view of the core; Fig. 9 is a side sectional view of the core teeth, and Fig. 20 is an exploded view of a conventional motor.
  • FIG. 21 is a perspective view of a core of a conventional stator, and FIG. 22 is a partially enlarged side view showing a joined state of conventional core pieces, and FIG.
  • FIG. 24 is a perspective view (c) showing the space occupied, and FIG.
  • FIG. 24 is a planar development showing a positional relationship between a substantially rectangular confronting surface b of the teeth of the core and a cross section of the neck portion a (: cross sectional area S 1).
  • the motor 10 shown in FIG. 1 is a brushless motor, and includes a stator core 12 inside a cylindrical housing 11.
  • the core 12 has a shape with an open end, and can be vertically divided into a plurality of (specifically, for example, 12) core pieces 14 in the circumferential direction.
  • the core piece 14 is formed of a composite material of a magnetic powder and an insulating member, and has a structure in which a T-shaped tooth 13 is formed to project toward the inside of the core 12 as shown in FIG. .
  • the composite material is shown conceptually on an enlarged scale in FIG. 3.
  • the surface of iron powder F as a magnetic powder of 20 to 100 / m is insulated with phosphoric acid P, and the iron Powder F is compounded with synthetic resin G.
  • the composite material is filled into a mold (not shown) corresponding to each core piece 14, and then solidified from the mold after the synthetic resin G is solidified.
  • the composite material is taken out and the core piece 14 is completed. Therefore, the joint surface 14 A (see FIG. 2) of the core piece 14 with the adjacent core piece 14 has a flat shape corresponding to the inner surface of the mold.
  • the wire winding portion 21 corresponding to the T-shaped leg of the teeth 13 of each core piece 14 has a coil 20 in the longitudinal direction (axial direction) of each core piece 14. Is wound.
  • the group of core pieces 14 including the coils 20 is joined to each other to form a stator.
  • the joining surface 14 A of the core piece 14 of the present embodiment has a flat shape corresponding to the molding die of the composite material as described above, the joining surface 14 A of the conventional laminated structure stator is used. Flatness is higher than core (see Fig. 21).
  • the edge portion E of the joint surface 14 A of the core piece 14 is, for example, receded from the center portion of the joint surface 14 A, for example.
  • the core piece 14 of the present embodiment is not a laminated structure but an integrally molded product made of a composite material, the ratio occupied by the edge portion E is smaller than that of the conventional core piece at the joint surface (see FIG. 22). Is extremely small compared to the ratio occupied by the edges.
  • the contact area between the joint surfaces 14A is larger than that of the conventional core, the magnetic resistance is smaller than that of the conventional core, and the variation of the magnetic resistance is also small. Can be suppressed.
  • the cores 12 formed by joining the core pieces 14 in this manner are, for example, shrink-fitted into the cylindrical housing 11 after the ends of the coils 20 of the core pieces 14 are connected at one end. Is done. Then, the rotor 16 is disposed inside the core 12, and both ends of the cylindrical housing 11 are closed to complete the motor 10.
  • the core 12 built into the motor 10 and the magnetic resistance and the variation of the magnetic resistance are both smaller than those of the conventional core, so that the output torque of the motor 10 is larger than that of the conventional motor. And cogging torque can be suppressed.
  • the motor 10 shown in FIG. 5 is a brushless motor similar to that of the first embodiment, and is formed by winding an electric wire 40 around a stator 12 core 12 provided inside a cylindrical housing 11. Of the coil 20. Note that FIG. 5 shows only a part of the portion where the electric wire 40 is wound.
  • the core 12 has a cylindrical shape entirely open at both ends, and can be vertically divided into a plurality (specifically, for example, 12) of core pieces 14 in the circumferential direction.
  • the core piece 14 is formed of a composite material of a magnetic powder and an insulating member. As shown in FIG. 6, the core piece 14 has a structure in which a T-shaped tooth 13 is formed to project toward the inside of the core 12. I have.
  • the composite material is the same as that of the first embodiment shown in FIG.
  • the electric wire 40 is connected to the teeth 13 of each core piece 14.
  • the coil 20 is wound around a wire winding portion 21 (corresponding to the “winding portion J of the wire” according to the present invention) corresponding to a T-shaped leg portion.
  • a wire winding portion 21 corresponding to the “winding portion J of the wire” according to the present invention
  • the wire winding portion 21 is depressed on both axial end surfaces 14 A of the core piece 14 (that is, both end surfaces 12 A of the core 12).
  • the recessed portion 41 is formed, and the electric wire 40 is completely accommodated in the recessed portion 41 without protruding from the end surface 14A of the core piece 14 as shown in FIG.
  • the electric wire 40 is bundled in the concave portion 41, the wire binding process conventionally required is not necessary, and both end surfaces 2 A of the wire winding portion 21 in the axial direction are not required. It forms an arc shape as shown in Fig. 8. This makes it possible to smoothly wind the electric wire 40 around the concave portion 41 and to store the electric wire 40 on the wire 40. And reliability is improved.
  • the core pieces 14 are joined together to form a cylindrical core 12.
  • the wire 40 is concave at both end faces of the core piece 14 ⁇
  • the efficiency of the assembling work of the core pieces 14 is improved.
  • the ends of the coils 20 of the respective core pieces 14 are connected at one end of the cores 12.
  • the core 12 on which the above-described connection processing is completed is, for example, shrink-fitted into the cylindrical housing 11.
  • the rotor 16 is disposed inside the core 12.
  • the length L 3 of the permanent magnet 16 M (corresponding to the “magnetic force generating portion” of the present invention) provided on the rotor 16 is, as shown in FIG. It is slightly shorter than 1.
  • the length L 2 of the wire winding portion 21 of the core 12 is shorter than the length L 3 of the permanent magnet 16.
  • the entire wire winding portion 21 is located between both end surfaces of the permanent magnet 16M.
  • the rotor 16 is positioned so as to face each other, and both ends of the cylindrical housing 11 are closed to complete the motor.
  • the motor 10 of the present embodiment is as described above, and the operation and effect will be described below.
  • the electric wires 40 are accommodated in the concave portions 41 formed on both end surfaces in the axial direction of the core 12, and the amount of protrusion of the electric wires on the end surface of the core is suppressed as compared with the conventional motor.
  • the motor 10 can be made compact in the axial direction.
  • the recesses 41 are formed on both end faces of the core 12 so that the axial length of the teeth 13 is made equal to the length of the permanent magnet 16 M of the rotor 16. While keeping the length of the wire winding portion 21 shorter than the length of the permanent magnet 16 M in the rotor 16, copper loss is reduced and efficiency is improved. Therefore, when the output torque of the conventional motor is the same as that of the motor 10 of the present embodiment, the motor 10 of the present embodiment is superior in efficiency to the conventional motor because of its higher efficiency. Downsizing.
  • the composite material forming the core 12 is made of a magnetic powder and an insulating member, and is a magnetic material and an insulating material, it is possible to form a magnetic circuit in which eddy current loss is suppressed.
  • the composite material is formed by molding on both end surfaces. The core 12 having the shape with the concave portion 41 can be easily manufactured.
  • the present invention is not limited to the second embodiment.
  • modifications described below are also included in the technical scope of the present invention.
  • Various changes can be made within the range.
  • stator 12 S is provided with the core 12 and the coil 20 is wound, but the stator is provided with the permanent magnet, while the rotor is provided with the core
  • the present invention may be applied to a motor having a structure in which a coil is provided by winding an electric wire around a core. In this case, the electrical contact between the axial end faces of the core constituting the rotor What is necessary is just to make the winding part of a wire depress in a concave shape.
  • the present invention has been described by taking a brushless motor as an example.
  • the present invention may be applied to a stepping motor or an induction motor.
  • both ends in the axial direction of the wire winding part 21 are formed in an arc shape as a whole, but both ends of the wire winding part may be flat.
  • the core 12 has a shape in which only the wire winding portion 21 of both ends 12 A of the core 12 is depressed.
  • the axial lengths of the circumferential side and the outer circumferential side may be different. In other words, in FIG. 7, the axial length of the teeth 13 on the inner peripheral side is set to L1 as shown in the figure, and the outer peripheral length is set to the same length L2 as the wire winding portion 21. Is also good.
  • the core 12 of the second embodiment may be formed by laminating force steel plates formed of a composite material of a magnetic powder and an insulating member.
  • the electric wire 40 is completely housed in the recess 41 and does not protrude from the end face 12A of the core 12, but the recess is formed in the end face of the core. As long as the protrusion amount of the electric wire can be suppressed by this, a part of the electric wire may protrude from the end face of the core.
  • FIG. 9 is a partial perspective view of the core (101, 102) when assembling the rotary motor according to the third embodiment.
  • Symbols a, b, and c in the figure denote a neck portion of the teeth formed on the core, a facing surface of the teeth formed on the core, and a back yoke portion of the core, respectively.
  • This core is formed by assembling the upper part 101 and the lower part 102 into one. These parts are made of a compacted material consisting of a composite of powdered pure iron powder and resin, the surfaces of which are insulated with oxide (inorganic insulation). (See Figure 3). Symbols u, V, and w attached above the facing surface b of the teeth formed on each core represent the corresponding phases during three-phase control.
  • FIG. 10 is a perspective view (a) of one tooth of the core (101) viewed from the substantially rectangular facing surface b, a side view (b) of the tooth as viewed in the B direction, and FIG. FIG. 3C is a perspective view illustrating a space occupied by a coil wound around a tooth neck a.
  • the length 1 ⁇ in the longitudinal direction of each confronting surface b and the cross-sectional area S3 of each neck portion a are set to the same size (new S1) as the conventional core shown in Figs. Is set.
  • FIG. 11 is an exploded plan view showing the positional relationship between each facing surface b of the teeth of the core (101, 102) of the third embodiment and the cross-sectional area S 3) of the neck portion a. is there. That is, according to the configuration illustrated in FIGS. 9 and 10 as described above, the swelling (height ⁇ 3) of the electric wire in the X direction (relative movable direction) when the electric wire is wound around the network portion a is determined. It is possible to take a large amount. Therefore, the first 0 view (b), the thickness t 2 of (c), since it is possible to narrower than the conventional, the thickness t 4 of the cores, can be thinned Ri by conventional, thus the motor is effectively small Be converted to
  • the core can be reduced in size and the weight of the core can be reduced.
  • the core is separated into upper and lower (101, 102) and separately formed, and the back yoke portion c is in the shape of two strips.
  • the back yoke portion c is in the shape of two strips.
  • FIG. 12 is an exploded plan view showing the positional relationship between the substantially rectangular facing surface b of the tooth formed at the end of the fourth embodiment and the cross section of the neck portion a.
  • two teeth necks are periodically arranged diagonally, but in the fourth embodiment, the number of teeth necks arranged on one oblique line e is three. And periodically disperse them.
  • the cross-sectional shape of the neck portion a is substantially circular, but may be formed as a sub-ellipse or the like.
  • the three back yoke parts are combined and integrated so that the teeth formed on the three back yoke parts are placed every two in the relative movement direction (the direction of the X axis).
  • the back yoke portion of the core can be integrated by combining each phase (u, v, w), so that the wiring configuration of the electric wires can be simply summarized for each phase. Are obtained. Therefore, according to the above configuration, the winding-related manufacturing efficiency is further improved.
  • FIG. 13 shows the positional relationship between the substantially rectangular facing surface b of the teeth formed on the back yoke portion and the cross section of the neck portion a in a modification of the fourth embodiment.
  • the cross-sectional shape of the neck portion a is a parallelogram, a rhombus, or It may be deformed into a sub-elliptical shape close to an egg shape or the like.
  • FIG. 14 is a perspective view of the core when assembling the rotary motor of the fifth embodiment.
  • This core is obtained by forming the back yoke c of the core of FIG. 9 of the third embodiment vertically in units of each tooth along the rotation axis direction of the rotor.
  • the same operation as in the third embodiment can be effectively performed as in the third embodiment. Can be reduced in size.
  • FIGS. 15 and 16 are partial perspective views of the core when assembling the rotary motor of the sixth embodiment.
  • a plurality of (12) teeth are arranged in series in the direction of relative movement with respect to the opposing surface b of the teeth constituting a part of the core shown in FIGS.
  • a back yoke c connected in the relative movable direction is provided in two upper and lower stages.
  • FIG. 15 shows only five teeth having the facing surface b in total, in this embodiment, a total of 12 teeth are selected every other in the above-mentioned relative movable direction. And is integrally fixed to one of the back yokes c via the neck portion a. Also, as shown in Figs. 15 and 16, a two-stage back yoke c is combined, and all facing surfaces b are combined with each other without excess or shortage to form a magnetic flux path of the armature. . Also, in this core, the neck portion a, the force S, and the teeth facing surface b, which are long in the rotation axis direction of the rotor, are substantially the same.
  • each of the teeth having the facing surface b is connected to either the upper or lower back yoke c by joining by fitting or screw fixing, etc., or by forming by molding or the like.
  • every other neck portion a can be arranged. Therefore, before assembly, as shown in Fig. 15, A gap for each tooth can be secured. Therefore, according to such a configuration, the electric wire can be efficiently and easily wound around the neck portion a of the tooth using a simple device such as a nozzle-type winding machine.
  • each tooth can be integrated with one of the upper and lower back yokes c having a substantially ring shape, and thereby each tooth can be accurately and reliably fixed at a desired position.
  • the outer shape of a core having a large number of teeth (a cylindrical shape directly approaching and facing the rotor) can be accurately or easily manufactured into a desired cylindrical shape with high roundness.
  • the present invention is applied to a stator core 30 provided in a brushless motor similar to the first embodiment.
  • the stator core 30 includes a plurality of teeth 32 protruding inward from the inner peripheral surface of the cylindrical portion 31.
  • the electric wire 40 (see FIG. 19) is wound around each tooth 32, and the rotor 16 is loosely fitted in the space inside the tooth 32, and the rotor 16 receives magnetic force from the coil. 1 6 rotates.
  • core protrusions 34 are formed to protrude in the axial direction from portions located on the inner edge side of the teeth 32. As shown in FIG. 19, the outer surface of the core projection 34 opposite to the rotor 16 is concavely curved along the axial direction and is gently lowered. The inner surface of the core projection 34 facing the rotor 16 is flush with the main body of the teeth 32.
  • the core 30 of the present embodiment is composed of three parts which are divided into three in a ring shape.
  • the positions of the core 30 near the both ends in the axial direction are defined as bonding surfaces 30S, and a pair of powder core members 35, on the end side of the bonding surfaces 30S, 30S,
  • the core component 36 made of a steel plate is sandwiched between the core components 35 and 35 made of powder.
  • the core structure 36 made of steel plate A plurality of silicon steel sheets 37 of the same shape (see Fig. 18) are laminated on each other. Therefore, the length of the steel plate core component 36 can be easily changed by changing the number of silicon steel plates 37 to be laminated.
  • the powder core structure 35 is formed of a composite material (see FIG. 3) of magnetic powder and an insulating member.
  • powder core components 35, 35 are joined to both end surfaces of the steel core component 36, and the teeth 32 provided on each of the core components 35, 36 are aligned with each other.
  • the impregnated material is immersed in the impregnated state, and is integrated by the adhesive action of the impregnated material to form the stator core 30.
  • the electric wires 40 are wound around the respective teeth 32 of the completed stator core 30 as described above, whereby the respective core components 35, 36 are physically fixed.
  • the electric wire 40 is arranged at a portion outside the core protrusion 34 (a portion opposite to the rotor). That is, as shown in FIG. 19, the electric wire 40 is accommodated at a position lower than the core protrusion 34 on the end face of the core 30. Thereby, the contact between the electric wire 40 and other parts is regulated, and the electric wire 40 is protected. Further, since the electric wires 40 are pressed against the core protrusions 34 to be collected, the binding process of the electric wires 40 which is conventionally required is not required.
  • the wire winding portion of the core member 35 made of powder is formed in an arc shape along the winding direction of the wire 40, stress on the wire 40 is suppressed, and reliability is improved. Up.
  • the core 30 after the winding process of the electric wire 40 is completed is, for example, shrink-fitted in a cylindrical housing (not shown) as a stator, and then a rotor 16 is arranged inside the stator.
  • the length L 3 of the permanent magnet 16 M (corresponding to the “magnetic force generating portion” of the present invention) provided in the rotor 16 is, as shown in FIG. It is slightly shorter than L1.
  • the length L2 of the wire winding portion of the stator core 30 is shorter than the length L3 of the permanent magnet 16M.
  • the permanent magnet The rotor 16 is positioned so that the entire wire winding portion faces between both end surfaces of the stone 16M, and both ends of the cylindrical housing are closed, thereby completing the motor.
  • both ends in the axial direction of the core 30 are constituted by a pair of core members 35 and 35 made of powder, both ends of the stator core 30 are formed.
  • the degree of freedom in shape increases.
  • the steel core component 36 made of laminated steel plates is provided between the pair of powder core components 35, 35, compared to the case where the whole is made of a composite material, And can be manufactured at low cost.
  • Components 35 and 35 can be made common components.
  • the length of the teeth 32 (L 1 in FIG. 19) on the rotor 16 side is reduced by the permanent magnets 16 on the rotor 16.
  • the length of the wire winding (L 2 in FIG. 19) equal to the length of the permanent magnet 16 M can be shortened. This reduces copper losses and improves efficiency. Therefore, when the output torque of the motor having the conventional core and the motor having the core 30 of the present embodiment are the same, the motor having the core 30 of the present embodiment has a higher efficiency. As a result, the size can be reduced compared to the conventional one.
  • a three-phase motor has been described as an example.
  • the present invention is applicable to any motor such as a stepping motor or an induction motor without depending on the type and control method of a special motor. be able to.
  • the features such as the shape, arrangement, configuration, and material of the core in each of the above embodiments can be applied to the rotor of the electric motor.
  • the features such as the shape, arrangement, configuration, and material of the core in each of the above embodiments can be applied to a generator.
  • the present invention can be variously modified and implemented without departing from the gist. Industrial applicability
  • a rotating electric machine converts a rotation of a steering wheel by a driver into an axial movement of a rack shaft by a rack and pinion mechanism, and amplifies the axial movement of the rack shaft by an electric motor to assist the steering force. Also, it is suitable for use as an electric motor in an electric power steering device for automobiles that deflects steered wheels via a knuckle arm.

Abstract

A core (12) constituting the stator or rotor of an dynamo-electric machine is formed, at least partially, of an integrated composite material of magnetic powder and an insulating member. Since the composite material of magnetic powder and an insulating member provides a magnetic body also serving as an insulator, a magnetic circuit restricted in eddy current loss can be formed without requiring a laminate structure. In the inventive core (12), reluctance and variation thereof can be reduced as compared with a conventional one. In an dynamo-electric r machine provided with such a core (12), the output can be increased while suppressing cogging torque as compared with an dynamo-electric rotating machine provided with a conventional core.

Description

明 細 書 回転電機 技術分野  Description Rotary electric machine Technical field
本発明は、ステ一タまたはロータを構成するコァに形成された複数のティ一 スにコイルを夫々巻回した回転電機に関する。 背景技術  The present invention relates to a rotating electric machine in which coils are wound around a plurality of teeth formed on a core constituting a stator or a rotor, respectively. Background art
第 2 0乃至 2 2図に示すように、従来のモータ 1は永久磁石又は電機子(ァ マチュア) から成るロータ 2をステータ 3に揷入し、ハウジング 4にステータ 3を嵌着するとともにロータ 2を支承し、電磁力によりロータ 2を回転させる 構造となっている。ステ一タ 3はコア 5の内側に突設された複数のティース 6 にコイル 7が夫々卷回されて構成されている。コア 5は複数のコアピース 8が 円周方向に接合されて構成され、各コアピース 8は、複数の鋼板 9を積層した 構造になっている。各コアピース 8に形成したティース 6に電線 1 5を卷回し てティース 6毎にコイル 7を備えてから、 隣り合ったコアピース 8 , 8同士が 接合される。 各コアピース 8は、 ティース 6先端の対峙面 bでロータ 2の外周 面と対峙し、 ティース 6の高さ (厚み) の略中央の所にネック部 aを設けるこ とにより、電線 1 5を巻き付け易く形成されている。 コアピース 8に形成した バックヨーク cは、 円周方向に複数集合して、 ステータ 3外側の円筒形の側面 を形成している。  As shown in FIGS. 20 to 22, the conventional motor 1 is such that a rotor 2 made of a permanent magnet or an armature (armature) is inserted into a stator 3, the stator 3 is fitted to a housing 4, and the rotor 2 is And the rotor 2 is rotated by electromagnetic force. The stator 3 is configured by winding a coil 7 around a plurality of teeth 6 protruding inside a core 5. The core 5 is configured by joining a plurality of core pieces 8 in a circumferential direction, and each core piece 8 has a structure in which a plurality of steel plates 9 are laminated. After the electric wire 15 is wound around the teeth 6 formed on each core piece 8 and the coil 7 is provided for each tooth 6, the adjacent core pieces 8, 8 are joined together. Each core piece 8 is opposed to the outer peripheral surface of the rotor 2 at the facing surface b of the tip of the tooth 6, and the wire 15 is wound around the neck 6 by providing a neck portion a substantially at the center of the height (thickness) of the tooth 6. It is easily formed. A plurality of back yokes c formed on the core piece 8 are gathered in the circumferential direction to form a cylindrical side surface outside the stator 3.
これにより、 第 2 2図に示すように隣合ったコアピース 8 , 8で同じ位置に 積層された鋼板 9 , 9の接合面 9 A, 9 A同士が互いに当接し、 コイル7を励 磁したときに接合面 9 A, 9 A同士の当接部分を磁束が交錯して磁気回路が構 成される。 第 2 3図に、 上記の従来のステータ 3の 1つのコアピース 8の斜視図 (a ) と、 斜視図 (a ) の A方向から見た側面図 (b ) と、 ティース 6のネック部 a に巻き付けられる電線 1 5が占める空間を表す斜視図 (c ) を示す。 各コア ピース 8に形成したティース 6の対峙面 bの縦長方向の長さ 1^は、 上記の円 筒形の高さと一致する。 また、 斜視図 (a ) のバックヨーク Cの断面 (断面積 S 2 ) を C方向から見たコアピース 8の側面図 (b ) の幅 t 3は、 バックヨーク cの厚さをも含めた、 コアピース 8の全高を示している。 この全高 t 3は、 略 筒形のステータ 3の径方向の厚さに一致する As a result, as shown in FIG. 22, when the joint surfaces 9 A, 9 A of the steel plates 9, 9 laminated at the same position on the adjacent core pieces 8, 8 abut against each other, and the coil 7 is excited. Then, the magnetic flux is intersected at the contact portions between the joint surfaces 9A, 9A to form a magnetic circuit. FIG. 23 shows a perspective view (a) of one core piece 8 of the conventional stator 3 described above, a side view (b) viewed from the direction A in the perspective view (a), and a neck portion a of the tooth 6. The perspective view (c) showing the space occupied by the wire 15 to be wound is shown. The length 1 ^ of the facing surface b of the teeth 6 formed on each core piece 8 in the longitudinal direction coincides with the height of the above-mentioned cylindrical shape. Further, the width t 3 of the side view (b) of the core piece 8 when the cross section (cross-sectional area S 2 ) of the back yoke C in the perspective view (a) is viewed from the C direction includes the thickness of the back yoke c. The height of the core piece 8 is shown. This total height t 3 corresponds to the radial thickness of the substantially cylindrical stator 3.
しかしながら、各鋼板 2は、例えば板金から打ち抜かれて形成されるために、 第 2 2図に示すように鋼板 9の接合面 9 Aの中央部分とエツジ部分 9 Eとが 面一にならず、これら複数の鋼板 9が積層されたコァピース 8同士の実質的な 当接面積は、各鋼板 9のェッジ部分 9 Eにより減らされかつ、ばらついていた。 このため、従来のコア 5では、非分割タイプのコアに比べて磁気抵抗が大きく かつばらつき、 これが原因となってモータ出力トルクが小さくなつたり、 コギ ングトルクが大きくなるといった問題が生じていた。  However, since each steel plate 2 is formed, for example, by punching from a sheet metal, the central portion of the joining surface 9A of the steel plate 9 and the edge portion 9E do not become flush as shown in FIG. The substantial contact area between the core pieces 8 in which the plurality of steel plates 9 were laminated was reduced and varied by the edge portion 9E of each steel plate 9. For this reason, in the conventional core 5, the magnetic resistance is large and varied as compared with the non-split type core, which causes a problem that the motor output torque is reduced or the cogging torque is increased.
また、 コア 5の両端面 5 Aが平坦になっていたので、 両端面 5 Aから電線 1 5が盛り上がって突出し、その電線 1 5の突出した分だけモータ 1全体が大き くなつていた。そして、例えば、コア 5をハウジング 4に組み付ける作業中に、 電線 1 5の突出部分が他の部品にぶっからないように注意を要し、作業効率が 悪カゝつた。  In addition, since the end faces 5 A of the core 5 were flat, the electric wires 15 protruded and protruded from the end faces 5 A, and the entire motor 1 was enlarged by the amount of the protruding electric wires 15. Then, for example, during the work of assembling the core 5 to the housing 4, care must be taken so that the protruding portion of the electric wire 15 does not hit other parts, resulting in poor work efficiency.
第 2 4図は、 ステータ 3コアピース 8の略矩形の対峙面 bと、ネック部 aの 断面 (:断面積 S 1 ) との位置関係を示し、 X軸方向はティース 6の対峙面 b の対峙対象 (この場合ロータ) との相対的な可動方向を表している。 コアピー ス 8内の磁路の磁気抵抗を小さく抑えるために、 ネック部 aの断面積 S 1 (磁 路断面積) は、 一定値以上確保すべきである。 このため、 コアピース 8に形成 したティース 6に電線 1 5を巻き付ける際には、第 2 3, 2 4図力 らも判る様 に、 ステータ 5とロータとの相対的可動方向 Xにおいて、電線 1 5を巻き付け る高さ δ 1には制約が生じる。 しかしながら、 モータ 1から所望の力やトル クを得るためには、 ネック部 aの断面積 S 1 (磁路断面積) に通すことができ る磁束の量 (上限値) も一定以上に確保しなければならない。 即ち、 電線 1 5 の直径や巻き数にも、 磁束を確保するための必要値がある。 FIG. 24 shows the positional relationship between the substantially rectangular confronting surface b of the stator 3 core piece 8 and the cross section of the neck portion a (the cross-sectional area S 1). In the X-axis direction, the confronting surface b of the tooth 6 faces the confronting surface b. It indicates the direction of movement relative to the target (in this case, the rotor). In order to keep the magnetic resistance of the magnetic path in the core piece 8 small, the cross-sectional area S 1 (magnetic-path cross-sectional area) of the neck portion a should be secured to a certain value or more. For this reason, when winding the electric wire 15 around the teeth 6 formed on the core piece 8, as shown in FIGS. In addition, in the relative movement direction X between the stator 5 and the rotor, the height δ 1 at which the electric wire 15 is wound is restricted. However, in order to obtain the desired force and torque from the motor 1, the amount of magnetic flux (upper limit value) that can pass through the cross-sectional area S1 (magnetic-path cross-sectional area) of the neck part a must be kept at a certain level or more. There must be. In other words, the diameter and the number of turns of the electric wire 15 also have necessary values for securing magnetic flux.
したがって、 上記の高さ δ 1に対する制約を守るためには、 必然的に、 テ ィース 6のネック部 aに巻き付けられる電線 1 5が占める空間 (第 2 3図 Therefore, in order to keep the above restriction on the height δ1, the space occupied by the electric wire 15 wound around the neck a of the case 6 must be inevitably (Fig. 23).
( c ) ) の径方向の厚さ ( ) を厚くせざるを得ない。 以上の理由から、 従 来、 この厚さ を小さくすることが容易でないことが、 モータの小型化の阻 害要因になっている。 (c) The radial thickness () of) must be increased. For the above reasons, the difficulty in reducing the thickness has been a hindrance to motor miniaturization.
また、 この問題は、 モータのロータ側を電機子で構成する場合にも、 上記と 略同様に存在するので、 コアピース 8を有する部位がモータのステータ側、 口 ータ側の何れの場合においても、モータが径方向に大きく成ってしまう上記の 問題は、従来より解消されていない。 モータのステータとロータとの間の磁力 作用に基づいて生じる運動は、本質的に相対的なものであるから、 コアを有す る部位が回転し、永久磁石を有する部位が静止する形態のモータを構成した場 合についても、 上記と全く同様の問題が存在する。 運動エネルギーと電気エネ ルギ一の間のエネルギー交換は、相互的なものであるので、 上記の問題は一般 の発電機に付いても指摘することができる。  In addition, this problem exists substantially in the same manner as described above when the rotor side of the motor is constituted by an armature, so that the portion having the core piece 8 is provided on either the stator side or the motor side of the motor. However, the above problem that the motor becomes large in the radial direction has not been solved conventionally. Since the motion generated based on the magnetic force between the stator and the rotor of the motor is essentially relative, the motor in which the portion having the core rotates and the portion having the permanent magnet is stationary. The same problem as described above also exists in the case of constructing. Since the exchange of energy between kinetic energy and electric energy is reciprocal, the above problems can be pointed out for ordinary generators as well.
また、一般に普及しているモータのコアは鋼板を積層してなる力 S、この場合、 コアの形状の自由度が低いので、特開 2 0 0 0— 1 5 2 5 3 2号公報にも開示 されているように磁性粉体で構成されたコアが開発されている。 しかしながら、 磁性粉体でコア全体を一体的に構成すると形状面での制約が大きく、また製造 コストがかかる。 そこで、形状の自由度が高くかつ安価なコアの開発が求めら れていた。 本発明は、 上記の課題を解決するためになされたものであり、従来のコアに 比べ、磁気抵抗が小さくかつばらっかないコア及びそのようなコアを備えた小 型 ·軽量化を図ることが可能な回転電機の提供を目的とする。 In addition, the core of a motor that has been widely used is a force S formed by laminating steel plates. In this case, the degree of freedom of the shape of the core is low, and therefore, Japanese Patent Application Laid-Open No. 2000-152525 As disclosed, cores composed of magnetic powder have been developed. However, if the entire core is made of magnetic powder, the shape of the core is greatly restricted, and the manufacturing cost is high. Therefore, the development of an inexpensive core with a high degree of freedom in shape has been required. The present invention has been made in order to solve the above-mentioned problems, and it is possible to reduce the size and weight of a core having a smaller and less scattered magnetic resistance and a core having such a core as compared with a conventional core. It is intended to provide a possible rotating electric machine.
また、 本発明の他の目的は、 回転電機の製造効率の向上や、 コギングの抑制 等がある。  Another object of the present invention is to improve the manufacturing efficiency of the rotating electric machine and to suppress cogging.
さらに、本宪明は、形状の自由度が高くかつ安価に製造することが可能なコ ァ及び回転電機の提供を目的とする。 発明の開示  Still another object of the present invention is to provide a core and a rotating electric machine which have a high degree of freedom in shape and can be manufactured at low cost. Disclosure of the invention
第 1の発明は、 ステータまたは口一タを構成するコアに形成された複 数のティースに電線を巻回して複数のコイルを備えた回転電機において, 前記コアが複数のコアピースに分割されており、 前記コアの少なく とも 一部が、 磁性粉体と絶縁部材との複合材料で形成されたことを特徴とす る回転電機である。  According to a first aspect of the present invention, in a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a mouth, the core is divided into a plurality of core pieces. A rotating electrical machine characterized in that at least a part of the core is formed of a composite material of a magnetic powder and an insulating member.
本発明に係る回転電機によれば、磁性粉体と絶縁部材との複合材料は、 磁性体でありかつ絶縁体であるので、 積層構造にしなくても渦電流損を 抑えた磁気回路を構成することができる。 そして、 本発明に係るコアピ ースは、 上記のような複合材料で形成されたから、 コアピース同士の接 合面の平面度を、従来の積層構造のものに比べて高くすることができる。 これにより、 本発明のコアでは、 従来のものに比べて磁気抵抗及び磁気 抵抗のばらつきを共に小さくすることができる。 そして、 このようなコ ァを備えた回転電機では、 従来のコアを備えた回転電機に比べて、 出力 トルクが大きくなり、 コギングトルクを抑えることができる。 さらに、 コアを複数のコアピースに分割しているので、 従来のコア全体を一体的 に構成するものと比べ、 形状の自由度が高くなる。 上記の回転電機は、 モータ及び発電機の双方がそれぞれ個々に相当する。 即 ち、本発明は、 ロータ又はステータの一部を構成するコアのティースの対峙面 力 相対的可動方向に対して複数直列に配置された、電気エネルギーと運動ェ ネルギーとの間で仕事を変換する回転電機ならば、任意の形態の回転電機に適 用することができる。 According to the rotating electric machine of the present invention, since the composite material of the magnetic powder and the insulating member is both a magnetic material and an insulating material, it constitutes a magnetic circuit in which eddy current loss is suppressed without having a laminated structure. be able to. Further, since the core piece according to the present invention is formed of the composite material as described above, the flatness of the joint surface between the core pieces can be increased as compared with the conventional multilayer structure. Thus, in the core of the present invention, both the magnetoresistance and the variation in the magnetoresistance can be reduced as compared with the conventional core. And, in the rotating electric machine having such a core, the output torque is increased and the cogging torque can be suppressed as compared with the rotating electric machine having the conventional core. Furthermore, since the core is divided into a plurality of core pieces, the degree of freedom of the shape is higher than that of the conventional case where the entire core is integrally formed. In the rotating electric machine, both the motor and the generator individually correspond to each other. In other words, the present invention converts work between electric energy and kinetic energy, which are arranged in series with respect to the direction of relative movement of the teeth of the core constituting a part of the rotor or the stator. The present invention can be applied to any type of rotating electric machine as long as it is a rotating electric machine.
また、 本発明は、 電機子の構造 (特に、 コアの形状、 配置、 材料) に関する ものであり、 この電機子はロータとステータのどちらであっても良い。 即ち、 本発明は、 ロータとステータの双方に対して同時に適用することも、 或いは、 任意の片方だけに適用することも可能である。  Further, the present invention relates to the structure of an armature (particularly, the shape, arrangement, and material of a core), and the armature may be either a rotor or a stator. That is, the present invention can be applied to both the rotor and the stator at the same time, or can be applied to only one of them.
尚、 以下の説明では、 回転型のモータ (電動機) のステータの形状 を中心に、 本発明の作用 ·効果を具体的に示すが、 これらの作用 '効果 は、 上記の任意の形態の回転電機についても、 理論的な対称性に基づい て、 必然的に得ることができるものである。  In the following description, the operation and effects of the present invention will be specifically described focusing on the shape of the stator of a rotary motor (electric motor). Can also be inevitably obtained based on theoretical symmetry.
第 2の発明は、 上述の第 1の発明に係る回転電機において、 前記磁性 粉体は、 鉄粉であることを特徴とする回転電機である。 粉体を鉄粉とし たので、 機能、 コス ト的に優位である。  A second invention is the rotating electric machine according to the first invention described above, wherein the magnetic powder is iron powder. Since the powder is made of iron powder, it is superior in function and cost.
また、 第 3の発明は、 上述の第 1の発明に係る回転電機において、 前 記磁性粉体は、 無機酸化物で表面を絶縁処理されたことを特徴とする回 転電機である。 このように磁性粉体は、 磁性体でありかつ表面を絶縁処 理されているので、 積層構造にしなくても渦電流損を抑えた磁気回路を 構成することができる。  A third invention is the rotating electric machine according to the above-mentioned first invention, wherein the magnetic powder has a surface insulated with an inorganic oxide. As described above, since the magnetic powder is a magnetic material and its surface is insulated, it is possible to configure a magnetic circuit in which eddy current loss is suppressed without having a laminated structure.
第 4の発明は、 上述の第 2の発明に係る回転電機において、 前記鉄粉 の大きさは、 2 0〜 1 0 0 i mであることを特徴とする回転電機である。 これにより、 コアの表面を成形型の内面に対応した平坦な形状にするこ とができる。  A fourth invention is the rotating electric machine according to the second invention described above, wherein the size of the iron powder is 20 to 100 im. Thereby, the surface of the core can be formed into a flat shape corresponding to the inner surface of the mold.
第 5の発明は、 上述の第 1乃至第 4の発明のいずれ一つの発明に係る 回転電機において、 前記絶縁部材は、 合成樹脂であることを特徴とする 回転電機である。 これにより、 磁性粉体を絶縁してコアを複合材料の一 体物で容易に形成することができる。 The fifth invention is directed to any one of the above-described first to fourth inventions. In the rotating electric machine, the insulating member is a synthetic resin. Thus, the magnetic powder can be insulated, and the core can be easily formed of the composite material.
第 6の発明は、上述の第 1の発明に係る回転電機において、前記コアの軸方 向の両端面のうち前記電線の巻回部分を凹状に陥没させたことを特徴とする 回転電機である。  According to a sixth aspect, in the rotating electrical machine according to the first aspect, the winding portion of the electric wire is depressed in a concave shape on both end faces in the axial direction of the core. .
第 6の発明に係る回転電機によれば、コアの軸方向の両端面のうち電線の卷 回部分を凹状に陥没させたので、 凹状部分に電線が収容され、従来のものに比 ベてコアの端面における電線の突出量が抑えられる。 これにより、モータを軸 方向でコンパクトにすることができる。 また、 電線がコアの凹状部分に収容さ れて保護されるので、他の部品に当接する可能性が下がり、 コアの取り扱いが 容易になる。  According to the rotating electric machine according to the sixth aspect of the present invention, since the winding portion of the electric wire is depressed in a concave shape on both end surfaces in the axial direction of the core, the electric wire is accommodated in the concave portion, and the core is in comparison with the conventional one. The projecting amount of the electric wire at the end face of the second member is suppressed. Thus, the motor can be made compact in the axial direction. Also, since the electric wire is housed and protected in the concave portion of the core, the possibility of contact with other components is reduced, and the handling of the core is facilitated.
第 7の発明は、上述の第 6の発明に係る回転電機において、前記コアがステ ータを構成するものであって、 このコアに形成されたティースが、 ロータに備 えた磁力発生部より軸方向で長くされており、前記コアの軸方向の両端面のう ち前記電線の卷回部分を凹状に陥没させることで、その卷回部分の長さを、前 記磁力発生部の長さより短くしたことを特徴とする回転電機である。  According to a seventh aspect, in the rotating electric machine according to the sixth aspect described above, the core constitutes a stator, and teeth formed on the core are rotated by a magnetic force generating portion provided on the rotor. The length of the winding portion is made shorter than the length of the magnetic force generating portion by making the winding portion of the electric wire concavely depressed out of both end surfaces in the axial direction of the core. A rotating electric machine characterized by the following.
電線の卷回部分がロータの磁力発生部より長いと、電線の巻線長が長くなつ て電気抵抗が大きくなることにより、銅損が大きくなる。 第 7の発明に係る回 転電機では、 コアの両端面のうち電線の卷回部分を凹状に陥没させることで、 その電線の巻回部分の長さをロータにおける磁力発生部の長さより短くした ので銅損が減少し、 モータの効率を向上させることができる。 これにより、 従 来の回転電機と本発明の回転電機とで出力トルクを同じにした場合には、本発 明の回転電機の方が、 効率が優れている分、 小型化にすることができる。 第 8の発明は、 上述の第 6または第 7の発明に係る回転電機において、 前記 電線の巻回部分における軸方向の両端面は、 円形に近い角が取れた略矩形、 略 円形、 略正多角形、 または略楕円形であることを特徴とする回転電機である。 第 8の発明に係る回転電機では、コアのうち電線の卷回部分の両端面を円形 に近い形状にしたので、電線をスムーズに卷回することができ、電線へのスト レスが抑えられる。 さらに、 ネック部 aの断面積 (磁路断面積) を従来より小 さく しなくとも、ネック部断面の周の長さをより効果的に短くできるので、 そ の分電線の長さもより効果的に短くできる。 このため、電線の電気抵抗の値を 従来以下に維持したまま、電線の直径を極力小さくすることができる。 したが つて、ティースのネック部 aに巻き付けられる電線が占める空間の径方向の厚 さを、 より効果的に薄くすることができる。 If the winding part of the electric wire is longer than the magnetic force generating part of the rotor, the electric wire becomes longer and the electric resistance increases, resulting in an increase in copper loss. In the rotary electric machine according to the seventh aspect of the present invention, the length of the wound portion of the electric wire is made shorter than the length of the magnetic force generating portion of the rotor by making the wound portion of the electric wire concave and depressed on both end surfaces of the core. Therefore, copper loss is reduced and motor efficiency can be improved. Accordingly, when the output torque is the same between the conventional rotating electric machine and the rotating electric machine of the present invention, the rotating electric machine of the present invention can be downsized because of the higher efficiency. . An eighth invention is the rotating electric machine according to the sixth or seventh invention described above, wherein both end faces in the axial direction of the winding part of the electric wire have a substantially rectangular shape, a substantially circular shape, and a substantially positive shape with an angle close to a circle. A rotating electric machine having a polygonal shape or a substantially elliptical shape. In the rotating electric machine according to the eighth aspect of the present invention, since both end faces of the winding portion of the electric wire in the core are formed in a shape close to a circle, the electric wire can be wound smoothly and stress on the electric wire can be suppressed. Furthermore, the length of the circumference of the neck section can be shortened more effectively without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck section a, so that the length of the distribution line is more effective. Can be shortened. For this reason, the diameter of the electric wire can be reduced as much as possible while keeping the electric resistance value of the electric wire below the conventional value. Therefore, the radial thickness of the space occupied by the electric wire wound around the tooth neck portion a can be reduced more effectively.
第 9の発明は、 上述の第 1の発明に係る回転電機において、 ステータ又は口 ータの一方を構成するコアに形成されたティースが、ステータ又はロータの他 方に対峙する対峙面を有し、電線が卷回される前記ティースのネック部が、 前 記対峙面の軸方向において、 前記対畤面の長さの半分よりも短く、 かつ、 分散 配置されていることを特徴とする回転電機である。  According to a ninth aspect, in the rotary electric machine according to the first aspect, the teeth formed on the core forming one of the stator and the rotor have a facing surface facing the other side of the stator or the rotor. And a neck portion of the tooth around which the electric wire is wound is shorter than half the length of the facing surface in the axial direction of the facing surface, and is arranged in a distributed manner. It is.
ただし、互いに対峙し合うものはロータとステータなので、 上記の対峙面と は、 上記ティースが形成されたコアがロータの一部を構成している場合には、 ティースの表面の中でステータに対して対峙している面のことを言う。 また、 上記のティースが形成されたコアがステータの一部を構成している場合には、 ティースの表面の中でロータに対して対峙している面を上記の対峙面とする。 第 2 4図からも判る様に、従来はステータ 3とロータ 2との相対的可動方向 Xにおいて、 ネック部 aに線を巻き付ける高さ δ 1に強い制約があつたが、 上記の構成に従えば、 この高さ δ 1に対する制約が大幅に緩和できる。 この ため、ティースのネック部 aに巻き付けられる電線が占める空間の径方向の厚 さは、 従来よりも薄くすることができるので、 モータの小型化が容易になる。 また、 上記の構成に従えば、 ネック部 aの断面積 (磁路断面積) を従来より 小さくしなくとも、ネック部断面の周の長さを従来より短くできるので、 その 分電線の長さも短くできる。 このため、電線の電気抵抗の値を従来以下に維持 したまま、 電線の直径を小さくすることができる。 この作用によっても、 コア に形成されたティースのネック部 aに巻き付けられる電線が占める空間の径 方向の厚さを、 従来よりも薄くすることができる。 However, since the rotor and the stator are opposed to each other, the above-mentioned facing surface means that when the core on which the teeth are formed constitutes a part of the rotor, the stator is positioned on the surface of the teeth with respect to the stator. Refers to the side facing you. In the case where the core on which the teeth are formed constitutes a part of the stator, the surface of the teeth facing the rotor is referred to as the facing surface. As can be seen from FIG. 24, the height δ 1 at which the wire is wound around the neck portion a in the relative movement direction X between the stator 3 and the rotor 2 was conventionally strongly restricted. Thus, the restriction on the height δ 1 can be greatly reduced. For this reason, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth can be made smaller than in the conventional case, so that the motor can be easily downsized. Also, according to the above configuration, the circumference of the neck section can be made shorter than before without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck part a compared to the conventional one, so that the wire length can be reduced accordingly. Can be shortened. For this reason, the diameter of the electric wire can be reduced while the electric resistance value of the electric wire is kept below the conventional value. With this function, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth formed on the core can be made smaller than before.
また、 上記の構成に従えば、第 2 4図の y軸方向において対峙面からコイル エンドがはみ出さない様に、モータを製造することも可能であり、 その分 y軸 方向においても、 モータを小型化することができる。 という効果を奏する。 第 1 0の発明は、 上述の第 9の発明に係る回転電機において、 前記コアが、 ステータとロータとの相対的可動方向に連なったバックヨーク部を複数段有 し、 複数の前記対峙面は、 周期的に選択されて、 前記ネック部を介して、 前記 バックヨーク部の何れか 1段に一体的に固定されており、全ての前記対峙面が 過不足無く互いに嚙み合う様に、複数段の前記バックヨーク部を組み合わせる ことにより、電機子の磁束路が形成されていることを特徴とする回転電機であ る。  In addition, according to the above configuration, it is possible to manufacture the motor so that the coil end does not protrude from the facing surface in the y-axis direction in FIG. 24. The size can be reduced. This has the effect. According to a tenth aspect, in the rotary electric machine according to the ninth aspect, the core has a plurality of back yoke portions connected in a direction in which the stator and the rotor can move relative to each other. Are periodically selected and are integrally fixed to any one of the back yoke portions via the neck portion, so that all of the opposing surfaces are mutually engaged without excess or shortage. A rotating electric machine characterized in that a magnetic flux path of an armature is formed by combining the back yoke portions of the steps.
第 1 0の発明に係る回転電機によれば、コアに形成されたティースのネック 部を n個置き (n≥ l ) に配置できる。 したがって、 例えばノズル式の卷線機 等の簡単な装置を用いて効率よくティースのネック部にコィルを巻き付ける ことができる。 更に、 上記の構成に従えば、 ティースのネック部を n個置き According to the rotating electric machine according to the tenth aspect, the neck portions of the teeth formed on the core can be arranged at intervals of n (n≥l). Therefore, the coil can be efficiently wound around the neck portion of the teeth using a simple device such as a nozzle-type winding machine. Further, according to the above configuration, every n neck portions of the teeth
( n≥ 1 ) に一体化できるため、電機子の対峙面から成る電機子の外形を所望 の形状に精度よく製造することが可能又は容易となる。 Since (n≥1), the outer shape of the armature consisting of the facing surfaces of the armature can be accurately or easily manufactured into a desired shape.
尚、モータ又は発電機のロータを上記のコアを有する電機子で構成する場合、 上記のバックヨーク部は、 回転軸回りに形成することができる。 この時、 細長 く回転軸上を空洞にすれば、 バックヨーク部は、 略リング形状となり、 正に口 ータの相対的可動方向に連なった形状となるが、勿論、 回転軸上を必ずしも空 洞にする必要はなレ、。この様な略リング形状の中空部(上記の空洞)の半径が、When the rotor of the motor or the generator is constituted by the armature having the above-mentioned core, the above-mentioned back yoke portion can be formed around the rotation axis. At this time, if a hollow body is formed on the rotary shaft, the back yoke portion becomes substantially ring-shaped, and has a shape that is directly connected to the relative movement direction of the motor. You don't have to be a cave. The radius of such a substantially ring-shaped hollow portion (the above-mentioned cavity) is
0となる極限でバックヨーク部の形状を認識すれば、回転軸上が磁性体等で埋 まっている場合にも、バックヨーク部の形状は、相対的可動方向に連なった形 状と見ることができる。 If the shape of the back yoke is recognized at the limit of 0, the shape of the back yoke can be regarded as a shape connected in the relative movable direction even if the rotating shaft is buried with a magnetic material or the like. Can be.
第 1 1の発明は、 上述の第 9または第 1 0の発明に係る回転電機において、 前記ネック部は、 ステータとロータとの相対的可動方向に対して、斜めに複数 並べて周期的に分散配置されていることを特徴とする回転電機である。  The eleventh invention is directed to the rotating electric machine according to the ninth or tenth invention, wherein a plurality of the neck parts are periodically dispersed and arranged obliquely with respect to a relative movable direction of the stator and the rotor. It is a rotating electric machine characterized by being performed.
第 1 1の発明に係る回転電機によれば、コアに形成されたティースの対峙面 の裏側にティースのネック部及びコィルを比較的稠密に効率よく分散配置す ることができるため、ティースの対峙面の裏側の空間を効率よく利用すること ができる。 このため、 回転電機の小型化が効果的に実施可能となる。  According to the rotating electric machine according to the eleventh aspect, the neck portion and the coil of the tooth can be relatively and densely and efficiently dispersed on the back side of the facing surface of the tooth formed on the core. The space behind the surface can be used efficiently. Therefore, it is possible to effectively reduce the size of the rotating electric machine.
第 1 2の発明は、 上述の第 9または第 1 0の発明に係る回転電機において、 前記ネック部は、ステータとロータとの相対的可動方向を前後方向と見た時に、 左右交互に分散配置(千鳥配置)されていることを特徴とする回転電機である。 このように、ネック部を千鳥状に配置するので、ネック部及びコイルを比較的 稠密に効率よく分散配置することができる。  According to a twelfth aspect, in the rotating electric machine according to the ninth or tenth aspect, when the relative movable direction of the stator and the rotor is viewed as a front-rear direction, the neck portions are alternately arranged left and right. (Staggered arrangement). Since the necks are arranged in a staggered manner, the necks and the coils can be relatively densely and efficiently distributed.
第 1 3の発明は、 上述の第 1の発明に係る回転電機において、 前記コアを、 磁性粉体と絶縁部材との複合材料で形成された粉体製のコァ構成体と、鋼板を 積層してなる鋼板製のコァ構成体とを接合して構成したことを特徴とする回 転電機である。  According to a thirteenth aspect, in the rotary electric machine according to the first aspect, the core is formed by laminating a powder core member formed of a composite material of a magnetic powder and an insulating member, and a steel plate. A rotating electric machine characterized in that the rotating electric machine is formed by joining a steel core structure made of a steel sheet.
磁性粉体の複合材料でコァを構成した場合には、鋼板を積層してコアを形成 した場合に比べて複雑な構造を容易に製造することができる。 一方、鋼板を積 層してコアを形成した場合には、その積層方向に凹凸を形成することは困難で ある力 複合材料に比べて安価にコアを製造することができる。 そこで、 第 1 3の発明に係る回転電機のコアでは、鋼板を積層して形成することが困難であ つた部分を、 磁性体の複合材料よりなる粉体製のコア構成体で構成する一方、 形状の自由度を要しない部分を鋼板製のコァ構成体で構成した。 これにより、 コァ全体を鋼板製にした場合に比べて形状の自由度が高くなり、コァ全体を複 合材料で一体的に構成した場合に比べて安価に製造することができる。 When the core is made of a magnetic powder composite material, a complicated structure can be easily manufactured as compared with the case where the core is formed by stacking steel plates. On the other hand, when a core is formed by stacking steel sheets, it is possible to manufacture the core at a lower cost than a force composite material in which it is difficult to form irregularities in the laminating direction. Therefore, in the core of the rotating electrical machine according to the thirteenth aspect, the portion that was difficult to be formed by laminating steel plates is constituted by a powder core structure made of a magnetic composite material, The part which does not require the degree of freedom of the shape was constituted by a steel core structure. As a result, the degree of freedom of the shape is higher than when the entire core is made of a steel plate, and the core can be manufactured at a lower cost than when the entire core is integrally formed of a composite material.
第 1 4の発明は、 上述の第 1 3の発明に係る回転電機において、前記粉体製 のコア構成体に対して設け、前記鋼板製のコア構成体のうち鋼板の積層方向の 両端部に、前記粉体製のコア構成体をそれぞれ接合したことを特徴とする回転 電機である。  A fourteenth invention is directed to the rotating electric machine according to the thirteenth invention, wherein the rotating electric machine is provided for the powder-made core structure, and is provided at both ends of the steel structure in the stacking direction of the steel plates. A rotary electric machine, wherein the core members made of powder are joined to each other.
第 1 4の発明に係る回転電機のコアでは、鋼板製のコァ構成体のうち鋼板の 積層方向の両端部に、粉体製のコア構成体を接合したので、 コアの軸方向の大 きさを変更する場合には、鋼板製のコア構成体における鋼板の積層数を変更す ることで容易に対処することができる。  In the core of the rotary electric machine according to the fourteenth aspect, the core structure made of powder is joined to both ends of the steel core structure in the stacking direction of the steel plates, so that the size of the core in the axial direction is increased. When the number of steel sheets is changed, it can be easily dealt with by changing the number of stacked steel sheets in the steel core structure.
第 1 5の発明は、 ステータまたはロータを構成するコアに形成された 複数のティースに電線を卷回して複数のコイルを備えた回転電機におい て、 前記コアの軸方向の両端面のうち前記電線の卷回部分を凹状に陥没 させたことを特徴とする回転電機である。  A fifteenth invention is directed to a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor, wherein the electric wire is formed on both axial end surfaces of the core. The rotating electric machine is characterized in that the winding part of the above is depressed in a concave shape.
第 1 5の発明に係る回転電機によれば、コアの軸方向の両端面のうち電線の 巻回部分を凹状に陥没させたので、 凹状部分に電線が収容され、従来のものに 比べてコアの端面における電線の突出量が抑えられる。 これにより、モータを 軸方向でコンパク トにすることができる。 また、 電線がコアの凹状部分に収容 されて保護されるので、他の部品に当接する可能性が下がり、 コアの取り扱い が容易になる。  According to the rotating electric machine according to the fifteenth aspect, since the winding portion of the electric wire is concavely depressed at both end surfaces in the axial direction of the core, the electric wire is accommodated in the concave portion, and the core is more squeezed than the conventional one. The projecting amount of the electric wire at the end face of the second member is suppressed. Thus, the motor can be made compact in the axial direction. Also, since the wire is housed in the concave portion of the core and protected, the possibility of contact with other components is reduced, and the handling of the core is facilitated.
第 1 6の発明は、 上述の第 1 5の発明に係る回転電機において、 前記コアが ステータを構成するものであって、 このコアに形成されたティースが、 ロータ に備えた磁力発生部より軸方向で長くされており、前記コアの軸方向の両端面 のうち前記電線の卷回部分を凹状に陥没させることで、その卷回部分の長さを、 前記磁力発生部の長さより短くしたことを特徴とする回転電機である。 第 1 6の発明に係る回転電機では、コアの両端面のうち電線の巻回部分を凹 状に陥没させることで、その電線の卷回部分の長さをロータにおける磁力発生 部の長さより短くしたので銅損が減少し、モータの効率を向上させることがで きる。 これにより、従来の回転電機と本発明の回転電機とで出力トルクを同じ にした場合には、 本発明の回転電機の方が、 効率が優れている分、 小型化にす ることができる。 According to a sixteenth invention, in the rotating electric machine according to the fifteenth invention, the core forms a stator, and the teeth formed on the core are arranged on a shaft by a magnetic force generating portion provided on the rotor. The length of the winding portion is made shorter than the length of the magnetic force generating portion by making the winding portion of the electric wire concave and depressed at both end surfaces in the axial direction of the core. It is a rotating electric machine characterized by the above. In the rotating electric machine according to the sixteenth aspect of the present invention, the length of the winding portion of the electric wire is shorter than the length of the magnetic force generating portion of the rotor by making the winding portion of the electric wire concave and concave on both end surfaces of the core. As a result, the copper loss is reduced, and the efficiency of the motor can be improved. Thus, when the output torque of the conventional rotating electric machine and that of the rotating electric machine of the present invention are the same, the rotating electric machine of the present invention can be downsized because of its higher efficiency.
第 1 7の発明は、上述の第 1 5または第 1 6の発明に係る回転電機において、 前記電線の巻回部分における軸方向の両端面は、円形に近い角が取れた略矩形、 略円形、略正多角形、または略楕円形であることを特徴とする回転電機である。 第 1 7の発明に係る回転電機では、コアのうち電線の卷回部分の両端面を円 形に近い形状にしたので、電線をスムーズに卷回することができ、電線へのス トレスが抑えられる。 さらに、 ネック部 aの断面積 (磁路断面積) を従来より 小さくしなくとも、 ネック部断面の周の長さをより効果的に短くできるので、 その分電線の長さもより効果的に短くできる。 このため、電線の電気抵抗のィ直 を従来以下に維持したまま、電線の直径を極力小さくすることができる。 した がって、ティースのネック部 aに巻き付けられる電線が占める空間の径方向の 厚さを、 より効果的に薄くすることができる。  A seventeenth invention is the rotating electric machine according to the fifteenth or sixteenth invention, wherein both end faces in the axial direction of the winding portion of the electric wire have a substantially rectangular shape, a substantially circular shape having a nearly circular angle, and a substantially circular shape. , A substantially regular polygon, or a substantially elliptical shape. In the rotating electric machine according to the seventeenth aspect of the present invention, both ends of the winding portion of the electric wire in the core are formed in a shape close to a circle, so that the electric wire can be wound smoothly and stress on the electric wire is suppressed. Can be Furthermore, the perimeter of the neck section can be shortened more effectively without reducing the cross-sectional area (magnetic path cross-sectional area) of the neck section a, so that the wire length can be shortened more effectively. it can. For this reason, the diameter of the electric wire can be reduced as much as possible while maintaining the electric resistance of the electric wire at a value equal to or lower than the conventional value. Therefore, the radial thickness of the space occupied by the electric wire wound around the tooth neck portion a can be reduced more effectively.
第 1 8の発明は、 ステータまたはロータを構成するコアに形成された 複数のティースに電線を卷回して複数のコイルを備えた回転電機におい て、ステータ又はロータの一方を構成するコアに形成されたティースが、 ステータ又はロータの他方に対峙する対峙面を有し、 電線が卷回される 前記ティースのネック部が、 前記対峙面の軸方向において、 前記対峙面 の長さの半分よりも短く、 かつ、 分散配置されていることを特徴とする 回転電機である。  An eighteenth invention is directed to a rotating electric machine including a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor, the electric machine being formed on a core constituting one of the stator and the rotor. The tooth has a facing surface facing the other of the stator and the rotor, and the neck portion of the tooth around which the wire is wound is shorter than half the length of the facing surface in the axial direction of the facing surface. And a rotating electric machine characterized by being distributedly arranged.
第 2 4図からも判る様に、従来はステータ 3とロータ 2との相対的可動方向 Xにおいて、 ネック部 aに線を巻き付ける高さ δ 1に強い制約があつたが、 第 1 8の発明に係る回転電機の構成では、 この高さ δ 1に対する制約が大幅 に緩和できる。 このため、 ティースのネック部 aに巻き付けられる電線が占め る空間の径方向の厚さは、従来よりも薄くすることができるので、 モータの小 型化が容易になる。 As can be seen from Fig. 24, in the past, in the relative movement direction X of the stator 3 and the rotor 2, there was a strong restriction on the height δ1 at which the wire was wound around the neck part a. In the configuration of the rotating electric machine according to the eighteenth aspect, the restriction on the height δ1 can be greatly reduced. For this reason, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth can be made smaller than in the past, so that the motor can be easily downsized.
また、 上記の構成に従えば、 ネック部 aの断面積 (磁路断面積) を従来より 小さくしなくとも、 ネック部断面の周の長さを従来より短くできるので、 その 分電線の長さも短くできる。 このため、電線の電気抵抗の値を従来以下に維持 したまま、 電線の直径を小さくすることができる。 この作用によっても、 コア に形成されたティースのネック部 aに巻き付けられる電線が占める空間の径 方向の厚さを、 従来よりも薄くすることができる。  Also, according to the above configuration, the perimeter of the cross section of the neck portion can be made shorter than before without making the cross-sectional area (magnetic path cross-sectional area) of the neck portion a smaller than in the past, so that the length of the electric wire is reduced accordingly Can be shortened. For this reason, the diameter of the electric wire can be reduced while the electric resistance value of the electric wire is kept below the conventional value. With this function, the radial thickness of the space occupied by the electric wire wound around the neck portion a of the teeth formed on the core can be made smaller than before.
また、 上記の構成に従えば、第 2 4図の y軸方向において対峙面からコイル エンドがはみ出さない様に、モータを製造することも可能であり、 その分 y軸 方向においても、 モータを小型化することができる。  In addition, according to the above configuration, it is possible to manufacture the motor so that the coil end does not protrude from the facing surface in the y-axis direction in FIG. 24. The size can be reduced.
第 1 9の発明は、上述の第 1 8の発明に係る回転電機において、前記コア力、 ステータとロータとの相対的可動方向に連なったバックヨーク部を複数段有 し、 複数の前記対峙面は、 周期的に選択されて、 前記ネック部を介して、 前記 バックヨーク部の ί可れか 1段に一体的に固定されており、全ての前記対峙面が 過不足無く互いに嚙み合う様に、複数段の前記バックヨーク部を組み合わせる ことにより、電機子の磁束路が形成されていることを特徴とする回転電機であ る。  A nineteenth invention is directed to the rotating electric machine according to the eighteenth invention, further comprising a plurality of back yoke portions connected in a direction in which the core force, the stator and the rotor are relatively movable, and a plurality of the facing surfaces. Are selected periodically, and are integrally fixed to the back yoke portion via the neck portion in a single step, so that all the opposing surfaces are mutually intact without excess or shortage. In addition, a rotating electric machine is characterized in that a magnetic flux path of an armature is formed by combining a plurality of stages of the back yoke portions.
第 1 9の発明に係る回転電機によれば、コアに形成されたティースのネック 部を η個置き (η≥ 1 ) に配置できる。 したがって、 例えばノズル式の卷線機 等の簡単な装置を用いて効率よくティースのネック部にコイルを巻き付ける ことができる。 更に、 上記の構成に従えば、 ティースのネック部を η個置き ( η≥ 1 ) に一体化できるため、電機子の対峙面から成る電機子の外形を所望 の形状に精度よく製造することが可能又は容易となる。 尚、モータ又は発電機のロータを上記のコアを有する電機子で構成する場合、 上記のバックヨーク部は、 回転軸回りに形成することができる。 この時、 細長 く回転軸上を空洞にすれば、 バックヨーク部は、 略リング形状となり、 正に口 ータの相対的可動方向に連なった形状となるが、勿論、 回転軸上を必ずしも空 洞にする必要はない。この様な略リング形状の中空部(上記の空洞)の半径が、 0となる極限でバックヨーク部の形状を認識すれば、回転軸上が磁性体等で埋 まっている場合にも、バックヨーク部の形状は、相対的可動方向に連なった形 状と見ることができる。 According to the rotating electric machine according to the nineteenth aspect, the neck portions of the teeth formed on the core can be arranged every η (η≥1). Therefore, the coil can be efficiently wound around the neck portion of the teeth using a simple device such as a nozzle-type winding machine. Furthermore, according to the above configuration, the neck portions of the teeth can be integrated at every η teeth (η≥1), so that the outer shape of the armature formed by the facing surfaces of the armature can be accurately manufactured into a desired shape. Possible or easy. When the rotor of the motor or the generator is constituted by the armature having the above-mentioned core, the above-mentioned back yoke portion can be formed around the rotation axis. At this time, if a hollow body is formed on the rotary shaft, the back yoke portion becomes substantially ring-shaped, and has a shape that is directly connected to the relative movement direction of the motor. It doesn't need to be a cave. By recognizing the shape of the back yoke portion at the limit where the radius of such a substantially ring-shaped hollow portion (the above-described cavity) becomes zero, even if the rotating shaft is buried with a magnetic material or the like, the The shape of the yoke portion can be seen as a shape connected in the relative movable direction.
第 2 0の発明は、上述の第 1 8または第 1 9の発明に係る回転電機において、 前記ネック部は、 ステータとロータとの相対的可動方向に対して、斜めに複数 並べて周期的に分散配置されていることを特徴とする回転電機である。  According to a twenty-second aspect, in the rotating electric machine according to the eighteenth or nineteenth aspect, the neck portion is periodically arranged by being obliquely arranged in a plurality with respect to a relative movable direction of the stator and the rotor. A rotating electric machine characterized by being arranged.
第 2 0の発明に係る回転電機によれば、コアに形成されたティースの対峙面 の裏側にティースのネック部及びコィルを比較的稠密に効率よく分散配置す ることができるため、ティースの対峙面の裏側の空間を効率よく利用すること ができる。 このため、 回転電機の小型化が効果的に実施可能となる。  According to the rotating electric machine according to the twenty-first aspect, the neck portion and the coil of the teeth can be relatively densely and efficiently dispersed on the back side of the facing surface of the teeth formed on the core. The space behind the surface can be used efficiently. Therefore, it is possible to effectively reduce the size of the rotating electric machine.
第 2 1の発明は、上述の第 1 8または第 1 9の発明に係る回転電機において、 前記ネック部は、ステータとロータとの相対的可動方向を前後方向と見た時に、 左右交互に分散配置(千鳥配置)されていることを特徴とする回転電機である。 このように、 ネック部を千鳥状に配置するので、 ネック部及びコイルを比較的 稠密に効率よく分散配置することができる。 図面の簡単な説明  According to a twenty-first aspect, in the rotating electric machine according to the eighteenth or nineteenth aspect, when the relative movable direction of the stator and the rotor is viewed as a front-rear direction, the neck portion is alternately distributed to the left and right. A rotating electric machine characterized by being arranged (staggered arrangement). Since the necks are arranged in a staggered manner, the necks and the coils can be relatively densely and efficiently distributed. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、本発明の第 1実施形態に係る回転電機のステータのコア及びロータ の斜視図であり、 第 2図は、 コアの斜視図であり、 第 3図は、 磁性粉体と絶縁 部材との複合材料の概念図であり、第 4図は、 コアピース同士の接合状態を示 した部分拡大側面図であり、 第 5図は、本発明の第 2実施形態に係るコア及び ロータの斜視図であり、 第 6図は、 コアピースの斜視図であり、 第 7図は、 コ ァピースの側断面図であり、 第 8図は、第 6図の A— A切断面におけるコアピ ースの断面図であり、 第 9図は、本発明の第 3実施形態における回転型のモー タの組み立て時におけるコア (1 0 1, 1 0 2 ) の部分的な斜視図であり、 第 1 0図は、 コア (1 0 1 ) の 1つのティース部分を略矩形の対峙面 bの方から 見た斜視図 (a ) と、 その磁心の B方向視の側面図 (b ) と、 そのティースの ネック部 aに巻き付けられる電線が占める空間を表す斜視図 (c ) であり、 第 1 1図は、 コア (1 0 1 ) のティースの略矩形の対峙面 bと、 ネック部 aの断 面 (:断面積 S 3 ) との位置関係を示す平面展開図であり、 第 1 2図は、 本発 明の第 4実施形態におけるコアのティースの略矩形の対峙面 bと、ネック部 a の断面との位置関係を示す平面展開図であり、第 1 3図は、本発明の第 4実施 形態の変形例におけるコアのティースの略矩形の対峙面 bと、ネック部 aの断 面との位置関係を示す平面展開図であり、第 1 4図は、本発明の第 5実施形態 における回転型のモータの組み立て時におけるコアの斜視図であり、第 1 5図 は、本発明の第 6実施形態における回転型のモータの組み立て時におけるコア の部分的な斜視図であり、第 1 6図は、本発明の第 5実施形態における回転型 のモータの組み立て時におけるコアの部分的な斜視図であり、第 1 7図は、本 発明の第 7実施形態に係るコアの斜視図であり、第 1 8図は、 コアの分解斜視 図であり、 第 1 9図は、 コアのティースの側断面図であり、 第 2 0図は、 従来 のモータを分解して示した斜視図であり、 第 2 1図は、従来のステータのコア の斜視図であり、第 2 2図は、従来のコアピース同士の接合状態を示した部分 拡大側面図であり、第 2 3図は、 ステータの 1つのコアピースを略矩形の対峙 面 bの方から見た斜視図 (a ) と、 コアピースを C方向から見た側面図 (b ) と、 ティースのネック部 aに巻き付けられる電線が占める空間を表す斜視図 ( c ) であり、 第 2 4図は、 コアのティースの略矩形の対峙面 bと、 ネック部 aの断面 (:断面積 S 1 ) との位置関係を示す平面展開図である。 発明を実施するための最良の形態 FIG. 1 is a perspective view of a core and a rotor of a stator of a rotating electric machine according to a first embodiment of the present invention, FIG. 2 is a perspective view of the core, and FIG. FIG. 4 is a conceptual view of a composite material with members, FIG. 4 is a partially enlarged side view showing a joined state of core pieces, and FIG. 5 is a core and a core according to a second embodiment of the present invention. FIG. 6 is a perspective view of the core piece, FIG. 7 is a side sectional view of the core piece, and FIG. 8 is a perspective view of the core piece taken along a line AA in FIG. FIG. 9 is a partial perspective view of the core (101, 102) when assembling the rotary motor according to the third embodiment of the present invention. Figure 0 is a perspective view (a) of one tooth portion of the core (101) viewed from the substantially rectangular facing surface b, a side view of the magnetic core viewed in the B direction (b), and the tooth. FIG. 11 is a perspective view (c) showing a space occupied by an electric wire wound around a neck portion a of FIG. 11; FIG. 11 is a sectional view of a substantially rectangular confronting surface b of the teeth of a core (101); FIG. 12 is an exploded plan view showing a positional relationship with (: cross-sectional area S 3). FIG. FIG. 13 is an exploded plan view showing the positional relationship between the confronting surface b and the cross section of the neck part a. FIG. 13 is a plan view of a substantially rectangular confronting surface b of the teeth of the core according to a modification of the fourth embodiment of the present invention. FIG. 14 is an exploded plan view showing the positional relationship between the neck portion a and the cross section. FIG. 14 is a perspective view of the core when assembling the rotary motor according to the fifth embodiment of the present invention. FIG. 5 is a partial perspective view of the core when assembling the rotary motor according to the sixth embodiment of the present invention. FIG. 16 is an assembly of the rotary motor according to the fifth embodiment of the present invention. FIG. 17 is a partial perspective view of the core at the time, FIG. 17 is a perspective view of the core according to the seventh embodiment of the present invention, and FIG. 18 is an exploded perspective view of the core; Fig. 9 is a side sectional view of the core teeth, and Fig. 20 is an exploded view of a conventional motor. FIG. 21 is a perspective view of a core of a conventional stator, and FIG. 22 is a partially enlarged side view showing a joined state of conventional core pieces, and FIG. The perspective view (a) of one core piece of the stator viewed from the generally rectangular facing surface b, the side view (b) of the core piece viewed from the C direction, and the electric wire wound around the tooth neck part a FIG. 24 is a perspective view (c) showing the space occupied, and FIG. 24 is a planar development showing a positional relationship between a substantially rectangular confronting surface b of the teeth of the core and a cross section of the neck portion a (: cross sectional area S 1). FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1実施形態)  (First Embodiment)
以下、本発明の第 1実施形態を第 1乃至 4図に基づいて説明する。 第 1図に 示したモータ 1 0は、 ブラシレスモータであって、筒形ハウジング 1 1の内側 にステ一タのコア 1 2を備える。 コア 1 2は、 两端が開放した形状をなし、 周 方向で複数 (具体的には例えば 1 2個) のコアピース 1 4に縦割り分割可能に なっている。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The motor 10 shown in FIG. 1 is a brushless motor, and includes a stator core 12 inside a cylindrical housing 11. The core 12 has a shape with an open end, and can be vertically divided into a plurality of (specifically, for example, 12) core pieces 14 in the circumferential direction.
コアピース 1 4は、磁性粉体と絶縁部材との複合材料から形成され、第 2図 に示すように、コア 1 2の内側に向けて T字形のティース 1 3を張り出し形成 した構造になっている。複合材料は、第 3図に拡大して概念的に示されており、 例えば 2 0〜 1 0 0 / mの磁性粉体としての鉄粉 Fの表面を燐酸 Pで絶縁処 理し、その鉄粉 Fを合成樹脂 Gにコンパウンドした構成になっている。そして、 例えば、前記合成樹脂 Gが溶融した状態で、複合材料を各コアピース 1 4に対 応した成形型 (図示せず) に充填し、 合成樹脂 Gが固化してから成形型から固 化した複合材料を取り出し、 もってコアピース 1 4が完成される。 従ってコア ピース 1 4のうち隣り合ったコアピース 1 4との接合面 1 4 A (第 2図参照) は、 成形型の内面に対応した平坦な形状になる。  The core piece 14 is formed of a composite material of a magnetic powder and an insulating member, and has a structure in which a T-shaped tooth 13 is formed to project toward the inside of the core 12 as shown in FIG. . The composite material is shown conceptually on an enlarged scale in FIG. 3.For example, the surface of iron powder F as a magnetic powder of 20 to 100 / m is insulated with phosphoric acid P, and the iron Powder F is compounded with synthetic resin G. Then, for example, in a state where the synthetic resin G is melted, the composite material is filled into a mold (not shown) corresponding to each core piece 14, and then solidified from the mold after the synthetic resin G is solidified. The composite material is taken out and the core piece 14 is completed. Therefore, the joint surface 14 A (see FIG. 2) of the core piece 14 with the adjacent core piece 14 has a flat shape corresponding to the inner surface of the mold.
第 1図に示すように、各コアピース 1 4におけるティース 1 3のうち丁字形 の脚部に相当する電線卷回部 2 1には、 各コアピース 1 4の縦方向 (軸方向) にコィノレ 2 0が卷回されている。 このようにコィノレ 2 0を備えたコアピース 1 4群は、 互いに接合されてステータを構成する。 ここで、 本実施形態のコアピ —ス 1 4の接合面 1 4 Aは、前述のように複合材料の成形型に対応した平坦形 状をなしているので、 従来の積層構造のステ一タのコア (第 2 1図参照) に比 ベて平面度が高い。 また、 第 4図に示すように、 仮にコアピース 1 4の接合面 1 4 Aのエッジ部分 Eが接合面 1 4 Aの中央部分に比べて例えば後退してい たとしても、本実施形態のコァピース 1 4は積層構造ではなく複合材料による 一体成形品であるので、エッジ部分 Eが占める割合は、従来のコアピースの接 合面(第 2 2図参照) において鋼板のエッジが占める割合に比べて極めて小さ くなる。 これにより、 本実施形態のコアピース 1 4では、 接合面 1 4 A同士の 当接面積が従来のものより広くなり、従来のコアに比べて磁気抵抗が小さくな ると共に、 その磁気抵抗のばらつきも抑えられる。 As shown in FIG. 1, the wire winding portion 21 corresponding to the T-shaped leg of the teeth 13 of each core piece 14 has a coil 20 in the longitudinal direction (axial direction) of each core piece 14. Is wound. Thus, the group of core pieces 14 including the coils 20 is joined to each other to form a stator. Here, since the joining surface 14 A of the core piece 14 of the present embodiment has a flat shape corresponding to the molding die of the composite material as described above, the joining surface 14 A of the conventional laminated structure stator is used. Flatness is higher than core (see Fig. 21). Further, as shown in FIG. 4, if the edge portion E of the joint surface 14 A of the core piece 14 is, for example, receded from the center portion of the joint surface 14 A, for example. Even so, since the core piece 14 of the present embodiment is not a laminated structure but an integrally molded product made of a composite material, the ratio occupied by the edge portion E is smaller than that of the conventional core piece at the joint surface (see FIG. 22). Is extremely small compared to the ratio occupied by the edges. As a result, in the core piece 14 of the present embodiment, the contact area between the joint surfaces 14A is larger than that of the conventional core, the magnetic resistance is smaller than that of the conventional core, and the variation of the magnetic resistance is also small. Can be suppressed.
このようにしてコアピース 1 4群を接合してなるコア 1 2は、一端部におい て各コアピース 1 4のコイル 2 0の端末部分が結線処理されてから筒形ハウ ジング 1 1内に例えば焼嵌される。 そして、そのコア 1 2の内部にロータ 1 6 が配されて、筒形ハウジング 1 1の両端部を閉塞してモータ 1 0が完成される。 上記構成のモータ 1 0では、 そのモータ 1 0に内蔵したコア 1 2力、従来の コアに比べて磁気抵抗及び磁気抵抗のばらつきが共に小さいので、モータ 1 0 の出力トルクは従来のモータより大きくなり、 しかもコギングトルクを抑える ことができる。  The cores 12 formed by joining the core pieces 14 in this manner are, for example, shrink-fitted into the cylindrical housing 11 after the ends of the coils 20 of the core pieces 14 are connected at one end. Is done. Then, the rotor 16 is disposed inside the core 12, and both ends of the cylindrical housing 11 are closed to complete the motor 10. In the motor 10 having the above configuration, the core 12 built into the motor 10 and the magnetic resistance and the variation of the magnetic resistance are both smaller than those of the conventional core, so that the output torque of the motor 10 is larger than that of the conventional motor. And cogging torque can be suppressed.
(第 2実施形態)  (Second embodiment)
次に、本発明の第 2実施形態を第 5乃至 8図に基づいて説明する。 第 5に示 したモータ 1 0は、 第 1実施形態と同様のブラシレスモータであって、筒形ハ ウジング 1 1の内側に備えたステータ 1 2 カ コア 1 2に電線 4 0を巻回し て複数のコイル 2 0を備えた構造になっている。 なお、 第 5図には、 電線 4 0 を巻回した部分の一部のみが示されている。 コア 1 2は、全体が両端開放の円 筒形をなし、 周方向で複数 (具体的には例えば 1 2個) のコアピース 1 4に縦 割り分割可能になっている。 コアピース 1 4は、磁性粉体と絶縁部材との複合 材料から形成され、第 6図に示すように、 コア 1 2の内側に向けて T字形のテ ィース 1 3を張り出し形成した構造になっている。複合材料は、 第 3図に示す 第 1実施形態のものと同じである。  Next, a second embodiment of the present invention will be described with reference to FIGS. The motor 10 shown in FIG. 5 is a brushless motor similar to that of the first embodiment, and is formed by winding an electric wire 40 around a stator 12 core 12 provided inside a cylindrical housing 11. Of the coil 20. Note that FIG. 5 shows only a part of the portion where the electric wire 40 is wound. The core 12 has a cylindrical shape entirely open at both ends, and can be vertically divided into a plurality (specifically, for example, 12) of core pieces 14 in the circumferential direction. The core piece 14 is formed of a composite material of a magnetic powder and an insulating member. As shown in FIG. 6, the core piece 14 has a structure in which a T-shaped tooth 13 is formed to project toward the inside of the core 12. I have. The composite material is the same as that of the first embodiment shown in FIG.
第 5図に示すように、電線 4 0は、 各コアピース 1 4におけるティース 1 3 のうち T字形の脚部に相当する電線巻回部 2 1 (本発明に係る 「電線の卷回部 分 J に相当する) に卷回されて、 コイル 2 0を構成している。 ここで、 本実施 形態では、第 7図に示すようにコアピース 1 4の軸方向の両端面 1 4 A (即ち、 コア 1 2の両端面 1 2 A) には、電線卷回部 2 1だけを陥没させた凹部 4 1が 形成されている。 そして、電線 4 0は、 同図に示すようにコアピース 1 4の端 面 1 4 Aから突出することなく凹部 4 1内に完全に収容されている。 また、電 線 4 0は、凹部 4 1内でまとめられるから、従来必要とされた電線のバインド 処理工程も不要である。 さらに、電線卷回部 2 1における軸方向の両端面 2 1 Aは、 第 8図に示すように円弧状をなしている。 これにより、電線 4 0を凹部 4 1にスムーズに卷回することができ、 電線 4 0へのストレスが抑えられて、 信頼性が向上する。 As shown in FIG. 5, the electric wire 40 is connected to the teeth 13 of each core piece 14. The coil 20 is wound around a wire winding portion 21 (corresponding to the “winding portion J of the wire” according to the present invention) corresponding to a T-shaped leg portion. However, in the present embodiment, as shown in FIG. 7, only the wire winding portion 21 is depressed on both axial end surfaces 14 A of the core piece 14 (that is, both end surfaces 12 A of the core 12). The recessed portion 41 is formed, and the electric wire 40 is completely accommodated in the recessed portion 41 without protruding from the end surface 14A of the core piece 14 as shown in FIG. In addition, since the electric wire 40 is bundled in the concave portion 41, the wire binding process conventionally required is not necessary, and both end surfaces 2 A of the wire winding portion 21 in the axial direction are not required. It forms an arc shape as shown in Fig. 8. This makes it possible to smoothly wind the electric wire 40 around the concave portion 41 and to store the electric wire 40 on the wire 40. And reliability is improved.
コアピース 1 4群は、 互いに接合されて円筒形のコア 1 2になる。 ここで、 コアピース 1 4の両端面において電線 4 0は凹^  The core pieces 14 are joined together to form a cylindrical core 12. Here, the wire 40 is concave at both end faces of the core piece 14 ^
るので、他の部品とに当接する可能性が下がり、 コアピース 1 4の取り扱いが 容易になる。 従って、 コアピース 1 4の組み付け作業の効率がアップする。 コアピース 1 4群をまとめてコア 1 2にした状態で、コア 1 2の一端部にお いて各コアピース 1 4のコイル 2 0の端末部分が結線処理される。 このとき、 コア 1 2の端面からは電線 4 0が突出していないから、結線処理の際に邪魔に ならず、 結線作業の効率がアップする。 上記結線処理が完了したコア 1 2は、 筒形ハウジング 1 1内に例えば焼嵌される。 Therefore, the possibility of contact with other parts is reduced, and the handling of the core piece 14 is facilitated. Therefore, the efficiency of the assembling work of the core pieces 14 is improved. In a state where the core pieces 14 are grouped together to form the cores 12, the ends of the coils 20 of the respective core pieces 14 are connected at one end of the cores 12. At this time, since the electric wire 40 does not protrude from the end face of the core 12, it does not hinder the connection processing, and the efficiency of the connection work is improved. The core 12 on which the above-described connection processing is completed is, for example, shrink-fitted into the cylindrical housing 11.
次いで、 コア 1 2の内部にロータ 1 6が配される。 ロータ 1 6に備えた永久 磁石 1 6 M (本発明の 「磁力発生部」 に相当する) の長さ L 3は、 第 7図に示 すように、 ティース 1 3の軸方向の長さ L 1より若干短くなつている。 また、 コア 1 2のうち電線卷回部 2 1の長さ L 2は、永久磁石 1 6の長さ L 3よりも 短くなつている。 そして、 同図に示すように、 軸方向と直交する方向 (第 7図 の左右方向) において、永久磁石 1 6 Mの両端面の間に電線卷回部 2 1全体が 対面するようにロータ 1 6を位置決めして、筒形ハウジング 1 1の両端部を閉 塞処理し、 もってモータが完成されている。 Next, the rotor 16 is disposed inside the core 12. The length L 3 of the permanent magnet 16 M (corresponding to the “magnetic force generating portion” of the present invention) provided on the rotor 16 is, as shown in FIG. It is slightly shorter than 1. The length L 2 of the wire winding portion 21 of the core 12 is shorter than the length L 3 of the permanent magnet 16. Then, as shown in the figure, in the direction orthogonal to the axial direction (the left-right direction in FIG. 7), the entire wire winding portion 21 is located between both end surfaces of the permanent magnet 16M. The rotor 16 is positioned so as to face each other, and both ends of the cylindrical housing 11 are closed to complete the motor.
本実施形態のモータ 1 0は以上のようであって、 以下、 その作用効果につい て述べる。 本実施形態のモータ 1 0では、 コア 1 2の軸方向の両端面に形成し た凹部 4 1に電線 4 0が収容され、従来のものに比べてコアの端面における電 線の突出量が抑えられる。 これにより、 モータ 1 0を軸方向でコンパクトにす ることができる。 し力 も、 本実施形態では、 コア 1 2の両端面に凹部 4 1を形 成することで、ティース 1 3の軸方向の長さをロータ 1 6における永久磁石 1 6 Mの長さと同等に保ちつつ、電線卷回部 2 1の長さを、 ロータ 1 6における 永久磁石 1 6 Mの長さよりも短く したので銅損が減少し、効率が向上する。 従 つて、従来のモータと本実施形態のモータ 1 0とで出力トルクを同じにした場 合には、 本実施形態のモータ 1 0の方は、 効率が優れている分、 従来のものに 比べて小型化にすることができる。  The motor 10 of the present embodiment is as described above, and the operation and effect will be described below. In the motor 10 of the present embodiment, the electric wires 40 are accommodated in the concave portions 41 formed on both end surfaces in the axial direction of the core 12, and the amount of protrusion of the electric wires on the end surface of the core is suppressed as compared with the conventional motor. Can be Thereby, the motor 10 can be made compact in the axial direction. In this embodiment, the recesses 41 are formed on both end faces of the core 12 so that the axial length of the teeth 13 is made equal to the length of the permanent magnet 16 M of the rotor 16. While keeping the length of the wire winding portion 21 shorter than the length of the permanent magnet 16 M in the rotor 16, copper loss is reduced and efficiency is improved. Therefore, when the output torque of the conventional motor is the same as that of the motor 10 of the present embodiment, the motor 10 of the present embodiment is superior in efficiency to the conventional motor because of its higher efficiency. Downsizing.
また、 コア 1 2を構成する複合材料は、 磁性粉体と絶縁部材とからなり、 磁 性体でありかつ絶縁体であるので、渦電流損を抑えた磁気回路を構成すること ができる。 そして、従来のコアのように鋼板を積層した構造では軸方向で一部 を陥没させる構造は、 製造困難であつたが、 本実施形態では、 複合材料を型成 形することにより、両端面に凹部 4 1を備えた形状のコア 1 2を容易に製造す ることができる。  Further, since the composite material forming the core 12 is made of a magnetic powder and an insulating member, and is a magnetic material and an insulating material, it is possible to form a magnetic circuit in which eddy current loss is suppressed. In a structure in which steel plates are laminated like a conventional core, it is difficult to manufacture a structure in which a part is depressed in the axial direction.However, in the present embodiment, the composite material is formed by molding on both end surfaces. The core 12 having the shape with the concave portion 41 can be easily manufactured.
本発明は、 前記第 2実施形態に限定されるものではなく、 例えば、 以下に説 明するような変形例も本発明の技術的範囲に含まれ、 さらに、 下記以外にも要 旨を逸脱しない範囲内で種々変更して実施することができる。  The present invention is not limited to the second embodiment. For example, modifications described below are also included in the technical scope of the present invention. Various changes can be made within the range.
( 1 ) 前記第 2実施形態では、 ステータ 1 2 Sにコア 1 2を備えてコイル 2 0を卷回した構造であつたが、 ステータに永久磁石を備える一方、 ロータにコ ァを備え、そのコアに電線を巻回してコイルを設けた構造のモータに本発明を 適用してもよい。 この場合、 ロータを構成するコアの軸方向の両端面のうち電 線の卷回部分を凹状に陥没させればよい。 (1) In the second embodiment, the stator 12 S is provided with the core 12 and the coil 20 is wound, but the stator is provided with the permanent magnet, while the rotor is provided with the core, The present invention may be applied to a motor having a structure in which a coil is provided by winding an electric wire around a core. In this case, the electrical contact between the axial end faces of the core constituting the rotor What is necessary is just to make the winding part of a wire depress in a concave shape.
( 2 ) 前記第 2実施形態では、 ブラシレスモータを例に挙げて本発明を説明 したが、 ステツビングモータや誘導モータに本発明を適用してもよい。  (2) In the second embodiment, the present invention has been described by taking a brushless motor as an example. However, the present invention may be applied to a stepping motor or an induction motor.
( 3 ) 前記第 2実施形態では、 電線卷回部 2 1の軸方向の両端面は、 全体が 円弧状をなしていたが、 電線卷回部の両端面を平坦な形状にしてもよい。  (3) In the second embodiment, both ends in the axial direction of the wire winding part 21 are formed in an arc shape as a whole, but both ends of the wire winding part may be flat.
( 4 ) 前記第 2実施形態では、 コア 1 2の両端面 1 2 Aの電線巻回部 2 1だ けを陥没させた形状になっていたが、コア 1 2の電線卷回部 1 2よりも內周側 と外周側の軸方向の長さが相違していてもよレ、。 つまり、 第 7図において、 内 周側であるティース 1 3の軸方向の長さを同図の通り L 1とし、外周側の長さ を電線卷回部 2 1と同じ長さ L 2にしてもよい。  (4) In the second embodiment, the core 12 has a shape in which only the wire winding portion 21 of both ends 12 A of the core 12 is depressed. Also, the axial lengths of the circumferential side and the outer circumferential side may be different. In other words, in FIG. 7, the axial length of the teeth 13 on the inner peripheral side is set to L1 as shown in the figure, and the outer peripheral length is set to the same length L2 as the wire winding portion 21. Is also good.
( 5 ) 前記第 2実施形態のコア 1 2は、 磁性粉体と絶縁部材との複合材料で 形成されていた力 鋼板を積層してコアを形成してもよい。  (5) The core 12 of the second embodiment may be formed by laminating force steel plates formed of a composite material of a magnetic powder and an insulating member.
( 6 ) 前記第 2実施形態では、 電線 4 0が凹部 4 1に完全に収容されて、 コ ァ 1 2の端面 1 2 Aから突出しない構成であつたが、コアの端面に凹部を形成 することで電線の突出量が抑えられる構成であれば、電線の一部がコアの端面 から突出したものであってもよい。  (6) In the second embodiment, the electric wire 40 is completely housed in the recess 41 and does not protrude from the end face 12A of the core 12, but the recess is formed in the end face of the core. As long as the protrusion amount of the electric wire can be suppressed by this, a part of the electric wire may protrude from the end face of the core.
(第 3実施形態)  (Third embodiment)
第 9図は、本第 3実施形態における回転型のモータの組み立て時におけるコ ァ (1 0 1, 1 0 2 ) の部分的な斜視図である。 図中の符号 a , b, cはそれ ぞれ、 コアに形成されたティースのネック部、 コアに形成されたティースの対 峙面、 及びコアのバックヨーク部である。  FIG. 9 is a partial perspective view of the core (101, 102) when assembling the rotary motor according to the third embodiment. Symbols a, b, and c in the figure denote a neck portion of the teeth formed on the core, a facing surface of the teeth formed on the core, and a back yoke portion of the core, respectively.
このコアは、上部 1 0 1と下部 1 0 2とを組み立てることにより 1つに構成 される。 これらの部品は、 上部 1 0 1と下部 1 0 2共に、 表面を酸化物 (無機 絶縁 fl莫)で絶縁した粉状の純鉄粉と樹脂との複合体より成る圧粉材料で形成さ れている (第 3図参照) 。 また、 各コアに形成されたティースの対峙面 bの上 方に付してある記号 u , V , wは、 3相制御時の対応する各相を表している。 第 1 0図は、 コア (1 0 1) の 1つのティースを略矩形の対峙面 bの方から 見た斜視図 (a) と、 そのティースの B方向視の側面図 (b) と、 そのティー スのネック部 aに巻き付けられるコイルが占める空間を表す斜視図 (c) であ る。 This core is formed by assembling the upper part 101 and the lower part 102 into one. These parts are made of a compacted material consisting of a composite of powdered pure iron powder and resin, the surfaces of which are insulated with oxide (inorganic insulation). (See Figure 3). Symbols u, V, and w attached above the facing surface b of the teeth formed on each core represent the corresponding phases during three-phase control. FIG. 10 is a perspective view (a) of one tooth of the core (101) viewed from the substantially rectangular facing surface b, a side view (b) of the tooth as viewed in the B direction, and FIG. FIG. 3C is a perspective view illustrating a space occupied by a coil wound around a tooth neck a.
このコアでは、 各対峙面 bの縦長方向の長さ 1^ と、 各ネック部 aの断面積 S 3は、 第 20乃至 23図の従来のコアと同じ大きさ (しい S 1) にそれぞ れ設定されている。  In this core, the length 1 ^ in the longitudinal direction of each confronting surface b and the cross-sectional area S3 of each neck portion a are set to the same size (new S1) as the conventional core shown in Figs. Is set.
また第 23図 (a) のバックヨーク部 cの断面積 S2と、 第 1 0図 (a) の バックヨーク部 cの断面積 S4との間には、 以下の関係がある。 Also the cross-sectional area S 2 of the back yoke portion c of FIG. 23 (a), between the cross-sectional area S 4 of the back yoke portion c of the first 0 view (a), the following relationship.
【数 1】  [Equation 1]
S4 =S2/2 … (1) これは、 第 1 0図 (a) のコアは、 上部 10 1と下部 1 0 2の両者を 1つに 合わせて構成されるためであり、 よって、 この両者を組み立てた後のバックョ ーク部 cの断面積は、 従来のコアと同じになる様に設定されている。 S 4 = S 2/2 ... (1) This is the core of the first 0 diagram (a) is to be configured for both the upper 10 1 and the lower 1 0 2 to one, thus, The cross-sectional area of the back part c after assembling the two is set to be the same as that of the conventional core.
第 1 1図は、 本第 3実施形態のコア (1 0 1, 1 02) のティースの各対峙 面 bと、 ネック部 aの断面 断面積 S 3) との位置関係を示す平面展開図で ある。 即ち、 上記の様な第 9, 1 0図に例示される構成に従えば、 電線をネッ ク部 aに巻き付ける際の X方向 (相対的可動方向) の電線の盛り上がり (高さ δ 3) を大きく取ることが可能となる。 このため、 第 1 0図 (b) , (c) の 厚み t2は、従来よりも狭くすることができるので、 コアの厚み t4も、従来よ り薄くでき、 よってモータが効果的に小型化される。 FIG. 11 is an exploded plan view showing the positional relationship between each facing surface b of the teeth of the core (101, 102) of the third embodiment and the cross-sectional area S 3) of the neck portion a. is there. That is, according to the configuration illustrated in FIGS. 9 and 10 as described above, the swelling (height δ 3) of the electric wire in the X direction (relative movable direction) when the electric wire is wound around the network portion a is determined. It is possible to take a large amount. Therefore, the first 0 view (b), the thickness t 2 of (c), since it is possible to narrower than the conventional, the thickness t 4 of the cores, can be thinned Ri by conventional, thus the motor is effectively small Be converted to
また、 以上の構成に従えば、 ネック部 aの断面積を維持したまま、 ネック部 aの断面の周の長さを短くできる。 このため、 電線を短くできる上、 電線の電 気抵抗の値を従来以下に維持したまま、電線を従来よりも細くすることができ る。 これらの作用により、 上記の構成に従えば、 コアの小型化と同時に、 コ ァの軽量化を図ることができる。 (第 4実施形態) Further, according to the above configuration, it is possible to shorten the circumference of the cross section of the neck portion a while maintaining the cross sectional area of the neck portion a. For this reason, the wire can be shortened, and the wire can be made thinner than before, while maintaining the electric resistance value of the wire below the conventional value. By these actions, according to the above configuration, the core can be reduced in size and the weight of the core can be reduced. (Fourth embodiment)
上記の第 3実施形態では、 コアは、 上下 (1 0 1 , 1 0 2 ) に分離されて、 別々に形成されており、バックヨーク部 cは 2本の帯状になっている。し力 し、 バックヨーク部を 3本の帯状 (上段、 中段、 下段) に分離し、 ティースを各相 ( u相, V相, w相) 毎に対応させて一体化し、 それぞれを電線巻き付け後に 組み合わせる様にしても良 、。  In the third embodiment described above, the core is separated into upper and lower (101, 102) and separately formed, and the back yoke portion c is in the shape of two strips. To separate the back yoke into three strips (upper, middle, and lower), integrate the teeth corresponding to each phase (u-phase, V-phase, and w-phase). You can combine them.
第 1 2図は、本第 4実施形態のコ了に形成されたティ一スの略矩形の対峙面 bと、 ネック部 aの断面との位置関係を示す平面展開図である。 第 3実施形態 の千鳥配置では、 ティースのネック部を斜めに 2つ周期的に配置したが、本第 4実施形態では、 1本の斜線 e上に並べるティースのネック部の数は 3つとし て周期的に分散配置する。 また、 第 1 2図では、 ネック部 aの断面形状は、 略 円形に成っているが、 亜楕円等に形成しても良い。  FIG. 12 is an exploded plan view showing the positional relationship between the substantially rectangular facing surface b of the tooth formed at the end of the fourth embodiment and the cross section of the neck portion a. In the staggered arrangement of the third embodiment, two teeth necks are periodically arranged diagonally, but in the fourth embodiment, the number of teeth necks arranged on one oblique line e is three. And periodically disperse them. Further, in FIG. 12, the cross-sectional shape of the neck portion a is substantially circular, but may be formed as a sub-ellipse or the like.
例えばこの様に、 3個のバックヨーク部に夫々形成したティースが相対的可 動方向 (X軸の方向) に 2つ置きになるように 3個のバックヨーク部を組み合 わせて一体化しても、ネック部 aの側方の X軸方向に空間的な余裕を持たせる ことが可能となるので、ネック部 aの断面形状を、略円形やそれに近い形にす ることが、 第 3実施形態と略同様に比較的容易となり、 モータの小型化が効果 的に実施できる。  For example, in this way, the three back yoke parts are combined and integrated so that the teeth formed on the three back yoke parts are placed every two in the relative movement direction (the direction of the X axis). In this case, it is possible to provide a spatial margin in the X-axis direction on the side of the neck portion a, so that the cross-sectional shape of the neck portion a should be substantially circular or a shape similar to the third embodiment. It is relatively easy, almost in the same manner as in the embodiment, and the motor can be effectively reduced in size.
更に、 上記の構成に従えば、 各相 (u , v, w) 毎に組み合わせてコアのバ ックヨーク部を一体化することができるので、電線の配線形態を各相単位に簡 潔にまとめることが容易となる等の利点が得られる。 したがって、 上記の構成 に従えば、 巻線関連の製造効率が更に向上する。  Furthermore, according to the above configuration, the back yoke portion of the core can be integrated by combining each phase (u, v, w), so that the wiring configuration of the electric wires can be simply summarized for each phase. Are obtained. Therefore, according to the above configuration, the winding-related manufacturing efficiency is further improved.
また、第 1 3図に、 上記の第 4実施形態の変形例におけるバックヨーク部に 形成されたティースの略矩形の対峙面 bとネック部 aの断面との位置関係を 示す。 例えばこの様に、 ネック部 aの断面形状は、 平行四辺形や菱形や或いは 玉子形等に近い亜楕円形状に変形しても良い。 例えばこの様な変形により、ネ ック部 aの断面積を増補することも可能である。 FIG. 13 shows the positional relationship between the substantially rectangular facing surface b of the teeth formed on the back yoke portion and the cross section of the neck portion a in a modification of the fourth embodiment. For example, like this, the cross-sectional shape of the neck portion a is a parallelogram, a rhombus, or It may be deformed into a sub-elliptical shape close to an egg shape or the like. For example, it is possible to augment the cross-sectional area of the neck portion a by such a deformation.
(第 5実施形態)  (Fifth embodiment)
第 1 4図は、本第 5実施形態の回転型のモータの組み立て時におけるコアの 斜視図である。 このコアは、第 3実施形態の第 9図のコアのバックヨーク c を、各ティース単位にロータの回転軸方向に沿つて縦割りに形成したものであ る。 例えば、 この様にコアのバックヨーク cを従来技術と同様に縦割りに分割 して構成しても、 第 3実施形態と同等の作用により、第 3実施形態と同様に効 果的に、 モータを小型化することができる。  FIG. 14 is a perspective view of the core when assembling the rotary motor of the fifth embodiment. This core is obtained by forming the back yoke c of the core of FIG. 9 of the third embodiment vertically in units of each tooth along the rotation axis direction of the rotor. For example, even if the back yoke c of the core is vertically divided in the same manner as in the related art, the same operation as in the third embodiment can be effectively performed as in the third embodiment. Can be reduced in size.
(第 6実施形態)  (Sixth embodiment)
第 1 5 , 1 6図は、本第 6実施形態の回転型のモータの組み立て時における コアの部分的な斜視図である。 この実施形態は、 第 1 5 , 1 6図のコアの一部 を構成するティースの対峙面 b力 対峙対象 (ロータ) との相対的可動方向に 対して複数 ( 1 2個) 直列に配置されたモータにおいて、 その相対的可動方向 に連なったバックヨーク cが上下 2段備えられている。  FIGS. 15 and 16 are partial perspective views of the core when assembling the rotary motor of the sixth embodiment. In this embodiment, a plurality of (12) teeth are arranged in series in the direction of relative movement with respect to the opposing surface b of the teeth constituting a part of the core shown in FIGS. In this motor, a back yoke c connected in the relative movable direction is provided in two upper and lower stages.
第 1 5図には、対峙面 bを有するティースが計 5個しか記載されていなレ、が、 この実施例では合計 1 2個のティースを上記の相対的可動方向において 1つ 置きに選択し、ネック部 aを介して何れか 1段のバックヨーク cに一体的に固 定している。 また、 第 1 5 , 1 6図に示す様に、 2段のバックヨーク cを組み 合わせ、全ての対峙面 bを過不足無く互いに嚙み合わせることにより、電機子 の磁束路を形成している。 また、 このコアでは、 ネック部 a力 S、 ロータの回 転軸方向において、 ティースの対峙面 bと略同様に長く確保されている。  Although FIG. 15 shows only five teeth having the facing surface b in total, in this embodiment, a total of 12 teeth are selected every other in the above-mentioned relative movable direction. And is integrally fixed to one of the back yokes c via the neck portion a. Also, as shown in Figs. 15 and 16, a two-stage back yoke c is combined, and all facing surfaces b are combined with each other without excess or shortage to form a magnetic flux path of the armature. . Also, in this core, the neck portion a, the force S, and the teeth facing surface b, which are long in the rotation axis direction of the rotor, are substantially the same.
この様な構成に従えば、嵌合又はネジ固定等による接合や或いは铸造等によ る型取り等の実施により、対峙面 bを有する各ティースを上段か下段の何れか 一方のバックヨーク cと各々一体に形成する際に、ネック部 aを 1個置きに配 置できる。 したがって、 第 1 5図に示す様に組み立て前には、 各ティース間に ティース 1個分の隙間がそれぞれ確保できる。 したがって、 この様な構成に従 えば、例えばノズル式の卷線機等の簡単な装置を用いて、 電線を効率よく簡単 にティースのネック部 aに巻き付けることができる。 更に、 また、 上記の構成 に従えば、各ティースを略リング形状の上下何れか一方のバックヨーク cに一 体化でき、 これにより、各ティースを所望の位置に正確かつ確実に固定できる ため、多数のティースを有するコアの外形 (ロータと直に接近して対峙する円 筒形の形)を真円度の高い所望の円筒形に精度よく製造することが可能又は容 易となる。 According to such a configuration, each of the teeth having the facing surface b is connected to either the upper or lower back yoke c by joining by fitting or screw fixing, etc., or by forming by molding or the like. When they are integrally formed, every other neck portion a can be arranged. Therefore, before assembly, as shown in Fig. 15, A gap for each tooth can be secured. Therefore, according to such a configuration, the electric wire can be efficiently and easily wound around the neck portion a of the tooth using a simple device such as a nozzle-type winding machine. Further, according to the above configuration, each tooth can be integrated with one of the upper and lower back yokes c having a substantially ring shape, and thereby each tooth can be accurately and reliably fixed at a desired position. The outer shape of a core having a large number of teeth (a cylindrical shape directly approaching and facing the rotor) can be accurately or easily manufactured into a desired cylindrical shape with high roundness.
(第 7実施形態)  (Seventh embodiment)
以下、本発明の第 7実施形態を第 1 7乃至 1 9図に基づいて説明する。本実 施形態は、例えば、第 1実施形態と同様のブラシレスモータに備えたステータ のコア 3 0に本発明を適用したものである。 第 1 7図に示すように、 ステータ のコア 3 0は、円筒部 3 1の内周面から複数のティース 3 2を内側に突出させ てなる。 そして、 各ティース 3 2に電線 4 0 (第 1 9図参照) が巻回されると 共に、 ティース 3 2より内側の空間に、 ロータ 1 6が遊嵌され、 コイルから磁 力を受けてロータ 1 6が回転する。  Hereinafter, a seventh embodiment of the present invention will be described with reference to FIGS. In the present embodiment, for example, the present invention is applied to a stator core 30 provided in a brushless motor similar to the first embodiment. As shown in FIG. 17, the stator core 30 includes a plurality of teeth 32 protruding inward from the inner peripheral surface of the cylindrical portion 31. Then, the electric wire 40 (see FIG. 19) is wound around each tooth 32, and the rotor 16 is loosely fitted in the space inside the tooth 32, and the rotor 16 receives magnetic force from the coil. 1 6 rotates.
このコア 3 0の両端面には、ティース 3 2の内縁側に位置した部分からコア 突部 3 4が軸方向に突出形成されている。 第 1 9図に示すように、 このコア突 部 3 4のうちロータ 1 6と反対側の外面は、 軸方向に沿って凹状に湾曲し、 な だらかに低くなつている。 また、 コア突部 3 4のうちロータ 1 6側を向いた内 面は、 ティース 3 2の本体部分と面一になつている。  On both end surfaces of the core 30, core protrusions 34 are formed to protrude in the axial direction from portions located on the inner edge side of the teeth 32. As shown in FIG. 19, the outer surface of the core projection 34 opposite to the rotor 16 is concavely curved along the axial direction and is gently lowered. The inner surface of the core projection 34 facing the rotor 16 is flush with the main body of the teeth 32.
さて、 本実施形態のコア 3 0は、 第 1 7図に示すように、 輪切り状に 3分割 した 3つの部品よりなる。 詳細には、 コア 3 0の軸方向の両端寄り位置を接合 面 3 0 Sとして、 それら接合面 3 0 S , 3 0 Sより端部側が 1対の粉体製のコ ァ構成体 3 5 , 3 5で構成され、 それら粉体製のコア構成体 3 5 , 3 5の間に 鋼板製のコア構成体 3 6が挟まれている。鋼板製のコア構成体 3 6は、軸方向 に複数同形状の珪素鋼板 3 7 (第 1 8図参照) を積層してなる。 従って、 鋼板 製のコア構成体 3 6は、積層する珪素鋼板 3 7の数を変更することで、長さを 容易に変更することができる。 一方、 粉体製のコア構成体 3 5は、 磁性粉体 と絶縁部材との複合材料 (第 3図参照) 力、ら形成されている。 Now, as shown in FIG. 17, the core 30 of the present embodiment is composed of three parts which are divided into three in a ring shape. In detail, the positions of the core 30 near the both ends in the axial direction are defined as bonding surfaces 30S, and a pair of powder core members 35, on the end side of the bonding surfaces 30S, 30S, The core component 36 made of a steel plate is sandwiched between the core components 35 and 35 made of powder. The core structure 36 made of steel plate A plurality of silicon steel sheets 37 of the same shape (see Fig. 18) are laminated on each other. Therefore, the length of the steel plate core component 36 can be easily changed by changing the number of silicon steel plates 37 to be laminated. On the other hand, the powder core structure 35 is formed of a composite material (see FIG. 3) of magnetic powder and an insulating member.
そして、鋼板製のコア構成体 3 6の両端面に粉体製のコア構成体 3 5 , 3 5 を接合すると共に、各コア構成体 3 5 , 3 6に備えたティース 3 2同士を整合 させた状態にして含浸剤に浸され、その含浸剤の接着作用にて一体化されてス テータコア 3 0になる。 そして、完成したステータコア 3 0の各ティース 3 2 に前述の如く電線 4 0が卷回されることで、各コア構成体 3 5 , 3 6がー体的 に固定される。  Then, powder core components 35, 35 are joined to both end surfaces of the steel core component 36, and the teeth 32 provided on each of the core components 35, 36 are aligned with each other. The impregnated material is immersed in the impregnated state, and is integrated by the adhesive action of the impregnated material to form the stator core 30. Then, the electric wires 40 are wound around the respective teeth 32 of the completed stator core 30 as described above, whereby the respective core components 35, 36 are physically fixed.
さて、 本実施形態では、 コア 3 0の端部においては、 電線 4 0はコア突部 3 4より外側部分 (ロータと反対側部分) に配置される。 即ち、 第 1 9図に示す ようにコア 3 0の端面のうちコァ突部 3 4より低い位置に電線 4 0が収容さ れる。 これにより、 電線 4 0と他の部品との当接が規制され、 電線 4 0が保護 される。 また、 電線 4 0は、 コア突部 3 4に押し当てられて纏められるから、 従来必要とされた電線 4 0のバインド処理工程も不要となる。  Now, in the present embodiment, at the end of the core 30, the electric wire 40 is arranged at a portion outside the core protrusion 34 (a portion opposite to the rotor). That is, as shown in FIG. 19, the electric wire 40 is accommodated at a position lower than the core protrusion 34 on the end face of the core 30. Thereby, the contact between the electric wire 40 and other parts is regulated, and the electric wire 40 is protected. Further, since the electric wires 40 are pressed against the core protrusions 34 to be collected, the binding process of the electric wires 40 which is conventionally required is not required.
なお、粉体製のコア構成体 3 5のうち電線卷部分を電線 4 0の巻回方向に沿 わせて円弧状に形成すれば、電線 4 0へのストレスが抑えられて、信頼性が向 上する。  In addition, if the wire winding portion of the core member 35 made of powder is formed in an arc shape along the winding direction of the wire 40, stress on the wire 40 is suppressed, and reliability is improved. Up.
電線 4 0の卷回処理を終えたコア 3 0は、ステータとして図示しない筒形ハ ウジング内に例えば焼嵌され、 次いで、 ステータの内部にロータ 1 6が配され る。 ここで、 ロータ 1 6に備えた永久磁石 1 6 M (本発明の 「磁力発生部」 に 相当する) の長さ L 3は、 図 3に示すように、 ティース 3 2の軸方向の長さ L 1より若干短くなつている。 また、 ステータコア 3 0のうち電線卷回部分の長 さ L 2は、 永久磁石 1 6 Mの長さ L 3よりも短くなっている。 そして、 同図に 示すように、 軸方向と直交する方向 (第 1 9図の左右方向) において、 永久磁 石 1 6 Mの両端面の間に電線巻回部の全体が対面するようにロータ 1 6を位 置決めして、筒形ハウジングの両端部を閉塞処理し、 もってモータが完成され ている。 The core 30 after the winding process of the electric wire 40 is completed is, for example, shrink-fitted in a cylindrical housing (not shown) as a stator, and then a rotor 16 is arranged inside the stator. Here, the length L 3 of the permanent magnet 16 M (corresponding to the “magnetic force generating portion” of the present invention) provided in the rotor 16 is, as shown in FIG. It is slightly shorter than L1. In addition, the length L2 of the wire winding portion of the stator core 30 is shorter than the length L3 of the permanent magnet 16M. Then, as shown in the same figure, in the direction orthogonal to the axial direction (the left-right direction in FIG. 19), the permanent magnet The rotor 16 is positioned so that the entire wire winding portion faces between both end surfaces of the stone 16M, and both ends of the cylindrical housing are closed, thereby completing the motor.
本実施形態のコア 3 0〖こよれば、コア 3 0のうち軸方向の両端部が 1対の粉 体製のコア構成体 3 5 , 3 5で構成されたから、 ステータコア 3 0の両端部の 形状の自由度が高まる。 これにより、 ステータコア 3 0の両端部に、 コア突部 3 4を形成することが可能になる。 また、 それら 1対の粉体製のコア構成体 3 5 , 3 5の間に、 鋼板を積層してなる鋼板製のコア構成体 3 6を設けたから、 全体を複合材料で構成した場合に比べて安価に製造することができる。 また、 軸方向長さの異なる複数種のコアを得ようとする場合、鋼板製のコァ構成体 3 6の積層する珪素鋼板 3 7の数を変更するだけでよく、一対の粉体製のコア構 成体 3 5, 3 5を共通部品化できる。  According to the core 30 of the present embodiment, since both ends in the axial direction of the core 30 are constituted by a pair of core members 35 and 35 made of powder, both ends of the stator core 30 are formed. The degree of freedom in shape increases. Thereby, it is possible to form the core protrusions 34 at both ends of the stator core 30. In addition, since the steel core component 36 made of laminated steel plates is provided between the pair of powder core components 35, 35, compared to the case where the whole is made of a composite material, And can be manufactured at low cost. In order to obtain a plurality of types of cores having different axial lengths, it is only necessary to change the number of silicon steel plates 37 to be laminated on the core members 36 made of steel plates. Components 35 and 35 can be made common components.
さらに、 コア 3 0の両端面にコア突部 3 4を形成することで、ティース 3 2 のうちロータ 1 6側の長さ (第 1 9図の L 1 ) をロータ 1 6における永久磁石 1 6 Mの長さ (第 1 9図の L 3 ) と同等に保ちつつ、 電線卷回部の長さ (第 1 9図の L 2 ) を、 ロータ 1 6における永久磁石 1 6 Mの長さよりも短くするこ とができる。 これにより、 銅損が減少し、 効率が向上する。 従って、 従来のコ ァを備えたモータと本実施形態のコア 3 0を備えたモータとで出力トルクを 同じにした場合には、本実施形態のコア 3 0を備えたモータの方が、効率が優 れている分、 従来のものに比べて小型化することができる。  Further, by forming the core projections 34 on both end surfaces of the core 30, the length of the teeth 32 (L 1 in FIG. 19) on the rotor 16 side is reduced by the permanent magnets 16 on the rotor 16. Keeping the length of the wire winding (L 2 in FIG. 19) equal to the length of the permanent magnet 16 M Can be shortened. This reduces copper losses and improves efficiency. Therefore, when the output torque of the motor having the conventional core and the motor having the core 30 of the present embodiment are the same, the motor having the core 30 of the present embodiment has a higher efficiency. As a result, the size can be reduced compared to the conventional one.
尚、 上記実施形態では、 3相モータに付いて例示したが、 本発明は、 特段モ —タの形式や制御方式に依存することなく、ステツビングモータや誘導モータ などの任意のモータに適用することができる。  In the above embodiment, a three-phase motor has been described as an example. However, the present invention is applicable to any motor such as a stepping motor or an induction motor without depending on the type and control method of a special motor. be able to.
上記の各実施形態におけるコアの形状、 配置、 構成、 材料等の特徴は、 電動 機のロータにも適用することができる。 また、 特に、 ロータに適用した場合に は、電線の軽量化等の効果により、 ロータのイナ一シャの軽減を図ることがで きる。 また、 上記の各実施形態におけるコアの形状、 配置、 構成、 材料等の特 徴は、 発電機にも、 適用することができる。 また、 これ以外にも、 本発明は要 旨を逸脱しない範囲内で種々変更して実施することができる。 産業上の利用可能性 The features such as the shape, arrangement, configuration, and material of the core in each of the above embodiments can be applied to the rotor of the electric motor. In particular, when applied to a rotor, it is possible to reduce the inertia of the rotor by reducing the weight of the electric wires. Wear. In addition, the features such as the shape, arrangement, configuration, and material of the core in each of the above embodiments can be applied to a generator. In addition, the present invention can be variously modified and implemented without departing from the gist. Industrial applicability
本発明に係る回転電機は、 運転者によるステアリングホイールの回転 をラックピニオン機構によってラック軸の軸動に変換し、 該ラック軸の 軸動を電気モータにより操舵力を増幅して補助し、 タイロッ ド及びナツ クルアームを介して操向車輪を偏向する自動車用の電気式動力操舵装置 における電気モータとして使用するのに適している。  A rotating electric machine according to the present invention converts a rotation of a steering wheel by a driver into an axial movement of a rack shaft by a rack and pinion mechanism, and amplifies the axial movement of the rack shaft by an electric motor to assist the steering force. Also, it is suitable for use as an electric motor in an electric power steering device for automobiles that deflects steered wheels via a knuckle arm.

Claims

請 求 の 範 囲 The scope of the claims
1 . ステータまたはロータを構成するコアに形成された複数のティース に電線を卷回して複数のコイルを備えた回転電機において、 1. In a rotating electric machine having a plurality of coils formed by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor,
前記コアが複数のコアピースに分割されており、 前記コアの少なく とも 一部が、 磁性粉体と絶縁部材との複合材料で形成されたことを特徴とす る回転電機。 A rotating electric machine, wherein the core is divided into a plurality of core pieces, and at least a part of the core is formed of a composite material of a magnetic powder and an insulating member.
2 . 上述の第 1の発明に係る回転電機において、  2. In the rotating electric machine according to the first aspect,
前記磁性粉体は、 鉄粉であることを特徴とする回転電機。 The rotating electric machine, wherein the magnetic powder is iron powder.
3 . 上述の第 1の発明に係る回転電機において、  3. In the rotating electric machine according to the first aspect,
前記磁性粉体は、 無機酸化物で表面を絶縁処理されたことを特徴とする 回転電機。 A rotating electric machine, wherein the surface of the magnetic powder is insulated with an inorganic oxide.
4 . 上述の第 2の発明に係る回転電機において、  4. In the rotating electric machine according to the second aspect,
前記鉄粉の大きさは、 2 0〜 1 0 0 / m であることを特徴とする回転電 機。 The rotating electric machine, wherein the size of the iron powder is 20 to 100 / m.
5 . 上述の第 1乃至第 4の発明のいずれ一つの発明に係る回転電機にお いて、  5. In the rotary electric machine according to any one of the first to fourth inventions,
前記絶縁部材は、 合成樹脂であることを特徴とする回転電機。 The rotating electric machine, wherein the insulating member is a synthetic resin.
6 . 上述の第 1の発明に係る回転電機において、  6. In the rotating electric machine according to the first aspect,
前記コアの軸方向の両端面のうち前記電線の卷回部分を凹状に陥没させたこ とを特徴とする回転電機。 A rotating electric machine characterized in that a winding portion of the electric wire is concavely depressed in both axial end surfaces of the core.
7 . 上述の第 6の発明に係る回転電機において、  7. In the rotating electric machine according to the sixth aspect,
前記コアがステータを構成するものであって、 このコアに形成されたテ ィ一スが、 ロータに備えた磁力発生部より軸方向で長く されており、 前記コアの軸方向の両端面のうち前記電線の卷回部分を凹状に陥没させるこ とで、 その卷回部分の長さを、前記磁力発生部の長さより短くしたことを特徴 とする回転電機。 The core constitutes a stator, and a surface formed on the core is longer in an axial direction than a magnetic force generating portion provided on the rotor. A rotating electric machine characterized in that a wound portion of the electric wire is concavely depressed in both axial end surfaces of the core so that the length of the wound portion is shorter than the length of the magnetic force generating portion. .
8 . 上述の第 6または第 7の発明に係る回転電機において、  8. In the rotating electric machine according to the sixth or seventh invention,
前記電線の巻回部分における軸方向の両端面は、円形に近い角が取れた略矩形、 略円形、 略正多角形、 または略楕円形であることを特徴とする回転電機。 A rotating electric machine, wherein both end faces in the axial direction of the winding part of the electric wire are substantially rectangular, substantially circular, substantially regular polygonal, or substantially elliptical, with an angle close to a circle.
9 . 上述の第 1の発明に係る回転電機において、  9. In the rotating electric machine according to the first aspect,
ステータ又はロータの一方を構成するコアに形成されたティースが、 ス テータ又はロータの他方に対峙する対峙面を有し、 Teeth formed on a core constituting one of the stator and the rotor have a facing surface facing the other of the stator and the rotor,
電線が巻回される前記ティースのネック部が、 前記対峙面の軸方向において、 前記対峙面の長さの半分よりも短く、 かつ、分散配置されていることを特徴と する回転電機。 A rotating electric machine characterized in that neck portions of the teeth around which electric wires are wound are shorter than half the length of the facing surface in the axial direction of the facing surface, and are distributed.
1 0 . 上述の第 9の発明に係る回転電機において、  10. In the rotating electric machine according to the ninth aspect,
前記コアが、 ステータとロータとの相対的可動方向に連なったバックョ 一ク部を複数段有し、 The core has a plurality of backing portions connected in a relative movable direction of the stator and the rotor,
複数の前記対峙面は、 周期的に選択されて、 前記ネック部を介して、 前 記バックヨーク部の何れか 1段に一体的に固定されており、 The plurality of facing surfaces are selected periodically, and are integrally fixed to any one of the back yoke portions via the neck portion,
全ての前記対峙面が過不足無く互いに嚙み合う様に、複数段の前記バックョ一 ク部を組み合わせることにより、電機子の磁束路が形成されていることを特徴 とする回転電機。 A rotating electric machine characterized in that a magnetic flux path of an armature is formed by combining a plurality of stages of the back-up portions so that all of the opposing surfaces engage with each other without excess and deficiency.
1 1 . 上述の第 9または第 1 0の発明に係る回転電機において、  11. In the rotating electric machine according to the ninth or tenth aspect,
前記ネック部は、 ステータとロータとの相対的可動方向に対して、斜めに複数 並べて周期的に分散配置されていることを特徴とする回転電機。 A rotating electric machine, wherein a plurality of the neck portions are periodically arranged in a diagonal manner with respect to a relative movable direction of a stator and a rotor.
1 2 . 上述の第 9または第 1 0の発明に係る回転電機において、  12. In the rotating electric machine according to the ninth or tenth aspect,
前記ネック部は、ステータとロータとの相対的可動方向を前後方向と見た時に、 左右交互に分散配置 (千鳥配置) されていることを特徴とする回転電機。 The rotating electric machine, wherein the neck portions are alternately arranged left and right (staggered arrangement) when the relative movable direction of the stator and the rotor is viewed as the front-back direction.
1 3 . 上述の第 1の発明に係る回転電機において、 1 3. In the rotating electric machine according to the first invention,
前記コアを、磁性粉体と絶縁部材との複合材料で形成された粉体製のコァ構成 体と、鋼板を積層してなる鋼板製のコァ構成体とを接合して構成したことを特 徴とする回転電機。 The core is formed by joining a powder core member formed of a composite material of a magnetic powder and an insulating member to a steel core member formed by stacking steel plates. And a rotating electric machine.
1 4 . 上述の第 1 3の発明に係る回転電機において、  14. In the rotating electric machine according to the above thirteenth invention,
前記粉体製のコア構成体に対して設け、前記鋼板製のコア構成体のうち鋼板の 積層方向の両端部に、前記粉体製のコア構成体をそれぞれ接合したことを特徴 とする回転電機。 A rotating electric machine provided for the powder core structure, wherein the powder core structure is joined to both ends of the steel plate core structure in the stacking direction of the steel plates, respectively. .
1 5 . ステータまたはロータを構成するコアに形成された複数のティー スに電線を卷回して複数のコイルを備えた回転電機において、  15. In a rotating electrical machine having a plurality of coils formed by winding electric wires around a plurality of teeth formed on a core constituting a stator or a rotor,
前記コアの軸方向の両端面のうち前記電線の卷回部分を凹状に陥没させたこ とを特徴とする回転電機。 A rotating electric machine characterized in that a winding portion of the electric wire is concavely depressed in both axial end surfaces of the core.
1 6 . 上述の第 1 5の発明に係る回転電機において、  16. In the rotary electric machine according to the fifteenth invention,
前記コアがステータを構成するものであって、 このコアに形成されたテ ィースが、 ロータに備えた磁力発生部より軸方向で長くされており、 前記コアの軸方向の両端面のうち前記電線の卷回部分を凹状に陥没させるこ とで、その卷回部分の長さを、前記磁力発生部の長さより短くしたことを特徴 とする回転電機。 The core constitutes a stator, and a surface formed on the core is longer in an axial direction than a magnetic force generating portion provided on the rotor, and the electric wire is formed on both axial end surfaces of the core. A rotating electric machine, characterized in that the winding portion is depressed in a concave shape so that the length of the winding portion is shorter than the length of the magnetic force generating portion.
1 7 . 上述の第 1 5または第 1 6の発明に係る回転電機において、  17. In the rotating electric machine according to the fifteenth or sixteenth invention,
前記電線の卷回部分における軸方向の両端面は、円形に近い角が取れた略矩形、 略円形、 略正多角形、 または略楕円形であることを特徴とする回転電機。 A rotating electric machine, wherein both end faces in the axial direction of the winding part of the electric wire are substantially rectangular, substantially circular, substantially regular polygonal, or substantially elliptical, with an angle close to a circle.
1 8 . ステータまたはロータを構成するコアに形成された複数のティー スに電線を巻回して複数のコイルを備えた回転電機において、  1 8. In a rotating electric machine provided with a plurality of coils by winding an electric wire around a plurality of teeth formed on a core constituting a stator or a rotor,
ステータ又はロータの一方を構成するコアに形成されたティースが、 ス テータ又はロータの他方に対峙する対峙面を有し、 電線が巻回される前記ティースのネック部が、 前記対峙面の軸方向において、 前記対峙面の長さの半分よりも短く、 かつ、 分散配置されていることを特徴と する回転電機。 Teeth formed on a core constituting one of the stator and the rotor have a facing surface facing the other of the stator and the rotor, A rotating electric machine, wherein a neck portion of the tooth around which an electric wire is wound is shorter than half the length of the facing surface in the axial direction of the facing surface, and is distributed.
1 9 . 上述の第 1 8の発明に係る回転電機において、  19. In the rotating electric machine according to the eighteenth aspect,
前記コアが、 ステータとロータとの相対的可動方向に連なったバックョ 一ク部を複数段有し、 The core has a plurality of backing portions connected in a relative movable direction of the stator and the rotor,
複数の前記対峙面は、 周期的に選択されて、 前記ネック部を介して、 前 記バックヨーク部の何れか 1段に一体的に固定されており、 The plurality of facing surfaces are selected periodically, and are integrally fixed to any one of the back yoke portions via the neck portion,
全ての前記対峙面が過不足無く互いに嚙み合う様に、複数段の前記バックョー ク部を組み合わせることにより、電機子の磁束路が形成されていることを特徴 とする回転電機。 A rotating electric machine, wherein a magnetic flux path of an armature is formed by combining a plurality of stages of the backhoe portions so that all the facing surfaces engage with each other without excess or shortage.
2 0 . 上述の第 1 8または第 1 9の発明に係る回転電機において、  20. In the rotating electric machine according to the eighteenth or nineteenth invention,
前記ネック部は、 ステータとロータとの相対的可動方向に対して、斜めに複数 並べて周期的に分散配置されていることを特徴とする回転電機。 A rotating electric machine, wherein a plurality of the neck portions are periodically arranged in a diagonal manner with respect to a relative movable direction of a stator and a rotor.
2 1 . 上述の第 1 8または第 1 9の発明に係る回転電機において、  21. In the rotating electric machine according to the eighteenth or nineteenth invention,
前記ネック部は、ステータとロータとの相対的可動方向を前後方向と見た時に、 左右交互に分散配置 (千鳥配置) されていることを特徴とする回転電機。 The rotating electric machine, wherein the neck portions are alternately arranged in a left-right distribution (staggered arrangement) when the relative movable direction of the stator and the rotor is viewed as the front-back direction.
PCT/JP2003/008260 2002-07-01 2003-06-30 Dynamo-electric machine WO2004004092A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002192091A JP2004040871A (en) 2002-07-01 2002-07-01 Stator core and motor
JP2002-192091 2002-07-01
JP2002197079A JP2004040948A (en) 2002-07-05 2002-07-05 Motor
JP2002-197079 2002-07-05
JP2002-209103 2002-07-18
JP2002209103A JP2004056884A (en) 2002-07-18 2002-07-18 Activity converter
JP2002-311278 2002-10-25
JP2002311278 2002-10-25

Publications (1)

Publication Number Publication Date
WO2004004092A1 true WO2004004092A1 (en) 2004-01-08

Family

ID=30003908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008260 WO2004004092A1 (en) 2002-07-01 2003-06-30 Dynamo-electric machine

Country Status (1)

Country Link
WO (1) WO2004004092A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046782A1 (en) * 2004-10-29 2006-05-04 Toyota Jidosha Kabushiki Kaisha Motor generator and automobile carrying the same
JP2006254689A (en) * 2005-03-08 2006-09-21 Lg Electronics Inc Stator of motor
US7504753B2 (en) 2005-03-08 2009-03-17 Lg Electronics Inc. Motor
EP1801952A3 (en) * 2005-12-26 2011-02-23 Hitachi, Ltd. Electrical rotating machine
WO2012080586A1 (en) 2010-12-17 2012-06-21 Verteole Stator for an electric generator
CN103795194A (en) * 2012-10-26 2014-05-14 三菱电机株式会社 Method of manufacturing stator of electric rotating machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827085B1 (en) * 1969-12-18 1973-08-18
JPS63187545U (en) * 1987-05-21 1988-12-01
JPH10290557A (en) * 1997-04-14 1998-10-27 Seiko Instr Inc Oscillatory motor
WO1999050949A1 (en) * 1998-03-30 1999-10-07 Höganäs Ab Electrical machine element
JP2000262035A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Linear motor and its manufacture
JP2001157390A (en) * 1999-11-22 2001-06-08 Shinko Electric Co Ltd High heat resistant rotary electric machine
JP2002233085A (en) * 2001-02-02 2002-08-16 Oriental Motor Co Ltd Stator for motor and its assembling method
JP2002369418A (en) * 2001-06-04 2002-12-20 Nissan Motor Co Ltd Stator structure of electric motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827085B1 (en) * 1969-12-18 1973-08-18
JPS63187545U (en) * 1987-05-21 1988-12-01
JPH10290557A (en) * 1997-04-14 1998-10-27 Seiko Instr Inc Oscillatory motor
WO1999050949A1 (en) * 1998-03-30 1999-10-07 Höganäs Ab Electrical machine element
JP2000262035A (en) * 1999-03-11 2000-09-22 Mitsubishi Electric Corp Linear motor and its manufacture
JP2001157390A (en) * 1999-11-22 2001-06-08 Shinko Electric Co Ltd High heat resistant rotary electric machine
JP2002233085A (en) * 2001-02-02 2002-08-16 Oriental Motor Co Ltd Stator for motor and its assembling method
JP2002369418A (en) * 2001-06-04 2002-12-20 Nissan Motor Co Ltd Stator structure of electric motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046782A1 (en) * 2004-10-29 2006-05-04 Toyota Jidosha Kabushiki Kaisha Motor generator and automobile carrying the same
US7737600B2 (en) 2004-10-29 2010-06-15 Toyota Jidosha Kabushiki Kaisha Motor generator and automobile carrying the same
JP2006254689A (en) * 2005-03-08 2006-09-21 Lg Electronics Inc Stator of motor
US7504753B2 (en) 2005-03-08 2009-03-17 Lg Electronics Inc. Motor
EP1801952A3 (en) * 2005-12-26 2011-02-23 Hitachi, Ltd. Electrical rotating machine
WO2012080586A1 (en) 2010-12-17 2012-06-21 Verteole Stator for an electric generator
CN103795194A (en) * 2012-10-26 2014-05-14 三菱电机株式会社 Method of manufacturing stator of electric rotating machine

Similar Documents

Publication Publication Date Title
US8598762B2 (en) Permanent magnet rotating electric machine and electric power steering device using the same
JP5512142B2 (en) Stator for electric motor
JP2010246171A (en) Axial gap type dynamo-electric machine
JP2007312560A (en) Insulator and rotary electric machine
AU2011303910A1 (en) Rotor for modulated pole machine
JP3137510B2 (en) Stator for synchronous machine, method of manufacturing the same, teeth piece and yoke piece
US11621621B2 (en) Magnets, pole shoes, and slot openings of axial flux motor
JP2007267463A (en) Rotating electric machine and manufacturing method for rotary electric machine
JPH11332140A (en) Armature structure for radial rib winding type rotating electric machine
JP6002020B2 (en) Rotating electric machine
JP2015012679A (en) Axial gap type rotary electric machine
JP2004304958A (en) Permanent-magnetic motor
JP2004215442A (en) Permanent magnet embedded synchronous motor
JP2004201483A (en) Core, armature core, and motor
WO2007123057A1 (en) Motor
JP2009050116A (en) Capacitor motor, and manufacturing method thereof
WO2004004092A1 (en) Dynamo-electric machine
JP2004040871A (en) Stator core and motor
CN110574257B (en) Stator for electric motor and electric motor
JP5041415B2 (en) Axial gap type motor
WO2018180345A1 (en) Electric motor stator and electric motor
JP2020184832A (en) Coil, stator member, stator, and motor
JP2002199630A (en) Brushless motor
JP2005124378A (en) Induction motor having annular stator coil
JP2008072854A (en) Multi-phase claw pole-type motor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase