WO2003064557A1 - Fluorescent nanoparticles and the production thereof - Google Patents

Fluorescent nanoparticles and the production thereof Download PDF

Info

Publication number
WO2003064557A1
WO2003064557A1 PCT/EP2003/000204 EP0300204W WO03064557A1 WO 2003064557 A1 WO2003064557 A1 WO 2003064557A1 EP 0300204 W EP0300204 W EP 0300204W WO 03064557 A1 WO03064557 A1 WO 03064557A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
fluorescent
polymer
copolymer
intermediate layer
Prior art date
Application number
PCT/EP2003/000204
Other languages
German (de)
French (fr)
Inventor
Dieter Vollath
Iris Lamparth
Friedrich Wacker
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Publication of WO2003064557A1 publication Critical patent/WO2003064557A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds

Definitions

  • the invention relates to fluorescent nanoparticles according to the first claim and methods for their production according to claims 5, 6 and 7.
  • Fluorescence emitters are used for a number of applications.
  • organic dyes are used as laser dyes.
  • Other areas of application are in the fluorescence marking of organic chemical substances or biological material, as fluorescent security markings or as printing inks.
  • powders from semiconductors in particular powders from gallium nitride (GaN), cadmium selenide (CdSe) and cadmium sulfide (CdS), emit fluorescence radiation.
  • GaN gallium nitride
  • CdSe cadmium selenide
  • CdS cadmium sulfide
  • organic fluorescent dyes there is a particular need for fluorescence emitters that emit in the ultraviolet.
  • organic fluorescent dyes see for example DE 34 08 028 AI.
  • organic fluorescent dyes are also often toxic and sometimes flammable.
  • Many organic fluorescent dyes also have to be suspended or dissolved in a toxic and flammable organic suspension or solvent.
  • the invention is based on the object of specifying suitable substances as fluorescence emitters which do not have the disadvantages described.
  • the substances should in particular be non-toxic or at most weakly toxic and become one Have a permanent and stable suspension suspended with water or other common solvents as a suspending agent.
  • the fluorescent light should be in the visible and / or in the ultraviolet wavelength range.
  • the object is achieved by the fluorescent nanoparticles according to the first patent claim and the production of these nanoparticles according to claims 5, 6 and 7.
  • the further patent claims indicate preferred configurations of the fluorescent nanoparticles.
  • the first-mentioned document describes particles with a core u. a. made of an oxide ceramic and a shell made of an organic polymer and a method for producing the particles.
  • the diameter of the core can be 3 nm to 100 nm and the thickness of the shell 1 nm to 20 nm.
  • Particles of a core consisting of an oxide ceramic and a shell consisting of a further oxide ceramic are known.
  • the diameter of the core should be between 3 and 50 nm and the thickness of the shell 1 to 5 nm. Methods for producing such nanoparticles are also described in the publications.
  • nanoparticles can be produced in two different embodiments.
  • the fluorescent material can be an intermediate layer between the oxide ceramic core and the shell the polymer or copolymer. Ideally, it is a monomolecular intermediate layer. Monomolecular layers are technologically very difficult to manufacture. Without substantial loss of quality, however, it is entirely sufficient for the invention if the intermediate layer is 0.25 to 2 nm thick.
  • Anthracene, perylene or pyrene are particularly suitable as the material for the intermediate layer.
  • the polymer or the copolymer should be selected so that the fluorescence is affected as little as possible.
  • Polymethyl methacrylate (PMMA) or polymethacrylate (PMA) as a polymer and mixtures of PMMA and PMA as a copolymer are particularly suitable.
  • the use of fluorinated carbon compounds is advantageous in individual cases.
  • aluminum oxide is particularly suitable as the core; however, other ceramics can also be used.
  • polymers or copolymers are used which fluoresce themselves and without further addition or without an additional layer.
  • Such polymers or copolymers are, for example, poly (p-phenylene), poly (p-phenylene vinylene), poly (2-vinylquinoline), poly (9-anthrylmethyl) methacrylate and poly (b-naphthyl methacrylate).
  • the core is first produced from the oxide ceramic.
  • the intermediate layer made of the fluorescent compound is then applied to the core in a further reaction zone.
  • the nanoparticles can be produced by condensing a hydrocarbon or a fluorinated carbon compound having 10 to 30 carbon atoms on a ceramic core or on the intermediate layer with which the ceramic core is coated.
  • the fluorescent light emitted with the nanoparticles is mainly in the wavelength range between 200 nm and 800 nm.
  • the nanoparticles according to the invention can easily be suspended in the usual solvents, but especially in water.
  • FIG. 3 shows the fluorescence spectrum of superparamagnetic nanoparticles with an Fe 2 O 3 core, an intermediate layer made of pyrene and a shell made of PMMA;
  • FIG. 4 gives explanatory information on the fluorescence spectrum according to FIG. 3.
  • FIG. 1 shows the fluorescence spectrum of nanoparticles, the core of which consists of iron (III) oxide and which have a fluorescent interlayer made of anthracene, which is covered with a shell made of polymethyl ethacrylate.
  • Fe (CO) 5 was used as the precursor in the manufacture of the core in a microwave plasma and argon with 10% by volume oxygen was used as the reaction gas.
  • 2 shows the fluorescence spectrum of nanoparticles which have an aluminum oxide core instead of the iron oxide core. The core was produced with the precursor substance aluminum chloride and the reaction gas argon with 10% by volume oxygen.
  • FIG. 3 shows the fluorescence spectrum of nanoparticles in which a core made of iron (III) oxide is coated with a fluorescent pyrene intermediate layer.
  • the nanoparticles according to the invention can therefore be used to create fluorescence emitters which, by simply changing the core, provide the desired fluorescence spectrum.
  • the diameters of the particles with which the fluorescence spectra were recorded are 5 to 10 nm; the shell is about 0.5 to 5nm thick.
  • the excitation light had a wavelength of 200 nm or 325 nm.

