WO2003079419A1 - Mask storage device, exposure device, and device manufacturing method - Google Patents

Mask storage device, exposure device, and device manufacturing method Download PDF

Info

Publication number
WO2003079419A1
WO2003079419A1 PCT/JP2003/003107 JP0303107W WO03079419A1 WO 2003079419 A1 WO2003079419 A1 WO 2003079419A1 JP 0303107 W JP0303107 W JP 0303107W WO 03079419 A1 WO03079419 A1 WO 03079419A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
mask
reticle
opening
gas
Prior art date
Application number
PCT/JP2003/003107
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Takashi Aoki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2003577319A priority Critical patent/JPWO2003079419A1/en
Priority to AU2003221393A priority patent/AU2003221393A1/en
Publication of WO2003079419A1 publication Critical patent/WO2003079419A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/70741Handling masks outside exposure position, e.g. reticle libraries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67353Closed carriers specially adapted for a single substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/6735Closed carriers
    • H01L21/67359Closed carriers specially adapted for containing masks, reticles or pellicles

Definitions

  • the present invention relates to a mask storage device, an exposure device, and a device manufacturing method.
  • the present invention relates to a mask storage apparatus, an exposure apparatus, and a device manufacturing method, and more particularly, to a mask storage apparatus for storing a mask, an exposure apparatus for transferring a pattern formed on the mask onto an object, and the exposure apparatus.
  • the present invention relates to a device manufacturing method using an apparatus. Background art
  • the exposure wavelength has been shifted to shorter wavelengths in order to realize high resolution in response to miniaturization of integrated circuits.
  • its wavelength is mainly 2488 nm of KrF excimer laser, but 19.3 nm of shorter wavelength ArF excimer laser is entering the stage of practical use.
  • the exposure light is absorbed by a substance (mainly, an organic substance) in the air, and the organic substance activated by the exposure light adheres to a lens or the like, causing deterioration in transmittance. Such phenomena occur. For this reason, organic It is said that it is effective to fill the space in the optical path with air and other gases from which organic substances have been removed in order to remove objects.
  • a substance mainly, an organic substance
  • Light belonging to these vacuum ultraviolet regions is also extremely absorbed by, for example, oxygen, water vapor, and general organic substances (hereinafter referred to as “absorbing gas”). Therefore, in an exposure apparatus that uses a light beam in the vacuum ultraviolet region as exposure light, the gas in the space on the optical path is used to reduce the concentration of the absorbent gas in the space on the optical path through which the exposure light passes to a concentration of several ppm or less. Need to be replaced with a rare gas such as nitrogen or helium (hereinafter referred to as “low-absorbing gas”) that absorbs less exposure light.
  • a rare gas such as nitrogen or helium
  • organic substances and water vapor adhering to the lens surface that constitutes the optical system in the exposure apparatus absorb large amounts of exposure light in the vacuum ultraviolet region, but are included in the gas in the optical path. By reducing the concentration of organic substances and water vapor, it is possible to prevent these substances from adhering to the lens surface.
  • the excimer lamp light source used for the above light cleaning requires a large amount of electric power, and accordingly generates a large amount of heat.
  • the projection exposure apparatus requires extremely high-precision temperature control to maintain the exposure accuracy. Therefore, the main optical path in the exposure apparatus (illumination optical system-reticle stage part, projection optical system, It is preferable to install such a heat source near the wafer part) from the viewpoint of exposure accuracy. Not a good one.
  • the transport path for transporting the reticle to the reticle stage after optical cleaning becomes longer.
  • the size of the transport path may be increased, and the overall size of the exposure apparatus may be increased.
  • the present invention has been made under such circumstances, and a first object thereof is to provide a mask storage device capable of preventing contamination of a mask after light cleaning.
  • a second object of the present invention is to provide an exposure apparatus capable of improving the exposure accuracy and reducing the size of the apparatus.
  • a third object of the present invention is to provide a method for manufacturing a device capable of improving the productivity of a highly integrated device. Disclosure of the invention
  • a mask storage device for storing a mask, the storage device body having an internal space capable of accommodating the mask, and having an opening through which the mask can be taken in and out;
  • An opening / closing unit for opening / closing the opening of the storage device main body, wherein at least a part of the storage device main body and the opening / closing unit transmit light for cleaning the mask contained in the internal space.
  • the mask is stored in the internal space of the storage device main body through the opening opened by the opening / closing section, and the opening is closed by the opening / closing section, thereby storing the mask in the internal space shielded from the outside air.
  • at least a part of the main body of the storage device and the opening / closing part may include the Since the transmission portion for transmitting the cleaning light is provided, it is possible to perform the light cleaning with the mask inserted in the storage device main body. This can prevent chemical contamination of the mask.
  • the internal space of the storage device body with a gas with low contamination of the mask, contamination of the mask after light cleaning can be suppressed for a long time. Therefore, by transporting the mask in a state of being housed in the storage device main body, gas replacement or the like in the transport path becomes unnecessary.
  • the storage device main body may have a box shape as a whole.
  • the opening is formed in a specific side wall that is at least one of the four side walls of the storage device main body, and the opening / closing portion corresponds to the opening, and the specific side wall of the storage device main body corresponds to the opening. It is possible to be provided in.
  • the opening / closing unit may be an opening / closing door that is rotatably attached to the storage device main body around a predetermined axis, or It may be a slide door movably attached to the specific side wall of the storage device main body in a plane parallel to the specific side wall.
  • the opening and closing unit may be a gate valve attached to the specific side wall of the storage device main body.
  • the transparent portion is provided on at least a part of at least one of a ceiling portion and a bottom portion of the storage device main body. It can be.
  • the transmission unit may be a window glass that forms at least a part of at least one of a ceiling part and a bottom part of the storage device main body.
  • the opening is formed in a bottom portion of the storage device main body, the opening / closing portion has a support portion capable of supporting the mask, and the opening can be closed. And a bottom opening / closing portion that detachably engages with the bottom.
  • a vertically open / closed (bottom open type) storage device can be adopted as the mask storage device.
  • a lock mechanism provided on at least one of the storage device main body and the bottom opening / closing portion to lock an engagement state of the bottom opening / closing portion with the storage device main body can be further provided.
  • the transmitting portion may be provided on at least a part of the bottom opening / closing portion.
  • the transmission section may be a window glass forming a part of the bottom opening / closing section.
  • At least one of the storage device main body and the opening / closing portion is provided with a ventilation hole communicating the internal space with the outside, and an opening / closing valve mechanism for closing the ventilation hole is provided. Further provisions may be made.
  • the opening / closing valve mechanism includes a valve member disposed inside the member having the vent hole, and the valve member facing the vent hole in order to close the vent hole.
  • an on-off valve mechanism may be provided on the outer surface side of the member having the vent hole, and one end communicates with the vent hole.
  • a tubular member having an end communicating with the outside; and a valve member movable within the tubular member and urged to the side opposite to the vent hole to close the communication between the inside and the outside of the tubular member. May be included.
  • the gas in the internal space is replaced with a predetermined gas, provided in the internal space, and further provided with an ionization device for ionizing the predetermined gas in the internal space.
  • the mask accommodated in the internal space includes a mask substrate having a surface on which a pattern is formed, and one end provided around the pattern forming region on the mask substrate.
  • a frame member, and a pellicle provided at the other end of the frame member to protect the pattern formation region; May have a gas replacement mechanism for a protection space that replaces a gas in a protection space formed by the mask substrate, the frame member, and the pellicle with a predetermined gas.
  • an exposure apparatus for transferring a pattern formed on a mask onto an object under exposure light, wherein the mask can be accommodated in an internal space, and the mask can be taken in and out.
  • a storage device transport mechanism that transports a mask storage device having a structure capable of performing the following operations to a predetermined position near the optical path of the exposure light along a predetermined path; and from the internal space of the mask storage device transported to the predetermined position.
  • a mask transport mechanism that transports the mask along a first transport path of a predetermined atmosphere to a space including an optical path of the exposure light.
  • a mask storage device having a structure capable of accommodating a mask in the internal space and capable of taking the mask in and out is moved to a predetermined position near the optical path of the exposure light along a predetermined path by the storage device transport mechanism.
  • the mask which has been transported and is accommodated in the internal space of the mask storage device transported to the predetermined position, is moved by the mask transport mechanism along the first transport path of the predetermined atmosphere into the space including the optical path of the exposure light. Conveyed. Therefore, the mask is transported in a state where the mask is housed in the internal space of the mask storage device, which is almost shielded from the outside air, to the predetermined position.
  • the predetermined path to the predetermined position does not have to have the predetermined atmosphere.
  • the number of transport paths required to have a predetermined atmosphere in the exposure apparatus can be minimized, so that the transport path can be reduced in size. As a result, it is possible to simultaneously improve the exposure accuracy by preventing the contamination of the mask and reduce the size of the exposure apparatus.
  • a storage device main body having the internal space and having an opening through which the mask can be taken in and out, and an opening and closing unit that opens and closes the opening of the storage device body. That a retractable storage device with And
  • the first transport path is formed by communicating a space including an optical path of the exposure light with an internal space of the mask storage device transported to the predetermined position. It can be.
  • a hollow path partitioning member may be further provided for connecting the mask storage device transported to the predetermined position to a partition surrounding a space including an optical path of the exposure light.
  • the storage device main body has a box-like shape as a whole, and the opening that is opened and closed by the opening and closing portion is a specific side wall that is at least one of the four side walls of the storage device main body.
  • the path partitioning member comprises: a tubular expandable / contractible bellows having one end connectable to the specific side wall of the storage device transported to the predetermined position; and the other end of the bellows. And a hollow connection member for connecting the partition wall.
  • the opening is formed in a bottom portion of the storage device main body, the opening / closing portion has a support portion capable of supporting the mask, the opening portion can be closed, and the opening portion is detachably engaged with the bottom portion.
  • the path partitioning member is connected to the partition so as to be able to communicate with the space inside the partition, and an opening into which the bottom of the storage device conveyed to the predetermined position can be fitted.
  • the path partitioning member may be connected to an air supply pipe and an exhaust pipe.
  • the mask storage device may be provided with a transmission unit that transmits ultraviolet light having a predetermined wavelength.
  • an optical cleaning device that irradiates the ultraviolet ray to the mask storage device and performs at least one of the optical cleaning of the mask storage device and the optical cleaning of the mask through the transmission member is further provided.
  • the storage device transport mechanism moves the mask storage device along a second transport path between the predetermined position and the optical cleaning device. Can be transported.
  • the light cleaning device is a device for cleaning the mask, and before the light cleaning of the mask is started by the light cleaning device, the gas in the mask storage device is changed to a predetermined gas.
  • a gas replacement mechanism for replacing the gas may be further provided.
  • the “predetermined gas” is a gas (low-absorbing gas) such as nitrogen or a rare gas that absorbs exposure light smaller than air, but contains a small amount of oxygen or water vapor.
  • a gas containing about 100 ppm of oxygen or water vapor in the gas may be used as the predetermined gas.
  • the gas replacement mechanism may be provided in the optical cleaning device.
  • the mask storage device when a gas replacement mechanism is provided, is formed in a part thereof, and further includes an opening / closing valve mechanism that closes a ventilation hole that communicates the internal space with the outside.
  • the gas replacement mechanism may include a gas supply mechanism that supplies the predetermined gas to the internal space through the ventilation hole when the on-off valve mechanism is in an open state.
  • the gas replacement mechanism further includes a sensor that detects a concentration of the specific gas in the internal space, and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. be able to.
  • the specific gas can be oxygen or water vapor.
  • the mask storage device when the gas replacement mechanism has a gas supply mechanism, the mask storage device has at least two of the ventilation holes, and the mask storage device has a plurality of air holes individually corresponding to the ventilation holes.
  • the gas supply mechanism has the on-off valve mechanism, the gas supply mechanism supplies the predetermined gas to the internal space.
  • An opening / closing valve mechanism that is different from the opening / closing valve mechanism that has been opened to perform the opening operation may further include an exhaust mechanism that exhausts the gas in the internal space through the ventilation hole.
  • the light cleaning device when the light cleaning device is a device for cleaning the mask storage device, the light cleaning device starts the light cleaning of the mask storage device before starting the light cleaning of the mask storage device.
  • a gas replacement mechanism for replacing the gas in the light cleaning device with a predetermined gas may be further provided.
  • the gas replacement mechanism further includes: a sensor that detects a concentration of the specific gas in the internal space; and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. can do.
  • the specific gas can be oxygen or water vapor.
  • the exposure apparatus of the present invention further includes a chamber for accommodating the exposure apparatus main body, the light cleaning apparatus may be disposed outside the chamber.
  • the exposure apparatus of the present invention may further include a holding device that temporarily holds the mask storage device at a predetermined position.
  • the mask storage device further includes an opening / closing valve mechanism that is formed in a part thereof, and that opens and closes a ventilation hole that communicates the internal space with the outside and that is normally closed.
  • the apparatus may have a gas supply mechanism that supplies the predetermined gas to the internal space through the vent hole when the on-off valve mechanism is in an open state.
  • At least two of the ventilation holes are formed in the mask storage device, and a plurality of the on-off valve mechanisms respectively corresponding to the ventilation holes are provided.
  • An exhaust mechanism for exhausting the gas in the internal space through the ventilation hole may be further provided.
  • the mask accommodated in the mask storage device includes a mask substrate having a surface on which a pattern is formed, and a frame having one end provided around the pattern formation region on the mask substrate.
  • a pellicle provided at the other end of the frame member to protect the pattern formation region, wherein a gas in a protection space formed by the mask substrate, the frame member, and the pellicle is supplied
  • the gas may be further provided with a protection space gas replacement mechanism for replacing the gas.
  • FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus according to the first embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the configuration of the bellows mechanism
  • Fig. 2B is a diagram for explaining a space formed between the partition wall of the reticle chamber and the reticle storage box
  • Fig. 2C is a reticle.
  • FIG. 7 is a diagram illustrating a transport path formed between a storage box and a reticle chamber.
  • FIG. 3A is a perspective view showing a reticle storage box
  • FIG. 3B is a longitudinal sectional view of the reticle storage box.
  • FIG. 4 is a perspective view showing a configuration of an on-off valve in the reticle storage box.
  • FIG. 5 is a longitudinal sectional view of the optical cleaning device.
  • FIG. 6 is a cross-sectional view of a light cleaning device and a reticle storage box housed in the device. Ah .
  • FIG. 7 is a perspective view showing the air supply unit.
  • FIG. 8 is a diagram showing a configuration of a gas supply device for controlling the oxygen concentration in the gas.
  • FIG. 9 is a perspective view showing a reticle storage box according to a modification of the first embodiment.
  • 10A to 10C are diagrams for explaining the configuration of the gate valve provided in the reticle storage box of FIG. 9 and the opening / closing operation of the gate valve.
  • FIG. 11 is a perspective view showing a reticle storage box according to the second embodiment.
  • FIG. 12A is a longitudinal sectional view of the reticle storage box of FIG. 11, and FIG. 12B is a view showing a state where the bottom opening / closing portion of the reticle storage box of FIG. 128 is open.
  • FIG. 13 is a diagram showing a configuration of a reticle carrying-in / out mechanism.
  • FIGS. 14A and 14B are diagrams for explaining a method of unloading the reticle from the reticle storage box.
  • FIG. 15 is a flowchart for explaining the device manufacturing method according to the present invention.
  • FIG. 16 is a flowchart showing a specific example of step 304 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a configuration of an exposure apparatus 110 according to the first embodiment.
  • the exposure apparatus 110 is installed in a clean room having a degree of cleanness of about class 100 to 100.
  • the exposure apparatus 110 includes an environmental chamber 1 (hereinafter, abbreviated as “main chamber 1”) in which the internal space is highly dust-proof and whose temperature is controlled with high precision.
  • the apparatus includes an exposure apparatus main body 100 installed in 1, a reticle transport system 120 disposed adjacent to the exposure apparatus main body 100, an optical cleaning device 22, and the like. Inside of the main chamber 1 Chemical cleanliness is also maintained at a certain level.
  • a low step portion that is lower than other portions is formed at the end of the main chamber 1 on the + X side (the right side in FIG. 1).
  • the port 1a for loading / unloading the mask container is located at this low step.
  • a reticle as a mask is loaded into the main chamber 1 in a state of being housed in the reticle carrier 44 by a ceiling transport system (not shown) via the loading / unloading port 1 a, and is unloaded from the main chamber 1.
  • a ceiling transport system an OHT (Over Head Transfer) or the like for transferring a reticle in a state accommodated in a reticle carrier 44 is used.
  • the exposure apparatus main body 100 includes a light source (not shown), an illumination unit ILU that is connected to the light source via a light transmission optical system (not shown), and illuminates the reticle R with the exposure light EL, and a reticle that holds the reticle R. It has a holder 14, a projection optical system PL for projecting the exposure light EL emitted from the reticle R onto the wafer W, a wafer stage WST for holding the wafer W, and the like.
  • the output wavelength 1 5 7 nm of fluorine laser (F 2 Les monodentate) is used.
  • the light source is not limited to fluorine laser, a wavelength of approximately 1 2 0 n m to about 1 9 0 nm light source emitting light belonging to the vacuum ultraviolet region, for example, the output wavelength 1 4 6 nm krypton dimer laser (K r 2 laser)
  • an argon dimer laser (Ar 2 laser) having an output wavelength of 126 nm may be used.
  • a near ultraviolet light source such as an ArF excimer laser having an output wavelength of 193 nm can be used as the light source.
  • the illumination unit ILU includes an illumination system housing 2, a bending mirror, an optical integrator (homogenizer), a relay lens, a reticle blind as a field stop, etc.
  • the illumination optical system is configured to include: As optical integrators, fly-eye lenses, rod-type integrators (internal reflection type integrators), or diffractive optical elements are used alone or in combination. Also, Rechik The ruble blind is disposed on a plane conjugate with the pattern plane of reticle R.
  • a gas having a strong absorption characteristic for light in such a wavelength band such as oxygen, water vapor, or a hydrocarbon-based gas (hereinafter, referred to as “light”).
  • light a gas having a strong absorption characteristic for light in such a wavelength band
  • absorption gas such as oxygen, water vapor, or a hydrocarbon-based gas
  • the gas in the space on the optical path of the exposure light EL inside the illumination system housing 2 is converted into a specific gas such as nitrogen, which has a lower characteristic of absorbing light in the vacuum ultraviolet region than air.
  • Rare gases such as helium, argon, neon, and krypton, or their mixtures (hereinafter referred to as “low-absorbing gas” as appropriate) have been substituted.
  • an air supply valve 10 and an exhaust valve 11 provided in the illumination system housing 2 are connected to an air supply pipe and an exhaust pipe provided near one end thereof, and the other end of the air supply pipe is not shown. Connected to a supply device for low-absorbent gas. Then, both the supply valve 10 and the exhaust valve 11 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the illumination system housing 2 from the low-absorbent gas supply device (not shown). ing.
  • the concentration of the absorptive gas in the illumination system housing 2 is suppressed to an oxygen concentration of 0.1 ppm or less, a water vapor concentration of 1 ppm or less, and an organic matter concentration of 10 ppm or less.
  • gas replacement is performed in the same manner as in the illumination system housing 2, and similarly, the oxygen and water vapor concentrations are reduced to 0.1 ppm or less, and the organic matter concentration is reduced to 10 ppb or less. It is suppressed.
  • reticle R As the reticle R, a reticle with a pellicle is used here. That is, as shown in FIG. 1, reticle R includes a reticle substrate 54 having a fine pattern formed on one surface (the lower surface in FIG. 1), and a lower surface of the reticle substrate 54 (hereinafter referred to as a “pattern”). And a pattern protection device 72 attached to the surface.
  • the reticle substrate 54 is formed of a material containing quartz as a main component, for example, fluorine-doped quartz containing about 1% of fluorine by removing a hydroxyl group to about 1 O ppm or less.
  • the reason for using such a material as the reticle substrate 54 is that Light in the so-called vacuum ultraviolet region having a wavelength of 190 nm or less, which is used as light, has a high transmittance to vacuum ultraviolet light because it has a low transmittance not only in gases such as oxygen and water vapor but also in glass and organic substances. This is because it is necessary to use a material.
  • the pattern protection device 72 includes a rectangular (substantially square) frame-like metal (aluminum and its alloys) or a pellicle frame (frame-like member) 76 made of quartz glass bonded to the pattern surface of the reticle substrate 54,
  • the pellicle frame 76 includes a pellicle blade 5 adhered to a surface of the reticle substrate 54 opposite to the surface facing the reticle substrate 54 to protect the pattern surface of the reticle substrate 54.
  • the pellicle 75 is attached via a pellicle frame 76 at a position about 6.3 mm away from the pattern surface of the reticle substrate 54.
  • the pellicle frame 76 has a vent hole (not shown) for preventing the pellicle 75 from being damaged due to a change in air pressure due to transportation by an aircraft or a change in weather. Has been established.
  • the pellicle 75 is made of, for example, a thin film made of a fluorine-containing resin or a crystalline material such as fluorite, magnesium fluoride, or lithium fluoride in order to transmit the exposure light EL in the vacuum ultraviolet region better. It is possible to use a thin plate with a thickness of about 100 to 300 OjUm or a relatively thick hard pellicle made of fluorite, lithium fluoride, etc. and having a thickness of about 300 to 800 m. it can. When near-ultraviolet light is used as the exposure light, a transparent thin film made of an organic substance containing nitrocellulose or the like as a main component can be used.
  • the reticle holder 14 is disposed inside a reticle chamber 15 formed by the interior space of the partition wall 18 which is tightly joined to the illumination system housing 2 and the lens barrel of the projection optical system PL.
  • the reticle holder 14 includes a holder body 14a formed of a rectangular member in a plan view (as viewed from above) having an opening capable of accommodating the above-described pattern protection device 72 in the center thereof, and a holder body. 14 4a Four vacuum suction mechanisms (vacuum chucks), one for each of the four corners on the upper surface. (Only one vacuum suction mechanism is shown).
  • the lower surface of the reticle substrate 54 is sucked in the vicinity of its four corners by these four vacuum suction mechanisms 63, whereby the reticle R is fixed to the reticle holder 14.
  • the suction surface of the vacuum suction mechanism 63 is formed of a material such as Lulon, Teflon (registered trademark), or ceramic.
  • the reticle holder 14 can be finely driven (including rotation about the Z axis) in the XY plane by a reticle drive system (not shown).
  • the reticle drive system can be configured to include, for example, two sets of voice coil motors.
  • the partition 18 of the reticle chamber 15 is formed of a material with low degassing such as stainless steel (SUS).
  • a rectangular opening smaller than the reticle substrate 54 is formed in the ceiling of the partition wall 18 of the reticle chamber 15, and the internal space of the illumination system housing 2 and the reticle R are arranged in this opening.
  • the transparent member 12 is arranged so as to be separated from the internal space of the reticle chamber 15 to be formed. Since the transmitting member 12 is disposed on the optical path of the exposure light EL applied to the reticle substrate 54 from the illumination unit ILU, the fluorite or the like having high transparency to the vacuum ultraviolet light as the exposure light is used. Is formed by a fluoride crystal or the like.
  • an entrance / exit relo 18a is formed on one side wall (+ X side) in the X direction of the partition wall 18 of the reticle chamber 15.
  • the entrance 18a has a structure that can be opened and closed by an opening and closing door 1 21. Opening / closing doors 122 are controlled by a control device (not shown) via a drive system (not shown).
  • a reticle transfer robot 6 constituting a mask transfer mechanism composed of a horizontal articulated robot is arranged between the reticle holder 14 in the reticle chamber 15 and the open / close door 121.
  • the arm of the reticle transport robot 6 can move up and down in addition to expansion and contraction and rotation in the XY plane.
  • the reticle transfer port pot 6 carries the reticle R from the outside of the reticle chamber 15 into the reticle chamber 15 through the above-mentioned reciprocating relo 18a, and the reticle R on the reticle holder 14 I do. Further, the reticle transport robot 6 unloads the reticle R from the reticle holder 14 and then unloads the reticle R to the outside of the reticle chamber 15 via the access relo 18a.
  • the partition 18 of the reticle chamber 15 is provided with an air supply valve 16 and an exhaust valve 17 as shown in FIG.
  • the supply valve 16 and the exhaust valve 17 are also always opened at a predetermined opening, and the low-absorbent gas is constantly flowing from the low-absorbent gas supply device (not shown) to the reticle chamber 15.
  • the gas in the reticle chamber 15 is replaced with the low-absorbent gas, and the concentration of the absorbent gas in the reticle chamber 15 is less than several ppm.
  • a bellows mechanism 127 is provided around the entrance / exit re-roll 18 a outside the partition wall 18 of the reticle chamber 15.
  • the bellows mechanism 127 will be described with reference to FIG. 2A.
  • the bellows mechanism 127 includes an attachment member 96 made of a thick cylindrical member fixed to a portion around the entrance re-roll 18 a on the outer surface of the partition wall 18.
  • An extendable bellows 91 whose one end is connected to the end face of the mounting member 96 opposite to the partition wall 18, and a drive mechanism for driving the bellows 91 to extend and contract along the X-axis direction. 9 and 2.
  • the path defining member includes the mounting member 96 and the bellows 91.
  • the drive mechanism 92 is fixed to the other end of the bellows 91, and has a ring member 92 a having an outer diameter larger than that of the bellows 91, and a ring member 92 a facing the attachment member 96.
  • the surface is provided with three actuators to which one ends of the rod-shaped movable portions 92b are fixed at substantially equal intervals. These three actuators have fixed portions embedded in the mounting member 96, and reciprocally drive the movable portion 92b along the X-axis direction by a driving source such as a motor. In the following, these three actuators will be referred to as actuators 92 b using the same reference numerals as the movable part 92 b for convenience.
  • a seal member 93 made of an O-ring or the like is attached to a surface of the ring member 92a opposite to the bellows 91.
  • the mounting member 96 has two through holes penetrating in the Z-axis direction, into which one end of the air supply pipe 94 and one end of the exhaust pipe 95 are inserted.
  • the other end of the air supply pipe 94 is connected to a gas supply device (not shown) for supplying a low-absorbency gas, and the other end of the exhaust pipe 95 is connected to a vacuum pump (not shown).
  • the projection optical system PL is an optical system including a lens made of fluoride crystals such as fluorite and lithium fluoride and an optical system made up of a reflecting mirror, which are sealed with a lens barrel.
  • a reduced optical system with a projection magnification (8) of, for example, 1Z4 or 1-5 is used. Therefore, as described above, when the reticle R is illuminated by the exposure light EL from the illumination unit ILU, the pattern formed on the reticle substrate 54 is reduced to a shot area on the wafer W by the projection optical system PL. Projected to form a reduced image of the pattern.
  • any of a refraction system, a catadioptric system, and a reflection system can be used.
  • the gas inside the lens barrel of the projection optical system PL is also low in order to avoid absorption of the exposure light by an absorbing gas such as oxygen. It must be replaced with an absorbing gas.
  • both the supply valve 30 and the exhaust valve 31 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the lens barrel from the low-absorbent gas supply device, and the inside of the lens barrel is The gas has been replaced by a low absorption gas.
  • the concentration of absorptive gas inside the lens barrel is kept below 0.1 ppm for oxygen and water vapor and below 10 ppm for organic matter.
  • the wafer stage WST was joined to the projection optical system PL lens barrel without gaps. It is arranged in a wafer chamber 40 covered with a partition wall 41.
  • the partition wall 41 of the wafer chamber 40 is formed of a material with low degassing such as stainless steel (SUS).
  • the partition walls 41 are arranged on the bottom surface (floor surface) of the main body chamber 1 via a plurality (for example, four) of vibration isolation units 7. These vibration isolation units 7 insulate micro vibrations from the floor surface at the micro G level.
  • a base BS is horizontally supported via a plurality of vibration isolating units 39.
  • These anti-vibration units 39 effectively suppress the transmission of the vibration accompanying the movement of the wafer stage WST to the projection optical system PL Preticle R via the partition wall 41.
  • a so-called active vibration isolator that actively dampens the base BS based on the output of a vibration sensor such as a semiconductor accelerometer fixed to a part of the base BS can be used as the vibration isolation unit 39. It is.
  • the wafer stage WST is self-driven along a top surface (guide surface) of the base BS and in a non-contact manner by a wafer driving system (not shown) including, for example, a linear motor.
  • a wafer driving system including, for example, a linear motor.
  • a wafer table 35 is mounted on the wafer stage WST, and the wafers W are suction-held by a wafer holder (not shown) mounted on the wafer table 35.
  • An X movable mirror 36 X composed of a plane mirror is provided at one end on the X side of the wafer table 35 in the Y-axis direction.
  • the measuring beam from the X-axis laser interferometer 37 X is projected almost vertically onto the X moving mirror 36 X, and the reflected light is received by the detector inside the laser interferometer 37 X, and is positioned at a predetermined position.
  • the position of the X movable mirror 36 X that is, the X position of the wafer W, is detected with reference to the position of the provided reference mirror.
  • a Y moving mirror composed of a plane mirror extends in the X-axis direction at the + Y side end of the wafer table 35. Then, the position of the Y movable mirror, that is, the Y position of the wafer W is detected by a Y-axis laser interferometer (not shown) through the Y movable mirror in the same manner as described above. The detection values of the above two laser interferometers ( The measured value is supplied to a control device (not shown).
  • the controller drives the wafer stage WS in the XY plane via a wafer drive system (not shown) while monitoring the detection values of these laser interferometers, and reticles multiple shot areas on the wafer W.
  • the stepping operation between shots which sequentially determines the pattern projection position (exposure position), and the light emission of the light source is controlled each time the positioning is performed. Step-and-repeat type exposure operation is repeated.
  • the optical path from the projection optical system PL to the wafer W is used to avoid absorption of the exposure light by an absorbing gas such as oxygen. Also needs to be replaced with the low-absorbing gas.
  • an air supply pipe in which an air supply valve 32 and an exhaust valve 33 are provided in the vicinity of one end of the partition 41 of the wafer chamber 40 is provided.
  • the exhaust pipe and are connected, and the other end of the air supply pipe is connected to a low-absorbent gas supply device (not shown).
  • both the supply valve 32 and the exhaust valve 33 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the wafer chamber 40 from the low-absorbent gas supply device (not shown).
  • the gas in the wafer chamber 40 has been replaced with a low-absorbent gas.
  • the concentration of the absorbent gas in the wafer chamber 40 is suppressed to a concentration of several ppm or less.
  • the reticle transport system 120 is mounted on a mounting table 101, one end of which is connected to the inner surface of the side wall on the + X side inside the main body chamber 1 and which is supported substantially horizontally by a support member (not shown).
  • the reticle carrier 44 includes a plurality of reticles.
  • a standard mechanical interface (SMIF) pod is used, which is a closed-bottom, open-bottomed container that can be stored downward at a predetermined interval.
  • the reticle carrier 44 includes a carrier body 46 integrally provided with a plurality of (for example, three) storage shelves for storing reticles at predetermined intervals in the vertical direction.
  • the cover 102 includes a cover 102 fitted to the carrier body 46 from above, and a locking mechanism (not shown) for locking the cover 102 provided on the bottom plate of the carrier body 46.
  • an opening 78 that is slightly larger than the bottom plate of the carrier body 46 of the reticle carrier 44 is formed in the above-mentioned loading / unloading port 1a into which the reticle carrier 44 is loaded. ing.
  • the opening 78 is usually closed by an opening / closing member 82 shown in FIG. 1 and described later.
  • the opening and closing device 45 includes an opening and closing member 82, a drive shaft 84 to which the opening and closing member 82 is fixed on an upper end surface thereof, and an axial direction in the Z-axis direction. In the direction).
  • the opening / closing member 82 is engaged with the bottom plate of the carrier body 46 of the reticle carrier 44 carried into the carry-in / out port 1a by vacuum suction or mechanical connection, and is engaged with the bottom plate of the carrier body 46.
  • An unlocking mechanism (not shown) for releasing the provided locking mechanism (not shown) is provided.
  • the locking mechanism is released by the engagement / unlocking mechanism of the opening / closing member 82, and after the carrier body 46 is engaged, the opening / closing member 82 is moved downward by a predetermined amount. Thereby, the carrier main body 46 can be separated from the cover 102 in a state where the inside and the outside of the main body chamber 1 are isolated.
  • the switching device 45 is controlled by a control device (not shown).
  • the reticle transport robot 47 is composed of a horizontal articulated robot.
  • the arm of the reticle transport robot 47 can move up and down in addition to expansion and contraction and rotation in the XY plane.
  • the elevator unit 130 has four slide guides 19 a, 19 b, 19 c, and 19 d, each of which has one end fixed to the floor surface of the main body champer 1 and extends in the vertical direction. (A pair of slide guides 19c and 19d on the back side of the paper in Fig. 1 are not shown), and sliders 48a and 48 that can move vertically along these slide guides 19a to 19d. b, 48c, 48d (however, a pair of sliders 48c, 48d on the back side of the drawing in FIG.
  • the sliders 48a to 48d have a U-shape, and have a structure capable of supporting the vicinity of four corners of a reticle storage box 20 as a mask storage device described below from below.
  • a driving mechanism for driving the sliders 48a to 48d for example, a linear motor provided between each of the sliders 48a to 48d and the corresponding slide guide can be used. This drive mechanism is controlled by a control device (not shown), and the sliders 48a to 48d are simultaneously driven in the vertical direction by the same amount, whereby the reticle storage box 20 held by the sliders 48a to 48d. Are transported in the vertical direction.
  • the configuration of the reticle storage box 20 transported by the elevator unit 130 will be described with reference to FIGS. 3A and 3B.
  • the reticle storage box 20 has a box shape as a whole and has a storage box body 210 as a storage device body having a space formed therein, and the X-axis direction of the storage box body 210 shown in FIG. Opening / closing doors 205a and 205b are provided as opening / closing sections for opening and closing the carry-in / out openings 211a and 211b (see FIG. 3B) as openings formed on both side walls, respectively. .
  • the storage box main body 210 has a stepped opening (window) 211 c and 211 d having two steps on the upper and lower surfaces, respectively.
  • the window glass 201a, 201b constitutes a transmission part.
  • the housing 211 is made of stainless steel or the like, and is provided via a carry-in / out opening 211a, 211b formed on a side wall on both sides in the X-axis direction of the housing 211.
  • the reticle R is carried into the inside of the storage box 210, and the reticle R is carried out from the inside of the storage box body 210. Further, as shown in FIG. 3A, a predetermined gas is supplied into the reticle storage box 20 and the gas in the reticle storage box 20 is exhausted to the two walls in the Y-axis direction of the housing 2 11. Vent holes 204a, 204b, 204c and 204d are formed (the vent holes 204c and 204d are not shown in FIG. 3A, see FIG. 6).
  • the window glasses 201a and 201b are formed of a plate-like member made of a material having ultraviolet transmittance, such as fluorite or fluorine-added quartz.
  • a material having ultraviolet transmittance such as fluorite or fluorine-added quartz.
  • plate members made of a material such as calcium fluoride can be used.
  • one window glass 201a is provided with airtightness at the second step from the top of the stepped opening 211c formed on the upper surface of the housing 211.
  • a seal member 265a composed of an O-ring or the like, and is fixed while being pressed down from above by a rectangular frame-shaped window holding member 202a fitted into the first step from the top.
  • a sealing member 265c made of an O-ring or the like for ensuring airtightness is provided between the window holding member 202a and the window glass 201a, and the window holding member 202a is One is fixed by a plurality of screws 203.
  • the other windowpane 201b is provided with airtightness at the second step from the bottom of the stepped opening 211d formed in the lower surface of the housing 211.
  • a seal member 265 b composed of an O-ring etc. It is fixed in a state where it is pressed down from below by a rectangular frame-shaped window holding member 202 b fitted into the portion.
  • a sealing member 260 d composed of an O-ring or the like for ensuring airtightness is provided between the window holding member 202 b and the window glass 201 b, and the window holding member 202 b Is fixed to the housing 211 with a plurality of screws 203.
  • the sealing members 205a to 205d for example, a member made of fluororubber or the like, which hardly generates degassing of the absorbent gas, can be used.
  • a plurality of (for example, four) reticle support members 2 1 3 are provided around the stepped opening 2 11 d as shown in FIG. 3B.
  • the reticle support members 21 on the near side in FIG. 3B are not shown).
  • the reticle R carried into the storage box main body 210 by the robot is supported from below by the reticle support members 21, for example, at the four corners of the lower surface of the reticle substrate 54.
  • one of the opening and closing doors 205a can open and close the above-mentioned loading / unloading opening 2111a, so that one side of the housing 211 in the Y-axis direction and the other side can be opened.
  • a pair of rectangular plate-shaped support members 2 1 2 fixed respectively near the + X side end of the outer surface of the side wall of the support member, and the support member fixed to the + Y side wall are not shown) It is mounted so that it can be turned up and down around 206a (it can turn in the XZ plane).
  • a sealing member such as an O-ring for ensuring airtightness is provided at a portion of the opening / closing door 205a corresponding to the periphery of the carry-in / out opening 211a. 270a is provided.
  • a pin 208 a is provided on the one Y-side end surface of the opening / closing door 205 a, and correspondingly, one Y-side of the storage box body 210.
  • a hook 208 b that can be engaged with the pin 208 a is provided on the outer surface of the side wall of the case so as to be able to move up and down.
  • the pin 208 a and the hook 208 b constitute a lock mechanism 208 that locks the opening and closing of the door 205.
  • the lock mechanism 208 is — It may be provided not only on the Y side but also on the + ⁇ side.
  • the configuration of the other door 205 b and its peripheral members is the same as that of the door 205 a. That is, as shown in FIG. 3A, the opening / closing door 205 b can open and close the above-mentioned carrying-in / out opening 211 b, so that one side of the housing 211 in the Y-axis direction and the other side thereof.
  • a support shaft 206 b is attached to a pair of support members 2 1 2 (each not shown for the support member fixed to the + Y side wall), which are fixed in the vicinity of one X-side end of the outer surface of the side wall. It is mounted so that it can be raised and lowered (rotatable in the XZ plane) as the center. As shown in FIG.
  • a portion of the opening / closing door 205b corresponding to the periphery of the carry-in / out opening 211b is provided with a seal such as an O-ring for ensuring airtightness.
  • a member 270b is provided.
  • the seal member 270b and the seal member 270a it is desirable to use, for example, a member made of fluororubber or the like, which hardly generates degassing of the absorbent gas.
  • the lock mechanism constituted by the pin 207a and the hook 207b is also provided on the door 205b side as shown in FIG. 3A. 207 is provided. The opening and closing of the opening / closing door 205 b is locked by the lock mechanism 207.
  • the lock mechanism 207 may be provided not only on the Y side but also on the + Y side.
  • an on-off valve mechanism 2 12 A to 2 1 2 D is provided (see Fig. 6).
  • the configuration of these on-off valve mechanisms 2 12 A to 2 12 D will be described with reference to FIG. 4, taking the on-off valve mechanism 2 12 A as a representative.
  • FIG. 4 is a perspective view of the on-off valve mechanism 2 12 A.
  • the opening / closing valve mechanism 2 12 A includes a valve member 2 disposed on the inner side of the _Y side wall of the housing 2 1 1 facing the ventilation hole 204 a. 15 and a pair of urging mechanisms 2 14 ⁇ and 2 ⁇ that constantly urge the valve member 2 15 in one direction with a predetermined force.
  • the valve member 2 15 includes a valve body 2 15 a made of a rectangular plate-shaped member, and a pair of support members 2 protruding from one end and the other end in the X-axis direction of the valve body 2 15 a. 15 b and 2 15 c.
  • the surface (the surface on the one Y side) of the valve main body 2 15 a that faces the inner surface of the side wall includes an O-ring or the like for ensuring airtightness when pressed into the ventilation hole 204 a.
  • a seal member 211 is attached.
  • the one urging mechanism 2 14 A has a U-shaped cross section, and a pair of guide members 2 having a pair of open end surfaces fixed to the inner surface of the side wall. 17 and a compression coil spring SR as an urging member disposed between the guide member 27 and the support member 215b.
  • the other urging mechanism 2 14 B has the same configuration.
  • the valve member 2 15 is pressed by the compression coil spring SR of the urging mechanisms 2 14 A and 2 14 B in the —Y direction.
  • the valve body 2 15 a (more precisely, the sealing member 2 16) has a ventilation hole 20 inside the Y-side side wall of the housing 2 1 1 because the valve body 2 15 a (more precisely, the sealing member 2 16)
  • the air hole 204a is maintained in a closed state (closed state).
  • the valve member 2 15 is pushed from the outside by being piled by the biasing force of the compression coil spring SR of the biasing mechanisms 2 14 A and 2 14 B, the valve member 2 15 is moved to the + Y side.
  • the valve body 2 15 a (more precisely, the sealing member 2 16) moves away from the inner surface of the side wall, and the vent hole 204 a is opened (opened).
  • the other on-off valve mechanisms 2 12 B to 2 12 D have the same configuration as the on-off valve mechanism 2 12 A.
  • the horizontal slide mechanism 21 includes, for example, a movable guide extending in the X-axis direction and a lateral direction (along the movable guide while supporting the reticle storage box 20 from below). And a slider that slides in the X-axis direction).
  • the horizontal slide mechanism 21 transports the reticle storage box 20 between an optical cleaning device described later and an elevator 130.
  • This horizontal slide The mechanism 21 receives the reticle storage box 20 at the position indicated by reference numeral 2OB in FIG. 1 from the sliders 48a to 48d constituting the elevator unit 130 and places it in the optical cleaning device described later.
  • the reticle storage box 20 can be carried in from the inside of the optical cleaning device and conveyed to the sliders 48a to 48d, and can have any configuration.
  • a storage mechanism 24 as a holding device suspended from the ceiling of the main body chamber 1 is provided.
  • the storage mechanism 24 is configured to be able to store the reticle storage box 20 transported by the sliders 48a to 48d of the elevator unit 130 in a substantially airtight state.
  • the optical cleaning device 22 is located on the + X side of the horizontal slide mechanism 21 and below the mounting table 101 on which the opening / closing device 45 and the like are mounted. Is installed. The configuration and the like of the optical cleaning device 22 will be described based on FIG. 5 which is a longitudinal sectional view of the optical cleaning device 22 and FIG.
  • the optical cleaning device 22 includes a body 228 formed of a box-shaped member having an opening 228a for inserting and removing the reticle storage box 20 on the side wall on the X side, and the opening 228a. And a UV lamp 220a, 220b disposed on the ceiling and bottom of the body 228 so as to face each other.
  • a plurality of (for example, four) storage box support members for supporting the reticle storage box 20 substantially horizontally from the lower side at positions substantially equidistant from the ultraviolet lamps 220a and 220b are provided on the bottom surface inside the body 228. 209a, 209b, 209c, and 209d (the storage box support members 209c and 209d on the near side in FIG. 5 are not shown).
  • These storage box support members 209 a to 209 d are arranged at positions capable of supporting, for example, positions near four corners on the lower surface of the reticle storage box 20.
  • the lid member 23 is attached to the body 228 so that the opening 228a can be opened and closed. It is attached to the body 228 so as to be able to move up and down around the fixed support shaft 238 (see arrows C and C in FIG. 5).
  • a sealing member 239 made of an O-ring or the like for ensuring airtightness in a closed state of the lid member 23 is provided at a portion corresponding to the periphery of the opening 228a of the lid member 23. I have. Note that, similarly to the opening / closing doors 205 a and 205 b of the reticle storage box 20, a lock mechanism may be provided on the lid member 23 of the optical cleaning device 22.
  • Examples of the ultraviolet lamps 220 a and 220 b include a Xe (xenon) excimer lamp that emits ultraviolet light having a wavelength of 172 nm, a fluorine lamp that emits ultraviolet light having a wavelength of 157 nm, or An ArF (Argon Fluorine) lamp that emits ultraviolet light with a wavelength of 193 nm is used.
  • Wirings 22 1 a, 22 1 b, 22 1 c, and 22 1 d to these lamp electrodes are introduced from the outside of the optical cleaning device 22 through current introduction terminals for vacuum equipment. ing. If the temperature of the surrounding atmosphere is large due to the ultraviolet lamps 220a and 220b, use a fluid introduction device (not shown) to supply coolant such as cooling water as necessary.
  • a configuration that can be introduced in the vicinity can be adopted.
  • a cooling pipe is installed on the outer periphery of the light cleaning device 22 and a cooling agent such as cooling water is passed through the cooling pipe to cool the entire light cleaning device 22.
  • a configuration can also be employed.
  • an air supply pipe 222 and an exhaust pipe 222 are introduced from the outside into the inside of the light cleaning device 222, and are sent from a gas supply device (not shown) from the air supply pipe 222.
  • a low-absorbing gas such as nitrogen or a rare gas is supplied into the optical cleaning device 22, and the gas inside the optical cleaning device 22 is sucked from the exhaust pipe 222 by operating a vacuum pump (not shown). You.
  • the gas in the optical cleaning device 22 is replaced with a low-absorbing gas such as nitrogen or a rare gas. Even when the wavelength of the light emitted from the ultraviolet lamps 220a and 220b is 172 nm or less, the concentration of oxygen and water vapor in the light cleaning device 22 can be reduced.
  • the UV light transmittance is good, and UV light (cleaning light) can reach the reticle storage box 20.
  • the plate members 16a and 16b constituting the mounting table have predetermined heights in the optical cleaning device 22.
  • two air supply units 51A, 51C and exhaust units 51B, 51D are provided on the upper surface of the plate-like members 160a, 160b, respectively. .
  • These air supply units 51A and 51C and the exhaust units 51B and 51D are used to replace the gas in the reticle storage box 20, and are formed in the reticle storage box 20. It is arranged at a position facing the four ventilation holes 204a to 204d.
  • the air supply units 51A and 51C are connected to one ends of air supply pipes 224a and 224c respectively introduced from the outside of the optical cleaning device 22.
  • One ends of exhaust pipes 222b and 222d introduced from the outside of the optical cleaning device 22 are connected to B and 51D, respectively.
  • the other end of the air supply pipes 2 24 a and 2 24 c is connected to a gas supply device that supplies a low-absorbing gas (not shown).
  • the other end is connected to a vacuum pump (not shown).
  • the air supply units 51A and 51C will be described with reference to FIG. 7, taking the air supply unit 51A as a representative example.
  • FIG. 7 is a perspective view showing the configuration of the air supply unit 51A and the vicinity thereof.
  • the air supply unit 51A is composed of a telescopic variable member 64 made of a metal bellows made of aluminum or the like to which one end of an air supply pipe 222a is connected, and the telescopic variable member.
  • 6 Air supply pipe 2 2
  • Connection pipe 62 connected to the end opposite to the end opposite to a and also serves as a guide bar attachment member 62, and is connected to the opposite side of the expansion / contraction variable member 64 of the connection pipe 62.
  • a tip member 61 comprising a pipe member whose inside communicates with the air supply pipe 224a via the internal space of the telescopically variable member 64; and a plate member mounted and fixed to the outer peripheral portion of the tip member 61. It has 6 3 etc.
  • the air supply pipe 224 a is fixed to the outer wall of the light cleaning device 22.
  • a pair of guide bars 67 A and 67 B are provided on one side and the other side of the outer peripheral surface of the connection pipe 62 in the X-axis direction, respectively.
  • the plate-like member 160 A pair of slide guides 68A, 68B are fixed to one side and the other side in the X-axis direction with the connection pipe 62 interposed therebetween.
  • the guide guides 67A, 67B are attached to the slide guides 68A, 68B by Y.
  • Guide grooves 86a and 86b in the Y-axis direction for guiding in the axial direction (the directions of arrows B and B 'in FIG. 7) are formed, respectively.
  • a seal member 73 made of an O-ring or the like is fixed on the + Y side surface of the plate member 63.
  • a seal member 73 a member made of, for example, fluororubber or the like, which hardly generates degassing of the absorbent gas is used.
  • the tip member 61 is made of a fluororesin such as Teflon (registered trademark) or the like, and has an end face on the opposite side (+ Y side) to the connection pipe 62 closed. Further, two through holes 61 a (however, the through holes formed on the far side are not shown in FIG. 7) are formed in the peripheral wall near the + Y end of the tip member 61.
  • the guide bars 67A and 67B are moved by the drive mechanism (not shown) to the slide guides 68.
  • the drive mechanism (not shown) to the slide guides 68.
  • the connecting pipe 62, the plate member 63 and the tip member 61 are integrally formed with the guide bars 67A and 67B.
  • the extension / contraction member 64 extends, and the tip of the tip member 61 is inserted into the ventilation hole 204 a formed in the reticle storage box 20.
  • the distal end surface of the distal end member 61 passes through the vent hole 204a to open and close the valve mechanism 21 2A.
  • Touch 5 When the distal end member 61 is further driven in the + Y direction, the valve member 215 is pushed by the urging force of the urging mechanisms 214A and 214B, and the valve member 215 is moved in the + Y direction ( (In the direction of arrow B), but immediately after the start of the movement, the plate member 63 is pressed against the outer surface of the housing 211 of the reticle storage box 20 via the seal member 73.
  • FIG. 6 shows a state in which the plate member 63 constituting the air supply unit 51 A is pressed against the outer surface of the housing 211 of the reticle storage box 20 via the seal member 73.
  • the vent hole 204a is closed by the seal member 73 and the plate member 63.
  • the low-absorbent gas is supplied into the reticle storage box 20 through the opening 61 a of the tip member 61. be able to.
  • the air supply unit 51C is configured similarly to the air supply unit 51A.
  • the exhaust units 51B and 51D have the same construction and the like as the above air supply unit 51A, but the exhaust units 51B and 51D and the exhaust pipe 222b
  • the point that the gas in the reticle storage box 20 is exhausted via the, 224 d is different.
  • the air supply units 51A, 51C and the exhaust units 51B, 51D configured in this way, the air supply units 51A, 5A are provided to the ventilation holes 204a, 204G. 1 C tip member is inserted, and exhaust units 51 B, 51 D are inserted into vent holes 204 b, 204 d, and the inside of reticle storage box 20 is open air.
  • the low-absorbent gas is supplied into the reticle storage box 20 through the air supply units 51 A and 51 C, and is discharged through the exhaust units 51 B and 51 D.
  • the gas in the reticle storage box 20 is efficiently replaced.
  • the reticle storage box 20 which has been gas-replaced as described above, is irradiated with ultraviolet light from the ultraviolet lamps 220 a, 220 b from above and below, so that the reticle is kept.
  • Ultraviolet light is applied to the upper surface and the lower surface of the reticle R via the window glasses 201a and 201b of the storage box 20, and the reticle R is optically cleaned.
  • the reticle storage box 20 itself is also optically cleaned by the irradiated ultraviolet light or the reflected light and scattered light by the reticle R.
  • the cleaning effect can be further enhanced by the inclusion of. Therefore, in the light cleaning by the light cleaning device 22, in the course of the gas replacement with nitrogen or a rare gas, the oxygen concentration or the water vapor concentration in the gas inside the gas became a predetermined concentration of about 100 ppm, for example. It is preferable to carry out in a state.
  • an oxygen concentration meter as a sensor for measuring the oxygen concentration in the gas exhausted from the exhaust pipes 222 and the exhaust pipes 224b and 224d or a water vapor concentration as a sensor for measuring the water vapor concentration It is desirable to install a meter and start optical cleaning when the measured concentration reaches a predetermined value.
  • each of a and 224c can be connected to a pipe 235 of a gas supply mechanism as shown in FIG.
  • This gas supply mechanism includes a gas mixer 230 and an oxygen concentration meter 231 as a sensor connected to the gas mixer 230 via a connection pipe 234.
  • the gas mixer 230 has a high-purity gas supply device (not shown) having one end for supplying pure nitrogen or pure rare gas (for example, a gas cylinder for nitrogen gas or a rare gas cylinder, A device that supplies gas from the cylinder via a line filter having at least one of a HEPA filter and a chemical filter). The other end of the supply pipe 232 and one end of the supply pipe are about 100 ppm. A supply line connected to a high-concentration gas supply device (not shown) that supplies relatively high oxygen concentration nitrogen containing oxygen or nitrogen or rare gas containing relatively high water vapor concentration containing about 100 ppm water vapor. The other end of tube 23 is connected.
  • the gas supplied from these supply pipes 2 3 2 and 2 3 3 to the gas mixer 230 is mixed by the gas mixer 230, and the mixed gas is connected to the connection pipe 230 and the oxygen concentration meter.
  • the supply air is supplied to the air supply pipe 22 2 in FIG. 5 and the air supply pipes 2 24 a and 22 4 c in FIG.
  • the oxygen concentration in the mixed gas mixed by the gas The controller 2336 controls the mixing ratio of the two gases by the gas mixer 230 based on the measurement result, and feeds the gas having the desired oxygen concentration to the air supply pipe 2. It can be sent to 2 2, 2 2 4 a, 2 2 4 c.
  • the gas mixer 230 and the controller 236 constitute an adjusting device.
  • the reticle in the reticle storage box 20 is optically cleaned while the gas in the optical cleaning device 22 is replaced with a gas.
  • a Xe (xenon) lamp or an ArF Since the luminous flux of the lamp passes through the atmosphere to some extent, it is not necessary to replace the gas in the light cleaning device 22 with gas during light cleaning. In this case, the light cleaning device 22 itself does not need an airtight structure, and there is an advantage that the structure can be simplified.
  • the amount of ultraviolet light decreases due to the absorption of light by oxygen in the optical cleaning device 22, and the amount of light applied to the reticle decreases.
  • the interval between the UV light source and the window glass 2 O la and 201 b for UV transmission above and below the reticle storage box 20 should be set as short as possible, for example, 5 mm or less. desirable.
  • the reticle is carried into the main chamber 1 of the exposure apparatus from outside the exposure apparatus, the exposure operation is performed, and the used reticle is collected.
  • a series of operations will be described with reference to FIG.
  • the operation of each of the following units is realized by a control operation of a control device (not shown). However, in order to simplify the description, description of the control device will be omitted unless it is particularly necessary.
  • the loading operation of the reticle onto the reticle holder is performed in the following steps a. To h.
  • a reticle carrier 44 containing a plurality of (3 in this case) reticles is loaded into the loading / unloading port 1 a of the main chamber 1 by a ceiling transport system (not shown). At this time, the opening 78 provided in the loading / unloading port 1a is Therefore, it is closed.
  • the control device When the control device confirms that the reticle carrier 44 has been loaded, the control device engages the opening / closing member 82 of the opening / closing device 45 ′ through the lock release mechanism, and moves between the carrier body 46 and the cover 102. The lock mechanism is released, and the opening / closing member 82 is engaged with the carrier body 46. Then, the opening / closing member 82 is driven to descend through the driving mechanism 45, and waits in the state shown in FIG.
  • any one of the plurality of reticles housed in the carrier body 46 is performed.
  • the reticle transfer robot pot 47 receives the reticle by inserting the arm of the reticle transfer port pot 47 into the lower side of the reticle and driving it upward.
  • the reticle storage box 20 waiting at the position shown by the solid line in FIG. 1 (hereinafter referred to as the reticle storage box 20)
  • the reticle R is transported to the vicinity of the reticle.
  • the reticle storage is performed by a lock opening / closing mechanism (not shown) provided between the reticle conveyance robot 47 and the elevator unit 130.
  • a lock mechanism (not shown) provided between the reticle transport robot 47 and the elevator 130 is used. Open the door 205. With the opening and closing door 205 a opened, the arm holding the reticle R is driven to expand and contract, so that the reticle R is inserted into the reticle storage box 20 through the loading / unloading opening 211 a. Carry in.
  • the arm of the reticle transfer port pot 47 is driven downward to move the plurality of support members 2 in the reticle storage box 20. 13.
  • Reticle R is placed on 3.
  • the reticle is stored by moving the arm of the reticle transfer robot 47
  • the opening / closing door 205 a of the reticle storage box 20 is closed by the opening / closing mechanism.
  • the lock mechanism 208 is locked by the lock opening / closing mechanism.
  • the sliders 48a to 48d constituting the elevator unit 130 are driven downward along the slide guides 19a to 19d, respectively, so that the reticle R containing the reticle R therein is stored.
  • the box 20 is transported to the position indicated by reference numeral 20B in FIG.
  • the reticle storage box 20 is delivered to the horizontal slide mechanism 21 at this position, the reticle storage box 20 is moved to the right (+ X direction) in FIG. ).
  • an opening / closing mechanism (not shown) provided near the optical cleaning device 22 provides Open the lid member 23 of the optical cleaning device 22.
  • the reticle storage box 20 is further transported in the + X direction via the horizontal slide mechanism 21 and the optical cleaning device 2
  • the reticle storage box 20 is accommodated in 2 (the state of reference numeral 20 C in FIG. 1).
  • the lid member 23 of the optical cleaning device 22 is closed by the opening / closing mechanism.
  • the lid member 23 of the optical cleaning device 22 can be locked by the lock mechanism, it is desirable to lock the opening and closing of the lid member 23 by the lock opening / closing mechanism.
  • the air supply units 51 A, 51 C and the exhaust units 51 B, 51 D are connected to the ventilation holes 204 a, 204 of the reticle storage box 20.
  • the on-off valve mechanisms 2 12 A to 2 12 D By opening and closing the on-off valve mechanisms 2 12 A to 2 12 D by sliding toward c, 204 b, and 204 d, the gas in the reticle storage box 20 is replaced.
  • the inside of the body 228 of the optical cleaning device 22 is also subjected to gas replacement via the air supply pipe 222 and the exhaust pipe 222.
  • the control device is controlled via an oxygen concentration meter (sensor), a timer, or the like.
  • the control device determines that the ultraviolet lamps 220 a, 2 Start irradiation of ultraviolet rays from 20b.
  • cleaning of the reticle storage box 20 and light cleaning of the reticle through the light transmission window of the reticle storage box 20 are performed for a predetermined time. During this light cleaning, the air supply units 51A and 51C and the exhaust units 51B and 51D remain connected, and the gas replacement in the reticle storage box 20 is continued. .
  • the air supply units 51A, 51C and the exhaust units 51B, 51D are driven by the guide mechanisms 67A, 67B described above.
  • To the reticle storage box 20 (direction B 'in Fig. 7) by sliding the air supply units 51A, 51C and the exhaust units 51B, 51D to the reticle. It may be removed from the storage box.
  • the controller 236 controls the gas supply mechanism so that the oxygen concentration in the gas supplied from the gas supply mechanism is 0.1 ppm or less or the water vapor concentration is 1 ppm or less. Control the gas mixer 230. That is, the gas supply from the high-concentration gas supply device is stopped, and the gas is supplied only from the high-purity gas supply device.
  • the reticle contained in the reticle storage box 20 is replaced.
  • the gas in the space (hereinafter referred to as “protected space J”) formed between the pellicle frame 5, the reticle substrate 54, and the pellicle frame 76, which constitutes R, is transferred to the above-described pellicle frame ⁇ 6 formed in the pellicle frame 6. Via a vent, it can be replaced with nitrogen or a noble gas.
  • an opening / closing lid is further provided in the reticle storage box 20 separately from the above-described lid member, and directly through the opening / closing lid to a ventilation hole provided in the pellicle frame.
  • the gas in the protected space may be replaced with nitrogen or a rare gas by connecting the gas replacement mechanism for the protected space.
  • This gas replacement mechanism includes a gas supply pipe and a gas exhaust pipe.
  • the lid member 23 of the optical cleaning device 22 is opened by an opening / closing mechanism (not shown), and the horizontal slide is performed.
  • the reticle storage box 20 is taken out of the optical cleaning device 22 by the storage mechanism 21.
  • the reticle storage box 20 is transported to the position indicated by reference numeral 20B in FIG. 1 via the horizontal slide mechanism 21 to thereby move the sliders 48a to 48d of the elevator unit 130.
  • the reticle storage box 20 will be delivered to the customer.
  • the control device extends the bellows 91 in the + X direction via the bellows drive mechanism 92.
  • the reticle storage box 20 and the partition wall 18 of the reticle chamber 15 are airtightly connected.
  • the mounting part 96 and the bellows 91 of the bellows mechanism 127, a part of the partition wall 18 (more precisely, the opening and closing door 1 2 1), and the reticle storage box 20 thus, an airtight space 99 divided by and is formed.
  • the low-absorbent gas is supplied into the space 99 through the air supply pipe 94, and the gas in the space 99 is exhausted to the outside through the exhaust pipe 95, so that the space Is replaced with a low absorbent gas.
  • the oxygen provided in the space 99 is checked.
  • the lock mechanism 205 of the open / close door 205 b is released by the lock open / close mechanism shown, and the open / close door 205 of the reticle storage box 20 is opened and closed by the open / close mechanism provided in the space 99.
  • the opening and closing doors 121 in the reticle chamber 15 are opened via a drive system (not shown). The state at this time is shown in FIG. 2C.
  • the arm of the reticle transport robot 6 in the reticle chamber 15 is driven to extend and retract to move the re-roll 18 a of the partition 18, the space 99, and the opening 2 1 1 b of the reticle storage box 20.
  • the reticle storage box 20 Through the reticle storage box 20 through the box.
  • the reticle R is received by the reticle transport robot 6 by being further moved up while the arm of the reticle transport robot 6 is inserted under the reticle R in the reticle storage box 20.
  • the reticle R is carried out of the reticle storage box 20 by extending and retracting the arm, and the reticle is moved into the reticle chamber 15. Convey R.
  • the control device After carrying out the reticle R (withdrawing the arm to the outside of the reticle storage box 20), the control device sequentially closes the opening and closing doors 205b and 121 of the reticle storage box 20.
  • the lock mechanism 207 may be locked together with the closing of the door 205 b.
  • the reticle R is transported above the reticle holder 14 by extending and rotating the arm of the reticle transport robot 6 toward the reticle holder 14. Then, the reticle R is loaded on the reticle holder 14 by driving the arm downward at this position. Thereafter, the arm of the reticle transport robot 6 retreats from above the reticle holder 14.
  • the exposure operation of the step 'and' repeat method is performed.
  • the circuit pattern formed on the reticle R is sequentially transferred to a plurality of shot areas on the wafer W.
  • the reticle R is carried (unloaded) as follows.
  • the arm of the reticle transport robot 6 is extended and retracted toward the reticle holder 14 and moved to the lower side of the reticle R, and the reticle R is delivered to the arm by driving the arm upward. .
  • the arm is extended and contracted, and is driven to rotate so as to approach the opening / closing door 121 in the reticle chamber 15.
  • the control device confirms this approach via a sensor or the like (not shown), it opens the opening / closing door 121 via the drive mechanism, and further opens / closes the opening / closing door 205b of the reticle storage box 20. Open through.
  • the reticle R is held at a predetermined position in the reticle storage box 20 by extending and retracting the arm of the reticle transport robot 6 holding the reticle R, and the arm is driven down by a predetermined amount from this state.
  • the reticle R is placed on the support member 2 13 in the reticle storage box 20.
  • the reticle storage box 20 is transported to the reticle carry-in / out position by driving the sliders 48a to 48d to move down along the slide guides 19a to 19d.
  • the lock mechanism 208 on the side of the door 205 a is released by the lock mechanism, and the door 205 a is opened by the mechanism (not shown).
  • reticle R is unloaded from reticle storage box 20 by performing the reverse operation of reticle transport locator 47 described above loading the reticle into reticle storage box 20, and carrier body 4. Store reticle R in the empty step of step 6.
  • the next reticle R is transported toward the reticle storage box 20, and the reticle storage box 20 and the reticle are transported along the same transport path as above, and the reticle transported to the reticle holder 14 is used. Exposure operation is repeated.
  • the exposed reticle R can be stored in the reticle storage box 20 without returning to the carrier body 46 until the next use opportunity. In this case, it can be stored in the storage mechanism 24 provided near the upper end of the elevator unit 130.
  • the storage mechanism 24 has a configuration capable of storing the reticle storage box 20 in a substantially airtight state.
  • the storage mechanism 24 has an air supply unit 51 A, 51 C, and an air supply unit 51 B, 51 D provided in the optical cleaning device 22 as described above.
  • Units and exhaust units are provided corresponding to the positions of the ventilation holes of the reticle storage box 20.
  • One end of each of the air supply unit and the exhaust unit is connected to a gas supply device (not shown) for supplying a low-absorbing gas, and the other end is connected to a vacuum pump (not shown). Is connected.
  • FIG. 24 When the reticle storage box 20 is transported to the position indicated by E, the reticle storage box 20 is supported from below by the storage mechanism 24 at that position. Then, after the air supply unit and the air exhaust unit are connected to the ventilation holes in this state, the gas in the reticle storage box 20 is replaced.
  • the organic gas released from the members (anti-reflection plating material or adhesive material of the pellicle frame) constituting the reticle is prevented from accumulating in the reticle storage box 20 and increasing its concentration. be able to. Since the gas replacement in this case is performed for the above-mentioned reason, it is not necessary to perform the gas replacement more rapidly than in the light cleaning device 22.
  • a reticle storage box different from the reticle storage box 20 is prepared, and after one reticle storage box 20 is accommodated in the storage mechanism 24, the other reticle storage box is stored.
  • the reticle may be used to carry the next reticle.
  • the air supply units 51A, 51C and the air supply pipes 224a, 2224c constitute a regas supply mechanism
  • the exhaust units 51B, 51 D and the exhaust pipes 2 24 b and 2 24 d constitute a gas exhaust mechanism.
  • the reticle R is housed inside the reticle R through the opening 211a opened by the opening / closing door 205a.
  • the opening 211a is closed by the opening / closing door 205a. In this way, reticle R can be stored in the internal space of reticle storage box 20 shielded from the outside air.
  • part of the storage box body 210 Since the reticle R is formed of the reticle storage box 210, light cleaning can be performed because the reticle R is formed by the window glass 201 a and 201 b transmitting the light. This makes it possible to prevent chemical contamination of the reticle. In addition, for example, by filling the interior space of the reticle storage box 20 with a gas having a small chemical contamination of the reticle, the contamination of the reticle after the optical cleaning can be suppressed for a long time.
  • ventilation holes 204 a to 204 d are formed in a part of the reticle storage box 20, and an on-off valve mechanism 21 for opening and closing these ventilation holes. Since 2 A to 2 12 D are provided, the on / off valve mechanism 2 1 is provided by a mechanism for supplying or exhausting gas to / from the reticle storage box 20 without separately providing a mechanism for opening and closing the ventilation hole. 2A to 2D can be opened to perform gas replacement in the reticle storage box 20. Thereby, gas replacement in the reticle storage box 20 can be performed in a short time.
  • the reticle storage box 20 is transported by the elevator unit 130 on the transport path including the predetermined position (20D) near the optical path of the exposure light EL.
  • the reticle R accommodated in the reticle storage box 20 transported to the predetermined position (20D) is transferred by the reticle transport robot 6 to a predetermined atmosphere (that is, gas is replaced with a low-absorbent gas) transport path.
  • a predetermined atmosphere that is, gas is replaced with a low-absorbent gas
  • the reticle is transported to the predetermined position (20D) with the reticle stored in the internal space of the reticle storage box 20 shielded from the outside air, and the exposure light E from the predetermined position (20D).
  • the reticle is transported to the reticle chamber 15 including the optical path of L through the transport path replaced with the low-absorbing gas by / P. For this reason, for example, even if the total transport path of the reticle R becomes long, the transport path up to a predetermined position does not have to be replaced with a low-absorbent gas. That is, since the purge space in the exposure apparatus can be minimized, the size of the transport path can be reduced. This As a result, it is possible to simultaneously improve the exposure accuracy by preventing reticle contamination and reduce the size of the exposure apparatus.
  • the optical cleaning apparatus 22 is provided in the main body champer 1 of the exposure apparatus 110, the reticle R is irradiated with ultraviolet light, thereby absorbing the exposure light EL. Chemical contaminants having the property of decomposing are decomposed. As a result, the transmittance of the exposure light EL can be maintained satisfactorily and stably, and in addition to maintaining the exposure power and improving the throughput, the exposure amount control accuracy can be maintained with high accuracy over a long period of time. It is possible to do.
  • the reticle is transported using the reticle storage box 20, so that the light irradiation devices 22 can be arranged as far apart as not to affect the exposure accuracy. Therefore, it is possible to minimize the influence of the heat generated by the irradiation of the ultraviolet rays on the exposure device main body.
  • the reticle storage box 20 is also light-cleaned, so even if the reticle after light cleaning is stored in the reticle storage box as it is, the reticle after cleaning may be chemically contaminated. There is little.
  • the gas in the reticle storage box is converted to a predetermined gas (for example, a relatively oxygen concentration containing about 100 ppm of oxygen). (High nitrogen or rare gas), the light cleaning efficiency of the reticle storage box and the reticle can be improved.
  • a predetermined gas for example, a relatively oxygen concentration containing about 100 ppm of oxygen.
  • the windowpanes 201a and 201b as transmission parts are provided in the storage box body 210.
  • a transmission part may be provided in at least a part of 05b.
  • an opening / closing door opening / closing section
  • the entire reticle storage box may be made of a member that transmits light.
  • the opening / closing valve mechanism is provided inside the reticle storage box.
  • the present invention is not limited to this, and the opening / closing valve mechanism may be provided outside the reticle storage box. And it is good. That is, a cylindrical member provided on the outer surface side of the storage box main body having the ventilation hole, one end of which communicates with the ventilation hole and the other end of which communicates with the outside. A valve member which is urged to the side opposite to the air hole to close a communication port between the inside and the outside of the tubular member, and which is opened and closed when the valve member is pressed from the outside and moved to the air hole side. A configuration in which the valve is opened may be adopted.
  • the reticle storage box 20 and the reticle R are optically cleaned at the same time in the optical cleaning device 22.
  • the present invention is not limited to this, and only the reticle storage box 20 is optically cleaned. Is also good.
  • light washing of the reticle storage box 20 alone can be realized by shielding the light transmitting windows 201a and 201b of the reticle storage box 20 from light.
  • the inside of the reticle storage box 20 is in an extremely low humidity environment, the reticle R contained therein is easily charged, and the pattern on the reticle may be damaged when it is discharged. . Therefore, radiation sources such as X-rays, yS rays, and X-rays may be installed in the reticle storage box 20, and the gas inside the reticle storage box 20 may be ionized to prevent charging. .
  • ventilation holes 204 a to 204 d are formed in the reticle storage box 20, and the inside of the reticle storage box 20 is formed through the ventilation holes 204 a to 204 d.
  • Gas replacement was performed, but the invention is not limited to this.
  • opening and closing the doors 205 a and 205 b and replacing the gas inside the optical cleaning device 22 with the gas inside the reticle storage box 20 Gas replacement may be performed.
  • only a ventilation hole for air supply is formed, a low-absorbent gas is supplied from this ventilation hole, and at least one of the doors 205a and 205b is opened to exhaust the gas inside.
  • the gas inside the reticle storage box 20 may be replaced.
  • it is not necessary to introduce an air supply pipe and an exhaust pipe to replace the gas in the reticle storage box into the optical cleaning device and in the latter case, only the air supply tube If you introduce good.
  • the reticle is loaded into the reticle storage box 20 in the main body chamber 1 of the exposure apparatus 110, and light cleaning is performed in the main body chamber. It is also possible to carry out the reticle into the reticle storage box 20 outside the main body chamber, perform optical cleaning outside the main body chamber, and carry the reticle storage box 20 into the main body chamber as it is. Even in this case, the inside of the reticle storage box 20 is kept airtight, so that the reticle R is not chemically contaminated.
  • the loading of the reticle from the reticle carrier into the reticle storage box 20 and the light cleaning of the reticle in the reticle storage box 20 may be performed in a reticle pre-processing apparatus separate from the exposure apparatus body. Also in this case, the reticle is protected from chemical contamination by the reticle storage box 20 when the reticle is transported from the reticle pre-processing apparatus to the exposure apparatus main body.
  • the ventilation holes 204 a to 204 d are formed on the two opposing surfaces of the reticle storage box 20.
  • the invention is not limited thereto, and the ventilation holes 2 may be formed on two adjacent sides.
  • a vent hole 2 is formed in a corner (a corner) of the reticle storage box 20. 0 4 a to 204 d may be formed.
  • the case of the reticle storage box 20 is described as being constituted by one member.
  • the case is constituted by a plurality of members (for example, the upper wall and the side wall). , Bottom wall, etc.).
  • the members may be fixed by welding, or may be fixed by screws or the like.
  • a seal member such as an O-ring between the members to ensure airtightness.
  • the reticle storage box 20 described in the first embodiment is merely an example of the mask storage device according to the present invention, and various types of mask storage devices can be considered. It is.
  • FIG. 9 shows a modification of the reticle storage box.
  • the reticle storage box 5100 shown in FIG. 9 has a gate valve 550A, 550 instead of the opening / closing door 205a, 205b of the first embodiment as an opening / closing section.
  • the feature is that B is adopted.
  • One of the gate valves 55OA is a vertical opening / closing type gate valve which is opened and closed when the shutter 504 moves up and down.
  • the gate valve 55OA is fixed to one X-side end of the housing 211 constituting the storage box main body 210, and has a gate valve 504 therein.
  • a rectangular frame-shaped drive section 505 which constitutes a part of the drive section.
  • the gate valve body 506 has a substantially L-shaped cross section, is hollow inside, and has rectangular openings 503 a and 503 b at ⁇ X end faces.
  • a shirt box 503 thus formed and a shirt box 504 provided in the shirt box 503 and movable in the vertical direction are provided.
  • An annular groove 527a is formed around the opening 503a on the + X side of the shirt tapox 503 (the surface on the X side), and an o-ring or the like is formed in the groove 527a. Is provided.
  • the opening / closing mechanism 501 includes a motor and the like, and a belt mechanism 538 is connected to the motor.
  • the belt mechanism 538 is provided not only on the + Y side of the shirt 504 but also on the one Y side (the front side of the drawing).
  • the shirt mechanism 504 is connected to the belt mechanism 538 via a mounting member (not shown), and the belt mechanism 538 is driven by a motor so that the belt mechanism is connected to the belt mechanism.
  • the shirt 504 is driven up and down.
  • the sealing mechanism includes: the driving unit 505; a plurality of shafts 531, which are driven back and forth in the X-axis direction by the driving unit 505; and a + X end of the shafts 531.
  • a rectangular frame-shaped pressing member 533 fixed to the pressing member.
  • an annular concave groove 533a is formed, and in this concave groove 533a, a sealing member 535 made of an O-ring or the like is provided. ing.
  • the pressing member 533 is reciprocally driven in the X-axis direction by, for example, a reciprocating drive of a shaft built in the driving unit 505 by a motor.
  • the closing operation is performed as follows from the open state of the shirt shown in FIG. 1OA. That is, first, from the state shown in FIG. 1OA, the closing mechanism 504 is driven downward by the driving of the belt mechanism 538 by the opening / closing mechanism 501. Then, when the shirt 504 is positioned at the position shown in FIG. 1OB, the driving member 505 constituting the sealing mechanism drives the pressing member 5333 in the + X direction in conjunction with this. As a result, the shirt 504 located in the + X direction of the pressing member 533 is pressed in the + X direction by the pressing member 533. In this way, as shown in FIG. 10C, when the shirt 504 is pressed against the sealing member 529, the gas flows through the opening 503a of the shirt box 503. It is possible to cut off almost completely.
  • the opening operation of the gate valve 55OA is performed in a procedure reverse to the above-described closing operation. That is, when the pressing member 533 is driven in the X direction from the state of FIG. 10C, the shirt 504 is connected to the belt mechanism 538, and the position shown in FIG. Move in the X direction until it returns to its original position. Then, in this state, the shutter 504 is driven upward by the belt mechanism 538 driven by the opening / closing mechanism 501, and the gate pulp 550B is opened as shown in FIG. 1OA. Will be.
  • the reticle storage device can be made relatively inexpensively, and the cost can be reduced.
  • a gate valve has high reliability such as airtightness, it is possible to reduce the time required for designing a reticle storage box.
  • the gate valve is not limited to the vertical opening and closing type, but may be a left and right opening and closing type gate valve.
  • an opening / closing mechanism for opening / closing the gate valve is provided directly on the gate valve.
  • the present invention is not limited to this.
  • a drive device for opening and closing the door may be provided. This makes it possible to reduce the weight of the reticle storage box.
  • FIGS. 11 to 14B An exposure apparatus according to a second embodiment of the present invention using a reticle storage box of the same type as the above-mentioned reticle carrier 44 (see FIG. 1) as a mask storage apparatus, which can be opened and closed (bottom open type), The description will be made based on FIGS. 11 to 14B.
  • a reticle storage box of a top-and-bottom opening / closing type (bottom-open type) is used as a reticle storage box.
  • the mechanism for unloading the reticle is different from that of the first embodiment, and the other components are the same. Therefore, in the following, these differences will be mainly described in order to avoid redundant description. Also, a similar For the purpose, the same reference numerals are used for the same or equivalent components as those in the first embodiment, and the description thereof will be simplified or omitted.
  • FIG. 11 is a perspective view of the reticle storage box 400 that can be opened and closed
  • FIG. 12A is a vertical cross-sectional view of the reticle storage box 400 of FIG. 2B shows a state in which the bottom opening / closing portion of the reticle storage box 400 in FIG. 12A is open.
  • the reticle storage box 400 has an internal space capable of accommodating the reticle R, and has an opening through which the reticle R can be taken in and out.
  • Reticle storage box body 450 as a storage device body formed on the bottom surface
  • a bottom opening / closing section 4 serving as an opening / closing section for opening / closing an opening 405b provided at the bottom of the reticle storage box body 450. 60.
  • the reticle storage box main body 450 has roughly three parts, namely, a lower side wall member 450 having a rectangular frame shape having a substantially predetermined height, and the lower side wall member 450.
  • a flange member 406 having a rectangular opening at the center fixed to the upper end surface of the member 405 and protruding outside the lower side wall member 405, and being fixed to the upper surface of the flange member 406
  • an upper side wall member 407 having a stepped opening 407a having two steps in the center of the upper surface thereof.
  • the lower side wall member 405, the flange member 406, and the upper side wall member 407 are made of stainless steel (SUS) or the like, which has a small amount of degassing.
  • the lower side wall member 405 is provided with a protruding portion protruding inward all around its upper end, as shown in FIGS. 12A and 12B.
  • the above-mentioned opening 405b is formed by the inner peripheral surface of the portion.
  • rotary lock mechanisms 4 14A and 4 14B are provided, one each on the left and right in FIG. 12B (and FIG. 12A). I have.
  • the rotary hook mechanism 4 14 A on the left (left side) is rotatable about the vertical axis as the axis of rotation.
  • the other rotary lock mechanism 4 14 B also has a shaft member 5 25 a and a shaft member 5 5 5 a embedded in the lower side wall member 4 05 in a state of being free to rotate about a vertical axis as a rotation axis. And a pin portion 52b provided so as to protrude in the horizontal direction from the vicinity of the upper end of 25a.
  • the flange member 406 has an opening smaller than the opening 405 b at the center of a plate-like member once larger than the lower side wall member 405. It consists of a frame-like member as formed.
  • the flange member 406 functions as a supported portion supported by an upper wall of a partition wall 433 described later, for example, when the reticle R is carried into the reticle chamber 15 (see FIG. 14A).
  • the upper side wall member 407 has a stepped opening 407a having two steps in the center thereof.
  • Window glass 4 08 is fitted into 07 a.
  • the window glass 408 has a stepped opening 407 formed in the upper side wall member 407 and a sealing member 404 including an O-ring or the like for ensuring airtightness at the second step from the top. 0b, and is fixed by being pressed down from above by a rectangular frame-shaped window holding member 409 fitted into the first step from the top.
  • a sealing member 440a for ensuring airtightness is also provided between the window holding member 409 and the window glass 408, and the window holding member 409 has an upper side wall member 407. Is fixed by a plurality of screws 4 10.
  • the upper side wall member 407 has its X-axis direction
  • a total of six ventilation holes 4 16 a to 4 16 f are formed, one on each side on the one side and the other side, and two on each side on the one side and the other side in the Y direction (however, In FIG. 11, the ventilation holes 4 16 d, 4 16 e, and 4 16 f formed on the + X side surface and the + Y side surface are not shown, respectively, see FIG. 12B).
  • the gas inside the reticle storage box 400 can be replaced with gas through these ventilation holes 4 16 a to 4 16 f, and through at least two of these ventilation holes,
  • a gas supply pipe and a gas exhaust pipe directly to the ventilation holes (not shown) provided in the pellicle frame 76, gas replacement of the space surrounded by the reticle R and the pellicle frame 76 and the pellicle 75 is achieved. It is also possible to perform
  • on-off valves that can be opened by being pressed from the outside may be provided.
  • the bottom opening / closing part 460 has a rectangular frame-shaped bottom member 404 in which a stepped opening 404a having two steps is formed at the center thereof, and the bottom member 404 is provided on the upper surface of the bottom member 404.
  • a reticle support member 403 having a fixed lower end surface for supporting the reticle R from below, and a window glass 4 provided so as to close the stepped opening 404a of the bottom member 404a. 1 and 1 are provided.
  • the reticle support member 403 is a rectangular frame as a whole, but has a stepped shape having an upper end surface smaller than a lower end surface.
  • the reticle support member 403 has a lower end surface having a rectangular shape slightly larger than an upper end portion of the stepped opening 404 a of the bottom member 404, and an upper end surface thereof has a pellicle provided on the reticle R. It has a rectangular shape once larger than the frame 76.
  • the reticle support member 4003 is not limited to the above-described shape, and for example, the longitudinal direction is the Y-axis direction (or X-axis direction) that supports the vicinity of both ends of the reticle in the X-axis direction (or Y-axis direction). It is good to adopt two knight-shaped support members No. By adopting such a member as the reticle support member, loading and unloading of the reticle to and from the reticle support member can be performed by parallel movement of the arm used to transport the reticle in the longitudinal direction of the reticle support member. (And slight vertical movement) can be easily realized.
  • the window glass 411 is provided with a sealing member 4400 made of an O-ring or the like for ensuring airtightness at the second step from the bottom of the stepped opening 4104a formed in the bottom member 4104.
  • the rectangular frame-shaped window pressing member 1 fitted into the first step from the bottom is fixed by being pressed down from below by a member d.
  • a sealing member 44 c for ensuring airtightness is also provided between the window holding member 4 12 and the window glass 4 1 1, and the window holding member 4 12 4 is fixed by a plurality of screws 4 13.
  • a seal member 418 made of a rectangular O-ring or the like is fixed to the upper surface of the bottom member 404.
  • the bottom opening / closing part 4600 and the reticle storage box body 450 are detachable as shown in FIGS. 12A and 12B. (Openable and closable).
  • the rotation lock mechanisms 4 14 A and 4 1 The pin portions 4 B and 4 B of 4 B prevent the bottom opening / closing portion 4 60 from being detached from the reticle storage box body 4 50.
  • the airtightness of the space in which the reticle R is disposed can be maintained high by the above-described seal member 418.
  • this reticle storage box 400 it is possible to irradiate the reticle R with ultraviolet rays through the upper and lower window glasses 408, 411.
  • the reticle R inside the reticle storage box 400 can be optically cleaned.
  • a mechanism for taking in and out a reticle suitable for the reticle storage box 400 is provided in the exposure apparatus.
  • FIG. 13 shows an example of a reticle carry-in / out mechanism suitable for carrying out a reticle from the reticle storage box 400 and carrying a reticle into / from the reticle storage box 400.
  • the reticle loading / unloading mechanism 500 includes a partition wall 43 3 as a housing connected to the reticle stage chamber 15 via an elastic member 4 35 such as a metal bellows or a film member; 4 3 3 Vertical opening / closing unit 4 7 0 provided on the inner bottom surface, and opening 4 3 3 a that communicates with reticle chamber 15 formed on one X side of partition 4 3 3 Equipped with a mouth-type door lock door 4 3 4, an air supply pipe 4 3 6 for supplying a low-absorbent gas to a space generally surrounded by the partition wall 4 3 3, and an exhaust pipe 4 3 7 for exhausting gas in the space. ing.
  • the partition wall 43 33 has an upper wall portion which is one size larger than the lower side wall member 400 of the reticle storage box 400 and a flange member 400.
  • a rectangular opening 4 33 b that is one size smaller than that is formed.
  • a seal member 420 made of an O-ring or the like is fixed around the rectangular opening 4333b.
  • the vertically moving unit 47 0 has a supporting member 47 1 having steps 47 1 a and 47 1 b at one end and the other end in the X-axis direction, and a step of the supporting member 47 1 4 7 1 a, 4 7 1 b Provided on 4 1 1 a, 4 7 1 b, Rotation lock mechanism 4 1 4 A, 4 1 4 B of reticle storage box 4 1 4 A
  • Driving devices 4332a and 4332b are provided to support the members 471 from below and to drive the members in the vertical direction.
  • the one opening / closing mechanism 431 a is a cylindrical member 4 5 1 having a cutout 4 5 1 a having substantially the same shape as the lower end portion of the rotation locking mechanism 4 14 A of the reticle storage box 400. And a rotary drive with the cylindrical member 45 1 as the vertical axis (Z-axis direction). And a driving mechanism (not shown) that moves.
  • the other opening / closing mechanism 431 b is similarly configured, and includes a cylindrical member 452 having a notch 452 a having the same shape as the notch 451 a, And a drive mechanism.
  • the reticle R is transported from the reticle storage box 400 to the reticle chamber 15 as follows. .
  • the lower half of the reticle storage box 400 (the lower side wall member). 405) is inserted into the opening 433b of the partition 433.
  • the reticle storage box 400 is supported by the peripheral portion of the opening 433 b of the partition wall 433 via the flange member 406, and a seal member 420 is provided between the flange member 406 and the partition wall 433.
  • the space 480 surrounded by the bulkhead 433, the mouth lock door 434, and the reticle storage box 400 (and the sealing member 420) is in an airtight state (hereinafter, this airtight space is referred to as “airtight space”). 480 "). That is, in the present embodiment, the path partitioning member includes the partition 433 and the member 435. Then, with this airtight space 480 formed, the air supply pipe 436 and the exhaust pipe 4
  • the load lock door that closes the opening 4 3 3 a of the partition wall 4 33 in parallel with the detachment operation (opening operation of the bottom) of the bottom opening / closing section 4 60 and the reticle storage box body 4 50. 4 3 4 is slid downward. As a result, the opening 4 3 3 a is opened, so that the arm of the reticle transfer robot 6 housed in the reticle chamber 15 enters the airtight space 480 and the reticle is transferred by the arm of the reticle transfer robot 6.
  • the reticle R is carried into the reticle chamber 15 by the extension and retraction of the arm and the turning operation.
  • the loading of the reticle R from the reticle chamber 15 to the reticle storage box 400 is performed by the opposite operation.
  • the reticle loading / unloading mechanism having the configuration shown in FIG. Is required.
  • the reticle loading / unloading mechanism is supplied from the reticle loading / unloading mechanism 500 shown in Fig. 13 to supply the bulkhead and gas for replacement.
  • a simple configuration such as excluding the trachea and the exhaust pipe can be adopted.
  • the elevator unit 130 shown in FIG. 1 restricts the reticle unloading position. Because of the size of the reticle, the horizontal slider for transporting the reticle storage box and the vertical slider or the mouth bot for transporting the storage box are installed in the exposure apparatus (more specifically, between the elevator unit 130 and the reticle loading / unloading mechanism 500). It is desirable to add more.
  • the exposure apparatus including the reticle storage box 400 and the reticle loading / unloading mechanism 500 described in detail above, the first embodiment described above.
  • the same effect can be obtained.
  • various similar modifications described in the first embodiment can be adopted as long as there is no structural inconsistency.
  • a reticle carrier 44 containing a plurality of reticles therein is loaded into the loading / unloading port 1a of the main chamber 1 by a ceiling transport system (not shown). It was explained as.
  • a ceiling transport system not shown.
  • the reticle carrier 44 a configuration similar to that of the reticle storage box 400 in the second embodiment can be adopted. In the following description, such a reticle carrier is referred to as “improved reticle carrier”.
  • the reticle transport system 120 housed in the main chamber 1 can be omitted, and the optical cleaning device 22 can be arranged outside the main chamber 1. That is, the size of the entire exposure apparatus can be reduced. That is, when the improved reticle carrier is employed, the reticle carrying-in / out mechanism 500 shown in FIG. 13 can be used as a carrying-in / out port of the main body chamber 1.
  • the reticle R is transported as follows.
  • the improved reticle carrier in which the reticle R is housed is transported into the optical cleaning device, and the improved reticle carrier and the reticle R housed in the improved reticle carrier are optically cleaned, and the inside of the improved reticle carrier and the reticle R are cleaned.
  • the improved reticle carrier is transported to the reticle loading / unloading mechanism 500.
  • the inside of the partition 433 constituting the reticle loading / unloading mechanism 500 is in an atmospheric atmosphere until the improved reticle carrier is inserted into the opening 433 b, the inside of the opening 433 b is not closed.
  • the inside of the partition 433 is replaced with nitrogen or a rare gas (the same gas as the gas in the improved reticle carrier).
  • nitrogen or a rare gas the same gas as the gas in the improved reticle carrier.
  • the improved reticle carrier is opened, the reticle R is transferred into the reticle chamber 15 by the reticle transfer robot 6, and is loaded on the reticle stage R ST.
  • a plurality of reticle loading / unloading mechanisms 500 should be provided, and the reticle to be used next should be put on standby in a state where it can be transported into the reticle chamber 15. Is desirable.
  • the interior of the illumination system housing 2, the reticle chamber 15, the lens barrel of the projection optical system PL, the wafer chamber 40, and the like are not shown. Temperature adjustment is performed with the same accuracy as that of the above.
  • the parts of the illumination system housing 2 and the column of the projection optical system PL that come into direct contact with the low-absorbing gas are the same as the partition walls of the reticle chamber 15 and the wafer chamber 40 described above.
  • a material with low degassing such as stainless steel (SUS).
  • the surface of low-absorbent gas such as the illumination system housing 2, the reticle chamber 15, the projection optical system PL lens barrel, and the wafer chamber 40, which is in direct contact with the gas, is degassed with an absorbent gas such as hydrocarbon.
  • an absorbent gas such as hydrocarbon.
  • a coating such as a resin containing fluorine, which causes less occurrence of odor, may be applied. Note that the optical path space of the exposure light between the wafer-side end of the projection optical system PL and the wafer may be locally filled with a low-absorbing gas without providing the wafer chamber 40.
  • the present invention is applied to a reduced projection exposure apparatus such as a step-and-repeat method.
  • a reduced projection exposure apparatus such as a step-and-repeat method
  • the scope of the present invention is not limited to this. That is, the present invention can be suitably applied to a step-and-scan type scanning exposure apparatus that relatively scans the reticle R and the wafer W during exposure.
  • the illumination optical system and projection optical system composed of multiple lenses are In addition to optical adjustment, a wafer stage consisting of a number of mechanical parts (and a reticle stage in the case of a scan type) is attached to the exposure equipment body, and wiring and piping are connected. Assemble each partition that composes the chamber 40, connect the gas piping system including the low-absorbent gas supply system and exhaust system, connect each part to the control system such as a control device, and make general adjustments.
  • the exposure apparatus according to the present invention such as the exposure apparatus main body 100 of the above embodiment, can be manufactured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • Fig. 15 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • step 301 design step [where the function of the device is designed and the performance is designed (for example, the circuit design of the semiconductor device, etc.) Perform pattern design.
  • step 302 mask manufacturing step
  • step 303 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 304 wafer processing step
  • step 304 wafer processing step
  • step 304 device assembling step
  • step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary.
  • step 360 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 305 are performed. After these steps, the device is completed and shipped.
  • FIG. 16 shows a detailed flow example of the above step 304 in the semiconductor device.
  • step 311 oxidation step
  • step 312 CVD step
  • step 3 13 electrode formation step
  • step 3 14 ion implantation step
  • ions are implanted into the wafer.
  • the post-processing step is executed as follows.
  • step 315 resist forming step
  • step 316 exposure step
  • step 317 development step
  • step 318 etching step
  • step 319 resist removing step
  • the exposure apparatus of the above embodiment is used in the exposure step (step 316), so that highly accurate exposure can be performed. Therefore, a highly integrated micro Device productivity can be improved. Industrial applicability
  • the mask storage device of the present invention is suitable for storing a mask to be subjected to light cleaning. Further, the exposure apparatus of the present invention is suitable for transferring a mask pattern onto an object. Further, the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Abstract

A mask storage device (20), wherein a mask (R) is stored in an internal space through an opening (211a or 211b) opened by an open/close door (205a or 205b), and the opening is closed by the open/close door to store the mask in the internal space shielded from the outside air, and a part of the storage device is formed of permeable members (201a, 201b) allowing cleaning light to transmit therethrough so that the mask can be optically cleaned in the stored state in the storage device, whereby the mask can be prevented from being chemically contaminated, and the replacement of gas in a carrying route can be eliminated by carrying the mask in the stored state in the storage device.

Description

明 細 書  Specification
マスク保管装置及び露光装置、 並びにデバイス製造方法 技術分野 TECHNICAL FIELD The present invention relates to a mask storage device, an exposure device, and a device manufacturing method.
本発明は、 マスク保管装置及び露光装置、 並びにデバイス製造方法に係り、 更に詳しくは、 マスクを保管するマスク保管装置、 及びマスクに形成されたパ ターンを物体上に転写する露光装置、 並びに前記露光装置を用いるデバイス製 造方法に関する。 背景技術  The present invention relates to a mask storage apparatus, an exposure apparatus, and a device manufacturing method, and more particularly, to a mask storage apparatus for storing a mask, an exposure apparatus for transferring a pattern formed on the mask onto an object, and the exposure apparatus. The present invention relates to a device manufacturing method using an apparatus. Background art
従来より、半導体素子 (集積回路等)、液晶表示素子等の製造におけるリソグ ラフイエ程では、 種々の露光装置が用いられている。 近年では、 形成すべきパ ターンを 4〜 5倍程度に比例拡大して形成したマスク(レチクルとも呼ばれる) のパターンを、 投影光学系を介してウェハ等の被露光物体上に縮小転写するス テツプ .アンド■ リピート方式の縮小投影露光装置 (いわゆるステツバ) や、 このステツパに改良を加えたステップ'アンド 'スキャン方式の走査型投影露 光装置 (いわゆるスキャニング■ステツパ) 等の投影露光装置が、 主流となつ ている。  2. Description of the Related Art Conventionally, various exposure apparatuses have been used in a lithography process in the manufacture of semiconductor devices (such as integrated circuits) and liquid crystal display devices. In recent years, a step of reducing and transferring a pattern of a mask (also called a reticle) formed by enlarging a pattern to be formed by about 4 to 5 times onto an object to be exposed such as a wafer via a projection optical system. Projection exposure apparatuses such as the AND-repeat type reduction projection exposure apparatus (so-called stepper) and the step-and-scan type scanning projection exposure apparatus (so-called scanning-stepper), which is an improvement to this stepper, are mainly used. It has become.
これらの投影露光装置では、 集積回路の微細化に対応して高解像度を実現す るため、 その露光波長をより短波長側にシフトしてきた。 現在、 その波長は K r Fエキシマレーザの 2 4 8 n mが主流となっているが、 より短波長の A r F エキシマレーザの 1 9 3 n mも実用化段階に入りつつある。  In these projection exposure apparatuses, the exposure wavelength has been shifted to shorter wavelengths in order to realize high resolution in response to miniaturization of integrated circuits. At present, its wavelength is mainly 2488 nm of KrF excimer laser, but 19.3 nm of shorter wavelength ArF excimer laser is entering the stage of practical use.
かかる近紫外域の露光波長の露光装置では、空気中の物質(主として有機物) により露光光が吸収されることや、 露光光により活性化された有機物がレンズ 等に付着し透過率の悪化を招くなどの現象が起こる。 このため光路中から有機 物を取り除くべく、 光路中の空間を有機物を除去した空気その他の気体で満た すことが有効であるとされている。 In such an exposure apparatus having an exposure wavelength in the near ultraviolet region, the exposure light is absorbed by a substance (mainly, an organic substance) in the air, and the organic substance activated by the exposure light adheres to a lens or the like, causing deterioration in transmittance. Such phenomena occur. For this reason, organic It is said that it is effective to fill the space in the optical path with air and other gases from which organic substances have been removed in order to remove objects.
また、 将来的に露光波長の更なる短波長化が進むことは間違いなく、 A r F エキシマレーザより短波長の真空紫外域に属する光を発する光源、 例えば出力 波長" I 5 7 n mの F 2 レーザや、 出力波長 1 2 6 n mの A r 2 レーザを使用す る投影露光装置の開発あるいは提案がなされている。 Also, undoubtedly that progresses further shortening of the wavelength of future exposure wavelength, A r F excimer laser from a light source that emits light belonging to the vacuum ultraviolet region of the short wavelength, for example, the output wavelength "I 5 7 nm of F 2 laser or development or have been proposed for be that the projection exposure apparatus using a r 2 laser of output wavelength 1 2 6 nm.
これらの真空紫外域に属する光は、 例えば、 酸素や水蒸気及び一般的な有機 物 (以下 「吸収性ガス」 と称する) による吸収も極めて大きい。 従って、 真空 紫外域の光束を露光光とする露光装置では、 露光光が通る光路上の空間中の吸 収性ガスの濃度を数 p p m以下の濃度にまで下げるべく、 その光路上の空間の 気体を、 露光光の吸収の少ない、 窒素や、 ヘリウム等の希ガス (以下 「低吸収 性ガス」 と称する) で置換する必要がある。  Light belonging to these vacuum ultraviolet regions is also extremely absorbed by, for example, oxygen, water vapor, and general organic substances (hereinafter referred to as “absorbing gas”). Therefore, in an exposure apparatus that uses a light beam in the vacuum ultraviolet region as exposure light, the gas in the space on the optical path is used to reduce the concentration of the absorbent gas in the space on the optical path through which the exposure light passes to a concentration of several ppm or less. Need to be replaced with a rare gas such as nitrogen or helium (hereinafter referred to as “low-absorbing gas”) that absorbs less exposure light.
また、 光路中の吸収性ガスのみならず、 露光装置内の光学系を構成するレン ズ表面に付着した有機物や水蒸気も、 真空紫外域の露光光の吸収が大きいが、 光路中のガスに含まれる有機物, 水蒸気の濃度を低減することにより、 レンズ 表面へのこれらの物質の付着を防止することができる。  In addition to the absorbing gas in the optical path, organic substances and water vapor adhering to the lens surface that constitutes the optical system in the exposure apparatus absorb large amounts of exposure light in the vacuum ultraviolet region, but are included in the gas in the optical path. By reducing the concentration of organic substances and water vapor, it is possible to prevent these substances from adhering to the lens surface.
また、 レチクルについても、 その表面に水蒸気や有機物が付着すると、 これ らの物質による露光光の吸収は大きいため、 露光に先立ちレチクル表面からこ れらの吸収物質を除去する必要がある。 これには、 波長 1 7 2 n mのX eェキ シマランプ等の紫外光を照射することにより、 光化学反応により有機物や水を 分解するいわゆる 「光洗浄」 が有効であることが報告されている。  Also, when water vapor or organic substances adhere to the surface of the reticle, the absorption of exposure light by these substances is large. Therefore, it is necessary to remove these absorbing substances from the reticle surface prior to exposure. It is reported that so-called “light washing”, in which organic substances and water are decomposed by a photochemical reaction by irradiating ultraviolet light such as a Xe excimer lamp with a wavelength of 172 nm, is effective for this purpose.
しかしながら、 上記光洗浄に使用するエキシマランプ光源は大電力を必要と するため、 それに伴う発熱も大きい。 その一方で、 投影露光装置は、 その露光 精度を維持するために極めて高精度な温度管理が必要とされているため、 露光 装置内の主光路 (照明光学系ーレチクルステージ部分一投影光学系一ウェハ部 分) の近傍に、 このような熱源を設置するのは、 露光精度の観点からは好まし いものではない。 However, the excimer lamp light source used for the above light cleaning requires a large amount of electric power, and accordingly generates a large amount of heat. On the other hand, the projection exposure apparatus requires extremely high-precision temperature control to maintain the exposure accuracy. Therefore, the main optical path in the exposure apparatus (illumination optical system-reticle stage part, projection optical system, It is preferable to install such a heat source near the wafer part) from the viewpoint of exposure accuracy. Not a good one.
一方、 温度による影響を低減するため、 エキシマランプ光源をレチクルステ ージから遠く離すと、 光洗浄後、 レチクルをレチクルステージまで搬送する搬 送経路も長くなリ、 この搬送経路には、 洗浄後のレチクルの再度の汚染を防止 するために、 高精度な化学的汚染対策やガス置換を行うことが必要となる。 こ のため、 搬送経路部分が大型化し、 ひいては露光装置全体の大型化を引き起こ すことになりかねない。  On the other hand, if the excimer lamp light source is far away from the reticle stage to reduce the effects of temperature, the transport path for transporting the reticle to the reticle stage after optical cleaning becomes longer. In order to prevent re-contamination of the reticle, it is necessary to take high-precision chemical contamination countermeasures and gas replacement. As a result, the size of the transport path may be increased, and the overall size of the exposure apparatus may be increased.
本発明はかかる事情の下になされたものであり、 その第 1の目的は、 光洗浄 後のマスクの汚染を防止することが可能なマスク保管装置を提供することにあ る。  The present invention has been made under such circumstances, and a first object thereof is to provide a mask storage device capable of preventing contamination of a mask after light cleaning.
また、 本発明の第 2の目的は、 露光精度の向上と装置の小型化を図ることが 可能な露光装置を提供することにある。  A second object of the present invention is to provide an exposure apparatus capable of improving the exposure accuracy and reducing the size of the apparatus.
また、 本発明の第 3の目的は、 高集積度のデバイスの生産性を向上させるこ とができるデノ ィス製造方法を提供することにある。 発明の開示  Further, a third object of the present invention is to provide a method for manufacturing a device capable of improving the productivity of a highly integrated device. Disclosure of the invention
本発明は、 第 1の観点からすると、 マスクを保管するマスク保管装置であつ て、 マスクを収容可能な内部空間を有し、 前記マスクの出し入れが可能な開口 が形成された保管装置本体と ;前記保管装置本体の前記開口を開閉する開閉部 と ; を備え、 前記保管装置本体及び前記開閉部の少なくとも一部に、 前記内部 空間内に収容された前記マスクに対する洗浄用の光を透過させる透過部が設け られていることを特徴とするマスク保管装置である。  According to a first aspect of the present invention, there is provided a mask storage device for storing a mask, the storage device body having an internal space capable of accommodating the mask, and having an opening through which the mask can be taken in and out; An opening / closing unit for opening / closing the opening of the storage device main body, wherein at least a part of the storage device main body and the opening / closing unit transmit light for cleaning the mask contained in the internal space. A mask storage device characterized in that the mask storage device is provided.
これによれば、 保管装置本体の内部空間に、 開閉部によって開放された開口 を介してマスクが収容され、 開閉部により開口が閉鎖されることにより、 外気 から遮蔽された内部空間にマスクを保管することができる。 また、 保管装置本 体及び開閉部の少なくとも一部に、 前記内部空間内に収容された前記マスクに 対する洗浄用の光を透過させる透過部が設けられているので、 マスクを保管装 置本体に入れた状態で光洗浄を行うことが可能になる。 これによりマスクの化 学的な汚染を防止することができる。 また、 例えば保管装置本体の内部空間を マスクの汚染の少ないガスにて充填しておくことにより、 光洗浄の終了したマ スクの汚染を長期にわたって抑制することができる。 従って、 保管装置本体に 収容した状態でマスクを搬送することにより搬送経路のガス置換などが不要と なる。 According to this, the mask is stored in the internal space of the storage device main body through the opening opened by the opening / closing section, and the opening is closed by the opening / closing section, thereby storing the mask in the internal space shielded from the outside air. can do. Further, at least a part of the main body of the storage device and the opening / closing part may include the Since the transmission portion for transmitting the cleaning light is provided, it is possible to perform the light cleaning with the mask inserted in the storage device main body. This can prevent chemical contamination of the mask. In addition, for example, by filling the internal space of the storage device body with a gas with low contamination of the mask, contamination of the mask after light cleaning can be suppressed for a long time. Therefore, by transporting the mask in a state of being housed in the storage device main body, gas replacement or the like in the transport path becomes unnecessary.
本発明のマスク保管装置では、 前記保管装置本体は、 全体として箱型の形状 を有することとすることができる。  In the mask storage device of the present invention, the storage device main body may have a box shape as a whole.
この場合において、 前記保管装置本体の四方の側壁のうちの少なくとも 1つ の側壁である特定側壁に前記開口が形成され、 前記開閉部は、 前記開口に対応 して前記保管装置本体の前記特定側壁に設けられていることとすることができ る。  In this case, the opening is formed in a specific side wall that is at least one of the four side walls of the storage device main body, and the opening / closing portion corresponds to the opening, and the specific side wall of the storage device main body corresponds to the opening. It is possible to be provided in.
この場合において、 前記開閉部は、 前記保管装置本体に所定の軸を中心とし て回動可能に取リ付けられた開閉扉であることとすることもできるし、 あるい は前記開閉部は、 前記保管装置本体の前記特定側壁に、 該特定側壁に平行な面 内で移動可能に取り付けられたスライ ド扉であることとすることもできる。 こ の他、 前記開閉部は、 前記保管装置本体の前記特定側壁に取り付けられたゲー トバルブであることとすることもできる。  In this case, the opening / closing unit may be an opening / closing door that is rotatably attached to the storage device main body around a predetermined axis, or It may be a slide door movably attached to the specific side wall of the storage device main body in a plane parallel to the specific side wall. In addition, the opening and closing unit may be a gate valve attached to the specific side wall of the storage device main body.
本発明のマスク保管装置では、 保管装置本体は、 全体として箱型の形状を有 する場合、 前記保管装置本体の天井部及び底部の少なくとも一方の少なくとも 一部に前記透過部が設けられていることとすることができる。  In the mask storage device of the present invention, when the storage device main body has a box shape as a whole, the transparent portion is provided on at least a part of at least one of a ceiling portion and a bottom portion of the storage device main body. It can be.
この場合において、 前記透過部は、 前記保管装置本体の天井部及び底部の少 なくとも一方の一部を構成する窓ガラスであることとすることができる。 本発明のマスク保管装置では、 前記保管装置本体の底部に前記開口が形成さ れ、 前記開閉部は、 前記マスクを支持可能な支持部を有し、 前記開口を閉塞可 能で前記底部に対して着脱自在に係合する底部開閉部であることとすることが できる。すなわち、 マスク保管装置として上下開閉式 (ボトムオープンタイプ) の保管装置を採用することができる。 In this case, the transmission unit may be a window glass that forms at least a part of at least one of a ceiling part and a bottom part of the storage device main body. In the mask storage device of the present invention, the opening is formed in a bottom portion of the storage device main body, the opening / closing portion has a support portion capable of supporting the mask, and the opening can be closed. And a bottom opening / closing portion that detachably engages with the bottom. In other words, a vertically open / closed (bottom open type) storage device can be adopted as the mask storage device.
この場合において、 前記保管装置本体及び前記底部開閉部の少なくとも一方 に設けられ、 前記底部開閉部の前記保管装置本体に対する係合状態をロックす るロック機構を更に備えることとすることができる、 あるいは前記底部開閉部 の少なくとも一部に前記透過部が設けられていることとすることもできる。 後 者の場合、 前記透過部は、 前記底部開閉部の一部を構成する窓ガラスであるこ ととすることができる。  In this case, a lock mechanism provided on at least one of the storage device main body and the bottom opening / closing portion to lock an engagement state of the bottom opening / closing portion with the storage device main body can be further provided. The transmitting portion may be provided on at least a part of the bottom opening / closing portion. In the latter case, the transmission section may be a window glass forming a part of the bottom opening / closing section.
本発明のマスク保管装置では、 前記保管装置本体及び前記開閉部の少なくと も一方に、 前記内部空間と外部とを連通する通気孔が形成され、 前記通気孔を 閉状態とする開閉弁機構を更に備えることとすることができる。  In the mask storage device of the present invention, at least one of the storage device main body and the opening / closing portion is provided with a ventilation hole communicating the internal space with the outside, and an opening / closing valve mechanism for closing the ventilation hole is provided. Further provisions may be made.
この場合において、 前記開閉弁機構は、 前記通気孔が形成された部材の内部 に配置された弁部材と、 前記通気孔を閉状態とするために、 該弁部材を前記通 気孔に向けて付勢する付勢部材とを有することとすることもできるし、 あるい は前記開閉弁機構は、 前記通気孔が形成された部材の外面側に設けられ、 一端 が前記通気孔に連通するとともに他端が外部に連通した筒状部材と、 該筒状部 材の内部を移動可能で通気孔とは反対側に付勢されて前記筒状部材の内部と外 部との連通を閉鎖する弁部材とを有することとすることもできる。  In this case, the opening / closing valve mechanism includes a valve member disposed inside the member having the vent hole, and the valve member facing the vent hole in order to close the vent hole. And an on-off valve mechanism may be provided on the outer surface side of the member having the vent hole, and one end communicates with the vent hole. A tubular member having an end communicating with the outside; and a valve member movable within the tubular member and urged to the side opposite to the vent hole to close the communication between the inside and the outside of the tubular member. May be included.
本発明のマスク保管装置では、 前記内部空間のガスは、 所定のガスに置換さ れ、 前記内部空間内に設けられ、 前記内部空間内の所定のガスをイオン化する イオン化装置を更に備えることとすることができる。  In the mask storage device of the present invention, the gas in the internal space is replaced with a predetermined gas, provided in the internal space, and further provided with an ionization device for ionizing the predetermined gas in the internal space. be able to.
本発明のマスク保管装置では、 前記内部空間に収容される前記マスクは、 パ ターンが形成された面を有するマスク基板と、 一端部が前記マスク基板上の前 記パターン形成領域の周囲に設けられる枠部材と、 前記枠部材の他端部に設け られ、 前記パターン形成領域を保護するペリクルとを有し、 前記保管装置本体 は、 前記マスク基板と前記枠部材と前記ペリクルとで形成される保護空間内の ガスを所定のガスに置換する保護空間用ガス置換機構を有することとすること ができる。 In the mask storage device of the present invention, the mask accommodated in the internal space includes a mask substrate having a surface on which a pattern is formed, and one end provided around the pattern forming region on the mask substrate. A frame member, and a pellicle provided at the other end of the frame member to protect the pattern formation region; May have a gas replacement mechanism for a protection space that replaces a gas in a protection space formed by the mask substrate, the frame member, and the pellicle with a predetermined gas.
本発明は、 第 2の観点からすると、 露光光のもとで、 マスクに形成されたパ ターンを物体上に転写する露光装置であって、内部空間にマスクを収容可能で、 そのマスクの出し入れが可能な構造を有するマスク保管装置を、 所定経路に八 つて前記露光光の光路近傍の所定位置に搬送する保管装置搬送機構と ;前記所 定位置に搬送された前記マスク保管装置の内部空間から前記露光光の光路を含 む空間まで、 所定雰囲気の第 1の搬送経路に沿って前記マスクを搬送するマス ク搬送機構と ; を備える露光装置である。  According to a second aspect of the present invention, there is provided an exposure apparatus for transferring a pattern formed on a mask onto an object under exposure light, wherein the mask can be accommodated in an internal space, and the mask can be taken in and out. A storage device transport mechanism that transports a mask storage device having a structure capable of performing the following operations to a predetermined position near the optical path of the exposure light along a predetermined path; and from the internal space of the mask storage device transported to the predetermined position. A mask transport mechanism that transports the mask along a first transport path of a predetermined atmosphere to a space including an optical path of the exposure light.
これによれば、 内部空間にマスクを収容可能で、 そのマスクの出し入れが可 能な構造を有するマスク保管装置が、 保管装置搬送機構により、 所定経路に沿 つて露光光の光路近傍の所定位置に搬送され、 その所定位置に搬送されたマス ク保管装置の内部空間に収容されたマスクが、 マスク搬送機構により、 所定雰 囲気の第 1の搬送経路に沿って前記露光光の光路を含む空間に搬送される。 従って、 所定位置までは、 外気からほぼ遮蔽されたマスク保管装置の内部空 間にマスクを収容した状態で搬送し、 所定位置から露光光の光路を含む空間ま では所定雰囲気の第 1の搬送経路に沿ってマスクを搬送することから、 例えマ スクのトータルの搬送経路が長くなつたとしても、 所定位置までの所定経路を 所定雰囲気にしなくても良い。 すなわち、 露光装置内で所定雰囲気とする必要 のある搬送経路を最小限にすることができるので、 搬送経路部分の小型化を図 ることが可能となる。 これによリ、 マスクの汚染が防止されることによる露光 精度の向上と、 露光装置の小型化を同時に実現することができる。  According to this, a mask storage device having a structure capable of accommodating a mask in the internal space and capable of taking the mask in and out is moved to a predetermined position near the optical path of the exposure light along a predetermined path by the storage device transport mechanism. The mask, which has been transported and is accommodated in the internal space of the mask storage device transported to the predetermined position, is moved by the mask transport mechanism along the first transport path of the predetermined atmosphere into the space including the optical path of the exposure light. Conveyed. Therefore, the mask is transported in a state where the mask is housed in the internal space of the mask storage device, which is almost shielded from the outside air, to the predetermined position. Since the mask is transported along the path, even if the total transport path of the mask becomes longer, the predetermined path to the predetermined position does not have to have the predetermined atmosphere. In other words, the number of transport paths required to have a predetermined atmosphere in the exposure apparatus can be minimized, so that the transport path can be reduced in size. As a result, it is possible to simultaneously improve the exposure accuracy by preventing the contamination of the mask and reduce the size of the exposure apparatus.
この場合において、 前記マスク保管装置として、 前記内部空間を有し、 前記 マスクの出し入れが可能な開口が形成された保管装置本体と、 前記保管装置本 体の前記開口を開閉する開閉部と、 を備えた開閉型の保管装置が用いられるこ ととすることができる。 In this case, as the mask storage device, a storage device main body having the internal space and having an opening through which the mask can be taken in and out, and an opening and closing unit that opens and closes the opening of the storage device body. That a retractable storage device with And
本発明の露光装置では、 前記第 1の搬送経路は、 前記露光光の光路を含む空 間と、 前記所定位置に搬送された前記マスク保管装置の内部空間とを連通させ ることによって形成されることとすることができる。  In the exposure apparatus of the present invention, the first transport path is formed by communicating a space including an optical path of the exposure light with an internal space of the mask storage device transported to the predetermined position. It can be.
この場合において、 前記露光光の光路を含む空間を囲む隔壁に対して、 前記 所定位置に搬送された前記マスク保管装置を接続する中空形状の経路区画部材 を更に備えることとすることができる。  In this case, a hollow path partitioning member may be further provided for connecting the mask storage device transported to the predetermined position to a partition surrounding a space including an optical path of the exposure light.
この場合において、 前記保管装置本体は、 全体として箱型の形状を有し、 前 記保管装置本体の四方の側壁のうちの少なくとも 1つの側壁である特定側壁に 前記開閉部によって開閉される前記開口が形成されている場合、 前記経路区画 部材は、 前記所定位置に搬送された前記保管装置の前記特定側壁に一端が接続 可能な筒状の伸縮自在のべローズと、 該べローズの他端と前記隔壁とを接続す る中空の接続部材とを含むこととすることができる。 あるいは、 前記保管装置 本体の底部に前記開口が形成され、 前記開閉部は、 前記マスクを支持可能な支 持部を有し、 前記開口部を閉塞可能で前記底部に対して着脱自在に係合する底 部開閉部である場合、 前記経路区画部材は、 前記隔壁内部の空間に連通可能な 状態で前記隔壁に接続され、 前記所定位置に搬送された前記保管装置の底部が 嵌合可能な開口がその天井壁に形成された筐体を含むこととすることもできる この他、 前記経路区画部材には、 給気管と排気管とが接続されていることとす ることもできる。  In this case, the storage device main body has a box-like shape as a whole, and the opening that is opened and closed by the opening and closing portion is a specific side wall that is at least one of the four side walls of the storage device main body. Is formed, the path partitioning member comprises: a tubular expandable / contractible bellows having one end connectable to the specific side wall of the storage device transported to the predetermined position; and the other end of the bellows. And a hollow connection member for connecting the partition wall. Alternatively, the opening is formed in a bottom portion of the storage device main body, the opening / closing portion has a support portion capable of supporting the mask, the opening portion can be closed, and the opening portion is detachably engaged with the bottom portion. In the case of a bottom opening / closing part, the path partitioning member is connected to the partition so as to be able to communicate with the space inside the partition, and an opening into which the bottom of the storage device conveyed to the predetermined position can be fitted. May also include a casing formed on the ceiling wall. In addition, the path partitioning member may be connected to an air supply pipe and an exhaust pipe.
本発明の露光装置では、 前記マスク保管装置には、 少なくとも一部に所定波 長の紫外線を透過させる透過部が設けられていることとすることができる。 この場合において、 前記マスク保管装置に対し、 前記紫外線を照射して、 前 記マスク保管装置の光洗浄及び前記透過部材を介した前記マスクの光洗浄の少 なくとも一方を行う光洗浄装置を更に備え、 前記保管装置搬送機構は、 前記マ スク保管装置を前記所定位置と前記光洗浄装置との間の第 2の搬送経路に沿つ て搬送することとすることができる。 In the exposure apparatus of the present invention, at least a part of the mask storage device may be provided with a transmission unit that transmits ultraviolet light having a predetermined wavelength. In this case, an optical cleaning device that irradiates the ultraviolet ray to the mask storage device and performs at least one of the optical cleaning of the mask storage device and the optical cleaning of the mask through the transmission member is further provided. Wherein the storage device transport mechanism moves the mask storage device along a second transport path between the predetermined position and the optical cleaning device. Can be transported.
この場合において、前記光洗浄装置は、前記マスクの洗浄を行う装置であり、 前記光洗浄装置により前記マスクの前記光洗浄が開始されるのに先立って前記 マスク保管装置内のガスを所定のガスに置換するガス置換機構を更に備えるこ ととすることができる。  In this case, the light cleaning device is a device for cleaning the mask, and before the light cleaning of the mask is started by the light cleaning device, the gas in the mask storage device is changed to a predetermined gas. A gas replacement mechanism for replacing the gas may be further provided.
ここでの 「所定のガス」 としては、 窒素や希ガス等の露光光を吸収する特性 が空気に比べて小さいガス (低吸収性ガス) であることが望ましいが、 微量の 酸素又は水蒸気が混入している方が光洗浄の効果がよリ高まる場合には、 所定 のガスとして、 例えばガス中に酸素又は水蒸気が 1 0 0 p p m程度含まれるガ スを使用することとしても良い。  It is desirable that the “predetermined gas” is a gas (low-absorbing gas) such as nitrogen or a rare gas that absorbs exposure light smaller than air, but contains a small amount of oxygen or water vapor. In the case where the effect of light cleaning is further enhanced by performing the cleaning, a gas containing about 100 ppm of oxygen or water vapor in the gas, for example, may be used as the predetermined gas.
この場合において、 前記ガス置換機構は、 前記光洗浄装置に設けられている こととすることができる。  In this case, the gas replacement mechanism may be provided in the optical cleaning device.
本発明の露光装置では、 ガス置換機構を備える場合に、 前記マスク保管装置 が、 その一部に形成され、 前記内部空間と外部とを連通する通気孔を、 閉状態 とする開閉弁機構を更に備え、 前記ガス置換機構は、 前記開閉弁機構を開状態 として、 前記通気孔を介して前記内部空間に前記所定のガスを供給するガス供 給機構を有することとすることができる。  In the exposure apparatus of the present invention, when a gas replacement mechanism is provided, the mask storage device is formed in a part thereof, and further includes an opening / closing valve mechanism that closes a ventilation hole that communicates the internal space with the outside. The gas replacement mechanism may include a gas supply mechanism that supplies the predetermined gas to the internal space through the ventilation hole when the on-off valve mechanism is in an open state.
この場合において、 前記ガス置換機構は、 前記内部空間内の特定ガスの濃度 を検知するセンサと、 該センサの出力に基づき、 前記特定ガスの濃度を調整す る調整装置とを更に有することとすることができる。  In this case, the gas replacement mechanism further includes a sensor that detects a concentration of the specific gas in the internal space, and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. be able to.
この場合において、 前記特定ガスは、 酸素又は水蒸気であることとすること ができる。  In this case, the specific gas can be oxygen or water vapor.
本発明の露光装置では、ガス置換機構がガス供給機構を有する場合において、 前記マスク保管装置に前記通気孔が少なくとも 2つ形成され、 前記マスク保管 装置が、 前記通気孔に個別に対応する複数の前記開閉弁機構を有する場合、 前 記ガス置換機構は、 前記ガス供給機構が前記内部空間に前記所定のガスを供給 するために開状態とした開閉弁機構とは異なる開閉弁機構を開状態とし、 前記 通気孔を介して、 前記内部空間のガスを排気する排気機構を更に有することと することができる。 In the exposure apparatus of the present invention, when the gas replacement mechanism has a gas supply mechanism, the mask storage device has at least two of the ventilation holes, and the mask storage device has a plurality of air holes individually corresponding to the ventilation holes. In the case where the gas supply mechanism has the on-off valve mechanism, the gas supply mechanism supplies the predetermined gas to the internal space. An opening / closing valve mechanism that is different from the opening / closing valve mechanism that has been opened to perform the opening operation may further include an exhaust mechanism that exhausts the gas in the internal space through the ventilation hole.
本発明の露光装置では、 前記光洗浄装置が、 前記マスク保管装置の洗浄を行 う装置である場合、 前記光洗浄装置によリ前記マスク保管装置の光洗浄が開始 されるのに先立って前記光洗浄装置内のガスを所定のガスに置換するガス置換 機構を更に備えることとすることができる。  In the exposure apparatus of the present invention, when the light cleaning device is a device for cleaning the mask storage device, the light cleaning device starts the light cleaning of the mask storage device before starting the light cleaning of the mask storage device. A gas replacement mechanism for replacing the gas in the light cleaning device with a predetermined gas may be further provided.
この場合において、 前記ガス置換機構は、 前記内部空間内の特定ガスの濃度 を検知するセンサと、 該センサの出力に基づき、 前記特定ガスの濃度を調整す る調整装置と、 を更に有することとすることができる。  In this case, the gas replacement mechanism further includes: a sensor that detects a concentration of the specific gas in the internal space; and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. can do.
この場合において、 前記特定ガスは、 酸素又は水蒸気であることとすること ができる。  In this case, the specific gas can be oxygen or water vapor.
本発明の露光装置では、 前記露光装置本体を収容するチャンバを更に備える 場合、 前記光洗浄装置は、 前記チャンバの外に配置されることとすることがで きる。  When the exposure apparatus of the present invention further includes a chamber for accommodating the exposure apparatus main body, the light cleaning apparatus may be disposed outside the chamber.
本発明の露光装置では、 前記マスク保管装置を、 所定位置で一時的に保持す る保持装置を更に備えることとすることができる。  The exposure apparatus of the present invention may further include a holding device that temporarily holds the mask storage device at a predetermined position.
この場合において、 前記マスク保管装置は、 その一部に形成され、 前記内部 空間と外部とを連通する通気孔を、 開閉可能で通常時は閉状態とする開閉弁機 構を更に備え、 前記保持装置は、 前記開閉弁機構を開状態として、 前記通気孔 を介して前記内部空間に前記所定のガスを供給するガス供給機構を有すること とすることができる。  In this case, the mask storage device further includes an opening / closing valve mechanism that is formed in a part thereof, and that opens and closes a ventilation hole that communicates the internal space with the outside and that is normally closed. The apparatus may have a gas supply mechanism that supplies the predetermined gas to the internal space through the vent hole when the on-off valve mechanism is in an open state.
本発明の露光装置では、 前記マスク保管装置には、 前記通気孔が少なくとも 2つ形成されるとともに、 前記通気孔に個別に対応する複数の前記開閉弁機構 が設けられ、 前記保持装置は、 前記ガス供給機構が前記内部空間に前記所定の ガスを供給するために開状態とした開閉弁機構とは異なる開閉弁機構を開状態 とし、 前記通気孔を介して、 前記内部空間のガスを排気する排気機構を更に有 することとすることができる。 In the exposure apparatus of the present invention, at least two of the ventilation holes are formed in the mask storage device, and a plurality of the on-off valve mechanisms respectively corresponding to the ventilation holes are provided. An on-off valve mechanism different from the on-off valve mechanism opened by the gas supply mechanism to supply the predetermined gas to the internal space An exhaust mechanism for exhausting the gas in the internal space through the ventilation hole may be further provided.
本発明の露光装置では、 前記マスク保管装置内に収容される前記マスクは、 パターンが形成された面を有するマスク基板と、 一端部が前記マスク基板上の 前記パターン形成領域の周囲に設けられる枠部材と、 前記枠部材の他端部に設 けられ、 前記パターン形成領域を保護するペリクルとを有し、 前記マスク基板 と前記枠部材と前記ペリクルとで形成される保護空間内のガスを所定のガスに 置換する保護空間用ガス置換機構を、 更に備えることとすることができる。 また、 リソグラフイエ程において、 本発明の露光装置を用いて露光を行うこ とにより、 物体上にマスクのパターンを精度良く形成することができ、 これに より、より高集積度のマイク口デバイスを歩留まり良く製造することができる。 従って、 本発明は、 更に別の観点からすると、 本発明の露光装置を用いるデバ ィス製造方法であるとも言える。 図面の簡単な説明  In the exposure apparatus of the present invention, the mask accommodated in the mask storage device includes a mask substrate having a surface on which a pattern is formed, and a frame having one end provided around the pattern formation region on the mask substrate. A pellicle provided at the other end of the frame member to protect the pattern formation region, wherein a gas in a protection space formed by the mask substrate, the frame member, and the pellicle is supplied The gas may be further provided with a protection space gas replacement mechanism for replacing the gas. Further, in the lithographic process, by performing exposure using the exposure apparatus of the present invention, a mask pattern can be accurately formed on an object. It can be manufactured with good yield. Therefore, from another viewpoint, the present invention can be said to be a device manufacturing method using the exposure apparatus of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る露光装置の構成を概略的に示す図で あ 。  FIG. 1 is a diagram schematically showing a configuration of an exposure apparatus according to the first embodiment of the present invention.
図 2 Aは、 ベローズ機構の構成を説明するための図、 図 2 Bは、 レチクル室 の隔壁とレチクル保管箱との間に形成される空間を説明するための図、 図 2 C は、 レチクル保管箱からレチクル室までの間に形成された搬送経路を示す図で Fig. 2A is a diagram for explaining the configuration of the bellows mechanism, Fig. 2B is a diagram for explaining a space formed between the partition wall of the reticle chamber and the reticle storage box, and Fig. 2C is a reticle. FIG. 7 is a diagram illustrating a transport path formed between a storage box and a reticle chamber.
¾> 0 ¾> 0
図 3 Aは、 レチクル保管箱を示す斜視図、 図 3 Bは、 レチクル保管箱の縦断 面図である。  FIG. 3A is a perspective view showing a reticle storage box, and FIG. 3B is a longitudinal sectional view of the reticle storage box.
図 4は、 レチクル保管箱内の開閉弁の構成を示す斜視図である。  FIG. 4 is a perspective view showing a configuration of an on-off valve in the reticle storage box.
図 5は、 光洗浄装置の縦断面図である。  FIG. 5 is a longitudinal sectional view of the optical cleaning device.
図 6は、 光洗浄装置及び該装置内に収容されたレチクル保管箱の横断面図で あ 。 FIG. 6 is a cross-sectional view of a light cleaning device and a reticle storage box housed in the device. Ah .
図 7は、 給気ユニットを示す斜視図である。  FIG. 7 is a perspective view showing the air supply unit.
図 8は、 ガス内の酸素濃度を制御するガス供給装置の構成を示す図である。 図 9は、第 1の実施形態の変形例に係るレチクル保管箱を示す斜視図である。 図 1 0八〜図1 O Cは、 図 9のレチクル保管箱に設けられたゲートバルブの 構成とともに、 ゲ一トバルブの開閉動作について説明するための図である。 図 1 1は、 第 2の実施形態に係るレチクル保管箱を示す斜視図である。  FIG. 8 is a diagram showing a configuration of a gas supply device for controlling the oxygen concentration in the gas. FIG. 9 is a perspective view showing a reticle storage box according to a modification of the first embodiment. 10A to 10C are diagrams for explaining the configuration of the gate valve provided in the reticle storage box of FIG. 9 and the opening / closing operation of the gate valve. FIG. 11 is a perspective view showing a reticle storage box according to the second embodiment.
図 1 2 Aは、 図 1 1のレチクル保管箱の縦断面図、 図 1 2 Bは、 図1 2八の レチクル保管箱の底部開閉部がオープンした状態を示す図である。  FIG. 12A is a longitudinal sectional view of the reticle storage box of FIG. 11, and FIG. 12B is a view showing a state where the bottom opening / closing portion of the reticle storage box of FIG. 128 is open.
図 1 3は、 レチクル搬出入機構の構成を示す図である。  FIG. 13 is a diagram showing a configuration of a reticle carrying-in / out mechanism.
図 1 4 A及び図 1 4 Bは、 レチクル保管箱からのレチクルの搬出方法を説明 するための図である。  FIGS. 14A and 14B are diagrams for explaining a method of unloading the reticle from the reticle storage box.
図 1 5は、 本発明に係るデバイス製造方法を説明するためのフローチャート である。  FIG. 15 is a flowchart for explaining the device manufacturing method according to the present invention.
図 1 6は、 図 1 5のステップ 3 0 4の具体例を示すフローチャートである。 発明を実施するための最良の形態  FIG. 16 is a flowchart showing a specific example of step 304 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
《第 1の実施形態》  << 1st Embodiment >>
以下、本発明の第 1の実施形態を図 1〜図 8に基づいて説明する。図 1には、 第 1の実施形態に係る露光装置 1 1 0の構成が概略的に示されている。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 schematically shows a configuration of an exposure apparatus 110 according to the first embodiment.
この露光装置 1 1 0は、 クリーン度がクラス 1 0 0〜 1 0 0 0程度のクリー ンルーム内に設置されている。 この露光装置 1 1 0は、 内部空間が高度に防塵 されるとともに、 高精度な温度制御がなされたエンバイロンメンタル■チャン バ 1 (以下、 「本体チャンバ 1」 と略述する)、 該本体チャンバ 1内に設置され た露光装置本体 1 0 0、 該露光装置本体 1 0 0に隣接して配置されたレチクル 搬送系 1 2 0、及び光洗浄装置 2 2等を備えている。本体チャンバ 1の内部は、 化学的清浄度もある一定レベルに保たれている。 The exposure apparatus 110 is installed in a clean room having a degree of cleanness of about class 100 to 100. The exposure apparatus 110 includes an environmental chamber 1 (hereinafter, abbreviated as “main chamber 1”) in which the internal space is highly dust-proof and whose temperature is controlled with high precision. The apparatus includes an exposure apparatus main body 100 installed in 1, a reticle transport system 120 disposed adjacent to the exposure apparatus main body 100, an optical cleaning device 22, and the like. Inside of the main chamber 1 Chemical cleanliness is also maintained at a certain level.
本体チャンバ 1の + X側 (図 1における右側) の端部には、 他の部分と比べ て低い低段差部が形成されている。 この低段差部に、 マスクコンテナの搬出入 ポート 1 aが配置されている。 この搬出入ポート 1 aを介して不図示の天井搬 送系によってマスクとしてのレチクルがレチクルキヤリア 4 4内に収納された 状態で本体チャンバ 1に搬入され、 本体チャンバ 1から搬出される。 前記天井 搬送系としては、 レチクルをレチクルキャリア 4 4内に収容した状態で搬送す る O H T (Over Head Transfer) 等が用いられる。  At the end of the main chamber 1 on the + X side (the right side in FIG. 1), a low step portion that is lower than other portions is formed. The port 1a for loading / unloading the mask container is located at this low step. A reticle as a mask is loaded into the main chamber 1 in a state of being housed in the reticle carrier 44 by a ceiling transport system (not shown) via the loading / unloading port 1 a, and is unloaded from the main chamber 1. As the ceiling transfer system, an OHT (Over Head Transfer) or the like for transferring a reticle in a state accommodated in a reticle carrier 44 is used.
露光装置本体 1 0 0は、 不図示の光源、 該光源に不図示の送光光学系を介し て接続され、 露光光 E Lによリレチクル Rを照明する照明ユニット I L U、 レ チクル Rを保持するレチクルホルダ 1 4、 レチクル Rから射出される露光光 E Lをウェハ W上に投射する投影光学系 P L、 ウェハ Wを保持するウェハステー ジ W S T等を備えている。  The exposure apparatus main body 100 includes a light source (not shown), an illumination unit ILU that is connected to the light source via a light transmission optical system (not shown), and illuminates the reticle R with the exposure light EL, and a reticle that holds the reticle R. It has a holder 14, a projection optical system PL for projecting the exposure light EL emitted from the reticle R onto the wafer W, a wafer stage WST for holding the wafer W, and the like.
前記光源としては、 ここでは、 出力波長 1 5 7 n mのフッ素レーザ (F 2 レ 一ザ) が用いられている。 光源として、 フッ素レーザに限らず、 波長約 1 2 0 n m〜約1 9 0 n mの真空紫外域に属する光を発する光源、 例えば出力波長 1 4 6 n mのクリプトンダイマーレーザ ( K r 2 レーザ)、 出力波長 1 2 6 n mの アルゴンダイマーレーザ (A r 2 レーザ) などを用いても良い。 あるいは、 光 源として出力波長 1 9 3 n mの A r Fエキシマレーザ等の近紫外光源を用いる ことも可能である。 As the light source, wherein the output wavelength 1 5 7 nm of fluorine laser (F 2 Les monodentate) is used. As the light source is not limited to fluorine laser, a wavelength of approximately 1 2 0 n m to about 1 9 0 nm light source emitting light belonging to the vacuum ultraviolet region, for example, the output wavelength 1 4 6 nm krypton dimer laser (K r 2 laser) Alternatively, an argon dimer laser (Ar 2 laser) having an output wavelength of 126 nm may be used. Alternatively, a near ultraviolet light source such as an ArF excimer laser having an output wavelength of 193 nm can be used as the light source.
前記照明ュニッ卜 I L Uは、 照明系ハウジング 2及び、 その内部に所定の位 置関係で配置された折り曲げミラー、 オプティカルインテグレ一タ (ホモジナ ィザ)、 リレ一レンズ、及び視野絞りとしてのレチクルブラインド等を含んで構 成される照明光学系を備えている。 オプティカルインテグレータとしてはフラ ィアイレンズ、 ロッド型インテグレータ (内面反射型インテグレータ) あるい は回折光学素子などが単独で若しくは組み合わせて用いられる。 また、 レチク ルブラインドは、 レチクル Rのパターン面と共役な面に配置されている。 The illumination unit ILU includes an illumination system housing 2, a bending mirror, an optical integrator (homogenizer), a relay lens, a reticle blind as a field stop, etc. The illumination optical system is configured to include: As optical integrators, fly-eye lenses, rod-type integrators (internal reflection type integrators), or diffractive optical elements are used alone or in combination. Also, Rechik The ruble blind is disposed on a plane conjugate with the pattern plane of reticle R.
ところで、 真空紫外域の波長の光を露光光とする場合には、 その光路から酸 素、 水蒸気、 炭化水素系のガス等の、 かかる波長帯域の光に対し強い吸収特性 を有するガス (以下、 適宜 「吸収性ガス」 と呼ぶ) を排除する必要がある。 こ のため、 本実施形態では、 照明系ハウジング 2の内部の露光光 E Lの光路上の 空間の気体を、 真空紫外域の光を吸収する特性が空気に比べて低い特定ガス、 例えば窒素、 及びヘリウム、 アルゴン、 ネオン、 クリプトンなどの希ガス、 又 はそれらの混合ガス (以下、 適宜 「低吸収性ガス」 と呼ぶ) で置換している。 本実施形態では、 照明系ハウジング 2に給気弁 1 0と排気弁 1 1とがそれぞれ の一端部近傍に設けられた給気管と排気管とが接続され、 給気管の他端が不図 示の低吸収性ガスの供給装置に接続されている。 そして、 給気弁 1 0と排気弁 1 1とがともに常時所定の開度で開かれ、 不図示の低吸収性ガスの供給装置か ら低吸収性ガスが照明系ハウジング 2内部に常時フローされている。この結果、 照明系ハウジング 2内の吸収性ガスの濃度は、 酸素濃度が 0 . 1 p p m以下、 水蒸気濃度が 1 P p m以下、 有機物濃度が 1 0 p p b以下に抑えられている。 なお、 光源、 送光光学系の光路空間についても、 照明系ハウジング 2内と同様 にガス置換が行われ、 同様に酸素、 水蒸気濃度が 0 . 1 p p m以下、 有機物濃 度が 1 0 p p b以下に抑えられている。  By the way, when light having a wavelength in the vacuum ultraviolet region is used as exposure light, a gas having a strong absorption characteristic for light in such a wavelength band, such as oxygen, water vapor, or a hydrocarbon-based gas (hereinafter, referred to as “light”). (Referred to as “absorptive gas” as appropriate). For this reason, in the present embodiment, the gas in the space on the optical path of the exposure light EL inside the illumination system housing 2 is converted into a specific gas such as nitrogen, which has a lower characteristic of absorbing light in the vacuum ultraviolet region than air. Rare gases such as helium, argon, neon, and krypton, or their mixtures (hereinafter referred to as “low-absorbing gas” as appropriate) have been substituted. In this embodiment, an air supply valve 10 and an exhaust valve 11 provided in the illumination system housing 2 are connected to an air supply pipe and an exhaust pipe provided near one end thereof, and the other end of the air supply pipe is not shown. Connected to a supply device for low-absorbent gas. Then, both the supply valve 10 and the exhaust valve 11 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the illumination system housing 2 from the low-absorbent gas supply device (not shown). ing. As a result, the concentration of the absorptive gas in the illumination system housing 2 is suppressed to an oxygen concentration of 0.1 ppm or less, a water vapor concentration of 1 ppm or less, and an organic matter concentration of 10 ppm or less. In the light path space of the light source and the light transmission optical system, gas replacement is performed in the same manner as in the illumination system housing 2, and similarly, the oxygen and water vapor concentrations are reduced to 0.1 ppm or less, and the organic matter concentration is reduced to 10 ppb or less. It is suppressed.
前記レチクル Rとしては、 ここではいわゆるペリクル付レチクルが用いられ ている。 すなわち、 レチクル Rは、 図 1に示されるように、 一方の面 (図 1に おける下面) に微細なパターンが形成されたレチクル基板 5 4と、 該レチクル 基板 5 4の下面 (以下、 「パターン面」 と呼ぶ) に取り付けられたパターン保護 装置 7 2と、 を含んで構成されている。  As the reticle R, a reticle with a pellicle is used here. That is, as shown in FIG. 1, reticle R includes a reticle substrate 54 having a fine pattern formed on one surface (the lower surface in FIG. 1), and a lower surface of the reticle substrate 54 (hereinafter referred to as a “pattern”). And a pattern protection device 72 attached to the surface.
レチクル基板 5 4は、 石英を主成分とする材質、 例えば、 水酸基を 1 O p p m以下程度に排除し、 フッ素を 1 %程度含有させたフッ素ドープ石英によって 形成されている。 レチクル基板 5 4としてこのような材料を用いたのは、 露光 光として用いる波長 1 9 0 n m以下のいわゆる真空紫外域の光は、 酸素や水蒸 気等のガスだけでなく、 ガラスや有機物中の透過率も低いため、 真空紫外光に 対する透過率の高い材料を使用する必要があるからである。 The reticle substrate 54 is formed of a material containing quartz as a main component, for example, fluorine-doped quartz containing about 1% of fluorine by removing a hydroxyl group to about 1 O ppm or less. The reason for using such a material as the reticle substrate 54 is that Light in the so-called vacuum ultraviolet region having a wavelength of 190 nm or less, which is used as light, has a high transmittance to vacuum ultraviolet light because it has a low transmittance not only in gases such as oxygen and water vapor but also in glass and organic substances. This is because it is necessary to use a material.
パターン保護装置 7 2は、 レチクル基板 5 4のパターン面に接着された矩形 (ほぼ正方形) 枠状の金属 (アルミニウムやその合金等) 又は石英ガラスより 成るペリクルフレーム (枠状部材) 7 6と、 このペリクルフレーム 7 6のレチ クル基板 5 4に対する対向面と反対側の面に接着され、 レチクル基板 5 4のパ ターン面を保護するペリクルフ 5とを含んで構成されている。 この場合、 ペリ クル 7 5は、レチクル基板 5 4のパターン面から 6 . 3 mm程度離れた位置に、 ペリクルフレーム 7 6を介して取り付けられている。なお、不図示ではあるが、 ペリクルフレーム 7 6には、 航空機による輸送時や天候の変化等による気圧の 変化に伴い、 ペリクル 7 5が破損するのを防止するための不図示の通気孔が形 成されている。  The pattern protection device 72 includes a rectangular (substantially square) frame-like metal (aluminum and its alloys) or a pellicle frame (frame-like member) 76 made of quartz glass bonded to the pattern surface of the reticle substrate 54, The pellicle frame 76 includes a pellicle blade 5 adhered to a surface of the reticle substrate 54 opposite to the surface facing the reticle substrate 54 to protect the pattern surface of the reticle substrate 54. In this case, the pellicle 75 is attached via a pellicle frame 76 at a position about 6.3 mm away from the pattern surface of the reticle substrate 54. Although not shown, the pellicle frame 76 has a vent hole (not shown) for preventing the pellicle 75 from being damaged due to a change in air pressure due to transportation by an aircraft or a change in weather. Has been established.
ペリクル 7 5としては、 真空紫外域の露光光 E Lをより良好に透過させるた めに、 例えばフッ素含有の樹脂からなる薄膜、 あるいはホタル石、 フッ化マグ ネシゥム、 フッ化リチウム等の結晶材料から成る 1 0 0〜3 0 O jU m程度の厚 さの薄板、 あるいはホタル石、 フッ化リチウム等から成り 3 0 0〜8 0 0〃m 程度の厚さを有する比較的厚いハードペリクルを用いることができる。 なお、 露光光として近紫外光を用いる場合には、 ニトロセルロース等を主成分とする 有機系の物質から成る透明な薄膜を用いることができる。  The pellicle 75 is made of, for example, a thin film made of a fluorine-containing resin or a crystalline material such as fluorite, magnesium fluoride, or lithium fluoride in order to transmit the exposure light EL in the vacuum ultraviolet region better. It is possible to use a thin plate with a thickness of about 100 to 300 OjUm or a relatively thick hard pellicle made of fluorite, lithium fluoride, etc. and having a thickness of about 300 to 800 m. it can. When near-ultraviolet light is used as the exposure light, a transparent thin film made of an organic substance containing nitrocellulose or the like as a main component can be used.
前記レチクルホルダ 1 4は、 照明系ハウジング 2及び投影光学系 P Lの鏡筒 と隙間無く接合された隔壁 1 8の内部空間によって形成されたレチクル室 1 5 の内部に配置されている。 レチクルホルダ 1 4は、 その中央部に前述のパター ン保護装置 7 2を収容可能な開口が形成された平面視 (上方から見て) 矩形の 部材から成るホルダ本体 1 4 aと、 該ホルダ本体 1 4 a上面の 4隅の近傍に各 1つ設けられた 4つの真空吸着機構 (バキュームチャック) 6 3 (図 1では 2 つの真空吸着機構のみが図示されている) とを備えている。 これら 4つの真空 吸着機構 6 3によってレチクル基板 5 4の下面がその 4隅の近傍をそれぞれ吸 着され、 これによつてレチクル Rがレチクルホルダ 1 4に固定されている。 真 空吸着機構 6 3の吸着面は、例えばルーロンやテフロン(登録商標)、セラミツ ク等の材質によって形成されている。 The reticle holder 14 is disposed inside a reticle chamber 15 formed by the interior space of the partition wall 18 which is tightly joined to the illumination system housing 2 and the lens barrel of the projection optical system PL. The reticle holder 14 includes a holder body 14a formed of a rectangular member in a plan view (as viewed from above) having an opening capable of accommodating the above-described pattern protection device 72 in the center thereof, and a holder body. 14 4a Four vacuum suction mechanisms (vacuum chucks), one for each of the four corners on the upper surface. (Only one vacuum suction mechanism is shown). The lower surface of the reticle substrate 54 is sucked in the vicinity of its four corners by these four vacuum suction mechanisms 63, whereby the reticle R is fixed to the reticle holder 14. The suction surface of the vacuum suction mechanism 63 is formed of a material such as Lulon, Teflon (registered trademark), or ceramic.
レチクルホルダ 1 4は、 不図示のレチクル駆動系によって X Y面内で微少駆 動 (Z軸回りの回転を含む) 可能とされている。 レチクル駆動系は、 例えば 2 組のボイスコイルモータを含んで構成することができる。  The reticle holder 14 can be finely driven (including rotation about the Z axis) in the XY plane by a reticle drive system (not shown). The reticle drive system can be configured to include, for example, two sets of voice coil motors.
前記レチクル室 1 5の隔壁 1 8は、 ステンレス鋼 (S U S ) 等の脱ガスの少 ない材料にて形成されている。 このレチクル室 1 5の隔壁 1 8の天井部には、 レチクル基板 5 4よリー回り小さい矩形の開口が形成されており、 この開口部 分に照明系ハウジング 2の内部空間と、 レチクル Rが配置されるレチクル室 1 5の内部空間とを分離する状態で透過部材 1 2が配置されている。 この透過部 材 1 2は、 照明ュニッ卜 I L Uからレチクル基板 5 4に照射される露光光 E L の光路上に配置されるため、 露光光としての真空紫外光に対して透過性の高い ホタル石等のフッ化物結晶などによって形成されている。  The partition 18 of the reticle chamber 15 is formed of a material with low degassing such as stainless steel (SUS). A rectangular opening smaller than the reticle substrate 54 is formed in the ceiling of the partition wall 18 of the reticle chamber 15, and the internal space of the illumination system housing 2 and the reticle R are arranged in this opening. The transparent member 12 is arranged so as to be separated from the internal space of the reticle chamber 15 to be formed. Since the transmitting member 12 is disposed on the optical path of the exposure light EL applied to the reticle substrate 54 from the illumination unit ILU, the fluorite or the like having high transparency to the vacuum ultraviolet light as the exposure light is used. Is formed by a fluoride crystal or the like.
また、 レチクル室 1 5の隔壁 1 8の X方向一側 (+ X側) の側壁には、 出入 リロ 1 8 aが形成されている。 この出入り口 1 8 aは、 開閉扉 1 2 1によって 開閉可能な構造となっている。 開閉扉 1 2 1は、 不図示の駆動系を介して不図 示の制御装置によって開閉制御される。  In addition, an entrance / exit relo 18a is formed on one side wall (+ X side) in the X direction of the partition wall 18 of the reticle chamber 15. The entrance 18a has a structure that can be opened and closed by an opening and closing door 1 21. Opening / closing doors 122 are controlled by a control device (not shown) via a drive system (not shown).
また、 レチクル室 1 5内のレチクルホルダ 1 4と開閉扉 1 2 1との間には、 水平多関節ロポッ卜からなるマスク搬送機構を構成するレチクル搬送ロボット 6が配置されている。 このレチクル搬送ロボット 6のアームは、 伸縮及び X Y 面内での回転に加え、 上下動も可能となっている。 このレチクル搬送口ポット 6は、 上記出入リロ 1 8 aを介してレチクル室 1 5外からレチクル室 1 5内に レチクル Rを搬入するとともに、 レチクルホルダ 1 4上にレチクル Rを口一ド する。 また、 レチクル搬送ロボット 6は、 レチクルホルダ 1 4上からレチクル Rをアンロードした後、 出入リロ 1 8 aを介してレチクル室 1 5外にレチクル Rを搬出する Further, between the reticle holder 14 in the reticle chamber 15 and the open / close door 121, a reticle transfer robot 6 constituting a mask transfer mechanism composed of a horizontal articulated robot is arranged. The arm of the reticle transport robot 6 can move up and down in addition to expansion and contraction and rotation in the XY plane. The reticle transfer port pot 6 carries the reticle R from the outside of the reticle chamber 15 into the reticle chamber 15 through the above-mentioned reciprocating relo 18a, and the reticle R on the reticle holder 14 I do. Further, the reticle transport robot 6 unloads the reticle R from the reticle holder 14 and then unloads the reticle R to the outside of the reticle chamber 15 via the access relo 18a.
更に、 レチクル室 1 5の隔壁 1 8には、 図 1に示されるように、 給気弁 1 6 と排気弁 1 7とが設けられている。 この給気弁 1 6、 排気弁 1 7も常時所定の 開度で開かれており、 不図示の低吸収性ガスの供給装置からレチクル室 1 5に 低吸収性ガスが常時フローされている。 このようにして、 レチクル室 1 5内部 の気体が低吸収性ガスで置換され、 レチクル室 1 5内の吸収性ガスの濃度は数 p p m以下の濃度となっている。  Further, the partition 18 of the reticle chamber 15 is provided with an air supply valve 16 and an exhaust valve 17 as shown in FIG. The supply valve 16 and the exhaust valve 17 are also always opened at a predetermined opening, and the low-absorbent gas is constantly flowing from the low-absorbent gas supply device (not shown) to the reticle chamber 15. Thus, the gas in the reticle chamber 15 is replaced with the low-absorbent gas, and the concentration of the absorbent gas in the reticle chamber 15 is less than several ppm.
レチクル室 1 5の隔壁 1 8の外側の出入リロ 1 8 aの周囲には、 ベローズ機 構 1 2 7が設けられている。 ここでべローズ機構 1 2 7について、 図 2 Aに基 づいて説明する。  A bellows mechanism 127 is provided around the entrance / exit re-roll 18 a outside the partition wall 18 of the reticle chamber 15. Here, the bellows mechanism 127 will be described with reference to FIG. 2A.
この図 2 Aに示されるように、 ベローズ機構 1 2 7は、 隔壁 1 8の外面の出 入リロ 1 8 aの周囲部分に固定された肉厚の円筒状部材から成る取り付け部材 9 6と、 該取り付け部材 9 6の隔壁 1 8とは反対側の端面にその一端が接続さ れた伸縮自在のべローズ 9 1と、 このべローズ 9 1を X軸方向に沿って伸縮駆 動する駆動機構 9 2とを備えている。 本実施形態では、 取り付け部材 9 6とべ ローズ 9 1とを含んで経路区画部材が構成されている。  As shown in FIG. 2A, the bellows mechanism 127 includes an attachment member 96 made of a thick cylindrical member fixed to a portion around the entrance re-roll 18 a on the outer surface of the partition wall 18. An extendable bellows 91 whose one end is connected to the end face of the mounting member 96 opposite to the partition wall 18, and a drive mechanism for driving the bellows 91 to extend and contract along the X-axis direction. 9 and 2. In the present embodiment, the path defining member includes the mounting member 96 and the bellows 91.
前記駆動機構 9 2は、 ベローズ 9 1の他端に固定され、 その外径がベローズ 9 1よリー回り大きいリング部材 9 2 aと、 このリング部材 9 2 aの取リ付け 部材 9 6に対する対向面にほぼ等間隔でそれぞれロッド状の可動部 9 2 bの一 端が固定された 3つのァクチユエ一タとを備えている。 これら 3つのァクチュ エータは、 取り付け部材 9 6の内部に、 その固定部が埋め込まれ、 モータなど の駆動源によって可動部 9 2 bを X軸方向に沿って往復駆動する。 以下におい ては、 これら 3つのァクチユエータを、 便宜上、 可動部 9 2 bと同一の符号を 用いてァクチユエータ 9 2 bと呼ぶ。 リング部材 9 2 aのべローズ 9 1 とは反対側の面には、 Oリング等から成る シール部材 9 3が貼着されている。 The drive mechanism 92 is fixed to the other end of the bellows 91, and has a ring member 92 a having an outer diameter larger than that of the bellows 91, and a ring member 92 a facing the attachment member 96. The surface is provided with three actuators to which one ends of the rod-shaped movable portions 92b are fixed at substantially equal intervals. These three actuators have fixed portions embedded in the mounting member 96, and reciprocally drive the movable portion 92b along the X-axis direction by a driving source such as a motor. In the following, these three actuators will be referred to as actuators 92 b using the same reference numerals as the movable part 92 b for convenience. A seal member 93 made of an O-ring or the like is attached to a surface of the ring member 92a opposite to the bellows 91.
前記取り付け部材 9 6には、 Z軸方向に貫通する 2つの貫通孔が形成され、 該貫通孔に給気管 9 4の一端及び排気管 9 5の一端が挿入されている。 給気管 9 4の他端側は、 低吸収性ガスを供給する不図示のガス供給装置に接続され、 排気管 9 5の他端側は、 不図示の真空ポンプに接続されている。  The mounting member 96 has two through holes penetrating in the Z-axis direction, into which one end of the air supply pipe 94 and one end of the exhaust pipe 95 are inserted. The other end of the air supply pipe 94 is connected to a gas supply device (not shown) for supplying a low-absorbency gas, and the other end of the exhaust pipe 95 is connected to a vacuum pump (not shown).
図 1に戻り、 前記投影光学系 P Lは、 ホタル石、 フッ化リチウム等のフッ化 物結晶から成るレンズや反射鏡からなる光学系を、鏡筒で密閉したものである。 投影光学系 P Lとしては、 投影倍率) 8が例えば 1 Z 4あるいは 1ノ 5の縮小光 学系が用いられている。 このため、 前述の如く、 照明ュニッ卜 I L Uからの露 光光 E Lによりレチクル Rが照明されると、 レチクル基板 5 4に形成されたパ ターンが投影光学系 P Lによりウェハ W上のショット領域に縮小投影され、 パ タ一ンの縮小像が形成される。  Returning to FIG. 1, the projection optical system PL is an optical system including a lens made of fluoride crystals such as fluorite and lithium fluoride and an optical system made up of a reflecting mirror, which are sealed with a lens barrel. As the projection optical system PL, a reduced optical system with a projection magnification (8) of, for example, 1Z4 or 1-5 is used. Therefore, as described above, when the reticle R is illuminated by the exposure light EL from the illumination unit ILU, the pattern formed on the reticle substrate 54 is reduced to a shot area on the wafer W by the projection optical system PL. Projected to form a reduced image of the pattern.
なお、 投影光学系 P Lとしては、 屈折系、 反射屈折系、 及び反射系のいずれ をも用いることができる。  As the projection optical system PL, any of a refraction system, a catadioptric system, and a reflection system can be used.
本実施形態のように、 真空紫外域の露光光 E Lを使用する露光装置では、 酸 素等の吸収性ガスによる露光光の吸収を避けるために、 投影光学系 P Lの鏡筒 内部の気体も低吸収性ガスで置換する必要がある。このため、本実施形態では、 図 1に示されるように、 投影光学系 P Lの鏡筒に給気弁 3 0と排気弁 3 1とが それぞれの一端部近傍に設けられた給気管と排気管とが接続され、 給気管の他 端が不図示の低吸収性ガスの供給装置に接続されている。 そして、 給気弁 3 0 と排気弁 3 1 とがともに所定の開度で常時開かれ、 低吸収性ガスの供給装置か ら低吸収性ガスが鏡筒内部に常時フローされ、 鏡筒内の気体が低吸収性ガスで 置換されている。 その結果、 鏡筒内部の吸収性ガスの濃度は、 酸素、 水蒸気濃 度が 0 . 1 p p m以下、 有機物濃度が 1 0 p p b以下に抑えられている。  In the exposure apparatus that uses the exposure light EL in the vacuum ultraviolet region as in the present embodiment, the gas inside the lens barrel of the projection optical system PL is also low in order to avoid absorption of the exposure light by an absorbing gas such as oxygen. It must be replaced with an absorbing gas. For this reason, in the present embodiment, as shown in FIG. 1, an air supply pipe and an exhaust pipe in which an air supply valve 30 and an exhaust valve 31 are provided near one end of the lens barrel of the projection optical system PL. And the other end of the air supply pipe is connected to a low-absorbency gas supply device (not shown). Then, both the supply valve 30 and the exhaust valve 31 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the lens barrel from the low-absorbent gas supply device, and the inside of the lens barrel is The gas has been replaced by a low absorption gas. As a result, the concentration of absorptive gas inside the lens barrel is kept below 0.1 ppm for oxygen and water vapor and below 10 ppm for organic matter.
前記ウェハステージ W S Tは、 投影光学系 P Lの鏡筒と隙間無く接合された 隔壁 4 1で覆われたウェハ室 4 0内に配置されている。 ウェハ室 4 0の隔壁 4 1は、 ステンレス鋼 (S U S ) 等の脱ガスの少ない材料にて形成されている。 隔壁 4 1は、 本体チャンバ 1の底面 (床面) 上に複数 (例えば 4つ) の防振ュ ニット 7を介して配置されている。 これらの防振ユニット 7によって、 床面か らの微振動がマイクロ Gレベルで絶縁されている。 The wafer stage WST was joined to the projection optical system PL lens barrel without gaps. It is arranged in a wafer chamber 40 covered with a partition wall 41. The partition wall 41 of the wafer chamber 40 is formed of a material with low degassing such as stainless steel (SUS). The partition walls 41 are arranged on the bottom surface (floor surface) of the main body chamber 1 via a plurality (for example, four) of vibration isolation units 7. These vibration isolation units 7 insulate micro vibrations from the floor surface at the micro G level.
ウェハ室 4 0内には、 ベース B Sが、 複数の防振ユニット 3 9を介して水平 に支持されている。 これらの防振ユニット 3 9は、 ウェハステージ W S Tの移 動に伴う振動が隔壁 4 1を介して投影光学系 P Lゃレチクル Rに伝達するのを 効果的に抑制する。 なお、 この防振ユニット 3 9として、 ベース B Sの一部に 固定された半導体加速度計等の振動センサの出力に基づいてベース B Sを積極 的に制振するいわゆるァクティブ防振装置を用いることは可能である。  In the wafer chamber 40, a base BS is horizontally supported via a plurality of vibration isolating units 39. These anti-vibration units 39 effectively suppress the transmission of the vibration accompanying the movement of the wafer stage WST to the projection optical system PL Preticle R via the partition wall 41. It should be noted that a so-called active vibration isolator that actively dampens the base BS based on the output of a vibration sensor such as a semiconductor accelerometer fixed to a part of the base BS can be used as the vibration isolation unit 39. It is.
前記ウェハステージ WS Tは、 例えばリニアモータ等から成る不図示のゥェ ハ駆動系によって前記ベース B Sの上面 (ガイド面) に沿ってかつ非接触で自 在に駆動されるようになっている。  The wafer stage WST is self-driven along a top surface (guide surface) of the base BS and in a non-contact manner by a wafer driving system (not shown) including, for example, a linear motor.
ウェハステージ WS T上にはウェハテーブル 3 5が搭載され、 該ウェハテー ブル 3 5上に載置された不図示のウェハホルダによってゥェ/、Wが吸着保持さ れている。 ウェハテーブル 3 5の一 X側の端部には、 平面鏡から成る X移動鏡 3 6 Xが Y軸方向に延設されている。 この X移動鏡 3 6 Xに、 X軸レーザ干渉 計 3 7 Xからの測長ビームがほぼ垂直に投射され、 その反射光がレーザ干渉計 3 7 X内部のディテクタによって受光され、 所定の位置に設けられた参照鏡の 位置を基準として X移動鏡 3 6 Xの位置、 すなわちウェハ Wの X位置が検出さ れる。  A wafer table 35 is mounted on the wafer stage WST, and the wafers W are suction-held by a wafer holder (not shown) mounted on the wafer table 35. An X movable mirror 36 X composed of a plane mirror is provided at one end on the X side of the wafer table 35 in the Y-axis direction. The measuring beam from the X-axis laser interferometer 37 X is projected almost vertically onto the X moving mirror 36 X, and the reflected light is received by the detector inside the laser interferometer 37 X, and is positioned at a predetermined position. The position of the X movable mirror 36 X, that is, the X position of the wafer W, is detected with reference to the position of the provided reference mirror.
同様に、図示は省略されているが、ウェハテーブル 3 5の + Y側の端部には、 平面鏡から成る Y移動鏡が X軸方向に延設されている。 そして、 この Y移動鏡 を介して不図示の Y軸レーザ干渉計によって上記と同様にして Y移動鏡の位置, すなわちウェハ Wの Y位置が検出される。上記 2つのレーザ干渉計の検出値(計 測値) は不図示の制御装置に供給されている。 Similarly, although not shown, a Y moving mirror composed of a plane mirror extends in the X-axis direction at the + Y side end of the wafer table 35. Then, the position of the Y movable mirror, that is, the Y position of the wafer W is detected by a Y-axis laser interferometer (not shown) through the Y movable mirror in the same manner as described above. The detection values of the above two laser interferometers ( The measured value is supplied to a control device (not shown).
制御装置では、 これらのレーザ干渉計の検出値をモニタしつつ不図示のゥェ ハ駆動系を介してウェハステージ W S丁を X Y面内で駆動して、 ウェハ W上の 複数のショット領域をレチクルパターンの投影位置 (露光位置) に順次位置決 めするショット間ステッピング動作と、 位置決めの度毎に光源の発光を制御し て、 露光光 E Lによってレチクル Rのパターンの縮小像を投影光学系 P Lを介 して各ショット領域に転写する動作とを繰り返すステップ■アンド ' リピ一ト 方式の露光動作を行う。  The controller drives the wafer stage WS in the XY plane via a wafer drive system (not shown) while monitoring the detection values of these laser interferometers, and reticles multiple shot areas on the wafer W. The stepping operation between shots, which sequentially determines the pattern projection position (exposure position), and the light emission of the light source is controlled each time the positioning is performed. Step-and-repeat type exposure operation is repeated.
本実施形態のように、 真空紫外域の露光光 E Lを使用する露光装置では、 酸 素等の吸収性ガスによる露光光の吸収を避けるために、 投影光学系 P Lからゥ ェハ Wまでの光路についても前記低吸収性ガスで置換する必要がある。 このた め、 本実施形態では、 図 1に示されるように、 ウェハ室 4 0の隔壁 4 1に給気 弁 3 2と排気弁 3 3とがそれぞれの一端部近傍に設けられた給気管と排気管と が接続され、 給気管の他端が不図示の低吸収性ガスの供給装置に接続されてい る。 そして、 給気弁 3 2と排気弁 3 3とが共に常時所定の開度で開かれ、 不図 示の低吸収性ガスの供給装置からウェハ室 4 0内に低吸収性ガスが常時フロー され、 ウェハ室 4 0内の気体が低吸収性ガスで置換されている。 これにより、 ウェハ室 4 0内の吸収性ガスの濃度は数 p p m以下の濃度に抑制されている。 前記レチクル搬送系 1 2 0は、 本体チャンバ 1内部の + X側の側壁の内面に 一端面が接続されるとともに、 不図示の支持部材によってほぼ水平に支持され た載置台 1 0 1上に載置され、 前記レチクルキャリア 4 4の開閉を行う開閉装 置 (インデクサ) 4 5と、 該開閉装置 4 5の一 X側に近接して配置されたレチ クル搬送ロボット 4 7と、 該レチクル搬送ロポット 4 7の一 X側に所定間隔を 隔てて配置されたエレベータュニット 1 3 0と、 エレベータュニット 1 3 0の 下端部近傍に設けられた横スライ ド機構 2 1と、 を備えている。  In the exposure apparatus using the exposure light EL in the vacuum ultraviolet region as in the present embodiment, the optical path from the projection optical system PL to the wafer W is used to avoid absorption of the exposure light by an absorbing gas such as oxygen. Also needs to be replaced with the low-absorbing gas. For this reason, in the present embodiment, as shown in FIG. 1, an air supply pipe in which an air supply valve 32 and an exhaust valve 33 are provided in the vicinity of one end of the partition 41 of the wafer chamber 40 is provided. The exhaust pipe and are connected, and the other end of the air supply pipe is connected to a low-absorbent gas supply device (not shown). Then, both the supply valve 32 and the exhaust valve 33 are always opened at a predetermined opening, and the low-absorbent gas is constantly flowed into the wafer chamber 40 from the low-absorbent gas supply device (not shown). The gas in the wafer chamber 40 has been replaced with a low-absorbent gas. As a result, the concentration of the absorbent gas in the wafer chamber 40 is suppressed to a concentration of several ppm or less. The reticle transport system 120 is mounted on a mounting table 101, one end of which is connected to the inner surface of the side wall on the + X side inside the main body chamber 1 and which is supported substantially horizontally by a support member (not shown). An opening / closing device (indexer) 45 for opening and closing the reticle carrier 44; a reticle transport robot 47 arranged close to one X side of the open / close device 45; and a reticle transport robot. 47, an elevator unit 130 arranged at a predetermined interval on one X side of the elevator unit 47, and a horizontal slide mechanism 21 provided near the lower end of the elevator unit 130.
前記レチクルキャリア 4 4としては、 本実施形態では、 レチクルを複数枚上 下方向に所定間隔を隔てて収納可能なボトムオープンタイプの密閉型のコンテ ナである S M I F (Standard Mechanical Interface)ポッドが用いられている。 このレチクルキャリア 4 4は、 図 1に示されるように、 レチクルを上下方向に 所定間隔で収納する複数段 (例えば 3段) の収納棚が一体的に設けられたキヤ リア本体 4 6と、 このキャリア本体 4 6に上方から嵌合するカバー 1 0 2と、 キャリア本体 4 6の底板に設けられたカバー 1 0 2をロックする不図示のロッ ク機構とを備えている。 In the present embodiment, the reticle carrier 44 includes a plurality of reticles. A standard mechanical interface (SMIF) pod is used, which is a closed-bottom, open-bottomed container that can be stored downward at a predetermined interval. As shown in FIG. 1, the reticle carrier 44 includes a carrier body 46 integrally provided with a plurality of (for example, three) storage shelves for storing reticles at predetermined intervals in the vertical direction. The cover 102 includes a cover 102 fitted to the carrier body 46 from above, and a locking mechanism (not shown) for locking the cover 102 provided on the bottom plate of the carrier body 46.
レチクルキヤリア 4 4の構造に対応して、 レチクルキヤリア 4 4が搬入され る前述の搬出入ポート 1 aには、 レチクルキャリア 4 4のキャリア本体 4 6の 底板より一回り大きな開口 7 8が形成されている。 この開口 7 8は、 通常は、 図 1に示される後述する開閉部材 8 2によって閉塞されている。  In correspondence with the structure of the reticle carrier 44, an opening 78 that is slightly larger than the bottom plate of the carrier body 46 of the reticle carrier 44 is formed in the above-mentioned loading / unloading port 1a into which the reticle carrier 44 is loaded. ing. The opening 78 is usually closed by an opening / closing member 82 shown in FIG. 1 and described later.
前記開閉装置 4 5は、 開閉部材 8 2と、 該開閉部材 8 2がその上端面に固定 され Z軸方向を軸方向とする駆動軸 8 4と、 該駆動軸 8 4を上下方向 (Z軸方 向) に駆動する駆動機構 1 8 6とを備えている。 開閉部材 8 2は、 搬出入ポー ト 1 aに搬入されるレチクルキャリア 4 4のキヤリア本体 4 6の底板の底面を 真空吸引あるいはメカニカル連結して係合するとともに、 そのキャリア本体 4 6の底板に設けられた不図示のロック機構を解除する不図示の係合《ロック解 除機構を備えている。 開閉装置 4' 5では、 開閉部材 8 2の係合 'ロック解除機 構により、 ロック機構を解除するとともに、 キャリア本体 4 6を係合した後、 開閉部材 8 2を下方に所定量移動することにより、 本体チャンバ 1の内部と外 部とを隔離した状態で、 キャリア本体 4 6をカバー 1 0 2から分離させること ができる。 開閉装置 4 5は、 不図示の制御装置によって制御されるようになつ ている。  The opening and closing device 45 includes an opening and closing member 82, a drive shaft 84 to which the opening and closing member 82 is fixed on an upper end surface thereof, and an axial direction in the Z-axis direction. In the direction). The opening / closing member 82 is engaged with the bottom plate of the carrier body 46 of the reticle carrier 44 carried into the carry-in / out port 1a by vacuum suction or mechanical connection, and is engaged with the bottom plate of the carrier body 46. An unlocking mechanism (not shown) for releasing the provided locking mechanism (not shown) is provided. In the opening / closing device 4'5, the locking mechanism is released by the engagement / unlocking mechanism of the opening / closing member 82, and after the carrier body 46 is engaged, the opening / closing member 82 is moved downward by a predetermined amount. Thereby, the carrier main body 46 can be separated from the cover 102 in a state where the inside and the outside of the main body chamber 1 are isolated. The switching device 45 is controlled by a control device (not shown).
前記レチクル搬送ロポッ卜 4 7は、水平多関節ロボッ卜から構成されている。 このレチクル搬送ロポット 4 7のアームは、伸縮及び X Y面内での回転に加え、 上下動も可能となっている。 前記エレベータュニット 1 30は、本体チャンパ 1の床面に一端が固定され、 鉛直方向に延びる 4本のスライ ドガイ ド 1 9 a, 1 9 b, 1 9 c, 1 9 d (但 し、 図 1における紙面奥側の一対のスライ ドガイ ド 1 9 c, 1 9 dは不図示)、 これらのスライ ドガイ ド 1 9 a〜 1 9 dに沿って上下方向に移動可能なスライ ダ 48 a, 48 b, 48 c, 48 d (但し、 図 1における紙面奥側の一対のス ライダ 48 c, 48 dは不図示)、及びスライダ 48 a〜48 dを駆動する不図 示の駆動機構等を含んで構成されている。 スライダ 48 a〜48 dは、 し字状 の形状を有し、 後述するマスク保管装置としてのレチクル保管箱 20の 4隅の 近傍を下方から支持可能な構造となっている。 スライダ 48 a〜48 dを駆動 する駆動機構としては、 例えばスライダ 48 a〜48 dのそれぞれと対応する スライドガイ ドとの間に設けられたリニアモータなどを用いることができる。 この駆動機構が不図示の制御装置によリ制御され、 スライダ 48 a〜48 dが 同一量だけ同時に上下方向に駆動され、 これによつてスライダ 48 a〜48 d に保持されたレチクル保管箱 20が上下方向に搬送されるようになっている。 ここで、 上記エレベータュニッ卜 1 30によって搬送されるレチクル保管箱 20の構成について、 図 3 A及び図 3 Bに基づいて説明する。 The reticle transport robot 47 is composed of a horizontal articulated robot. The arm of the reticle transport robot 47 can move up and down in addition to expansion and contraction and rotation in the XY plane. The elevator unit 130 has four slide guides 19 a, 19 b, 19 c, and 19 d, each of which has one end fixed to the floor surface of the main body champer 1 and extends in the vertical direction. (A pair of slide guides 19c and 19d on the back side of the paper in Fig. 1 are not shown), and sliders 48a and 48 that can move vertically along these slide guides 19a to 19d. b, 48c, 48d (however, a pair of sliders 48c, 48d on the back side of the drawing in FIG. 1 are not shown), and a driving mechanism (not shown) for driving the sliders 48a to 48d are included. It is composed of The sliders 48a to 48d have a U-shape, and have a structure capable of supporting the vicinity of four corners of a reticle storage box 20 as a mask storage device described below from below. As a driving mechanism for driving the sliders 48a to 48d, for example, a linear motor provided between each of the sliders 48a to 48d and the corresponding slide guide can be used. This drive mechanism is controlled by a control device (not shown), and the sliders 48a to 48d are simultaneously driven in the vertical direction by the same amount, whereby the reticle storage box 20 held by the sliders 48a to 48d. Are transported in the vertical direction. Here, the configuration of the reticle storage box 20 transported by the elevator unit 130 will be described with reference to FIGS. 3A and 3B.
レチクル保管箱 20は、 全体として箱型の形状を有しその内部に空間が形成 された保管装置本体としての保管箱本体 2 1 0と、 保管箱本体 2 1 0の図3八 における X軸方向両側の側壁にそれぞれ形成された開口としての搬出入開口 2 1 1 a, 2 1 1 b (図 3 B参照) をそれぞれ開閉する開閉部としての開閉扉 2 05 a, 205 bとを備えている。  The reticle storage box 20 has a box shape as a whole and has a storage box body 210 as a storage device body having a space formed therein, and the X-axis direction of the storage box body 210 shown in FIG. Opening / closing doors 205a and 205b are provided as opening / closing sections for opening and closing the carry-in / out openings 211a and 211b (see FIG. 3B) as openings formed on both side walls, respectively. .
前記保管箱本体 2 1 0は、 図 3 Bに示されるようにその上面及び下面に 2段 の段を有する段付き開口 (窓) 2 1 1 c, 2 1 1 dがそれぞれ形成された全体 として箱型の筐体 2 1 1 と、 この筐体 2 1 1の上面側の段付き開口 2 1 1 cの 開口部分を閉塞する状態で取り付けられた窓ガラス 201 aと、 筐体 2 1 1の 下面側の段付き開口 2 1 1 dの開口部分を閉塞する状態で取り付けられた窓ガ ラス 20 1 b (図 3 B参照) とを備えている。 本実施形態のレチクル保管箱 2 0では、 窓ガラス 20 1 a, 20 1 bによって透過部が構成されている。 As shown in FIG. 3B, the storage box main body 210 has a stepped opening (window) 211 c and 211 d having two steps on the upper and lower surfaces, respectively. A box-shaped housing 2 1 1, a windowpane 201 a attached in a state of closing a stepped opening 2 1 1 c on the upper surface side of the housing 2 1 1 c, and a housing 2 1 1 A window with a stepped opening on the lower side 2 1 1 Lath 201b (see FIG. 3B). In the reticle storage box 20 of the present embodiment, the window glass 201a, 201b constitutes a transmission part.
前記筐体 2 1 1は、 ステンレス鋼等から成り、 この筐体 2 1 1の X軸方向両 側の側壁に形成された搬出入開口 2 1 1 a, 2 1 1 bを介して保管箱本体 2 1 0の内部にレチクル Rが搬入され、 また、 保管箱本体 2 1 0の内部からレチク ル Rが搬出されるようになっている。 また、 図 3 Aに示されるように、 筐体 2 1 1の Y軸方向両側の壁には、 レチクル保管箱 20内に所定のガスを供給し、 レチクル保管箱 20内のガスを排気するための通気孔 204 a, 204 b, 2 04 c, 204 dが形成されている (通気孔 204 c, 204 dについては、 図 3 Aでは不図示、 図 6参照)。なお、上記のように筐体をステンレス鋼等から 構成する場合には、その表面を酸化等させることによリ不動態膜を形成したり、 あるいは電解研磨を施すことにより、 放出ガスの低減を図ることができる。 前記窓ガラス 20 1 a, 20 1 bは、 蛍石やフッ素添加石英等の紫外線透過 性を有する材料から成る板状部材によって形成されている。 なお、 窓ガラス 2 0 1 a, 20 1 bとしては、 フッ化カルシウム等の材料から成る板状部材を用 いることもできる。 一方の窓ガラス 20 1 aは、 図 3 Bに示されるように、 筐 体 2 1 1の上面に形成された段付き開口 2 1 1 cの上から 2段目の段部に気密 性確保のための Oリング等から成るシール部材 265 aを介して嵌め込まれ、 上から 1段目の段部に嵌めこまれた矩形枠状の窓押さえ部材 202 aによって 上方から押さえつけられた状態で固定されている。 この場合、 窓押さえ部材 2 02 aと窓ガラス 20 1 aとの間にも気密性確保のための Oリング等から成る シール部材 265 cが設けられ、 窓押さえ部材 202 aは、 筐体 2 1 1に複数 本のねじ 203によって固定されている。  The housing 211 is made of stainless steel or the like, and is provided via a carry-in / out opening 211a, 211b formed on a side wall on both sides in the X-axis direction of the housing 211. The reticle R is carried into the inside of the storage box 210, and the reticle R is carried out from the inside of the storage box body 210. Further, as shown in FIG. 3A, a predetermined gas is supplied into the reticle storage box 20 and the gas in the reticle storage box 20 is exhausted to the two walls in the Y-axis direction of the housing 2 11. Vent holes 204a, 204b, 204c and 204d are formed (the vent holes 204c and 204d are not shown in FIG. 3A, see FIG. 6). When the casing is made of stainless steel or the like as described above, the surface of the casing is oxidized to form a passivation film, or electrolytic polishing is performed to reduce the emission gas. Can be planned. The window glasses 201a and 201b are formed of a plate-like member made of a material having ultraviolet transmittance, such as fluorite or fluorine-added quartz. As the window glasses 201a and 201b, plate members made of a material such as calcium fluoride can be used. As shown in FIG. 3B, one window glass 201a is provided with airtightness at the second step from the top of the stepped opening 211c formed on the upper surface of the housing 211. Through a seal member 265a composed of an O-ring or the like, and is fixed while being pressed down from above by a rectangular frame-shaped window holding member 202a fitted into the first step from the top. I have. In this case, a sealing member 265c made of an O-ring or the like for ensuring airtightness is provided between the window holding member 202a and the window glass 201a, and the window holding member 202a is One is fixed by a plurality of screws 203.
他方の窓ガラス 20 1 bは、 図 3 Bに示されるように、 筐体 2 1 1の下面に 形成された段付き開口 2 1 1 dの下から 2段目の段部に気密性確保のための O リング等から成るシール部材 265 bを介して嵌め込まれ、 下から 1段目の段 部に嵌めこまれた矩形枠状の窓押さえ部材 2 0 2 bによって下方から押さえつ けられた状態で固定されている。 この場合、 窓押さえ部材 2 0 2 bと窓ガラス 2 0 1 bとの間にも気密性確保のための Oリング等から成るシール部材 2 6 5 dが設けられ、 窓押さえ部材 2 0 2 bは、 筐体 2 1 1に複数本のねじ 2 0 3に よって固定されている。 なお、 シール部材 2 0 5 a〜2 0 5 dとしては、 例え ば吸収性ガスの脱ガスの発生が少ないフッ素ゴムなどから成るものを用いるこ とができる。 As shown in FIG. 3B, the other windowpane 201b is provided with airtightness at the second step from the bottom of the stepped opening 211d formed in the lower surface of the housing 211. Through a seal member 265 b composed of an O-ring etc. It is fixed in a state where it is pressed down from below by a rectangular frame-shaped window holding member 202 b fitted into the portion. In this case, a sealing member 260 d composed of an O-ring or the like for ensuring airtightness is provided between the window holding member 202 b and the window glass 201 b, and the window holding member 202 b Is fixed to the housing 211 with a plurality of screws 203. In addition, as the sealing members 205a to 205d, for example, a member made of fluororubber or the like, which hardly generates degassing of the absorbent gas, can be used.
筐体 2 1 1の内部底面には、 図 3 Bに示されるように、 段付き開口 2 1 1 d の開口部の周辺部に複数 (例えば 4つ) のレチクル支持部材 2 1 3 (但し、 図 3 Bにおける紙面手前側のレチクル支持部材 2 1 3は不図示) がそれぞれ設け られている。ロボッ卜によって保管箱本体 2 1 0内に搬入されたレチクル Rは、 これらのレチクル支持部材 2 1 3によって、 そのレチクル基板 5 4下面の例え ば 4隅の部分にて下方から支持される。  As shown in FIG. 3B, a plurality of (for example, four) reticle support members 2 1 3 (but not shown) are provided around the stepped opening 2 11 d as shown in FIG. 3B. The reticle support members 21 on the near side in FIG. 3B are not shown). The reticle R carried into the storage box main body 210 by the robot is supported from below by the reticle support members 21, for example, at the four corners of the lower surface of the reticle substrate 54.
一方の開閉扉 2 0 5 aは、 図 3 Aに示されるように、 前述の搬出入開口 2 1 1 aを開閉可能とするため、 筐体 2 1 1の Y軸方向の一側と他側の側壁の外面 の + X側端部近傍にそれぞれ固定された一対の矩形板状の支持部材 2 1 2 けこ だし、 + Y側の側壁に固定された支持部材については不図示) に支軸 2 0 6 a を中心として起伏回動可能 (X Z面内で回動可能) に取り付けられている。 こ の開閉扉 2 0 5 aにおける、搬出入開口 2 1 1 aの周辺部に対応する部分には、 図 3 Bに示されるように、 気密性を確保するための Oリング等から成るシール 部材 2 7 0 aが設けられている。  As shown in FIG. 3A, one of the opening and closing doors 205a can open and close the above-mentioned loading / unloading opening 2111a, so that one side of the housing 211 in the Y-axis direction and the other side can be opened. A pair of rectangular plate-shaped support members 2 1 2 fixed respectively near the + X side end of the outer surface of the side wall of the support member, and the support member fixed to the + Y side wall are not shown) It is mounted so that it can be turned up and down around 206a (it can turn in the XZ plane). As shown in FIG.3B, a sealing member such as an O-ring for ensuring airtightness is provided at a portion of the opening / closing door 205a corresponding to the periphery of the carry-in / out opening 211a. 270a is provided.
また、 開閉扉 2 0 5 aの一 Y側の端面には、 図 3 Aに示されるように、 ピン 2 0 8 aが設けられ、 これに対応して保管箱本体 2 1 0の一 Y側の側壁の外面 には、 ピン 2 0 8 aに係合可能なフック 2 0 8 bが起伏回動可能に設けられて いる。 これらピン 2 0 8 a、 フック 2 0 8 bによって、 開閉扉 2 0 5の開閉を ロックするロック機構 2 0 8が構成されている。 なお、 ロック機構 2 0 8は、 —Y側のみでなく、 + Υ側にも設けても良い。 In addition, as shown in FIG. 3A, a pin 208 a is provided on the one Y-side end surface of the opening / closing door 205 a, and correspondingly, one Y-side of the storage box body 210. A hook 208 b that can be engaged with the pin 208 a is provided on the outer surface of the side wall of the case so as to be able to move up and down. The pin 208 a and the hook 208 b constitute a lock mechanism 208 that locks the opening and closing of the door 205. The lock mechanism 208 is — It may be provided not only on the Y side but also on the + Υ side.
他方の開閉扉 2 0 5 b及びその周辺部材の構成も開閉扉 2 0 5 aと同様にな つている。 すなわち、 開閉扉 2 0 5 bは、 図 3 Aに示されるように、 前述の搬 出入開口 2 1 1 bを開閉可能とするため、 筐体 2 1 1の Y軸方向の一側と他側 の側壁の外面の一 X側端部近傍にそれぞれ固定された一対の支持部材 2 1 2 (ただし、 + Y側の側壁に固定された支持部材については不図示) に支軸 2 0 6 bを中心として起伏回動可能(X Z面内で回動可能)に取り付けられている。 この開閉扉 2 0 5 bにおける、 搬出入開口 2 1 1 bの周辺部に対応する部分に は、 図 3 Bに示されるように、 気密性を確保するための Oリング等から成るシ 一ル部材 2 7 0 bが設けられている。 このシール部材 2 7 0 b及び前記シール 部材 2 7 0 aとしては、 例えば吸収性ガスの脱ガスの発生が少ないフッ素ゴム などから成るものを用いることが望ましい。  The configuration of the other door 205 b and its peripheral members is the same as that of the door 205 a. That is, as shown in FIG. 3A, the opening / closing door 205 b can open and close the above-mentioned carrying-in / out opening 211 b, so that one side of the housing 211 in the Y-axis direction and the other side thereof. A support shaft 206 b is attached to a pair of support members 2 1 2 (each not shown for the support member fixed to the + Y side wall), which are fixed in the vicinity of one X-side end of the outer surface of the side wall. It is mounted so that it can be raised and lowered (rotatable in the XZ plane) as the center. As shown in FIG. 3B, a portion of the opening / closing door 205b corresponding to the periphery of the carry-in / out opening 211b is provided with a seal such as an O-ring for ensuring airtightness. A member 270b is provided. As the seal member 270b and the seal member 270a, it is desirable to use, for example, a member made of fluororubber or the like, which hardly generates degassing of the absorbent gas.
また、 開閉扉 2 0 5 b側にも、 図 3 Aに示されるように、 前述のロック機構 2 0 8と同様にピン 2 0 7 aとフック 2 0 7 bとによって構成されるロック機 構 2 0 7が設けられている。 このロック機構 2 0 7によって、 開閉扉 2 0 5 b の開閉がロックされるようになっている。 なお、 ロック機構 2 0 7も一 Y側の みでなく、 + Y側にも設けても良い。  Further, as shown in FIG. 3A, the lock mechanism constituted by the pin 207a and the hook 207b is also provided on the door 205b side as shown in FIG. 3A. 207 is provided. The opening and closing of the opening / closing door 205 b is locked by the lock mechanism 207. The lock mechanism 207 may be provided not only on the Y side but also on the + Y side.
前記通気孔 2 0 4 a〜2 0 4 dに対応して、 筐体 2 1 1の Y軸方向の一側と 他側の側壁の内面には、 開閉弁機構 2 1 2 A〜2 1 2 Dが設けられている (図 6参照)。 ここで、 これらの開閉弁機構 2 1 2 A〜2 1 2 Dの構成を、開閉弁機 構 2 1 2 Aを代表的に採りあげて、 図 4に基づいて説明する。  Corresponding to the ventilation holes 204 a to 204 d, on one side in the Y-axis direction of the housing 211 and on the inner surface of the other side wall, an on-off valve mechanism 2 12 A to 2 1 2 D is provided (see Fig. 6). Here, the configuration of these on-off valve mechanisms 2 12 A to 2 12 D will be described with reference to FIG. 4, taking the on-off valve mechanism 2 12 A as a representative.
図 4には、 該開閉弁機構 2 1 2 Aの斜視図が示されている。 この図 4に示さ れるように、 開閉弁機構 2 1 2 Aは、 通気孔 2 0 4 aに対向して筐体 2 1 1の _ Y側の側壁の内面側に配設された弁部材 2 1 5と、 この弁部材 2 1 5を一 Υ 方向に所定の力で常時付勢する一対の付勢機構 2 1 4 Α、 2 1 4 Βとを備えて いる。 前記弁部材 2 1 5は、 矩形板状の部材から成る弁本体 2 1 5 aと、 弁本体 2 1 5 aの X軸方向一側と他側の端面に突設された一対の支持部材 2 1 5 b , 2 1 5 cとを含んで構成されている。 弁本体 2 1 5 aの前記側壁内面に対向する 面 (一 Y側の面) には、 通気孔 2 0 4 aに圧設された際に、 気密性を確保する ための Oリング等から成るシール部材 2 1 6が貼着されている。 FIG. 4 is a perspective view of the on-off valve mechanism 2 12 A. As shown in FIG. 4, the opening / closing valve mechanism 2 12 A includes a valve member 2 disposed on the inner side of the _Y side wall of the housing 2 1 1 facing the ventilation hole 204 a. 15 and a pair of urging mechanisms 2 14 Α and 2 Β that constantly urge the valve member 2 15 in one direction with a predetermined force. The valve member 2 15 includes a valve body 2 15 a made of a rectangular plate-shaped member, and a pair of support members 2 protruding from one end and the other end in the X-axis direction of the valve body 2 15 a. 15 b and 2 15 c. The surface (the surface on the one Y side) of the valve main body 2 15 a that faces the inner surface of the side wall includes an O-ring or the like for ensuring airtightness when pressed into the ventilation hole 204 a. A seal member 211 is attached.
前記一方の付勢機構 2 1 4 Aは、 図 4に示されるように、 断面 U字状の形状 を有し、 その開放側の一対の端面が前記側壁の内面に固定されたガイ ド部材 2 1 7と、 該ガイ ド部材 2 7と支持部材 2 1 5 bとの間に配置された付勢部材 としての圧縮コイルばね S Rとを備えている。 他方の付勢機構 2 1 4 Bもこれ と同様に構成されている。  As shown in FIG. 4, the one urging mechanism 2 14 A has a U-shaped cross section, and a pair of guide members 2 having a pair of open end surfaces fixed to the inner surface of the side wall. 17 and a compression coil spring SR as an urging member disposed between the guide member 27 and the support member 215b. The other urging mechanism 2 14 B has the same configuration.
このようにして構成される開閉弁機構 2 1 2 Aによると、 通常の状態では、 弁部材 2 1 5は、 付勢機構 2 1 4 A、 2 1 4 Bの圧縮コイルばね S Rによって —Y方向に向けて所定の力で常時付勢されているので、 弁本体 2 1 5 a (より 正確にはシール部材 2 1 6 ) が筐体 2 1 1の一 Y側の側壁内面の通気孔 2 0 4 a部分に圧設されており、 これによつて通気孔 2 0 4 aは閉塞状態 (閉状態) に維持されている。 一方、 弁部材 2 1 5が付勢機構 2 1 4 A、 2 1 4 Bの圧縮 コイルばね S Rの付勢力に杭して外側から押圧された場合には、 弁部材 2 1 5 は + Y側に移動し、 弁本体 2 1 5 a (より正確にはシール部材 2 1 6 ) が前記 側壁内面から離れ、 通気孔 2 0 4 aが開放状態 (開状態) となる。  According to the opening / closing valve mechanism 2 12 A configured in this manner, in the normal state, the valve member 2 15 is pressed by the compression coil spring SR of the urging mechanisms 2 14 A and 2 14 B in the —Y direction. The valve body 2 15 a (more precisely, the sealing member 2 16) has a ventilation hole 20 inside the Y-side side wall of the housing 2 1 1 because the valve body 2 15 a (more precisely, the sealing member 2 16) The air hole 204a is maintained in a closed state (closed state). On the other hand, when the valve member 2 15 is pushed from the outside by being piled by the biasing force of the compression coil spring SR of the biasing mechanisms 2 14 A and 2 14 B, the valve member 2 15 is moved to the + Y side. The valve body 2 15 a (more precisely, the sealing member 2 16) moves away from the inner surface of the side wall, and the vent hole 204 a is opened (opened).
その他の開閉弁機構 2 1 2 B〜2 1 2 Dも上記開閉弁機構 2 1 2 Aと同様に 構成されている。  The other on-off valve mechanisms 2 12 B to 2 12 D have the same configuration as the on-off valve mechanism 2 12 A.
図 1に戻り、 前記横スライ ド機構 2 1は、 例えば、 X軸方向に伸びる移動ガ ィ ドと、 前記レチクル保管箱 2 0を下方から支持した状態で移動ガイ ドに沿つ て横方向 (X軸方向) にスライ ド移動するスライダとを含んで構成することが できる。 この横スライド機構 2 1は、 後述する光洗浄装置とエレベータュニッ ト 1 3 0との間でレチクル保管箱 2 0を搬送するものである。 この横スライド 機構 2 1としては、 図 1中に符号 2 O Bで示される位置にあるレチクル保管箱 20を、 エレベータュニッ卜 1 30を構成するスライダ 48 a〜48 dから受 け取り、 後述する光洗浄装置内に搬入し、 反対に光洗浄装置内部からレチクル 保管箱 20を搬出し、 スライダ 48 a〜48 dに受け渡すことができるのであ れぱ、 その構成は如何なる構成であっても良い。 Returning to FIG. 1, the horizontal slide mechanism 21 includes, for example, a movable guide extending in the X-axis direction and a lateral direction (along the movable guide while supporting the reticle storage box 20 from below). And a slider that slides in the X-axis direction). The horizontal slide mechanism 21 transports the reticle storage box 20 between an optical cleaning device described later and an elevator 130. This horizontal slide The mechanism 21 receives the reticle storage box 20 at the position indicated by reference numeral 2OB in FIG. 1 from the sliders 48a to 48d constituting the elevator unit 130 and places it in the optical cleaning device described later. The reticle storage box 20 can be carried in from the inside of the optical cleaning device and conveyed to the sliders 48a to 48d, and can have any configuration.
前記エレベータュニッ卜 1 30を構成するスライドガイド 1 9 a〜 1 9 dの 上端部の上方には、 本体チャンバ 1の天井部から吊り下げ支持された保持装置 としての保管機構 24が設けられている。 この保管機構 24は、 エレベータュ ニット 1 30のスライダ 48 a~48 dによって搬送された前述のレチクル保 管箱 20をほぼ気密状態で収容可能な構成となっている。  Above the upper ends of the slide guides 19a to 19d constituting the elevator unit 130, a storage mechanism 24 as a holding device suspended from the ceiling of the main body chamber 1 is provided. The storage mechanism 24 is configured to be able to store the reticle storage box 20 transported by the sliders 48a to 48d of the elevator unit 130 in a substantially airtight state.
更に、 本実施形態の露光装置 1 1 0では、 横スライド機構 2 1の +X側であ つて、 開閉装置 45等が載置された載置台 1 0 1の下方の位置に光洗浄装置 2 2が設置されている。 この光洗浄装置 22の構成等について、 光洗浄装置 22 の縦断面図である図 5及ぴ横断面図である図 6に基づいて説明する。  Further, in the exposure apparatus 110 of the present embodiment, the optical cleaning device 22 is located on the + X side of the horizontal slide mechanism 21 and below the mounting table 101 on which the opening / closing device 45 and the like are mounted. Is installed. The configuration and the like of the optical cleaning device 22 will be described based on FIG. 5 which is a longitudinal sectional view of the optical cleaning device 22 and FIG.
図 5に示されるように、 光洗浄装置 22は、 一 X側の側壁に前記レチクル保 管箱 20を出し入れする開口 228 aが形成された箱状部材から成るボディ 2 28と、 前記開口 228 aを開閉する蓋部材 23と、 前記ボディ 228の内部 の天井部及び底面部に互いに向かい合う状態で配設された紫外線ランプ 220 a, 220 bとを備えている。 ボディ 228の内部の底面には、 紫外線ランプ 220 a, 220 bからほぼ等距離の位置にてレチクル保管箱 20を下側から ほぼ水平に支持するための複数 (例えば 4つ) の保管箱支持部材 209 a、 2 09 b, 209 c, 209 d (伹し、 図 5における紙面手前側の保管箱支持部 材 209 c, 209 dは不図示) が設けられている。 これらの保管箱支持部材 209 a〜209 dは、 例えばレチクル保管箱 20の下面のほぼ 4隅の近傍の 位置をそれぞれ支持可能な位置に配置されている。  As shown in FIG. 5, the optical cleaning device 22 includes a body 228 formed of a box-shaped member having an opening 228a for inserting and removing the reticle storage box 20 on the side wall on the X side, and the opening 228a. And a UV lamp 220a, 220b disposed on the ceiling and bottom of the body 228 so as to face each other. A plurality of (for example, four) storage box support members for supporting the reticle storage box 20 substantially horizontally from the lower side at positions substantially equidistant from the ultraviolet lamps 220a and 220b are provided on the bottom surface inside the body 228. 209a, 209b, 209c, and 209d (the storage box support members 209c and 209d on the near side in FIG. 5 are not shown). These storage box support members 209 a to 209 d are arranged at positions capable of supporting, for example, positions near four corners on the lower surface of the reticle storage box 20.
前記蓋部材 23は、 開口 228 aを開閉可能となるように、 ボディ 228に 固定された支軸 2 3 8を中心として起伏回動可能 (図 5における矢印 C、 C 参照) にボディ 2 2 8に取り付けられている。 この蓋部材 2 3の開口 2 2 8 a の周囲部分に対応する部分には、 蓋部材 2 3の閉状態における気密性確保のた めの Oリング等から成るシール部材 2 3 9が設けられている。 なお、 前述のレ チクル保管箱 2 0の開閉扉 2 0 5 a , 2 0 5 bと同様に、 光洗浄装置 2 2の蓋 部材 2 3にロック機構を設けることとしても良い。 The lid member 23 is attached to the body 228 so that the opening 228a can be opened and closed. It is attached to the body 228 so as to be able to move up and down around the fixed support shaft 238 (see arrows C and C in FIG. 5). A sealing member 239 made of an O-ring or the like for ensuring airtightness in a closed state of the lid member 23 is provided at a portion corresponding to the periphery of the opening 228a of the lid member 23. I have. Note that, similarly to the opening / closing doors 205 a and 205 b of the reticle storage box 20, a lock mechanism may be provided on the lid member 23 of the optical cleaning device 22.
前記紫外線ランプ 2 2 0 a , 2 2 0 bとしては、 例えば波長 1 7 2 n mの紫 外光を発する X e (キセノン) エキシマランプ、 波長 1 5 7 n mの紫外光を発 するフッ素ランプ、 あるいは波長 1 9 3 n mの紫外光を発する A r F (ァルゴ ンフッ素) ランプ等が用いられる。 これらのランプ電極への配線 2 2 1 a , 2 2 1 b及び 2 2 1 c , 2 2 1 dは、 真空装置用の電流導入端子等を介して、 光 洗浄装置 2 2の外部から導入されている。 なお、 紫外線ランプ 2 2 0 a , 2 2 0 bによる周辺雰囲気の温度上昇が大きい場合には、 必要に応じて冷却水等の 冷却剤を、 不図示の流体導入装置を利用して、 紫外線ランプ近傍に導入可能な 構成とすることができる。 また、 これに代えて、 あるいはこれと併せて、 光洗 浄装置 2 2の外周に冷却パイプを設置し、 その内部に冷却水等の冷却剤を通す ことで光洗浄装置 2 2全体を冷却する構成を採用することもできる。  Examples of the ultraviolet lamps 220 a and 220 b include a Xe (xenon) excimer lamp that emits ultraviolet light having a wavelength of 172 nm, a fluorine lamp that emits ultraviolet light having a wavelength of 157 nm, or An ArF (Argon Fluorine) lamp that emits ultraviolet light with a wavelength of 193 nm is used. Wirings 22 1 a, 22 1 b, 22 1 c, and 22 1 d to these lamp electrodes are introduced from the outside of the optical cleaning device 22 through current introduction terminals for vacuum equipment. ing. If the temperature of the surrounding atmosphere is large due to the ultraviolet lamps 220a and 220b, use a fluid introduction device (not shown) to supply coolant such as cooling water as necessary. A configuration that can be introduced in the vicinity can be adopted. Alternatively or in addition, a cooling pipe is installed on the outer periphery of the light cleaning device 22 and a cooling agent such as cooling water is passed through the cooling pipe to cool the entire light cleaning device 22. A configuration can also be employed.
また、 光洗浄装置 2 2の内部には、 給気管 2 2 2及び排気管 2 2 3が外部か ら導入されており、 給気管 2 2 2からは、 不図示のガス供給装置により送られ る窒素や希ガス等の低吸収性ガスが光洗浄装置 2 2内に供給され、 排気管 2 2 3からは、 不図示の真空ポンプの作動により、 光洗浄装置 2 2の内部のガスが 吸引される。 これにより、 光洗浄装置 2 2内のガスが窒素や希ガスなどの低吸 収性ガスに置換される。 紫外線ランプ 2 2 0 a , 2 2 0 bから照射される光の 波長が 1 7 2 n m以下の場合であっても、 光洗浄装置 2 2内の酸素, 水蒸気濃 度を低減することができるので、 紫外光の透過率が良く、 レチクル保管箱 2 0 に紫外光 (洗浄光) を到達させることができる。 ここで、 図 5では不図示であるが、 光洗浄装置 2 2内には、 図 6に示される ように、載置台を構成する板状部材 1 6 0 a , 1 6 0 bが所定高さに設けられ、 この板状部材 1 6 0 a , 1 6 0 bの上面には各 2つの給気ユニット 5 1 A , 5 1 C及び排気ュニッ卜 5 1 B , 5 1 Dが設けられている。 これらの給気ュニッ ト 5 1 A、 5 1 C及び排気ユニット 5 1 B、 5 1 Dは、 レチクル保管箱 2 0内 のガスを置換するためのものであり、 レチクル保管箱 2 0に形成された 4つの 通気孔 2 0 4 a〜2 0 4 dに対向する位置に配置されている。 前記給気ュニッ ト 5 1 A、 5 1 Cには光洗浄装置 2 2の外部から導入された給気管 2 2 4 a , 2 2 4 cの一端がそれぞれ接続されており、 排気ュニッ卜 5 1 B , 5 1 Dには 光洗浄装置 2 2の外部から導入された排気管 2 2 4 b , 2 2 4 dの一端がそれ ぞれ接続されている。 また、 給気管 2 2 4 a , 2 2 4 cの他端側は、 不図示の 低吸収性ガスを供給するガス供給装置に接続されており、 排気管 2 2 4 b , 2 2 4 dの他端側は不図示の真空ポンプに接続されている。 In addition, an air supply pipe 222 and an exhaust pipe 222 are introduced from the outside into the inside of the light cleaning device 222, and are sent from a gas supply device (not shown) from the air supply pipe 222. A low-absorbing gas such as nitrogen or a rare gas is supplied into the optical cleaning device 22, and the gas inside the optical cleaning device 22 is sucked from the exhaust pipe 222 by operating a vacuum pump (not shown). You. As a result, the gas in the optical cleaning device 22 is replaced with a low-absorbing gas such as nitrogen or a rare gas. Even when the wavelength of the light emitted from the ultraviolet lamps 220a and 220b is 172 nm or less, the concentration of oxygen and water vapor in the light cleaning device 22 can be reduced. The UV light transmittance is good, and UV light (cleaning light) can reach the reticle storage box 20. Here, although not shown in FIG. 5, as shown in FIG. 6, the plate members 16a and 16b constituting the mounting table have predetermined heights in the optical cleaning device 22. And two air supply units 51A, 51C and exhaust units 51B, 51D are provided on the upper surface of the plate-like members 160a, 160b, respectively. . These air supply units 51A and 51C and the exhaust units 51B and 51D are used to replace the gas in the reticle storage box 20, and are formed in the reticle storage box 20. It is arranged at a position facing the four ventilation holes 204a to 204d. The air supply units 51A and 51C are connected to one ends of air supply pipes 224a and 224c respectively introduced from the outside of the optical cleaning device 22. One ends of exhaust pipes 222b and 222d introduced from the outside of the optical cleaning device 22 are connected to B and 51D, respectively. In addition, the other end of the air supply pipes 2 24 a and 2 24 c is connected to a gas supply device that supplies a low-absorbing gas (not shown). The other end is connected to a vacuum pump (not shown).
ここで、 給気ュニッ卜 5 1 A、 5 1 Cについて、 給気ュニッ卜 5 1 Aを代表 的に採リあげて図 7に基づいて説明する。  Here, the air supply units 51A and 51C will be described with reference to FIG. 7, taking the air supply unit 51A as a representative example.
図 7には、 給気ュニッ卜 5 1 A及びその近傍の構成が斜視図にて示されてい る。 この図 7に示されるように、 給気ュニット 5 1 Aは、 給気管 2 2 4 aの一 端が接続されたアルミニウム等の金属製のベローズ等から成る伸縮可変部材 6 4、 該伸縮可変部材 6 4の給気管 2 2 4 aと反対側の端部に接続されたガイド バー取リ付け部材を兼ねる接続管 6 2、 該接続管 6 2の伸縮可変部材 6 4とは 反対側に接続され、 その内部が伸縮可変部材 6 4の内部空間を介して給気管 2 2 4 aに連通された管部材から成る先端部材 6 1、 及び先端部材 6 1の外周部 に装着され固定された板部材 6 3等を備えている。  FIG. 7 is a perspective view showing the configuration of the air supply unit 51A and the vicinity thereof. As shown in FIG. 7, the air supply unit 51A is composed of a telescopic variable member 64 made of a metal bellows made of aluminum or the like to which one end of an air supply pipe 222a is connected, and the telescopic variable member. 6 4 Air supply pipe 2 2 4 Connection pipe 62 connected to the end opposite to the end opposite to a and also serves as a guide bar attachment member 62, and is connected to the opposite side of the expansion / contraction variable member 64 of the connection pipe 62. A tip member 61 comprising a pipe member whose inside communicates with the air supply pipe 224a via the internal space of the telescopically variable member 64; and a plate member mounted and fixed to the outer peripheral portion of the tip member 61. It has 6 3 etc.
これを更に詳述すると、 給気管 2 2 4 aは、 光洗浄装置 2 2の外壁に固定さ れている。 前記接続管 6 2の外周面の X軸方向一側と他側には、 一対のガイド バー 6 7 A , 6 7 Bがそれぞれ突設されている。 前記板状部材 1 6 0 a上面の 接続管 62を挟んだ X軸方向の一側と他側には、一対のスライドガイド 68A、 68 Bが固定され、 該スライ ドガイド 68A、 68 Bには、 前記ガイドパ一 6 7A、 67 Bを Y軸方向 (図 7中の矢印 B、 B' 方向) に案内する Y軸方向の ガイド溝 86 a、 86 bがそれぞれ形成されている。 To describe this in more detail, the air supply pipe 224 a is fixed to the outer wall of the light cleaning device 22. A pair of guide bars 67 A and 67 B are provided on one side and the other side of the outer peripheral surface of the connection pipe 62 in the X-axis direction, respectively. The plate-like member 160 A pair of slide guides 68A, 68B are fixed to one side and the other side in the X-axis direction with the connection pipe 62 interposed therebetween. The guide guides 67A, 67B are attached to the slide guides 68A, 68B by Y. Guide grooves 86a and 86b in the Y-axis direction for guiding in the axial direction (the directions of arrows B and B 'in FIG. 7) are formed, respectively.
前記板部材 63の +Y側の面には、 Oリングなどから成るシール部材 73が 固定されている。 このシール部材 73としては、 例えば吸収性ガスの脱ガスの 発生が少ないフッ素ゴムなどから成るものが用いられている。  On the + Y side surface of the plate member 63, a seal member 73 made of an O-ring or the like is fixed. As the seal member 73, a member made of, for example, fluororubber or the like, which hardly generates degassing of the absorbent gas is used.
前記先端部材 61は、 テフロン (登録商標) 等のフッ素樹脂等から成り、 接 続管 62とは反対側 (+Y側) の端面が閉塞されている。 また、 先端部材 61 の +Y端部近傍の周壁には 2つの貫通孔 61 a (ただし、 図 7では奥側に形成 された貫通孔については不図示) が形成されている。  The tip member 61 is made of a fluororesin such as Teflon (registered trademark) or the like, and has an end face on the opposite side (+ Y side) to the connection pipe 62 closed. Further, two through holes 61 a (however, the through holes formed on the far side are not shown in FIG. 7) are formed in the peripheral wall near the + Y end of the tip member 61.
このようにして構成された給気ュニット 51 Aによると、 光洗浄装置 22内 にレチクル保管箱 20が収容された場合に、 不図示の駆動機構によってガイ ド バー 67 A, 67 Bがスライ ドガイド 68 A、 68 Bのガイ ド溝 86 a、 86 bにそれぞれ沿って矢印 B方向に駆動されると、 ガイ ドバー 67 A, 67 Bと 一体的に、 接続管 62、 板部材 63及び先端部材 61が駆動される。 これによ リ、 伸縮可変部材 64が伸びて先端部材 61の先端部が、 レチクル保管箱 20 に形成された通気孔 204 a内に挿入される。  According to the air supply unit 51A configured as described above, when the reticle storage box 20 is stored in the optical cleaning device 22, the guide bars 67A and 67B are moved by the drive mechanism (not shown) to the slide guides 68. When driven in the direction of arrow B along guide grooves 86a and 86b of A and 68B, respectively, the connecting pipe 62, the plate member 63 and the tip member 61 are integrally formed with the guide bars 67A and 67B. Driven. As a result, the extension / contraction member 64 extends, and the tip of the tip member 61 is inserted into the ventilation hole 204 a formed in the reticle storage box 20.
そして、 ガイ ドバー 67 A, 67 Bが駆動機構によって更に所定量矢印 B方 向に駆動されると、 先端部材 61の先端面が通気孔 204 aを介して開閉弁機 構 21 2Aの弁部材 21 5に接触する。 そして、 更に先端部材 61が +Y方向 に駆動されると、 付勢機構 21 4A, 21 4 Bによる付勢力に杭して弁部材 2 1 5が押圧され、 弁部材 21 5が +Y方向 (矢印 B方向) へ移動するが、 この 移動開始直後に、 板部材 63がシール部材 73を介してレチクル保管箱 20の 筐体 21 1の外面に圧接される。 このため、 通気孔 204 aと先端部材 61 と の間の隙間を介してレチクル保管箱 20の内部に外気が混入する可能性は殆ど ない。 図 6には、 給気ュニット 5 1 Aを構成する板部材 6 3がシール部材 7 3 を介してレチクル保管箱 2 0の筐体 2 1 1の外面に圧接された状態が示されて いる。 この図 6の状態では、 通気孔 2 0 4 aは、 シール部材 7 3及び板部材 6 3によって閉塞されている。 このようにして、 レチクル保管箱 2 0内部の気密 性が確実に確保された状態で、 先端部材 6 1の開口 6 1 aを介してレチクル保 管箱 2 0内に低吸収性ガスを供給することができる。 When the guide bars 67A, 67B are further driven in the direction of arrow B by a predetermined amount by the drive mechanism, the distal end surface of the distal end member 61 passes through the vent hole 204a to open and close the valve mechanism 21 2A. Touch 5 When the distal end member 61 is further driven in the + Y direction, the valve member 215 is pushed by the urging force of the urging mechanisms 214A and 214B, and the valve member 215 is moved in the + Y direction ( (In the direction of arrow B), but immediately after the start of the movement, the plate member 63 is pressed against the outer surface of the housing 211 of the reticle storage box 20 via the seal member 73. For this reason, there is almost no possibility that outside air enters the inside of the reticle storage box 20 through the gap between the ventilation hole 204a and the tip member 61. Absent. FIG. 6 shows a state in which the plate member 63 constituting the air supply unit 51 A is pressed against the outer surface of the housing 211 of the reticle storage box 20 via the seal member 73. In the state of FIG. 6, the vent hole 204a is closed by the seal member 73 and the plate member 63. In this way, while the airtightness inside the reticle storage box 20 is ensured, the low-absorbent gas is supplied into the reticle storage box 20 through the opening 61 a of the tip member 61. be able to.
給気ュニッ卜 5 1 Cも上記給気ュニット 5 1 Aと同様に構成されている。 一方、 排気ュニット 5 1 B , 5 1 Dについては、 その構成等は上記給気ュニ ッ卜 5 1 Aと同様であるが、排気ュニット 5 1 B , 5 1 D及び排気管 2 2 4 b , 2 2 4 dを介して、 レチクル保管箱 2 0内のガスが排気される点 (すなわちガ スの流れる方向が) が異なっている。  The air supply unit 51C is configured similarly to the air supply unit 51A. On the other hand, the exhaust units 51B and 51D have the same construction and the like as the above air supply unit 51A, but the exhaust units 51B and 51D and the exhaust pipe 222b The point that the gas in the reticle storage box 20 is exhausted via the, 224 d (ie, the direction in which the gas flows) is different.
このようにして構成された給気ュニット 5 1 A , 5 1 C及び排気ュニット 5 1 B、 5 1 Dによると、 通気孔 2 0 4 a、 2 0 4 Gに給気ュニット 5 1 A、 5 1 Cの先端部材が揷入され、 かつ通気孔 2 0 4 b , 2 0 4 dに排気ュニット 5 1 B、 5 1 Dの先端部材が揷入され、 かつレチクル保管箱 2 0の内部が外気に 対して気密にされた状態で、 給気ユニット 5 1 A , 5 1 Cを介してレチクル保 管箱 2 0内に低吸収性ガスが供給され、 排気ュニット 5 1 B , 5 1 Dを介して レチクル保管箱 2 0内のガスが排気されることで、 レチクル保管箱 2 0内のガ ス置換が効率良く行われるようになつている。  According to the air supply units 51A, 51C and the exhaust units 51B, 51D configured in this way, the air supply units 51A, 5A are provided to the ventilation holes 204a, 204G. 1 C tip member is inserted, and exhaust units 51 B, 51 D are inserted into vent holes 204 b, 204 d, and the inside of reticle storage box 20 is open air. In a state where the gas is kept airtight, the low-absorbent gas is supplied into the reticle storage box 20 through the air supply units 51 A and 51 C, and is discharged through the exhaust units 51 B and 51 D. By exhausting the gas in the reticle storage box 20, the gas in the reticle storage box 20 is efficiently replaced.
光洗浄装置 2 2内では、 上記のようにガス置換されたレチクル保管箱 2 0に 対して上下方向から紫外線ランプ 2 2 0 a , 2 2 0 bからの紫外光が照射され ることにより、 レチクル保管箱 2 0の窓ガラス 2 0 1 a , 2 0 1 bを介して、 紫外光がレチクル Rの上面及び下面に照射され、 これによりレチクル Rが光洗 浄される。 また、 レチクル保管箱 2 0自体も、 照射される紫外光またはレチク ル Rによるその反射光、 散乱光により光洗浄されることになる。  In the optical cleaning device 22, the reticle storage box 20, which has been gas-replaced as described above, is irradiated with ultraviolet light from the ultraviolet lamps 220 a, 220 b from above and below, so that the reticle is kept. Ultraviolet light is applied to the upper surface and the lower surface of the reticle R via the window glasses 201a and 201b of the storage box 20, and the reticle R is optically cleaned. In addition, the reticle storage box 20 itself is also optically cleaned by the irradiated ultraviolet light or the reflected light and scattered light by the reticle R.
ここで、 上記光洗浄に際しては、 その周囲のガスに、 微量の酸素又は水蒸気 が混入している方が洗浄効果をより高めることができる場合もある。そのため、 光洗浄装置 2 2での光洗浄は、窒素または希ガスによるガス置換の進行過程で、 その内部のガス中の酸素濃度又は水蒸気濃度が例えば 1 0 0 p p m程度の所定 の濃度になった状態で行なうことが好ましい。 そのためには、 排気管 2 2 3や 排気管 2 2 4 b , 2 2 4 dから排気されるガス中の酸素濃度を計測するセンサ としての酸素濃度計又は水蒸気濃度を計測するセンサとしての水蒸気濃度計を 設け、 計測された濃度が所定の値に達した状態で光洗浄を開始することが望ま しい。 At the time of the above light cleaning, a small amount of oxygen or water vapor is added to the surrounding gas. In some cases, the cleaning effect can be further enhanced by the inclusion of. Therefore, in the light cleaning by the light cleaning device 22, in the course of the gas replacement with nitrogen or a rare gas, the oxygen concentration or the water vapor concentration in the gas inside the gas became a predetermined concentration of about 100 ppm, for example. It is preferable to carry out in a state. For this purpose, an oxygen concentration meter as a sensor for measuring the oxygen concentration in the gas exhausted from the exhaust pipes 222 and the exhaust pipes 224b and 224d or a water vapor concentration as a sensor for measuring the water vapor concentration It is desirable to install a meter and start optical cleaning when the measured concentration reaches a predetermined value.
また、 給気管 2 2 2や給気管 2 2 4 a, 2 2 4 cから供給されるガス中の酸 素濃度を所定の濃度に設定するために、 給気管 2 2 2及び給気管 2 2 4 a , 2 2 4 cの一端を図 8に示されるようなガス供給機構の配管 2 3 5に接続するこ ともできる。 このガス供給機構は、 ガス混合機 2 3 0と、 該ガス混合機 2 3 0 と接続管 2 3 4を介して接続されたセンサとしての酸素濃度計 2 3 1 とを備え ている。  In addition, in order to set the oxygen concentration in the gas supplied from the air supply pipes 222 and the air supply pipes 224 a and 224 c to a predetermined concentration, the air supply pipes 222 and 222 are required. One end of each of a and 224c can be connected to a pipe 235 of a gas supply mechanism as shown in FIG. This gas supply mechanism includes a gas mixer 230 and an oxygen concentration meter 231 as a sensor connected to the gas mixer 230 via a connection pipe 234.
前記ガス混合機 2 3 0には、 その一端が純窒素又は純希ガスを供給する不図 示の高純度ガス供給装置 (例えば窒素ガス用のボンべ又は希ガス用のボンべを 有し、 該ボンベからのガスを、 H E P Aフィルタ及びケミカルフィルタの少な くとも一方を有するラインフィルタを介して供給する装置) に接続された供給 配管 2 3 2の他端と、 その一端が 1 0 0 p p m程度の酸素を含む比較的酸素濃 度が高い窒素あるいは 1 0 0 p p m程度の水蒸気を含む比較的水蒸気濃度が高 い窒素又は希ガスを供給する不図示の高濃度ガス供給装置に接続された供給配 管 2 3 3の他端が接続されている。 これらの供給配管 2 3 2 , 2 3 3からガス 混合機 2 3 0に供給されるガスは、 ガス混合機 2 3 0にて混合され、 該混合ガ スは接続管 2 3 4、 酸素濃度計 2 3 1、 配管 2 3 5を介して、 図 5の給気管 2 2 2や図 6の給気管 2 2 4 a , 2 2 4 cに供給される。  The gas mixer 230 has a high-purity gas supply device (not shown) having one end for supplying pure nitrogen or pure rare gas (for example, a gas cylinder for nitrogen gas or a rare gas cylinder, A device that supplies gas from the cylinder via a line filter having at least one of a HEPA filter and a chemical filter). The other end of the supply pipe 232 and one end of the supply pipe are about 100 ppm. A supply line connected to a high-concentration gas supply device (not shown) that supplies relatively high oxygen concentration nitrogen containing oxygen or nitrogen or rare gas containing relatively high water vapor concentration containing about 100 ppm water vapor. The other end of tube 23 is connected. The gas supplied from these supply pipes 2 3 2 and 2 3 3 to the gas mixer 230 is mixed by the gas mixer 230, and the mixed gas is connected to the connection pipe 230 and the oxygen concentration meter. The supply air is supplied to the air supply pipe 22 2 in FIG. 5 and the air supply pipes 2 24 a and 22 4 c in FIG.
この場合、 ガス混合機 2 3 0で混合された混合ガス中の酸素濃度を酸素濃度 計 2 3 1で計測し、 該計測結果に基づいて、 制御装置 2 3 6がガス混合機 2 3 0による両ガスの混合比率をフイードバック制御することにより、 所望の酸素 濃度のガスを給気管 2 2 2 , 2 2 4 a , 2 2 4 cに送ることができる。 In this case, the oxygen concentration in the mixed gas mixed by the gas The controller 2336 controls the mixing ratio of the two gases by the gas mixer 230 based on the measurement result, and feeds the gas having the desired oxygen concentration to the air supply pipe 2. It can be sent to 2 2, 2 2 4 a, 2 2 4 c.
このように本実施形態では、 ガス混合機 2 3 0、 制御装置 2 3 6により調整 装置が構成されている。  As described above, in the present embodiment, the gas mixer 230 and the controller 236 constitute an adjusting device.
なお、これまでの説明では、光洗浄装置 2 2内のガスをガス置換した状態で、 レチクル保管箱 2 0内のレチクルを光洗浄するものとしたが、 X e (キセノン) ランプや A r Fランプの光束は、 大気中をある程度透過するので、 光洗浄に際 して、 光洗浄装置 2 2内のガスまでガス置換をしなくても良い。 この場合、 光 洗浄装置 2 2自身には気密構造が不要となり、 構造が簡素化できるメリツ卜が ある。 ただし、 ガス置換を行なわない場合には、 光洗浄装置 2 2内の酸素によ る光の吸収により紫外線の光量が低下し、 レチクルに照射される光量が低下し てしまうことになる。 これを避けるには、 紫外線光源とレチクル保管箱 2 0上 下の紫外線透過用の窓ガラス 2 O l a , 2 0 1 bの間隔を、 極力短く、 例えば 5 m m以下になるように設定することが望ましい。  In the above description, the reticle in the reticle storage box 20 is optically cleaned while the gas in the optical cleaning device 22 is replaced with a gas. However, a Xe (xenon) lamp or an ArF Since the luminous flux of the lamp passes through the atmosphere to some extent, it is not necessary to replace the gas in the light cleaning device 22 with gas during light cleaning. In this case, the light cleaning device 22 itself does not need an airtight structure, and there is an advantage that the structure can be simplified. However, when gas replacement is not performed, the amount of ultraviolet light decreases due to the absorption of light by oxygen in the optical cleaning device 22, and the amount of light applied to the reticle decreases. To avoid this, the interval between the UV light source and the window glass 2 O la and 201 b for UV transmission above and below the reticle storage box 20 should be set as short as possible, for example, 5 mm or less. desirable.
次に、 上記のように構成される露光装置 1 1 0において、 露光装置の外部か ら露光装置の本体チャンバ 1内にレチクルを搬入し、 露光動作が行われ、 使用 済みのレチクルを回収するまでの一連の動作について、 図 1を中心として説明 する。 なお、 以下の各部の動作は、 不図示の制御装置の制御動作によって実現 されるが、 ここでは説明を簡略化するため制御装置に関する説明は特に必要な 場合以外は省略するものとする。  Next, in the exposure apparatus 110 configured as described above, the reticle is carried into the main chamber 1 of the exposure apparatus from outside the exposure apparatus, the exposure operation is performed, and the used reticle is collected. A series of operations will be described with reference to FIG. The operation of each of the following units is realized by a control operation of a control device (not shown). However, in order to simplify the description, description of the control device will be omitted unless it is particularly necessary.
レチクルのレチクルホルダ上への搬入動作は以下の a . 〜 h . の手順で行わ れる。  The loading operation of the reticle onto the reticle holder is performed in the following steps a. To h.
a . まず、 不図示の天井搬送系により複数枚 (ここでは 3枚) のレチクルを 収容したレチクルキヤリア 4 4が本体チャンバ 1の搬出入ポート 1 aに搬入さ れる。 このとき、 搬出入ポート 1 aに設けられた開口 7 8は、 開閉部材 8 2に よって閉塞されている。 a. First, a reticle carrier 44 containing a plurality of (3 in this case) reticles is loaded into the loading / unloading port 1 a of the main chamber 1 by a ceiling transport system (not shown). At this time, the opening 78 provided in the loading / unloading port 1a is Therefore, it is closed.
制御装置は、 上記のレチクルキャリア 4 4の搬入を確認すると、 開閉装置 4 5の開閉部材 8 2の係合 ' ロック解除機構を介して、 キャリア本体 4 6とカバ 一 1 0 2との間のロック機構を解除し、 開閉部材 8 2をキヤリァ本体 4 6と係 合する。 そして、 駆動機構 4 5を介して開閉部材 8 2を下降駆動し、 図 1の状 態で待機する。  When the control device confirms that the reticle carrier 44 has been loaded, the control device engages the opening / closing member 82 of the opening / closing device 45 ′ through the lock release mechanism, and moves between the carrier body 46 and the cover 102. The lock mechanism is released, and the opening / closing member 82 is engaged with the carrier body 46. Then, the opening / closing member 82 is driven to descend through the driving mechanism 45, and waits in the state shown in FIG.
b . 次いで、 レチクル搬送ロボット 4 7のアームの伸縮駆動、 X Y面内での 回転駆動及び上下動等を行うことにより、 キヤリァ本体 4 6に収容された複数 枚のレチクルのうちのいずれか一つのレチクルの下側にレチクル搬送口ポット 4 7のアームを入り込ませ、 さらに上方に駆動することにより、 レチクル搬送 ロボット 4 7にレチクルを受け取らせる。 そして、 X Y面内でレチクル搬送口 ポット 4 7のアームをほぼ 9 0 ° 回転することにより、 図 1に実線で示される 位置で待機中のレチクル保管箱 2 0 (以下、 このレチクル保管箱 2 0の位置を Γレチクル搬出入位置」 と呼ぶ) の近傍にレチクル Rを搬送する。  b. Next, by performing telescopic drive of the arm of the reticle transport robot 47, rotational drive in the XY plane, and vertical movement, any one of the plurality of reticles housed in the carrier body 46 is performed. The reticle transfer robot pot 47 receives the reticle by inserting the arm of the reticle transfer port pot 47 into the lower side of the reticle and driving it upward. By rotating the arm of the reticle transfer port pot 47 approximately 90 ° in the XY plane, the reticle storage box 20 waiting at the position shown by the solid line in FIG. 1 (hereinafter referred to as the reticle storage box 20) The reticle R is transported to the vicinity of the reticle.
c 制御装置は、 このレチクル Rのレチクル搬出入位置近傍への搬送を確認 すると、 レチクル搬送ロポット 4 7とエレベータュニット 1 3 0との間に設け られた不図示のロック開閉機構により、 レチクル保管箱 2 0の開閉扉 2 0 5 a 側のロック機構 2 0 8を解除するとともに、 レチクル搬送ロボッ卜 4 7とエレ ベータュニッ卜 1 3 0との間に設けられた不図示の開閉機構によリ開閉扉 2 0 5 aを開く。 このように開閉扉 2 0 5 aが開かれた状態で、 レチクル Rを保持 したアームを伸縮駆動することにより、 搬出入開口 2 1 1 aを介して、 レチク ル保管箱 2 0内にレチクル Rを搬入する。  c When the control device confirms that the reticle R has been conveyed to the vicinity of the reticle carry-in / out position, the reticle storage is performed by a lock opening / closing mechanism (not shown) provided between the reticle conveyance robot 47 and the elevator unit 130. In addition to releasing the lock mechanism 208 on the side of the box 20a on the side of the box 205, a lock mechanism (not shown) provided between the reticle transport robot 47 and the elevator 130 is used. Open the door 205. With the opening and closing door 205 a opened, the arm holding the reticle R is driven to expand and contract, so that the reticle R is inserted into the reticle storage box 20 through the loading / unloading opening 211 a. Carry in.
そして、 レチクル Rがレチクル保管箱 2 0内の所定位置に位置決めされた状 態で、 レチクル搬送口ポット 4 7のアームを下降駆動することにより、 レチク ル保管箱 2 0内の複数の支持部材 2 1 3上にレチクル Rが載置される。その後、 レチクル搬送ロボット 4 7のアームを伸縮駆動することにより、 レチクル保管 箱 2 0内からそのアームを退避させ、 完全に退避したことを確認すると、 前記 開閉機構により、 レチクル保管箱 2 0の開閉扉 2 0 5 aを閉鎖する。 また、 前 記ロック開閉機構によりロック機構 2 0 8をロックする。 Then, while the reticle R is positioned at a predetermined position in the reticle storage box 20, the arm of the reticle transfer port pot 47 is driven downward to move the plurality of support members 2 in the reticle storage box 20. 13. Reticle R is placed on 3. After that, the reticle is stored by moving the arm of the reticle transfer robot 47 When the arm is retracted from the box 20 and it is confirmed that the arm is completely retracted, the opening / closing door 205 a of the reticle storage box 20 is closed by the opening / closing mechanism. Further, the lock mechanism 208 is locked by the lock opening / closing mechanism.
d . 次いで、 エレベータュニット 1 3 0を構成するスライダ 4 8 a〜4 8 d をスライ ドガイド 1 9 a〜1 9 dにそれぞれ沿って下降駆動することにより、 レチクル Rを内部に収容したレチクル保管箱 2 0を、 図 1に符号 2 0 Bにて示 される位置まで搬送する。 そして、 この位置で横スライド機構 2 1にレチクル 保管箱 2 0が受け渡されると、 該横スライ ド機構 2 1を介して、 レチクル保管 箱 2 0を図 1における紙面内右方向 (+ X方向) に向けて搬送する。 この搬送 によりレチクル保管箱 2 0が光洗浄装置 2 2に所定距離近づいたことを不図示 のセンサ等を介して確認すると、 光洗浄装置 2 2近傍に設けられた不図示の開 閉機構により、 光洗浄装置 2 2の蓋部材 2 3を開く。 このようにして光洗浄装 置 2 2の内部が外部に対して開放されると、 横スライ ド機構 2 1を介してレチ クル保管箱 2 0を更に + X方向に搬送し、 光洗浄装置 2 2内にレチクル保管箱 2 0を収容する (図 1の符号 2 0 Cの状態)。 このレチクル保管箱 2 0の光洗浄 装置 2 2内への収容後、 前記開閉機構により、 光洗浄装置 2 2の蓋部材 2 3を 閉じる。 なお、 光洗浄装置 2 2の蓋部材 2 3がロック機構によりロック可能な 場合には、 ロック開閉機構により蓋部材 2 3の開閉をロックしておくことが望 ましい。  d. Then, the sliders 48a to 48d constituting the elevator unit 130 are driven downward along the slide guides 19a to 19d, respectively, so that the reticle R containing the reticle R therein is stored. The box 20 is transported to the position indicated by reference numeral 20B in FIG. When the reticle storage box 20 is delivered to the horizontal slide mechanism 21 at this position, the reticle storage box 20 is moved to the right (+ X direction) in FIG. ). When it is confirmed through a sensor or the like (not shown) that the reticle storage box 20 has come closer to the optical cleaning device 22 by a predetermined distance by this transport, an opening / closing mechanism (not shown) provided near the optical cleaning device 22 provides Open the lid member 23 of the optical cleaning device 22. When the inside of the optical cleaning device 22 is opened to the outside in this way, the reticle storage box 20 is further transported in the + X direction via the horizontal slide mechanism 21 and the optical cleaning device 2 The reticle storage box 20 is accommodated in 2 (the state of reference numeral 20 C in FIG. 1). After the reticle storage box 20 is housed in the optical cleaning device 22, the lid member 23 of the optical cleaning device 22 is closed by the opening / closing mechanism. When the lid member 23 of the optical cleaning device 22 can be locked by the lock mechanism, it is desirable to lock the opening and closing of the lid member 23 by the lock opening / closing mechanism.
e . 次いで、 光洗浄装置 2 2内において、 前記給気ュニット 5 1 A、 5 1 C 及び排気ユニット 5 1 B、 5 1 Dをレチクル保管箱 2 0の通気孔 2 0 4 a、 2 0 4 c及び 2 0 4 b、 2 0 4 dに向けてスライ ド駆動することにより開閉弁機 構 2 1 2 A〜2 1 2 Dを開き、レチクル保管箱 2 0内のガス置換を行う。また、 これとともに、 光洗浄装置 2 2のボディ 2 2 8の内部についても、 給気管 2 2 2及び排気管 2 2 3を介してガス置換を行う。  e. Next, in the light cleaning device 22, the air supply units 51 A, 51 C and the exhaust units 51 B, 51 D are connected to the ventilation holes 204 a, 204 of the reticle storage box 20. By opening and closing the on-off valve mechanisms 2 12 A to 2 12 D by sliding toward c, 204 b, and 204 d, the gas in the reticle storage box 20 is replaced. At the same time, the inside of the body 228 of the optical cleaning device 22 is also subjected to gas replacement via the air supply pipe 222 and the exhaust pipe 222.
そして、 例えば、 酸素濃度計 (センサ) やタイマー等を介して、 制御装置が レチクル保管箱 2 0内のガス置換の終了 (例えば上述の如く酸素濃度が 1 0 0 p p m程度の所定の濃度になった状態) を判断すると、 制御装置は、 紫外線ラ ンプ 2 2 0 a , 2 2 0 bからの紫外線の照射を開始する。 ここでは、 レ クル 保管箱 2 0の洗浄及びレチクル保管箱 2 0の光透過窓を介したレチクルの光洗 浄を所定時間行う。 この光洗浄の間も、 給気ュニッ卜 5 1 A、 5 1 C及び排気 ユニット 5 1 B、 5 1 Dは接続されたままであり、 レチクル保管箱 2 0内のガ ス置換は続行されている。 勿論、 上記のガス置換の終了の確認により、 前述の ガイ ドパー 6 7 A、 6 7 Bの駆動機構を介して給気ュニット 5 1 A、 5 1 C及 び排気ユニット 5 1 B、 5 1 Dを、 レチクル保管箱 2 0から離れる方向 (図 7 の B ' 方向) にスライ ド駆動して、 給気ュニット 5 1 A、 5 1 C及び排気ュニ ット 5 1 B、 5 1 Dをレチクル保管箱から離脱させても良い。 Then, for example, the control device is controlled via an oxygen concentration meter (sensor), a timer, or the like. When it is determined that the gas replacement in the reticle storage box 20 has been completed (for example, the state in which the oxygen concentration has reached a predetermined concentration of about 100 ppm as described above), the control device determines that the ultraviolet lamps 220 a, 2 Start irradiation of ultraviolet rays from 20b. Here, cleaning of the reticle storage box 20 and light cleaning of the reticle through the light transmission window of the reticle storage box 20 are performed for a predetermined time. During this light cleaning, the air supply units 51A and 51C and the exhaust units 51B and 51D remain connected, and the gas replacement in the reticle storage box 20 is continued. . Of course, by confirming the completion of the gas replacement described above, the air supply units 51A, 51C and the exhaust units 51B, 51D are driven by the guide mechanisms 67A, 67B described above. To the reticle storage box 20 (direction B 'in Fig. 7) by sliding the air supply units 51A, 51C and the exhaust units 51B, 51D to the reticle. It may be removed from the storage box.
f . そして、 照射時間が所定時間経過した段階で、 光洗浄を終了する。 この 光洗浄終了後は、 光洗浄によって分解された有機物や水をレチクル保管箱 2 0 内から排除するために、給気ュニット 5 1 A , 5 1 C及び排気ュニッ卜 5 1 B , 5 1 Dを接続したままにし、 レチクル保管箱 2 0内のガス置換を続行する。 こ のガス置換を行うにあたり、 制御装置 2 3 6は、 ガス供給機構から供給される ガスに含まれる酸素濃度が 0 . 1 p p m以下あるいは水蒸気濃度が 1 p p m以 下になるように、 ガス供給機構のガス混合機 2 3 0を制御する。 すなわち、 高 濃度ガス供給装置からのガス供給を停止し、 高純度ガス供給装置のみからガス 供給を行う。  f. Then, when the irradiation time has passed a predetermined time, the optical cleaning is completed. After the completion of the light cleaning, the air supply units 51A, 51C and the exhaust units 51B, 51D are used to remove the organic substances and water decomposed by the light cleaning from the reticle storage box 20. Is kept connected, and the gas replacement in the reticle storage box 20 is continued. In performing this gas replacement, the controller 236 controls the gas supply mechanism so that the oxygen concentration in the gas supplied from the gas supply mechanism is 0.1 ppm or less or the water vapor concentration is 1 ppm or less. Control the gas mixer 230. That is, the gas supply from the high-concentration gas supply device is stopped, and the gas is supplied only from the high-purity gas supply device.
また、 この高純度ガス供給装置からのガス供給を所定時間行い、 レチクル保 管箱 2 0内のガスを窒素又は希ガスに置換することにより、 レチクル保管箱 2 0の内部に収容されているレチクル Rを構成する、 ペリクルフ 5とレチクル基 板 5 4とペリクルフレーム 7 6との間に形成される空間 (以下 「保護空間 J と 呼ぶ)内のガスを、ペリクルフレーム Ί 6に形成された前述の通気孔を介して、 窒素又は希ガスに置換することもできる。 なお、 保護空間内のガス置換を行う構成として、 レチクル保管箱 2 0に前述 の蓋部材とは別に開閉蓋を更に設け、 この開閉蓋を介して、 ペリクルフレーム に設けられた通気孔に直接、 保護空間用ガス置換機構を接続することにより、 保護空間内のガスを窒素又は希ガスに置換することとしても良い。 このガス置 換機構は、 ガス供給管及びガス排気管を備える。 Further, by supplying gas from the high-purity gas supply device for a predetermined time and replacing the gas in the reticle storage box 20 with nitrogen or a rare gas, the reticle contained in the reticle storage box 20 is replaced. The gas in the space (hereinafter referred to as “protected space J”) formed between the pellicle frame 5, the reticle substrate 54, and the pellicle frame 76, which constitutes R, is transferred to the above-described pellicle frame 前述 6 formed in the pellicle frame 6. Via a vent, it can be replaced with nitrogen or a noble gas. In addition, as a configuration for performing gas replacement in the protection space, an opening / closing lid is further provided in the reticle storage box 20 separately from the above-described lid member, and directly through the opening / closing lid to a ventilation hole provided in the pellicle frame. The gas in the protected space may be replaced with nitrogen or a rare gas by connecting the gas replacement mechanism for the protected space. This gas replacement mechanism includes a gas supply pipe and a gas exhaust pipe.
そして、 レチクル保管箱 2 0内の空間及び保護空間内のガスが窒素又は希ガ スに置換された後、 不図示の開閉機構により光洗浄装置 2 2の蓋部材 2 3を開 放し、 横スライ ド機構 2 1によりレチクル保管箱 2 0を光洗浄装置 2 2内から 取り出す。 そして、 横スライ ド機構 2 1を介して、 レチクル保管箱 2 0を図 1 に符号 2 0 Bにて示される位置まで搬送することにより、 エレベータュニッ卜 1 3 0のスライダ 4 8 a〜4 8 dにレチクル保管箱 2 0が受け渡されることに なる。  After the gas in the reticle storage box 20 and the gas in the protection space are replaced with nitrogen or rare gas, the lid member 23 of the optical cleaning device 22 is opened by an opening / closing mechanism (not shown), and the horizontal slide is performed. The reticle storage box 20 is taken out of the optical cleaning device 22 by the storage mechanism 21. Then, the reticle storage box 20 is transported to the position indicated by reference numeral 20B in FIG. 1 via the horizontal slide mechanism 21 to thereby move the sliders 48a to 48d of the elevator unit 130. The reticle storage box 20 will be delivered to the customer.
その後、 スライダ 4 8 a〜4 8 dをスライドガイ ド 1 9 a〜 1 9 dにそれぞ れ沿って上昇駆動することにより、 図 1に符号 2 0 Dで示される位置にレチク ル保管箱 2 0を搬送する。  Thereafter, the sliders 48a to 48d are driven to move upward along the slide guides 19a to 19d, respectively, so that the reticle storage box 2 is positioned at the position indicated by reference numeral 20D in FIG. Conveys 0.
g . 上記のようにして、 レチクル保管箱 2 0が符号 2 0 Dで示される位置へ 移動すると、 制御装置は、 ベローズ駆動機構 9 2を介して、 ベローズ 9 1を + X方向に向かって伸ばし、 図 2 Bに示されるように、 レチクル保管箱 2 0とレ チクル室 1 5の隔壁 1 8との間を気密に連結する。 このようにすることで、 ベ ローズ機構 1 2 7の取り付け部 9 6及びべローズ 9 1 と、 隔壁 1 8の一部 (よ リ正確には開閉扉 1 2 1 ) と、 レチクル保管箱 2 0とで区画された気密状態の 空間 9 9が形成されることになる。  g. As described above, when the reticle storage box 20 is moved to the position indicated by reference numeral 20D, the control device extends the bellows 91 in the + X direction via the bellows drive mechanism 92. As shown in FIG. 2B, the reticle storage box 20 and the partition wall 18 of the reticle chamber 15 are airtightly connected. In this way, the mounting part 96 and the bellows 91 of the bellows mechanism 127, a part of the partition wall 18 (more precisely, the opening and closing door 1 2 1), and the reticle storage box 20 Thus, an airtight space 99 divided by and is formed.
そして、 空間 9 9内に、 低吸収性ガスを給気管 9 4を介して供給するととも に、 空間 9 9内のガスを排気管 9 5を介して外部に排気することにより、 空間 9 9内を低吸収性ガスにて置換する。 そして、 不図示の酸素濃度計 (センサ) 等により、 上記置換が終了したことを確認すると、 空間 9 9内に設けられた不 図示のロック開閉機構により開閉扉 2 0 5 bのロック機構 2 0 7を解除すると ともに、 空間 9 9内に設けられた不図示の開閉機構により、 レチクル保管箱 2 0の開閉扉 2 0 5 bを開放する。 また、 これとほぼ同時にレチクル室 1 5内の 開閉扉 1 2 1の開放を不図示の駆動系を介して行う。 このときの状態が図 2 C に示されている。 Then, the low-absorbent gas is supplied into the space 99 through the air supply pipe 94, and the gas in the space 99 is exhausted to the outside through the exhaust pipe 95, so that the space Is replaced with a low absorbent gas. Then, when it is confirmed by an oxygen concentration meter (sensor) or the like (not shown) that the above-mentioned replacement is completed, the oxygen provided in the space 99 is checked. The lock mechanism 205 of the open / close door 205 b is released by the lock open / close mechanism shown, and the open / close door 205 of the reticle storage box 20 is opened and closed by the open / close mechanism provided in the space 99. To release. At about the same time, the opening and closing doors 121 in the reticle chamber 15 are opened via a drive system (not shown). The state at this time is shown in FIG. 2C.
h . 次いで、 レチクル室 1 5内のレチクル搬送ロボット 6のアームを、 伸縮 駆動して、 隔壁 1 8の出入リロ 1 8 a、 空間 9 9、 及びレチクル保管箱 2 0の 開口 2 1 1 bを介してレチクル保管箱 2 0内に侵入させる。 そして、 レチクル 搬送ロボッ卜 6のアームがレチクル保管箱 2 0内のレチクル Rの下側に入り込 んだ状態で、 さらに上昇駆動することにより、 レチクル Rがそのアームによつ て受け取られる。 レチクル Rがレチクル搬送ロボッ卜 6のアームにより受け取 られた後は、 そのアームを伸縮駆動することにより、 レチクル Rをレチクル保 管箱 2 0の外部に搬出し、 レチクル室 1 5内へ向けてレチクル Rを搬送する。 このレチクル Rの搬出 (アームのレチクル保管箱 2 0の外部への退避) 後、 制 御装置は、 レチクル保管箱 2 0の開閉扉 2 0 5 b及び開閉扉 1 2 1を順次閉鎖 する。 なお、 開閉扉 2 0 5 bの閉鎖と併せて、 ロック機構 2 0 7をロックする こととしても良い。  h. Next, the arm of the reticle transport robot 6 in the reticle chamber 15 is driven to extend and retract to move the re-roll 18 a of the partition 18, the space 99, and the opening 2 1 1 b of the reticle storage box 20. Through the reticle storage box 20 through the box. Then, the reticle R is received by the reticle transport robot 6 by being further moved up while the arm of the reticle transport robot 6 is inserted under the reticle R in the reticle storage box 20. After the reticle R is received by the arm of the reticle transport robot 6, the reticle R is carried out of the reticle storage box 20 by extending and retracting the arm, and the reticle is moved into the reticle chamber 15. Convey R. After carrying out the reticle R (withdrawing the arm to the outside of the reticle storage box 20), the control device sequentially closes the opening and closing doors 205b and 121 of the reticle storage box 20. The lock mechanism 207 may be locked together with the closing of the door 205 b.
そして、 レチクル搬送ロポット 6のアームをレチクルホルダ 1 4に向けて伸 縮、 回転駆動することにより、 レチクルホルダ 1 4上方までレチクル Rを搬送 する。 そして、 この位置でアームを下降駆動することにより、 レチクル Rをレ チクルホルダ 1 4上にロードする。 その後、 レチクル搬送ロボット 6のアーム は、 レチクルホルダ 1 4上から退避する。  Then, the reticle R is transported above the reticle holder 14 by extending and rotating the arm of the reticle transport robot 6 toward the reticle holder 14. Then, the reticle R is loaded on the reticle holder 14 by driving the arm downward at this position. Thereafter, the arm of the reticle transport robot 6 retreats from above the reticle holder 14.
以上のようにしてレチクルホルダ 1 4上にレチクル Rがロードされると、 い わゆるレチクルァライメント及ぴ不図示のウェハァライメント系のベースライ ン計測、 E G A (ェンハンスト 'グローバル■ァライメン卜) などの所定の準 備作業が行われる。 なお、 上記のレチクルァライメン卜、 ベースライン計測等 については、 例えば特開平 4一 3 2 4 9 2 3号公報及びこれに対応する米国特 許第 5 2 4 3 1 9 5号に詳細に開示され、 これに続く E G Aについては、 特開 昭 6 1—4 4 4 2 9号公報及びこれに対応する米国特許第 4 , 7 8 0 , 6 1 7 号等に詳細に開示されている。 本国際出願で指定した指定国又は選択した選択 国の国内法令が許す限りにおいて、 上記各公報及び対応する上記各米国特許に おける開示を援用して本明細書の記載の一部とする。 When the reticle R is loaded on the reticle holder 14 as described above, the so-called reticle alignment, wafer alignment measurement (not shown), EGA (enhanced 'global alignment), etc. Preparatory preparation work is performed. The above reticle alignment, baseline measurement, etc. The details of the EGA are disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 4-232493 and the corresponding U.S. Pat. No. 5,243,195. This is disclosed in detail in, for example, Japanese Patent Publication No. 1-444429 and corresponding US Pat. Nos. 4,780,617. To the extent permitted by the national laws of the designated or designated elected country of this International Application, the disclosures in each of the above-mentioned publications and corresponding US patents are incorporated herein by reference.
そして、 上記の E G Aの結果に基づいて、 ステップ 'アンド ' リピート方式 の露光動作が行われる。 この露光動作により、 ウェハ W上の複数のショット領 域にレチクル Rに形成された回路パターンが順次転写される。  Then, based on the result of the above EGA, the exposure operation of the step 'and' repeat method is performed. By this exposure operation, the circuit pattern formed on the reticle R is sequentially transferred to a plurality of shot areas on the wafer W.
そして、 所定枚数のウェハに対するレチクル Rを用いた露光が終了すると、 以下のようにしてレチクル Rの搬送 (搬出) が行われる。  When exposure of a predetermined number of wafers using the reticle R is completed, the reticle R is carried (unloaded) as follows.
ί . まず、 レチクル搬送ロボット 6のアームがレチクルホルダ 1 4に向けて 伸縮駆動等され、 レチクル Rの下側に移動されると、 アームを上昇駆動するこ とによりアームにレチクル Rが受け渡される。 そして、 この状態でアームを伸 縮、 回転駆動することによリレチクル室 1 5内の開閉扉 1 2 1に接近させる。 制御装置は、 この接近を不図示のセンサ等を介して確認すると、 開閉扉 1 2 1を駆動機構を介して開放し、 更に、 レチクル保管箱 2 0の開閉扉 2 0 5 bを 開閉機構を介して開放する。 そして、 レチクル Rを保持したレチクル搬送ロボ ット 6のアームを伸縮駆動することにより、 レチクル保管箱 2 0内の所定位置 にレチクル Rを位置させ、 この状態からアームを所定量下降駆動することによ リレチクル保管箱 2 0内の支持部材 2 1 3上にレチクル Rを載置する。  ί. First, the arm of the reticle transport robot 6 is extended and retracted toward the reticle holder 14 and moved to the lower side of the reticle R, and the reticle R is delivered to the arm by driving the arm upward. . Then, in this state, the arm is extended and contracted, and is driven to rotate so as to approach the opening / closing door 121 in the reticle chamber 15. When the control device confirms this approach via a sensor or the like (not shown), it opens the opening / closing door 121 via the drive mechanism, and further opens / closes the opening / closing door 205b of the reticle storage box 20. Open through. The reticle R is held at a predetermined position in the reticle storage box 20 by extending and retracting the arm of the reticle transport robot 6 holding the reticle R, and the arm is driven down by a predetermined amount from this state. The reticle R is placed on the support member 2 13 in the reticle storage box 20.
j . その後、 レチクル搬送ロボット 6のアームを伸縮駆動することにより、 そのアームはレチクル保管箱 2 0内及び空間 9 9内から退避^"る。 その後、 開 閉扉 2 0 5 b及び開閉扉 1 2 1を閉 するとともに、 ロック機構 2 0 7により 開閉扉 2 0 5 bをロックし、 更に、 ベローズ 9 1をべローズ駆動機構 9 2を介 して収縮駆動することにより、 レチクル保管箱 2 0とべローズ 9 1の + X側端 部 (シール部材 9 3 ) とを離間する。 これにより空間 9 9は開放状態となる。 k . 次いで、 スライダ 4 8 a〜4 8 dをスライドガイド 1 9 a〜 1 9 dに沿 つて下降駆動することにより、 レチクル保管箱 2 0を前記レチクル搬出入位置 まで搬送する。 そして、 このレチクル搬出入位置では、 ロック開閉機構により 開閉扉 2 0 5 a側のロック機構 2 0 8を解除するとともに、 不図示の開閉機構 により開閉扉 2 0 5 aを開放する。 これ以降は、 前述したレチクル搬送ロポッ ト 4 7がレチクルをレチクル保管箱 2 0内に搬入するのと逆の動作を行うこと により、 レチクル保管箱 2 0内からレチクル Rを搬出し、 キャリア本体 4 6の 空いている段にレチクル Rを収納する。 j. After that, the arm of the reticle transport robot 6 is extended and retracted, so that the arm is retracted from the reticle storage box 20 and the space 99. Thereafter, the open / close door 205b and the open / close door 1 2 Close the reticle storage box 20 by closing the door 1, locking the opening / closing door 205 b by the lock mechanism 207, and further contractively driving the bellows 91 via the bellows drive mechanism 92. Rose 9 1 + X end Part (seal member 93). As a result, the space 99 is opened. k. Then, the reticle storage box 20 is transported to the reticle carry-in / out position by driving the sliders 48a to 48d to move down along the slide guides 19a to 19d. At this reticle carry-in / out position, the lock mechanism 208 on the side of the door 205 a is released by the lock mechanism, and the door 205 a is opened by the mechanism (not shown). Thereafter, reticle R is unloaded from reticle storage box 20 by performing the reverse operation of reticle transport locator 47 described above loading the reticle into reticle storage box 20, and carrier body 4. Store reticle R in the empty step of step 6.
その後は、 次のレチクル Rがレチクル保管箱 2 0に向けて搬送され、 上記と 同様の搬送経路に沿ってレチクル保管箱 2 0及びレチクルが搬送され、 レチク ルホルダ 1 4まで搬送されたレチクルを用いた露光動作が繰り返し行われるこ とになる。  Thereafter, the next reticle R is transported toward the reticle storage box 20, and the reticle storage box 20 and the reticle are transported along the same transport path as above, and the reticle transported to the reticle holder 14 is used. Exposure operation is repeated.
この場合において、 露光が終了したレチクル Rをキャリア本体 4 6に戻さず に、 レチクル保管箱 2 0内で、 次の使用機会まで保管しておくこともできる。 この場合、 エレベータュニット 1 3 0の上端部近傍に設けられた保管機構 2 4 にて保管しておくことができる。  In this case, the exposed reticle R can be stored in the reticle storage box 20 without returning to the carrier body 46 until the next use opportunity. In this case, it can be stored in the storage mechanism 24 provided near the upper end of the elevator unit 130.
ここで、この保管機構 2 4について簡単に説明すると、この保管機構 2 4は、 前述の如く、 レチクル保管箱 2 0をほぼ気密状態で収容可能な構成となってい る。 また、 この保管機構 2 4は、 その一部に前述した光洗浄装置 2 2内に設け られた給気ュニット 5 1 A、 5 1 C、 排気ュニット 5 1 B、 5 1 Dと同様の給 気ュニット、 排気ュニッ卜がレチクル保管箱 2 0の通気孔の位置に対応して設 けられている。 これらの給気ュニット、 排気ュニッ卜には、 その一端が低吸収 性ガスを供給する不図示のガス供給装置に接続された給気管や、 その一端が不 図示の真空ポンプに接続された排気管が接続されている。  Here, the storage mechanism 24 will be briefly described. As described above, the storage mechanism 24 has a configuration capable of storing the reticle storage box 20 in a substantially airtight state. In addition, the storage mechanism 24 has an air supply unit 51 A, 51 C, and an air supply unit 51 B, 51 D provided in the optical cleaning device 22 as described above. Units and exhaust units are provided corresponding to the positions of the ventilation holes of the reticle storage box 20. One end of each of the air supply unit and the exhaust unit is connected to a gas supply device (not shown) for supplying a low-absorbing gas, and the other end is connected to a vacuum pump (not shown). Is connected.
保管機構 2 4によると、 エレべ一タュニット 1 3 0によって図 1に符号 2 0 Eにて示される位置までレチクル保管箱 2 0が搬送されると、 その位置でレチ クル保管箱 2 0が、 保管機構 2 4により下側から支持される。 そして、 この状 態で給気ユニット、 排気ユニットが通気孔に接続された後、 レチクル保管箱 2 0内のガス置換が行われる。 According to the storage mechanism 24, FIG. When the reticle storage box 20 is transported to the position indicated by E, the reticle storage box 20 is supported from below by the storage mechanism 24 at that position. Then, after the air supply unit and the air exhaust unit are connected to the ventilation holes in this state, the gas in the reticle storage box 20 is replaced.
このガス置換により、 レチクルを構成する部材 (ペリクルフレームの反射防 止メツキ材料や接着材料) から放出される有機物ガスが、 レチクル保管箱 2 0 内に堆積し、 その濃度が上昇するのを回避することができる。 この場合のガス 置換は上記理由から行うものであるから、 光洗浄装置 2 2内でのガス置換ほど 急激に行う必要はない。  By this gas replacement, the organic gas released from the members (anti-reflection plating material or adhesive material of the pellicle frame) constituting the reticle is prevented from accumulating in the reticle storage box 20 and increasing its concentration. be able to. Since the gas replacement in this case is performed for the above-mentioned reason, it is not necessary to perform the gas replacement more rapidly than in the light cleaning device 22.
この場合において、 レチクル保管箱 2 0とは別のレチクル保管箱を用意して おき、 一方のレチクル保管箱 2 0が前記保管機構 2 4内に収容された後は、 他 方のレチクル保管箱を用いて次のレチクルの搬送を行うこととしても良い。 あ るいは、 スライ ドガイド 1 9 a〜 1 9 dに沿って移動するスライダをもう一組 用意し、 このスライダにもレチクル保管箱を保持させ、 レチクルごとに、 レチ クル保管箱を使い分けるようにしても良い。 このようにすることで、 2枚のレ チクルを交互に用いるような場合、 及び特定の 1枚のレチクルを頻繁に用いる ような場合に有効である。 すなわち、 このような場合には、 光洗浄と露光とを 連続的に処理しなくても良くなるため、露光装置の効率的な運用が可能となる。 これまでの説明から明らかなように、 給気ュニット 5 1 A , 5 1 C及び給気 管 2 2 4 a , 2 2 4 cによリガス供給機構が構成され、 排気ュニット 5 1 B , 5 1 D及び排気管 2 2 4 b , 2 2 4 dによりガス排気機構が構成されている。 以上詳細に説明したように、 本第 1の実施形態に係るレチクル保管箱 2 0に よると、 開閉扉 2 0 5 aによって開放された開口 2 1 1 aを介してレチクル R がその内部に収容され、 開閉扉 2 0 5 aにより開口 2 1 1 aが閉鎖される。 こ のようにして、 外気から遮蔽されたレチクル保管箱 2 0の内部空間にレチクル Rを保管することができる。 また、 保管箱本体 2 1 0の一部が、 光洗浄用の光 を透過する窓ガラス 2 0 1 a , 2 0 1 bによって形成されているので、 レチク ル Rをレチクル保管箱 2 1 0に入れた状態で光洗浄を行うことが可能である。 これにより、 レチクルの化学的な汚染を防止することが可能となっている。 ま た、 例えばレチクル保管箱 2 0の内部空間にレチクルの化学的汚染が少ないガ スを充填しておくことにより、 光洗浄の終了したレチクルの汚染を長期にわた つて抑制することができる。 In this case, a reticle storage box different from the reticle storage box 20 is prepared, and after one reticle storage box 20 is accommodated in the storage mechanism 24, the other reticle storage box is stored. The reticle may be used to carry the next reticle. Alternatively, prepare another pair of sliders that move along the slide guides 19a to 19d, hold a reticle storage box on this slider, and use a different reticle storage box for each reticle. Is also good. This is effective in the case where two reticles are used alternately, and in the case where one specific reticle is frequently used. That is, in such a case, since the light cleaning and the exposure do not have to be continuously performed, the exposure apparatus can be efficiently operated. As is clear from the above description, the air supply units 51A, 51C and the air supply pipes 224a, 2224c constitute a regas supply mechanism, and the exhaust units 51B, 51 D and the exhaust pipes 2 24 b and 2 24 d constitute a gas exhaust mechanism. As described in detail above, according to the reticle storage box 20 according to the first embodiment, the reticle R is housed inside the reticle R through the opening 211a opened by the opening / closing door 205a. The opening 211a is closed by the opening / closing door 205a. In this way, reticle R can be stored in the internal space of reticle storage box 20 shielded from the outside air. In addition, part of the storage box body 210 Since the reticle R is formed of the reticle storage box 210, light cleaning can be performed because the reticle R is formed by the window glass 201 a and 201 b transmitting the light. This makes it possible to prevent chemical contamination of the reticle. In addition, for example, by filling the interior space of the reticle storage box 20 with a gas having a small chemical contamination of the reticle, the contamination of the reticle after the optical cleaning can be suppressed for a long time.
また、 本実施形態のレチクル保管箱 2 0によると、 レチクル保管箱 2 0の一 部に通気孔 2 0 4 a〜2 0 4 dが形成され、 これらの通気孔を開閉する開閉弁 機構 2 1 2 A〜2 1 2 Dが設けられているので、 通気孔を開閉する機構を別途 設けなくても、 レチクル保管箱 2 0に対するガスの給気又は排気を行う機構に より、 開閉弁機構 2 1 2 A〜2 1 2 Dを開いてレチクル保管箱 2 0内のガス置 換を行うことができる。 これにより、 レチクル保管箱 2 0内のガス置換を短時 間で行うことができる。  Further, according to the reticle storage box 20 of the present embodiment, ventilation holes 204 a to 204 d are formed in a part of the reticle storage box 20, and an on-off valve mechanism 21 for opening and closing these ventilation holes. Since 2 A to 2 12 D are provided, the on / off valve mechanism 2 1 is provided by a mechanism for supplying or exhausting gas to / from the reticle storage box 20 without separately providing a mechanism for opening and closing the ventilation hole. 2A to 2D can be opened to perform gas replacement in the reticle storage box 20. Thereby, gas replacement in the reticle storage box 20 can be performed in a short time.
また、 本実施形態の露光装置 1 1 0によると、 レチクル保管箱 2 0が、 エレ ベータュニット 1 3 0により、 露光光 E Lの光路近傍の所定位置 (2 0 D ) を 含む搬送経路上で搬送され、 所定位置 (2 0 D ) に搬送されたレチクル保管箱 2 0の内部に収容されたレチクル Rが、 レチクル搬送ロボット 6により、 所定 雰囲気 (すなわち低吸収性ガスでガス置換された) 搬送経路に沿って露光光 E Lの光路を含む空間であるレチクル室 1 5内へ搬送される。 従って、 所定位置 ( 2 0 D ) までは、 外気から遮蔽されたレチクル保管箱 2 0の内部空間にレチ クルを収容した状態でレチクルが搬送され、 所定位置 (2 0 D ) から露光光 E Further, according to the exposure apparatus 110 of the present embodiment, the reticle storage box 20 is transported by the elevator unit 130 on the transport path including the predetermined position (20D) near the optical path of the exposure light EL. The reticle R accommodated in the reticle storage box 20 transported to the predetermined position (20D) is transferred by the reticle transport robot 6 to a predetermined atmosphere (that is, gas is replaced with a low-absorbent gas) transport path. Along the reticle chamber 15 which is a space including the optical path of the exposure light EL. Therefore, the reticle is transported to the predetermined position (20D) with the reticle stored in the internal space of the reticle storage box 20 shielded from the outside air, and the exposure light E from the predetermined position (20D).
Lの光路を含むレチクル室 1 5までは低吸収性ガスに置換された搬送経路に /P つてレチクルが搬送される。 このため、 例えばレチクル Rのトータルの搬送経 路が長くなつたとしても、 所定位置までの搬送経路については低吸収性ガスに て置換しなくても良い。 すなわち、 露光装置内のパージ空間を最小限に抑える ことができるので、 搬送経路部分の小型化を図ることが可能となっている。 こ れにより、 レチクルの汚染が防止されることによる露光精度の向上と、 露光装 置の小型化を同時に実現することができる。 The reticle is transported to the reticle chamber 15 including the optical path of L through the transport path replaced with the low-absorbing gas by / P. For this reason, for example, even if the total transport path of the reticle R becomes long, the transport path up to a predetermined position does not have to be replaced with a low-absorbent gas. That is, since the purge space in the exposure apparatus can be minimized, the size of the transport path can be reduced. This As a result, it is possible to simultaneously improve the exposure accuracy by preventing reticle contamination and reduce the size of the exposure apparatus.
また、 本実施形態の露光装置では、 露光装置 1 1 0の本体チャンパ 1内に光 洗浄装置 2 2を設けることとしたので、 レチクル Rに紫外光が照射されること で、 露光光 E Lを吸収する性質を有する化学的汚染物質が分解される。 このた め、 露光光 E Lの透過率を良好にかつ安定して維持することができ、 ひいては 露光パワーの維持とスループッ卜の向上に加え、 露光量制御精度を長期間に渡 つて高精度に維持することが可能となる。  Further, in the exposure apparatus of the present embodiment, since the optical cleaning apparatus 22 is provided in the main body champer 1 of the exposure apparatus 110, the reticle R is irradiated with ultraviolet light, thereby absorbing the exposure light EL. Chemical contaminants having the property of decomposing are decomposed. As a result, the transmittance of the exposure light EL can be maintained satisfactorily and stably, and in addition to maintaining the exposure power and improving the throughput, the exposure amount control accuracy can be maintained with high accuracy over a long period of time. It is possible to do.
この場合において、 本実施形態では、 レチクル保管箱 2 0を用いてレチクル の搬送をすることにより、 光照射装置 2 2を露光精度に影響を与えない程度、 離して配置することが可能である。 従って、 紫外線照射に伴い発生する熱の露 光装置本体に対する影響を極力抑えることができる。 この場合、 レチクル保管 箱 2 0も光洗浄されることとなるので、 光洗浄後のレチクルを、 そのままレチ クル保管箱に保存しておいても、 洗浄後のレチクルが化学的に汚染されるおそ れが殆どない。  In this case, in the present embodiment, the reticle is transported using the reticle storage box 20, so that the light irradiation devices 22 can be arranged as far apart as not to affect the exposure accuracy. Therefore, it is possible to minimize the influence of the heat generated by the irradiation of the ultraviolet rays on the exposure device main body. In this case, the reticle storage box 20 is also light-cleaned, so even if the reticle after light cleaning is stored in the reticle storage box as it is, the reticle after cleaning may be chemically contaminated. There is little.
また、 本実施形態では、 光洗浄装置 2 2によるレチクル Rの光洗浄が開始さ れるのに先立ってレチクル保管箱内のガスを所定のガス (例えば 1 O O p p m 程度の酸素を含む比較的酸素濃度が高い窒素又は希ガス) で置換することから レチクル保管箱及びレチクルの光洗浄効率を向上することができる。  Further, in this embodiment, before the optical cleaning of the reticle R by the optical cleaning device 22 is started, the gas in the reticle storage box is converted to a predetermined gas (for example, a relatively oxygen concentration containing about 100 ppm of oxygen). (High nitrogen or rare gas), the light cleaning efficiency of the reticle storage box and the reticle can be improved.
なお、 上記実施形態では、 透過部としての窓ガラス 2 0 1 a , 2 0 1 bを保 管箱本体 2 1 0に設けることとしたが、 これに限らず、 開閉扉 2 0 5 a, 2 0 5 bの少なくとも一部に透過部を設けても良い。 この場合、 開閉扉 (開閉部) をレチクル保管箱の上側に設けるようにしても良い。 また、 レチクル保管箱全 体を光を透過する部材にて構成することとしても良い。  In the above embodiment, the windowpanes 201a and 201b as transmission parts are provided in the storage box body 210. However, the present invention is not limited to this. A transmission part may be provided in at least a part of 05b. In this case, an opening / closing door (opening / closing section) may be provided above the reticle storage box. Further, the entire reticle storage box may be made of a member that transmits light.
なお、 上記実施形態では、 開閉弁機構をレチクル保管箱の内部に設けること としたが、 これに限らず、 レチクル保管箱の外部に開閉バルブ機構を設けるこ ととしても良い。 すなわち、 通気孔が形成された保管箱本体の外面側に設けら れ、 一端が前記通気孔に連通するとともに他端が外部に連通した筒状部材と、 該筒状部材の内部を移動可能で通気孔とは反対側に付勢されて前記筒状部材の 内部の外部に対する連通口を閉鎖する弁部材とを備え、 弁部材が外部から押圧 され、 通気孔側に移動されたときに、 開閉バルブが開放されるような構成を採 用することとしても良い。 In the above embodiment, the opening / closing valve mechanism is provided inside the reticle storage box. However, the present invention is not limited to this, and the opening / closing valve mechanism may be provided outside the reticle storage box. And it is good. That is, a cylindrical member provided on the outer surface side of the storage box main body having the ventilation hole, one end of which communicates with the ventilation hole and the other end of which communicates with the outside. A valve member which is urged to the side opposite to the air hole to close a communication port between the inside and the outside of the tubular member, and which is opened and closed when the valve member is pressed from the outside and moved to the air hole side. A configuration in which the valve is opened may be adopted.
なお、 上記実施形態では、 光洗浄装置 2 2内でレチクル保管箱 2 0及びレチ クル Rを同時に光洗浄することとしたが、 これに限らず、 レチクル保管箱 2 0 のみを光洗浄することとしても良い。 この場合、 レチクル保管箱 2 0の光透過 窓 2 0 1 a , 2 0 1 bを遮光することにより、 レチクル保管箱 2 0のみの光洗 浄を実現することができる。  In the above-described embodiment, the reticle storage box 20 and the reticle R are optically cleaned at the same time in the optical cleaning device 22. However, the present invention is not limited to this, and only the reticle storage box 20 is optically cleaned. Is also good. In this case, light washing of the reticle storage box 20 alone can be realized by shielding the light transmitting windows 201a and 201b of the reticle storage box 20 from light.
なお、 レチクル保管箱 2 0内は、 極めて低湿度な環境となるため、 その内部 に収容されるレチクル Rは帯電しやすく、 これが放電する際にレチクル上のパ ターンが破損してしまうおそれがある。 そこで、 レチクル保管箱 2 0内に、 線, yS線, X線等の放射線源を設置し、 レチクル保管箱 2 0内部のガスをィォ ン化することにより、 帯電を防止することとしても良い。  Since the inside of the reticle storage box 20 is in an extremely low humidity environment, the reticle R contained therein is easily charged, and the pattern on the reticle may be damaged when it is discharged. . Therefore, radiation sources such as X-rays, yS rays, and X-rays may be installed in the reticle storage box 20, and the gas inside the reticle storage box 20 may be ionized to prevent charging. .
なお、 上記実施形態では、 レチクル保管箱 2 0に通気孔 2 0 4 a〜2 0 4 d を形成し、 この通気孔 2 0 4 a〜2 0 4 dを介してレチクル保管箱 2 0内部の ガス置換を行うこととしたが、 これに限らず、 例えば、 開閉扉 2 0 5 a , 2 0 5 bを開放して、 光洗浄装置 2 2内のガス置換とともに、 レチクル保管箱 2 0 内部のガス置換を行うこととしても良い。また、給気用の通気孔のみを形成し、 この通気孔から低吸収性ガスを供給するとともに、 開閉扉 2 0 5 a , 2 0 5 b の少なくとも一方を開放することにより内部のガスを排気することで、 レチク ル保管箱 2 0内のガス置換を行うこととしても良い。 前者の場合、 光洗浄装置 2 2内には、 レチクル保管箱内のガス置換を行うための給気管及び排気管を光 洗浄装置内に導入する必要はなく、 後者の場合には、 給気管のみを導入すれば 良い。 In the above embodiment, ventilation holes 204 a to 204 d are formed in the reticle storage box 20, and the inside of the reticle storage box 20 is formed through the ventilation holes 204 a to 204 d. Gas replacement was performed, but the invention is not limited to this. For example, opening and closing the doors 205 a and 205 b and replacing the gas inside the optical cleaning device 22 with the gas inside the reticle storage box 20 Gas replacement may be performed. In addition, only a ventilation hole for air supply is formed, a low-absorbent gas is supplied from this ventilation hole, and at least one of the doors 205a and 205b is opened to exhaust the gas inside. By doing so, the gas inside the reticle storage box 20 may be replaced. In the former case, it is not necessary to introduce an air supply pipe and an exhaust pipe to replace the gas in the reticle storage box into the optical cleaning device, and in the latter case, only the air supply tube If you introduce good.
なお、 上記実施形態では、 露光装置 1 1 0の本体チャンバ 1内において、 レ チクル保管箱 2 0内にレチクルを搬入し、 本体チャンバ内で光洗浄をすること としたが、 これに限らず、 レチクル保管箱 2 0内へのレチクルの搬入を本体チ ヤンバの外部で行い、 光洗浄も本体チャンバの外部で行って、 レチクル保管箱 2 0のまま本体チャンバ内に搬入することとしても良い。 このようにしても、 レチクル保管箱 2 0内は気密に維持されているので、 レチクル Rを化学的に汚 染するようなことはない。 また、 レチクルキャリアからレチクル保管箱 2 0へ のレチクルの搬入と、 レチクル保管箱 2 0内のレチクルの光洗浄を、 露光装置 本体とは別のレチクル前処理装置内で行っても良い。 この場合にも、 上記レチ クル前処理装置から露光装置本体へのレチクルの搬送に際し、 レチクルは上記 レチクル保管箱 2 0によって化学的汚染から保護されているので、 レチクルが 汚染される心配はない。  In the above-described embodiment, the reticle is loaded into the reticle storage box 20 in the main body chamber 1 of the exposure apparatus 110, and light cleaning is performed in the main body chamber. It is also possible to carry out the reticle into the reticle storage box 20 outside the main body chamber, perform optical cleaning outside the main body chamber, and carry the reticle storage box 20 into the main body chamber as it is. Even in this case, the inside of the reticle storage box 20 is kept airtight, so that the reticle R is not chemically contaminated. Further, the loading of the reticle from the reticle carrier into the reticle storage box 20 and the light cleaning of the reticle in the reticle storage box 20 may be performed in a reticle pre-processing apparatus separate from the exposure apparatus body. Also in this case, the reticle is protected from chemical contamination by the reticle storage box 20 when the reticle is transported from the reticle pre-processing apparatus to the exposure apparatus main body.
また、 上記実施形態では、 通気孔 2 0 4 a〜2 0 4 dはレチクル保管箱 2 0 の対向する 2面に形成することとしたが、 これに限らず、 隣り合う 2辺に通気 孔 2 0 4 a〜2 0 4 dを形成することとしても良く、 また、 レチクル保管箱 2 0内のガス置換の効率を向上するため、 レチクル保管箱 2 0の角部(コーナ一) に通気孔 2 0 4 a〜2 0 4 dを形成することとしても良い。  Further, in the above embodiment, the ventilation holes 204 a to 204 d are formed on the two opposing surfaces of the reticle storage box 20. However, the invention is not limited thereto, and the ventilation holes 2 may be formed on two adjacent sides. In order to improve the efficiency of gas replacement in the reticle storage box 20, a vent hole 2 is formed in a corner (a corner) of the reticle storage box 20. 0 4 a to 204 d may be formed.
なお、 上記実施形態では、 レチクル保管箱 2 0の筐体を一つの部材により構 成するものとして説明したが、加工の容易化の観点から、筐体を複数の部材(例 えば上壁、 側壁、 底壁等) により構成しても良く、 この場合には、 各部材間を 溶接により固定しても良いし、 あるいは、 ねじ止め等により固定することとし ても良い。 なお、 ねじ止め等により各部材間を固定する場合には、 気密性の確 保のために Oリング等のシール部材を各部材間に設けることが好ましい。  In the above embodiment, the case of the reticle storage box 20 is described as being constituted by one member. However, from the viewpoint of simplification of processing, the case is constituted by a plurality of members (for example, the upper wall and the side wall). , Bottom wall, etc.). In this case, the members may be fixed by welding, or may be fixed by screws or the like. When the members are fixed by screws or the like, it is preferable to provide a seal member such as an O-ring between the members to ensure airtightness.
ところで、 上記第 1の実施形態で説明したレチクル保管箱 2 0は、 本発明に 係るマスク保管装置の一例に過ぎず、 種々のタイプのマスク保管装置が考えら れる。 By the way, the reticle storage box 20 described in the first embodiment is merely an example of the mask storage device according to the present invention, and various types of mask storage devices can be considered. It is.
図 9には、 レチクル保管箱の変形例が示されている。 この図 9に示されるレ チクル保管箱 5 1 0は、開閉部として、上記第 1の実施形態の開閉扉 2 0 5 a、 2 0 5 bに代えてゲートバルブ 5 5 0 A , 5 5 0 Bが採用されている点に特徴 を有している。  FIG. 9 shows a modification of the reticle storage box. The reticle storage box 5100 shown in FIG. 9 has a gate valve 550A, 550 instead of the opening / closing door 205a, 205b of the first embodiment as an opening / closing section. The feature is that B is adopted.
以下、 このゲートバルブ 5 5 0 A , 5 5 0 Bを中心に説明する。  Hereinafter, the gate valves 550 A and 550 B will be mainly described.
一方のゲ一トバルブ 5 5 O Aは、 シャツタ 5 0 4が上下動することによリ開 閉される上下開閉式のゲートバルブである。 このゲートバルブ 5 5 O Aは、 図 9に示されるように、 保管箱本体 2 1 0を構成する筐体 2 1 1の一 X側端部に 固定され、 シャツタ 5 0 4を内部に有するゲートバルブ本体 5 0 6と、 ゲート バルブ本体 5 0 6の上部に設けられ、 シャツタ 5 0 4を上下に駆動する開閉機 構 5 0 1と、 ゲートバルブ本体 5 0 6の気密性を高めるための密閉機構の一部 を構成する矩形枠状の駆動部 5 0 5とを備えている。  One of the gate valves 55OA is a vertical opening / closing type gate valve which is opened and closed when the shutter 504 moves up and down. As shown in FIG. 9, the gate valve 55OA is fixed to one X-side end of the housing 211 constituting the storage box main body 210, and has a gate valve 504 therein. A main body 506, an opening / closing mechanism 501 provided above the gate valve main body 506 for driving the shutter 504 up and down, and a sealing mechanism for improving the airtightness of the gate valve main body 506. And a rectangular frame-shaped drive section 505 which constitutes a part of the drive section.
前記ゲートバルブ本体 5 0 6は、 図 1 O Aに示されるように、 断面略 L字状 でその内部が中空とされ、 かつ ± X端面に矩形の開口 5 0 3 a, 5 0 3 bが形 成されたシャツタボックス 5 0 3と、該シャツタボックス 5 0 3内に設けられ、 上下方向に移動自在とされたシャツタ 5 0 4とを備えている。 前記シャツタポ ックス 5 0 3の + X側の開口 5 0 3 aの周囲 (一 X側の面) には、 環状の溝 5 2 7 aが形成され、 この溝 5 2 7 aには 0リング等から成るシール部材 5 2 9 が設けられている。  As shown in FIG. 1OA, the gate valve body 506 has a substantially L-shaped cross section, is hollow inside, and has rectangular openings 503 a and 503 b at ± X end faces. A shirt box 503 thus formed and a shirt box 504 provided in the shirt box 503 and movable in the vertical direction are provided. An annular groove 527a is formed around the opening 503a on the + X side of the shirt tapox 503 (the surface on the X side), and an o-ring or the like is formed in the groove 527a. Is provided.
前記開閉機構 5 0 1は、 モータ等を含んで構成され、 該モータにはベルト機 構 5 3 8が連結されている。 なお、 実際にはベルト機構 5 3 8は、 シャツタ 5 0 4の + Y側のみならず、 一 Y側 (紙面手前側) にも設けられている。 このべ ル卜機構 5 3 8には、 前記シャツタ 5 0 4が不図示の取り付け部材を介して接 続されており、 モータによリベルト機構 5 3 8が駆動されることにより、 これ に連動して、 シャツタ 5 0 4が上下に駆動されるようになっている。 前記密閉機構は、 前記駆動部 5 0 5と、 該駆動部 5 0 5により X軸方向に往 復駆動される複数本のシャフ卜 5 3 1と、 これらシャフ卜 5 3 1の + X端部に 固定された矩形枠状の押圧部材 5 3 3とを備えている。 前記押圧部材 5 3 3の + X端面には、環状の凹溝 5 3 3 aが形成されており、この凹溝 5 3 3 aには、 Oリング等から成るシール部材 5 3 5が設けられている。 この押圧部材 5 3 3 は、 駆動部 5 0 5に内蔵された例えばモータによるシャフ卜の往復駆動により X軸方向に往復駆動されるようになっている。 The opening / closing mechanism 501 includes a motor and the like, and a belt mechanism 538 is connected to the motor. Actually, the belt mechanism 538 is provided not only on the + Y side of the shirt 504 but also on the one Y side (the front side of the drawing). The shirt mechanism 504 is connected to the belt mechanism 538 via a mounting member (not shown), and the belt mechanism 538 is driven by a motor so that the belt mechanism is connected to the belt mechanism. The shirt 504 is driven up and down. The sealing mechanism includes: the driving unit 505; a plurality of shafts 531, which are driven back and forth in the X-axis direction by the driving unit 505; and a + X end of the shafts 531. And a rectangular frame-shaped pressing member 533 fixed to the pressing member. On the + X end face of the pressing member 533, an annular concave groove 533a is formed, and in this concave groove 533a, a sealing member 535 made of an O-ring or the like is provided. ing. The pressing member 533 is reciprocally driven in the X-axis direction by, for example, a reciprocating drive of a shaft built in the driving unit 505 by a motor.
このように構成されるゲ一卜バルブ 5 5 O Aによると、 図 1 O Aに示される シャツタの開放状態から、 次のようにして閉鎖動作が行われる。 すなわち、 ま ず、 図 1 O Aに示される状態から、 開閉機構 5 0 1によるベルト機構 5 3 8の 駆動によりシャツタ 5 0 4が下降駆動される。 そして、 シャツタ 5 0 4が図 1 O Bの位置に位置決めされると、 これに連動して、 密閉機構を構成する駆動部 5 0 5により押圧部材 5 3 3が + X方向に駆動される。 これにより、 押圧部材 5 3 3の + X方向に位置しているシャツタ 5 0 4が押圧部材 5 3 3により + X 方向に押圧される。 このようにして、 図 1 0 Cに示されるように、 シャツタ 5 0 4がシール部材 5 2 9に押し付けられることにより、 シャツタボックス 5 0 3の開口 5 0 3 aを介した気体の流通をほぼ完全に遮断することが可能となつ ている。  According to the gate valve 55OA configured as described above, the closing operation is performed as follows from the open state of the shirt shown in FIG. 1OA. That is, first, from the state shown in FIG. 1OA, the closing mechanism 504 is driven downward by the driving of the belt mechanism 538 by the opening / closing mechanism 501. Then, when the shirt 504 is positioned at the position shown in FIG. 1OB, the driving member 505 constituting the sealing mechanism drives the pressing member 5333 in the + X direction in conjunction with this. As a result, the shirt 504 located in the + X direction of the pressing member 533 is pressed in the + X direction by the pressing member 533. In this way, as shown in FIG. 10C, when the shirt 504 is pressed against the sealing member 529, the gas flows through the opening 503a of the shirt box 503. It is possible to cut off almost completely.
一方、 ゲートバルブ 5 5 O Aの開放動作は、 上記閉鎖動作とは逆の手順にて 行われるようになつている。 すなわち、 図 1 0 Cの状態から、 押圧部材 5 3 3 が一 X方向に駆動されると、 シャツタ 5 0 4はベルト機構 5 3 8に接続されて いるので、図 1 0 Bに示される位置まで一 X方向に移動する(元位置復帰する)。 そして、 この状態から開閉機構 5 0 1によるベル卜機構 5 3 8の駆動によリシ ャッタ 5 0 4が上昇駆動され、 図 1 O Aに示されるようにゲ一トパルプ 5 5 0 Bが開放されることになる。  On the other hand, the opening operation of the gate valve 55OA is performed in a procedure reverse to the above-described closing operation. That is, when the pressing member 533 is driven in the X direction from the state of FIG. 10C, the shirt 504 is connected to the belt mechanism 538, and the position shown in FIG. Move in the X direction until it returns to its original position. Then, in this state, the shutter 504 is driven upward by the belt mechanism 538 driven by the opening / closing mechanism 501, and the gate pulp 550B is opened as shown in FIG. 1OA. Will be.
なお、 他方のゲートバルブ 5 5 0 Bについても同様に構成され、 同様に開閉 動作が行われる。 Note that the other gate valve 550 B is configured in the same way, and The operation is performed.
その他の構成は、 上記第 1の実施形態のレチクル保管箱 2 0と同様となって いる。  Other configurations are the same as those of the reticle storage box 20 of the first embodiment.
なお、 ゲートバルブとしては市販品を入手することが可能であるので、 レチ クル保管装置を比較的安価に作成することができ、 コス卜ダウンを図ることが 可能である。 また、 これに加え、 このようなゲートバルブは、 気密性等の信頼 性が高いことから、 レチクル保管箱の設計に要する時間を短縮することが可能 となっている。  Since a commercially available gate valve can be obtained, the reticle storage device can be made relatively inexpensively, and the cost can be reduced. In addition, since such a gate valve has high reliability such as airtightness, it is possible to reduce the time required for designing a reticle storage box.
なお、 ゲートバルブとしては、 上下開閉型に限らず、 左右開閉型のゲートバ ルブを採用することとしても良い。  The gate valve is not limited to the vertical opening and closing type, but may be a left and right opening and closing type gate valve.
また、 上記変形例においては、 ゲートバルブを開閉する開閉機構等をゲート バルブに直接設けることとしたが、 これに限らず、 露光装置 1 1 0内のゲート バルブを開閉する所定位置に、 ゲートバルブを開閉するための駆動装置を設置 しておくこととしても良い。 このようにすることで、 レチクル保管箱の軽量化 を図ることが可能となる。  Further, in the above modification, an opening / closing mechanism for opening / closing the gate valve is provided directly on the gate valve. However, the present invention is not limited to this. A drive device for opening and closing the door may be provided. This makes it possible to reduce the weight of the reticle storage box.
《第 2の実施形態》  << 2nd Embodiment >>
次に、 マスク保管装置として、 上述したレチクルキャリア 4 4 (図 1参照) と同様の上下開閉式 (ボトムオープンタイプ) のレチクル保管箱を用いる、 本 発明の第 2の実施形態の露光装置について、 図 1 1〜図 1 4 Bに基づいて説明 する。  Next, an exposure apparatus according to a second embodiment of the present invention using a reticle storage box of the same type as the above-mentioned reticle carrier 44 (see FIG. 1) as a mask storage apparatus, which can be opened and closed (bottom open type), The description will be made based on FIGS. 11 to 14B.
この第 2の実施形態においては、 レチクル保管箱として上下開閉式 (ボトム オープンタイプ) のレチクル保管箱が用いられるとともに、 これに対応して該 レチクル保管箱に対するレチクルの搬入及ぴレチクル保管箱からのレチクルの 搬出を行う機構が、 前述した第 1の実施形態の装置と異なるのみで、 その他の 部分の構成等は同様となっている。 従って、 以下においては、 重複説明を避け る趣旨から、 これらの相違点を中心として説明するものとする。 また、 同様の 趣旨から、 前述した第 1の実施形態と同一若しくは同等の構成部分については 同一の符号を用いるとともに、 その説明を簡略化し若しくは省略するものとす る。 In the second embodiment, a reticle storage box of a top-and-bottom opening / closing type (bottom-open type) is used as a reticle storage box. The mechanism for unloading the reticle is different from that of the first embodiment, and the other components are the same. Therefore, in the following, these differences will be mainly described in order to avoid redundant description. Also, a similar For the purpose, the same reference numerals are used for the same or equivalent components as those in the first embodiment, and the description thereof will be simplified or omitted.
図 1 1には、 上下開閉式のレチクル保管箱 4 0 0の斜視図が示され、 図 1 2 Aには、 図 1 1のレチクル保管箱 4 0 0の縦断面図が示され、 図 1 2 Bには、 図 1 2 Aのレチクル保管箱 4 0 0の底部開閉部がオープンした状態が示されて いる。  FIG. 11 is a perspective view of the reticle storage box 400 that can be opened and closed, and FIG. 12A is a vertical cross-sectional view of the reticle storage box 400 of FIG. 2B shows a state in which the bottom opening / closing portion of the reticle storage box 400 in FIG. 12A is open.
このレチクル保管箱 4 0 0は、 図 1 2 A及び図 1 2 Bに示されるように、 レ チクル Rを収容可能な内部空間を有し、レチクル Rの出し入れが可能な開口が、 その下面 (底面) に形成された保管装置本体としてレチクル保管箱本体 4 5 0 と、 このレチクル保管箱本体 4 5 0の底部に設けられた開口 4 0 5 bを開閉す る開閉部としての底部開閉部 4 6 0とを備えている。  As shown in FIGS. 12A and 12B, the reticle storage box 400 has an internal space capable of accommodating the reticle R, and has an opening through which the reticle R can be taken in and out. Reticle storage box body 450 as a storage device body formed on the bottom surface) and a bottom opening / closing section 4 serving as an opening / closing section for opening / closing an opening 405b provided at the bottom of the reticle storage box body 450. 60.
前記レチクル保管箱本体 4 5 0は、 図 1 1から分かるように、 大きくは 3つ の部分、 すなわち概略所定の高さの矩形枠状の形状を有する下部側壁部材 4 0 5と、該下部側壁部材 4 0 5の上端面に固定された中央部に矩形の開口を有し、 下部側壁部材 4 0 5の外側に突出した鍔部材 4 0 6と、 該鍔部材 4 0 6の上面 に固定され、 その上面の中央部に 2段の段を有する段付き開口 4 0 7 aが形成 された上部側壁部材 4 0 7とを備えている。 これら下部側壁部材 4 0 5、 鍔部 材 4 0 6、 上部側壁部材 4 0 7は、 ステンレス鋼 (S U S ) 等の脱ガスの少な ぃ部材から構成されている。  As can be seen from FIG. 11, the reticle storage box main body 450 has roughly three parts, namely, a lower side wall member 450 having a rectangular frame shape having a substantially predetermined height, and the lower side wall member 450. A flange member 406 having a rectangular opening at the center fixed to the upper end surface of the member 405 and protruding outside the lower side wall member 405, and being fixed to the upper surface of the flange member 406 And an upper side wall member 407 having a stepped opening 407a having two steps in the center of the upper surface thereof. The lower side wall member 405, the flange member 406, and the upper side wall member 407 are made of stainless steel (SUS) or the like, which has a small amount of degassing.
前記下部側壁部材 4 0 5には、 図 1 2 A及び図 1 2 Bに示されるように、 そ の上端部にその全周に亘リ内側に突出した突出部が形成されており、 この突出 部の内周面によって前述の開口 4 0 5 bが形成されている。 また、 下部側壁部 材 4 0 5の下端部には、 回転式ロック機構 4 1 4 A , 4 1 4 Bが図 1 2 B (及 び図 1 2 A ) における左右に各 1つ設けられている。 一方 (左側) の回転式口 ック機構 4 1 4 Aは、 上下方向の軸を回転軸として回転自在な状態で下部側壁 部材 4 0 5に埋め込まれた軸部材 5 2 4 aと該軸部材 5 2 4 aの上端部近傍か ら水平方向に突出した状態で設けられたピン部 5 2 4 bとを有している。 他方 の回転式ロック機構 4 1 4 Bも、 同様に、 上下方向の軸を回転軸として回転自 在な状態で下部側壁部材 4 0 5に埋め込まれた軸部材 5 2 5 aと該軸部材 5 2 5 aの上端部近傍から水平方向に突出した状態で設けられたピン部 5 2 5 bと を有している。 これら回転式ロック機構 4 1 4 A , 4 1 4 Bが、 前述の回転軸 回りに回転されることにより、 ピン部 5 2 4 b , 5 2 5 bが下部側壁部材 4 0 5の壁面にほぼ垂直な方向に突出したり (図 1 2 Aの状態)、下部側壁部材 4 0 5の壁に形成された溝内に入り込んだりする (図 1 2 Bの状態) ようになって いる。 As shown in FIGS. 12A and 12B, the lower side wall member 405 is provided with a protruding portion protruding inward all around its upper end, as shown in FIGS. 12A and 12B. The above-mentioned opening 405b is formed by the inner peripheral surface of the portion. In addition, at the lower end of the lower side wall member 405, rotary lock mechanisms 4 14A and 4 14B are provided, one each on the left and right in FIG. 12B (and FIG. 12A). I have. On the other hand, the rotary hook mechanism 4 14 A on the left (left side) is rotatable about the vertical axis as the axis of rotation. It has a shaft member 52 4 a embedded in the member 400 and a pin portion 52 4 b provided so as to protrude horizontally from near the upper end of the shaft member 52 4 a. . Similarly, the other rotary lock mechanism 4 14 B also has a shaft member 5 25 a and a shaft member 5 5 5 a embedded in the lower side wall member 4 05 in a state of being free to rotate about a vertical axis as a rotation axis. And a pin portion 52b provided so as to protrude in the horizontal direction from the vicinity of the upper end of 25a. By rotating these rotary lock mechanisms 4 14 A and 4 14 B around the above-mentioned rotation axis, the pin portions 5 2 4 b and 5 2 5 b are almost attached to the wall surface of the lower side wall member 4 05. The lower side wall member 405 protrudes in a vertical direction (the state shown in FIG. 12A) and enters the groove formed in the wall of the lower side wall member 405 (the state shown in FIG. 12B).
前記鍔部材 4 0 6は、 図 1 2 Bに示されるように、 下部側壁部材 4 0 5より も一回リ大きな板状部材の中央部に前述の開口 4 0 5 bよリー回り小さな開口 を形成したような、 枠状部材から成る。 この鍔部材 4 0 6は、 例えばレチクル 室 1 5内にレチクル Rを搬入する際などに後述する隔壁 4 3 3の上壁によって 支持される被支持部として機能する (図 1 4 A参照)。  As shown in FIG. 12B, the flange member 406 has an opening smaller than the opening 405 b at the center of a plate-like member once larger than the lower side wall member 405. It consists of a frame-like member as formed. The flange member 406 functions as a supported portion supported by an upper wall of a partition wall 433 described later, for example, when the reticle R is carried into the reticle chamber 15 (see FIG. 14A).
前記上部側壁部材 4 0 7は、 図 1 2 A及び図 1 2 Bに示されるように、 その 中央部に 2段の段を有する段付き開口 4 0 7 aが形成され、 この段付き開口 4 0 7 aに、 窓ガラス 4 0 8が嵌め込まれている。 この窓ガラス 4 0 8は、 上部 側壁部材 4 0 7に形成された段付き開口 4 0 7 aの上から 2段目の段部に気密 性確保のための Oリング等から成るシール部材 4 4 0 bを介して嵌め込まれ、 上から 1段目の段部に嵌め込まれた矩形枠状の窓押さえ部材 4 0 9によって上 方から押さえつけられた状態で固定されている。 この場合、 窓押さえ部材 4 0 9と窓ガラス 4 0 8との間にも気密性確保のためのシール部材 4 4 0 aが設け られ、 窓押さえ部材 4 0 9は、 上部側壁部材 4 0 7に複数本のねじ 4 1 0によ つて固定されている。  As shown in FIG. 12A and FIG. 12B, the upper side wall member 407 has a stepped opening 407a having two steps in the center thereof. Window glass 4 08 is fitted into 07 a. The window glass 408 has a stepped opening 407 formed in the upper side wall member 407 and a sealing member 404 including an O-ring or the like for ensuring airtightness at the second step from the top. 0b, and is fixed by being pressed down from above by a rectangular frame-shaped window holding member 409 fitted into the first step from the top. In this case, a sealing member 440a for ensuring airtightness is also provided between the window holding member 409 and the window glass 408, and the window holding member 409 has an upper side wall member 407. Is fixed by a plurality of screws 4 10.
また、 上部側壁部材 4 0 7には、 図 1 1に示されるように、 その X軸方向の 一側と他側の側面に各 1つ、 Y側方向の一側と他側の側面に各 2つ、 合計 6つ の通気孔 4 1 6 a〜4 1 6 f が形成されている (但し図 1 1では + X側の側面 及び + Y側の側面にそれぞれ形成された通気孔 4 1 6 d及び 4 1 6 e , 4 1 6 f は不図示、 図 1 2 B参照)。 Further, as shown in FIG. 11, the upper side wall member 407 has its X-axis direction A total of six ventilation holes 4 16 a to 4 16 f are formed, one on each side on the one side and the other side, and two on each side on the one side and the other side in the Y direction (however, In FIG. 11, the ventilation holes 4 16 d, 4 16 e, and 4 16 f formed on the + X side surface and the + Y side surface are not shown, respectively, see FIG. 12B).
これらの通気孔 4 1 6 a〜4 1 6 f を介して、 レチクル保管箱 4 0 0の内部 をガス置換することが可能であり、 また、 これらのうちの少なくとも 2つの通 気孔を介して、 ペリクルフレーム 7 6に設けられた不図示の通気孔に対し、 直 接ガス供給管及びガス排気管を接続することにより、 レチクル Rとペリクルフ レーム 7 6及びペリクル 7 5で囲まれた空間のガス置換を行なうことも可能で あ 。  The gas inside the reticle storage box 400 can be replaced with gas through these ventilation holes 4 16 a to 4 16 f, and through at least two of these ventilation holes, By connecting a gas supply pipe and a gas exhaust pipe directly to the ventilation holes (not shown) provided in the pellicle frame 76, gas replacement of the space surrounded by the reticle R and the pellicle frame 76 and the pellicle 75 is achieved. It is also possible to perform
なお、 通気孔 4 1 6 a〜4 1 6 f についても、 前述の第 1の実施形態と同様 に、 外側から押圧されることにより開放自在な開閉弁をそれぞれ設けることと しても良い。  As for the ventilation holes 4 16 a to 4 16 f, similarly to the first embodiment, on-off valves that can be opened by being pressed from the outside may be provided.
前記底部開閉部 4 6 0は、 その中央部に 2段の段を有する段付き開口 4 0 4 aが形成された矩形枠状の底部材 4 0 4と、 底部材 4 0 4の上面にその下端面 が固定され、 レチクル Rを下側から支持するレチクル支持部材 4 0 3と、 底部 材 4 0 4の段付き開口 4 0 4 aの開口部分を閉塞する状態で設けられた窓ガラ ス 4 1 1 とを備えている。  The bottom opening / closing part 460 has a rectangular frame-shaped bottom member 404 in which a stepped opening 404a having two steps is formed at the center thereof, and the bottom member 404 is provided on the upper surface of the bottom member 404. A reticle support member 403 having a fixed lower end surface for supporting the reticle R from below, and a window glass 4 provided so as to close the stepped opening 404a of the bottom member 404a. 1 and 1 are provided.
前記レチクル支持部材 4 0 3は、全体として見れば矩形のフレームであるが、 その上端面が下端面より小さな段付形状となっている。 このレチクル支持部材 4 0 3は、 その下端面が底部材 4 0 4の段付き開口 4 0 4 aの上端部分よりも 一回り大きな矩形形状とされ、 その上端面はレチクル Rに設けられたペリクル フレーム 7 6よりも一回リ大きな矩形形状とされている。  The reticle support member 403 is a rectangular frame as a whole, but has a stepped shape having an upper end surface smaller than a lower end surface. The reticle support member 403 has a lower end surface having a rectangular shape slightly larger than an upper end portion of the stepped opening 404 a of the bottom member 404, and an upper end surface thereof has a pellicle provided on the reticle R. It has a rectangular shape once larger than the frame 76.
なお、 レチクル支持部材 4 0 3としては、 上記形状に限らず、 例えばレチク ルの X軸方向 (又は Y軸方向) 両端部近傍を支持する Y軸方向 (又は X軸方向) を長手方向とする 2つのナイフェツジ状の支持部材を採用することとしても良 い。 レチクル支持部材にこのような部材を採用することで、 レチクル支持部材 へのレチクルの搬入及びレチクル支持部材からのレチクルの搬出を、 レチクル の搬送に用いられるアームのレチクル支持部材の長手方向に関する平行移動 (及びわずかな上下動) により簡易に実現することが可能である。 The reticle support member 4003 is not limited to the above-described shape, and for example, the longitudinal direction is the Y-axis direction (or X-axis direction) that supports the vicinity of both ends of the reticle in the X-axis direction (or Y-axis direction). It is good to adopt two knight-shaped support members No. By adopting such a member as the reticle support member, loading and unloading of the reticle to and from the reticle support member can be performed by parallel movement of the arm used to transport the reticle in the longitudinal direction of the reticle support member. (And slight vertical movement) can be easily realized.
前記窓ガラス 4 1 1は、 底部材 4 0 4に形成された段付き開口 4 0 4 aの下 から 2段目の段部に気密性確保のための Oリング等から成るシール部材 4 4 0 dを介して嵌め込まれ、 下から 1段目の段部に嵌め込まれた矩形枠状の窓押さ ぇ部材 4 1 2によって下方から押さえつけられた状態で固定されている。 この 場合、 窓押さえ部材 4 1 2と窓ガラス 4 1 1 との間にも気密性確保のためのシ —ル部材 4 4 0 cが設けられ、 窓押さえ部材 4 1 2は、 底部材 4 0 4に複数本 のねじ 4 1 3によって固定されている。  The window glass 411 is provided with a sealing member 4400 made of an O-ring or the like for ensuring airtightness at the second step from the bottom of the stepped opening 4104a formed in the bottom member 4104. The rectangular frame-shaped window pressing member 1 fitted into the first step from the bottom is fixed by being pressed down from below by a member d. In this case, a sealing member 44 c for ensuring airtightness is also provided between the window holding member 4 12 and the window glass 4 1 1, and the window holding member 4 12 4 is fixed by a plurality of screws 4 13.
また、 前記底部材 4 0 4の上面には、 矩形の Oリング等から成るシール部材 4 1 8が固定されている。  A seal member 418 made of a rectangular O-ring or the like is fixed to the upper surface of the bottom member 404.
このように構成されるレチクル保管箱 4 0 0によると、 底部開閉部 4 6 0と レチクル保管箱本体 4 5 0とは、 図 1 2 A及び図 1 2 Bに示されるように、 着 脱自在 (開閉自在) とされており、 底部開閉部 4 6 0がレチクル保管箱本体 4 5 0に装着された状態では、 図 1 2 Aに示されるように、 回転ロック機構 4 1 4 A , 4 1 4 Bのピン部 5 2 4 b, 5 2 5 bにより底部開閉部 4 6 0のレチク ル保管箱本体 4 5 0からの離脱が阻止されるようになっている。 また、 この図 1 2 Aの状態では、 前述したシール部材 4 1 8によリレチクル Rの配置されて いる空間の気密性を高く維持することができる。  According to the reticle storage box 400 configured as described above, the bottom opening / closing part 4600 and the reticle storage box body 450 are detachable as shown in FIGS. 12A and 12B. (Openable and closable). When the bottom opening / closing part 460 is mounted on the reticle storage box body 450, the rotation lock mechanisms 4 14 A and 4 1 The pin portions 4 B and 4 B of 4 B prevent the bottom opening / closing portion 4 60 from being detached from the reticle storage box body 4 50. In the state shown in FIG. 12A, the airtightness of the space in which the reticle R is disposed can be maintained high by the above-described seal member 418.
このレチクル保管箱 4 0 0においても、 上下の窓ガラス 4 0 8 , 4 1 1を介 してレチクル Rに紫外線を照射することが可能であるので、 前述の第 1の実施 形態と同様に、レチクル保管箱 4 0 0を光洗浄装置 2 2に導入することにより、 レチクル保管箱 4 0 0内部のレチクル Rを光洗浄することが可能である。  Also in this reticle storage box 400, it is possible to irradiate the reticle R with ultraviolet rays through the upper and lower window glasses 408, 411. By introducing the reticle storage box 400 into the optical cleaning device 22, the reticle R inside the reticle storage box 400 can be optically cleaned.
ところで、 レチクル保管箱 4 0 0が上述したような構成とされていることか ら、 図 1及び図 2に示されるような機構 (及び方法) をそのまま用いてレチク ル保管箱 4 0 0からレチクル Rを取り出したりすることはできない。 従って、 本第 2の実施形態では、 レチクル保管箱 4 0 0に適したレチクルを出し入れす るための機構 (レチクル搬出入機構) が露光装置内に設置されている。 By the way, is the reticle storage box 400 configured as described above? Therefore, the reticle R cannot be removed from the reticle storage box 400 using the mechanism (and method) as shown in FIGS. 1 and 2 as it is. Therefore, in the second embodiment, a mechanism (reticle carry-in / out mechanism) for taking in and out a reticle suitable for the reticle storage box 400 is provided in the exposure apparatus.
図 1 3には、 レチクル保管箱 4 0 0からのレチクルの搬出及びレチクル保管 箱 4 0 0に対するレチクルの搬入に適したレチクル搬出入機構の一例が示され ている。 このレチクル搬出入機構 5 0 0は、 金属べローズ又はフィルム部材等 の伸縮性の部材 4 3 5を介してレチクルステージ室 1 5に接続された筐体とし ての隔壁 4 3 3と、 該隔壁 4 3 3の内部底面に設けられた上下動ュニッ卜 4 7 0と、 隔壁 4 3 3の一 X側に形成されたレチクル室 1 5に連通する開口 4 3 3 aを開閉自在とするスライド開閉式の口一ドロック扉 4 3 4と、 隔壁 4 3 3に 概ね囲まれた空間に低吸収性ガスを供給する給気管 4 3 6及び該空間のガスを 排気する排気管 4 3 7とを備えている。  FIG. 13 shows an example of a reticle carry-in / out mechanism suitable for carrying out a reticle from the reticle storage box 400 and carrying a reticle into / from the reticle storage box 400. The reticle loading / unloading mechanism 500 includes a partition wall 43 3 as a housing connected to the reticle stage chamber 15 via an elastic member 4 35 such as a metal bellows or a film member; 4 3 3 Vertical opening / closing unit 4 7 0 provided on the inner bottom surface, and opening 4 3 3 a that communicates with reticle chamber 15 formed on one X side of partition 4 3 3 Equipped with a mouth-type door lock door 4 3 4, an air supply pipe 4 3 6 for supplying a low-absorbent gas to a space generally surrounded by the partition wall 4 3 3, and an exhaust pipe 4 3 7 for exhausting gas in the space. ing.
前記隔壁 4 3 3には、 前記開口 4 3 3 aの他に、 その上壁部分に前記レチク ル保管箱 4 0 0の下部側壁部材 4 0 5よりも一回り大きく、 鍔部材 4 0 6より も一回り小さい矩形開口 4 3 3 bが形成されている。 この矩形開口 4 3 3 bの 周囲には、 Oリング等から成るシール部材 4 2 0が固着されている。  In addition to the opening 43 a, the partition wall 43 33 has an upper wall portion which is one size larger than the lower side wall member 400 of the reticle storage box 400 and a flange member 400. In addition, a rectangular opening 4 33 b that is one size smaller than that is formed. A seal member 420 made of an O-ring or the like is fixed around the rectangular opening 4333b.
前記上下動ュニット 4 7 0は、 X軸方向一側と他側の端部に段部 4 7 1 a , 4 7 1 bを有する支持部材 4 7 1と、 該支持部材 4 7 1の段部 4 7 1 a , 4 7 1 bに設けられ、 前記レチクル保管箱 4 0 0の回転ロック機構 4 1 4 A , 4 1 4 Bを開閉する開閉機構 4 3 1 a , 4 3 1 bと、 支持部材 4 7 1をそれぞれ下 側から支持するとともに上下方向に駆動する駆動装置 4 3 2 a , 4 3 2 bとを 備えている。  The vertically moving unit 47 0 has a supporting member 47 1 having steps 47 1 a and 47 1 b at one end and the other end in the X-axis direction, and a step of the supporting member 47 1 4 7 1 a, 4 7 1 b Provided on 4 1 1 a, 4 7 1 b, Rotation lock mechanism 4 1 4 A, 4 1 4 B of reticle storage box 4 1 4 A Driving devices 4332a and 4332b are provided to support the members 471 from below and to drive the members in the vertical direction.
前記一方の開閉機構 4 3 1 aは、 前記レチクル保管箱 4 0 0の回転ロック機 構 4 1 4 Aの下端部分とほぼ同形状を有する切欠き部 4 5 1 aを有する筒部材 4 5 1 と、 該筒部材 4 5 1を上下方向 (Z軸方向) の軸を回転軸として回転駆 動する不図示の駆動機構とを備えている。 他方の開閉機構 431 bも同様に構 成され、 切欠き 451 aと同形状の切欠き 452 aを有する筒部材 452と、 該筒部材 452を Z軸方向の軸回りに回転駆動する不図示の駆動機構とを備え ている。 The one opening / closing mechanism 431 a is a cylindrical member 4 5 1 having a cutout 4 5 1 a having substantially the same shape as the lower end portion of the rotation locking mechanism 4 14 A of the reticle storage box 400. And a rotary drive with the cylindrical member 45 1 as the vertical axis (Z-axis direction). And a driving mechanism (not shown) that moves. The other opening / closing mechanism 431 b is similarly configured, and includes a cylindrical member 452 having a notch 452 a having the same shape as the notch 451 a, And a drive mechanism.
以上のように構成されるレチクル搬出入機構 500を備えた本第 2の実施形 態の露光装置では、 レチクル保管箱 400からレチクル室 1 5に対するレチク ル Rの搬送は次のようにして行われる。  In the exposure apparatus of the second embodiment having the reticle loading / unloading mechanism 500 configured as described above, the reticle R is transported from the reticle storage box 400 to the reticle chamber 15 as follows. .
まず、 図 1 3の状態から、 レチクル保管箱 400が搬送されてくると (この 搬送については後述する)、図 1 4 Aに示されるように、 レチクル保管箱 400 の下半部 (下部側壁部材 405部分) が隔壁 433の開口 433 bに揷入され た状態となる。 この場合、 レチクル保管箱 400は、 鍔部材 406を介して隔 壁 433の開口 433 bの周囲部分によって支持され、 その鍔部材 406と隔 壁 433との間にはシール部材 420が設けられているので、 隔壁 433、 口 ードロック扉 434、 及びレチクル保管箱 400 (及びシール部材 420) に よって囲まれた空間 480が気密状態となっている (以下においては、 この気 密状態の空間を 「気密空間 480」 と呼ぶものとする)。すなわち、 本実施形態 では、 隔壁 433及び部材 435を含んで経路区画部材が構成されている。 そして、 この気密空間 480が形成された状態で給気管 436及び排気管 4 First, when the reticle storage box 400 is transported from the state shown in Fig. 13 (this transport will be described later), as shown in Fig. 14A, the lower half of the reticle storage box 400 (the lower side wall member). 405) is inserted into the opening 433b of the partition 433. In this case, the reticle storage box 400 is supported by the peripheral portion of the opening 433 b of the partition wall 433 via the flange member 406, and a seal member 420 is provided between the flange member 406 and the partition wall 433. Therefore, the space 480 surrounded by the bulkhead 433, the mouth lock door 434, and the reticle storage box 400 (and the sealing member 420) is in an airtight state (hereinafter, this airtight space is referred to as “airtight space”). 480 "). That is, in the present embodiment, the path partitioning member includes the partition 433 and the member 435. Then, with this airtight space 480 formed, the air supply pipe 436 and the exhaust pipe 4
37によリ気密空間 480内部のガス置換が行われ、 該ガス置換の終了が不図 示のガスセンサ等により確認されると、 上下動ュニッ卜 470の支持部材 47 1が駆動装置 432 a, 432 bにより上方に駆動され、 回転ロック機構 41When the gas replacement inside the airtight space 480 is performed by 37 and the completion of the gas replacement is confirmed by a gas sensor or the like (not shown), the support member 471 of the vertically moving unit 470 is driven by the driving devices 432a, 432 Driven upward by b, rotation lock mechanism 41
4 A, 41 4 Bと開閉機構 43 1 a, 43 1 bの切欠き部 451 a, 452 a が嵌合した図 1 4Aの状態となる。 そして、 開閉機構 431 a, 43 1 bの筒 部材 45 1 , 452が不図示の駆動装置により回転駆動されることにより、 回 転ロック機構 41 4 A, 41 4 Bが解除される。 4A, 414B and the notch parts 451a, 452a of the opening / closing mechanism 431a, 431b are fitted as shown in Fig. 14A. Then, the cylinder members 45 1, 452 of the opening / closing mechanisms 431 a, 431 b are rotationally driven by a driving device (not shown), whereby the rotation lock mechanisms 414 A, 414 B are released.
このように回転ロック機構 41 4 A, 41 4Bが解除された状態で、 上下動 ユニット 4 7 0の駆動装置 4 3 2 a , 4 3 2 bにより支持部材 4 7 1が下降駆 動されることにより、 図 1 4 Bに示されるように、 レチクル保管箱本体 4 5 0 から底部開閉部 4 6 0が離脱された状態となる。 With the rotation lock mechanisms 41 4 A and 41 4 B released in this way, As the supporting member 471 is driven downward by the driving devices 432a and 432b of the unit 470, as shown in FIG. The opening / closing part 460 is in a detached state.
—方、 上記底部開閉部 4 6 0とレチクル保管箱本体 4 5 0の離脱動作 (底部 のオープン動作) と並行して、 隔壁 4 3 3の開口 4 3 3 aを閉塞しているロー ドロック扉 4 3 4が下側にスライド駆動される。 これにより、 開口 4 3 3 aは 開放状態となるので、 レチクル室 1 5内に収容されたレチクル搬送ロボット 6 のアームが気密空間 4 8 0内に侵入し、 レチクル搬送ロポット 6のアームによ リレチクル Rが受け取られると、 そのアームの伸縮、 旋回動作により、 レチク ル Rがレチクル室 1 5内に搬入される。  The load lock door that closes the opening 4 3 3 a of the partition wall 4 33 in parallel with the detachment operation (opening operation of the bottom) of the bottom opening / closing section 4 60 and the reticle storage box body 4 50. 4 3 4 is slid downward. As a result, the opening 4 3 3 a is opened, so that the arm of the reticle transfer robot 6 housed in the reticle chamber 15 enters the airtight space 480 and the reticle is transferred by the arm of the reticle transfer robot 6. When R is received, the reticle R is carried into the reticle chamber 15 by the extension and retraction of the arm and the turning operation.
なお、 レチクル室 1 5からレチクル保管箱 4 0 0へのレチクル Rの搬入は、 上記と反対の動作によリ行われる。  The loading of the reticle R from the reticle chamber 15 to the reticle storage box 400 is performed by the opposite operation.
なお、 本第 2の実施形態では、 図 1に示される開閉部材 8 2からレチクル保 管箱 4 0 0へのレチクル Rの搬入に際しても、 図 1 3に示されるような構成の レチクル搬出入機構が必要となる。 この場合には、 レチクルをガス置換された 環境下で扱う必要がないので、 レチクル搬出入機構としては、 図 1 3に示され るレチクル搬出入機構 5 0 0から隔壁及びガス置換のための給気管及び排気管 を除いたような、 簡易な構成を採用することができる。  In the second embodiment, when the reticle R is loaded from the opening / closing member 82 shown in FIG. 1 to the reticle storage box 400, the reticle loading / unloading mechanism having the configuration shown in FIG. Is required. In this case, there is no need to handle the reticle in a gas-replaced environment, and the reticle loading / unloading mechanism is supplied from the reticle loading / unloading mechanism 500 shown in Fig. 13 to supply the bulkhead and gas for replacement. A simple configuration such as excluding the trachea and the exhaust pipe can be adopted.
また、 本第 2の実施形態のように、 上下開閉式のレチクル搬出入機構を採用 した場合には、 図 1に示されるエレべ一タュニット 1 3 0のみではレチクル取 リ出し位置等の制約が大きくなるので、 露光装置内 (更に詳しくはエレベータ ュニッ卜 1 3 0とレチクル搬出入機構 5 0 0との間) にレチクル保管箱搬送用 の横スラィダゃ上下スラィダあるいは保管箱搬送用の口ボットを増設すること が望ましい。  Further, when a reticle loading / unloading mechanism that can be opened / closed as in the second embodiment is employed, only the elevator unit 130 shown in FIG. 1 restricts the reticle unloading position. Because of the size of the reticle, the horizontal slider for transporting the reticle storage box and the vertical slider or the mouth bot for transporting the storage box are installed in the exposure apparatus (more specifically, between the elevator unit 130 and the reticle loading / unloading mechanism 500). It is desirable to add more.
以上詳細に説明したレチクル保管箱 4 0 0及びレチクル搬出入機構 5 0 0な どを備えた本第 2の実施形態に係る露光装置によると、 前述の第 1の実施形態 と同等の効果を得ることができる。 また、 本第 2の実施形態においても、 その 構造上矛盾がない限りおいて、 前述した第 1の実施形態で説明した同様の種々 の変形例を採用することができる。 According to the exposure apparatus according to the second embodiment including the reticle storage box 400 and the reticle loading / unloading mechanism 500 described in detail above, the first embodiment described above. The same effect can be obtained. Also, in the second embodiment, various similar modifications described in the first embodiment can be adopted as long as there is no structural inconsistency.
なお、 上記第 2の実施形態においては、 不図示の天井搬送系により、 その内 部に複数枚のレチクルを収容したレチクルキャリア 4 4を本体チャンバ 1の搬 出入ポート 1 aに搬入する場合を前提として説明した。 しかしながら、 レチク ルキヤリア 4 4としては、 上記第 2の実施形態におけるレチクル保管箱 4 0 0 と同様の構成を採用することも可能である。 なお、 以下の説明では、 このよう なレチクルキャリアを 「改良レチクルキャリア」 と呼ぶものとする。  In the second embodiment, it is assumed that a reticle carrier 44 containing a plurality of reticles therein is loaded into the loading / unloading port 1a of the main chamber 1 by a ceiling transport system (not shown). It was explained as. However, as the reticle carrier 44, a configuration similar to that of the reticle storage box 400 in the second embodiment can be adopted. In the following description, such a reticle carrier is referred to as “improved reticle carrier”.
この場合、 本体チャンバ 1内に収容されているレチクル搬送系 1 2 0を省略 することができるとともに、 光洗浄装置 2 2を本体チャンバ 1の外部に配置す ることができるので、 本体チャンバ 1 (すなわち、 露光装置全体) の小型化を 図ることができる。 すなわち、 改良レチクルキャリアを採用すると、 図 1 3に 示されるレチクル搬出入機構 5 0 0を、 本体チャンバ 1の搬出入ポートとして 利用することができる。  In this case, the reticle transport system 120 housed in the main chamber 1 can be omitted, and the optical cleaning device 22 can be arranged outside the main chamber 1. That is, the size of the entire exposure apparatus can be reduced. That is, when the improved reticle carrier is employed, the reticle carrying-in / out mechanism 500 shown in FIG. 13 can be used as a carrying-in / out port of the main body chamber 1.
この場合、 レチクル Rの搬送は、 次のようにして行われる。  In this case, the reticle R is transported as follows.
まず、 レチクル Rが内部に収容された改良レチクルキャリアを光洗浄装置内 に搬送し、 改良レチクルキャリア及び該改良レチクルキャリア内に収容された レチクル Rを光洗浄するとともに、 改良レチクルキヤリア内及びレチクル Rの 保護空間内のガスを窒素又は希ガス等によリ置換する。  First, the improved reticle carrier in which the reticle R is housed is transported into the optical cleaning device, and the improved reticle carrier and the reticle R housed in the improved reticle carrier are optically cleaned, and the inside of the improved reticle carrier and the reticle R are cleaned. Replace the gas in the protection space with nitrogen or a rare gas.
そして、 光洗浄及びガス置換終了後、 改良レチクルキャリアをレチクル搬出 入機構 5 0 0まで搬送する。 ただし、 この場合、 レチクル搬出入機構 5 0 0を 構成する隔壁 4 3 3内は、 開口 4 3 3 bに改良レチクルキャリアが挿入される までは、 大気雰囲気であるため、 開口 4 3 3 bに改良レチクルキャリアが挿入 された段階で、 隔壁 4 3 3内を窒素又は希ガス等 (改良レチクルキャリア内の ガスと同一のガス) により置換する。 このガス置換により隔壁 4 3 3内のガス 濃度が所定濃度に達した段階で、 改良レチクルキャリアの回転ロック機構を解 除する。 Then, after the completion of the optical cleaning and the gas replacement, the improved reticle carrier is transported to the reticle loading / unloading mechanism 500. However, in this case, since the inside of the partition 433 constituting the reticle loading / unloading mechanism 500 is in an atmospheric atmosphere until the improved reticle carrier is inserted into the opening 433 b, the inside of the opening 433 b is not closed. When the improved reticle carrier is inserted, the inside of the partition 433 is replaced with nitrogen or a rare gas (the same gas as the gas in the improved reticle carrier). By this gas replacement, the gas in the partition 4 3 3 When the density reaches the specified density, release the rotation lock mechanism of the improved reticle carrier.
その後は、上記第 2の実施形態と同様に、改良レチクルキャリアが開放され、 レチクル Rがレチクル搬送ロポット 6によりレチクル室 1 5内に搬送されると ともに、 レチクルステージ R S T上にロードされる。  Thereafter, as in the second embodiment, the improved reticle carrier is opened, the reticle R is transferred into the reticle chamber 15 by the reticle transfer robot 6, and is loaded on the reticle stage R ST.
なお、 上記のように改良レチクルキャリアを用いる場合には、 レチクル搬出 入機構 5 0 0を複数設けておき、 次に使用されるレチクルをレチクル室 1 5内 に搬送できる状態で待機させておくことが望ましい。  When using the improved reticle carrier as described above, a plurality of reticle loading / unloading mechanisms 500 should be provided, and the reticle to be used next should be put on standby in a state where it can be transported into the reticle chamber 15. Is desirable.
なお、 上記の説明では特に明示しなかったが、 照明系ハウジング 2、 レチク ル室 1 5、 投影光学系 P Lの鏡筒、 ウェハ室 4 0等の内部は、 不図示のェンバ ィロンメンタル .チャンバと同程度の精度で温度調整が行われている。 また、 上では特に明示しなかったが、 照明系ハウジング 2、 投影光学系 P Lの鏡筒等 の低吸収性ガスが直接接触する部分は、 前述したレチクル室 1 5、 ウェハ室 4 0の隔壁と同様にステンレス鋼 (S U S ) 等の脱ガスの少ない材料で構成する ことが望ましい。 あるいは、 照明系ハウジング 2、 レチクル室 1 5、 投影光学 系 P Lの鏡筒、 ウェハ室 4 0等の低吸収性ガスが直接接触する部分にはその表 面に炭化水素など吸収性ガスの脱ガスの発生が少ないフッ素を含有する樹脂等 のコーティングを施しても良い。 なお、 ウェハ室 4 0を設けずに、 投影光学系 P Lのウェハ側端部とウェハとの間の露光光の光路空間を局所的に低吸収性ガ スで満たしても良い。  Although not explicitly stated in the above description, the interior of the illumination system housing 2, the reticle chamber 15, the lens barrel of the projection optical system PL, the wafer chamber 40, and the like are not shown. Temperature adjustment is performed with the same accuracy as that of the above. Although not explicitly stated above, the parts of the illumination system housing 2 and the column of the projection optical system PL that come into direct contact with the low-absorbing gas are the same as the partition walls of the reticle chamber 15 and the wafer chamber 40 described above. Similarly, it is desirable to use a material with low degassing such as stainless steel (SUS). Alternatively, the surface of low-absorbent gas, such as the illumination system housing 2, the reticle chamber 15, the projection optical system PL lens barrel, and the wafer chamber 40, which is in direct contact with the gas, is degassed with an absorbent gas such as hydrocarbon. A coating such as a resin containing fluorine, which causes less occurrence of odor, may be applied. Note that the optical path space of the exposure light between the wafer-side end of the projection optical system PL and the wafer may be locally filled with a low-absorbing gas without providing the wafer chamber 40.
なお、 上記各実施形態では、 ステップ 'アンド■ リピート方式等の縮小投影 露光装置に本発明が適用された場合について説明したが、 本発明の適用範囲が これに限定されないことは勿論である。 すなわち露光時にレチクル Rとウェハ Wを相対走査するステップ■アンド 'スキャン方式の走査型露光装置にも本発 明は好適に適用できる。  In each of the above embodiments, the case where the present invention is applied to a reduced projection exposure apparatus such as a step-and-repeat method has been described. However, the scope of the present invention is not limited to this. That is, the present invention can be suitably applied to a step-and-scan type scanning exposure apparatus that relatively scans the reticle R and the wafer W during exposure.
なお、 複数のレンズから構成される照明光学系、 投影光学系を露光装置本体 に組み込み、 光学調整をするとともに、 多数の機械部品からなるウェハス亍ー ジ (スキャン型の場合はレチクルステージも) を露光装置本体に取り付けて配 線や配管を接続し、 レチクル室 1 5、 ウェハ室 4 0を構成する各隔壁等を組み 付け、 低吸収性ガスの給気系、 排気系を含むガスの配管系を接続し、 制御装置 等の制御系に対する各部の接続を行い、更に総合調整 (電気調整、動作確認等) をすることにより、 上記実施形態の露光装置本体 1 0 0等の本発明に係る露光 装置を製造することができる。 なお、 露光装置の製造は温度及びクリーン度等 が管理されたクリーンルームで行うことが望ましい。 The illumination optical system and projection optical system composed of multiple lenses are In addition to optical adjustment, a wafer stage consisting of a number of mechanical parts (and a reticle stage in the case of a scan type) is attached to the exposure equipment body, and wiring and piping are connected. Assemble each partition that composes the chamber 40, connect the gas piping system including the low-absorbent gas supply system and exhaust system, connect each part to the control system such as a control device, and make general adjustments. By performing (electric adjustment, operation confirmation, etc.), the exposure apparatus according to the present invention, such as the exposure apparatus main body 100 of the above embodiment, can be manufactured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
《デバイス製造方法》  《Device manufacturing method》
次に上述した露光装置をリソグラフイエ程で使用するデバイスの製造方法の 実施形態について説明する。  Next, an embodiment of a device manufacturing method using the above-described exposure apparatus in a lithographic process will be described.
図 1 5には、 デバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 C C D、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートが示され ている。 図 1 5に示されるように、 まず、 ステップ 3 0 1 (設計ステップ) 【こ おいて、 デバイスの機能■性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。 引き続き、 ステップ 3 0 2 (マスク製作ステップ) において、 設計した回路パターンを形成したマ スクを製作する。 一方、 ステップ 3 0 3 (ウェハ製造ステップ) において、 シ リコン等の材料を用いてウェハを製造する。  Fig. 15 shows a flowchart of an example of manufacturing devices (semiconductor chips such as IC and LSI, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). As shown in Fig. 15, first, step 301 (design step) [where the function of the device is designed and the performance is designed (for example, the circuit design of the semiconductor device, etc.) Perform pattern design. Subsequently, in step 302 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 303 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 3 0 4 (ウェハ処理ステップ) において、 ステップ 3 0 1〜 ステップ 3 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 3 0 5 (デバイス組立てステップ) において、 ステップ 3 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 3 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。 最後に、 ステップ 3 0 6 (検査ステップ) において、 ステップ 3 0 5で作成 されたデバイスの動作確認テスト、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。 Next, in step 304 (wafer processing step), using the mask and wafer prepared in steps 301 to 303, an actual circuit is formed on the wafer by lithography technology or the like as described later. Etc. are formed. Next, in step 304 (device assembling step), device assembling is performed using the wafer processed in step 304. This step 305 includes processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation) as necessary. Finally, in step 360 (inspection step), inspections such as an operation confirmation test and a durability test of the device created in step 305 are performed. After these steps, the device is completed and shipped.
図 1 6には、 半導体デバイスにおける、 上記ステップ 3 0 4の詳細なフロー 例が示されている。 図 1 6において、 ステップ 3 1 1 (酸化ステップ) におい てはウェハの表面を酸化させる。 ステップ 3 1 2 ( C V Dステップ) において はウェハ表面に絶縁膜を形成する。 ステップ 3 1 3 (電極形成ステップ) にお いてはウェハ上に電極を蒸着によって形成する。 ステップ 3 1 4 (イオン打ち 込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 3 1 1 〜ステップ 3 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成してお リ、 各段階において必要な処理に応じて選択されて実行される。  FIG. 16 shows a detailed flow example of the above step 304 in the semiconductor device. In Fig. 16, in step 311 (oxidation step), the surface of the wafer is oxidized. In step 312 (CVD step), an insulating film is formed on the wafer surface. In step 3 13 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 3 14 (ion implantation step), ions are implanted into the wafer. Each of the above steps 311 to 3114 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 3 1 5 (レジスト形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 3 1 6 (露光ステップ) において、 上で説明したリソグラフイシ ステム (露光装置) 及び露光方法によってマスクの回路パターンをウェハに転 写する。 次に、 ステップ 3 1 7 (現像ステップ) においては露光されたウェハ を現像し、 ステップ 3 1 8 (エッチングステップ) において、 レジス卜が残存 している部分以外の部分の露出部材をエッチングにより取り去る。 そして、 ス 亍ップ 3 1 9 (レジスト除去ステップ) において、 エッチングが済んで不要と なったレジストを取り除く。  In each stage of the wafer process, when the above-mentioned pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 315 (resist forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 316 (exposure step), the circuit pattern of the mask is transferred to the wafer by the lithographic system (exposure apparatus) and the exposure method described above. Next, in step 317 (development step), the exposed wafer is developed, and in step 318 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 319 (resist removing step), unnecessary resist after etching is removed.
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。  By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 3 1 6 ) において上記実施形態の露光装置が用いられるので、 高精度な露光 を行うことができる。 従って、 微細パターンが形成された高集積度のマイクロ デバイスの生産性を向上することができる。 産業上の利用可能性 If the device manufacturing method of the present embodiment described above is used, the exposure apparatus of the above embodiment is used in the exposure step (step 316), so that highly accurate exposure can be performed. Therefore, a highly integrated micro Device productivity can be improved. Industrial applicability
以上説明したように、 本発明のマスク保管装置は、 光洗浄が行われるマスク の保管に適している。 また、 本発明の露光装置は、 物体上にマスクのパターン を転写するのに適している。 また、 本発明のデバイス製造方法は、 マイクロデ バイスの製造に適している。  As described above, the mask storage device of the present invention is suitable for storing a mask to be subjected to light cleaning. Further, the exposure apparatus of the present invention is suitable for transferring a mask pattern onto an object. Further, the device manufacturing method of the present invention is suitable for manufacturing micro devices.

Claims

請 求 の 範 囲 The scope of the claims
1 . マスクを保管するマスク保管装置であって、 1. A mask storage device for storing a mask,
マスクを収容可能な内部空間を有し、 前記マスクの出し入れが可能な開口が 形成された保管装置本体と ;  A storage device main body having an internal space capable of accommodating the mask, and having an opening through which the mask can be taken in and out;
前記保管装置本体の前記開口を開閉する開閉部と ; を備え、  An opening and closing unit for opening and closing the opening of the storage device main body;
前記保管装置本体及び前記開閉部の少なくとも一部に、 前記内部空間内に収 容された前記マスクに対する洗浄用の光を透過させる透過部が設けられている ことを特徴とするマスク保管装置。  A mask storage device, wherein a transmission unit that transmits light for cleaning the mask contained in the internal space is provided at least in a part of the storage device body and the opening / closing unit.
2 . 請求項 1に記載のマスク保管装置において、 2. The mask storage device according to claim 1,
前記保管装置本体は、 全体として箱型の形状を有することを特徴とするマス ク保管装置。  The mask storage device, wherein the storage device body has a box shape as a whole.
3 . 請求項 2に記載のマスク保管装置において、 3. The mask storage device according to claim 2,
前記保管装置本体の四方の側壁のうちの少なくとも 1つの側壁である特定側 壁に前記開口が形成され、  The opening is formed in a specific side wall that is at least one of the four side walls of the storage device main body,
前記開閉部は、 前記開口に対応して前記保管装置本体の前記特定側壁に設け られていることを特徴とするマスク保管装置。  The mask storage device, wherein the opening and closing unit is provided on the specific side wall of the storage device main body corresponding to the opening.
4 . 請求項 3に記載のマスク保管装置において、 4. The mask storage device according to claim 3,
前記開閉部は、 前記保管装置本体に所定の軸を中心として回動可能に取り付 けられた開閉扉であることを特徴とするマスク保管装置。  The mask storage device, wherein the opening / closing unit is an opening / closing door that is rotatably attached to the storage device main body around a predetermined axis.
5 . 請求項 3に記載のマスク保管装置において、 前記開閉部は、 前記保管装置本体の前記特定側壁に、 該特定側壁に平行な面 内で移動可能に取り付けられたスライド扉であることを特徴とするマスク保管 5. The mask storage device according to claim 3, The mask storage, wherein the opening and closing unit is a slide door movably attached to the specific side wall of the storage device main body in a plane parallel to the specific side wall.
6 . 請求項 3に記載のマスク保管装置において、 6. The mask storage device according to claim 3,
前記開閉部は、 前記保管装置本体の前記特定側壁に取り付けられたゲートバ ルブであることを特徴とするマスク保管装置。  The mask storage device, wherein the opening and closing unit is a gate valve attached to the specific side wall of the storage device main body.
7 . 請求項 2に記載のマスク保管装置において、 7. The mask storage device according to claim 2,
前記保管装置本体の天井部及び底部の少なくとも一方の少なくとも一部に前 記透過部が設けられていることを特徴とするマスク保管装置。  A mask storage device, wherein the transmission unit is provided on at least a part of at least one of a ceiling portion and a bottom portion of the storage device body.
8 . 請求項 7に記載のマスク保管装置において、 8. The mask storage device according to claim 7,
前記透過部は、 前記保管装置本体の天井部及び底部の少なくとも一方の一部 を構成する窓ガラスであることを特徴とするマスク保管装置。  The mask storage device, wherein the transmission unit is a window glass forming at least one of a ceiling part and a bottom part of the storage device body.
9 . 請求項 1に記載のマスク保管装置において、 9. The mask storage device according to claim 1,
前記保管装置本体の底部に前記開口が形成され、  The opening is formed at the bottom of the storage device body,
前記開閉部は、 前記マスクを支持可能な支持部を有し、 前記開口を閉塞可能 で前記底部に対して着脱自在に係合する底部開閉部であることを特徴とするマ スク保管装置。  The mask storage device, wherein the opening / closing section is a bottom opening / closing section having a support section capable of supporting the mask, capable of closing the opening, and detachably engaging with the bottom section.
1 0 . 請求項 9に記載のマスク保管装置において、 10. The mask storage device according to claim 9,
前記保管装置本体及び前記底部開閉部の少なくとも一方に設けられ、 前記底 部開閉部の前記保管装置本体に対する係合状態をロックするロック機構を更に 備えるマスク保管装置。 A mask storage device, further comprising: a lock mechanism provided on at least one of the storage device main body and the bottom opening / closing portion to lock an engagement state of the bottom opening / closing portion with the storage device main body.
1 1 . 請求項 9に記載のマスク保管装置において、 11. The mask storage device according to claim 9,
前記底部開閉部の少なくとも一部に前記透過部が設けられていることを特徴 とするマスク保管装置。  The mask storage device, wherein the transmission unit is provided on at least a part of the bottom opening / closing unit.
1 2 . 請求項 1 1に記載のマスク保管装置において、 1 2. The mask storage device according to claim 11,
前記透過部は、 前記底部開閉部の一部を構成する窓ガラスであることを特徴 とするマスク保管装置。  The said transmission part is the window glass which comprises a part of said bottom opening / closing part, The mask storage apparatus characterized by the above-mentioned.
1 3 . 請求項 1に記載のマスク保管装置において、 13. The mask storage device according to claim 1,
前記保管装置本体及び前記開閉部の少なくとも一方に、 前記内部空間と外部 とを連通する通気孔が形成され、  At least one of the storage device main body and the opening / closing portion is formed with a ventilation hole that communicates the internal space with the outside,
前記通気孔を閉状態とする開閉弁機構を更に備えるマスク保管装置。  A mask storage device further comprising an on-off valve mechanism for closing the vent hole.
1 4 . 請求項 1 3に記載のマスク保管装置において、 14. In the mask storage device according to claim 13,
前記開閉弁機構は、 前記通気孔が形成された部材の内部に配置された弁部材 と、 前記通気孔を閉状態とするために、 該弁部材を前記通気孔に向けて付勢す る付勢部材とを有することを特徴とするマスク保管装置。  The on-off valve mechanism includes a valve member disposed inside the member having the vent hole, and an urging member for urging the valve member toward the vent hole to close the vent hole. A mask storage device comprising: a biasing member.
1 5 . 請求項 1 3に記載のマスク保管装置において、 15. The mask storage device according to claim 13,
前記開閉弁機構は、 前記通気孑 Lが形成された部材の外面側に設けられ、 一端 が前記通気孔に連通するとともに他端が外部に連通した筒状部材と、 該筒状部 材の内部を移動可能で通気孔とは反対側に付勢されて前記筒状部材の内部と外 部との連通を閉鎖する弁部材とを有することを特徴とするマスク保管装置。  The opening / closing valve mechanism is provided on an outer surface side of a member on which the ventilator L is formed, and a tubular member having one end communicating with the vent hole and the other end communicating with the outside, and an inside of the tubular member. A mask member having a valve member that is movable and is urged to the side opposite to the vent hole to close communication between the inside and the outside of the tubular member.
1 6 . 請求項 1に記載のマスク保管装置において、 前記内部空間のガスは、 所定のガスに置換され、 1 6. The mask storage device according to claim 1, The gas in the internal space is replaced with a predetermined gas,
前記内部空間内に設けられ、 前記内部空間内の所定のガスをイオン化するィ オン化装置を更に備えるマスク保管装置。  A mask storage device provided in the internal space, further comprising an ionization device for ionizing a predetermined gas in the internal space.
1 7 . 請求項 1に記載のマスク保管装置において、 17. The mask storage device according to claim 1,
前記内部空間に収容される前記マスクは、 パターンが形成された面を有する マスク基板と、 一端部が前記マスク基板上の前記パターン形成領域の周囲に設 けられる枠部材と、 前記枠部材の他端部に設けられ、 前記パターン形成領域を 保護するペリクルとを有し、  A mask substrate having a pattern-formed surface; a frame member having one end provided around the pattern formation region on the mask substrate; A pellicle that is provided at an end and protects the pattern forming region;
前記保管装置本体は、 前記マスク基板と前記枠部材と前記べリクルとで形成 される保護空間内のガスを所定のガスに置換する保護空間用ガス置換機構を有 することを特徴とするマスク保護装置。  The storage device main body has a protection space gas replacement mechanism for replacing a gas in a protection space formed by the mask substrate, the frame member, and the veicle with a predetermined gas. apparatus.
1 8 . 露光光のもとで、 マスクに形成されたパターンを物体上に転写する露 光装置であって、 18. An exposure device that transfers a pattern formed on a mask onto an object under exposure light,
内部空間にマスクを収容可能で、 そのマスクの出し入れが可能な構造を有す るマスク保管装置を、 所定経路に沿って前記露光光の光路近傍の所定位置に搬 送する保管装置搬送機構と ;  A storage device transport mechanism for transporting a mask storage device having a structure capable of accommodating a mask in the internal space and capable of taking the mask in and out, to a predetermined position near the optical path of the exposure light along a predetermined path;
前記所定位置に搬送された前記マスク保管装置の内部空間から前記露光光の 光路を含む空間まで、 所定雰囲気の第 1の搬送経路に沿って前記マスクを搬送 するマスク搬送機構と ; を備える露光装置。  A mask transport mechanism that transports the mask along a first transport path of a predetermined atmosphere from an internal space of the mask storage device transported to the predetermined position to a space including an optical path of the exposure light. .
1 9 . 請求項 1 8に記載の露光装置において、 19. The exposure apparatus according to claim 18, wherein
前記マスク保管装置として、  As the mask storage device,
前記内部空間を有し、 前記マスクの出し入れが可能な開口が形成された保管 装置本体と、 前記保管装置本体の前記開口を開閉する開閉部と、 を備えた開閉 型の保管装置が用いられることを特徴とする露光装置。 A storage device main body having the internal space and formed with an opening through which the mask can be taken in and out, and an opening / closing unit that opens and closes the opening of the storage device main body. An exposure apparatus, wherein a mold storage device is used.
2 0 . 請求項 1 9に記載の露光装置において、 20. The exposure apparatus according to claim 19,
前記第 1の搬送経路は、 前記露光光の光路を含む空間と、 前記所定位置に搬 送された前記マスク保管装置の内部空間とを連通させることによって形成され ることを特徴とする露光装置。  The exposure apparatus, wherein the first transport path is formed by connecting a space including an optical path of the exposure light with an internal space of the mask storage device transported to the predetermined position.
2 1 . 請求項 2 0に記載の露光装置において、 21. The exposure apparatus according to claim 20, wherein
前記露光光の光路を含む空間を囲む隔壁に対して、 前記所定位置に搬送され た前記マスク保管装置を接続する中空形状の経路区画部材を更に備える露光装  An exposure apparatus further comprising a hollow path partitioning member for connecting the mask storage device conveyed to the predetermined position with respect to a partition wall surrounding a space including an optical path of the exposure light;
2 2 . 請求項 2 1に記載の露光装置において、 22. In the exposure apparatus according to claim 21,
前記保管装置本体は、 全体として箱型の形状を有し、 前記保管装置本体の四 方の側壁のうちの少なくとも 1つの側壁である特定側壁に前記開閉部によって 開閉される前記開口が形成され、  The storage device main body has a box shape as a whole, and the opening that is opened and closed by the opening / closing portion is formed in a specific side wall that is at least one of four side walls of the storage device main body,
前記経路区画部材は、 前記所定位置に搬送された前記保管装置の前記特定側 壁に一端が接続可能な筒状の伸縮自在のべローズと、 該べローズの他端と前記 隔壁とを接続する中空の接続部材とを含むことを特徴とする露光装置。  The path partitioning member connects a cylindrical expandable bellows having one end connectable to the specific side wall of the storage device conveyed to the predetermined position, and connects the other end of the bellows to the partition wall. An exposure apparatus comprising: a hollow connection member.
2 3 . 請求項 2 1に記載の露光装置において、 23. The exposure apparatus according to claim 21,
前記保管装置本体の底部に前記開口が形成され、 前記開閉部は、 前記マスク を支持可能な支持部を有し、 前記開口部を閉塞可能で前記底部に対して着脱自 在に係合する底部開閉部であり、  The opening is formed at the bottom of the storage device main body, the opening / closing part has a support part capable of supporting the mask, and the bottom part capable of closing the opening and being detachably attached to the bottom part. Opening and closing part,
前記経路区画部材は、 前記隔壁内部の空間に連通可能な状態で前記隔壁に接 続され、 前記所定位置に搬送された前記保管装置の底部が嵌合可能な開口がそ の天井壁に形成された筐体を含むことを特徴とする露光装置。 The path partitioning member is connected to the partition wall so as to be able to communicate with the space inside the partition wall, and has an opening into which the bottom of the storage device transported to the predetermined position can be fitted. An exposure apparatus, comprising: a housing formed on a ceiling wall of the exposure apparatus.
2 4 . 請求項 2 1に記載の露光装置において、 24. In the exposure apparatus according to claim 21,
前記経路区画部材には、 給気管と排気管とが接続されていることを特徴とす る露光装置。  An exposure apparatus, wherein an air supply pipe and an exhaust pipe are connected to the path partitioning member.
2 5 . 請求項 1 8に記載の露光装置において、 25. The exposure apparatus according to claim 18, wherein
前記マスク保管装置には、 少なくとも一部に所定波長の紫外線を透過させる 透過部が設けられていることを特徴とする露光装置。  An exposure apparatus, characterized in that at least a part of the mask storage device is provided with a transmission part that transmits ultraviolet light of a predetermined wavelength.
2 6 . 請求項 2 5に記載の露光装置において、 26. The exposure apparatus according to claim 25,
前記マスク保管装置に対し、 前記紫外線を照射して、 前記マスク保管装置の 光洗浄及び前記透過部を介した前記マスクの光洗浄の少なくとも一方を行う光 洗浄装置を更に備え、  The mask storage device further includes a light cleaning device that irradiates the ultraviolet light to perform at least one of light cleaning of the mask storage device and light cleaning of the mask through the transmission unit.
前記保管装置搬送機構は、 前記マスク保管装置を前記所定位置と前記光洗浄 装置との間の第 2の搬送経路に沿って搬送することを特徴とする露光装置。  An exposure apparatus, wherein the storage device transport mechanism transports the mask storage device along a second transport path between the predetermined position and the optical cleaning device.
2 7 . 請求項 2 6に記載の露光装置において、 27. The exposure apparatus according to claim 26,
前記光洗浄装置は、 前記マスクの洗浄を行う装置であり、  The light cleaning device is a device for cleaning the mask,
前記光洗浄装置により前記マスクの前記光洗浄が開始されるの 先立って前 記マスク保管装置内のガスを所定のガスに置換するガス置換機構を更に備える  Prior to the start of the optical cleaning of the mask by the optical cleaning device, a gas replacement mechanism for replacing gas in the mask storage device with a predetermined gas is further provided.
2 8 . 請求項 2 7に記載の露光装置において、 28. The exposure apparatus according to claim 27,
前記ガス置換機構は、 前記光洗浄装置に設けられていることを特徴とする露 光装置。 The exposure apparatus, wherein the gas replacement mechanism is provided in the optical cleaning device.
2 9 . 請求項 2 7に記載の露光装置において、 29. The exposure apparatus according to claim 27,
前記マスク保管装置は、 その一部に形成され、 前記内部空間と外部とを連通 する通気孔を閉状態とする開閉弁機構を更に備え、  The mask storage device further includes an opening / closing valve mechanism that is formed in a part thereof and that closes a ventilation hole that communicates the internal space with the outside,
前記ガス置換機構は、 前記開閉弁機構を開状態として、 前記通気孔を介して 前記内部空間に前記所定のガスを供給するガス供給機構を有することを特徴と する露光装置。  An exposure apparatus, wherein the gas replacement mechanism has a gas supply mechanism that supplies the predetermined gas to the internal space through the vent hole with the on-off valve mechanism in an open state.
3 0 . 請求項 2 9に記載の露光装置において、 30. The exposure apparatus according to claim 29,
前記ガス置換機構は、前記内部空間内の特定ガスの濃度を検知するセンサと、 該センサの出力に基づき、 前記特定ガスの濃度を調整する調整装置と、 を更に 有することを特徴とする露光装置。  An exposure apparatus, wherein the gas replacement mechanism further comprises: a sensor that detects a concentration of the specific gas in the internal space; and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. .
3 1 . 請求項 3 0に記載の露光装置において、 31. The exposure apparatus according to claim 30, wherein
前記特定ガスは、 酸素又は水蒸気であることを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the specific gas is oxygen or water vapor.
3 2 . 請求項 2 9に記載の露光装置において、 32. In the exposure apparatus according to claim 29,
前記マスク保管装置には、 前記通気孔が少なくとも 2つ形成され、 前記マス ク保管装置は、 前記通気孔に個別に対応する複数の前記開閉弁機構を有し、 前記ガス置換機構は、 前記ガス供給機構が前記内部空間に前記所定のガスを 供給するために開状態とした開閉弁機構とは異なる開閉弁機構を開状態とし、 前記通気孔を介して、 前記内部空間のガスを排気する排気機構を更に有するこ とを特徴とする露光装置。  The mask storage device has at least two ventilation holes, the mask storage device has a plurality of the on-off valve mechanisms individually corresponding to the ventilation holes, and the gas replacement mechanism has the gas An opening / closing valve mechanism that is different from the opening / closing valve mechanism that the supply mechanism has opened to supply the predetermined gas to the internal space, and exhausting the gas in the internal space through the ventilation hole An exposure apparatus further comprising a mechanism.
3 3 . 請求項 2 6に記載の露光装置において、 33. In the exposure apparatus according to claim 26,
前記光洗浄装置は、 前記マスク保管装置の洗浄を行う装置であり、 前記光洗浄装置により前記マスク保管装置の光洗浄が開始されるのに先立つ て前記光洗浄装置内のガスを所定のガスに置換するガス置換機構を更に備える The light cleaning device is a device for cleaning the mask storage device, Prior to the start of the optical cleaning of the mask storage device by the optical cleaning device, a gas replacement mechanism for replacing gas in the optical cleaning device with a predetermined gas is further provided.
3 4 . 請求項 3 3に記載の露光装置において、 34. The exposure apparatus according to claim 33,
前記ガス置換機構は、前記内部空間内の特定ガスの濃度を検知するセンサと、 該センサの出力に基づき、 前記特定ガスの濃度を調整する調整装置と、 を更に 有することを特徴とする露光装置。  An exposure apparatus, wherein the gas replacement mechanism further comprises: a sensor that detects a concentration of the specific gas in the internal space; and an adjusting device that adjusts the concentration of the specific gas based on an output of the sensor. .
3 5 . 請求項 3 4に記載の露光装置において、 35. The exposure apparatus according to claim 34, wherein
前記特定ガスは、 酸素又は水蒸気であることを特徴とする露光装置。  The exposure apparatus according to claim 1, wherein the specific gas is oxygen or water vapor.
3 6 . 請求項 2 6に記載の露光装置において、 36. The exposure apparatus according to claim 26,
前記露光装置本体を収容するチャンバを更に備え、  A chamber that houses the exposure apparatus main body;
前記光洗浄装置は、 前記チャンバの外に配置されることを特徴とする露光装  The light cleaning device is disposed outside the chamber,
3 7 . 請求項 1 8に記載の露光装置において、 37. In the exposure apparatus according to claim 18,
前記マスク保管装置を、 所定位置で一時的に保持する保持装置を更に備える  The apparatus further comprises a holding device for temporarily holding the mask storage device at a predetermined position.
3 8 . 請求項 3 7に記載の露光装置において、 38. The exposure apparatus according to claim 37,
前記マスク保管装置は、 その一部に形成され、 前記内部空間と外部とを連通 する通気孔を、 開閉可能で通常時は閉状態とする開閉弁機構を更に備え、 前記保持装置は、 前記開閉弁機構を開状態として、 前記通気孔を介して前記 内部空間に前記所定のガスを供給するガス供給機構を有することを特徴とする The mask storage device further includes an opening / closing valve mechanism that is formed in a part thereof, and that opens and closes a ventilation hole that communicates the internal space with the outside and that is normally closed. A valve supply mechanism for supplying the predetermined gas to the internal space through the vent hole when the valve mechanism is in an open state.
3 9 . 請求項 3 8に記載の露光装置において、 39. The exposure apparatus according to claim 38,
前記マスク保管装置には、前記通気孔が少なくとも 2つ形成されるとともに、 該各通気孔に個別に対応する複数の前記開閉弁機構が設けられ、  The mask storage device is provided with at least two of the ventilation holes, and provided with the plurality of on-off valve mechanisms individually corresponding to the respective ventilation holes.
前記保持装置は、 前記ガス供給機構が前記内部空間に前記所定のガスを供給 するために開状態とした開閉弁機構とは異なる開閉弁機構を開状態とし、 前記通気孔を介して、 前記内部空間のガスを排気する排気機構を更に有する ことを特徴とする露光装置。  The holding device opens an on-off valve mechanism that is different from the on-off valve mechanism that the gas supply mechanism has opened to supply the predetermined gas to the internal space. An exposure apparatus further comprising an exhaust mechanism for exhausting gas in the space.
4 0 . 請求項 1 8に記載の露光装置において、 40. The exposure apparatus according to claim 18, wherein
前記マスク保管装置内に収容される前記マスクは、 パターンが形成された面 を有するマスク基板と、 一端部が前記マスク基板上の前記パターン形成領域の 周囲に設けられる枠部材と、 前記枠部材の他端部に設けられ、 前記パターン形 成領域を保護するペリクルとを有し、  The mask accommodated in the mask storage device includes: a mask substrate having a surface on which a pattern is formed; a frame member having one end provided around the pattern formation region on the mask substrate; A pellicle provided at the other end to protect the pattern forming region,
前記マスク基板と前記枠部材と前記べリクルとで形成される保護空間内のガ スを所定のガスに置換する保護空間用ガス置換機構を、 更に備える露光装置。  An exposure apparatus further comprising a protection space gas replacement mechanism for replacing a gas in a protection space formed by the mask substrate, the frame member, and the veicle with a predetermined gas.
4 1 . リソグラフイエ程を含むデバイス製造方法であって、 4 1. A device manufacturing method including a lithographic process,
前記リソグラフィ工程では、 請求項 1 8〜 4 0のいずれか一項に記載の露光 装置を用いて、 露光を行うことを特徴とするデバイス製造方法。  40. A device manufacturing method, wherein in the lithography step, exposure is performed using the exposure apparatus according to claim 18.
PCT/JP2003/003107 2002-03-15 2003-03-14 Mask storage device, exposure device, and device manufacturing method WO2003079419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003577319A JPWO2003079419A1 (en) 2002-03-15 2003-03-14 Mask storage apparatus, exposure apparatus, and device manufacturing method
AU2003221393A AU2003221393A1 (en) 2002-03-15 2003-03-14 Mask storage device, exposure device, and device manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002071677 2002-03-15
JP2002-071677 2002-03-15
JP2002142280 2002-05-17
JP2002-142280 2002-05-17

Publications (1)

Publication Number Publication Date
WO2003079419A1 true WO2003079419A1 (en) 2003-09-25

Family

ID=28043722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003107 WO2003079419A1 (en) 2002-03-15 2003-03-14 Mask storage device, exposure device, and device manufacturing method

Country Status (4)

Country Link
JP (1) JPWO2003079419A1 (en)
AU (1) AU2003221393A1 (en)
TW (1) TW587197B (en)
WO (1) WO2003079419A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311360A (en) * 2004-04-21 2005-11-04 Alcatel Transport pod protected by thermophoresis effect
JP2005311361A (en) * 2004-04-21 2005-11-04 Alcatel Device for transporting substrate under controlled atmosphere
WO2006028228A1 (en) * 2004-09-10 2006-03-16 Nippon Valqua Industries, Ltd. Glass substrate storage case, glass substrate exchange device, glass substrate management device, glass substrate distribution method, seal member, and seal structure using the seal member
JP2006196632A (en) * 2005-01-13 2006-07-27 Nec Electronics Corp Exposure apparatus
JP2007141924A (en) * 2005-11-15 2007-06-07 Nikon Corp Mask storage container opening apparatus and aligner
JP5071109B2 (en) * 2005-12-28 2012-11-14 株式会社ニコン Reticle conveying apparatus, exposure apparatus, reticle conveying method, reticle processing method, and device manufacturing method
WO2016121635A1 (en) * 2015-01-26 2016-08-04 株式会社ニコン Mask case, storage device and storage method, transfer device and transfer method, and exposure device
TWI612390B (en) * 2012-09-04 2018-01-21 克奧哈貝特技術公司 Exposure apparatus
KR102242026B1 (en) * 2020-06-29 2021-04-19 피엠씨글로벌 주식회사 Photomask case in which nitrogen gas is injected into the interior space
KR102460392B1 (en) * 2022-05-31 2022-10-31 주식회사 비엘에스 Continuous automated manufacturing system of photomask storage and protective case
TWI818800B (en) * 2018-10-29 2023-10-11 家登精密工業股份有限公司 Reticle accommodating system and method of reticle observation provided in the reticle accommodating system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111307715B (en) * 2020-03-30 2023-01-17 深圳大学 In-situ test device for low-dimensional semiconductor interface regulation
CN114280891B (en) * 2020-09-28 2023-02-03 长鑫存储技术有限公司 Lithographic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493947A (en) * 1990-08-07 1992-03-26 Seiko Epson Corp Photomask housing case and photomask inspecting method
JPH1126409A (en) * 1997-06-30 1999-01-29 Nikon Corp Cleaning device
JPH1165094A (en) * 1997-08-22 1999-03-05 Nikon Corp Containing case, exposure device, and device manufacturing device
WO2000068980A1 (en) * 1999-05-07 2000-11-16 Nikon Corporation Method and apparatus for exposure
US20010026355A1 (en) * 2000-03-30 2001-10-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493947A (en) * 1990-08-07 1992-03-26 Seiko Epson Corp Photomask housing case and photomask inspecting method
JPH1126409A (en) * 1997-06-30 1999-01-29 Nikon Corp Cleaning device
JPH1165094A (en) * 1997-08-22 1999-03-05 Nikon Corp Containing case, exposure device, and device manufacturing device
WO2000068980A1 (en) * 1999-05-07 2000-11-16 Nikon Corporation Method and apparatus for exposure
US20010026355A1 (en) * 2000-03-30 2001-10-04 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712425B2 (en) * 2004-04-21 2011-06-29 アルカテル−ルーセント Equipment for transporting substrates in a controlled atmosphere
JP2005311361A (en) * 2004-04-21 2005-11-04 Alcatel Device for transporting substrate under controlled atmosphere
JP2005311360A (en) * 2004-04-21 2005-11-04 Alcatel Transport pod protected by thermophoresis effect
WO2006028228A1 (en) * 2004-09-10 2006-03-16 Nippon Valqua Industries, Ltd. Glass substrate storage case, glass substrate exchange device, glass substrate management device, glass substrate distribution method, seal member, and seal structure using the seal member
JP2006196632A (en) * 2005-01-13 2006-07-27 Nec Electronics Corp Exposure apparatus
JP4692238B2 (en) * 2005-11-15 2011-06-01 株式会社ニコン Mask storage container opening device, exposure device
JP2007141924A (en) * 2005-11-15 2007-06-07 Nikon Corp Mask storage container opening apparatus and aligner
JP5071109B2 (en) * 2005-12-28 2012-11-14 株式会社ニコン Reticle conveying apparatus, exposure apparatus, reticle conveying method, reticle processing method, and device manufacturing method
TWI612390B (en) * 2012-09-04 2018-01-21 克奧哈貝特技術公司 Exposure apparatus
WO2016121635A1 (en) * 2015-01-26 2016-08-04 株式会社ニコン Mask case, storage device and storage method, transfer device and transfer method, and exposure device
JPWO2016121635A1 (en) * 2015-01-26 2017-11-16 株式会社ニコン Mask case, storage apparatus and method, transfer apparatus and method, and exposure apparatus
TWI818800B (en) * 2018-10-29 2023-10-11 家登精密工業股份有限公司 Reticle accommodating system and method of reticle observation provided in the reticle accommodating system
KR102242026B1 (en) * 2020-06-29 2021-04-19 피엠씨글로벌 주식회사 Photomask case in which nitrogen gas is injected into the interior space
KR102460392B1 (en) * 2022-05-31 2022-10-31 주식회사 비엘에스 Continuous automated manufacturing system of photomask storage and protective case

Also Published As

Publication number Publication date
TW587197B (en) 2004-05-11
TW200305776A (en) 2003-11-01
JPWO2003079419A1 (en) 2005-07-21
AU2003221393A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US6842221B1 (en) Exposure apparatus and exposure method, and device manufacturing method
KR100774027B1 (en) Container and method of transporting substrate using the same
JP4466811B2 (en) Exposure apparatus and device manufacturing method
US6791661B2 (en) Gas replacement method and apparatus, and exposure method and apparatus
US20010026355A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP4006235B2 (en) Inert gas replacement method and apparatus, reticle storage, reticle inspection apparatus, reticle transport box, and device manufacturing method
WO2003079419A1 (en) Mask storage device, exposure device, and device manufacturing method
JP2004354656A (en) Optical cleaning apparatus, optical cleaning method, exposure apparatus, exposure method and method for manufacturing device
JP2004303808A (en) Aligner, exposure method, and film structure
JP2006032808A (en) Position error detection device, mask transport system and exposure device
JP2003045931A (en) Aligner
JP2004258113A (en) Mask protecting device, mask, gas replacing apparatus, exposure apparatus, method for replacing gas, and exposure method
JP4096246B2 (en) Mask cleaning method and apparatus, and device manufacturing system
WO2002093626A1 (en) Aligning method and aligner, and method and system for conveying substrate
JP2002033258A (en) Aligner, mask apparatus, pattern protective apparatus, and method of manufacturing device
JP2003209042A (en) Apparatus related to manufacturing of device and manufacturing method of reticle and device
JP2001345264A (en) Aligner, exposure method, and method of manufacturing device
JP2000200745A (en) Projection aligner
WO2003054936A1 (en) Gas purging method and exposure system, and device production method
JP2003163251A (en) Transport unit and aligner
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
JP2004259756A (en) Gas substituting apparatus, exposure unit and method for manufacturing device
JP2003215785A (en) Pattern protection device, mask device and its manufacturing method, device and method for exposure, and device manufacturing method
WO2001073825A1 (en) Aligner, apparatus and method for transferring wafer, microdevice and method for manufacturing the same
JP2001230202A (en) Method and equipment for gas displacement, method and equipment for exposure, and method of manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003577319

Country of ref document: JP

122 Ep: pct application non-entry in european phase