WO2003079107A1 - Semiconductor device manufacturing method, semiconductor device, and liquid crystal display - Google Patents

Semiconductor device manufacturing method, semiconductor device, and liquid crystal display Download PDF

Info

Publication number
WO2003079107A1
WO2003079107A1 PCT/JP2003/003381 JP0303381W WO03079107A1 WO 2003079107 A1 WO2003079107 A1 WO 2003079107A1 JP 0303381 W JP0303381 W JP 0303381W WO 03079107 A1 WO03079107 A1 WO 03079107A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
forming
substrate
electrode
insulating film
Prior art date
Application number
PCT/JP2003/003381
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Tanaka
Yoshihisa Hatta
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to AU2003221122A priority Critical patent/AU2003221122A1/en
Publication of WO2003079107A1 publication Critical patent/WO2003079107A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device having a reflective electrode, a semiconductor device, and a liquid crystal display device.
  • liquid crystal display devices such as reflective liquid crystal display devices and transflective liquid crystal display devices, which display images by reflecting external light
  • a reflective electrode for reflecting external light for each pixel.
  • Such a liquid crystal display device has a large number of concave portions or convex portions on the surface of the reflective electrode for the purpose of improving light use efficiency.
  • the reflective electrode is connected to the TFT so as to serve to apply a voltage supplied from the TFT to the liquid crystal layer.
  • Such a reflective electrode is formed, for example, through the following steps.
  • a TFT having a gate electrode, a source electrode, and a drain electrode is formed on a substrate, and an insulating film covering the TFT is formed.
  • the insulating film is patterned by a photolithography process so that a contact hole for connecting the TFT drain electrode and the reflective electrode is formed in the insulating film.
  • a photosensitive resin which is a material of a base film of the reflective electrode, is applied to the surface of the insulating film, and the applied photosensitive resin is patterned to form a base film of the reflective electrode.
  • a reflection electrode connected to the drain electrode is formed via a contact hole formed in the insulating film.
  • an object of the present invention is to provide a method in which the number of manufacturing steps and manufacturing cost are reduced, and an apparatus to which the method is applied.
  • a method of manufacturing a semiconductor device comprises: manufacturing a semiconductor device including, on a substrate, a transistor having a gate electrode, a source electrode, and a drain electrode; A method comprising: forming the source electrode and the drain electrode on the substrate; forming a first insulating film on the substrate on which the source electrode and the drain electrode are formed; On the substrate on which the first insulating film is formed, a base film of the reflective electrode, a first hole at a position corresponding to the drain electrode, and a plurality of concave or convex portions on the surface.
  • the base film of the reflective electrode has a plurality of concave portions or convex portions on its surface. Therefore, by forming a reflective electrode on the base film, the reflective electrode can have a plurality of concave portions or convex portions according to the shape of the surface of the underlying film. Further, the base film is also used as an etching mask for forming a first communication hole in the first insulating film. Therefore, after forming the first insulating film and before forming the base film, a special photoresist process for forming the first communication hole in the first insulating film becomes unnecessary, and the number of manufacturing steps is reduced. As a result, production costs can be reduced.
  • the etching step may be configured such that an inner wall surface of the first communication hole of the first insulating film is inclined with respect to the substrate.
  • the step coverage in the first communication hole of the reflection electrode can be easily improved.
  • the step of performing the taper etching includes the step of using the first gas using a mixed gas containing an etching gas containing a hydrocarbon-based gas having fluorine and a carrier gas. It is preferable to taper-etch the insulating film.
  • the taper angle of the inner wall surface of the first communication hole formed in the first insulating film can be easily controlled. Further, by mixing the carrier gas into the mixed gas, the etching rate of the base film can be made sufficiently lower than the etching rate of the first insulating film. Therefore, deformation of the shape of the surface of the base film is minimized, and it is possible to make the reflective electrode have good reflection characteristics.
  • the method of manufacturing a semiconductor device of the present invention may include a step of forming the gate electrode on the substrate before the step of forming the source electrode and the drain electrode. After the step of forming the insulating film, before the step of forming the base film, a step of forming the gate electrode on the substrate on which the first insulating film is formed may be provided.
  • a bottom-gate or top-gate transistor can be manufactured.
  • a conductive light-shielding film having conductivity on the substrate corresponds to the gate electrode. Forming a conductive light-shielding film having a first portion and a second portion connected to the first portion; and forming the conductive light-shielding film; and forming the source electrode and the drain.
  • the base film is removed.
  • Forming a gate line connected to the good electrode and the good electrode on the substrate on which the insulating film is formed wherein the step of forming the base film comprises: Forming a second hole at a position corresponding to the second portion of the conductive light-shielding film, and forming a third hole at a position of the base film corresponding to the gut line; In the etching step, a second communication hole continuous with the second hole is formed at a position of the first insulating film corresponding to the second portion of the conductive light-shielding film, Etching the base film so that a third communication hole continuous with the second communication hole is formed at a position of the insulating film corresponding to the second portion of the conductive light-shielding film.
  • the step of forming the reflective electrode includes connecting the conductive light-shielding film and the gate line through the third hole, the second hole, the second communication hole, and the third communication hole. It is preferable that the method further includes a step of forming a conductive portion.
  • a double-gate transistor can be manufactured.
  • Another method for manufacturing a semiconductor device of the present invention includes a transistor having a gate electrode, a source electrode, and a drain electrode on a substrate; a conductive light-transmitting film connected to the drain electrode and having conductivity.
  • a method of manufacturing a semiconductor device comprising: a reflective electrode connected to the conductive light transmitting film; and a step of forming the source electrode and the drain electrode on the substrate; A conductive light-transmitting film connected to the drain electrode on a substrate on which an electrode is formed, the first part being connected to the drain electrode; and the drain being connected to the first part and being connected to the drain.
  • Fourth hole in position and multiple recesses in surface Forming a base film having a concave portion or a convex portion; and forming a third film continuously following the fourth hole at a position of the third insulating film corresponding to the second portion of the conductive light transmitting film.
  • a dedicated photoresist process for forming the first communication hole in the insulating film becomes unnecessary, and the number of manufacturing steps and the manufacturing cost are reduced. Is reduced.
  • a semiconductor device of the present invention is manufactured by using the method of manufacturing a semiconductor device according to any one of claims 1 to 7.
  • a liquid crystal display device of the present invention is characterized by being configured using the semiconductor device according to claim 8.
  • FIG. 1 is a partial cross-sectional view of a reflective liquid crystal display device manufactured by using the first embodiment of the method for manufacturing a semiconductor device of the present invention.
  • FIG. 2 is a cross-sectional view of the glass substrate 1 on which TFT 50 is formed.
  • FIG. 3 is a cross-sectional view of the substrate on which the passivation film 8 is formed.
  • FIG. 4 is a cross-sectional view of the substrate on which the base film 9 is formed.
  • FIG. 5 is a cross-sectional view of the substrate after the passivation film 8 has been etched.
  • FIG. 6 is a cross-sectional view showing the substrate on which the reflective electrode 10 is formed.
  • FIG. 7 is a partial cross-sectional view of a transflective liquid crystal display device manufactured by using the second embodiment of the method for manufacturing a semiconductor device of the present invention.
  • FIG. 8 is a cross-sectional view showing the substrate on which the ITO film 21 has been formed.
  • FIG. 9 is a cross-sectional view showing the substrate on which the passivation film 22 is formed.
  • FIG. 10 is a cross-sectional view of the substrate on which the base film 23 is formed.
  • FIG. 11 is a cross-sectional view of the substrate after the passivation film 22 has been etched.
  • FIG. 12 is a partial cross-sectional view of a top gate type liquid crystal display device manufactured using the third embodiment of the method for manufacturing a semiconductor device of the present invention.
  • FIG. 13 is a cross-sectional view showing the substrate on which the source electrode 61, the drain electrode 62, the semiconductor film 63, and the SiN film 64 are formed.
  • FIG. 14 is a cross-sectional view of the substrate on which the insulating film 65 is formed.
  • FIG. 15 is a cross-sectional view of the substrate on which the gate electrode 66 is formed.
  • FIG. 16 is a cross-sectional view of the substrate on which the base film 67 is formed.
  • FIG. 17 is a cross-sectional view of the substrate after the insulating film 65 has been etched.
  • FIG. 18 is a cross-sectional view showing the substrate on which the reflective electrode 68 is formed.
  • FIG. 19 is a plot showing the reflection characteristics of the TFT substrate 600 and the conventional TFT substrate.
  • FIG. 20 is a plan view of a TFT substrate 100 having a double gate structure.
  • FIG. 21 is a cross-sectional view taken along line AA of FIG.
  • FIG. 22 is a cross-sectional view taken along line BB of FIG.
  • FIG. 23 is a plan view showing the substrate 1 on which the light shielding film 101 is formed.
  • FIG. 24 is a cross-sectional view taken along line CC of FIG.
  • FIG. 25 is a cross-sectional view showing the substrate on which the SiO 2 film 102 is formed.
  • FIG. 26 is a plan view showing the substrate on which the source electrode 103, the source line 104, and the drain electrode 105 are formed.
  • FIG. 27 is a sectional view taken along line DD in FIG.
  • FIG. 28 is a plan view showing the substrate on which the gate electrode 109 is formed.
  • FIG. 29 is a cross-sectional view taken along the line EE of FIG.
  • FIG. 30 is a plan view showing the substrate on which the base film 112 is formed.
  • FIG. 31 is a sectional view taken along line FF of FIG.
  • FIG. 32 is a sectional view taken along line GG of FIG.
  • FIG. 33 is a cross-sectional view corresponding to FIG.
  • FIG. 34 is a cross-sectional view corresponding to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a partial cross-sectional view of a reflective liquid crystal display device manufactured by using the first embodiment of the method for manufacturing a semiconductor device of the present invention.
  • This liquid crystal display device has a TFT substrate 51 on which a TFT 50 and a reflective electrode 10 are formed, and a color filter substrate 52 on which a color filter and the like are formed. A large number of concave portions 10a and convex portions 1Ob are provided on the surface of the reflective electrode 10. Since the structure of the color filter substrate 52 is irrelevant to the features of the present embodiment, it is shown in a simplified manner in FIG. A liquid crystal layer 53 exists between the TFT substrate 51 and the color filter substrate 52.
  • a method of manufacturing the TFT substrate 51 having the features of the present embodiment will be described.
  • a TFT 50 is formed on a glass substrate 1 (see FIG. 2).
  • FIG. 2 is a sectional view of the glass substrate 1 on which the TFT 50 is formed.
  • the TFT 50 includes, for example, a gate electrode 2, a gate insulating film 3, a semiconductor film 4 such as a-Si: H or a—Si: F, a ohmic contact layer 5, and a source electrode 6 on a glass substrate 1. And the drain electrode 7 is formed. Although a gate line and a source line are also formed on the glass substrate 1, these lines are not shown.
  • a passivation film is formed so as to cover the TFT 50 (see FIG. 3).
  • FIG. 3 is a cross-sectional view of the substrate on which the passivation film 8 is formed.
  • a silicon nitride film is used as the passivation film 8 (corresponding to the first insulating film in the present invention). Since the drain electrode 7 existing under the passivation film 8 needs to be connected to a reflective electrode 10 (see FIG. 6) described later, the passivation film 8 includes the drain electrode 7 and the reflective electrode 10. It is necessary to form a hole for connecting However, in the present embodiment, before forming a hole in the passivation film 8, a base film for providing a large number of concave portions 10 a and convex portions 10 b (see FIG. 6) on the surface of the reflective electrode 10 is formed. Form first (see Figure 4).
  • FIG. 4 is a cross-sectional view of the substrate on which the base film 9 is formed.
  • the base film 9 has a hole 9 a (corresponding to the first hole according to the present invention) at a position corresponding to the drain electrode 7.
  • a portion 9b and a convex portion 9c are provided.
  • a photosensitive resin is applied to the surface of the passivation film 8, a portion corresponding to the hole 9a of the applied photosensitive resin, a portion corresponding to the concave portion 9b, The applied photosensitive resin is exposed such that the portions corresponding to the projections 9c absorb different exposure energies.
  • the base film 9 having the holes 9a, the concave portions 9b, and the convex portions 9c can be formed as shown in FIG.
  • the reflection electrode 10 (see FIG. 6), which will be described later, is formed on the surface of the base film 9 where the inclination angle (3 ⁇ 4 continuously changes), so that the reflection characteristics of the reflection electrode 10 are as follows. It largely depends on the inclination angle ⁇ of the surface of the ground film 9. Therefore, by changing the inclination angle ⁇ of the base film 9, it becomes possible to change the reflection characteristics of the reflective electrode 10.
  • the inclination angle ⁇ For example, change the exposure energy absorbed in the portion corresponding to the concave portion 9b of the applied photosensitive resin and / or the exposure energy absorbed in the portion corresponding to the convex portion 9c of the applied photosensitive resin.
  • the inclination angle ⁇ of the base film 9 should be within a range of 0 ° and 15 ° as much as possible. Therefore, in the present embodiment, the inclination of the base film 9 is preferred. Catching only 0 Doc can Kakuhi The base film 9 is formed so as to be included in the range of 15 degrees.
  • the method of forming the base film 9 having a large number of the concave portions 9 b and the convex portions 9 c is not limited to the above-described method.
  • a number of protrusions may be formed first, and a photosensitive resin as a material of the base film 9 may be applied so as to cover the number of protrusions.
  • a photosensitive resin as a material of the base film 9 is applied so as to follow the shape of these projections, and as a result, a large number of depressions and projections are formed on the surface. It is possible to form an underlying film having the following.
  • FIG. 5 is a cross-sectional view of the substrate after the passivation film 8 has been etched. Since the holes 9a are formed in the base film 9, the passivation film 8 is etched using the base film 9 as an etching mask, so that the passivation film 8 is continuous with the holes 9a of the base film 9. A continuous hole 8a (corresponding to the first communication hole in the present invention) is formed. By forming the holes 8 a in the passivation film 8, the drain electrodes 7 are exposed. In the present embodiment, 3 6 and.
  • etching the passivation film 8 using not only SF 6 but also CHF 3 as an etching gas it is possible to easily perform taper etching so that the inner wall surface 8 b of the hole 8 a is inclined with respect to the surface of the substrate 1.
  • the dry etching apparatus for example, a reactive ion etching (RIE) apparatus, an inductively coupled plasma etching (ICP) apparatus, a high-density plasma etching apparatus, or the like can be used.
  • RIE reactive ion etching
  • ICP inductively coupled plasma etching
  • high-density plasma etching apparatus or
  • the ⁇ taper angle of the wall surface 8b ⁇ is about 70 degrees.
  • the taper angle 0 can be changed, for example, by changing the mixing amount of CH 3 gas. Also, the real 1
  • the CHF 3 gas is used in order to easily perform the taper etching of the passivation film 8, but for example, a C 2 HF 5 gas may be used instead of the CHF 3 gas. it can.
  • the base film 9 plays a role as an etching mask for the passivation film 8, but this base film 9 is good not only for the role of the etching mask but also for the reflective electrode 10 (see FIG. 6) described later. It is also necessary to play a role as a base film for providing high reflection characteristics.
  • the underlying film 9 is also etched while the passivation film 8 is being etched, the shape of the surface of the underlying film 9 is deformed, and the surface of the underlying film 9 after the etching of the passivation film 8 is performed. (See FIG. 4) may greatly deviate from the range of the inclination angle ⁇ of the surface of the base film 9 before the passivation film 8 is etched.
  • the passivation film 8 is etched using a mixed gas of an etching gas and a carrier gas.
  • the etching rate of the base film 9 can be sufficiently reduced with respect to the etching rate of the passivation film 8, and the surface of the base film 9 after the etching of the passivation film 8 is completed. Can be kept substantially the same as the shape of the surface of the base film 9 before the passivation film 8 is etched. Therefore, even when the passivation film 8 is etched, the deformation of the surface of the base film 9 is minimized, and the base film 9 serves as a base film for giving the reflective electrode good reflection characteristics. Can also be fulfilled.
  • He is used as the carrier gas in the present embodiment, Ar may be used instead of He, for example.
  • the reflective electrode is formed. (See Figure 6).
  • FIG. 6 is a cross-sectional view showing the substrate on which the reflective electrode 10 is formed.
  • the reflective electrode 10 is formed by forming a conductive film having a high reflectivity such as an A1 film and patterning the conductive film. Since a large number of concave portions 9 b and convex portions 9 c are formed on the surface of the base film 9 of the reflective electrode 10 (see FIG. 5), the shape of the surface of the base film 9 is also formed on the reflective electrode 10. Thus, a large number of concave portions 10a and convex portions 10b are formed, and as a result, it is possible to obtain a reflective electrode 10 having good reflection characteristics 1 ". In this manner, the TFT substrate 5 1 (see FIG.
  • the base film 9 of the reflective electrode 10 has a large number of concave portions 9b and convex portions 9c on its surface, so that the reflective electrode 10 has In addition to serving to provide good reflection characteristics, it also serves as an etching mask for forming the holes 8a (see FIG. 5) in the passivation film 8. Therefore, after forming the passivation film 8, Before forming the base film 9, a hole 8 a is formed in the passivation film 8. According to the conventional method, after the passivation film 8 is formed and before the base film 9 is formed, a dedicated photolithography process for forming the holes 8a in the passivation film 8 is not required. Although it is necessary, according to the present embodiment, the photolithography step is not required, so that the number of manufacturing steps and the manufacturing cost can be reduced.
  • FIG. 7 is a partial cross-sectional view of a transflective liquid crystal display device manufactured by using the second embodiment of the method for manufacturing a semiconductor device of the present invention.
  • This liquid crystal display device has a TFT substrate 510 on which a TFT 550 and a reflective electrode 224 are formed, and a color filter substrate 520 on which a color filter and the like are formed. A large number of concave portions 24 b and convex portions 24 c are provided on the surface of the reflective electrode 24.
  • the structure of the color filter substrate 520 is described in a simplified manner as in FIG. Liquid between the TFT substrate 5 10 and the color filter substrate 5 20 A crystal layer 530 is present. A backlight BL is provided on the rear surface of the TFT substrate 510.
  • a method for manufacturing the TFT substrate 5100 having the features of the second embodiment will be described with reference to FIG. 7 and FIGS.
  • the gate electrode 2, the gate insulating film 3, the semiconductor film 4, the ohmic contact layer 5, the source electrode 6, and the like are formed on the glass substrate 1 in the same manner as described with reference to FIG.
  • an ITO film connected to the drain electrode 7 is formed (see FIG. 8).
  • FIG. 8 is a cross-sectional view showing the substrate on which the ITO film 21 has been formed.
  • the ITO film 21 (corresponding to the conductive light transmitting film according to the present invention) includes a first portion 21 a connected to the drain electrode, and the first portion 21 a on the gate insulating film 3. And a second portion 21b extending to After forming the ITO film 21, a passivation film is formed on the substrate on which the ITO film 21 has been formed.
  • FIG. 9 is a cross-sectional view showing the substrate on which the passivation film 22 is formed.
  • the ITO film 21 existing under the passivation film 22 (corresponding to the third insulating film in the present invention) needs to be connected to a later-described reflective electrode 24 (see FIG. 7).
  • this passivation film 8 it is necessary to form a hole for connecting the ITO film 21 and the reflection electrode 24.
  • the surface of the reflective electrode 24 is provided with a large number of concave portions 24 b and convex portions 24 c (see FIG. 7).
  • a base film is formed first (see FIG. 10).
  • FIG. 10 is a cross-sectional view of the substrate on which the base film 23 is formed.
  • the base film 23 has a hole 23a (corresponding to the fourth hole according to the present invention) at a position corresponding to the second portion 21b of the ITO film 21.
  • a large number of concave portions 23b and convex portions 23c are provided on the surface of the base film 23.
  • Such a base film 23 can be formed using a method similar to the method described with reference to FIG.
  • the passivation film 22 is etched (see FIG. 11).
  • FIG. 11 is a cross-sectional view of the substrate after etching the passivation film 22.
  • the passivation film 22 is etched by using the base film 23 as an etching mask, thereby forming the base film 23 with the passivation film 22.
  • a hole 22a (corresponding to the fourth communication hole according to the present invention) that continuously follows the hole 23a is formed.
  • the etching of the passivation film 22 can be performed using the same method as described with reference to FIG.
  • the second portion 21 b of the ITO film 21 is exposed.
  • a reflective electrode 24 is formed as shown in FIG. 7 to manufacture the TFT substrate 510.
  • the reflective electrode 24 has a hole 24a for transmitting light from the backlight BL (see FIG. 7). In this manner, by providing the hole 24a in the reflective electrode 24, the TFT substrate 5100 can be used for a transflective liquid crystal display device having both a reflective type and a transmissive type. You.
  • the base film 23 of the reflective electrode 24 has a large number of four parts 23 b and convex parts 23 c on its surface, so that the reflective electrode 24 has good reflection characteristics. And also serves as an etching mask for forming holes 22a (see FIG. 11) in the passivation film 22. Therefore, after forming the passivation film 22 and before forming the base film 23, a dedicated photolithography process for forming the hole 22a in the passivation film 22 becomes unnecessary, and the number of manufacturing steps and Manufacturing costs can be reduced.
  • the present invention is also applicable to the manufacture of top gate type TFT substrates. can do.
  • An example in which the present invention is applied to the manufacture of a top gate type TFT substrate will be described below.
  • FIG. 12 shows a semiconductor device manufactured using the third embodiment of the manufacturing method of the present invention.
  • FIG. 2 is a partial cross-sectional view of a top gate type liquid crystal display device.
  • This liquid crystal display device has a TFT substrate 601 on which a TFT 600 and a reflective electrode 68 are formed, and a color filter substrate 602 on which a color filter and the like are formed.
  • the TFT substrate 601 has a reflective electrode 68, and a large number of concave portions and convex portions are provided on the surface of the reflective electrode 68.
  • the structure of the color filter substrate 602 is described in a simplified manner.
  • a liquid crystal layer 603 exists between the TFT substrate 601 and the color filter substrate 602.
  • a back light BL is provided on the rear surface of the TFT substrate 601.
  • a source electrode 61 and drain electrode 62, the semiconductor film 63, S i N film 64 are formed of a two-layer film of the ITO film F1 and the metal film F2, but may be formed of a single-layer film or a laminated film of three or more layers. Can also.
  • the metal film F2 for example, a metal film containing molybdenum (Mo) to which a small amount of chromium (Cr) is added as a main component can be used.
  • Mo molybdenum
  • Cr chromium
  • FIG. 14 is a cross-sectional view of the substrate on which the insulating film 65 is formed.
  • the insulating film 65 (corresponding to the first insulating film in the present invention), for example, a SiN film can be used. After forming the insulating film 65, a gate electrode is formed (see FIG. 15).
  • FIG. 15 is a cross-sectional view of the substrate on which the gate electrode 66 is formed.
  • the gate electrode 66 can be formed, for example, by forming a metal film such as an A1 film and patterning this metal film. When the metal film is patterned, a gate line connected to the gate electrode 66 is also formed in addition to the gate electrode 66, but the gate line is not shown in FIG.
  • the drain electrode 62 under the insulating film 65 is a reflective electrode 68 described later. (See Figures 12 and 18).
  • a base film for forming a plurality of concave portions and convex portions in the reflective electrode 68 described later is formed first.
  • FIG. 16 is a cross-sectional view of the substrate on which the base film 67 is formed.
  • the base film 67 can be formed by a method similar to the method described with reference to FIG.
  • the base film 67 has a hole 67 a (corresponding to the first hole referred to in this book) at a portion corresponding to the drain electrode 62, and further has a surface on the base film 67.
  • the insulating film 65 is etched (see FIG. 17).
  • FIG. 17 is a cross-sectional view of the substrate after the insulating film 65 has been etched.
  • the insulating film 65 is dry-etched using the base film 67 as an etching mask in the same manner as the method described with reference to FIG. Due to this dry etching, the inner wall surface 65b of the hole 65a of the insulating film 65 (corresponding to the first communication hole in the present invention) has the same taper angle as the inner wall surface 8b of FIG. Can be provided. After etching the insulating film 65, a reflective electrode is formed (see FIG. 18).
  • FIG. 18 is a cross-sectional view showing the substrate on which the reflective electrode 68 is formed.
  • the reflective electrode 68 can be formed, for example, by forming an A1 film and etching the A1 film.
  • the reflective electrode 68 has a hole 68a for transmitting light from the backlight BL (see FIG. 12).
  • the backlight BL cannot be obtained simply by providing the hole 68 a in the reflection electrode 68.
  • Light cannot pass through hole 68a. Therefore, after forming the reflective electrode 68 having the hole 68a, the portion of the metal film F2 corresponding to the hole 68a is etched. As a result of this etching, as shown in FIG. 12, one I-type film of the drain electrode 62 is exposed (see FIG.
  • the TFT substrate 600 is manufactured.
  • the base film 67 which is the base film of the reflective electrode 68, has a large number of concave portions 67b and convex portions 67c on its surface.
  • Reflection characteristics 1 "In addition to playing a role in giving life, it also plays a role as an etching mask for forming holes 65a (see Fig. 17) in the insulating film 65. Therefore, the insulating film After the formation of the base film 67 and before the formation of the base film 67, a special photolithography process for forming the hole 65a in the insulating film 65 is unnecessary.
  • a dedicated photolithography step for forming the hole 65a in the insulating film 65 is required. According to the present embodiment, this dedicated photolithography step is performed. Since no process is required, the number of manufacturing steps and manufacturing cost can be reduced.
  • the reflection characteristics of the TFT substrate 61 manufactured by the method of the third embodiment and the insulating film using a dedicated photolithography process after forming the insulating film 65 and before forming the base film 67 will be described.
  • a comparison is made with the reflection characteristics of a conventional TFT substrate manufactured using the conventional method of forming a hole 65a in 65.
  • FIG. 19 is a plot showing the reflection characteristics of the TFT substrate 61 and the conventional TFT substrate.
  • This plot shows the reflection characteristics when the TFT substrate was irradiated with external light from the 130 ° direction.
  • the horizontal axis shows the viewing angle, and the vertical axis shows the reflectance.
  • the symbol ⁇ indicates the reflection characteristic of the TFT substrate according to the third embodiment
  • the symbol X indicates the reflection characteristic of the TFT substrate manufactured by using the conventional method.
  • the present invention can also be applied to the manufacture of a TFT substrate having a double gate structure.
  • the semiconductor device manufacturing method according to the fourth embodiment of the present invention will be described.
  • An example of manufacturing a TFT substrate having a double gate structure will be described.
  • FIG. 20 is a partial plan view of a TF substrate 100 having a double-gut structure
  • FIG. 21 is a cross-sectional view taken along the line A— ⁇ of FIG. 20
  • FIG. 22 is a line B—B of FIG. FIG.
  • a reflective electrode 113 having a hole 113a and a connection conductive portion 114 (corresponding to the conductive portion according to the present invention) are formed.
  • the reflection electrode 113 is connected to the drain electrode 105.
  • the connection conductive portion 114 is a conductive portion for electrically connecting the light shielding film 101 and the gate line 110 as shown in FIG.
  • FIGS. 20 to 22 will be described with reference to FIGS.
  • FIG. 23 is a plan view showing the substrate 1 on which the light-shielding film 101 is formed
  • FIG. 24 is a cross-sectional view taken along line CC of FIG.
  • a conductive light-shielding film 101 having conductivity is formed on the substrate 1.
  • the conductive light-shielding film 101 for example, a metal film mainly composed of molybdenum (Mo) to which a trace amount of chromium (Cr) is added is formed, and this metal film is formed into a shape shown in FIG. It can be formed by patterning.
  • the conductive light-shielding film 101 shown in FIG. 23 has a substantially L-shape, but the shape of the conductive light-shielding film 101 can be appropriately changed.
  • This conductive light-shielding film 101 has a first portion 101 a corresponding to a gate electrode 109 described later (see FIG.
  • FIG. 25 is a cross-sectional view showing the substrate on which the SiO 2 film 102 is formed.
  • S i 0 2 film 1 0 2 (corresponding to the second insulating film in the present invention) is formed so as to cover the conductive light shielding film 1 0 1. Since the light-shielding film 1 0 1 underlying the S i 0 2 film 1 0 2 need to be connected to the connection conductive portions 1 1 4 (see FIG. 2 2) to be formed later, the S i 0 In the second film 102, it is necessary to form a hole for connecting the light-shielding film 101 and the connection conductive portion 114. However, here, before you form holes for connecting the S I_ ⁇ 2 film 1 0 2 in the light shielding film 1 0 1 and the connecting conductive portion 1 1 4, the source electrode, the source line and the drain electrode ( Figure 26 and See Figure 27).
  • FIG. 26 is a plan view showing a substrate on which the source electrode 103, the source line 104, and the drain electrode 105 are formed
  • FIG. 27 is a cross-sectional view taken along line DD of FIG.
  • the source electrode 103 is connected to a source line 104 extending in the y direction, and a drain electrode 105 is formed on the right side of the source line 104.
  • the source electrode 103, the source line 104, and the drain electrode 105 have a two-layer structure including the ITO film F1 and the metal film F2. In addition, it may have a single-layer structure or a multilayer structure of three or more layers.
  • a semiconductor film, a SiN film, an insulating film, a gut electrode, etc. are formed (FIGS. 28 and 29). reference).
  • FIG. 28 is a plan view showing a substrate on which the gate electrode 109 and the like are formed
  • FIG. 29 is a cross-sectional view taken along line EE of FIG.
  • a semiconductor film 106 and a SiN film 107 are formed.
  • An insulating film 108 (corresponding to the first insulating film according to the present invention) is formed.
  • a gate electrode 109 and a gate line 110 are formed on the insulating film 108.
  • a SiN film can be used as the insulating film 108.
  • the gate electrode 109 is formed right above the first portion 101 a of the light-shielding film 101 (see FIG. 29), and is connected to the gate line 110 extending in the X direction. (See Figure 28).
  • the gate electrode 109 and the gate line 110 can be formed by forming a metal film such as an A1 film on the entire surface of the insulating film 108 and patterning the metal film.
  • a Cs line 111 is also formed in addition to the gate electrode 109 and the gate line 110.
  • the Cs line 111 is not always necessary, the storage capacitor can be easily formed by forming the Cs line 111.
  • the drain electrode 105 covered with the insulating film 108 is a reflective electrode described later.
  • connection conductive part 1 1 3 (see FIG. 21), and the light-shielding film 101 under the insulating film 108 via the 310 2 film 102 is formed later.
  • this insulating film 108 has a hole for connecting the drain electrode 105 and the reflective electrode 113, and a light-shielding film 1
  • FIG. 30 is a plan view showing the substrate on which the base film 112 is formed
  • FIG. 31 is a cross-sectional view taken along the line FF of FIG. 30, and
  • FIG. 32 is a line GG of FIG. FIG.
  • the base film 112 has a large number of concave portions 112d and convex portions 112e. Such a base film 112 can be formed by a method similar to the method described with reference to FIG. In FIGS. 30 to 32, the base film 112 is shown by oblique lines.
  • the base film 112 includes a hole 112 a formed at a position corresponding to the drain electrode 105 (corresponding to the first hole according to the present invention) and a second hole of the light shielding film 101.
  • Hole 112b (corresponding to the second hole according to the present invention) formed at a position corresponding to the portion 1101b, and a hole 111 formed at a portion corresponding to the gate line 110. 2 c (corresponding to the third hole in the present invention).
  • FIGS. 33 and 34 are cross-sectional views of the substrate immediately after the insulating film 108 and the SiO 2 film 102 are etched.
  • FIG. 33 is a sectional view corresponding to FIG. 31, and
  • FIG. 34 is a sectional view corresponding to FIG.
  • the insulating film 108 is dry-etched by the same method as described with reference to FIG. By this dry etching, the holes 111a and 112b of the insulating film 108 and the base film 112 are respectively formed. 1
  • a continuous hole 108a (corresponding to the first communication hole according to the present invention) and a hole 108b (corresponding to the second communication hole according to the present invention) are formed.
  • these holes 10 8 a and 108 b are formed continuously performed continuously dry etching of S i 0 2 film 102.
  • a hole 102a (corresponding to a third communication hole according to the present invention) is formed in the SiO 2 film 102 continuously following the hole 108b of the insulating film 108.
  • the reflective electrode 113 having the hole 113a and the connection conductive portion 114 are formed, whereby the TFT substrate 100 is manufactured.
  • the reflective electrode 113 and the connection conductive portion 114 can be formed by, for example, forming an A1 film and etching the A1 film. After etching the A1 film, the metal film F2 is also etched until the ITO film F1 is exposed as shown in FIG.
  • connection conductive part 114 is a conductive part for connecting the gate line 110 and the light shielding film 101.
  • the signal from the gate line can be transmitted to the light shielding film 101 by the connection conductive portion 114.
  • the light-shielding film 101 can function in the same manner as the gate electrode 109, and the TFT substrate 100 having a double gut structure can be manufactured.
  • the base film 112 of the reflective electrode 113 serves to provide the reflective electrode 113 with good reflection characteristics, and forms the holes 108a and 108b in the insulating film 108. It also plays a role as an etching mask. Therefore, after forming the insulating film 108 and before forming the base film 112, a dedicated photoresist for forming the holes 108 a and 108 b in the insulating film 108 is formed. The need for a dying process is eliminated, and the number of manufacturing steps and manufacturing costs can be reduced. Furthermore, in the fourth embodiment, the insulating film 1 is used with the base film 112 as an etching mask.
  • the SiO 2 film 102 is also etched.
  • dedicated photoresist process for forming a hole 1 0 2 a to S i 0 2 film 1 0 2 becomes unnecessary, it is achieved further reduction in the number of manufacturing steps and manufacturing cost.
  • the method of manufacturing a substrate used in a liquid crystal display device has been described.
  • the present invention is not limited to a liquid crystal display device as long as it does not depart from the gist of the present invention. It is also applicable to devices. Industrial applicability

Abstract

A semiconductor device having a reflection electrode and its manufacturing method are disclosed. A passivation film (8) is etched by using an underlying film (9) on a substrate as an etching mask to make a hole (8a) in the passivation film (8). A hole (9a) in the underlying film (9) is made to communicate with the hole (8a) in the passivation film to form a reflection electrode (10) connected to a drain electrode (7). Thus, the man-hours and cost of the manufacture are reduced. The invention can be applied to semi-transparent liquid crystal displays and reflection liquid crystal displays.

Description

明 細 書 半導体装置の製造方法、 半導体装置及び液晶表示装置 技術分野  Description: Semiconductor device manufacturing method, semiconductor device, and liquid crystal display device
本発明は、 反射電極を有する半導体装置の製造方法、 半導体装置及び液晶表 示装置に関する。 背景技術  The present invention relates to a method for manufacturing a semiconductor device having a reflective electrode, a semiconductor device, and a liquid crystal display device. Background art
従来より、 反射型液晶表示装置や半透過型液晶表示装置等の、 外部光を反射 させて画像を表示する液晶表示装置では、 画素ごとに、 外部光を反射させるた めの反射電極を備えている。 このような液晶表示装置では、 光の利用効率を向 上させる目的で、 反射電極の表面に多数の凹部又は凸部を備えている。 更に、 この反射電極は、 T F Tから供給される電圧を液晶層に印加する役割を果たす ためにその T F Tに接続されている。 このような反射電極は、 例えば以下のェ 程を経て形成される。  Conventionally, liquid crystal display devices, such as reflective liquid crystal display devices and transflective liquid crystal display devices, which display images by reflecting external light, are provided with a reflective electrode for reflecting external light for each pixel. I have. Such a liquid crystal display device has a large number of concave portions or convex portions on the surface of the reflective electrode for the purpose of improving light use efficiency. Further, the reflective electrode is connected to the TFT so as to serve to apply a voltage supplied from the TFT to the liquid crystal layer. Such a reflective electrode is formed, for example, through the following steps.
先ず、 基板上に、 ゲート電極、 ソース電極及ぴドレイン電極を有する T F T を形成し、 この T F Tを覆う絶縁膜を形成する。 次に、 この絶縁膜に、 T F T のドレイン電極と反射電極とを接続するためのコンタクトホールが形成され るように、 フォトリソ工程によってこの絶縁膜をパターエングする。 その後、 この絶縁膜の表面に、 反射電極の下地膜の材料である感光性樹脂を塗布し、 こ の塗布した感光性樹脂をパターユングすることにより、 反射電極の下地膜を形 成する。 このように形成された下地膜の表面に、 絶縁膜に形成されたコンタク トホールを経由して、 ドレイン電極に接続された反射電極が形成される。  First, a TFT having a gate electrode, a source electrode, and a drain electrode is formed on a substrate, and an insulating film covering the TFT is formed. Next, the insulating film is patterned by a photolithography process so that a contact hole for connecting the TFT drain electrode and the reflective electrode is formed in the insulating film. Thereafter, a photosensitive resin, which is a material of a base film of the reflective electrode, is applied to the surface of the insulating film, and the applied photosensitive resin is patterned to form a base film of the reflective electrode. On the surface of the base film thus formed, a reflection electrode connected to the drain electrode is formed via a contact hole formed in the insulating film.
上記の方法では、 絶縁膜のパターニング工程と、 感光性樹脂をパターニング する工程とを行うたびに、 露光及び現像を行う必要があり、 製造工程数及び製 造コストが増大するという問題がある。 発明の開示 In the above method, it is necessary to perform exposure and development each time the insulating film patterning step and the photosensitive resin patterning step are performed, and there is a problem that the number of manufacturing steps and the manufacturing cost increase. Disclosure of the invention
本発明は、 上記の事情に鑑み、 製造工程数及び製造コストの削減が図られた 方法、 並びにその方法が適用された装置を提供することを目的とする。  In view of the above circumstances, an object of the present invention is to provide a method in which the number of manufacturing steps and manufacturing cost are reduced, and an apparatus to which the method is applied.
上記目的を達成する本発明の半導体装置の製造方法は、 基板上に、 ゲート電 極、 ソース電極及びドレイン電極を有するトランジスタと、 上記ドレイン電極 に接続された反射電極とを備えた半導体装置の製造方法であって、 上記基板上 に上記ソース電極及び上記ドレイン電極を形成する工程と、 上記ソース電極及 ぴ上記ドレイン電極が形成された基板上に第 1の絶縁膜を形成する工程と、 上 記第 1の絶縁膜が形成された基板上に、 上記反射電極の下地膜であって、 上記 ドレイン電極に対応する位置に第 1の孔を有し且つ表面に複数の凹部又は凸 部を有する下地膜を形成する工程と、 上記第 1の絶縁膜の上記ドレイン電極に 対応する位置に、 上記第 1の孔に連続的に続く第 1の連通孔が形成されるよう に、 上記下地膜をエッチングマスクとして上記第 1の絶縁膜をエッチングする 工程と、 上記第 1の連通孔が形成された上記第 1の絶縁膜を有する上記基板上 に、 上記下地膜の表面の一部を覆う反射電極であって、 上記第 1の孔及び上記 第 1の連通孔を通じて上記ドレイン電極に接続される上記反射電極を形成す る工程とを備えたことを特徴とする。  A method of manufacturing a semiconductor device according to the present invention, which achieves the above object, comprises: manufacturing a semiconductor device including, on a substrate, a transistor having a gate electrode, a source electrode, and a drain electrode; A method comprising: forming the source electrode and the drain electrode on the substrate; forming a first insulating film on the substrate on which the source electrode and the drain electrode are formed; On the substrate on which the first insulating film is formed, a base film of the reflective electrode, a first hole at a position corresponding to the drain electrode, and a plurality of concave or convex portions on the surface. Forming a ground film, and etching the base film so that a first communication hole continuously following the first hole is formed at a position of the first insulating film corresponding to the drain electrode. trout A step of etching the first insulating film, and a reflective electrode covering a part of the surface of the base film on the substrate having the first insulating film in which the first communication hole is formed. Forming the reflective electrode connected to the drain electrode through the first hole and the first communication hole.
反射電極の下地膜は、その表面に複数の凹部又は凸部を備えている。従って、 この下地膜に反射電極を形成することにより、 その反射電極は、 下埤膜の表面 の形状に倣って複数の凹部又は凸部を有することができる。 更に、 この下地膜 は、 第 1の絶縁膜に第 1の連通孔を形成するためのエッチングマスクとしても 用いられている。従って、第 1の絶縁膜を形成した後、下地膜を形成する前に、 その第 1の絶縁膜に第 1の連通孔を形成するための専用のフォトレジストェ 程が不要となり、 製造工程数及ぴ製造コストの削減が図られる。  The base film of the reflective electrode has a plurality of concave portions or convex portions on its surface. Therefore, by forming a reflective electrode on the base film, the reflective electrode can have a plurality of concave portions or convex portions according to the shape of the surface of the underlying film. Further, the base film is also used as an etching mask for forming a first communication hole in the first insulating film. Therefore, after forming the first insulating film and before forming the base film, a special photoresist process for forming the first communication hole in the first insulating film becomes unnecessary, and the number of manufacturing steps is reduced. As a result, production costs can be reduced.
ここで、 本発明の半導体装置の製造方法は、 上記エッチング工程が、 上記第 1の絶縁膜の上記第 1の連通孔の内壁面が上記基板に対して斜めに傾くよう 03 03381 Here, in the method of manufacturing a semiconductor device according to the present invention, the etching step may be configured such that an inner wall surface of the first communication hole of the first insulating film is inclined with respect to the substrate. 03 03381
3 に、 上記第 1の絶縁膜をテーパエッチングする工程であることが好ましい。  Third, it is preferable to perform a step of taper etching the first insulating film.
テーパエッチングを行うことにより、 反射電極の第 1の連通孔内におけるス テツプカバレージを容易に向上させることができる。  By performing the taper etching, the step coverage in the first communication hole of the reflection electrode can be easily improved.
ここで、 本発明の半導体装置の製造方法は、 上記テーパエッチングを行うェ 程が、 フッ素を有する炭化水素系のガスを含有するエッチングガスとキャリア ガスとを含む混合ガスを用いて、 上記第 1の絶縁膜をテーパエッチングするこ とが好ましい。  Here, in the method of manufacturing a semiconductor device according to the present invention, the step of performing the taper etching includes the step of using the first gas using a mixed gas containing an etching gas containing a hydrocarbon-based gas having fluorine and a carrier gas. It is preferable to taper-etch the insulating film.
エッチングガスにフッ素を有する炭化水素系のガスを含有させることによ り、 第 1の絶縁膜に形成される第 1の連通孔の内壁面のテーパ角を容易に制御 することが可能となる。 また、 混合ガス中にキャリアガスを混合することによ つて、 第 1の絶縁膜のエッチング速度に対して下地膜のエッチング速度を十分 に遅くすることができる。 従って、 下地膜の表面の形状の変形が最小限に抑え られ、 反射電極に良好な反射特性を持たせることが可能となる。  By including a hydrocarbon-based gas having fluorine in the etching gas, the taper angle of the inner wall surface of the first communication hole formed in the first insulating film can be easily controlled. Further, by mixing the carrier gas into the mixed gas, the etching rate of the base film can be made sufficiently lower than the etching rate of the first insulating film. Therefore, deformation of the shape of the surface of the base film is minimized, and it is possible to make the reflective electrode have good reflection characteristics.
また、 本発明の半導体装置の製造方法は、 上記ソース電極及び上記ドレイン 電極を形成する工程の前に、 上記基板上に上記ゲート電極を形成する工程を備 えてもよく、 又は、 上記第 1の絶縁膜を形成する工程の後、 上記下地膜を形成 する工程の前に、 上記第 1の絶縁膜が形成された基板上に、 上記ゲート電極を 形成する工程を備えてもよい。  Further, the method of manufacturing a semiconductor device of the present invention may include a step of forming the gate electrode on the substrate before the step of forming the source electrode and the drain electrode. After the step of forming the insulating film, before the step of forming the base film, a step of forming the gate electrode on the substrate on which the first insulating film is formed may be provided.
上記の工程を備えることによって、 ボトムゲート型又はトップゲ一ト型のト ランジスタを製造することができる。  With the above steps, a bottom-gate or top-gate transistor can be manufactured.
更に、 本発明の半導体装置の製造方法は、 上記ソース電極及び上記ドレイン 電極を形成する工程の前に、 上記基板上に、 導電性を有する導電性遮光膜であ つて、 上記ゲート電極に対応する第 1の部分と該第 1の部分に接続された第 2 の部分とを有する導電性遮光膜を形成する工程と、 上記導電性遮光膜を形成す る工程の後、 上記ソース電極及び上記ドレイン電極を形成する工程の前に、 上 記導電性遮光膜が形成された基板上に第 2の絶縁膜を形成する工程と、 上記第 1の絶縁膜を形成する工程の後、 上記下地膜を形成する工程の前に、 上記第 1 の絶縁膜が形成された基板上に、.上記グート電極及び上記グート電極に接続さ れたゲートラインを形成する工程とを備え、 上記下地膜を形成する工程が、 上 記下地膜の、 上記導電性遮光膜の第 2の部分に対応する位置に第 2の孔を形成 するとともに、 上記下地膜の上記グートラインに対応する位置に第 3の孔を形 成する工程を更に有し、 上記エッチング工程が、 上記第 1の絶縁膜の、 上記導 電性遮光膜の第 2の部分に対応する位置に、 上記第 2の孔に連続的に続く第 2 の連通孔が形成され、 上記第 2の絶縁膜の、 上記導電性遮光膜の第 2の部分に 対応する位置に、 上記第 2の連通孔に連続的に続く第 3の連通孔が形成される ように、 上記下地膜をェッチングマスクとして、 上記第 1及ぴ第 2の絶縁膜を エッチングする工程を更に有し、 上記反射電極を形成する工程が、 上記第 3の 孔、 上記第 2の孔、 上記第 2の連通孔及び上記第 3の連通孔を通じて、 上記導 電性遮光膜と上記ゲートラインとを接続する導電部を形成する工程を更に有 することが好ましい。 Further, in the method for manufacturing a semiconductor device according to the present invention, before the step of forming the source electrode and the drain electrode, a conductive light-shielding film having conductivity on the substrate corresponds to the gate electrode. Forming a conductive light-shielding film having a first portion and a second portion connected to the first portion; and forming the conductive light-shielding film; and forming the source electrode and the drain. Before the step of forming the electrodes, after the step of forming a second insulating film on the substrate on which the conductive light-shielding film is formed, and the step of forming the first insulating film, the base film is removed. Before the forming step, Forming a gate line connected to the good electrode and the good electrode on the substrate on which the insulating film is formed, wherein the step of forming the base film comprises: Forming a second hole at a position corresponding to the second portion of the conductive light-shielding film, and forming a third hole at a position of the base film corresponding to the gut line; In the etching step, a second communication hole continuous with the second hole is formed at a position of the first insulating film corresponding to the second portion of the conductive light-shielding film, Etching the base film so that a third communication hole continuous with the second communication hole is formed at a position of the insulating film corresponding to the second portion of the conductive light-shielding film. Further comprising a step of etching the first and second insulating films as an etching mask, The step of forming the reflective electrode includes connecting the conductive light-shielding film and the gate line through the third hole, the second hole, the second communication hole, and the third communication hole. It is preferable that the method further includes a step of forming a conductive portion.
上記の工程を備えることにより、 ダブルゲート型のトランジスタを製造する ことができる。  With the above steps, a double-gate transistor can be manufactured.
また、 本発明の半導体装置の他の製造方法は、 基板上に、 ゲート電極、 ソー ス電極及びドレイン電極を有するトランジスタと、 上記ドレイン電極に接続さ れ、 導電性を有する導電性光透過膜と、 上記導電性光透過膜に接続された反射 電極とを備えた半導体装置の製造方法であって、 上記基板上に上記ソース電極 及び上記ドレイン電極を形成する工程と、 上記ソース電極及ぴ上記ドレイン電 極が形成された基板上に、 上記ドレイン電極に接続される上記導電性光透過膜 であって、 上記ドレイン電極に接続される第 1の部分と上記第 1の部分に接続 され且つ上記ドレイン電極及び上記ソース電極に対応する領域以外の領域に 延在する第 2の部分とを有する上記導電性光透過膜を形成する工程と、 上記導 電性光透過膜が形成された基板上に第 3の絶縁膜を形成する工程と、 上記第 3 の絶縁膜が形成された基板上に、 上記反射電極の下地膜であって、 上記導電性 光透過膜の第 2の部分に対応する位置に第 4の孔を有し且つ表面に複数の凹 部又は凸部を有する下地膜を形成する工程と、 上記第 3の絶縁膜の、 上記導電 性光透過膜の第 2の部分に対応する位置に、 上記第 4の孔に連続的に続く第 4 の連通孔が形成されるように、 上記下地膜をエッチングマスクとして上記第 3 の絶縁膜をェッチングする工程と、 上記第 4の連通孔が形成された上記絶縁膜 を有する上記基板上に、 上記下地膜の表面の一部を覆い且つ上記第4の孔及び 上記第 4の連通孔を通じて上記導電性光透過膜と接続される上記反射電極を 形成する工程とを備えたことを特徴とする。 Another method for manufacturing a semiconductor device of the present invention includes a transistor having a gate electrode, a source electrode, and a drain electrode on a substrate; a conductive light-transmitting film connected to the drain electrode and having conductivity. A method of manufacturing a semiconductor device comprising: a reflective electrode connected to the conductive light transmitting film; and a step of forming the source electrode and the drain electrode on the substrate; A conductive light-transmitting film connected to the drain electrode on a substrate on which an electrode is formed, the first part being connected to the drain electrode; and the drain being connected to the first part and being connected to the drain. Forming the conductive light-transmitting film having an electrode and a second portion extending to a region other than the region corresponding to the source electrode; and a substrate having the conductive light-transmitting film formed thereon. Forming a third insulating film on the substrate, and forming a base film of the reflective electrode on the substrate on which the third insulating film is formed, the base film corresponding to the second portion of the conductive light transmitting film. Fourth hole in position and multiple recesses in surface Forming a base film having a concave portion or a convex portion; and forming a third film continuously following the fourth hole at a position of the third insulating film corresponding to the second portion of the conductive light transmitting film. Etching the third insulating film using the base film as an etching mask so that the fourth communication hole is formed, and forming the fourth insulating film on the substrate having the fourth communication hole. characterized by comprising a step of forming the reflective electrode connected to the conductive light transmissive film through the underlying film partially covering and the fourth hole and the fourth through hole of the surface of the .
この方法によれば、 絶縁膜を形成した後、 下地膜を形成する前に、 その絶縁 膜に第 1の連通孔を形成するための専用のフォトレジスト工程が不要となり、 製造工程数及び製造コストの削減が図られる。  According to this method, after forming the insulating film and before forming the base film, a dedicated photoresist process for forming the first communication hole in the insulating film becomes unnecessary, and the number of manufacturing steps and the manufacturing cost are reduced. Is reduced.
また、 本発明の半導体装置は、 請求項 1乃至 7のうちのいずれか 1項に記載 の半導体装置の製造方法を用いて製造されたことを特徴とする。  Further, a semiconductor device of the present invention is manufactured by using the method of manufacturing a semiconductor device according to any one of claims 1 to 7.
更に、 本発明の液晶表示装置は、 請求項 8に記載の半導体装置を用いて構成 されたことを特徴とする。 図面の簡単な説明  Furthermore, a liquid crystal display device of the present invention is characterized by being configured using the semiconductor device according to claim 8. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の半導体装置の製造方法の第 1実施形態を用いて製造された 反射型液晶表示装置の一部断面図である。  FIG. 1 is a partial cross-sectional view of a reflective liquid crystal display device manufactured by using the first embodiment of the method for manufacturing a semiconductor device of the present invention.
図 2は、 T F T 5 0が形成されたガラス基板 1の断面図である。  FIG. 2 is a cross-sectional view of the glass substrate 1 on which TFT 50 is formed.
図 3は、 パッシベーシヨン膜 8が形成された基板の断面図である。  FIG. 3 is a cross-sectional view of the substrate on which the passivation film 8 is formed.
図 4は、 下地膜 9が形成された基板の断面図である。  FIG. 4 is a cross-sectional view of the substrate on which the base film 9 is formed.
図 5は、 パッシベーション膜 8をエッチングした後の基板の断面図である。 図 6は、 反射電極 1 0が形成された基板を示す断面図である。  FIG. 5 is a cross-sectional view of the substrate after the passivation film 8 has been etched. FIG. 6 is a cross-sectional view showing the substrate on which the reflective electrode 10 is formed.
図 7は、 本発明の半導体装置の製造方法の第 2実施形態を用いて製造された 半透過型液晶表示装置の一部断面図である。  FIG. 7 is a partial cross-sectional view of a transflective liquid crystal display device manufactured by using the second embodiment of the method for manufacturing a semiconductor device of the present invention.
図 8は、 I T O膜 2 1が形成された基板を示す断面図である。  FIG. 8 is a cross-sectional view showing the substrate on which the ITO film 21 has been formed.
図 9は、 パッシベーシヨン膜 2 2が形成された基板を示す断面図である。 図 1 0は、 下地膜 2 3が形成された基板の断面図である。 FIG. 9 is a cross-sectional view showing the substrate on which the passivation film 22 is formed. FIG. 10 is a cross-sectional view of the substrate on which the base film 23 is formed.
図 1 1は、 パッシベーシヨン膜 2 2をエッチングした後の基板の断面図であ る。  FIG. 11 is a cross-sectional view of the substrate after the passivation film 22 has been etched.
図 1 2は、 本発明の半導体装置の製造方法の第 3実施形態を用いて製造され たトツプゲート型液晶表示装置の一部断面図である。  FIG. 12 is a partial cross-sectional view of a top gate type liquid crystal display device manufactured using the third embodiment of the method for manufacturing a semiconductor device of the present invention.
図 1 3は、 ソース電極 6 1及びドレイン電極 6 2、 半導体膜 6 3、 S i N膜 6 4が形成された基板を示す断面図である。  FIG. 13 is a cross-sectional view showing the substrate on which the source electrode 61, the drain electrode 62, the semiconductor film 63, and the SiN film 64 are formed.
図 1 4は、 絶縁膜 6 5が形成された基板の断面図である。  FIG. 14 is a cross-sectional view of the substrate on which the insulating film 65 is formed.
図 1 5は、 ゲート電極 6 6が形成された基板の断面図である。  FIG. 15 is a cross-sectional view of the substrate on which the gate electrode 66 is formed.
図 1 6は、 下地膜 6 7が形成された基板の断面図である。  FIG. 16 is a cross-sectional view of the substrate on which the base film 67 is formed.
図 1 7は、 絶縁膜 6 5をエッチングした後の基板の断面図である。  FIG. 17 is a cross-sectional view of the substrate after the insulating film 65 has been etched.
図 1 8は、 反射電極 6 8が形成された基板を示す断面図である。  FIG. 18 is a cross-sectional view showing the substrate on which the reflective electrode 68 is formed.
図 1 9は、 T F T基板 6 0 0及び従来の T F T基板の反射特性を示すプロッ ト図である。  FIG. 19 is a plot showing the reflection characteristics of the TFT substrate 600 and the conventional TFT substrate.
図 2 0は、 ダブルゲート構造を有する T F T基板 1 0 0の平面図である。 図 2 1は、 図 2 0の A— A線の断面図である。  FIG. 20 is a plan view of a TFT substrate 100 having a double gate structure. FIG. 21 is a cross-sectional view taken along line AA of FIG.
図 2 2は、 図 2 0の B— B線の断面図である。  FIG. 22 is a cross-sectional view taken along line BB of FIG.
図 2 3は、 遮光膜 1 0 1が形成された基板 1を示す平面図である。  FIG. 23 is a plan view showing the substrate 1 on which the light shielding film 101 is formed.
図 2 4は、 図 2 3の C— C線の断面図である。  FIG. 24 is a cross-sectional view taken along line CC of FIG.
図 2 5は、 S i 0 2膜 1 0 2が形成された基板を示す断面図である。 FIG. 25 is a cross-sectional view showing the substrate on which the SiO 2 film 102 is formed.
図 2 6は、 ソース電極 1 0 3、 ソースライン 1 0 4及ぴドレイン電極 1 0 5 が形成された基板を示す平面図である。  FIG. 26 is a plan view showing the substrate on which the source electrode 103, the source line 104, and the drain electrode 105 are formed.
図 2 7は、 図 2 6の D— D線の断面図である。  FIG. 27 is a sectional view taken along line DD in FIG.
図 2 8は、 ゲート電極 1 0 9が形成された基板を示す平面図である。  FIG. 28 is a plan view showing the substrate on which the gate electrode 109 is formed.
図 2 9は、 図 2 8の E— E線の断面図である。  FIG. 29 is a cross-sectional view taken along the line EE of FIG.
図 3 0は、 下地膜 1 1 2が形成された基板を示す平面図である。  FIG. 30 is a plan view showing the substrate on which the base film 112 is formed.
図 3 1は、 図 3 0の F— F線の断面図である。 図 32は、 図 30の G— G線の断面図である。 FIG. 31 is a sectional view taken along line FF of FIG. FIG. 32 is a sectional view taken along line GG of FIG.
図 33は、 図 31に対応する断面図である。  FIG. 33 is a cross-sectional view corresponding to FIG.
図 34は、 図 32に対応する断面図である。 発明を実施するための最良の形態  FIG. 34 is a cross-sectional view corresponding to FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
図 1は、 本発明の半導体装置の製造方法の第 1実施形態を用いて製造された 反射型液晶表示装置の一部断面図である。  FIG. 1 is a partial cross-sectional view of a reflective liquid crystal display device manufactured by using the first embodiment of the method for manufacturing a semiconductor device of the present invention.
この液晶表示装置は、 TFT 50及び反射電極 10等が形成された TFT基 板 51と、 カラ一フィルタ等が形成されたカラーフィルタ基板 52とを有して いる。 この反射電極 10の表面には多数の凹部 10 a及び凸部 1 O bが設けら れている。 カラーフィルタ基板 52の構造は、 本実施形態の特徴部分とは無関 係であるため、 図 1には、 簡略ィ匕して記載されている。 TFT基板 51とカラ 一フィルタ基板 52との間には液晶層 53が存在している。 以下、 本実施形態 の特徴部分を備えている T FT基板 51の製造方法について説明する。  This liquid crystal display device has a TFT substrate 51 on which a TFT 50 and a reflective electrode 10 are formed, and a color filter substrate 52 on which a color filter and the like are formed. A large number of concave portions 10a and convex portions 1Ob are provided on the surface of the reflective electrode 10. Since the structure of the color filter substrate 52 is irrelevant to the features of the present embodiment, it is shown in a simplified manner in FIG. A liquid crystal layer 53 exists between the TFT substrate 51 and the color filter substrate 52. Hereinafter, a method of manufacturing the TFT substrate 51 having the features of the present embodiment will be described.
先ず、 ガラス基板 1上に TFT 50を形成する (図 2参照)。  First, a TFT 50 is formed on a glass substrate 1 (see FIG. 2).
図 2は、 TFT50が形成されたガラス基板 1の断面図である。  FIG. 2 is a sectional view of the glass substrate 1 on which the TFT 50 is formed.
この TFT50は、 ガラス基板 1上に、 例えば、 ゲート電極 2、 ゲート絶縁 膜 3、 a -S i : H又は a— S i : F等の半導体膜 4、 ォーミックコンタクト 層 5、 ソース電極 6及びドレイン電極 7を形成することにより製造することが できる。 尚、 ガラス基板 1上には、 ゲートライン及びソースラインも形成され ているが、 これらのラインは図示省略されている。  The TFT 50 includes, for example, a gate electrode 2, a gate insulating film 3, a semiconductor film 4 such as a-Si: H or a—Si: F, a ohmic contact layer 5, and a source electrode 6 on a glass substrate 1. And the drain electrode 7 is formed. Although a gate line and a source line are also formed on the glass substrate 1, these lines are not shown.
TFT 50の製造後、 この TFT 50を覆うようにパッシベーション膜を形 成する (図 3参照)。  After manufacturing the TFT 50, a passivation film is formed so as to cover the TFT 50 (see FIG. 3).
図 3は、 パッシベーシヨン膜 8が形成された基板の断面図である。  FIG. 3 is a cross-sectional view of the substrate on which the passivation film 8 is formed.
本実施形態では、 パッシベーシヨン膜 8 (本発明にいう第 1の絶縁膜に相当 する) として、 窒化シリコン膜を用いている。 尚、 パッシベーシヨン膜 8の下に存在するドレイン電極 7は、 後述する反射 電極 1 0 (図 6参照) に接続される必要があるため、 このパッシベーシヨン膜 8には、 ドレイン電極 7と反射電極 1 0とを接続するための孔を形成する必要 がある。 しかしながら、 本実施形態では、 パッシベーシヨン膜 8に孔を形成す る前に、 反射電極 1 0の表面に多数の凹部 1 0 a及び凸部 1 0 b (図 6参照) を備えるための下地膜を先に形成する (図 4参照)。 In the present embodiment, a silicon nitride film is used as the passivation film 8 (corresponding to the first insulating film in the present invention). Since the drain electrode 7 existing under the passivation film 8 needs to be connected to a reflective electrode 10 (see FIG. 6) described later, the passivation film 8 includes the drain electrode 7 and the reflective electrode 10. It is necessary to form a hole for connecting However, in the present embodiment, before forming a hole in the passivation film 8, a base film for providing a large number of concave portions 10 a and convex portions 10 b (see FIG. 6) on the surface of the reflective electrode 10 is formed. Form first (see Figure 4).
図 4は、 下地膜 9が形成された基板の断面図である。  FIG. 4 is a cross-sectional view of the substrate on which the base film 9 is formed.
この下地膜 9は、 ドレイン電極 7に対応する位置に孔 9 a (本発明にいう第 1の孔に相当する) を有しており、 更に、 この下地膜 9の表面には、 多数の凹 部 9 b及び凸部 9 cが備えられている。 このような下地膜 9を形成するため、 例えば、 パッシベーシヨン膜 8の表面に感光性樹脂が塗布され、 この塗布され た感光性樹脂の孔 9 aに対応する部分、 凹部 9 bに対応する部分、 及び凸部 9 cに対応する部分が互いに異なる露光エネルギーを吸収するように、 この塗布 された感光性樹脂が露光される。 このように露光された感光性樹脂を現像及び ベーキングすることにより、 図 4に示すように、 孔 9 a、 凹部 9 b及び凸部 9 cを有する下地膜 9を形成することができる。 下地膜 9の表面には多数の凹部 9 b及ぴ凸部 9 cが設けられるため、 下地膜 9の表面の傾斜角 は連続的に変 化する。 尚、 後述する反射電極 1 0 (図 6参照) は、 このように傾斜角 (¾が連 続的に変化する下地膜 9の表面に形成されるため、 反射電極 1 0の反射特性は、 下地膜 9の表面の傾斜角 αに大きく依存する。 従って、 下地膜 9の傾斜角 αを 変更することにより、 反射電極 1 0の反射特性を変更することが可能となる。 この傾斜角 αは、 例えば、 塗布された感光性樹脂の凹部 9 bに対応する部分で 吸収される露光エネルギー、 及び/又は塗布された感光性樹脂の凸部 9 cに対 応する部分で吸収される露光エネルギーを変更すること等によって容易に変 更することができる。 反射電極 1 0が良好な反射特性を有するためには、 下地 膜 9の傾斜角 αは、 できるだけ 0 ¾く αく 1 5度の範囲に含まれることが好ま しい。 そこで、 本実施形態では、 下地膜 9の傾斜角ひができるだけ 0度くひく 1 5度の範囲に含まれるように、 下地膜 9を形成している。 The base film 9 has a hole 9 a (corresponding to the first hole according to the present invention) at a position corresponding to the drain electrode 7. A portion 9b and a convex portion 9c are provided. In order to form such a base film 9, for example, a photosensitive resin is applied to the surface of the passivation film 8, a portion corresponding to the hole 9a of the applied photosensitive resin, a portion corresponding to the concave portion 9b, The applied photosensitive resin is exposed such that the portions corresponding to the projections 9c absorb different exposure energies. By developing and baking the photosensitive resin thus exposed, the base film 9 having the holes 9a, the concave portions 9b, and the convex portions 9c can be formed as shown in FIG. Since a large number of concave portions 9 b and convex portions 9 c are provided on the surface of the base film 9, the inclination angle of the surface of the base film 9 changes continuously. The reflection electrode 10 (see FIG. 6), which will be described later, is formed on the surface of the base film 9 where the inclination angle (¾ continuously changes), so that the reflection characteristics of the reflection electrode 10 are as follows. It largely depends on the inclination angle α of the surface of the ground film 9. Therefore, by changing the inclination angle α of the base film 9, it becomes possible to change the reflection characteristics of the reflective electrode 10. The inclination angle α For example, change the exposure energy absorbed in the portion corresponding to the concave portion 9b of the applied photosensitive resin and / or the exposure energy absorbed in the portion corresponding to the convex portion 9c of the applied photosensitive resin. In order for the reflective electrode 10 to have good reflection characteristics, the inclination angle α of the base film 9 should be within a range of 0 ° and 15 ° as much as possible. Therefore, in the present embodiment, the inclination of the base film 9 is preferred. Catching only 0 Doc can Kakuhi The base film 9 is formed so as to be included in the range of 15 degrees.
尚、 多数の凹部 9 b及び凸部 9 cを有する下地膜 9を形成する方法は、 上記 の方法に限定されることはなく、 例えば、 下地膜 9の材料である感光性樹脂を 塗布する前に多数の突起体を先に形成しておき、 この多数の突起体を覆うよう に下地膜 9の材料である感光性樹脂を塗布してもよい。 多数の突起体を先に形 成しておくことにより、 下地膜 9の材料である感光性樹脂がこれらの突起体の 形状に倣うように塗布され、 この結果、 表面に多数の凹部及び凸部を有する下 地膜を形成することができる。  The method of forming the base film 9 having a large number of the concave portions 9 b and the convex portions 9 c is not limited to the above-described method. For example, before the photosensitive resin that is the material of the base film 9 is applied. Alternatively, a number of protrusions may be formed first, and a photosensitive resin as a material of the base film 9 may be applied so as to cover the number of protrusions. By forming a large number of projections first, a photosensitive resin as a material of the base film 9 is applied so as to follow the shape of these projections, and as a result, a large number of depressions and projections are formed on the surface. It is possible to form an underlying film having the following.
下地膜 9を形成した後、パッシベーシヨン膜 8をェツチングする(図 5参照)。 図 5は、 パッシベーシヨン膜 8をエッチングした後の基板の断面図である。 下地膜 9には孔 9 aが形成されているため、 この下地膜 9をエッチングマス クとしてパッシベーシヨン膜 8をエッチングすることにより、 このパッシベー シヨン膜 8には、 下地膜 9の孔 9 aに連続的に続く孔 8 a (本発明にいう第 1 の連通孔に相当する) が形成される。 パッシベーシヨン膜 8に孔 8 aを形成す ることによって、 ドレイン電極 7が露出する。 本実施形態では、 3 6及び。 HF3を含有するエッチングガスと He等のキヤリァガスとの混合ガス (S F 6: CHF3: He = 12. 5 : 12. 5 : 75) を用いたドライエッチング装 置により、 パッシベーシヨン膜 8をエッチングしている。 エッチングガスに S F6だけでなく CHF 3も用いてパッシベーシヨン膜 8をエッチングすること により、 孔 8 aの内壁面 8 bが基板 1の表面に対して斜めに傾くように容易に テーパエッチングをすることができる。 ドライエッチング装置としては、 例え ば、反応性イオンエッチング(R I E)装置、誘導結合プラズマエッチング(I CP) 装置及び高密度プラズマエッチング装置等を用いることができる。 本実 施形態では、 內壁面 8 bのテーパ角 Θは約 70度である。 テーパエッチングを 行うことにより、 後述する反射電極 10 (図 6参照) の孔 8 a内におけるステ ップカバレージを向上させることができる。 このテーパ角 0は、 例えば、 CH F3ガスの混合量を変化させることにより変更することができる。 また、 本実 1 After forming the base film 9, the passivation film 8 is etched (see FIG. 5). FIG. 5 is a cross-sectional view of the substrate after the passivation film 8 has been etched. Since the holes 9a are formed in the base film 9, the passivation film 8 is etched using the base film 9 as an etching mask, so that the passivation film 8 is continuous with the holes 9a of the base film 9. A continuous hole 8a (corresponding to the first communication hole in the present invention) is formed. By forming the holes 8 a in the passivation film 8, the drain electrodes 7 are exposed. In the present embodiment, 3 6 and. The passivation film 8 is etched by a dry etching apparatus using a mixed gas of an etching gas containing HF 3 and a carrier gas such as He (SF 6 : CHF 3 : He = 12.5: 12.5: 75). ing. By etching the passivation film 8 using not only SF 6 but also CHF 3 as an etching gas, it is possible to easily perform taper etching so that the inner wall surface 8 b of the hole 8 a is inclined with respect to the surface of the substrate 1. Can be. As the dry etching apparatus, for example, a reactive ion etching (RIE) apparatus, an inductively coupled plasma etching (ICP) apparatus, a high-density plasma etching apparatus, or the like can be used. In this embodiment, the {taper angle of the wall surface 8b} is about 70 degrees. By performing the taper etching, the step coverage in the hole 8a of the later-described reflective electrode 10 (see FIG. 6) can be improved. The taper angle 0 can be changed, for example, by changing the mixing amount of CH 3 gas. Also, the real 1
10 施形態では、 パッシベーション膜 8のテーパエッチングを容易に行うことがで きるようにするため、 C H F 3ガスを用いているが、 C H F 3ガスの代わりに、 例えば C 2 H F 5ガスを用いることもできる。 10 In the embodiment, the CHF 3 gas is used in order to easily perform the taper etching of the passivation film 8, but for example, a C 2 HF 5 gas may be used instead of the CHF 3 gas. it can.
上記のように、 下地膜 9はパッシベーション膜 8のエッチングマスクとして の役割を果たしているが、 この下地膜 9は、 エッチングマスクの役割だけでは なく、 後述する反射電極 1 0 (図 6参照) に良好な反射特性を持たせるための 下地膜としての役割も果たす必要がある。 しかしながら、 パッシベーシヨン膜 8をエッチングしている間に下地膜 9もエッチングされてしまうと、 この下地 膜 9の表面の形状が変形してしまい、 パッシベーシヨン膜 8がェツチングされ た後の下地膜 9の表面の傾斜角 α (図 4参照) の範囲が、 パッシベーシヨン膜 8がエッチングされる前の下地膜 9の表面の傾斜角 αの範囲から大きくずれ てしまうというおそれがある。 このように下地膜 9の表面の傾斜角 αの範囲に ずれが生じると、 その下地膜 9の表面に後述する反射電極 1 0 (図 6参照) を 形成しても、 反射電極 1 0の反射特性が所望の特性から大きくずれてしまうと いうおそれがあるため、 下地膜 9はできるだけエッチングされないことが好ま しい。 そこで、 本実施形態では、 パッシベーシヨン膜 8を、 エッチングガスと キャリアガスとの混合ガスを用いてエッチングしている。 混合ガスにキャリア ガスを含有させることにより、 パッシベーシヨン膜 8のエッチング速度に対し て下地膜 9のエッチング速度を十分に遅くすることができ、 パッシベーシヨン 膜 8のエッチングが完了した後の下地膜 9の表面の形状を、 パッシベーシヨン 膜 8がエッチングされる前の下地膜 9の表面の形状とほぼ同じ形状に保持す ることができる。 従って、 パッシベーシヨン膜 8をエッチングしても、 下地膜 9の表面の形状の変形が最小限に抑えられ、 下地膜 9は、 反射電極に良好な反 射特性を持たせるための下地膜としての役割も果たすことができる。 尚、 本実 施形態では、 キャリアガスとして H eを用いているが、 H eの代わりに例えば A rを用いることもできる。  As described above, the base film 9 plays a role as an etching mask for the passivation film 8, but this base film 9 is good not only for the role of the etching mask but also for the reflective electrode 10 (see FIG. 6) described later. It is also necessary to play a role as a base film for providing high reflection characteristics. However, if the underlying film 9 is also etched while the passivation film 8 is being etched, the shape of the surface of the underlying film 9 is deformed, and the surface of the underlying film 9 after the etching of the passivation film 8 is performed. (See FIG. 4) may greatly deviate from the range of the inclination angle α of the surface of the base film 9 before the passivation film 8 is etched. When the range of the inclination angle α of the surface of the base film 9 shifts as described above, even if a reflective electrode 10 (see FIG. 6) described later is formed on the surface of the base film 9, the reflection of the reflective electrode 10 does not occur. It is preferable that the underlying film 9 is not etched as much as possible because there is a possibility that the characteristics deviate significantly from the desired characteristics. Thus, in the present embodiment, the passivation film 8 is etched using a mixed gas of an etching gas and a carrier gas. By including the carrier gas in the mixed gas, the etching rate of the base film 9 can be sufficiently reduced with respect to the etching rate of the passivation film 8, and the surface of the base film 9 after the etching of the passivation film 8 is completed. Can be kept substantially the same as the shape of the surface of the base film 9 before the passivation film 8 is etched. Therefore, even when the passivation film 8 is etched, the deformation of the surface of the base film 9 is minimized, and the base film 9 serves as a base film for giving the reflective electrode good reflection characteristics. Can also be fulfilled. Although He is used as the carrier gas in the present embodiment, Ar may be used instead of He, for example.
以上のようにしてパッシベーシヨン膜 8をエッチングした後、 反射電極を形 成する (図 6参照)。 After etching the passivation film 8 as described above, the reflective electrode is formed. (See Figure 6).
図 6は、 反射電極 1 0が形成された基板を示す断面図である。  FIG. 6 is a cross-sectional view showing the substrate on which the reflective electrode 10 is formed.
この反射電極 1 0は、 例えば A 1膜等の高反射率の導電膜を形成し、 この導 電膜をパターユングすることにより形成される。 反射電極 1 0の下地膜 9の表 面には多数の凹部 9 b及び凸部 9 cが形成されているため (図 5参照)、 この 反射電極 1 0にも、 下地膜 9の表面の形状に倣って多数の凹部 1 0 a及び凸部 1 0 bが形成され、 この結果、 良好な反射特 1"生を有する反射電極 1 0を得るこ とができる。 このようにして、 T F T基板 5 1 (図 1参照) が形成される。 本実施形態では、 反射電極 1 0の下地膜 9は、 その表面に多数の凹部 9 b及 び凸部 9 cを備えているため反射電極 1 0に良好な反射特性を持たせるため の役割を果たすとともに、 パッシベーシヨン膜 8に孔 8 a (図 5参照) を形成 するためのエッチングマスクとしての役割も果たしている。 従って、 パッシベ ーシヨン膜 8を形成した後、 下地膜 9を形成する前に、 そのパッシベーシヨン 膜 8に孔 8 aを形成するための専用のフォトリソ工程が不要となる。 従来の方 法では、 パッシベーシヨン膜 8を形成した後、 下地膜 9を形成する前に、 この パッシベーション膜 8に孔 8 aを形成するための専用のフォトリソ工程が必 要であるが、 本実施形態によれば、 このフォトリソ工程が不要となるため、 製 造工程数及ぴ製造コストの削減が図られる。  The reflective electrode 10 is formed by forming a conductive film having a high reflectivity such as an A1 film and patterning the conductive film. Since a large number of concave portions 9 b and convex portions 9 c are formed on the surface of the base film 9 of the reflective electrode 10 (see FIG. 5), the shape of the surface of the base film 9 is also formed on the reflective electrode 10. Thus, a large number of concave portions 10a and convex portions 10b are formed, and as a result, it is possible to obtain a reflective electrode 10 having good reflection characteristics 1 ". In this manner, the TFT substrate 5 1 (see FIG. 1) In this embodiment, the base film 9 of the reflective electrode 10 has a large number of concave portions 9b and convex portions 9c on its surface, so that the reflective electrode 10 has In addition to serving to provide good reflection characteristics, it also serves as an etching mask for forming the holes 8a (see FIG. 5) in the passivation film 8. Therefore, after forming the passivation film 8, Before forming the base film 9, a hole 8 a is formed in the passivation film 8. According to the conventional method, after the passivation film 8 is formed and before the base film 9 is formed, a dedicated photolithography process for forming the holes 8a in the passivation film 8 is not required. Although it is necessary, according to the present embodiment, the photolithography step is not required, so that the number of manufacturing steps and the manufacturing cost can be reduced.
次に、 本発明の半導体装置の製造方法の第 2実施形態を用いて製造された T F T基板について説明する。  Next, a TFT substrate manufactured by using the second embodiment of the method for manufacturing a semiconductor device of the present invention will be described.
図 7は、 本発明の半導体装置の製造方法の第 2実施形態を用いて製造された 半透過型液晶表示装置の一部断面図である。  FIG. 7 is a partial cross-sectional view of a transflective liquid crystal display device manufactured by using the second embodiment of the method for manufacturing a semiconductor device of the present invention.
この液晶表示装置は、 T F T 5 0 0及び反射電極 2 4等が形成された T F T 基板 5 1 0と、 カラーフィルタ等が形成されたカラーフィルタ基板 5 2 0とを 有している。 反射電極 2 4の表面には多数の凹部 2 4 b及び凸部 2 4 cが設け られている。 カラーフィルタ基板 5 2 0の構造は、 図 1と同様に、 簡略化して 記載されている。 T F T基板 5 1 0とカラーフィルタ基板 5 2 0との間には液 晶層 5 3 0が存在している。 T F T基板 5 1 0の背面にはバックライト B Lが 備えられている。 以下、 第 2実施形態の特徴部分を備えている T F T基板 5 1 0の製造方法について、 図 7とともに図 8乃至図 1 1を参照しながら説明する。 先ず、図 2を参照しながら説明した方法と同様の方法で、ガラス基板 1上に、 ゲート電極 2、 ゲート絶縁膜 3、 半導体膜 4、 ォーミックコンタクト層 5、 ソ ース電極 6及ぴドレイン電極 7を形成した後、 このドレイン電極 7に接続され る I T O膜を形成する (図 8参照)。 This liquid crystal display device has a TFT substrate 510 on which a TFT 550 and a reflective electrode 224 are formed, and a color filter substrate 520 on which a color filter and the like are formed. A large number of concave portions 24 b and convex portions 24 c are provided on the surface of the reflective electrode 24. The structure of the color filter substrate 520 is described in a simplified manner as in FIG. Liquid between the TFT substrate 5 10 and the color filter substrate 5 20 A crystal layer 530 is present. A backlight BL is provided on the rear surface of the TFT substrate 510. Hereinafter, a method for manufacturing the TFT substrate 5100 having the features of the second embodiment will be described with reference to FIG. 7 and FIGS. First, the gate electrode 2, the gate insulating film 3, the semiconductor film 4, the ohmic contact layer 5, the source electrode 6, and the like are formed on the glass substrate 1 in the same manner as described with reference to FIG. After the formation of the drain electrode 7, an ITO film connected to the drain electrode 7 is formed (see FIG. 8).
図 8は、 I T O膜 2 1が形成された基板を示す断面図である。  FIG. 8 is a cross-sectional view showing the substrate on which the ITO film 21 has been formed.
この I T O膜 2 1 (本発明にいう導電性光透過膜に相当する) は、 ドレイン 電極に接続される第 1の部分 2 1 aと、 この第 1の部分 2 1 aからゲート絶縁 膜 3上に延在する第 2の部分 2 1 bとを有する。 I T O膜 2 1を形成した後、 この I T O膜 2 1が形成された基板上にパッシベーション膜を形成する。  The ITO film 21 (corresponding to the conductive light transmitting film according to the present invention) includes a first portion 21 a connected to the drain electrode, and the first portion 21 a on the gate insulating film 3. And a second portion 21b extending to After forming the ITO film 21, a passivation film is formed on the substrate on which the ITO film 21 has been formed.
図 9は、 パッシベーシヨン膜 2 2が形成された基板を示す断面図である。 パッシベーシヨン膜 2 2 (本発明にいう第 3の絶縁膜に相当する) の下に存 在する I T O膜 2 1は、 後述する反射電極 2 4 (図 7参照) に接続される必要 があるため、 このパッシベーシヨン膜 8には、 I T O膜 2 1と反射電極 2 4と を接続するための孔を形成する必要がある。 しかしながら、第 2実施形態では、 パッシベーション膜 2 2に孔を形成する前に、 反射電極 2 4の表面に多数の凹 部 2 4 b及ぴ凸部 2 4 c (図 7参照)を備えるための下地膜を先に形成する(図 1 0参照)。  FIG. 9 is a cross-sectional view showing the substrate on which the passivation film 22 is formed. The ITO film 21 existing under the passivation film 22 (corresponding to the third insulating film in the present invention) needs to be connected to a later-described reflective electrode 24 (see FIG. 7). In this passivation film 8, it is necessary to form a hole for connecting the ITO film 21 and the reflection electrode 24. However, in the second embodiment, before forming a hole in the passivation film 22, the surface of the reflective electrode 24 is provided with a large number of concave portions 24 b and convex portions 24 c (see FIG. 7). A base film is formed first (see FIG. 10).
図 1 0は、 下地膜 2 3が形成された基板の断面図である。  FIG. 10 is a cross-sectional view of the substrate on which the base film 23 is formed.
この下地膜 2 3は、 I T O膜 2 1の第 2の部分 2 1 bに対応する位置に孔 2 3 a (本発明にいう第 4の孔に相当する) を有しており、 更に、 この下地膜 2 3の表面には、 多数の凹部 2 3 b及ぴ凸部 2 3 cが備えられている。 このよう な下地膜 2 3は、 図 4を参照しながら説明した方法と同様の方法を用いて形成 することができる。 下地膜 2 3を形成した後、 パッシベーシヨン膜 2 2をエツ チングする (図 1 1参照)。 図 1 1は、 パッシベーシヨン膜 2 2をェツチングした後の基板の断面図であ る。 The base film 23 has a hole 23a (corresponding to the fourth hole according to the present invention) at a position corresponding to the second portion 21b of the ITO film 21. On the surface of the base film 23, a large number of concave portions 23b and convex portions 23c are provided. Such a base film 23 can be formed using a method similar to the method described with reference to FIG. After forming the base film 23, the passivation film 22 is etched (see FIG. 11). FIG. 11 is a cross-sectional view of the substrate after etching the passivation film 22.
下地膜 2 3には孔 2 3 aが形成されているため、 この下地膜 2 3をエツチン グマスクとしてパッシベーション膜 2 2をエッチングすることにより、 このパ ッシベーシヨン膜 2 2には、 下地膜 2 3の孔 2 3 aに連続的に続く孔 2 2 a (本発明にいう第 4の連通孔に相当する) が形成される。 このパッシベーショ ン膜 2 2のエッチングは、 図 5を参照しながら説明した方法と同様の方法を用 いて行うことができる。 パッシベーシヨン膜 2 2に孔 2 2 aを形成することに よって、 I T O膜 2 1の第 2の部分 2 1 bが露出する。 パッシベーシヨン膜 2 2をエッチングした後、 図 7に示すように反射電極 2 4を形成することにより T F T基板 5 1 0が製造される。この反射電極 2 4には、バックライト B L (図 7参照)からの光を通過させるための孔 2 4 aが形成されている。 このように、 反射電極 2 4に孔 2 4 aを設けることにより、 T F T基板 5 1 0を、 反射型と 透過型との両方の機能を備えた半透過型の液晶表示装置に用いることができ る。  Since the holes 23 a are formed in the base film 23, the passivation film 22 is etched by using the base film 23 as an etching mask, thereby forming the base film 23 with the passivation film 22. A hole 22a (corresponding to the fourth communication hole according to the present invention) that continuously follows the hole 23a is formed. The etching of the passivation film 22 can be performed using the same method as described with reference to FIG. By forming the hole 22 a in the passivation film 22, the second portion 21 b of the ITO film 21 is exposed. After etching the passivation film 22, a reflective electrode 24 is formed as shown in FIG. 7 to manufacture the TFT substrate 510. The reflective electrode 24 has a hole 24a for transmitting light from the backlight BL (see FIG. 7). In this manner, by providing the hole 24a in the reflective electrode 24, the TFT substrate 5100 can be used for a transflective liquid crystal display device having both a reflective type and a transmissive type. You.
第 2実施形態では、 反射電極 2 4の下地膜 2 3は、 その表面に多数の四部 2 3 b及び凸部 2 3 cを備えているため反射電極 2 4に良好な反射特性を持た せるための役割を果たすとともに、 パッシベーシヨン膜 2 2.に孔 2 2 a (図 1 1参照) を形成するためのエッチングマスクとしての役割も果たしている。 従 つて、 パッシベーシヨン膜 2 2を形成した後、 下地膜 2 3を形成する前に、 そ のパッシベーシヨン膜 2 2に孔 2 2 aを形成するための専用のフォトリソェ 程が不要となり、 製造工程数及び製造コストの削減が図られる。  In the second embodiment, the base film 23 of the reflective electrode 24 has a large number of four parts 23 b and convex parts 23 c on its surface, so that the reflective electrode 24 has good reflection characteristics. And also serves as an etching mask for forming holes 22a (see FIG. 11) in the passivation film 22. Therefore, after forming the passivation film 22 and before forming the base film 23, a dedicated photolithography process for forming the hole 22a in the passivation film 22 becomes unnecessary, and the number of manufacturing steps and Manufacturing costs can be reduced.
尚、 上記の第 1及ぴ第 2実施形態では、 ボトムゲート型の T F T基板 5 1及 び 5 1 0の製造方法について説明したが、 本発明は、 トップゲート型の T F T 基板の製造にも適用することができる。 以下に、 本発明をトップゲート型の T F T基板の製造に適用した例について説明する。  In the first and second embodiments described above, the method of manufacturing the bottom gate type TFT substrates 51 and 50 has been described. However, the present invention is also applicable to the manufacture of top gate type TFT substrates. can do. An example in which the present invention is applied to the manufacture of a top gate type TFT substrate will be described below.
図 1 2は、 本発明の半導体装置の製造方法の第 3実施形態を用いて製造され たトップゲ一ト型液晶表示装置の一部断面図である。 FIG. 12 shows a semiconductor device manufactured using the third embodiment of the manufacturing method of the present invention. FIG. 2 is a partial cross-sectional view of a top gate type liquid crystal display device.
この液晶表示装置は、 T F T 600及び反射電極 68等が形成された T F T 基板 601と、 カラーフィルタ等が形成されたカラーフィルタ基板 602とを 有している。 この TFT基板 601は反射電極 68を有しており、 この反射電 極 68の表面には多数の凹部及び凸部が設けられている。 カラーフィルタ基板 602の構造は、 簡略化して記載されている。 T FT基板 601とカラーフィ ルタ基板 602との間には液晶層 603が存在している。 T FT基板 601の 背面にはパックライト BLが備えられている。 以下、 TFT基板 601の製造 方法について、 図 12とともに図 13乃至図 18を参照しながら説明する。 先ず、 図 13に示すように、 S i〇2膜 (図示せず) が形成されたガラス基 板 60上に、 ソース電極 61及びドレイン電極 62、 半導体膜 63、 S i N膜 64を形成する。 ここでは、 ソース電極 61は及ぴドレイン電極 62は、 I T O膜 F 1と金属膜 F 2との二層膜により構成されているが、 単層膜又は三層以 上の積層膜により構成することもできる。 金属膜 F 2としては、 例えば、 微量 のクロム (C r) が添加されたモリブデン (Mo) を主成分とする金属膜を用 いることができる。 3 1 ^1膜64の形成後、 この S i N膜 64を覆うように絶 縁膜を形成する (図 14参照)。 This liquid crystal display device has a TFT substrate 601 on which a TFT 600 and a reflective electrode 68 are formed, and a color filter substrate 602 on which a color filter and the like are formed. The TFT substrate 601 has a reflective electrode 68, and a large number of concave portions and convex portions are provided on the surface of the reflective electrode 68. The structure of the color filter substrate 602 is described in a simplified manner. A liquid crystal layer 603 exists between the TFT substrate 601 and the color filter substrate 602. A back light BL is provided on the rear surface of the TFT substrate 601. Hereinafter, a method of manufacturing the TFT substrate 601 will be described with reference to FIGS. First, as shown in FIG. 13, on the S I_〇 2 film glass base plate 60 (not shown) is formed, a source electrode 61 and drain electrode 62, the semiconductor film 63, S i N film 64 . Here, the source electrode 61 and the drain electrode 62 are formed of a two-layer film of the ITO film F1 and the metal film F2, but may be formed of a single-layer film or a laminated film of three or more layers. Can also. As the metal film F2, for example, a metal film containing molybdenum (Mo) to which a small amount of chromium (Cr) is added as a main component can be used. After the formation of the 3 1 ^ 1 film 64, an insulating film is formed so as to cover the SiN film 64 (see FIG. 14).
図 14は、 絶縁膜 65が形成された基板の断面図である。  FIG. 14 is a cross-sectional view of the substrate on which the insulating film 65 is formed.
絶縁膜 65 (本発明にいう第 1の絶縁膜に相当する) としては、 例えば S i N膜を用いることができる。 絶縁膜 65を形成した後、 ゲート電極を形成する (図 15参照)。  As the insulating film 65 (corresponding to the first insulating film in the present invention), for example, a SiN film can be used. After forming the insulating film 65, a gate electrode is formed (see FIG. 15).
図 15は、 ゲート電極 66が,形成された基板の断面図である。  FIG. 15 is a cross-sectional view of the substrate on which the gate electrode 66 is formed.
ゲート電極 66は、 例えば A 1膜等の金属膜を形成し、 この金属膜をパター ユングすることにより形成することができる。 この金属膜をパターユングする ときには、 ゲート電極 66の他に、 このゲート電極 66に接続されたゲートラ インも形成しているが、 図 1 5では、 このゲートラインは図示省略している。 尚、 絶縁膜 65の下に存在するドレイン電極 62は、 後述する反射電極 68 に接続される必要がある (図 1 2及び図 1 8参照)。従って、絶縁膜 6 5には、 ドレイン電極 6 2と反射電極 6 8とを接続するための孔を形成する必要があ るが、 この第 3実施形態では、 ゲート電極 6 6を形成した後、 絶縁膜 6 5に孔 を形成する前に、 後述する反射電極 6 8に多数の凹部及ぴ凸部を持たせるため の下地膜を先に形成する。 The gate electrode 66 can be formed, for example, by forming a metal film such as an A1 film and patterning this metal film. When the metal film is patterned, a gate line connected to the gate electrode 66 is also formed in addition to the gate electrode 66, but the gate line is not shown in FIG. The drain electrode 62 under the insulating film 65 is a reflective electrode 68 described later. (See Figures 12 and 18). Therefore, it is necessary to form a hole in the insulating film 65 for connecting the drain electrode 62 and the reflective electrode 68, but in the third embodiment, after forming the gate electrode 66, Before forming a hole in the insulating film 65, a base film for forming a plurality of concave portions and convex portions in the reflective electrode 68 described later is formed first.
図 1 6は、 下地膜 6 7が形成された基板の断面図である。  FIG. 16 is a cross-sectional view of the substrate on which the base film 67 is formed.
下地膜 6 7は、 図 4を参照しながら説明した方法と同様の方法で形成するこ とができる。 この下地膜 6 7は、 ドレイン電極 6 2に対応する部分に孔 6 7 a (本亮明にいう第 1の孔に相当する) を有しており、 更にこの下地膜 6 7の表 面には、 多数の凹部 6 7 b及び凸部 6 7 cが設けられている。 このような下地 膜 6 7を形成した後、 絶縁膜 6 5をエッチングする (図 1 7参照)。  The base film 67 can be formed by a method similar to the method described with reference to FIG. The base film 67 has a hole 67 a (corresponding to the first hole referred to in this book) at a portion corresponding to the drain electrode 62, and further has a surface on the base film 67. Has a large number of concave portions 67 b and convex portions 67 c. After forming such a base film 67, the insulating film 65 is etched (see FIG. 17).
図 1 7は、 絶縁膜 6 5をエッチングした後の基板の断面図である。  FIG. 17 is a cross-sectional view of the substrate after the insulating film 65 has been etched.
この絶縁膜 6 5は、 下地膜 6 7をエッチングマスクとして、 図 5を参照しな がら説明した方法と同様の方法でドライエッチングされる。 このドライエッチ ングにより、 絶縁膜 6 5の孔 6 5 a (本発明にいう第 1の連通孔に相当する) の内壁面 6 5 bに、 図 5の内壁面 8 bと同様のテーパ角 Θを持たせることがで きる。 絶縁膜 6 5をエッチングした後、 反射電極を形成する (図 1 8参照)。 図 1 8は反射電極 6 8が形成された基板を示す断面図である。  The insulating film 65 is dry-etched using the base film 67 as an etching mask in the same manner as the method described with reference to FIG. Due to this dry etching, the inner wall surface 65b of the hole 65a of the insulating film 65 (corresponding to the first communication hole in the present invention) has the same taper angle as the inner wall surface 8b of FIG. Can be provided. After etching the insulating film 65, a reflective electrode is formed (see FIG. 18). FIG. 18 is a cross-sectional view showing the substrate on which the reflective electrode 68 is formed.
反射電極 6 8は、 例えば A 1膜を形成し、 この A 1膜をエッチングすること により形成することができる。 この反射電極 6 8には、 バックライト B L (図 1 2参照) からの光を通過させるための孔 6 8 aが形成されている。 し力 しな がら、 図 1 8では、 ドレイン電極 6 2の I T O膜 F 1は金属膜 F 2で覆われて いるため、 反射電極 6 8に孔 6 8 aを設けただけでは、 バックライト B Lの光 は孔 6 8 aを通過することができない。 そこで、 孔 6 8 aを有する反射電極 6 8を形成した後、 金属膜 F 2の孔 6 8 aに対応する部分をエッチングする。 こ のエッチングにより、 図 1 2に示すようにドレイン電極 6 2の I丁〇膜 1カ 露出し (図 1 2参照)、 バックライト B Lの光が反射電極 6 8の孔 6 8 aを通 過することができる。 以上のようにして T F T基板 6 0 1が製造される。 第 3実施形態では、 反射電極 6 8の下地膜である下地膜 6 7は、 その表面に 多数の凹部 6 7 b及ぴ凸部 6 7 cを備えているため、 反射電極 6 8に良好な反 射特 1 "生を持たせるための役割を果たすとともに、 絶縁膜 6 5に孔 6 5 a (図 1 7参照) を形成するためのエッチングマスクとしての役割も果たしている。 従 つて、 絶縁膜 6 5を形成した後、 下地膜 6 7を形成する前に、 その絶縁膜 6 5 に孔 6 5 aを形成するための専用のフォトリソ工程が不要となる。 従来の方法 では、 絶縁膜 6 5を形成した後下地膜 6 7を形成する前に、 この絶縁膜 6 5に 孔 6 5 aを形成するための専用のフォトリソ工程が必要であるが、 本実施形態 によれば、 この専用のフォトリソ工程が不要となるため、 製造工程数及び製造 コストの削減が図られる。 The reflective electrode 68 can be formed, for example, by forming an A1 film and etching the A1 film. The reflective electrode 68 has a hole 68a for transmitting light from the backlight BL (see FIG. 12). However, in FIG. 18, since the ITO film F 1 of the drain electrode 62 is covered with the metal film F 2, the backlight BL cannot be obtained simply by providing the hole 68 a in the reflection electrode 68. Light cannot pass through hole 68a. Therefore, after forming the reflective electrode 68 having the hole 68a, the portion of the metal film F2 corresponding to the hole 68a is etched. As a result of this etching, as shown in FIG. 12, one I-type film of the drain electrode 62 is exposed (see FIG. 12), and the light of the backlight BL passes through the hole 68 a of the reflective electrode 68. You can have. As described above, the TFT substrate 600 is manufactured. In the third embodiment, the base film 67, which is the base film of the reflective electrode 68, has a large number of concave portions 67b and convex portions 67c on its surface. Reflection characteristics 1 "In addition to playing a role in giving life, it also plays a role as an etching mask for forming holes 65a (see Fig. 17) in the insulating film 65. Therefore, the insulating film After the formation of the base film 67 and before the formation of the base film 67, a special photolithography process for forming the hole 65a in the insulating film 65 is unnecessary. After the formation of the base film 67 and before the formation of the base film 67, a dedicated photolithography step for forming the hole 65a in the insulating film 65 is required. According to the present embodiment, this dedicated photolithography step is performed. Since no process is required, the number of manufacturing steps and manufacturing cost can be reduced.
以下に、 第 3実施形態の方法によって製造された T F T基板 6 0 1の反射特 性と、 絶縁膜 6 5を形成した後下地膜 6 7を形成する前に専用のフォトリソェ 程を用いて絶縁膜 6 5に孔 6 5 aを形成する従来の方法を採用して製造され た従来の T F T基板の反射特 1 "生とを比較する。  Hereinafter, the reflection characteristics of the TFT substrate 61 manufactured by the method of the third embodiment and the insulating film using a dedicated photolithography process after forming the insulating film 65 and before forming the base film 67 will be described. A comparison is made with the reflection characteristics of a conventional TFT substrate manufactured using the conventional method of forming a hole 65a in 65.
図 1 9は、 T F T基板 6 0 1及ぴ従来の T F T基板の反射特性を示すプロッ ト図である。  FIG. 19 is a plot showing the reflection characteristics of the TFT substrate 61 and the conventional TFT substrate.
このプロット図は、 T F T基板に対し一 3 0度方向から外部光を照射したと きの反射特性を示す。 横軸は視野角、 縦軸は反射率を示す。 プロット図におい て、 記号〇は第 3実施形態による T F T基板の反射特性を示し、 記号 Xは従来 の方法を採用して製造された T F T基板の反射特性を示す。  This plot shows the reflection characteristics when the TFT substrate was irradiated with external light from the 130 ° direction. The horizontal axis shows the viewing angle, and the vertical axis shows the reflectance. In the plots, the symbol 〇 indicates the reflection characteristic of the TFT substrate according to the third embodiment, and the symbol X indicates the reflection characteristic of the TFT substrate manufactured by using the conventional method.
図 1 9より、 第 3実施形態では、 従来の方法による反射特性とほぼ同程度の 反射特性が維持されていることがわかる。 従って、 第 3実施形態の方法を採用 することにより、 反射特性を維持したまま従来の方法よりも製造工程数及び製 造コストが削減できることがわかる。  From FIG. 19, it can be seen that in the third embodiment, the reflection characteristics almost the same as the reflection characteristics by the conventional method are maintained. Therefore, it is understood that the number of manufacturing steps and manufacturing cost can be reduced by adopting the method of the third embodiment as compared with the conventional method while maintaining the reflection characteristics.
尚、 本発明は、 ダブルゲート構造を有する T F T基板の製造にも適用するこ とができる。 以下、 本発明の半導体装置の製造方法の第 4実施形態を採用して ダブルゲート構造を有する T F T基板を製造する一例について説明する。 Note that the present invention can also be applied to the manufacture of a TFT substrate having a double gate structure. Hereinafter, the semiconductor device manufacturing method according to the fourth embodiment of the present invention will be described. An example of manufacturing a TFT substrate having a double gate structure will be described.
図 2 0は、 ダブルグート構造を有する T F Τ基板 1 0 0の一部平面図、 図 2 1は、図 2 0の A— Α線の断面図、図 2 2は図 2 0の B— B線の断面図である。 この T F T基板 1 0 0には、 孔 1 1 3 aを有する反射電極 1 1 3と、 接続導 電部 1 1 4 (本発明にいう導電部に相当する) が形成されている。 反射電極 1 1 3はドレイン電極 1 0 5に接続されている。 接続導電部 1 1 4は、 図 2 2に 示すように、 遮光膜 1 0 1とゲートライン 1 1 0とを電気的に接続するための 導電部である。 以下に、 図 2 0乃至図 2 2に示す T F T基板 1 0 0の製造方法 を図 2 3乃至図 3 4を参照しながら説明する。  FIG. 20 is a partial plan view of a TF substrate 100 having a double-gut structure, FIG. 21 is a cross-sectional view taken along the line A—Α of FIG. 20, and FIG. 22 is a line B—B of FIG. FIG. On the TFT substrate 100, a reflective electrode 113 having a hole 113a and a connection conductive portion 114 (corresponding to the conductive portion according to the present invention) are formed. The reflection electrode 113 is connected to the drain electrode 105. The connection conductive portion 114 is a conductive portion for electrically connecting the light shielding film 101 and the gate line 110 as shown in FIG. Hereinafter, a method of manufacturing the TFT substrate 100 shown in FIGS. 20 to 22 will be described with reference to FIGS.
図 2 3は、 遮光膜 1 0 1が形成された基板 1を示す平面図、 図 2 4は、 図 2 3の C— C線の断面図である。  FIG. 23 is a plan view showing the substrate 1 on which the light-shielding film 101 is formed, and FIG. 24 is a cross-sectional view taken along line CC of FIG.
基板 1上には、 導電性を有する導電性遮光膜 1 0 1が形成される。 この導電 性遮光膜 1 0 1は、例えば、微量のクロム (C r )が添加されたモリブデン(M o ) を主成分とする金属膜を形成し、 この金属膜を図 2 3に示す形状にパター ニングすることによって形成できる。 図 2 3に示す導電性遮光膜 1 0 1は略 L 字形状を有しているが、 導電性遮光膜 1 0 1の形状は適宜変更可能である。 こ の導電性遮光膜 1 0 1は、 後述するゲート電極 1 0 9 (図 2 9参照) に対応す る第 1の部分 1 0 1 aと、 第 1の部分 1 0 1から延在する第 2の部分 1 0 1 b とを有する。 遮光膜 1 0 1を形成した後 S i O 2膜を形成する (図 2 5参照)。 図 2 5は、 S i 0 2膜 1 0 2が形成された基板を示す断面図である。 On the substrate 1, a conductive light-shielding film 101 having conductivity is formed. As the conductive light-shielding film 101, for example, a metal film mainly composed of molybdenum (Mo) to which a trace amount of chromium (Cr) is added is formed, and this metal film is formed into a shape shown in FIG. It can be formed by patterning. The conductive light-shielding film 101 shown in FIG. 23 has a substantially L-shape, but the shape of the conductive light-shielding film 101 can be appropriately changed. This conductive light-shielding film 101 has a first portion 101 a corresponding to a gate electrode 109 described later (see FIG. 29) and a first portion 101 extending from the first portion 101. 2 portion 101b. After forming the light shielding film 101, a SiO 2 film is formed (see FIG. 25). FIG. 25 is a cross-sectional view showing the substrate on which the SiO 2 film 102 is formed.
S i 0 2膜 1 0 2 (本発明にいう第 2の絶縁膜に相当する) は、 導電性遮光 膜 1 0 1を覆うように形成される。 S i 0 2膜 1 0 2の下に存在する遮光膜 1 0 1は、 後で形成される接続導電部 1 1 4 (図 2 2参照) に接続される必要が あるため、 この S i 0 2膜 1 0 2には、 遮光膜 1 0 1と接続導電部 1 1 4とを 接続するための孔を形成する必要がある。 しかしながら、 ここでは、 S i〇2 膜 1 0 2に遮光膜 1 0 1と接続導電部 1 1 4とを接続するための孔を形成す る前に、 ソース電極、 ソースライン及びドレイン電極を形成する (図 2 6及び 図 2 7参照)。 S i 0 2 film 1 0 2 (corresponding to the second insulating film in the present invention) is formed so as to cover the conductive light shielding film 1 0 1. Since the light-shielding film 1 0 1 underlying the S i 0 2 film 1 0 2 need to be connected to the connection conductive portions 1 1 4 (see FIG. 2 2) to be formed later, the S i 0 In the second film 102, it is necessary to form a hole for connecting the light-shielding film 101 and the connection conductive portion 114. However, here, before you form holes for connecting the S I_〇 2 film 1 0 2 in the light shielding film 1 0 1 and the connecting conductive portion 1 1 4, the source electrode, the source line and the drain electrode (Figure 26 and See Figure 27).
図 2 6は、 ソース電極 1 0 3、 ソースライン 1 0 4及びドレイン電極 1 0 5 が形成された基板を示す平面図、図 2 7は、図 2 6の D— D線の断面図である。 ソース電極 1 0 3は、 y方向に延在するソースライン 1 0 4に接続されてお り、このソースライン 1 0 4の右側に、 ドレイン電極 1 0 5が形成されている。 ここでは、 これらソース電極 1 0 3、 ソースライン 1 0 4及びドレイン電極 1 0 5は、 I T O膜 F 1と金属膜 F 2とからなる二層構造を有しているが、 二層 構造の代わりに、 単層構造又は三層以上の多層構造を有することもできる。 ソ ース電極 1 0 3、 ソースライン 1 0 4及ぴドレイン電極 1 0 5を形成した後、 半導体膜、 S i N膜、 絶縁膜及びグート電極等を形成する (図 2 8及び図 2 9 参照)。  FIG. 26 is a plan view showing a substrate on which the source electrode 103, the source line 104, and the drain electrode 105 are formed, and FIG. 27 is a cross-sectional view taken along line DD of FIG. . The source electrode 103 is connected to a source line 104 extending in the y direction, and a drain electrode 105 is formed on the right side of the source line 104. Here, the source electrode 103, the source line 104, and the drain electrode 105 have a two-layer structure including the ITO film F1 and the metal film F2. In addition, it may have a single-layer structure or a multilayer structure of three or more layers. After forming the source electrode 103, the source line 104 and the drain electrode 105, a semiconductor film, a SiN film, an insulating film, a gut electrode, etc. are formed (FIGS. 28 and 29). reference).
図 2 8は、 ゲート電極 1 0 9等が形成された基板を示す平面図、 図 2 9は、 図 2 8の E— E線の断面図である。  FIG. 28 is a plan view showing a substrate on which the gate electrode 109 and the like are formed, and FIG. 29 is a cross-sectional view taken along line EE of FIG.
ソース電極 1 0 3、 ソースライン 1 0 4及びドレイン電極 1 0 5を形成した 後 (図 2 6及び図 2 7参照)、 半導体膜 1 0 6及び S i N膜 1 0 7を形成し、 更に絶縁膜 1 0 8 (本発明にいう第 1の絶縁膜に相当する) を形成する。 絶縁 膜 1 0 8を形成した後、 この絶縁膜 1 0 8の上にゲート電極 1 0 9及びゲート ライン 1 1 0を形成する。 絶縁膜 1 0 8には、 例えば S i N膜を用いることが できる。 ゲート電極 1 0 9は、 遮光膜 1 0 1の第 1の部分 1 0 1 aの真上に形 成されており (図 2 9参照) 且つ X方向に延在するゲートライン 1 1 0に接続 されている (図 2 8参照)。 ゲート電極 1 0 9及びゲートライン 1 1 0は、 絶 縁膜 1 0 8の全面に例えば A 1膜等の金属膜を形成し、 この金属膜をパター二 ングすることによって形成することができる。 また、 ここでは、 金属膜をバタ 一ユングするときに、 ゲート電極 1 0 9及びゲートライン 1 1 0の他に、 C s ライン 1 1 1も形成している。 C sライン 1 1 1は必ずしも必要ではないが、 C sライン 1 1 1を形成しておくことによって、 容易に蓄積容量を形成するこ とができる。 尚、 絶縁膜 1 0 8で覆われているドレイン電極 1 0 5は、 後述する反射電極After forming the source electrode 103, the source line 104 and the drain electrode 105 (see FIGS. 26 and 27), a semiconductor film 106 and a SiN film 107 are formed. An insulating film 108 (corresponding to the first insulating film according to the present invention) is formed. After forming the insulating film 108, a gate electrode 109 and a gate line 110 are formed on the insulating film 108. As the insulating film 108, for example, a SiN film can be used. The gate electrode 109 is formed right above the first portion 101 a of the light-shielding film 101 (see FIG. 29), and is connected to the gate line 110 extending in the X direction. (See Figure 28). The gate electrode 109 and the gate line 110 can be formed by forming a metal film such as an A1 film on the entire surface of the insulating film 108 and patterning the metal film. Here, when the metal film is buttered, a Cs line 111 is also formed in addition to the gate electrode 109 and the gate line 110. Although the Cs line 111 is not always necessary, the storage capacitor can be easily formed by forming the Cs line 111. The drain electrode 105 covered with the insulating film 108 is a reflective electrode described later.
1 1 3 (図 2 1参照) に接続される必要があり、 更に、 3 1 0 2膜1 0 2を介 して絶縁膜 1 0 8の下に存在する遮光膜 1 0 1は、 後に形成される接続導電部1 1 3 (see FIG. 21), and the light-shielding film 101 under the insulating film 108 via the 310 2 film 102 is formed later. Connection conductive part
1 1 4 (図 2 2参照) に接続される必要がある。 従って、 この絶縁膜 1 0 8に は、 ドレイン電極 1 0 5と反射電極 1 1 3とを接続するための孔と、 遮光膜 1It must be connected to 1 1 4 (see Figure 22). Therefore, this insulating film 108 has a hole for connecting the drain electrode 105 and the reflective electrode 113, and a light-shielding film 1
0 1と接続導電部 1 1 4とを接続するための孔とが形成される必要がある。 し かしながら、 ここでは、 絶縁膜 1 0 8にこれらの孔を形成する前に、 反射電極 1 1 3 (図 2 1参照) の表面に多数の凹部及び凸部を形成するための下地膜を 先に形成する (図 3 0及び図 3 1参照)。 It is necessary to form a hole for connecting 0 1 and the connection conductive portion 1 14. However, here, before forming these holes in the insulating film 108, a base film for forming a large number of concaves and convexes on the surface of the reflective electrode 113 (see FIG. 21). Is formed first (see FIGS. 30 and 31).
図 3 0は、 下地膜 1 1 2が形成された基板を示す平面図、 図 3 1は、 図 3 0 の F— F線の断面図、 図 3 2は、 図 3 0の G— G線の断面図である。  FIG. 30 is a plan view showing the substrate on which the base film 112 is formed, FIG. 31 is a cross-sectional view taken along the line FF of FIG. 30, and FIG. 32 is a line GG of FIG. FIG.
下地膜 1 1 2は、 多数の凹部 1 1 2 d及び凸部 1 1 2 eを有している。 この ような下地膜 1 1 2は、 図 4を参照しながら説明した方法と同様の方法によつ て形成することができる。 図 3 0乃至図 3 2では、 下地膜 1 1 2は斜線で示さ れている。 この下地膜 1 1 2は、 ドレイン電極 1 0 5に対応する位置に形成さ れた孔 1 1 2 a (本発明にいう第 1の孔に相当する) と、 遮光膜 1 0 1の第 2 の部分 1 0 1 bに対応する位置に形成された孔 1 1 2 b (本発明にいう第 2の 孔に相当する) と、 ゲートライン 1 1 0に対応する部分に形成された孔 1 1 2 c (本発明にいう第 3の孔に相当する) とを有している。 このような孔 1 1 2 a、 1 1 2 b及ぴ 1 1 2 cを有する下地膜 1 1 2をエッチングマスクとして、 絶縁膜 1 0 8及ぴ S i 0 2膜 1 0 2をエッチングする (図 3 3及び図 3 4参照)。 図 3 3及び図 3 4は、 絶縁膜 1 0 8及び S i O 2膜 1 0 2がエッチングされ た直後の基板の断面図である。 図 3 3は図 3 1に対応する断面図、 図 3 4は図 3 2に対応する断面図である。 The base film 112 has a large number of concave portions 112d and convex portions 112e. Such a base film 112 can be formed by a method similar to the method described with reference to FIG. In FIGS. 30 to 32, the base film 112 is shown by oblique lines. The base film 112 includes a hole 112 a formed at a position corresponding to the drain electrode 105 (corresponding to the first hole according to the present invention) and a second hole of the light shielding film 101. Hole 112b (corresponding to the second hole according to the present invention) formed at a position corresponding to the portion 1101b, and a hole 111 formed at a portion corresponding to the gate line 110. 2 c (corresponding to the third hole in the present invention). Such holes 1 1 2 a, 1 1 underlayer 1 1 2 an etching mask having a 2 b及Pi 1 1 2 c, etching the insulating film 1 0 8及Pi S i 0 2 film 1 0 2 ( See Figures 33 and 34). FIGS. 33 and 34 are cross-sectional views of the substrate immediately after the insulating film 108 and the SiO 2 film 102 are etched. FIG. 33 is a sectional view corresponding to FIG. 31, and FIG. 34 is a sectional view corresponding to FIG.
下地膜 1 1 2をエッチングマスクとして、 図 5を参照しながら説明した方法 と同様の方法で絶縁膜 1 0 8をドライエッチングする。 このドライエッチング により、 絶縁膜 1 0 8に、 下地膜 1 1 2の孔 1 1 2 a及び 1 1 2 bそれぞれに 1 Using the base film 112 as an etching mask, the insulating film 108 is dry-etched by the same method as described with reference to FIG. By this dry etching, the holes 111a and 112b of the insulating film 108 and the base film 112 are respectively formed. 1
20 連続的に続く孔 108 a (本発明にいう第 1の連通孔に相当する) 及び孔 10 8 b (本発明にいう第 2の連通孔に相当する) が形成される。 これらの孔 10 8 a及び 108 bが形成されたら引き続き連続的に S i 02膜 102のドライ エッチングも行う。 このドライエッチングにより、 S i 02膜 102に、 絶縁 膜 108の孔 108 bに連続的に続く孔 102 a (本発明にいう第 3の連通孔 に相当する) が形成される。 このようにドライエッチングを行うことにより、 絶縁膜 108の孔 108 aの内壁面 108 cに、 図 5の内壁面 8 bと同様のテ ーパ角 Θを設けることができるとともに、 S i 02膜 102の孔 102 aの内 壁面 102 bにもテーパ角 0 ' を設けることができる。 ドライエッチングが終 了したら、 図 20乃至図 22に示すように、 孔 1 13 aを有する反射電極 1 1 3及び接続導電部 1 14を形成することにより、 TFT基板 100が製造され る。 これら反射電極 1 1 3及び接続導電部 1 14は、 例えば A 1膜を形成し、 この A 1膜をエッチングすることにより形成することができる。 また、 この A 1膜をエッチングした後、 図 21に示すように、 I TO膜 F 1が露出するまで 金属膜 F 2もエッチングする。 I TO膜 F 1を露出させることにより、 バック ライト (図示せず) からの光が反射電極 1 1 3の孔 1 13 aを通過することが でき、 TFT基板 100を反射型と透過型との両方で用いることができる。 接 続導電部 114は、 ゲートライン 110及ぴ遮光膜 101を接続するための導 電部である。 この接続導電部 114によって、 ゲートラインからの信号を遮光 膜 101に伝送することができる。 この結果、 遮光膜 101をゲート電極 10 9と同様に作用させることができ、 ダブルグート構造の T F T基板 100を製 造することができる。 20 A continuous hole 108a (corresponding to the first communication hole according to the present invention) and a hole 108b (corresponding to the second communication hole according to the present invention) are formed. Once these holes 10 8 a and 108 b are formed continuously performed continuously dry etching of S i 0 2 film 102. By this dry etching, a hole 102a (corresponding to a third communication hole according to the present invention) is formed in the SiO 2 film 102 continuously following the hole 108b of the insulating film 108. By performing the dry etching in this manner, the taper angle 同 様 similar to that of the inner wall surface 8 b of FIG. 5 can be provided on the inner wall surface 108 c of the hole 108 a of the insulating film 108, and Si 0 2 The inner wall surface 102b of the hole 102a of the film 102 can also be provided with a taper angle 0 '. When the dry etching is completed, as shown in FIGS. 20 to 22, the reflective electrode 113 having the hole 113a and the connection conductive portion 114 are formed, whereby the TFT substrate 100 is manufactured. The reflective electrode 113 and the connection conductive portion 114 can be formed by, for example, forming an A1 film and etching the A1 film. After etching the A1 film, the metal film F2 is also etched until the ITO film F1 is exposed as shown in FIG. By exposing the ITO film F1, light from a backlight (not shown) can pass through the hole 113a of the reflective electrode 113, and the TFT substrate 100 can be divided into a reflective type and a transmissive type. Can be used for both. The connection conductive part 114 is a conductive part for connecting the gate line 110 and the light shielding film 101. The signal from the gate line can be transmitted to the light shielding film 101 by the connection conductive portion 114. As a result, the light-shielding film 101 can function in the same manner as the gate electrode 109, and the TFT substrate 100 having a double gut structure can be manufactured.
第 4実施形態では、 反射電極 1 13の下地膜 1 12は反射電極 1 13に良好 な反射特性を持たせるための役割を果たすとともに、 絶縁膜 108に孔 108 a及び 108 bを形成するためのエッチングマスクとしての役割も果たして いる。 従って、 絶縁膜 108を形成した後、 下地膜 1 12を形成する前に、 そ の絶縁膜 108に孔 108 a及び 108 bを形成するための専用のフォトレ ジスト工程が不要となり, 製造工程数及び製造コストの削減が図られる。 更に、 第 4実施形態では、 下地膜 1 1 2をエッチングマスクとして絶縁膜 1In the fourth embodiment, the base film 112 of the reflective electrode 113 serves to provide the reflective electrode 113 with good reflection characteristics, and forms the holes 108a and 108b in the insulating film 108. It also plays a role as an etching mask. Therefore, after forming the insulating film 108 and before forming the base film 112, a dedicated photoresist for forming the holes 108 a and 108 b in the insulating film 108 is formed. The need for a dying process is eliminated, and the number of manufacturing steps and manufacturing costs can be reduced. Furthermore, in the fourth embodiment, the insulating film 1 is used with the base film 112 as an etching mask.
0 8をエッチングした後、 引き続いて S i 0 2膜 1 0 2もエッチングする。 従 つて、 S i 0 2膜 1 0 2に孔 1 0 2 aを形成するための専用のフォトレジスト 工程が不要となり、 更に製造工程数及び製造コストの削減が図られている。 尚、 上記の第 1乃至第 4実施形態では、 液晶表示装置に用いられる基板の製 造方法について説明したが、 本宪明は、 本発明の趣旨を逸脱しない範囲であれ ば液晶表示装置以外の装置にも適用可能である。 産業上の利用の可能性 After etching 08, the SiO 2 film 102 is also etched. Accordance connexion, dedicated photoresist process for forming a hole 1 0 2 a to S i 0 2 film 1 0 2 becomes unnecessary, it is achieved further reduction in the number of manufacturing steps and manufacturing cost. In the first to fourth embodiments, the method of manufacturing a substrate used in a liquid crystal display device has been described. However, the present invention is not limited to a liquid crystal display device as long as it does not depart from the gist of the present invention. It is also applicable to devices. Industrial applicability
本発明によれば、 製造工程数及び製造コストの削減が図られた方法、 並びに その方法が適用された装置が提供される。  According to the present invention, there are provided a method in which the number of manufacturing steps and manufacturing cost are reduced, and an apparatus to which the method is applied.

Claims

請求の範囲 The scope of the claims
1 . 基板上に、 ゲート電極、 ソース電極及ぴドレイン電極を有するトランジ スタと、 前記ドレイン電極に接続された反射電極とを備えた半導体装置の製造 方法であって、 1. A method for manufacturing a semiconductor device, comprising: a transistor having a gate electrode, a source electrode, and a drain electrode on a substrate; and a reflective electrode connected to the drain electrode.
前記基板上に前記ソース電極及び前記ドレイン電極を形成する工程と、 前記ソース電極及び前記ドレイン電極が形成された基板上に第 1の絶縁膜 を形成する工程と、  Forming the source electrode and the drain electrode on the substrate; forming a first insulating film on the substrate on which the source electrode and the drain electrode are formed;
前記第 1の絶縁膜が形成された基板上に、 前記反射電極の下地膜であって、 前記ドレイン電極に対応する位置に第 1の孔を有し且つ表面に複数の凹部又 は凸部を有する下地膜を形成する工程と、  On the substrate on which the first insulating film is formed, a base film of the reflective electrode, a first hole at a position corresponding to the drain electrode, and a plurality of concave portions or convex portions on the surface. Forming a base film having
前記第 1の絶縁膜の前記ドレイン電極に対応する位置に、 前記第 1の孔に連 続的に続く第 1の連通孔が形成されるように、 前記下地膜をエッチングマスク として前記第 1の絶縁膜をエッチングする工程と、  The first insulating film is used as an etching mask so that a first communication hole continuous with the first hole is formed at a position corresponding to the drain electrode in the first insulating film. Etching an insulating film;
前記第 1の連通孔が形成された前記第 1の絶縁膜を有する前記基板上に、 前 記下地膜の表面の一部を覆う反射電極であって、 前記第 1の孔及び前記第 1の 連通孔を通じて前記ドレイン電極に接続される前記反射電極を形成する工程 と、  A reflective electrode covering a part of the surface of the base film on the substrate having the first insulating film in which the first communication hole is formed, wherein the first hole and the first Forming the reflective electrode connected to the drain electrode through a communication hole;
を備えたことを特徴とする半導体装置の製造方法。 A method for manufacturing a semiconductor device, comprising:
2. 前記ェツチング工程が、 前記第 1の絶縁膜の前記第 1の連通孔の内壁面 が前記基板に対して斜めに傾くように、 前記第 1の絶縁膜をテーパエッチング する工程であることを特徴とする請求項 1に記載の半導体装置の製造方法。 2. The etching step is a step of taper-etching the first insulating film so that an inner wall surface of the first communication hole of the first insulating film is inclined with respect to the substrate. The method for manufacturing a semiconductor device according to claim 1, wherein:
3 . 前記テーパエッチングを行う工程が、 フッ素を有する炭化水素系のガス を含有するエッチングガスとキャリアガスとを含む混合ガスを用いて、 前記第 1の絶縁膜をテーパエッチングすることを特徴とする請求項 2に記載の半導 体装置の製造方法。 3. The step of performing the taper etching is characterized in that the first insulating film is taper-etched using a mixed gas containing an etching gas containing a hydrocarbon-based gas having fluorine and a carrier gas. The semiconductor according to claim 2 Manufacturing method of body device.
4 . 前記ソース電極及び前記ドレイン電極を形成する工程の前に、 前記基板 上に前記グート電極を形成する工程を備えたことを特徴とする請求項 1乃至 3のうちのいずれか 1項に記載の半導体装置の製造方法。 4. The method according to any one of claims 1 to 3, further comprising, before the step of forming the source electrode and the drain electrode, a step of forming the good electrode on the substrate. Of manufacturing a semiconductor device.
5 . 前記第 1の絶縁膜を形成する工程の後、 前記下地膜を形成する工程の前 に、 前記第 1の絶縁膜が形成された基板上に、 前記ゲート電極を形成する工程 を備えたことを特徴とする請求項 1乃至 3のうちのいずれか 1項に記載の半 導体装置の製造方法。 5. After the step of forming the first insulating film and before the step of forming the base film, a step of forming the gate electrode on the substrate on which the first insulating film is formed is provided. The method for manufacturing a semiconductor device according to any one of claims 1 to 3, wherein:
6 . 前記ソース電極及び前記ドレイン電極を形成する工程の前に、 前記基板 上に、 導電性を有する導電性遮光膜であって、 前記ゲート電極に対応する第 1 の部分と該第 1の部分に接続された第 2の部分とを有する導電性遮光膜を形 成する工程と、 6. Prior to the step of forming the source electrode and the drain electrode, a first portion corresponding to the gate electrode, wherein the first portion is a conductive light-shielding film having conductivity on the substrate; Forming a conductive light-shielding film having a second portion connected to
前記導電性遮光膜を形成する工程の後、 前記ソース電極及び前記ドレイン電 極を形成する工程の前に、 前記導電性遮光膜が形成された基板上に第 2の絶縁 膜を形成する工程と、  Forming a second insulating film on the substrate on which the conductive light-shielding film is formed, after the step of forming the conductive light-shielding film, and before the step of forming the source electrode and the drain electrode; ,
前記第 1の絶縁膜を形成する工程の後、 前記下地膜を形成する工程の前に、 前記第 1の絶縁膜が形成された基板上に、 前記グート電極及び前記グート電極 に接続されたゲートラインを形成する工程とを備え、  After the step of forming the first insulating film, and before the step of forming the base film, on the substrate on which the first insulating film is formed, a gate connected to the gut electrode and the gut electrode Forming a line,
前記下地膜を形成する工程が、 前記下地膜の、 前記導電性遮光膜の第 2の部 分に対応する位置に第 2の孔を形成するとともに、 前記下地膜の前記グートラ ィンに対応する位置に第 3の孔を形成する工程を更に有し、  The step of forming the base film includes forming a second hole in the base film at a position corresponding to a second portion of the conductive light-shielding film, and forming a second hole in the base film corresponding to the goose line of the base film. Forming a third hole at the position,
前記エッチング工程が、 前記第 1の絶縁膜の、 前記導電性遮光膜の第 2の部 分に対応する位置に、 前記第 2の孔に連続的に続く第 2の連通孔が形成され、 前記第 2の絶縁膜の、 前記導電性遮光膜の第 2の部分に対応する位置に、 前記 第 2の連通孔に連続的に続く第 3の連通孔が形成されるように、 前記下地膜を エッチングマスクとして、 前記第 1及ぴ第 2の絶縁膜をエッチングする工程を 更に し、 In the etching step, a second communication hole continuous with the second hole is formed at a position of the first insulating film corresponding to a second portion of the conductive light-shielding film, A second insulating film, at a position corresponding to a second portion of the conductive light-shielding film, Etching the first and second insulating films using the base film as an etching mask so that a third communication hole continuously following the second communication hole is formed;
前記反射電極を形成する工程が、 前記第 3の孔、 前記第 2の孔、 前記第 2の 連通孔及ぴ前記第 3の連通孔を通じて、 前記導電性遮光膜と前記グートライン とを接続する導電部を形成する工程を更に有することを特徴とする請求項 1 乃至 3のうちのいずれか 1項に記載の半導体装置の製造方法。  The step of forming the reflective electrode includes connecting the conductive light-shielding film and the gut line through the third hole, the second hole, the second communication hole, and the third communication hole. 4. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of forming a conductive portion.
7. 基板上に、 ゲート電極、 ソース電極及びドレイン電極を有する スタと、 前記ドレイン電極に接続され、 導電性を有する導電性光透過膜と、 前 記導電性光透過膜に接続された反射電極とを備えた半導体装置の製造方法で あって、 7. A substrate having a gate electrode, a source electrode, and a drain electrode on a substrate, a conductive light transmitting film connected to the drain electrode and having conductivity, and a reflective electrode connected to the conductive light transmitting film. A method for manufacturing a semiconductor device comprising:
前記基板上に前記ソース電極及び前記ドレイン電極を形成する工程と、 前記ソース電極及ぴ前記ドレイン電極が形成された基板上に、 前記ドレイン 電極に接続される前記導電性光透過膜であって、 前記ドレイン電極に接続され る第 1の部分と前記第 1の部分に接続され且つ前記ドレイン電極及び前記ソ ース電極に対応する領域以外の領域に延在する第 2の部分とを有する前記導 電性光透過膜を形成する工程と、  Forming the source electrode and the drain electrode on the substrate, and the conductive light transmitting film connected to the drain electrode on the substrate on which the source electrode and the drain electrode are formed; A conductive portion having a first portion connected to the drain electrode and a second portion connected to the first portion and extending to a region other than a region corresponding to the drain electrode and the source electrode; Forming an electrically conductive light transmitting film;
前記導電性光透過膜が形成された基板上に第 3の絶縁膜を形成する工程と、 前記第 3の絶縁膜が形成された基板上に、 前記反射電極の下地膜であって、 前記導電性光透過膜の第 2の部分に対応する位置に第 4の孔を有し且つ表面 に複数の凹部又は凸部を有する下地膜を形成する工程と、  Forming a third insulating film on the substrate on which the conductive light transmitting film is formed, and forming a base film of the reflective electrode on the substrate on which the third insulating film is formed, Forming a base film having a fourth hole at a position corresponding to the second portion of the conductive light transmitting film and having a plurality of concave portions or convex portions on the surface;
前記第 3の絶縁膜の、 前記導電性光透過膜の第 2の部分に対応する位置に、 前記第 4の孔に連続的に続く第 4の連通孔が形成されるように、 前記下地膜を エッチングマスクとして前記第 3の絶縁膜をエッチングする工程と、  The base film such that a fourth communication hole continuous with the fourth hole is formed at a position of the third insulating film corresponding to the second portion of the conductive light transmitting film. Etching the third insulating film using an etching mask,
前記第 4の連通孔が形成された前記絶縁膜を有する前記基板上に、 前記下地 膜の表面の一部を覆い且つ前記第 4の孔及び前記第 4の連通孔を通じて前記 導電性光透過膜と接続される前記反射電極を形成する工程と、 を備えたことを特徴とする半導体装置の製造方法。 On the substrate having the insulating film in which the fourth communication hole is formed, a part of the surface of the base film is covered and the fourth communication hole is formed through the fourth communication hole and the fourth communication hole. Forming the reflective electrode connected to the conductive light-transmitting film.
8 . 請求項 1乃至 7のうちのいずれか 1項に記載の半導体装置の製造方法を 用いて製造された半導体装置。 8. A semiconductor device manufactured using the method for manufacturing a semiconductor device according to claim 1.
9. 請求項 8に記載の半導体装置を用いて構成された液晶表示装置。 9. A liquid crystal display device comprising the semiconductor device according to claim 8.
PCT/JP2003/003381 2002-03-19 2003-03-19 Semiconductor device manufacturing method, semiconductor device, and liquid crystal display WO2003079107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003221122A AU2003221122A1 (en) 2002-03-19 2003-03-19 Semiconductor device manufacturing method, semiconductor device, and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-076928 2002-03-19
JP2002076928 2002-03-19

Publications (1)

Publication Number Publication Date
WO2003079107A1 true WO2003079107A1 (en) 2003-09-25

Family

ID=28035477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003381 WO2003079107A1 (en) 2002-03-19 2003-03-19 Semiconductor device manufacturing method, semiconductor device, and liquid crystal display

Country Status (3)

Country Link
AU (1) AU2003221122A1 (en)
TW (1) TW200402756A (en)
WO (1) WO2003079107A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000250025A (en) * 1999-02-25 2000-09-14 Advanced Display Inc Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device
US20010004273A1 (en) * 1999-12-16 2001-06-21 Osamu Sugimoto Liquid crystal display and manufacturing method thereof
US20010015781A1 (en) * 2000-01-26 2001-08-23 Naoyuki Tanaka Liquid crystal display device, wiring substrate, and methods for fabricating the same
US20020008814A1 (en) * 2000-04-11 2002-01-24 Nobuaki Honbo Liquid crystal display device and liquid crystal projector apparatus
WO2002027390A2 (en) * 2000-09-27 2002-04-04 Koninklijke Philips Electronics N.V. A method of forming electrodes or pixel electrodes and a liquid crystal display device
US20020063825A1 (en) * 2000-11-30 2002-05-30 Nec Corporation Reflection type liquid crystal display device and process for manufacturing the same
US6407784B1 (en) * 1998-03-11 2002-06-18 Nec Corporation Reflection type liquid crystal display and method of fabricating the same
WO2003003107A1 (en) * 2001-06-29 2003-01-09 Koninklijke Philips Electronics N.V. Method of forming a transflective electrode and liquid crystal display device
JP2003098975A (en) * 2001-09-21 2003-04-04 Seiko Epson Corp Electrooptical device and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6407784B1 (en) * 1998-03-11 2002-06-18 Nec Corporation Reflection type liquid crystal display and method of fabricating the same
JP2000250025A (en) * 1999-02-25 2000-09-14 Advanced Display Inc Reflection type liquid crystal display device, its production and mask for production of reflection type liquid crystal display device
US20010004273A1 (en) * 1999-12-16 2001-06-21 Osamu Sugimoto Liquid crystal display and manufacturing method thereof
US20010015781A1 (en) * 2000-01-26 2001-08-23 Naoyuki Tanaka Liquid crystal display device, wiring substrate, and methods for fabricating the same
US20020008814A1 (en) * 2000-04-11 2002-01-24 Nobuaki Honbo Liquid crystal display device and liquid crystal projector apparatus
WO2002027390A2 (en) * 2000-09-27 2002-04-04 Koninklijke Philips Electronics N.V. A method of forming electrodes or pixel electrodes and a liquid crystal display device
US20020063825A1 (en) * 2000-11-30 2002-05-30 Nec Corporation Reflection type liquid crystal display device and process for manufacturing the same
WO2003003107A1 (en) * 2001-06-29 2003-01-09 Koninklijke Philips Electronics N.V. Method of forming a transflective electrode and liquid crystal display device
JP2003098975A (en) * 2001-09-21 2003-04-04 Seiko Epson Corp Electrooptical device and its manufacturing method

Also Published As

Publication number Publication date
TW200402756A (en) 2004-02-16
AU2003221122A1 (en) 2003-09-29

Similar Documents

Publication Publication Date Title
US8368856B2 (en) Transflective liquid crystal display device and method of fabricating the same
JP4902317B2 (en) Array substrate manufacturing method of transflective liquid crystal display device
US8345175B2 (en) Array substrate for liquid crystal display device and method of manufacturing the same
US8294855B2 (en) Method of fabricating a liquid crystal display device
JP5710165B2 (en) TFT-LCD array substrate and manufacturing method thereof
US7522254B2 (en) Liquid crystal display device and method of fabricating the same
US7504342B2 (en) Photolithography method for fabricating thin film
US7317208B2 (en) Semiconductor device with contact structure and manufacturing method thereof
JP2003149679A (en) Structure of film transistor liquid crystal display device having protrusion-like structure and method for manufacturing the same
JP2006171752A (en) Transflective liquid crystal display device and manufacturing method thereof
JP2007310112A (en) Translucent liquid crystal display device and manufacturing method thereof
KR101294691B1 (en) Array substrate for liquid crystal display device and method of fabricating the same
JP6985419B2 (en) Photomask structure and array substrate manufacturing method
US20080143908A1 (en) Thin film transistor substrate and method of fabricating the same
JP5079330B2 (en) Manufacturing method of liquid crystal display device
WO2003079107A1 (en) Semiconductor device manufacturing method, semiconductor device, and liquid crystal display
JP2010032765A (en) Tft array substrate, and liquid crystal display using the same
JP2009122601A (en) Method for manufacturing liquid crystal device
KR100717182B1 (en) Method for fabricating array substrate of semitransmission type LCD
KR100461093B1 (en) A process for manufacturing reflective tft-lcd with slant diffusers
JP5790978B2 (en) Transflective liquid crystal display device and manufacturing method thereof
KR20070071718A (en) Halftone mask for liquid crystal display and method for manufacturing the same
KR20020094747A (en) Liquid crystal display
JP2003323135A (en) Display device and its manufacturing method, portable information equipment and display equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase