WO2003100086A1 - Living cell counting method and device - Google Patents

Living cell counting method and device Download PDF

Info

Publication number
WO2003100086A1
WO2003100086A1 PCT/JP2003/006325 JP0306325W WO03100086A1 WO 2003100086 A1 WO2003100086 A1 WO 2003100086A1 JP 0306325 W JP0306325 W JP 0306325W WO 03100086 A1 WO03100086 A1 WO 03100086A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
living cells
sample
counting
cells
Prior art date
Application number
PCT/JP2003/006325
Other languages
French (fr)
Japanese (ja)
Inventor
Naohiro Noda
Mutsuhisa Hiraoka
Kazuhito Takahashi
Masao Nasu
Nobuyasu Yamaguchi
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to JP2004507526A priority Critical patent/JPWO2003100086A1/en
Priority to AU2003242354A priority patent/AU2003242354A1/en
Publication of WO2003100086A1 publication Critical patent/WO2003100086A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • G01N2015/144Imaging characterised by its optical setup
    • G01N2015/1443Auxiliary imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Definitions

  • the present invention provides a method for fluorescently labeling (staining with a fluorescent reagent) living cells such as microorganisms and tissue cells and generating fluorescence by exciting the reagent, or the fluorescent property of living cells such as microorganisms and tissue cells.
  • the present invention relates to a method and an apparatus for counting living cells, which generate fluorescence by exciting molecules and count the number of living cells using the fluorescence image.
  • the detection of living cells such as microorganisms and tissue cells such as animals and plants in a sample is an extremely important industrial technique for, for example, confirming the sterilization state and detecting abnormalities in the survival state of the cells.
  • the description will mainly focus on bacteria.
  • a gene using a diamidino-phenylindole (DAPI) -acridine orange (AO) that binds to DNA is used.
  • DAPI diamidino-phenylindole
  • AO acridine orange
  • Methods of detecting bacteria by labeling, fluorescein diacetate (FDA), carboxy fluorescein diacetate (CFDA), which is metabolized in bacteria and becomes fluorescent, 5-cyano-2,3-dito Lil Tetrazori A measurement method has been proposed for detecting bacteria maintaining physiological activity using, for example, microclide (CTC).
  • the FDA and CFDA are hydrolyzed by the action of an enzyme (esterase) in living cells such as bacteria, and become fluorescent.
  • CTC becomes fluorescent when reduced with the respiration of living cells.
  • Each of the above reagents comes into contact with living cells in a sample to be measured as a solution, reacts by being taken into the living cells, and becomes a state of emitting fluorescence. The fluorescence detects living cells such as bacteria. .
  • the method of detecting bacteria by fluorescence has a problem that if fluorescent contaminants coexist in a sample, they are mistaken for bacteria to be detected, resulting in counting errors.
  • Patent Document 1 described later discloses the following method as a method for detecting bacteria invented to solve this problem. That is, “(a) the medium is stained with a fluorescent enzyme substrate, and the fluorescence image is recorded. (B) The stained medium is irradiated with light to cause photobleaching, and then the fluorescence image is recorded. A) a live cell detection method, which comprises taking a difference image between the fluorescence image obtained in (a) and the fluorescence image obtained in (b). "
  • Patent Document 1 also has the following problems.
  • Live cells labeled with a fluorescent reagent are more susceptible to photobleaching than fluorescent contaminants contained in the sample, but the fluorescent properties of the contaminants cannot be controlled, so that only stained bacteria are necessarily fading. And all the fluorescence of the impurities does not fade. Is not always maintained.
  • the present invention has been made in view of the above points, and provides a method and apparatus for counting living cells which eliminates the influence of fluorescent contaminants regardless of the properties of a sample and improves the measurement accuracy. Aim. Disclosure of the invention
  • the number of living cells is measured by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent.
  • a fluorescence image (first image) of a sample is obtained before the living cells are fluorescently labeled, bright spots in the first image are counted, and the living cells are fluorescently labeled.
  • second image a fluorescence image of the sample
  • counting the bright spots in the second image counting the bright spots in the second image
  • calculating the difference between the number of bright spots in the first image and the number of bright spots in the second image The method is characterized in that the number of living cells is measured. According to the above counting method, the influence of fluorescent contaminants can be eliminated regardless of the properties of the sample, and viable cells can be counted accurately.
  • the method of the invention described in claims 2 to 3 below may be adopted. That is, in a live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the method comprises the steps of: Obtaining a fluorescent image (first image) of the sample, fluorescently labeling the living cells, obtaining a fluorescent image (second image) of the sample, obtaining a difference image between the first image and the second image, By calculating the number of bright spots in the difference image, the number of the living cells is measured (the invention of claim 2).
  • the method for counting the number of living cells may be performed by: Acquiring an image (first image), acquiring position information of a bright point in the first image, and further setting in advance an insensitive area such as a radius and a width and width for the bright point, After recognizing a dead area associated with each bright spot in the first image and fluorescently labeling the living cells, a fluorescent image (second image) of the sample is obtained, and the bright spot in the second image is obtained.
  • the live cells are obtained by acquiring position information and calculating the number of luminescent spots, of the luminescent spots in the second image, which are not included in a dead area associated with each luminescent spot in the first image. Is measured (the invention of claim 3).
  • the setting of the dead area varies depending on the measurement conditions and the state of the sample.For example, for example, "a region with a radius of 10 m relative to the position of the bright spot obtained in the first image" Area ".
  • the inventions of claims 4 to 5 below are preferable. That is, in the method for counting living cells according to any one of claims 1 to 3, the amount of excitation light at the time of obtaining the first image, the excitation light amount at the time of obtaining the second image. It is larger than the amount of light (the invention of claim 4).
  • live cells such as microorganisms and cell tissues in the sample are labeled with a fluorescent reagent.
  • the live cell is labeled with a fluorescent substance, instead of the first image according to claim 3, Acquire an image and use this as the first image, and acquire the position information of the bright points of all the particles in the stereoscopic image, and further set in advance a dead area such as a radius and a vertical and horizontal width for the bright points.
  • a fluorescent image (second image) of the sample is obtained.
  • the position of the luminescent spots is obtained by calculating the number of luminescent spots that are not included in a dead area associated with each luminescent spot in the real image.
  • the number of living cells is measured (the invention of claim 5).
  • the method for labeling living cells with a fluorescent reagent instead of the above-mentioned ⁇ metabolism in living cells '' (Invention of claim 6).
  • the reagent which becomes fluorescent due to metabolism in living cells the above-mentioned FDA, CFDA, CTC and the like can be used.
  • the living cells may be bacteria. (Invention of item 7) is preferred.
  • the sample is filtered to capture live cells on the filter, a first image of the sample containing the live cells captured on the filter is obtained, and a fluorescent reagent is added to the sample on the filter to fluoresce the live cells. After the fluorescent reagent that has been labeled and not taken up by the living cells is removed by filtration, a fluorescence image (second image) of the sample containing the living cells captured on the filter is obtained (Claim 8). ).
  • the washing solution is filtered by the filter so as to wash away the remaining fluorescent reagent even after the filtration.
  • the washing solution is added to the above sample and filtered (the invention of claim 9).
  • the washing solution is a buffer solution having a pH suitable for expressing the fluorescence of the fluorescent reagent (the invention of claim 10).
  • the invention according to claim 11 is a method using electrostatic force for capturing living cells, that is, the method according to any one of claims 1 to 5
  • the sample is introduced into a cell flow path provided with an imaging means for counting live cells, and a part of the cell flow path is positively charged, thereby being negatively charged in a natural state.
  • the captured live cells in the sample are captured by the positive charging section, the first image of the sample containing the captured live cells is obtained, and then a fluorescent reagent is introduced into the cell flow path to obtain the captured live cells. After fluorescently labeling the cells and removing the fluorescent reagent not taken up by the living cells with a washing solution, a fluorescence image (second image) of the sample containing the captured living cells is obtained.
  • the invention according to claim 12 is a method for utilizing an antigen-antibody reaction for capturing living cells, that is, the method according to any one of claims 1 to 5 described above.
  • the sample is introduced into a cell flow path provided with an imaging means for live cell counting, and a part of the cell flow path is specified in advance as a live cell to be captured.
  • the invention according to claim 13 is a method of using a filter for capturing living cells, and holding a live cell capturing surface with a transparent plate for preventing adhesion of dust and facilitating handling, That is, in the method of counting live cells according to any one of claims 1 to 5, the sample is filtered, and the live cells are captured on a filter.
  • the capture surface is covered with a transparent plate such as glass or plastic, and the first image of the sample containing the captured live cells is obtained from the transparent plate side.
  • the fluorescent image of the sample containing the captured living cells from the transparent plate side after the captured living cells are fluorescently labeled by adding from the side and the fluorescent reagent not taken up by the living cells is removed by filtration.And obtaining a second image).
  • the transparent plate is preferably a thin film.
  • the invention according to claim 14 uses the electrostatic force or the antigen-antibody reaction for capturing live cells, and uses the reaction time of the fluorescent reagent for the acquisition timing of the first image and the second image.
  • a live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent assay, wherein an imaging means for counting live cells is provided.
  • the sample is introduced together with a fluorescent reagent into a cell flow path provided with a positively charged portion or an antibody fixing portion for capturing live cells in the sample, and the live cells react with the fluorescent reagent to fluoresce.
  • the captured live cells Acquiring a first image of a sample containing the living cells, and then obtaining a fluorescent image (second image) of the sample containing the captured living cells after the living cells are fluorescently labeled in response to the fluorescent reagent. And measuring the number of the living cells.
  • an optical means for irradiating the sample with excitation light in a live cell counting device for measuring the number of the living cells by labeling living cells such as microorganisms and cell tissues in the sample with a fluorescent reagent for capturing the fluorescence emitted by the sample, an image sensor for capturing the captured fluorescence as an image and converting it into an electrical signal, Image processing means for calculating the area of the luminescent spot; and calculating means for counting the number of luminescent spots having an area of a preset range and calculating the difference in the number of luminescent spots between the first image and the second image.
  • a live cell counting device for measuring the number of live cells by labeling live cells such as microorganisms and cell tissues in the sample with a fluorescent reagent
  • optical means for irradiating the sample with excitation light
  • An optical means for collecting the fluorescence emitted from the sample, an imaging element for capturing the collected fluorescence as an image and converting it into an electric signal; and obtaining a difference image between the first image and the second image.
  • Image processing means for recognizing bright spots in the difference image and calculating the area of each recognized bright spot, and calculating means for counting bright spots having an area within a preset range are provided. (Invention of claim 16).
  • an optical means for irradiating the sample with excitation light in a live cell counting device for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in the sample with a fluorescent reagent.
  • Optical means for collecting the fluorescence emitted from the sample an image sensor that captures the captured fluorescence as an image and converts it into an electric signal, and recognizes the bright spots in the image obtained by the image sensor and recognizes each individual.
  • Image processing means for calculating the area of the luminescent spots of each of the luminescent spots and recording the positions of the luminescent spots having the area of a preset range; Computing means for recognizing and counting the bright spots in the second image that are not included in the dead areas recognized in the first image among the bright spots in the second image.
  • FIG. 1 is a diagram showing a procedure of a method for counting living cells according to an embodiment of the present invention.
  • FIG. 2 is a schematic explanatory view of a method using a difference image according to the embodiment of the present invention. '
  • FIG. 3 is a schematic explanatory view of a method using the position information of a bright spot according to the embodiment of the present invention.
  • FIG. 4 is a schematic configuration diagram of an apparatus for counting live cells according to an embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of an embodiment using electrostatic force according to the present invention.
  • FIG. 6 is an explanatory view of an embodiment utilizing the antigen-antibody reaction of the present invention.
  • Example 1 Method based on difference in number of bright spots
  • bacteria contained in sample 1 are captured on filter 2 by filtration.
  • a membrane filter having a high uniformity in pore size is preferable.
  • the pore size of the membrane filter used must be selected according to the size of the bacteria to be measured. When the number of bacteria is counted, it is usually 0.2 to 0.6;
  • the fluorescence image (first image) of the membrane filter capturing the bacteria is acquired using the fluorescence image acquisition means 3.
  • the acquired image is subjected to image processing by the image processing unit 4, and the number of fluorescent bright spots A present in the image is obtained. Bright spots that are already present before fluorescent labeling are foreign substances.
  • the following processing is specifically performed as the image processing.
  • the area set in advance in 5 is a numerical value determined by the size of the bacteria to be counted and the characteristics of the device used for detection. By conducting experimental studies in advance, it is possible to set, for example, “area equivalent to 0.2 to 10 m in diameter”. Subsequently, the fluorescent labeling reagent 5 is added onto the membrane filter. Fluorescent marker All bacteria can be labeled by using DAPI or AO, which has gene affinity, as the recognition reagent 5. PI is suitable for labeling dead bacteria. By using CFDA or CTC, which expresses fluorescence by the physiological activity of bacteria such as enzymatic reaction and respiration, only viable bacteria can be selectively labeled.
  • a specific bacterium When labeling a specific bacterium, use is made of a method that recognizes an antigen antibody reaction or a specific gene sequence.
  • an antibody that specifically binds to the antigen of the target bacterium is fluorescently labeled in advance, and this fluorescently labeled antibody is reacted with a sample to label only a specific kind of bacterium.
  • the target bacterium can be labeled using a specific gene as a target by using techniques such as FISH and in situ PCR.
  • Fluorescent labeling reagents that do not react with bacteria may cause measurement noise. In this case, it is effective to remove the reagent not taken up by the bacteria by filtration. In order to further enhance the removal effect, it is effective to remove the reagent that has not been taken up by bacteria by filtration and then wash away the reagent with a washing solution.
  • a buffer solution having a pH suitable for expressing the fluorescence of the fluorescent labeling reagent is suitable.
  • AO and CFDA as fluorescent labeling reagents are highly viable and have good fluorescence expression efficiency, so using a highly viable pH buffer solution as a washing solution can provide a more contrasting fluorescent image. Can be done.
  • a fluorescent image (second image) of the membrane filter After fluorescent labeling, obtain a fluorescent image (second image) of the membrane filter again. The same image processing as the first image is performed on the acquired second image, and the number B of fluorescent bright spots existing in the image is obtained. Then, the difference (B ⁇ A) in the number of bright spots between the first image and the second image, that is, the number of bright spots appearing by the fluorescent label is obtained, and this is determined as the bacterial count.
  • Example 1 the bacteria contained in the sample solution are captured on the membrane filter by filtration.
  • a fluorescent image (first image 6 shown in the center of FIG. 2) of the membrane filter capturing the bacteria is obtained.
  • a fluorescent labeling reagent is added onto the membrane filter, and the bacteria are fluorescently labeled.
  • a fluorescent image (second image 7 shown on the left side of FIG. 2) of the re-membrane filter is obtained.
  • a difference image 8 shown on the right side of FIG. 2 is obtained from the second image 7 and the first image 6.
  • the bright spots present in the difference image 8 are the bright spots appearing by the fluorescent labels, which are counted as the number of bacteria.
  • a correct result can be obtained by recognizing the positional relationship between the two images by image processing called pattern matching and obtaining a difference image at the corresponding position.
  • the above case (2) can be dealt with by a method of clarifying a distinction between a signal derived from a bright spot and a signal derived from a background by image processing such as binarization and edge detection.
  • image processing such as binarization and edge detection.
  • the above embodiment 1 can be used.
  • a fluorescence image (first image 6) of the membrane filter capturing the bacteria is acquired.
  • the reference point 9 (indicated by a white arrow in the figure) is used, the position of the membrane filter is grasped based on this, and the position information 10 of the bright spot in the first image is recognized. I do.
  • a fluorescent labeling reagent is added onto the membrane filter, and the bacteria are fluorescently labeled.
  • a fluorescent image (second image 7) of the membrane filter is acquired. Similar to the first image, the reference point 9 (arrow in the figure) is used when acquiring the image, the position of the membrane filter is grasped based on this, and the position information of the bright spot in the second image 1 1 Recognize.
  • the first image 6 and the second image 7 shown in FIG. 3 show an example in which the translation and the rotation occur, though they are minute. Thus, even when the image acquisition position is shifted, the position of the bright spot can be correctly recognized as a relative position from the reference point. Then, the position information of the bright spot is compared between the second image 7 and the first image 6, and the bright spot information 12 that first appears after the second image 7 is obtained. The number of bright spots obtained in the bright spot information 12 is the bacterial count.
  • the dead area setting may be, for example, "a region having a radius of 10 m with respect to the position of the bright spot obtained in the first image” or "a region of ⁇ 5 pixels both vertically and horizontally as the image" I do.
  • the amount of excitation light at the time of acquiring the first image is set to be larger than the amount of excitation light at the time of acquiring the second image, as in the invention of claim 4.
  • the counting accuracy can be improved by using the actual image of the sample instead of the first image instead of the fluorescent image.
  • the sample when acquiring the first image, the sample is irradiated with excitation light instead of white light.
  • the excitation light emitted from the light source 13 is reflected by the dichroic mirror 14, condensed by the objective lens 15, and irradiates the sample 16 on the membrane filter 2.
  • a light emitting diode, a semiconductor laser, a mercury lamp, or the like is suitable.
  • the fluorescence emitted from the sample is collected by the objective lens, passes through the dichroic mirror, and forms an image on the image sensor 17.
  • a CCD device or a CMOS device can be used.
  • the image sensor captures the fluorescence as an image and converts it into electrical signals.
  • the image obtained by the image sensor is transmitted to the image / arithmetic processing unit 4, and performs various image processing and arithmetic processing as described above.
  • the membrane filter 2 on which the sample is placed is sequentially scanned in the horizontal direction 18 by a driving means (not shown), and a plurality of screens are acquired and analyzed to enlarge the visual field area.
  • a driving means for example, a stepping motor capable of precise position control is desirable.
  • the sample is irradiated with excitation light instead of white light.
  • a switching unit (not shown) for switching between the excitation light and the white light is provided.
  • a sample is introduced into a cell channel 20 provided with an imaging means 21 for counting live cells and an electrode 22 for generating electrostatic force, and a part of the cell channel 20 is corrected.
  • the positively charged portion captures the living cells 30 in the sample negatively charged in the natural state by the positively charged portion, and acquires the first image of the sample containing the captured living cells by the imaging means 21.
  • a fluorescent reagent is introduced into the cell flow path 20 to label the captured living cells 30 with fluorescence. After removing the fluorescent reagent not taken up by the living cells with a washing solution, a sample containing the captured living cells is obtained.
  • the fluorescence image (second image) is obtained by the imaging means 21.
  • At least the surface of the cell flow path 20 facing the imaging means 21 is made of transparent glass or plastic.
  • FIG. 6 Based on FIG. 6, an embodiment of a method using an antigen-antibody reaction for capturing living cells will be described below.
  • a sample is introduced into a cell flow path 20 provided with an imaging means 21 for counting living cells, and a part of the cell flow path 20 is specified in advance with a living cell to be captured.
  • the live cells 30 in the sample are captured by binding with the antibody 23, and the first sample containing the live cells 30 captured by the antibody 23 is removed.
  • An image is obtained by the imaging means 21, and thereafter, a fluorescent reagent is introduced into the cell flow path 20 to fluorescently label the captured living cells 30, and the fluorescent reagent not taken up by the living cells is washed with a washing liquid. After the removal, a fluorescence image (second image) of the sample containing the captured living cells is obtained by the imaging means 21.
  • living cells such as microorganisms and tissue cells are stained with a fluorescent reagent and fluorescence is generated by exciting the reagent, or living cells such as microorganisms and tissue cells originally have
  • the present invention can be applied to a method and an apparatus for counting living cells, in which fluorescence is generated by exciting fluorescent molecules, and the number of living cells is counted using the fluorescence image.
  • the microorganisms include bacteria, fungi, viruses, yeasts, molds, and the like, and the application fields of the present counting method and apparatus include medical treatment, food production, and water and sewage.
  • a fluorescence image or a stereoscopic image (first image) of a sample is obtained before the living cells are fluorescently labeled, and a fluorescence image of the sample (second image) is obtained after the living cells are fluorescently labeled.
  • first image a fluorescence image or a stereoscopic image
  • second image a fluorescence image of the sample
  • Is obtained Is obtained, and the difference between the number of bright spots in the first image and the second image is calculated, or the difference image between the first image and the second image is calculated, and the number of bright spots in the difference image is calculated.
  • the number of luminescent points in the second image where the position is not included in the dead area associated with each luminescent point in the first image.

Abstract

A living cell counting method and device for counting living cells such as microbe in a sample or living cells of a cell tissue is labeled by a fluorescent reagent. Before living cells are fluorescence-labeled, a fluorescence image (first image) of a sample is captured. After the living cells are fluorescence labeled, a fluorescence image (second image) of the sample is captured. The difference (B-A) in number of bright points between the first and second images is determined. In another method, a difference image between the first and second images is created, and the number of bright points in the difference image is counted, or the number of bring points, out of the bright points in the second image, not in the blind area around each bright point in the first image is counted. The influence of fluorescent impurities can be eliminated irrespective of the properties of the sample, and thus the measurement accuracy is improved.

Description

明細 ; 生細胞の計数方法および装置 技術分野 Description : Method and apparatus for counting live cells
この発明は、 微生物や組織細胞等の生細胞を、 蛍光標識 (蛍光試薬で 染色) し、 試薬を励起することで蛍光を発生させ、 あるいは、 微生物や 組織細胞等の生細胞が元々有する蛍光性分子を励起することで蛍光を発 生させ、 その蛍光画像を利用して生細胞を計数する生細胞の計数方法お よび装置に関する。 背景技術  The present invention provides a method for fluorescently labeling (staining with a fluorescent reagent) living cells such as microorganisms and tissue cells and generating fluorescence by exciting the reagent, or the fluorescent property of living cells such as microorganisms and tissue cells. The present invention relates to a method and an apparatus for counting living cells, which generate fluorescence by exciting molecules and count the number of living cells using the fluorescence image. Background art
試料中の微生物や動植物等の組織細胞などの生細胞の検出は、例えば、 滅菌状態の確認や、 細胞の生存状態の異常等を検出する上で、 産業上極 めて重要な技術である。 以下の説明においては、 説明の便宜上、 主に細 菌を対象として述べる。  The detection of living cells such as microorganisms and tissue cells such as animals and plants in a sample is an extremely important industrial technique for, for example, confirming the sterilization state and detecting abnormalities in the survival state of the cells. In the following description, for convenience of explanation, the description will mainly focus on bacteria.
自然環境中には、 生きているが通常の方法では培養が困難な状態にあ る細菌が高い割合で存在する。 これらの細菌は、 一般的な寒天平板培地 上にコロニーを形成せず、 また液体培地中でも増殖しないことが多い。 このため、 従来の培養を基本とする方法では検出できない恐れがある。 こうした問題を解決する方法として、 前記生細胞を蛍光試薬により標 識する方法以外に、 例えば D N Aに結合するジアミジノ · フヱ二ル · ィ ンドール (D A P I ) ゃァクリジン · ォレンジ (A O ) を用いて遺伝子 ¾標識することで細菌を検出する方法や、 細菌内で代謝されて蛍光性と なるフルォレセイン 'ジアセテート (F D A)、 カルボキシ 'フルォレセ イン .ジアセテート ( C F D A)、 5-シァノ - 2, 3-ジト リル テトラゾリゥ ム クロライ ド (C T C ) などを用いて生理活性を維持している細菌を検 出する計測方法が提案されている。 There is a high percentage of bacteria in the natural environment that are alive but difficult to culture by conventional methods. These bacteria do not form colonies on common agar plates and often do not grow in liquid media. For this reason, there is a possibility that it cannot be detected by the conventional culture-based method. As a method for solving such a problem, in addition to the method of labeling the living cells with a fluorescent reagent, for example, a gene using a diamidino-phenylindole (DAPI) -acridine orange (AO) that binds to DNA is used.方法 Methods of detecting bacteria by labeling, fluorescein diacetate (FDA), carboxy fluorescein diacetate (CFDA), which is metabolized in bacteria and becomes fluorescent, 5-cyano-2,3-dito Lil Tetrazori A measurement method has been proposed for detecting bacteria maintaining physiological activity using, for example, microclide (CTC).
前記 F D Aや C F D Aは、 細菌などの生細胞内にある酵素 (エステラ ーゼ) の働きで加水分解されて蛍光性となる。 また、 C T Cは、 生細胞 の呼吸に伴って還元されると蛍光性となる。 前記いずれの試薬も、 溶液 として測定対象となる試料中の生細胞に接触させ、 生細胞内に取り込ま れて反応することにより、 蛍光を発する状態となり、 この蛍光によって 細菌等の生細胞を検出する。  The FDA and CFDA are hydrolyzed by the action of an enzyme (esterase) in living cells such as bacteria, and become fluorescent. In addition, CTC becomes fluorescent when reduced with the respiration of living cells. Each of the above reagents comes into contact with living cells in a sample to be measured as a solution, reacts by being taken into the living cells, and becomes a state of emitting fluorescence. The fluorescence detects living cells such as bacteria. .
しかしながら、 蛍光によって細菌を検出する方法では、 試料中に蛍光 性の夾雑物が共存した場合、 それを検出すべき細菌と誤認し、 計数結果 の誤差になるという問題があった。  However, the method of detecting bacteria by fluorescence has a problem that if fluorescent contaminants coexist in a sample, they are mistaken for bacteria to be detected, resulting in counting errors.
後述する特許文献 1は、 この問題を解消すべく発明された細菌の検出 方法として、 以下の方法を開示している。 即ち、 「 (a ) 蛍光性酵素基質 で媒体を染色し、その蛍光画像を記録し、 (b )染色された媒体に光照射 して光退色させた後、 その蛍光画像を記録し、 (c ) 上記 (a ) で得られ た蛍光画像と、 上記 (b ) で得られた蛍光画像との差画像を取ることを 特徴とする生細胞の検出方法。」 を開示している。  Patent Document 1 described later discloses the following method as a method for detecting bacteria invented to solve this problem. That is, “(a) the medium is stained with a fluorescent enzyme substrate, and the fluorescence image is recorded. (B) The stained medium is irradiated with light to cause photobleaching, and then the fluorescence image is recorded. A) a live cell detection method, which comprises taking a difference image between the fluorescence image obtained in (a) and the fluorescence image obtained in (b). "
前記特許文献 1に記載の発明においては、 要するに、 蛍光試薬によつ て標識した細菌が元々試料に含まれる蛍光性夾雑物よりも光退色しやす いという点に着目し、 前記のような手順により蛍光性夾雑物の影響を除 去するようにしている。  In the invention described in Patent Document 1, in short, focusing on the fact that bacteria labeled with a fluorescent reagent are more likely to undergo photobleaching than fluorescent contaminants originally contained in a sample, the procedure described above was used. To remove the influence of fluorescent impurities.
しかしながら、 上記特許文献 1に記載の発明においても、 下記のよう な問題がある。  However, the invention described in Patent Document 1 also has the following problems.
蛍光試薬によって標識した生細胞は、 試料に含まれる蛍光性夾雑物よ りも光退色しやすいものの、 夾雑物の蛍光特性は制御し得ないため、 必 ずしも、 染色された細菌だけが退色して、 夾雑物の蛍光が全て退色しな い状態を維持するとは限らない。 Live cells labeled with a fluorescent reagent are more susceptible to photobleaching than fluorescent contaminants contained in the sample, but the fluorescent properties of the contaminants cannot be controlled, so that only stained bacteria are necessarily fading. And all the fluorescence of the impurities does not fade. Is not always maintained.
夾雑物の蛍光が蛍光標識した細菌と同様に退色した場合には、 その分 測定誤差となる。 従って、 常に、 精度の高い生細胞の計数が可能という わけにはいかず、 試料の性状が変わった場合には、 計測値の精度確保が 難しい問題がある。  If the fluorescence of the contaminant fades in the same way as the fluorescence-labeled bacteria, a measurement error will result. Therefore, it is not always possible to count viable cells with high accuracy, and it is difficult to ensure the accuracy of the measured values when the sample properties change.
〔特許文献 1〕  (Patent Document 1)
特開平 1 0— 2 1 5 8 9 4号公報  Japanese Patent Application Laid-Open No. H10-10-215
本発明は上記のような点に鑑みなされたもので、 試料の性状に関わら ず蛍光性夾雑物の影響を排除し、 測定精度の向上を図った生細胞の計数 方法および装置を提供することを目的とする。 発明の開示  The present invention has been made in view of the above points, and provides a method and apparatus for counting living cells which eliminates the influence of fluorescent contaminants regardless of the properties of a sample and improves the measurement accuracy. Aim. Disclosure of the invention
上記のような課題を解決するため、 請求の範囲第 1項の発明では、 試 料中の微生物や細胞組織などの生細胞を蛍光試薬により標識することに より、 前記生細胞の数を測定する生細胞の計数方法において、 前記生細 胞を蛍光標識する前に、 試料の蛍光画像 (第一画像) を取得し、 前記第 一画像中の輝点を計数し、 前記生細胞を蛍光標識した後に、 試料の蛍光 画像 (第二画像) を取得し、 前記第二画像中の輝点を計数し、 前記第一 画像中の輝点数と第二画像中の輝点数との差を求めることにより、 前記 生細胞の数を測定することを特徴とする。 上記計数方法によれば、 試料 の性状に関わらず蛍光性夾雑物の影響を排除でき、 精度よく生細胞を計 数することができる。  In order to solve the above-mentioned problems, in the invention set forth in claim 1, the number of living cells is measured by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent. In the method for counting living cells, a fluorescence image (first image) of a sample is obtained before the living cells are fluorescently labeled, bright spots in the first image are counted, and the living cells are fluorescently labeled. Later, by obtaining a fluorescence image (second image) of the sample, counting the bright spots in the second image, and calculating the difference between the number of bright spots in the first image and the number of bright spots in the second image The method is characterized in that the number of living cells is measured. According to the above counting method, the influence of fluorescent contaminants can be eliminated regardless of the properties of the sample, and viable cells can be counted accurately.
同様の目的を達成するために、 下記請求の範囲第 2項ないし第 3項の 発明の方法とすることもできる。 即ち、 試料中の微生物や細胞組織など の生細胞を蛍光試薬により標識することにより、 前記生細胞の数を測定 する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 試料 の蛍光画像 (第一画像) を取得し、 前記生細胞を蛍光標識した後に、 試 料の蛍光画像 (第二画像) を取得し、 前記第一画像と第二画像との差分 画像を求め、 この差分画像中の輝点数を求めることにより、 前記生細胞 の数を測定する (請求の範囲第 2項の発明)。 In order to achieve the same object, the method of the invention described in claims 2 to 3 below may be adopted. That is, in a live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the method comprises the steps of: Obtaining a fluorescent image (first image) of the sample, fluorescently labeling the living cells, obtaining a fluorescent image (second image) of the sample, obtaining a difference image between the first image and the second image, By calculating the number of bright spots in the difference image, the number of the living cells is measured (the invention of claim 2).
また、 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識 することにより、前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、試料の蛍光画像(第一画像)を取得し、 かつ前記第一画像中の輝点の位置情報を取得し、 さらに、 前記輝点に対 して半径や縦横幅などの不感領域を予め設定して、 前記第一画像中の各 輝点に付随する不感領域をそれぞれ認識し、 前記生細胞を蛍光標識した 後に、 試料の蛍光画像 (第二画像) を取得し、 かつ前記第二画像中の輝 点の位置情報を取得し、 前記第二画像中の輝点の内、 その位置が、 前記 第一画像中の各輝点に付随する不感領域に含まれない輝点数を求めるこ とにより、 前記生細胞の数を測定する (請求の範囲第 3項の発明)。  In addition, in the method for counting the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the method for counting the number of living cells may be performed by: Acquiring an image (first image), acquiring position information of a bright point in the first image, and further setting in advance an insensitive area such as a radius and a width and width for the bright point, After recognizing a dead area associated with each bright spot in the first image and fluorescently labeling the living cells, a fluorescent image (second image) of the sample is obtained, and the bright spot in the second image is obtained. The live cells are obtained by acquiring position information and calculating the number of luminescent spots, of the luminescent spots in the second image, which are not included in a dead area associated with each luminescent spot in the first image. Is measured (the invention of claim 3).
上記不感領域設定は、 計測状況や試料の状態によって異なるが、 例え ば 「第一画像で得られた輝点の存在位置に対して半径 1 0 mの領域」 あるいは 「画像として縦横とも ± 5ピクセルの領域」 といった設定がで きる。 この不感領域を適切に設定することによって、 細菌数を適正に計 測することが可能となる。  The setting of the dead area varies depending on the measurement conditions and the state of the sample.For example, for example, "a region with a radius of 10 m relative to the position of the bright spot obtained in the first image" Area ". By properly setting the dead area, the number of bacteria can be measured appropriately.
さらに、 蛍光性夾雑物の影響の排除をより確実にして、 生細胞の計数 精度をより向上する観点から、 下記請求の範囲第 4項ないし第 5項の発 明が好ましい。 即ち、 前記請求の範囲第 1項ないし第 3項のいずれか 1 項に記載の生細胞の計数方法において、 前記第一画像取得の際の励起光 量を、 前記第二画像取得の際の励起光量より大とする (請求の範囲第 4 項の発明)。  Further, from the viewpoint of more reliably eliminating the influence of fluorescent contaminants and further improving the counting accuracy of living cells, the inventions of claims 4 to 5 below are preferable. That is, in the method for counting living cells according to any one of claims 1 to 3, the amount of excitation light at the time of obtaining the first image, the excitation light amount at the time of obtaining the second image. It is larger than the amount of light (the invention of claim 4).
また、 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識 することにより、前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 前記請求の範囲第 3項に記載の第一画 像に代えて、 試料の実体画像を取得してこれを第一画像とし、 かつ前記 実体画像中の全ての粒子の輝点の位置情報を取得し、 さらに、 前記輝点 に対して半径や縦横幅などの不感領域を予め設定して、 前記実体画像中 の各輝点に付随する不感領域をそれぞれ認識し、 前記生細胞を蛍光標識 した後に、 試料の蛍光画像 (第二画像) を取得し、 かつ前記第二画像中 の輝点の位置情報を取得し、 前記第二画像中の輝点の内、 その位置が、 前記実体画像中の各輝点に付随する不感領域に含まれない輝点数を求め ることにより、 前記生細胞の数を測定する (請求の範囲第 5項の発明)。 さらに、 請求の範囲第 1項ないし第 5項のいずれか 1項に記載の生細 胞の計数方法において、 前記 「生細胞を蛍光試薬により標識すること」 に代えて、 「生細胞内の代謝により蛍光すること」 とすることもできる (請求の範囲第 6項の発明)。生細胞内の代謝により蛍光性となる試薬と しては、 前述の F D A, C F D A , C T C等が使用できる。 In addition, live cells such as microorganisms and cell tissues in the sample are labeled with a fluorescent reagent. In the method for counting the number of living cells, the live cell is labeled with a fluorescent substance, instead of the first image according to claim 3, Acquire an image and use this as the first image, and acquire the position information of the bright points of all the particles in the stereoscopic image, and further set in advance a dead area such as a radius and a vertical and horizontal width for the bright points Then, after recognizing a dead area associated with each bright spot in the stereoscopic image and fluorescently labeling the living cells, a fluorescent image (second image) of the sample is obtained. By obtaining the position information of the luminescent spots, of the luminescent points in the second image, the position of the luminescent spots is obtained by calculating the number of luminescent spots that are not included in a dead area associated with each luminescent spot in the real image. The number of living cells is measured (the invention of claim 5). Further, in the method for counting living cells according to any one of claims 1 to 5, the method for labeling living cells with a fluorescent reagent instead of the above-mentioned `` metabolism in living cells '' (Invention of claim 6). As the reagent which becomes fluorescent due to metabolism in living cells, the above-mentioned FDA, CFDA, CTC and the like can be used.
また、 適用メリッ トの観点から、 前記請求の範囲第 1項ないし第 6項 のいずれか 1項に記載の生細胞の計数方法において、 前記生細胞は、 細 菌とすること (請求の範囲第 7項の発明) が好適である。  Further, from the viewpoint of application advantages, in the method for counting living cells according to any one of claims 1 to 6, the living cells may be bacteria. (Invention of item 7) is preferred.
さらにまた、 請求の範囲第 1項ないし第 5項の発明の実施態様として は、 測定精度向上の観点から、 下記請求の範囲第 8項ないし第 1 0項の 発明が好ましい。 即ち、 試料をろ過してフィルタ上に生細胞を捕捉し、 前記フィルタ上に捕捉した生細胞を含む試料の第一画像を取得し、 蛍光 試薬をフィルタ上の試料に添加して生細胞を蛍光標識し、 生細胞に取り 込まれなかった蛍光試薬をろ過によって除去した後、 フィルタ上に捕捉 した生細胞を含む試料の蛍光画像 (第二画像) を取得する (請求の範囲 第 8項の発明)。 また、 請求の範囲第 8項に記載の生細胞の計数方法において、 生細胞 に取り込まれなかった蛍光試薬をろ過によって除去した後、 ろ過後も残 留する蛍光試薬を洗い流すべく、 洗浄液を前記フィルタ上の試料に添加 して、 この洗浄液をろ過する (請求の範囲第 9項の発明)。 Furthermore, as the embodiments of the invention set forth in claims 1 to 5, the inventions set forth in claims 8 to 10 described below are preferable from the viewpoint of improving measurement accuracy. That is, the sample is filtered to capture live cells on the filter, a first image of the sample containing the live cells captured on the filter is obtained, and a fluorescent reagent is added to the sample on the filter to fluoresce the live cells. After the fluorescent reagent that has been labeled and not taken up by the living cells is removed by filtration, a fluorescence image (second image) of the sample containing the living cells captured on the filter is obtained (Claim 8). ). Further, in the method for counting living cells according to claim 8, after removing the fluorescent reagent not taken up by the living cells by filtration, the washing solution is filtered by the filter so as to wash away the remaining fluorescent reagent even after the filtration. The washing solution is added to the above sample and filtered (the invention of claim 9).
さらに、 請求の範囲第 9項に記載の生細胞の計数方法において、 前記 洗浄液は、 前記蛍光試薬の蛍光発現に適した P Hを有する緩衝液とする (請求の範囲第 1 0項の発明)。  Further, in the method for counting live cells according to claim 9, the washing solution is a buffer solution having a pH suitable for expressing the fluorescence of the fluorescent reagent (the invention of claim 10).
また、 前記第一画像および第二画像を取得する際の、 前記請求の範囲 第 8項の発明とは異なる方法に関する発明としては、 下記請求の範囲第 1 1項ないし第 1 4項の発明が、 それぞれニーズに応じて好適に採用で きる。  Further, as the invention relating to a method different from the invention of claim 8 when acquiring the first image and the second image, the invention of the following claims 11 to 14 is described. Each can be suitably adopted according to the needs.
まず、 請求の範囲第 1 1項の発明は、 生細胞の捕捉に静電力を利用す る方法であって、 即ち、 前記請求の範囲第 1項ないし第 5項のいずれか 1項に記載の生細胞の計数方法において、 前記試料を、 生細胞計数用の 撮像手段を備えたセル流路内に導入し、 前記セル流路の一部を正に帯電 させることにより、 自然状態で負に帯電した試料中の生細胞を前記正帯 電部に捕捉し、前記捕捉した生細胞を含む試料の前記第一画像を取得し、 その後、 蛍光試薬を前記セル流路に導入して前記捕捉した生細胞を蛍光 標識し、 生細胞に取り込まれなかった蛍光試薬を洗浄液によって除去し た後、 前記捕捉した生細胞を含む試料の蛍光画像 (第二画像) を取得す ることを特徴とする。  First, the invention according to claim 11 is a method using electrostatic force for capturing living cells, that is, the method according to any one of claims 1 to 5 In the method for counting living cells, the sample is introduced into a cell flow path provided with an imaging means for counting live cells, and a part of the cell flow path is positively charged, thereby being negatively charged in a natural state. The captured live cells in the sample are captured by the positive charging section, the first image of the sample containing the captured live cells is obtained, and then a fluorescent reagent is introduced into the cell flow path to obtain the captured live cells. After fluorescently labeling the cells and removing the fluorescent reagent not taken up by the living cells with a washing solution, a fluorescence image (second image) of the sample containing the captured living cells is obtained.
次に、 請求の範囲第 1 2項の発明は、 生細胞の捕捉に抗原抗体反応を 利用する方法であって、 即ち、 前記請求の範囲第 1項ないし第 5項のい ずれか 1項に記載の生細胞の計数方法において、 前記試料を、 生細胞計 数用の撮像手段を備えたセル流路内に導入し、 前記セル流路の一部に、 予め、 捕捉すべき生細胞と特異的に結合する抗体を固定しておくことに より、 試料中の生細胞を前記抗体との結合によって捕捉し、 前記抗体に 捕捉した生細胞を含む試料の前記第一画像を取得し、 その後、 蛍光試薬 を前記セル流路に導入して前記捕捉した生細胞を蛍光標識し、 生細胞に 取り込まれなかつた蛍光試薬を洗浄液によって除去した後、 前記捕捉し た生細胞を含む試料の蛍光画像 (第二画像) を取得することを特徴とす る。 Next, the invention according to claim 12 is a method for utilizing an antigen-antibody reaction for capturing living cells, that is, the method according to any one of claims 1 to 5 described above. In the method for counting live cells according to the above, the sample is introduced into a cell flow path provided with an imaging means for live cell counting, and a part of the cell flow path is specified in advance as a live cell to be captured. To fix antibodies that bind By capturing live cells in a sample by binding to the antibody, obtaining the first image of the sample containing the live cells captured by the antibody, and then introducing a fluorescent reagent into the cell flow path, Capturing the captured living cells with a fluorescent label, removing the fluorescent reagent that has not been incorporated into the living cells with a washing solution, and acquiring a fluorescence image (second image) of the sample containing the captured living cells. You.
次に、 請求の範囲第 1 3項の発明は、 生細胞の捕捉にフィルタを利用 し、 塵埃付着防止やハンドリングの容易化のために生細胞捕捉面を透明 板で保持する方法であって、 即ち、 前記請求の範囲第 1項ないし第 5項 のいずれか 1項に記載の生細胞の計数方法において、 前記試料を、 ろ過 してフィルタ上に生細胞を捕捉し、 前記フィルタ上の生細胞捕捉面を、 ガラスまたはプラスチック等の透明板で被覆し、 この透明板側から前記 捕捉した生細胞を含む試料の前記第一画像を取得し、 その後、 蛍光試薬 をフィルタの生細胞捕捉面と反対側から添加することにより、 前記前記 捕捉した生細胞を蛍光標識し、 生細胞に取り込まれなかった蛍光試薬を ろ過によって除去した後、 前記透明板側から前記捕捉した生細胞を含む 試料の蛍光画像 (第二画像) を取得することを特徴とする。 なお、 前記 透明板としては、 厚さの薄いフィルム状のものが好ましい。  Next, the invention according to claim 13 is a method of using a filter for capturing living cells, and holding a live cell capturing surface with a transparent plate for preventing adhesion of dust and facilitating handling, That is, in the method of counting live cells according to any one of claims 1 to 5, the sample is filtered, and the live cells are captured on a filter. The capture surface is covered with a transparent plate such as glass or plastic, and the first image of the sample containing the captured live cells is obtained from the transparent plate side. The fluorescent image of the sample containing the captured living cells from the transparent plate side after the captured living cells are fluorescently labeled by adding from the side and the fluorescent reagent not taken up by the living cells is removed by filtration.And obtaining a second image). The transparent plate is preferably a thin film.
次に、 請求の範囲第 1 4項の発明は、 生細胞の捕捉に、 静電力または 抗原抗体反応を利用し、 かつ蛍光試薬の反応時間を第一画像および第二 画像の取得タイミングに利用する方法であって、 即ち、 試料中の微生物 や細胞組織などの生細胞を蛍光試案により標識することにより、 前記生 細胞の数を測定する生細胞の計数方法において、 生細胞計数用の撮像手 段を備え、 かつ試料中の生細胞を捕捉するための正帯電部もしくは抗体 固定部を備えたセル流路内に、 前記試料を蛍光試薬と共に導入し、 前記 蛍光試薬に反応して生細胞が蛍光標識される前に、 前記捕捉した生細胞 を含む試料の第一画像を取得し、 その後、 前記蛍光試薬に反応して生細 胞が蛍光標識した後に、 前記捕捉した生細胞を含む試料の蛍光画像 (第 二画像) を取得することにより、 前記生細胞の数を測定することを特徴 とする。 Next, the invention according to claim 14 uses the electrostatic force or the antigen-antibody reaction for capturing live cells, and uses the reaction time of the fluorescent reagent for the acquisition timing of the first image and the second image. A live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent assay, wherein an imaging means for counting live cells is provided. The sample is introduced together with a fluorescent reagent into a cell flow path provided with a positively charged portion or an antibody fixing portion for capturing live cells in the sample, and the live cells react with the fluorescent reagent to fluoresce. Before being labeled, the captured live cells Acquiring a first image of a sample containing the living cells, and then obtaining a fluorescent image (second image) of the sample containing the captured living cells after the living cells are fluorescently labeled in response to the fluorescent reagent. And measuring the number of the living cells.
前記請求の範囲第 1 4項の発明の場合には、 計数手順が簡略化するメ リッ トがあるが、 必要に応じて、 蛍光試薬の濃度を下げて反応時間を遅 くする、 もしくは、 反応時の温度を下げて反応時間を遅くすることによ り、 第一画像および第二画像の取得タィミングの間隔を大とすることが できる。  In the case of the invention set forth in claim 14, there is an advantage that the counting procedure is simplified.However, if necessary, the reaction time is delayed by lowering the concentration of the fluorescent reagent, or By lowering the temperature at the time and slowing the reaction time, the interval between the acquisition timings of the first image and the second image can be increased.
また、 前記計数方法を実施するための装置としては、 下記請求の範囲 第 1 5項ないし第 1 7項の発明が好適である。 即ち、 試料中の微生物や 細胞組織などの生細胞を蛍光試薬により標識することにより、 前記生細 胞の数を測定する生細胞の計数装置において、 前記試料へ励起光を照射 する光学的手段と、 試料が発する蛍光を捕集する光学的手段と、 捕集し た蛍光を画像として捉え電気信号に変換する撮像素子と、 撮像素子で得 た画像中の輝点を認識し、 認識した個々の輝点の面積を求める画像処理 手段と、 予め設定した範囲の面積を有する輝点を計数し、 かつ前記第一 画像と第二画像との間の輝点数の差を求める演算手段とを備える (請求 の範囲第 1 5項の発明)。  Further, as an apparatus for performing the counting method, the inventions of the following claims 15 to 17 are suitable. That is, an optical means for irradiating the sample with excitation light in a live cell counting device for measuring the number of the living cells by labeling living cells such as microorganisms and cell tissues in the sample with a fluorescent reagent. Optical means for capturing the fluorescence emitted by the sample, an image sensor for capturing the captured fluorescence as an image and converting it into an electrical signal, Image processing means for calculating the area of the luminescent spot; and calculating means for counting the number of luminescent spots having an area of a preset range and calculating the difference in the number of luminescent spots between the first image and the second image. (Invention of Claim 15).
また、 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識 することにより、前記生細胞の数を測定する生細胞の計数装置において、 前記試料へ励起光を照射する光学的手段と、 試料が発する蛍光を捕集す る光学的手段と、 捕集した蛍光を画像として捉え電気信号に変換する撮 像素子と、 前記第一画像と第二画像との間の差分画像を求め、 この差分 画像中の輝点を認識し、 認識した個々の輝点の面積を求める画像処理手 段と、 予め設定した範囲の面積を有する輝点を計数する演算手段とを備 える (請求の範囲第 1 6項の発明)。 Further, in a live cell counting device for measuring the number of live cells by labeling live cells such as microorganisms and cell tissues in the sample with a fluorescent reagent, optical means for irradiating the sample with excitation light, An optical means for collecting the fluorescence emitted from the sample, an imaging element for capturing the collected fluorescence as an image and converting it into an electric signal; and obtaining a difference image between the first image and the second image. Image processing means for recognizing bright spots in the difference image and calculating the area of each recognized bright spot, and calculating means for counting bright spots having an area within a preset range are provided. (Invention of claim 16).
さらに、 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標 識することにより、 前記生細胞の数を測定する生細胞の計数装置におい て、 前記試料へ励起光を照射する光学的手段と、 試料が発する蛍光を捕 集する光学的手段と、 捕集した蛍光を画像として捉え電気信号に変換す る撮像素子と、 撮像素子で得た画像中の輝点を認識し、 認識した個々の 輝点の面積を求め、 予め設定した範囲の面積を有する輝点の位置を記録 する画像処理手段と、 記録した個々の輝点の位置に対して、 予め設定し た領域を各々の輝点に付随する不感領域として認識し、 かつ、 前記第二 画像中の輝点のうち、 その位置が第一画像で認識された不感領域に含ま れないものを判別し計数する演算手段とを備える (請求の範囲第 1 7項 の発明.)。 図面の簡単な説明  Further, an optical means for irradiating the sample with excitation light in a live cell counting device for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in the sample with a fluorescent reagent. Optical means for collecting the fluorescence emitted from the sample, an image sensor that captures the captured fluorescence as an image and converts it into an electric signal, and recognizes the bright spots in the image obtained by the image sensor and recognizes each individual. Image processing means for calculating the area of the luminescent spots of each of the luminescent spots and recording the positions of the luminescent spots having the area of a preset range; Computing means for recognizing and counting the bright spots in the second image that are not included in the dead areas recognized in the first image among the bright spots in the second image. The invention of claim 17). BRIEF DESCRIPTION OF THE FIGURES
図 1は、この発明の実施例に関わる生細胞の計数方法の手順を示す図。 図 2は、 この発明の実施例に関わる差分画像を利用する方法の模式的 説明図。 '  FIG. 1 is a diagram showing a procedure of a method for counting living cells according to an embodiment of the present invention. FIG. 2 is a schematic explanatory view of a method using a difference image according to the embodiment of the present invention. '
図 3は、 この発明の実施例に関わる輝点の位置情報を利用する方法の 模式的説明図。  FIG. 3 is a schematic explanatory view of a method using the position information of a bright spot according to the embodiment of the present invention.
図 4は、この発明の実施例に関わる生細胞の計数装置の模式的構成図。 図 5は、 この発明の静電力を利用する実施例の説明図。  FIG. 4 is a schematic configuration diagram of an apparatus for counting live cells according to an embodiment of the present invention. FIG. 5 is an explanatory diagram of an embodiment using electrostatic force according to the present invention.
図 6は、 この発明の抗原抗体反応を利用する実施例の説明図。 発明を実施するための最良の形態  FIG. 6 is an explanatory view of an embodiment utilizing the antigen-antibody reaction of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例について、 図 1ないし図 6に基づき詳細に説明 する。 (実施例 1 :輝点数の差による方法) Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 6. (Example 1: Method based on difference in number of bright spots)
図 1に基づき、 第一画像と第二画像との間の輝点数の差を求めること を利用する細菌数の計測方法の実施例について以下に述べる。 以下の説 明では液状試料に含まれる細菌の計数を想定している。 ただし、 固形試 料に付着している細菌はふき取りゃス トマッキングによって滅菌水に展 開し、 それ以降、 液状試料と同様に取り扱うことができる。  Based on FIG. 1, an embodiment of a method for counting the number of bacteria using the determination of the difference in the number of bright spots between the first image and the second image will be described below. The following description assumes the counting of bacteria in liquid samples. However, bacteria adhering to the solid sample can be spread in sterile water by wiping and post-macing, and can be handled in the same manner as liquid samples thereafter.
まず、 試料 1に含まれる細菌を、 ろ過によってフィルタ 2上に捕捉す る。 フィルタとしては、 ポアサイズの均一性が高いメンブレンフィルタ が好ましい。 用いるメンブレンフィルタのポアサイズは、 計測しようと する細菌のサイズによって選択が必要である。 細菌を計数する場合は、 通常 0. 2〜0. 6 ;« m程度が適当である。  First, bacteria contained in sample 1 are captured on filter 2 by filtration. As the filter, a membrane filter having a high uniformity in pore size is preferable. The pore size of the membrane filter used must be selected according to the size of the bacteria to be measured. When the number of bacteria is counted, it is usually 0.2 to 0.6;
次に、 蛍光画像取得手段 3を用いて、 細菌を捕捉したメンブレンフィ ル夕の蛍光画像 (第一画像) を取得する。 取得した画像を画像,演算処 理部 4で画像処理し、 画像中に存在する蛍光輝点数 Aを求める。 蛍光標 識前に既に存在する輝点は夾雑物である。  Next, the fluorescence image (first image) of the membrane filter capturing the bacteria is acquired using the fluorescence image acquisition means 3. The acquired image is subjected to image processing by the image processing unit 4, and the number of fluorescent bright spots A present in the image is obtained. Bright spots that are already present before fluorescent labeling are foreign substances.
画像処理としては、 具体的に次のような処理を行う。  The following processing is specifically performed as the image processing.
① 同一視野で複数画面を取込み、それらを平均化してランダムノィズを 低減  ① Capture multiple screens in the same field of view and average them to reduce random noise
② シェーディング (濃淡) 補正  ② Shading (shade) correction
③ エッジ検出により輝点を抽出 ③ Extract bright spots by edge detection
④ ラベリングにより、 どこまでがひとつながりの個別の輝点かを認識 認識 Recognize the distance between individual bright spots by labeling
⑤ 面積が予め設定した範囲に該当する輝点を選別 輝 Select bright spots whose area falls within a preset range
⑥ ⑤で選別された輝点を計数 輝 Count bright spots selected in ⑤
前記⑤で予め設定する面積は、 計数すべき細菌のサイズと検出に用い る装置の特性とから決まる数値である。 事前に実験検討を行うことによ り、例えば「直径 0. 2~ 10 m相当の面積」 といった設定が可能である。 続いて、 メンブレンフィルタ上に蛍光標識試薬 5を添加する。 蛍光標 識試薬 5としては、 遺伝子に親和性のある D A P Iや A Oを用いれば全 細菌を標識できる。 死菌の標識には P Iが適している。 酵素反応や呼吸 など細菌の生理活性によって蛍光を発現する C F D Aや C T Cを用いれ ば、 生菌だけを選択的に標識できる。 特定の細菌を標識する場合は、 抗 原抗体反応や特定の遺伝子配列を認識する手法を利用する。前者の場合、 目的とする細菌の抗原に特異的に結合する抗体を予め蛍光標識しておき、 この蛍光標識抗体を試料と反応させることで特定種の細菌だけを標識す る。 後者の場合、 FI SH、 In si tu PCR といった手法を用いて特定の遺伝 子をタ一ゲッ トとして目的の細菌を標識できる。 The area set in advance in ⑤ is a numerical value determined by the size of the bacteria to be counted and the characteristics of the device used for detection. By conducting experimental studies in advance, it is possible to set, for example, “area equivalent to 0.2 to 10 m in diameter”. Subsequently, the fluorescent labeling reagent 5 is added onto the membrane filter. Fluorescent marker All bacteria can be labeled by using DAPI or AO, which has gene affinity, as the recognition reagent 5. PI is suitable for labeling dead bacteria. By using CFDA or CTC, which expresses fluorescence by the physiological activity of bacteria such as enzymatic reaction and respiration, only viable bacteria can be selectively labeled. When labeling a specific bacterium, use is made of a method that recognizes an antigen antibody reaction or a specific gene sequence. In the former case, an antibody that specifically binds to the antigen of the target bacterium is fluorescently labeled in advance, and this fluorescently labeled antibody is reacted with a sample to label only a specific kind of bacterium. In the latter case, the target bacterium can be labeled using a specific gene as a target by using techniques such as FISH and in situ PCR.
細菌と反応しなかつた蛍光標識試薬が計測上のノィズとなる場合があ る。 この場合には、 細菌に取り込まれなかった試薬をろ過により除去す ることが有効である。 さらに除去の効果を上げるためには、 細菌に取り 込まれなかった試薬をろ過により除去した後、 さらに、 洗浄液によって 試薬を洗い流すことが効果的である。  Fluorescent labeling reagents that do not react with bacteria may cause measurement noise. In this case, it is effective to remove the reagent not taken up by the bacteria by filtration. In order to further enhance the removal effect, it is effective to remove the reagent that has not been taken up by bacteria by filtration and then wash away the reagent with a washing solution.
洗浄液としては、 蛍光標識試薬の蛍光発現に適した p Hを有する緩衝 液が適している。 例えば、 蛍光標識試薬として A Oや C F D Aはアル力 リ性で蛍光発現効率が良好なため、 洗浄液としてアル力リ性の p H緩衝 液を用いることで、 よりコン トラス トの高い蛍光画像を得ることができ る。  As the washing solution, a buffer solution having a pH suitable for expressing the fluorescence of the fluorescent labeling reagent is suitable. For example, AO and CFDA as fluorescent labeling reagents are highly viable and have good fluorescence expression efficiency, so using a highly viable pH buffer solution as a washing solution can provide a more contrasting fluorescent image. Can be done.
蛍光標識の後、 再びメンブレンフィルタの蛍光画像 (第二画像) を取 得する。 取得した第二画像に第一画像と同様の画像処理を行い、 画像中 に存在する蛍光輝点数 Bを求める。 そして、 第一画像と第二画像との間 で輝点数の差 (B— A) すなわち、 蛍光標識によって現れた輝点数を求 め、 これを細菌数とする。  After fluorescent labeling, obtain a fluorescent image (second image) of the membrane filter again. The same image processing as the first image is performed on the acquired second image, and the number B of fluorescent bright spots existing in the image is obtained. Then, the difference (B−A) in the number of bright spots between the first image and the second image, that is, the number of bright spots appearing by the fluorescent label is obtained, and this is determined as the bacterial count.
(実施例 2 :差分画像の利用による方法)  (Example 2: Method using difference image)
図 2に基づき、 第一画像と第二画像との間で差分画像を求めることを 利用する細菌数の計測方法の実施例について、 以下に述べる。 Based on Fig. 2, it is assumed that a difference image is obtained between the first image and the second image. An example of a method for measuring the number of bacteria used will be described below.
手順としては、 まず、 実施例 1 と同じく、 試料液に含まれる細菌を、 ろ過によってメンブレンフィルタ上に捕捉する。 次に、 細菌を捕捉した メンプレンフィルタの蛍光画像 (図 2の中央部に示す第一画像 6 ) を取 得する。 続いて、 メンブレンフィルタ上に蛍光標識試薬を添加し、 細菌 を蛍光標識する。 その後、 再ぴメンプレンフィルタの蛍光画像 (図 2の 左側に示す第二画像 7 ) を取得する。 そして、 前記第二画像 7と第一画 像 6とにより、 図 2の右側に示す差分画像 8を求める。  First, as in Example 1, the bacteria contained in the sample solution are captured on the membrane filter by filtration. Next, a fluorescent image (first image 6 shown in the center of FIG. 2) of the membrane filter capturing the bacteria is obtained. Subsequently, a fluorescent labeling reagent is added onto the membrane filter, and the bacteria are fluorescently labeled. After that, a fluorescent image (second image 7 shown on the left side of FIG. 2) of the re-membrane filter is obtained. Then, a difference image 8 shown on the right side of FIG. 2 is obtained from the second image 7 and the first image 6.
差分画像 8中に存在する輝点が蛍光標識によって現れた輝点であり、 これを細菌数として計数する。  The bright spots present in the difference image 8 are the bright spots appearing by the fluorescent labels, which are counted as the number of bacteria.
実際に画像間で差分を行う際は、 上述の処理で理想的な結果が得られ ないケースがある。 具体的には、 次のような場合、 単純な差分画像では 適正な輝点数を得るのが難しい。  When actually performing a difference between images, there are cases in which an ideal result cannot be obtained by the above processing. Specifically, in the following cases, it is difficult to obtain an appropriate number of bright spots with a simple difference image.
① 第一画像と第二画像とで画像取得位置がずれた場合  ① When the image acquisition position is shifted between the first image and the second image
② 蛍光標識操作の影響や、画像取得時の光学的な条件の違いから、第一 画像と第二画像とで画像全体 (背景) の輝度が異なった場合 ② When the brightness of the entire image (background) differs between the first and second images due to the influence of the fluorescent labeling operation and the difference in the optical conditions at the time of image acquisition.
③ 画像取得時のピントの合い方や、画像処理時の条件設定の違いによつ て、 第一画像と第二画像とで、 各々対応する輝点に由来する画像の形状 やサイズが異なった場合 ③ The shape and size of the images derived from the corresponding bright spots differed between the first image and the second image due to differences in focusing when acquiring images and setting conditions during image processing. If
④ 第一画像と第二画像とで輝点自体が移動してしまった場合 場合 When the bright spot itself has moved between the first and second images
前記①の場合は、 パターンマッチングという画像処理で二つの画像の 位置関係を認識し、 対応する位置の差分画像を求めれば正しい結果を得 ることができる。  In the case of the above (1), a correct result can be obtained by recognizing the positional relationship between the two images by image processing called pattern matching and obtaining a difference image at the corresponding position.
前記②の場合は、 二値化やエツジ検出という画像処理で輝点に由来す る信号と背景に由来する信号との区別を明らかにする手法によつて対応 できる。 ③の場合は、 本実施例での対応が難しいが、 後述の実施例 3に よれば有効に対応が可能である。 ④の場合は、 前述の実施例 1で対応で ぎる。 The above case (2) can be dealt with by a method of clarifying a distinction between a signal derived from a bright spot and a signal derived from a background by image processing such as binarization and edge detection. In the case of (3), it is difficult to deal with this embodiment, but According to this, it is possible to respond effectively. In the case of ④, the above embodiment 1 can be used.
この他、 本実施例および後述の実施例 3では、 蛍光標識や洗浄の際に 細菌の位置が移動すると、 第一画像と第二画像との間の輝点の解析に誤 差が生じる。 これを防ぐためには、 吸引ろ過を行ったままで蛍光標識や 洗浄を行うことが有効である。  In addition, in this example and Example 3 described later, if the position of bacteria moves during fluorescent labeling or washing, an error occurs in the analysis of the bright spot between the first image and the second image. In order to prevent this, it is effective to perform fluorescent labeling and washing while performing suction filtration.
(実施例 3 :位置情報の利用による方法)  (Example 3: Method using location information)
図 3に基づき、 蛍光輝点の位置情報を利用する細菌数の計測方法の実 施例について、 以下に述べる。  Based on Fig. 3, an embodiment of a method for counting the number of bacteria using the position information of fluorescent bright spots is described below.
手順としては、 実施例 1および実施例 2と同様に、 まず、 試料液に含 まれる細菌を、 ろ過によってメンブレンフィルタ上に捕捉する。 次に、 細菌を捕捉したメンプレンフィルタの蛍光画像 (第一画像 6 ) を取得す る。 画像取得の際、 基準点 9 (図中、 白抜きの矢印で示す) を利用し、 これを基準にメンブレンフィルタの位置を把握して、 第一画像中の輝点 の位置情報 1 0を認識する。 続いて、 メンプレンフィルタ上に蛍光標識 試薬を添加し、 細菌を蛍光標識する。 その後、 メンブレンフィルタの蛍 光画像 (第二画像 7 ) を取得する。 第一画像と同様に、 画像取得の際、 基準点 9 (図中矢印) を利用し、 これを基準にメンブレンフィルタの位 置を把握して、 第二画像中の輝点の位置情報 1 1を認識する。  As a procedure, as in Examples 1 and 2, first, bacteria contained in the sample solution are captured on a membrane filter by filtration. Next, a fluorescence image (first image 6) of the membrane filter capturing the bacteria is acquired. At the time of image acquisition, the reference point 9 (indicated by a white arrow in the figure) is used, the position of the membrane filter is grasped based on this, and the position information 10 of the bright spot in the first image is recognized. I do. Subsequently, a fluorescent labeling reagent is added onto the membrane filter, and the bacteria are fluorescently labeled. After that, a fluorescent image (second image 7) of the membrane filter is acquired. Similar to the first image, the reference point 9 (arrow in the figure) is used when acquiring the image, the position of the membrane filter is grasped based on this, and the position information of the bright spot in the second image 1 1 Recognize.
図 3に示す第一画像 6および第二画像 7は、 微小ではあるが、 平行移 動と回転が起きている例を示す。 このように、 画像取得位置がずれた場 合でも、 基準点からの相対位置として輝点の位置を正しく認識できる。 そして、 第二画像 7と第一画像 6とで輝点の位置情報を比較し、 第二画 像 7になってから初めて現れた輝点情報 1 2を求める。 輝点情報 1 2で 求められた輝点数が、 細菌数である。  The first image 6 and the second image 7 shown in FIG. 3 show an example in which the translation and the rotation occur, though they are minute. Thus, even when the image acquisition position is shifted, the position of the bright spot can be correctly recognized as a relative position from the reference point. Then, the position information of the bright spot is compared between the second image 7 and the first image 6, and the bright spot information 12 that first appears after the second image 7 is obtained. The number of bright spots obtained in the bright spot information 12 is the bacterial count.
実際には、 面積を持たない点どうしの一致不一致を求めることは難し λ In practice, it is difficult to find a match between points that do not have an area. λ
14 い。 そこで、 第一画像 6で得られた輝点の存在位置に対して、 予め設定 した所定の領域を各々の輝点に付随する不感領域として認識させる。 不 感領域設定は、前述のように、例えば、 「第一画像で得られた輝点の存在 位置に対して半径 1 0 mの領域」 あるいは 「画像として縦横とも ± 5 ピクセルの領域」 と設定する。 この不感領域を適切に設定することによ つて、 前述の実施例 2で課題となっていた③の場合にも、 細菌数を適正 に計測することが可能となる。  14 Therefore, with respect to the location of the bright spot obtained in the first image 6, a predetermined area set in advance is recognized as an insensitive area associated with each bright spot. As described above, the dead area setting may be, for example, "a region having a radius of 10 m with respect to the position of the bright spot obtained in the first image" or "a region of ± 5 pixels both vertically and horizontally as the image" I do. By appropriately setting the dead area, it is possible to appropriately measure the number of bacteria even in the case of (3), which has been a problem in the second embodiment described above.
なお、 図 3に示す実施例において、 前記請求の範囲第 4項の発明のよ うに、 第一画像取得の際の励起光量を、 前記第二画像取得の際の励起光 量より大とすることにより、 蛍光性夾雑物の影響の排除をより確実にし て、 生細胞の計数精度をより向上することができる。  In the embodiment shown in FIG. 3, the amount of excitation light at the time of acquiring the first image is set to be larger than the amount of excitation light at the time of acquiring the second image, as in the invention of claim 4. As a result, the influence of the fluorescent contaminants can be more reliably eliminated, and the counting accuracy of living cells can be further improved.
さらに、 前記請求の範囲第 5項の発明のように、 第一画像を蛍光画像 に代えて試料の実体画像とすることにより、 計数精度の向上を図ること ができる。 この場合には、 第一画像を取得する際、 励起光を白色光に代 えて試料に照射する。  Further, as in the invention of claim 5, the counting accuracy can be improved by using the actual image of the sample instead of the first image instead of the fluorescent image. In this case, when acquiring the first image, the sample is irradiated with excitation light instead of white light.
(実施例 4 :装置の実施例)  (Example 4: Example of apparatus)
図 4に基づき、 本発明に係る生細胞の計数装置の実施例について説明 する。  An embodiment of the viable cell counting apparatus according to the present invention will be described with reference to FIG.
光源 1 3から発した励起光は、 ダイクロイックミラー 1 4で反射、 対 物レンズ 1 5で集光し、メンブレンフィルタ 2上の試料 1 6に照射する。 光源としては、 発光ダイオード、 半導体レーザ、 水銀ランプなどが好適 である。 試料が発する蛍光は対物レンズで集光し、 ダイクロイツクミラ 一を透過して、 撮像素子 1 7に結像する。 撮像素子には、 C C D素子や C M O S素子を用いることができる。 撮像素子は蛍光を画像として捉え 電気信号に変換する。 撮像素子で得た画像は画像 ·演算処理部 4に伝送 し、 既に述べたような各種の画像処理や演算処理を行う。 また、 試料を載せたメンブレンフィルタ 2は、 図示しない駆動手段に よって水平方向 1 8に順次走査し、 複数画面を取得、 解析することで視 野面積を拡大することが好ましい。 これは、 例えば、 細菌の分布に粗密 がある場合に、計数結果の統計的なばらつきを低減するのに有効である。 さらに、 垂直方向 1 9の駆動は画像観察のためにォートフォーカスを行 う場合に必要な機能である。 駆動手段としては、 例えば、 精密な位置制 御ができるステツビングモータが望ましい。 The excitation light emitted from the light source 13 is reflected by the dichroic mirror 14, condensed by the objective lens 15, and irradiates the sample 16 on the membrane filter 2. As the light source, a light emitting diode, a semiconductor laser, a mercury lamp, or the like is suitable. The fluorescence emitted from the sample is collected by the objective lens, passes through the dichroic mirror, and forms an image on the image sensor 17. As the imaging device, a CCD device or a CMOS device can be used. The image sensor captures the fluorescence as an image and converts it into electrical signals. The image obtained by the image sensor is transmitted to the image / arithmetic processing unit 4, and performs various image processing and arithmetic processing as described above. Further, it is preferable that the membrane filter 2 on which the sample is placed is sequentially scanned in the horizontal direction 18 by a driving means (not shown), and a plurality of screens are acquired and analyzed to enlarge the visual field area. This is effective, for example, in reducing the statistical variability of the counting results when the distribution of bacteria varies. Further, driving in the vertical direction 19 is a necessary function when performing autofocus for image observation. As the driving means, for example, a stepping motor capable of precise position control is desirable.
なお、 第一画像を蛍光画像に代えて試料の実体画像とする場合には、 第一画像を取得する際、 励起光を白色光に代えて試料に照射するが、 前 記光源 1 3は、 励起光と白色光との図示しない切り替え手段を備える。  In the case where the first image is replaced with a fluorescence image and a real image of the sample is used, when the first image is acquired, the sample is irradiated with excitation light instead of white light. A switching unit (not shown) for switching between the excitation light and the white light is provided.
(実施例 5 :静電力を利用する方法)  (Embodiment 5: Method of using electrostatic force)
図 5に基づき、 生細胞の捕捉に静電力を利用する方法の実施例につい て、 以下に述べる。  Based on FIG. 5, an embodiment of a method of using electrostatic force for capturing living cells will be described below.
図 5において、 試料を、 生細胞計数用の撮像手段 2 1 と静電力発生用 の電極 2 2とを備えたセル流路 2 0内に導入し、 前記セル流路 2 0の一 部を正に帯電させることにより、 自然状態で負に帯電した試料中の生細 胞 3 0を前記正帯電部に捕捉し、 捕捉した生細胞を含む試料の第一画像 を撮像手段 2 1で取得し、 その後、 蛍光試薬をセル流路 2 0に導入して 前記捕捉した生細胞 3 0を蛍光標識し、 生細胞に取り込まれなかった蛍 光試薬を洗浄液によって除去した後、 捕捉した生細胞を含む試料の蛍光 画像 (第二画像) を撮像手段 2 1により取得する。  In FIG. 5, a sample is introduced into a cell channel 20 provided with an imaging means 21 for counting live cells and an electrode 22 for generating electrostatic force, and a part of the cell channel 20 is corrected. The positively charged portion captures the living cells 30 in the sample negatively charged in the natural state by the positively charged portion, and acquires the first image of the sample containing the captured living cells by the imaging means 21. Thereafter, a fluorescent reagent is introduced into the cell flow path 20 to label the captured living cells 30 with fluorescence. After removing the fluorescent reagent not taken up by the living cells with a washing solution, a sample containing the captured living cells is obtained. The fluorescence image (second image) is obtained by the imaging means 21.
なお、 図 5において、 セル流路 2 0の少なくとも撮像手段 2 1が臨む 面は、 透明なガラスまたはプラスチックにより構成される。  In FIG. 5, at least the surface of the cell flow path 20 facing the imaging means 21 is made of transparent glass or plastic.
(実施例 6 :抗原抗体反応を利用する方法)  (Example 6: Method using antigen-antibody reaction)
図 6に基づき、 生細胞の捕捉に抗原抗体反応を利用する方法の実施例 について、 以下に述べる。 図 6において、 試料を、 生細胞計数用の撮像手段 2 1を備えたセル流 路 2 0内に導入し、 前記セル流路 2 0の一部に、 予め、 捕捉すべき生細 胞と特異的に結合する抗体 2 3を固定しておくことにより、 試料中の生 細胞 3 0を抗体 2 3との結合によって捕捉し、 抗体 2 3に捕捉した生細 胞 3 0を含む試料の第一画像を撮像手段 2 1により取得し、 その後、 蛍 光試薬を前記セル流路 2 0に導入して前記捕捉した生細胞 3 0を蛍光標 識し、 生細胞に取り込まれなかった蛍光試薬を洗浄液によって除去した 後、 前記捕捉した生細胞を含む試料の蛍光画像 (第二画像) を撮像手段 2 1により取得する。 産業上の利用の可能性 Based on FIG. 6, an embodiment of a method using an antigen-antibody reaction for capturing living cells will be described below. In FIG. 6, a sample is introduced into a cell flow path 20 provided with an imaging means 21 for counting living cells, and a part of the cell flow path 20 is specified in advance with a living cell to be captured. By immobilizing the antibody 23 that binds specifically, the live cells 30 in the sample are captured by binding with the antibody 23, and the first sample containing the live cells 30 captured by the antibody 23 is removed. An image is obtained by the imaging means 21, and thereafter, a fluorescent reagent is introduced into the cell flow path 20 to fluorescently label the captured living cells 30, and the fluorescent reagent not taken up by the living cells is washed with a washing liquid. After the removal, a fluorescence image (second image) of the sample containing the captured living cells is obtained by the imaging means 21. Industrial applicability
この発明は、 前述のように、 微生物や組織細胞等の生細胞を、 蛍光試 薬で染色し、 試薬を励起することで蛍光を発生させ、 あるいは、 微生物 や組織細胞等の生細胞が元々有する蛍光性分子を励起することで蛍光を 発生させ、 その蛍光画像を利用して生細胞を計数する生細胞の計数方法 および装置に利用できる。前記微生物としては、細菌, 真菌, ゥィルス, 酵母, カビ類などがあり、 本計数方法および装置の利用分野としては、 医療, 食品製造, 上下水道などがある。  According to the present invention, as described above, living cells such as microorganisms and tissue cells are stained with a fluorescent reagent and fluorescence is generated by exciting the reagent, or living cells such as microorganisms and tissue cells originally have The present invention can be applied to a method and an apparatus for counting living cells, in which fluorescence is generated by exciting fluorescent molecules, and the number of living cells is counted using the fluorescence image. The microorganisms include bacteria, fungi, viruses, yeasts, molds, and the like, and the application fields of the present counting method and apparatus include medical treatment, food production, and water and sewage.
この発明によれば、 前記生細胞を蛍光標識する前に、 試料の蛍光画像 もしくは実体画像 (第一画像) を取得し、 前記生細胞を蛍光標識した後 に、 試料の蛍光画像 (第二画像) を取得し、 前記第一画像中と第二画像 中の輝点数の差を求めるか、 又は、 前記第一画像と第二画像との差分画 像を求め、 この差分画像中の輝点数を求めるか、 もしくは、 前記第二画 像中の輝点の内、 その位置が、 前記第一画像中の各輝点に付随する不感 領域に含まれない輝点数を求めることとしたので、  According to the present invention, a fluorescence image or a stereoscopic image (first image) of a sample is obtained before the living cells are fluorescently labeled, and a fluorescence image of the sample (second image) is obtained after the living cells are fluorescently labeled. ) Is obtained, and the difference between the number of bright spots in the first image and the second image is calculated, or the difference image between the first image and the second image is calculated, and the number of bright spots in the difference image is calculated. Or the number of luminescent points in the second image where the position is not included in the dead area associated with each luminescent point in the first image.
試料の性状に関わらず蛍光性夾雑物の影響を排除し、 測定精度の向上 を図った生細胞の計数方法および装置を提供することができる。 Improves measurement accuracy by eliminating the effects of fluorescent contaminants regardless of sample properties Thus, a method and apparatus for counting living cells can be provided.

Claims

請求の範囲 The scope of the claims
1 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識する ことにより、 前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 試料の蛍光画像 (第一画像) を取得 し、 前記第一画像中の輝点を計数し、 1. In a live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the fluorescence of the sample is measured before the living cells are fluorescently labeled. Obtaining an image (first image), counting bright spots in the first image,
前記生細胞を蛍光標識した後に、 試料の蛍光画像 (第二画像) を取得 し、 前記第二画像中の輝点を計数し、  Obtaining a fluorescence image (second image) of the sample after fluorescent labeling the living cells, counting the bright spots in the second image,
前記第一画像中の輝点数と第二画像中の輝点数との差を求めることに より、 前記生細胞の数を測定することを特徴とする生細胞の計数方法。  A viable cell counting method, wherein the number of viable cells is measured by calculating a difference between the number of bright points in the first image and the number of bright points in the second image.
2 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識する ことにより、 前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 試料の蛍光画像 (第一画像) を取得 し、 前記生細胞を蛍光標識した後に、 試料の蛍光画像 (第二画像) を取 得し、 2. In a live cell counting method of measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the fluorescence of the sample is measured before the living cells are fluorescently labeled. After obtaining an image (first image) and fluorescently labeling the living cells, obtaining a fluorescent image (second image) of the sample,
前記第一画像と第二画像との差分画像を求め、 この差分画像中の輝点 数を求めることにより、 前記生細胞の数を測定することを特徴とする生 細胞の計数方法。  A method for counting living cells, comprising: obtaining a difference image between the first image and the second image; and measuring the number of the living cells by calculating the number of bright spots in the difference image.
3 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識する ことにより、 前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 試料の蛍光画像 (第一画像) を取得 し、 かつ前記第一画像中の輝点の位置情報を取得し、 さらに、 前記輝点 に対して半径や縦横幅などの不感領域を予め設定して、 前記第一画像中 の各輝点に付随する不感領域をそれぞれ認識し、 前記生細胞を蛍光標識した後に、 試料の蛍光画像 (第二画像) を取得 し、 かつ前記第二画像中の輝点の位置情報を取得し、 3. In a live cell counting method of measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the fluorescence of the sample may be measured before the live cells are fluorescently labeled. Acquiring an image (first image), acquiring position information of a luminescent spot in the first image, and further setting in advance an insensitive area such as a radius and a vertical and horizontal width with respect to the luminescent point, Recognize the dead area associated with each bright spot in one image, Obtaining a fluorescent image (second image) of the sample after fluorescent labeling the living cells; and obtaining position information of a bright spot in the second image;
前記第二画像中の輝点の内、 その位置が、 前記第一画像中の各輝点に 付随する不感領域に含まれない輝点数を求めることにより、 前記生細胞 の数を測定することを特徴とする生細胞の計数方法。  Among the bright spots in the second image, by determining the number of bright spots whose position is not included in the dead area associated with each bright spot in the first image, the number of living cells can be measured. Characteristic method for counting live cells.
4 . 前記第一画像取得の際の励起光量は、 前記第二画像取得の際の励起 光量より大とすることを特徴とする請求の範囲第 1項ないし第 3項のい ずれか 1項に記載の生細胞の計数方法。 4. The method according to any one of claims 1 to 3, wherein the excitation light quantity at the time of acquiring the first image is larger than the excitation light quantity at the time of acquiring the second image. The method for counting live cells as described above.
5 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識する ことにより、 前記生細胞の数を測定する生細胞の計数方法において、 前記生細胞を蛍光標識する前に、 前記請求の範囲第 3項に記載の第一 画像に代えて、 試料の実体画像を取得してこれを第一画像とし、 かつ前 記実体画像中の全ての粒子の輝点の位置情報を取得し、 さらに、 前記輝 点に対して半径や縦横幅などの不感領域を予め設定して、 前記実体画像 中の各輝点に付随する不感領域をそれぞれ認識し、 5. In a live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, the method according to claim 1, In place of the first image described in the third paragraph of the range, a real image of the sample is obtained and used as the first image, and the position information of the bright spots of all the particles in the real image is obtained. In advance, a dead area such as a radius and a vertical and horizontal width is set in advance for the bright point, and a dead area associated with each bright point in the real image is recognized.
前記生細胞を蛍光標識した後に、 試料の蛍光画像 (第二画像) を取得 し、 かつ前記第二画像中の輝点の位置情報を取得し、  Obtaining a fluorescent image (second image) of the sample after fluorescent labeling the living cells; and obtaining position information of a bright spot in the second image;
前記第二画像中の輝点の内、 その位置が、 前記実体画像中の各輝点に 付随する不感領域に含まれない輝点数を求めることにより、 前記生細胞 の数を測定すること'を特徴とする生細胞の計数方法。  Among the bright spots in the second image, the position is determined by determining the number of bright spots that are not included in a dead area associated with each bright spot in the real image, thereby measuring the number of living cells. Characteristic method for counting live cells.
6 . 前記「生細胞を蛍光試薬により標識すること」 に代えて、 「生細胞内 の代謝により蛍光すること」 とすることを特徴とする請求の範囲第 1項 ないし第 5項のいずれか 1項に記載の生細胞の計数方法。 6. The method according to any one of claims 1 to 5, characterized in that instead of "labeling living cells with a fluorescent reagent", "fluorescence is caused by metabolism in living cells". 4. The method for counting living cells according to the above item.
7 . 前記生細胞は、 細菌とすることを特徴とする請求の範囲第 1項ない し第 6項のいずれか 1項に記載の生細胞の計数方法。 7. The method for counting living cells according to any one of claims 1 to 6, wherein the living cells are bacteria.
8 . 試料をろ過してフィルタ上に生細胞を捕捉し、 前記フィルタ上に捕 捉した生細胞を含む試料の第一画像を取得し、 蛍光試薬をフィルタ上の 試料に添加して生細胞を蛍光標識し、 生細胞に取り込まれなかった蛍光 試薬をろ過によって除去した後、 フィルタ上に捕捉した生細胞を含む試 料の蛍光画像 (第二画像) を取得することを特徴とする請求の範囲第 1 項ないし第 5項のいずれか 1項に記載の生細胞の計数方法。 8. Filter the sample to capture live cells on the filter, obtain a first image of the sample containing the live cells captured on the filter, and add a fluorescent reagent to the sample on the filter to remove the live cells. Claims: A fluorescent image (second image) of a sample containing live cells captured on a filter is obtained after removing the fluorescent reagent that has been fluorescently labeled and not taken up by the live cells by filtration. 6. The method for counting living cells according to any one of Items 1 to 5.
9 . 生細胞に取り込まれなかった蛍光試薬をろ過によって除去した後、 ろ過後も残留する蛍光試薬を洗い流すべく、 洗浄液を前記フィルタ上の 試料に添加して、 この洗浄液をろ過することを特徴とする請求の範囲第 8項に記載の生細胞の計数方法。 9. After removing the fluorescent reagent not taken up by the living cells by filtration, a washing solution is added to the sample on the filter so as to wash away the remaining fluorescent reagent even after the filtration, and the washing solution is filtered. 9. The method for counting living cells according to claim 8, wherein
1 0 . 前記洗浄液は、 前記蛍光試薬の蛍光発現に適した P Hを有する緩 衝液とすることを特徴とする請求の範囲第 9項に記載の生細胞の計数方 法。 10. The method for counting live cells according to claim 9, wherein the washing solution is a buffer solution having a pH suitable for expressing the fluorescence of the fluorescent reagent.
1 1 . 前記試料を、 生細胞計数用の撮像手段を備えたセル流路内に導入 し、 前記セル流路の一部を正に帯電させることにより、 自然状態で負に 帯電した試料中の生細胞を前記正帯電部に捕捉し、 前記捕捉した生細胞 を含む試料の前記第一画像を取得し、 その後、 蛍光試薬を前記セル流路 に導入して前記捕捉した生細胞を蛍光標識し、 生細胞に取り込まれなか つた蛍光試薬を洗浄液によって除去した後、 前記捕捉した生細胞を含む 試料の蛍光画像 (第二画像) を取得することを特徴とする請求の範囲第 1項ないし第 5項のいずれか 1項に記載の生細胞の計数方法。 1 1. The sample is introduced into a cell flow path provided with an imaging means for viable cell counting, and a part of the cell flow path is positively charged. The live cells are captured by the positively charged portion, the first image of the sample containing the captured live cells is obtained, and then a fluorescent reagent is introduced into the cell flow path to label the captured live cells with fluorescence. After removing the fluorescent reagent that has not been taken up by the living cells with a washing solution, it contains the captured living cells. The method for counting living cells according to any one of claims 1 to 5, wherein a fluorescence image (second image) of the sample is obtained.
1 2 . 前記試料を、 生細胞計数用の撮像手段を備えたセル流路内に導入 し、 前記セル流路の一部に、 予め、 捕捉すべき生細胞と特異的に結合す る抗体を固定しておくことにより、 試料中の生細胞を前記抗体との結合 によって捕捉し、 前記抗体に捕捉した生細胞を含む試料の前記第一画像 を取得し、 その後、 蛍光試薬を前記セル流路に導入して前記捕捉した生 細胞を蛍光標識し、 生細胞に取り込まれなかった蛍光試薬を洗浄液によ つて除去した後、前記捕捉した生細胞を含む試料の蛍光画像(第二画像) を取得することを特徴とする請求の範囲第 1項ないし第 5項のいずれか 1項に記載の生細胞の計数方法。 12. Introduce the sample into a cell flow path provided with an imaging means for viable cell counting, and place an antibody that specifically binds to live cells to be captured in advance in a part of the cell flow path By immobilizing, the live cells in the sample are captured by binding to the antibody, the first image of the sample containing the live cells captured by the antibody is obtained, and then the fluorescent reagent is passed through the cell flow path. After capturing the living cells and labeling the captured living cells with a fluorescent reagent, removing the fluorescent reagent not taken up by the living cells with a washing solution, a fluorescent image (second image) of the sample containing the captured living cells is obtained. 6. The method for counting living cells according to any one of claims 1 to 5, wherein the method includes counting live cells.
1 3 . 前記試料を、 ろ過してフィルタ上に生細胞を捕捉し、 前記フィル タ上の生細胞捕捉面を、ガラスまたはプラスチック等の透明板で被覆し、 この透明板側から前記捕捉した生細胞を含む試料の前記第一画像を取得 し、 その後、 蛍光試薬をフィルタの生細胞捕捉面と反対側から添加する ことにより、 前記前記捕捉した生細胞を蛍光標識し、 生細胞に取り込ま れなかつた蛍光試薬をろ過によって除去した後、 前記透明板側から前記 捕捉した生細胞を含む試料の蛍光画像 (第二画像) を取得することを特 徴とする請求の範囲第 1項ないし第 5項のいずれか 1項に記載の生細胞 の計数方法。 13. Filter the sample to capture live cells on a filter, cover the live cell capture surface on the filter with a transparent plate such as glass or plastic, and from the transparent plate side, Obtaining the first image of the sample containing cells, and thereafter adding a fluorescent reagent from the side opposite to the live cell capturing surface of the filter, thereby labeling the captured live cells with fluorescence, and 6. The method according to claim 1, wherein after removing the fluorescent reagent by filtration, a fluorescence image (second image) of the sample containing the captured living cells is obtained from the transparent plate side. The method for counting living cells according to any one of the above items.
1 4 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識す ることにより、 前記生細胞の数を測定する生細胞の計数方法において、 生細胞計数用の撮像手段を備え、 かつ試料中の生細胞を捕捉するため の正帯電部もしくは抗体固定部を備えたセル流路内に、 前記試料を蛍光 試薬と共に導入し、 前記蛍光試薬に反応して生細胞が蛍光標識される前 に、 前記捕捉した生細胞を含む試料の第一画像を取得し、—その後、 前記 蛍光試薬に反応して生細胞が蛍光標識した後に、 前記捕捉した生細胞を 含む試料の蛍光画像 (第二画像) を取得することにより、 前記生細胞の 数を測定することを特徴とする生細胞の計数方法。 14. A live cell counting method for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, comprising: an imaging means for counting live cells; and To capture live cells in a sample The sample is introduced together with a fluorescent reagent into a cell flow path provided with a positively charged portion or an antibody fixing portion, and the captured live cells are contained before the live cells are fluorescently labeled in response to the fluorescent reagent. Obtaining a first image of the sample, and thereafter obtaining a fluorescence image (second image) of the sample containing the captured living cells after the living cells are fluorescently labeled in response to the fluorescent reagent. A method for counting living cells, comprising measuring the number of living cells.
1 5 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識す ることにより、 前記生細胞の数を測定する生細胞の計数装置において、 前記試料へ励起光を照射する光学的手段と、 試料が発する蛍光を捕集 する光学的手段と、 捕集した蛍光を画像として捉え電気信号に変換する 撮像素子と、 撮像素子で得た画像中の輝点を認識し、 認識した個々の輝 点の面積を求める画像処理手段と、 予め設定した範囲の面積を有する輝 点を計数し、 かつ前記第一画像と第二画像との間の輝点数の差を求める 演算手段とを備えることを特徴とする生細胞の計数装置。 15. A live cell counting apparatus for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent, wherein an optical means for irradiating the sample with excitation light. Optical means for capturing the fluorescence emitted from the sample, an image sensor that captures the captured fluorescence as an image and converts it into electrical signals, and recognizes the bright spots in the image obtained by the image sensor and Image processing means for calculating the area of the luminescent spot; and calculating means for counting the number of luminescent spots having an area of a preset range and calculating the difference in the number of luminescent spots between the first image and the second image. A viable cell counting device, characterized in that:
1 6 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識す. ることにより、 前記生細胞の数を測定する生細胞の計数装置において、 前記試料へ励起光を照射する光学的手段と、 試料が発する蛍光を捕集 する光学的手段と、 捕集した蛍光を画像として捉え電気信号に変換する 撮像素子と、 前記第一画像と第二画像との間の差分画像を求め、 この差 分画像中の輝点を認識し、 認識した個々の輝点の面積を求める画像処理 手段と、 予め設定した範囲の面積を有する輝点を計数する演算手段とを 備えることを特徴とする生細胞の計数装置。 16. A live cell counting device for measuring the number of living cells by labeling living cells such as microorganisms and cell tissues in a sample with a fluorescent reagent. Means, optical means for collecting the fluorescence emitted by the sample, an image sensor for capturing the collected fluorescence as an image and converting it into an electric signal, and obtaining a difference image between the first image and the second image, Image processing means for recognizing bright spots in the difference image and calculating the area of each recognized bright spot, and arithmetic means for counting bright spots having an area of a preset range are provided. Live cell counting device.
1 7 . 試料中の微生物や細胞組織などの生細胞を蛍光試薬により標識す ることにより、 前記生細胞の数を測定する生細胞の計数装置において、 前記試料へ励起光を照射する光学的手段と、 試料が発する蛍光を捕集 する光学的手段と 捕集した蛍光を画像として捉え電気信号に変換する 撮像素子と、 撮像素子で得た画像中の輝点を認識し、 認識した個々の輝 点の面積を求め、 予め設定した範囲の面積を有する輝点の位置を記録す る画像処理手段と、 記録した個々の輝点の位置に対して、 予め設定した 領域を各々の輝点に付随する不感領域として認識し、 かつ、 前記第二画 像中の輝点のうち、 その位置が第一画像で認識された不感領域に含まれ ないものを判別し計数する演算手段とを備えることを特徴とする生細胞 の計数装置。 17 7. Label living cells such as microorganisms and cell tissues in the sample with a fluorescent reagent. Thus, in the living cell counting device for measuring the number of living cells, an optical unit for irradiating the sample with excitation light, an optical unit for collecting fluorescence emitted from the sample, and an image of the collected fluorescence Recognizes the image sensor and converts it to an electrical signal.Recognizes the bright spots in the image obtained by the image sensor, calculates the area of each recognized bright spot, and records the position of the bright spot having an area within a preset range. Image processing means, and recognizes a preset area as a dead area associated with each bright point with respect to the position of each recorded bright point, and, among the bright points in the second image, A counting means for determining and counting a position whose position is not included in the insensitive area recognized in the first image.
PCT/JP2003/006325 2002-05-23 2003-05-21 Living cell counting method and device WO2003100086A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004507526A JPWO2003100086A1 (en) 2002-05-23 2003-05-21 Viable cell counting method and apparatus
AU2003242354A AU2003242354A1 (en) 2002-05-23 2003-05-21 Living cell counting method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002148884 2002-05-23
JP2002-148884 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100086A1 true WO2003100086A1 (en) 2003-12-04

Family

ID=29561196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006325 WO2003100086A1 (en) 2002-05-23 2003-05-21 Living cell counting method and device

Country Status (3)

Country Link
JP (1) JPWO2003100086A1 (en)
AU (1) AU2003242354A1 (en)
WO (1) WO2003100086A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265717A (en) * 2004-03-19 2005-09-29 Yamato Scient Co Ltd Tissue sample analyzer
JP2007006709A (en) * 2005-06-28 2007-01-18 Matsushita Electric Ind Co Ltd Method for discriminating luminescent material
JP2007060945A (en) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd Microorganism counter
JP2008092812A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Method for measuring microbial count
WO2009110462A1 (en) * 2008-03-04 2009-09-11 株式会社ニコン Living cell judging method for cell observation, image processing program for cell observation, and image processing device
WO2010010670A1 (en) * 2008-07-23 2010-01-28 株式会社ニコン Technique for estimating cell conditions and image processor for cell observation
JP2011017982A (en) * 2009-07-10 2011-01-27 Sony Corp Fluorescent-image acquisition apparatus, and method and program of the same
JP2011209301A (en) * 2004-07-19 2011-10-20 Cell Biosciences Inc Method and device for analyte detection
JP2013057631A (en) * 2011-09-09 2013-03-28 Konica Minolta Medical & Graphic Inc Evaluation system of biological material expression level
JP2014521307A (en) * 2011-05-20 2014-08-28 シーメンス アクチエンゲゼルシヤフト Method for detecting cells in a liquid sample and apparatus for carrying out this method
US8945361B2 (en) 2005-09-20 2015-02-03 ProteinSimple Electrophoresis standards, methods and kits
US9304133B2 (en) 2004-07-19 2016-04-05 ProteinSimple Methods and devices for analyte detection
US9400277B2 (en) 2004-07-19 2016-07-26 ProteinSimple Methods and devices for analyte detection
US9766206B2 (en) 2013-09-27 2017-09-19 ProteinSimple Apparatus, systems, and methods for capillary electrophoresis
US9804079B2 (en) 2012-04-19 2017-10-31 ProteinSimple Dual wavelength isoelectric focusing for determining drug load in antibody drug conjugates
JP2018521302A (en) * 2015-04-28 2018-08-02 オルフィディア リミテッド Analyte detection and methods therefor
US10107782B2 (en) 2008-01-25 2018-10-23 ProteinSimple Method to perform limited two dimensional separation of proteins and other biologicals

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
WO1996002666A1 (en) * 1994-07-13 1996-02-01 The Secretary Of State For Defence Capture assays
JPH10179191A (en) * 1996-12-25 1998-07-07 Mitsubishi Chem Corp Detection of live cell
JPH10215894A (en) * 1997-02-06 1998-08-18 Mitsubishi Chem Corp Detection of live cell
WO2000039329A1 (en) * 1998-12-28 2000-07-06 Sapporo Breweries Ltd. Method of counting microorganisms and device for accomplishing the counting
JP2001017980A (en) * 1999-07-06 2001-01-23 Kurita Water Ind Ltd Method for sterilizing microorganism and device therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338160A (en) * 1986-08-01 1988-02-18 Sumitomo Electric Ind Ltd Method and apparatus for fractionating living cell
JPH02281131A (en) * 1989-04-24 1990-11-16 Mitsubishi Heavy Ind Ltd Apparatus for judging alive or dead state of microorganism cell
JP2735626B2 (en) * 1989-06-28 1998-04-02 キリンビバレッジ株式会社 Microbial rapid measurement device
WO1993022058A1 (en) * 1992-05-01 1993-11-11 Trustees Of The University Of Pennsylvania Polynucleotide amplification analysis using a microfabricated device
JPH08334466A (en) * 1995-06-06 1996-12-17 Nikon Corp Fluorophotometry and device
JP4812962B2 (en) * 2001-05-10 2011-11-09 パナソニックエコシステムズ株式会社 Specific microorganism measuring method and specific microorganism measuring apparatus
JP4714366B2 (en) * 2001-05-10 2011-06-29 パナソニックエコシステムズ株式会社 Specific microorganism weighing device
EP1406081A4 (en) * 2001-07-03 2011-10-05 Hitachi Ltd Biological sample optical measuring method and biological sample optical measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
WO1996002666A1 (en) * 1994-07-13 1996-02-01 The Secretary Of State For Defence Capture assays
JPH10179191A (en) * 1996-12-25 1998-07-07 Mitsubishi Chem Corp Detection of live cell
JPH10215894A (en) * 1997-02-06 1998-08-18 Mitsubishi Chem Corp Detection of live cell
WO2000039329A1 (en) * 1998-12-28 2000-07-06 Sapporo Breweries Ltd. Method of counting microorganisms and device for accomplishing the counting
JP2001017980A (en) * 1999-07-06 2001-01-23 Kurita Water Ind Ltd Method for sterilizing microorganism and device therefor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265717A (en) * 2004-03-19 2005-09-29 Yamato Scient Co Ltd Tissue sample analyzer
US9400277B2 (en) 2004-07-19 2016-07-26 ProteinSimple Methods and devices for analyte detection
JP2011209301A (en) * 2004-07-19 2011-10-20 Cell Biosciences Inc Method and device for analyte detection
US9304133B2 (en) 2004-07-19 2016-04-05 ProteinSimple Methods and devices for analyte detection
JP2007006709A (en) * 2005-06-28 2007-01-18 Matsushita Electric Ind Co Ltd Method for discriminating luminescent material
JP2007060945A (en) * 2005-08-30 2007-03-15 Matsushita Electric Ind Co Ltd Microorganism counter
US8945361B2 (en) 2005-09-20 2015-02-03 ProteinSimple Electrophoresis standards, methods and kits
JP2008092812A (en) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd Method for measuring microbial count
US10107782B2 (en) 2008-01-25 2018-10-23 ProteinSimple Method to perform limited two dimensional separation of proteins and other biologicals
WO2009110462A1 (en) * 2008-03-04 2009-09-11 株式会社ニコン Living cell judging method for cell observation, image processing program for cell observation, and image processing device
JP2009207416A (en) * 2008-03-04 2009-09-17 Nikon Corp Technique for distinguishing living cell in cell observation, image processing program of cell observation and image processing apparatus
US8478017B2 (en) 2008-03-04 2013-07-02 Nikon Corporation Method for distinguishing living cells during cell observation, image processing program for cell observation, and image processing device
US8902306B2 (en) 2008-07-23 2014-12-02 Nikon Corporation Method for detecting cell states, and image processing device for cell viewing
WO2010010670A1 (en) * 2008-07-23 2010-01-28 株式会社ニコン Technique for estimating cell conditions and image processor for cell observation
US9029803B2 (en) 2009-07-10 2015-05-12 Sony Corporation Fluorescent-image acquisition apparatus, fluorescent-image acquisition method and fluorescent-image acquisition program
JP2011017982A (en) * 2009-07-10 2011-01-27 Sony Corp Fluorescent-image acquisition apparatus, and method and program of the same
JP2014521307A (en) * 2011-05-20 2014-08-28 シーメンス アクチエンゲゼルシヤフト Method for detecting cells in a liquid sample and apparatus for carrying out this method
JP2013057631A (en) * 2011-09-09 2013-03-28 Konica Minolta Medical & Graphic Inc Evaluation system of biological material expression level
US9804079B2 (en) 2012-04-19 2017-10-31 ProteinSimple Dual wavelength isoelectric focusing for determining drug load in antibody drug conjugates
US10753859B2 (en) 2012-04-19 2020-08-25 ProteinSimple Dual wavelength isoelectric focusing for determining drug load in antibody drug conjugates
US9766206B2 (en) 2013-09-27 2017-09-19 ProteinSimple Apparatus, systems, and methods for capillary electrophoresis
US11933759B2 (en) 2013-09-27 2024-03-19 ProteinSimple Apparatus, systems, and methods for capillary electrophoresis
JP2018521302A (en) * 2015-04-28 2018-08-02 オルフィディア リミテッド Analyte detection and methods therefor
US11061024B2 (en) 2015-04-28 2021-07-13 Senzo Health Limited Analyte detection and methods therefor

Also Published As

Publication number Publication date
AU2003242354A1 (en) 2003-12-12
JPWO2003100086A1 (en) 2005-09-22

Similar Documents

Publication Publication Date Title
WO2003100086A1 (en) Living cell counting method and device
AU2002223985B2 (en) A method for the detection of viable microorganisms
JP6186414B2 (en) Method for characterizing microorganisms on solid or semi-solid media
AU2004273996A1 (en) Biagnostic system for otolaryngologic pathogens and use thereof
CN101432739A (en) Ultrasensitive sensor and rapid detection of analytes
JP2007071742A (en) Fluorescence reading device and device for counting microorganisms
JP4487985B2 (en) Microorganism weighing device
JP4812962B2 (en) Specific microorganism measuring method and specific microorganism measuring apparatus
JP4967280B2 (en) Microbe counting device
US20080187946A1 (en) Apparatus for and method of detecting microorganism or micro-particle in real time by using electrical charging method
JP4714366B2 (en) Specific microorganism weighing device
WO2003102224A1 (en) Method of counting microorganisms or cells
JP6692075B2 (en) Microorganism detection device, microorganism detection program, and microorganism detection method
JP4722343B2 (en) Number counting method, program therefor, recording medium, and number counting device
JP4068419B2 (en) Microorganism detection method and apparatus
JP4840398B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
JP4171974B2 (en) Antigen separation apparatus and antigen measurement method and apparatus using the same
JP2007071743A (en) Fluorescence reading device and device for counting microorganisms
JP2007097582A (en) Microorganisms-counting apparatus
JP2006081427A (en) Method for detecting bacterium and device for detecting bacterium
JP7286070B2 (en) Inspection system, inspection method, program, and computer-readable storage medium
Huang et al. IDENTIFICATION AND ENUMERATION OF SALMONELLA ON SAMPLE SLIDES OF POULTRY CARCASSWASHWATER USING IMAGE ANALYSIS WITH FLUORESCENT MICROSCOPY
EP3645734B1 (en) A method for quantifying the cultivability of individual bacterial cells using culture independent parameters
JPH04104799A (en) Quantitative measurement of number of bacteria in water
WO2004109283A1 (en) Biochemical sensor and sensing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2004507526

Country of ref document: JP

122 Ep: pct application non-entry in european phase