Abstract

The aim of the invention is to produce a fluorescence emitter for the ultraviolet and visible wavelength region, said emitter being chemically stable and non-toxic, or slightly toxic, and forming a suspension in water. To this end, fluorescent nanoparticles are used, the core of said nanoparticles consisting of an oxide ceramic material and the envelope thereof containing a fluorescent material and a polymer or a copolymer.

Description

Fluoreszierende Nanoteilchen und deren HerstellungFluorescent nanoparticles and their production
Die Erfindung betrifft fluoreszierende Nanoteilchen gemäß dem ersten Patentanspruch und Verfahren zu deren Herstellung gemäß der Ansprüche 5, 6 und 7.The invention relates to fluorescent nanoparticles according to the first claim and methods for their production according to claims 5, 6 and 7.
Fluoreszenzemitter werden für eine Reihe von Anwendungen gebraucht. Beispielsweise werden organische Farbstoffe als Laserfarbstoffe verwendet. Andere Einsatzgebiete liegen in der Fluoreszenz-Markierung von organisch-chemischen Stoffen oder biologischem Material, als fluoreszierende Sicherheitsmarkierungen oder als Druckfarben.Fluorescence emitters are used for a number of applications. For example, organic dyes are used as laser dyes. Other areas of application are in the fluorescence marking of organic chemical substances or biological material, as fluorescent security markings or as printing inks.
Es gehört zum Fachwissen, dass Pulver aus Halbleitern, insbesondere Pulver aus Galliumnitrid (GaN) , Cadmiumselenid (CdSe) und Cadmiumsulfid (CdS) , Fluoreszenzstrahlung emittieren Die Fluoreszenz wird in diesen Teilchen zumeist mit "Quantum Confinement" - Phänomenen beschrieben. Ein Problem bei diesen Pulverteilchen ist, dass die sie hochgiftig und krebserregend sind. Außerdem sind sie empfindlich gegenüber Oxidationsmit- teln und daher in normaler Umgebung instabil. Beispielsweise lassen sie sich nicht dauerhaft und ohne eine chemische Reaktion in Wasser suspendieren.It is part of the specialist knowledge that powders from semiconductors, in particular powders from gallium nitride (GaN), cadmium selenide (CdSe) and cadmium sulfide (CdS), emit fluorescence radiation. The fluorescence in these particles is mostly described with "quantum confinement" phenomena. One problem with these powder particles is that they are highly toxic and carcinogenic. They are also sensitive to oxidizing agents and are therefore unstable in normal environments. For example, they cannot be permanently suspended in water without a chemical reaction.
Ein besonderer Bedarf besteht an Fluoreszenzemittern, die im Ultravioletten emittieren. Zwar gibt es eine Reihe von organischen Fluoreszenzfarbstoffen (siehe beispielsweise DE 34 08 028 AI) . Organische Fluoreszenzfarbstoffe sind jedoch häufig ebenfalls giftig und manchmal außerdem feuergefährlich. Viele organische Fluoreszenzfarbstoffe müssen zudem in einem giftigen und feuergefährlichen organischen Suspensions- oder Lösungsmittel suspendiert bzw. aufgelöst werden.There is a particular need for fluorescence emitters that emit in the ultraviolet. There are a number of organic fluorescent dyes (see for example DE 34 08 028 AI). However, organic fluorescent dyes are also often toxic and sometimes flammable. Many organic fluorescent dyes also have to be suspended or dissolved in a toxic and flammable organic suspension or solvent.
Der Erfindung liegt die Aufgabe zugrunde, als Fluoreszenzemitter geeignete Stoffe anzugeben, die die beschriebenen Nachteile nicht aufweisen. Die Stoffe sollen insbesondere ungiftig oder allenfalls schwach giftig sein und sich zu einer dauerhaften und stabilen Suspension mit Wasser oder anderen üblichen Lösungsmitteln als Suspensionsmittel suspendieren lassen. Das Fluoreszenzlicht soll im sichtbaren und/oder im ultravioletten Wellenlängenbereich liegen.The invention is based on the object of specifying suitable substances as fluorescence emitters which do not have the disadvantages described. The substances should in particular be non-toxic or at most weakly toxic and become one Have a permanent and stable suspension suspended with water or other common solvents as a suspending agent. The fluorescent light should be in the visible and / or in the ultraviolet wavelength range.
Die Aufgabe wird gelöst durch die fluoreszierenden Nanoteilchen gemäß dem ersten Patentanspruch und die Herstellung dieser Nanoteilchen gemäß den Ansprüchen 5, 6 und 7 Die weiteren Patentansprüche geben bevorzugte Ausgestaltungen der fluoreszierenden Nanoteilchen an.The object is achieved by the fluorescent nanoparticles according to the first patent claim and the production of these nanoparticles according to claims 5, 6 and 7. The further patent claims indicate preferred configurations of the fluorescent nanoparticles.
Aus der DE 196 38 601 Cl und der DE 94 03 581 Ul sind oxidische Nanoteilchen bekannt, die an sich für den erfindungsgemäßen Verwendungszweck gut geeignet sind. Die erstgenannte Druckschrift beschreibt Partikel mit einem Kern u. a. aus einer Oxidkeramik und einer Hülle aus einem organischen Polymer sowie ein Verfahren zur Herstellung der Partikel. Der Durchmesser des Kerns kann 3 nm bis 100 nm und die Dicke der Hülle 1 nm bis 20 nm betragen. Aus der zweitgenannten Druckschrift sind u. a. Partikel aus einem Kern bestehend aus einer Oxidkeramik und einer Hülle bestehend aus einer weiteren Oxidkeramik bekannt. Der Durchmesser des Kerns soll zwischen 3 und 50 nm und die Dicke der Hülle 1 bis 5 nm betragen. In den Druckschriften sind außerdem Verfahren zur Herstellung solcher Nanoteilchen beschrieben.From DE 196 38 601 Cl and DE 94 03 581 U1 oxidic nanoparticles are known which are in themselves well suited for the intended use according to the invention. The first-mentioned document describes particles with a core u. a. made of an oxide ceramic and a shell made of an organic polymer and a method for producing the particles. The diameter of the core can be 3 nm to 100 nm and the thickness of the shell 1 nm to 20 nm. From the second document, u. a. Particles of a core consisting of an oxide ceramic and a shell consisting of a further oxide ceramic are known. The diameter of the core should be between 3 and 50 nm and the thickness of the shell 1 to 5 nm. Methods for producing such nanoparticles are also described in the publications.
Eine stärkere Fluoreszenzemission, die die Fluoreszenzemission der Kerne in den beschriebenen Partikeln deutlich übertrifft, erhält man, wenn die Hülle zusätzlich ein fluoreszierendes Material enthält. Dabei werden die oben erwähnten Dimensionen von Kern und Hülle beibehalten.A stronger fluorescence emission, which clearly exceeds the fluorescence emission of the nuclei in the particles described, is obtained if the shell additionally contains a fluorescent material. The core and shell dimensions mentioned above are retained.
Solche Nanoteilchen können in zwei verschiedenen Ausführungsformen hergestellt werden.Such nanoparticles can be produced in two different embodiments.
Zum einen kann das fluoreszierende Material als Zwischenschicht zwischen dem oxidkeramischen Kern und der Hülle aus dem Polymer oder Copolymer eingebaut werden. Idealerweise handelt es sich um eine monomolekulare Zwischenschicht. Monomolekulare Schichten sind technologisch sehr schwer herzustellen. Ohne wesentliche Qualitätseinbusse ist es jedoch für die Erfindung völlig ausreichend, wenn die Zwischenschicht 0,25 bis 2 nm dick ist.On the one hand, the fluorescent material can be an intermediate layer between the oxide ceramic core and the shell the polymer or copolymer. Ideally, it is a monomolecular intermediate layer. Monomolecular layers are technologically very difficult to manufacture. Without substantial loss of quality, however, it is entirely sufficient for the invention if the intermediate layer is 0.25 to 2 nm thick.
Als Material für die Zwischenschicht eignet sich insbesondere Anthracen, Perylen oder Pyren. Das Polymer oder das Copolymer soll so ausgewählt werden, dass die Fluoreszenz möglichst wenig beeinträchtigt wird. Gut geeignet sind Polymethylmethacry- lat (PMMA) oder Polymethacrylat (PMA) als Polymer und Mischungen von PMMA und PMA als Copolymer. Die Verwendung von fluorierten Kohlenstoffverbindungen ist in Einzelfällen von Vorteil. Als Kern eignet sich in allen Ausführungsformen Aluminiumoxid besonders gut; es können jedoch auch andere Keramiken eingesetzt werden.Anthracene, perylene or pyrene are particularly suitable as the material for the intermediate layer. The polymer or the copolymer should be selected so that the fluorescence is affected as little as possible. Polymethyl methacrylate (PMMA) or polymethacrylate (PMA) as a polymer and mixtures of PMMA and PMA as a copolymer are particularly suitable. The use of fluorinated carbon compounds is advantageous in individual cases. In all embodiments, aluminum oxide is particularly suitable as the core; however, other ceramics can also be used.
In einer zweiten Ausführungsform werden Polymere oder Copoly- mere eingesetzt, die selbst und ohne weiteren Zusatz oder ohne eine Zusatzschicht fluoreszieren. Solche Polymere oder Copoly- mere sind beispielsweise Poly (p-phenylen) , Poly(p- phenylenvinylen) , Poly (2-vinylchinolin) , Poly (9-anthryl- methyl)methacrylat und Poly (b-naphthylmethacrylat) .In a second embodiment, polymers or copolymers are used which fluoresce themselves and without further addition or without an additional layer. Such polymers or copolymers are, for example, poly (p-phenylene), poly (p-phenylene vinylene), poly (2-vinylquinoline), poly (9-anthrylmethyl) methacrylate and poly (b-naphthyl methacrylate).
Die grundlegenden Schritte zur Herstellung der Nanoteilchen sind in den beiden oben genannten Druckschriften DE 196 38 601 Cl und DE 94 03 581 Ul erläutert. Prinzipiell wird bei allen Ausführungsformen der Nanoteilchen zuerst der Kern aus der Oxidkeramik hergestellt. Die Zwischenschicht aus der fluoreszierenden Verbindung wird anschließend in einer weiteren Reaktionszone auf den Kern aufgebracht. Zusätzlich können die Nanoteilchen durch Aufkondensieren eines Kohlenwasserstoffs oder einer fluorierten Kohlenstoffverbindung mit 10 bis 30 Kohlenstoffatomen auf einem Keramikkern oder auf der Zwischenschicht, mit der der Keramikkern überzogen ist, hergestellt werden. Das mit den Nanoteilchen emittierte Fluoreszenzlicht liegt hauptsächlich im Wellenlängenbereich zwischen 200 nm und 800 nm. Die erfindungsgemäßen Nanoteilchen lassen sich in den üblichen Lösungsmitteln, insbesondere jedoch in Wasser, leicht suspendieren. Sie sind nicht oder kaum giftig. Soweit giftige fluoreszierende Verbindungen eingesetzt werden, sind diese Verbindungen mit einer ungiftigen Polymer- oder Copolymer- schicht abgedeckt. Ein besonderer Vorteil ist, dass das Fluoreszenzspektrum durch die Wahl des Materials für den Kern variiert werden kann. Die Wellenlänge der Fluoreszenzlinien läßt sich daher in gewissen Grenzen je nach Wunsch durch die Verwendung anderer Oxidkeramiken für den Kern einstellen.The basic steps for producing the nanoparticles are explained in the two publications DE 196 38 601 Cl and DE 94 03 581 U1 mentioned above. In principle, in all embodiments of the nanoparticles, the core is first produced from the oxide ceramic. The intermediate layer made of the fluorescent compound is then applied to the core in a further reaction zone. In addition, the nanoparticles can be produced by condensing a hydrocarbon or a fluorinated carbon compound having 10 to 30 carbon atoms on a ceramic core or on the intermediate layer with which the ceramic core is coated. The fluorescent light emitted with the nanoparticles is mainly in the wavelength range between 200 nm and 800 nm. The nanoparticles according to the invention can easily be suspended in the usual solvents, but especially in water. They are not or hardly toxic. If toxic fluorescent compounds are used, these compounds are covered with a non-toxic polymer or copolymer layer. A particular advantage is that the fluorescence spectrum can be varied by choosing the material for the core. The wavelength of the fluorescence lines can therefore be adjusted within certain limits as desired by using other oxide ceramics for the core.
Die Erfindung wird im folgenden anhand von Figuren näher erläutert.The invention is explained in more detail below with reference to figures.
Es zeigenShow it
Fig. 1 das Fluoreszenzspektrum von superparamagnetischen Nanoteilchen mit einem Fe203-Kern, einer Zwischenschicht aus Anthracen und einer Hülle aus PMMA;1 shows the fluorescence spectrum of superparamagnetic nanoparticles with an Fe 2 0 3 core, an intermediate layer made of anthracene and a shell made of PMMA;
Fig. 2 das Fluoreszenzspektrum von Nanopartikeln mit einem Al203-Kern, einer Zwischenschicht aus Anthracen und einer Hülle aus PMMA;2 shows the fluorescence spectrum of nanoparticles with an Al 2 O 3 core, an intermediate layer made of anthracene and a shell made of PMMA;
Fig. 3 das Fluoreszenzspektrum von superparamagnetischen Nanoteilchen mit einem Fe203-Kern, einer Zwischenschicht aus Pyren und einer Hülle aus PMMA;3 shows the fluorescence spectrum of superparamagnetic nanoparticles with an Fe 2 O 3 core, an intermediate layer made of pyrene and a shell made of PMMA;
Fig. 4 gibt erläuternde Hinweise zum Fluoreszenzspektrum gemäß Fig. 3.FIG. 4 gives explanatory information on the fluorescence spectrum according to FIG. 3.
In Fig. 1 ist das Fluoreszenzspektrum von Nanoteilchen dargestellt, deren Kern aus Eisen (III) -Oxid besteht und die eine fluoreszierende Zwischenschicht aus Anthracen aufweisen, die mit einer Hülle aus Polymethyl ethacrylat abgedeckt ist. Als Vorläufersubstanz (Precursor) bei der Herstellung des Kerns in einem Mikrowellenplasma wurde Fe(CO)5 und als Reaktionsgas Argon mit 10 Vol.-% Sauerstoff eingesetzt. Fig. 2 zeigt das Fluoreszenzspektrum von Nanoteilchen, die statt des Eisenoxid-Kerns einen Aluminiumoxid-Kern besitzen. Der Kern wurde mit der Vorläufersubstanz Aluminiumchlorid und dem Reaktionsgas Argon mit 10 Vol.-% Sauerstoff hergestellt.1 shows the fluorescence spectrum of nanoparticles, the core of which consists of iron (III) oxide and which have a fluorescent interlayer made of anthracene, which is covered with a shell made of polymethyl ethacrylate. Fe (CO) 5 was used as the precursor in the manufacture of the core in a microwave plasma and argon with 10% by volume oxygen was used as the reaction gas. 2 shows the fluorescence spectrum of nanoparticles which have an aluminum oxide core instead of the iron oxide core. The core was produced with the precursor substance aluminum chloride and the reaction gas argon with 10% by volume oxygen.
In Fig. 3 ist das Fluoreszenzspektrum von Nanoteilchen hergestellt, bei denen ein Kern aus Eisen (III) -Oxid mit einer fluoreszierenden Pyren-Zwischenschicht überzogen ist.3 shows the fluorescence spectrum of nanoparticles in which a core made of iron (III) oxide is coated with a fluorescent pyrene intermediate layer.
Es ist deutlich zu sehen, wie stark sich das Fluoreszenzspektrum ändert, wenn der Kern variiert wird. Mit den erfindungsgemäßen Nanoteilchen können daher Fluoreszenz-Emitter geschaffen werden, die durch einfaches Ändern des Kerns das gewünschte Fluoreszenzspektrum liefern.It can be clearly seen how much the fluorescence spectrum changes when the nucleus is varied. The nanoparticles according to the invention can therefore be used to create fluorescence emitters which, by simply changing the core, provide the desired fluorescence spectrum.
Die Durchmesser der Teilchen, mit denen die Fluoreszenzspektren aufgenommen wurden, liegen bei 5 bis 10 nm; die Hülle ist ca. 0,5 bis 5nm dick. Das Anregungslicht wies eine Wellenlänge von 200 nm oder 325 nm auf. The diameters of the particles with which the fluorescence spectra were recorded are 5 to 10 nm; the shell is about 0.5 to 5nm thick. The excitation light had a wavelength of 200 nm or 325 nm.

Claims

Patentansprüche: claims:
1. Fluoreszierende Nanoteilchen, die ultraviolettes und sichtbares Fluoreszenzlicht emittieren, bestehend aus1. Fluorescent nanoparticles that emit ultraviolet and visible fluorescent light, consisting of
- einem Kern aus einem oxidkeramischen Material und- a core made of an oxide ceramic material and
- einer Hülle aufweisen, die ein fluoreszierendes Material und ein Polymer oder ein Copolymer enthält.- Have a shell that contains a fluorescent material and a polymer or a copolymer.
2. Fluoreszierende Nanoteilchen nach Anspruch 1 mit einer Hülle, bei der an den Kern angrenzend eine erste Schicht aus einer fluoreszierenden Verbindung aufgetragen ist und die erste Schicht von einer zweiten Schicht bestehend aus dem Polymer oder Copolymer überzogen ist.2. Fluorescent nanoparticles according to claim 1 with a shell, in which a first layer of a fluorescent compound is applied adjacent to the core and the first layer is covered by a second layer consisting of the polymer or copolymer.
3. Fluoreszierende Nanoteilchen nach Anspruch 1 mit einer Hülle, bei denen als fluoreszierendes Material das Polymer oder das Copolymer eingesetzt werden.3. Fluorescent nanoparticles according to claim 1 with a shell, in which the polymer or the copolymer are used as fluorescent material.
4. Verwendung der fluoreszierenden Nanoteilchen nach Anspruch 1, 2 oder 3 als Emitter für Fluoreszenzlicht im Wellenlängenbereich zwischen 200 nm und 800 nm.4. Use of the fluorescent nanoparticles according to claim 1, 2 or 3 as emitters for fluorescent light in the wavelength range between 200 nm and 800 nm.
5. Verfahren zur Herstellung der fluoreszierenden Nanoteilchen gemäß Anspruch 2 mit den Schritten:5. A method for producing the fluorescent nanoparticles according to claim 2, comprising the steps:
- Herstellung eines oxidkeramischen Kerns in einem Plasma,Production of an oxide ceramic core in a plasma,
- Aufkondensieren der fluoreszierenden Verbindung auf den Kern als eine Zwischenschicht,Condensing the fluorescent compound onto the core as an intermediate layer,
- Umhüllen des Kerns mit der Zwischenschicht mit einem Polymer oder Copolymer durch Kondensation und Polymerisation mindestens eines Monomeren durch Aufkondensieren.- Coating the core with the intermediate layer with a polymer or copolymer by condensation and polymerization of at least one monomer by condensation.
6. Verfahren zur Herstellung der fluoreszierenden Nanoteilchen gemäß Anspruch 3 mit den Schritten:6. A method for producing the fluorescent nanoparticles according to claim 3, comprising the steps:
- Herstellung eines oxidkeramischen Kerns in einem Plasma,Production of an oxide ceramic core in a plasma,
- Umhüllen des Kerns mit einem Polymer oder Copolymer, das durch mindestens ein fluoreszierendes Monomer erzeugt wurde, wobei das mindestens eine Monomer auf dem Kern kondensiert und anschließend polymerisiert wird.- Enveloping the core with a polymer or copolymer, the was generated by at least one fluorescent monomer, the at least one monomer being condensed on the core and then polymerized.
7. Verfahren zur Herstellung der fluoreszierenden Nanoteilchen gemäß Anspruch 3 mit den Schritten:7. The method for producing the fluorescent nanoparticles according to claim 3, comprising the steps:
- Herstellung eines oxidkeramischen Kerns in einem Plasma,Production of an oxide ceramic core in a plasma,
- ggf. Umhüllen des Kerns mit einer fluoreszierenden Zwischenschicht,- if necessary, enveloping the core with a fluorescent intermediate layer,
- Umhüllen des Kerns einschließlich der ggf. vorhandenen Zwischenschicht durch Kondensation einer fluorierten Kohlenstoffverbindung mit 10 bis 30 Kohlenstoffatomen. - Coating the core, including any intermediate layer, by condensation of a fluorinated carbon compound with 10 to 30 carbon atoms.
PCT/EP2003/000204 2002-01-31 2003-01-11 Fluorescent nanoparticles and the production thereof WO2003064557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002103907 DE10203907A1 (en) 2002-01-31 2002-01-31 Fluorescent nanoparticles and their production
DE10203907.0 2002-01-31

Publications (1)

Publication Number Publication Date
WO2003064557A1 true WO2003064557A1 (en) 2003-08-07

Family

ID=27618261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/000204 WO2003064557A1 (en) 2002-01-31 2003-01-11 Fluorescent nanoparticles and the production thereof

Country Status (2)

Country Link
DE (1) DE10203907A1 (en)
WO (1) WO2003064557A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407501A (en) * 2003-11-03 2005-05-04 Ist Superiore Sanita Nanoparticles for delivery of a pharmacologically active agent, comprising water insoluble (co)polymer core & hydrophilic acrylate-based (co)polymer shell
EP2164302A1 (en) 2008-09-12 2010-03-17 Ilford Imaging Switzerland Gmbh Optical element and method for its production
DE102009024685A1 (en) 2009-06-12 2010-12-16 Gmbu E.V., Fachsektion Dresden Luminescent composite particle, useful e.g. as marking agent in polymeric films and articles for forgery-proof product identification, comprises organic optical brightener, which is homogeneously embedded in microspherical inorganic oxide
US20110111490A1 (en) * 2009-11-09 2011-05-12 Wen-Chang Lu Light transformation particle and photobioreactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011306A1 (en) * 1969-03-10 1970-09-17 Fa. Progil, Paris Process for wrapping or encapsulating powdery materials
DE3321905A1 (en) * 1982-06-18 1983-12-22 TDK Corporation, Tokyo INORGANIC POWDER WITH IMPROVED DISPERSIBILITY
EP0768351A1 (en) * 1995-04-28 1997-04-16 Nof Corporation Coating composition, process for preparing the composition, and process for preparing dispersion of inorganic oxide sol
DE19638601C1 (en) * 1996-09-20 1998-02-26 Karlsruhe Forschzent Production of particles with metal compound core and polymeric shell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2000803A1 (en) * 1998-11-30 2008-12-10 Nanosphere, Inc. Nanoparticles with Polymer Shells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2011306A1 (en) * 1969-03-10 1970-09-17 Fa. Progil, Paris Process for wrapping or encapsulating powdery materials
GB1269018A (en) * 1969-03-10 1972-03-29 Progil A method of and apparatus for encapsulating pulverulent materials
DE3321905A1 (en) * 1982-06-18 1983-12-22 TDK Corporation, Tokyo INORGANIC POWDER WITH IMPROVED DISPERSIBILITY
US4810524A (en) * 1982-06-18 1989-03-07 Tdk Corporation Inorganic powders with improved dispersibility
EP0768351A1 (en) * 1995-04-28 1997-04-16 Nof Corporation Coating composition, process for preparing the composition, and process for preparing dispersion of inorganic oxide sol
DE19638601C1 (en) * 1996-09-20 1998-02-26 Karlsruhe Forschzent Production of particles with metal compound core and polymeric shell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN C-K ET AL: "LOW-POWER PLASMA TORCH METHOD FOR THE PRODUCTION OF CRYSTALLINE SPHERICAL CERAMIC PARTICLES", JOURNAL OF MATERIALS RESEARCH, NEW YORK, NY, US, vol. 16, no. 5, May 2001 (2001-05-01), pages 1256 - 1265, XP008007950, ISSN: 0884-2914 *
VOLLATH D ET AL: "SYNTHESIS OF NANOSIZED CERAMIC OXIDE POWDERS BY MICROWAVE PLASMA REACTIONS", NANOSTRUCTURED MATERIALS, ELSEVIER, NEW YORK, NY, US, vol. 1, no. 5, 1992, pages 427 - 437, XP000342549, ISSN: 0965-9773 *
WANG H ET AL: "RF PLASMA FABRICATION OF NANO-SCALED CERAMIC OXIDES FOR ENERGY DEVICES", PROCEEDINGS OF THE 30TH. INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE. ORLANDO, FL, JULY 30 - AUG. 4,1995, PROCEEDINGS OF THE INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE (IECEC), NEW YORK, IEEE, US, vol. 2 CONF. 30, 30 July 1995 (1995-07-30), pages 295 - 300, XP000640167, ISBN: 0-7803-2771-3 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2407501A (en) * 2003-11-03 2005-05-04 Ist Superiore Sanita Nanoparticles for delivery of a pharmacologically active agent, comprising water insoluble (co)polymer core & hydrophilic acrylate-based (co)polymer shell
EP2164302A1 (en) 2008-09-12 2010-03-17 Ilford Imaging Switzerland Gmbh Optical element and method for its production
US8350233B2 (en) 2008-09-12 2013-01-08 Ilford Imaging Switzerland Gmbh Optical element and process for its preparation
DE102009024685A1 (en) 2009-06-12 2010-12-16 Gmbu E.V., Fachsektion Dresden Luminescent composite particle, useful e.g. as marking agent in polymeric films and articles for forgery-proof product identification, comprises organic optical brightener, which is homogeneously embedded in microspherical inorganic oxide
US20110111490A1 (en) * 2009-11-09 2011-05-12 Wen-Chang Lu Light transformation particle and photobioreactor
US8709795B2 (en) * 2009-11-09 2014-04-29 Industrial Technology Research Institute Light transformation particle and photobioreactor

Also Published As

Publication number Publication date
DE10203907A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
EP0498186B1 (en) Security element and method for its production
EP1934889A1 (en) Securing the authenticity of value documents by means of characteristic substances
EP1078972B1 (en) fluorescent lamp for illumination purposes
DE69915855T2 (en) SAFETY PRESSURE
DE2834276C3 (en) Process for the production of a fluorescent screen
DE69823321T3 (en) Use of inorganic particles and methods of marking and identifying a substrate or article
WO1999038703A1 (en) Printed document having a value and comprising a luminescent authenticity feature
DE60318785T2 (en) Method for the production of semiconducting nanoparticles
EP3181659B1 (en) Valuable document
DE2261383B2 (en) Process for curing curable compositions by exposure to non-ionizing radiation
EP0832477A1 (en) Process for producing multilayered microparticles
DE102008058177A1 (en) Method for identifying laser sintering powders
WO2007017049A1 (en) Photonic material with regularly arranged cavities
DE10209191A1 (en) Device for generating UV radiation
DE2656461C3 (en) Fluorescent preparations and their uses
EP2655549B1 (en) Security feature
EP2095342B1 (en) Authenticity mark in the form of a luminescent substance
DE10058258A1 (en) Porous membrane production, e.g. for ultrafiltration or bio-encapsulation, involves coating surface with dispersion of nano-particles in hardenable liquid, hardening liquid and decomposing particles
DE10111116A1 (en) value document
WO2003064557A1 (en) Fluorescent nanoparticles and the production thereof
EP2118855B1 (en) Safety and/or valuable document having a photonic crystal
EP1200272B1 (en) Valuable document
DE10156842A1 (en) Amplification medium for solid state dye laser comprises solid optical feedback medium comprising polymeric dispersion film with crystalline structure, preferably of film-forming core/shell particles
EP1756169B1 (en) Method for marking materials
WO2003040727A2 (en) Use of oxidic nanoparticles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP