WO2003056864A2 - Downlink access control - Google Patents

Downlink access control Download PDF

Info

Publication number
WO2003056864A2
WO2003056864A2 PCT/EP2002/014724 EP0214724W WO03056864A2 WO 2003056864 A2 WO2003056864 A2 WO 2003056864A2 EP 0214724 W EP0214724 W EP 0214724W WO 03056864 A2 WO03056864 A2 WO 03056864A2
Authority
WO
WIPO (PCT)
Prior art keywords
mobile station
data
plurahty
radio block
bursts
Prior art date
Application number
PCT/EP2002/014724
Other languages
French (fr)
Other versions
WO2003056864A3 (en
Inventor
Benoist Sebire
Original Assignee
Nokia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/029,970 external-priority patent/US20030123416A1/en
Priority claimed from US10/029,933 external-priority patent/US20030125061A1/en
Application filed by Nokia Corporation filed Critical Nokia Corporation
Priority to AU2002358175A priority Critical patent/AU2002358175A1/en
Publication of WO2003056864A2 publication Critical patent/WO2003056864A2/en
Publication of WO2003056864A3 publication Critical patent/WO2003056864A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present invention relates to downlink access control in a mobile communication system.
  • TBF temporary block flow
  • RR Radio Resource
  • LLC PDUs Low Layer Compatibility Packet Data Units
  • the TFI is encoded in the RLC/MAC header in such a way that every mobile station that can receive the radio block can decode the TFI.
  • transport channels The concept of transport channels is known from UTRAN (Universal mobile Telecommunications System Radio Access Network). Each of these transport channels can carry a bit class having a different quality of service (QoS) requirement. A plurality of transport channels for the same user can be multiplexed and sent in [SGi]the same physical subchannel. In such a system, each radio block may carry one or more TBFs which means that including TFIs in RLC/MAC headers is not a practical way of identifying the mobile station to which a radio block is destined.
  • QoS quality of service
  • a method of wirelessly transmitting data signals to one of a plurality of mobile stations, each of which can sense the transmitted signal comprising: - allocating a locally unique code to a destination mobile station; and transmitting a radio block, comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station, wherein said code is included in each of said bursts at a predetermined location therein.
  • said location is static.
  • a method according to the present invention includes transmitting a further radio block, comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station, wherein said code is included in each of said bursts at another predetermined location therein to indicate that said mobile station may transmit in the next uplink radio block.
  • a method of operating a mobile station for the reception of data signals comprising:- receiving a locally unique code; receiving a burst of a radio block, the radio block comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station; and extracting a code from a predetermined location in said burst and decoding said radio block if the extracted code matches said locally unique code[Nokia 2 ][SG3].
  • a mobile station comprising performing a data reception method according to the present invention, and transmitting a radio block comprising a plurality of bursts, each burst containing said extracted code in a predetermined location.
  • a mobile station including receiving means and processing means, wherein the processing means is configured for controlling the mobile station to perform a method according to the present invention.
  • Figure 1 shows a mobile communication system according to the present invention
  • Figure 2 is a block diagram of a mobile station
  • FIG. 3 is a block diagram of a base transceiver station
  • Figure 4 illustrates the frame structure used in an embodiment of the present invention
  • Figure 5 illustrates a packet data channel in an embodiment of the present invention
  • Figure 6 illustrates the sharing of a radio channel between two half-rate packet channels in an embodiment of the present invention
  • Figure 7 illustrates the lower levels of a protocol stack used in an embodiment of the present invention
  • Figure 8 illustrates the generation of a radio signal by a first embodiment of the present invention
  • Figure 9 illustrates a data burst generated by a first embodiment of the present invention
  • Figure 10 illustrates the generation of a radio signal by a second embodiment of the present invention.
  • Figure 11 illustrates part of a reception process adapted for receiving signals produced by the second embodiment of the present invention.
  • a mobile phone network 1 comprises a plurality of switching centres including first and second switching centres 2a, 2b.
  • the first switching centre 2a is connected to a plurality of base station controllers including first and second base station controllers 3a, 3b.
  • the second switching centre 2b is similarly connected to a plurality of base station controllers (not shown).
  • the first base station controller 3a is connected to and controls a base transceiver station 4 and a plurality of other base transceiver stations.
  • the second base station controller 3b is similarly connected to and controls a plurality of base transceiver stations (not shown).
  • each base transceiver station services a respective cell.
  • the base transceiver station 4 services a cell 5.
  • a plurality of cells may be serviced by one base transceiver station by means of directional antennas.
  • a plurality of mobile stations 6a, 6b are located in the cell 5. It will be appreciated what the number and identities of mobile stations in any given cell will vary with time.
  • the mobile phone network 1 is connected to a pubhc switched telephone network 7 by a gateway switching centre 8.
  • a packet service aspect of the network includes a plurality of packet service support nodes (one shown) 9 which are connected to respective pluralities of base station controllers 3a, 3b. At least one packet service support gateway node 10 connects the or each packet service support node 10 to the Internet 11.
  • the switching centres 3a, 3b and the packet service support nodes 9 have access to a home location register 12.
  • TDMA time-division multiple access
  • the first mobile station 6a comprises an antenna 101, an rf subsystem 102, a baseband DSP (digital signal processing) subsystem 103, an analogue audio subsystem 104, a loudspeaker 105, a microphone 106, a controller 107, a liquid crystal display 108, a keypad 109, memory 110, a battery 111 and a power supply circuit 112.
  • a baseband DSP digital signal processing
  • the rf subsystem 102 contains if and rf circuits of the mobile telephone's transmitter and receiver and a frequency synthesizer for tuning the mobile station's transmitter and receiver.
  • the antenna 101 is coupled to the rf subsystem 102 for the reception and transmission of radio waves.
  • the baseband DSP subsystem 103 is coupled to the rf subsystem 102 to receive baseband signals therefrom and for sending baseband modulation signals thereto.
  • the baseband DSP subsystems 103 includes codec functions which are well-known in the art.
  • the analogue audio subsystem 104 is coupled to the baseband DSP subsystem 103 and receives demodulated audio therefrom.
  • the analogue audio subsystem 104 amplifies the demodulated audio and applies it to the loudspeaker 105.
  • Acoustic signals, detected by the microphone 106, are pre-amplified by the analogue audio subsystem 104 and sent to the baseband DSP subsystem 4 for coding.
  • the controller 107 controls the operation of the mobile telephone. It is coupled to the rf subsystem 102 for supplying tuning instructions to the frequency synthesizer and to the baseband DSP subsystem 103 for supplying control data and management data for transmission.
  • the controller 107 operates according to a program stored in the memory 110.
  • the memory 110 is shown separately from the controller 107. However, it may be integrated with the controller 107.
  • the display device 108 is connected to the controller 107 for receiving control data and the keypad 109 is connected to the controller 107 fof supplying user input data signals thereto.
  • the battery 111 is connected to the power supply circuit 112 which provides regulated power at the various voltages used by the components of the mobile telephone.
  • the controller 107 is programmed to control the mobile station for speech and data communication and with application programs, e.g. a WAP browser, which make use of the mobile station's data communication capabilities.
  • application programs e.g. a WAP browser
  • the second mobile station 6b is similarly configured.
  • the base transceiver station 4 comprises an antenna 201, an rf subsystem 202, a baseband DSP (digital signal processing) subsystem 203, a base station controller interface 204 and a controller 207.
  • the rf subsystem 202 contains the if and rf circuits of the base transceiver station's transmitter and receiver and a frequency synthesizer for tuning the base transceiver station's transmitter and receiver.
  • the antenna 201 is coupled to the rf subsystem 202 for the reception and transmission of radio waves.
  • the baseband DSP subsystem 203 is coupled to the rf subsystem 202 to receive baseband signals therefrom and for sending baseband modulation signals thereto.
  • the baseband DSP subsystems 203 includes codec functions which are well-known in the art.
  • the base station controller interface 204 interfaces the base transceiver station 4 to its controlling base station controller 3a.
  • the controller 207 controls the operation of the base transceiver station 4. It is coupled to the rf subsystem 202 for supplying tuning instructions to the frequency synthesizer and to the baseband DSP subsystem for supplying control data and management data for transmission.
  • the controller 207 operates according to a program stored in the memory 210.
  • each TDMA frame used for communication between the mobile stations 6a, 6b and the base transceiver stations 4, comprises eight 0.577ms time slots.
  • a "26 multiframe” comprises 26 frames and a "51 multiframe” comprises 51 frames.
  • Fifty one "26 multiframes” or twenty six “51 multiframes” make up one superframe.
  • a hyperframe comprises 2048 superframes.
  • a normal burst i.e. time slot
  • a normal burst comprises three tail bits, followed by 58 encrypted data bits, a 26-bit training sequence, another sequence of 58 encrypted data bits and a further three tail bits.
  • a guard period of eight and a quarter bit durations is provided at the end of the burst.
  • a frequency correction burst has the same tail bits and guard period.
  • its payload comprises a fixed 142 bit sequence.
  • a synchronization burst is similar to the normal burst except that the encrypted data is reduced to two clocks of 39 bits and the training sequence is replaced by a 64-bit synchronization sequence.
  • an access burst comprises eight initial tail bits, followed by a 41 -bit synchronization sequence, 36 bits of encrypted data and three more tail bits.
  • the guard period is 68.25 bits long.
  • the channelisation scheme is as employed in GSM.
  • full rate packet switched channels make use of 12 4-slot radio blocks spread over a "51 multiframe”. Idle slots follow the third, sixth, ninth and twelfth radio blocks.
  • the baseband DSP subsystems 103, 203 and controllers 107, 207 of the mobile stations 6a, 6b and the base transceiver stations 4 are configured to implement two protocol stacks.
  • the first protocol stack is for circuit switched traffic and is substantially the same as employed in conventional GSM systems.
  • the second protocol stack is for packet switched traffic.
  • the layers relevant to the radio link between a mobile station 6a, 6b and a base station controller 4 are the radio link control layer 401, the medium access control layer 402 and the physical layer 403.
  • the radio link control layer 401 has two modes: transparent and non-transparent. In transparent mode, data is merely passed up or down through the radio link control layer without modification. In non-transparent mode, the radio link control layer 401 provides link adaptation and constructs data blocks from data units received from higher levels by segmenting or concatenating the data units as necessary and performs the reciprocal process for data being passed up the stack. It is also responsible for detecting lost data blocks or reordering data block for upward transfer of their contents, depending on whether acknowledged mode is being used. This layer may also provide backward error correction in acknowledged mode.
  • the medium access control layer 402 is responsible for allocating data blocks from the radio link control layer 401 to appropriate transport channels and passing received radio blocks from transport channels to the radio link control layer 403.
  • the physical layer 403 is responsible to creating transmitted radio signals from the data passing through the transport channels and passing received data up through the correct transport channel to the medium access control layer 402.
  • data produced by applications 404a, 404b, 404c propagates down the protocol stack to the medium access control layer 402.
  • the data from the applications 404a, 404b, 404c can belong to any of a plurality of classes for which different qualities of service are required. Data belonging to a plurality of classes may be produced by a single application.
  • the medium access control layer 402 directs data from the applications 404a, 404b, 404c to different transport channels 405, 406, 407 according to class to which it belongs.
  • Each transport channel 405, 406, 407 can be configured to process signals according to a plurality of processing schemes 405a, 405b, 405c, 406a, 406b, 406c, 407a, 407b, 407c.
  • the configuration of the transport channels 405, 406, 407 is established during call setup on the basis of the capabilities of the mobile station 6a, 6b and the network and the nature of the application or applications 404a, 404b, 404c being run.
  • the processing schemes 405a, 405b, 405c, 406a, 406b, 406c, 407a, 407b, 407c are unique combinations of cyclic redundancy check 405a, 406a, 407a , channel coding 405b, 406b, 407b and rate matching 405c, 406c, 407c.
  • These unique processing schemes will be referred to as "transport formats”.
  • An interleaving scheme 405d, 406d, 407d may be selected for each transport channel 405, 406, 407.
  • different transport channels may use different interleaving schemes and, in alternative embodiments, different interleaving schemes may be used at different times by the same transport channel.
  • the combined data rate produced for the transport channels 405, 406, 407 must not exceed that of physical channel or channels allocated to the mobile station 6a, 6b. This places a hmit on the transport format combinations that can be permitted. For instance, if there are three transport formats TFI, TF2, TF3 for each transport channel, the following combinations might be valid:-
  • the data output by the transport channel interleaving processes are multiplexed by a multiplexing process 410 and then subject to further interleaving 411.
  • a transport format combination indicators is generated by a transport format combination indicator generating process 412 from information from the medium access control layer and coded by a coding process 413.
  • the transport format combination indicator is inserted into the data stream by a transport format combination indicator insertion process after the further interleaving 411.
  • the transport format combination indicator is spread across one radio block with portions placed in fixed positions in each burst, on either side of the training symbols ( Figure 9) in this example.
  • the complete transport format combination indicator therefore occurs at fixed intervals, i.e. the block length 20ms. This makes it possible to ensure transport format combination indicator detection when different interleaving types are used e.g. 8 burst diagonal and 4 burst rectangular interleaving. Since the transport format combination indicator is not subject to variable interleaving, it can be readily located by the receiving station and used to control processing of the received data.
  • the location of data for each transport channel within the multiplexed bit stream can be determined by a received station from the transport format combination indicator and knowledge of the multiplexing process which is deterministic.
  • the physical channel or subchannel is dedicated to a particular mobile station for a particular call.
  • uplink state flags are included in each downlink radio block. This flag indicates to the receiving mobile station whether it may start sending data in the next uplink radio block.
  • the uplink status flags preferably occupy the same bit positions as are specified for EGPRS, e.g. data bits 150, 151, 168, 169, 171, 172 174, 175, 177, 178 and 195 of each 348-data-bit burst when 8PSK modulation is used.
  • bits 0, 51, 56, 57, 58 and 100 are used in the first burst
  • bits 35, 56, 57, 58, 84 and 98 are used in the second burst
  • bits 19, 56, 57, 58, 68 and 82 are used in the third burst
  • bits 3, 52, 56, 57, 58 and 66 are used in the fourth burst.
  • downlink status flags are included in downlink radio bursts to indicate which mobile station a burst is intended for. These flags always have the same position within bursts so that a receiving mobile station can easily locate them. In the preferred embodiment, the uplink and downlink flags have the same mapping onto mobile stations 6a, 6b.
  • a mobile station 6a, 6b using a shared subchannel includes its identifier, which is used for the above-described uplink and downlink access control, in its own transmission. Again, this identifier is located in a predetermined position within each burst. Although the network will generally know the identity of the transmitting mobile station 6a, 6b because it scheduled the transmission, corruption of transmissions from the base transceiver station could result in the wrong mobile station transmitting. Including the identifier in this way enables the base transceiver station to identify the transmitting mobile station from the received signal and then decode the current block, starting by reading the transport format combination indicator and then selecting the correct transport channel decoding processes in dependence on the identity of the transmitting mobile station 6a, 6b and the decoded transport format combination indicator.
  • the medium access control layer 402 can support a plurality of active transport format combination sets 501, 502.
  • Each transport format combination set 501, 502 is applicable to transmission according to a different modulation technique, e.g. GMSK and 8PSK. All of the active transport format combination sets 501, 502 are established at call set up.
  • Signals in a control channel from the network to a mobile station 6a, 6b cause the mobile station 6a, 6b to switch modulation techniques and, consequently, transport format combination sets 501, 502.
  • the control signals can be generated in response to path quality or congestion levels.
  • the mobile station 6a, 6b may also unilaterally decide which modulation technique to employ.
  • a received signal is apphed to demodulating processes 601, 602 for each modulation type.
  • the results of the demodulating processes 601, 602 are analysed 603, 604 to determine which modulation technique is being employed and then the transport format combination indicator is extracted 605 from the output of the appropriate demodulated signal and used to control further processing of the signal.

Abstract

In a TDMA packet mobile communication system employing the concept of transport channels in a medium access control layer, an downlink access control signal, for identifying a destination mobile station, is inserted into each burst in a predetermined manner.

Description

Downlink Access Control
Field of the Invention
The present invention relates to downlink access control in a mobile communication system.
Background to the Invention
In the general packet radio service (GPRS) of GSM (Global System for Mobile communications) networks, downlink multiplexing of radio blocks destined for different mobile stations, sharing a basic physical subchannel, is enabled with an identifier called the temporary flow indicator (TFI) included in each radio block. A temporary block flow (TBF) is a physical connection used by to RR (Radio Resource) entities to support the unidirectional transfer of LLC PDUs (Low Layer Compatibility Packet Data Units) on shared basic physical subchannels. Each TBF is assigned a TFI, which is unique among concurrent TBFs, by the network.
The TFI is encoded in the RLC/MAC header in such a way that every mobile station that can receive the radio block can decode the TFI.
The concept of transport channels is known from UTRAN (Universal mobile Telecommunications System Radio Access Network). Each of these transport channels can carry a bit class having a different quality of service (QoS) requirement. A plurality of transport channels for the same user can be multiplexed and sent in [SGi]the same physical subchannel. In such a system, each radio block may carry one or more TBFs which means that including TFIs in RLC/MAC headers is not a practical way of identifying the mobile station to which a radio block is destined.
Summary of the Invention
According to the present invention, there is provided a method of wirelessly transmitting data signals to one of a plurality of mobile stations, each of which can sense the transmitted signal, the method comprising: - allocating a locally unique code to a destination mobile station; and transmitting a radio block, comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station, wherein said code is included in each of said bursts at a predetermined location therein.
Preferably, said location is static.
Preferably, a method according to the present invention includes transmitting a further radio block, comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station, wherein said code is included in each of said bursts at another predetermined location therein to indicate that said mobile station may transmit in the next uplink radio block.
According to the present invention, there is also provided a method of operating a mobile station for the reception of data signals, the method comprising:- receiving a locally unique code; receiving a burst of a radio block, the radio block comprising a plurality of bursts and conveying data belonging to a plurality of data streams, to said mobile station; and extracting a code from a predetermined location in said burst and decoding said radio block if the extracted code matches said locally unique code[Nokia2][SG3].
According to the present invention, there is method of operating a mobile station comprising performing a data reception method according to the present invention, and transmitting a radio block comprising a plurality of bursts, each burst containing said extracted code in a predetermined location. According to the present invention, there is further provided a mobile station including receiving means and processing means, wherein the processing means is configured for controlling the mobile station to perform a method according to the present invention.
Brief Description of the Drawings
Figure 1 shows a mobile communication system according to the present invention; Figure 2 is a block diagram of a mobile station;
Figure 3 is a block diagram of a base transceiver station;
Figure 4 illustrates the frame structure used in an embodiment of the present invention;
Figure 5 illustrates a packet data channel in an embodiment of the present invention;
Figure 6 illustrates the sharing of a radio channel between two half-rate packet channels in an embodiment of the present invention;
Figure 7 illustrates the lower levels of a protocol stack used in an embodiment of the present invention;
Figure 8 illustrates the generation of a radio signal by a first embodiment of the present invention;
Figure 9 illustrates a data burst generated by a first embodiment of the present invention;
Figure 10 illustrates the generation of a radio signal by a second embodiment of the present invention; and
Figure 11 illustrates part of a reception process adapted for receiving signals produced by the second embodiment of the present invention.
Detailed Description of the Preferred Embodiment
A preferred embodiment of the present invention will now be described, by way of example, with reference to the accompanying drawings.
Referring to Figure 1, a mobile phone network 1 comprises a plurality of switching centres including first and second switching centres 2a, 2b. The first switching centre 2a is connected to a plurality of base station controllers including first and second base station controllers 3a, 3b. The second switching centre 2b is similarly connected to a plurality of base station controllers (not shown).
The first base station controller 3a is connected to and controls a base transceiver station 4 and a plurality of other base transceiver stations. The second base station controller 3b is similarly connected to and controls a plurality of base transceiver stations (not shown). In the present example, each base transceiver station services a respective cell. Thus, the base transceiver station 4 services a cell 5. However, a plurality of cells may be serviced by one base transceiver station by means of directional antennas. A plurality of mobile stations 6a, 6b are located in the cell 5. It will be appreciated what the number and identities of mobile stations in any given cell will vary with time.
The mobile phone network 1 is connected to a pubhc switched telephone network 7 by a gateway switching centre 8.
A packet service aspect of the network includes a plurality of packet service support nodes (one shown) 9 which are connected to respective pluralities of base station controllers 3a, 3b. At least one packet service support gateway node 10 connects the or each packet service support node 10 to the Internet 11.
The switching centres 3a, 3b and the packet service support nodes 9 have access to a home location register 12.
Communication between the mobile stations 6a, 6b and the base transceiver station 4 employs a time-division multiple access (TDMA) scheme.
Referring to Figure 2, the first mobile station 6a comprises an antenna 101, an rf subsystem 102, a baseband DSP (digital signal processing) subsystem 103, an analogue audio subsystem 104, a loudspeaker 105, a microphone 106, a controller 107, a liquid crystal display 108, a keypad 109, memory 110, a battery 111 and a power supply circuit 112.
The rf subsystem 102 contains if and rf circuits of the mobile telephone's transmitter and receiver and a frequency synthesizer for tuning the mobile station's transmitter and receiver. The antenna 101 is coupled to the rf subsystem 102 for the reception and transmission of radio waves. The baseband DSP subsystem 103 is coupled to the rf subsystem 102 to receive baseband signals therefrom and for sending baseband modulation signals thereto. The baseband DSP subsystems 103 includes codec functions which are well-known in the art.
The analogue audio subsystem 104 is coupled to the baseband DSP subsystem 103 and receives demodulated audio therefrom. The analogue audio subsystem 104 amplifies the demodulated audio and applies it to the loudspeaker 105. Acoustic signals, detected by the microphone 106, are pre-amplified by the analogue audio subsystem 104 and sent to the baseband DSP subsystem 4 for coding.
The controller 107 controls the operation of the mobile telephone. It is coupled to the rf subsystem 102 for supplying tuning instructions to the frequency synthesizer and to the baseband DSP subsystem 103 for supplying control data and management data for transmission. The controller 107 operates according to a program stored in the memory 110. The memory 110 is shown separately from the controller 107. However, it may be integrated with the controller 107.
The display device 108 is connected to the controller 107 for receiving control data and the keypad 109 is connected to the controller 107 fof supplying user input data signals thereto.
The battery 111 is connected to the power supply circuit 112 which provides regulated power at the various voltages used by the components of the mobile telephone.
The controller 107 is programmed to control the mobile station for speech and data communication and with application programs, e.g. a WAP browser, which make use of the mobile station's data communication capabilities.
The second mobile station 6b is similarly configured. Referring to Figure 3, greatly simphfied, the base transceiver station 4 comprises an antenna 201, an rf subsystem 202, a baseband DSP (digital signal processing) subsystem 203, a base station controller interface 204 and a controller 207.
The rf subsystem 202 contains the if and rf circuits of the base transceiver station's transmitter and receiver and a frequency synthesizer for tuning the base transceiver station's transmitter and receiver. The antenna 201 is coupled to the rf subsystem 202 for the reception and transmission of radio waves.
The baseband DSP subsystem 203 is coupled to the rf subsystem 202 to receive baseband signals therefrom and for sending baseband modulation signals thereto. The baseband DSP subsystems 203 includes codec functions which are well-known in the art.
The base station controller interface 204 interfaces the base transceiver station 4 to its controlling base station controller 3a.
The controller 207 controls the operation of the base transceiver station 4. It is coupled to the rf subsystem 202 for supplying tuning instructions to the frequency synthesizer and to the baseband DSP subsystem for supplying control data and management data for transmission. The controller 207 operates according to a program stored in the memory 210.
Referring to Figure 4, each TDMA frame, used for communication between the mobile stations 6a, 6b and the base transceiver stations 4, comprises eight 0.577ms time slots. A "26 multiframe" comprises 26 frames and a "51 multiframe" comprises 51 frames. Fifty one "26 multiframes" or twenty six "51 multiframes" make up one superframe. Finally, a hyperframe comprises 2048 superframes.
The data format within the time slots varies according to the function of a time slot. A normal burst, i.e. time slot, comprises three tail bits, followed by 58 encrypted data bits, a 26-bit training sequence, another sequence of 58 encrypted data bits and a further three tail bits. A guard period of eight and a quarter bit durations is provided at the end of the burst. A frequency correction burst has the same tail bits and guard period. However, its payload comprises a fixed 142 bit sequence. A synchronization burst is similar to the normal burst except that the encrypted data is reduced to two clocks of 39 bits and the training sequence is replaced by a 64-bit synchronization sequence. Finally, an access burst comprises eight initial tail bits, followed by a 41 -bit synchronization sequence, 36 bits of encrypted data and three more tail bits. In this case, the guard period is 68.25 bits long.
When used for circuit-switched speech traffic, the channelisation scheme is as employed in GSM.
Referring to Figure 5, full rate packet switched channels make use of 12 4-slot radio blocks spread over a "51 multiframe". Idle slots follow the third, sixth, ninth and twelfth radio blocks.
Referring to Figure 6, for half rate, packet switched channels, both dedicated and shared, slots are allocated alternately to two sub-channels.
The baseband DSP subsystems 103, 203 and controllers 107, 207 of the mobile stations 6a, 6b and the base transceiver stations 4 are configured to implement two protocol stacks. The first protocol stack is for circuit switched traffic and is substantially the same as employed in conventional GSM systems. The second protocol stack is for packet switched traffic.
Referring to Figure 7, the layers relevant to the radio link between a mobile station 6a, 6b and a base station controller 4 are the radio link control layer 401, the medium access control layer 402 and the physical layer 403.
The radio link control layer 401 has two modes: transparent and non-transparent. In transparent mode, data is merely passed up or down through the radio link control layer without modification. In non-transparent mode, the radio link control layer 401 provides link adaptation and constructs data blocks from data units received from higher levels by segmenting or concatenating the data units as necessary and performs the reciprocal process for data being passed up the stack. It is also responsible for detecting lost data blocks or reordering data block for upward transfer of their contents, depending on whether acknowledged mode is being used. This layer may also provide backward error correction in acknowledged mode.
The medium access control layer 402 is responsible for allocating data blocks from the radio link control layer 401 to appropriate transport channels and passing received radio blocks from transport channels to the radio link control layer 403.
The physical layer 403 is responsible to creating transmitted radio signals from the data passing through the transport channels and passing received data up through the correct transport channel to the medium access control layer 402.
Referring to Figure 8, data produced by applications 404a, 404b, 404c propagates down the protocol stack to the medium access control layer 402. The data from the applications 404a, 404b, 404c can belong to any of a plurality of classes for which different qualities of service are required. Data belonging to a plurality of classes may be produced by a single application. The medium access control layer 402 directs data from the applications 404a, 404b, 404c to different transport channels 405, 406, 407 according to class to which it belongs.
Each transport channel 405, 406, 407 can be configured to process signals according to a plurality of processing schemes 405a, 405b, 405c, 406a, 406b, 406c, 407a, 407b, 407c. The configuration of the transport channels 405, 406, 407 is established during call setup on the basis of the capabilities of the mobile station 6a, 6b and the network and the nature of the application or applications 404a, 404b, 404c being run.
The processing schemes 405a, 405b, 405c, 406a, 406b, 406c, 407a, 407b, 407c are unique combinations of cyclic redundancy check 405a, 406a, 407a , channel coding 405b, 406b, 407b and rate matching 405c, 406c, 407c. These unique processing schemes will be referred to as "transport formats". An interleaving scheme 405d, 406d, 407d may be selected for each transport channel 405, 406, 407. Thus, different transport channels may use different interleaving schemes and, in alternative embodiments, different interleaving schemes may be used at different times by the same transport channel.
The combined data rate produced for the transport channels 405, 406, 407 must not exceed that of physical channel or channels allocated to the mobile station 6a, 6b. This places a hmit on the transport format combinations that can be permitted. For instance, if there are three transport formats TFI, TF2, TF3 for each transport channel, the following combinations might be valid:-
TF1 TFI TF2
TFI TF3 TF3 but not
TFI TF2 TF2
TFI TFI TF3
The data output by the transport channel interleaving processes are multiplexed by a multiplexing process 410 and then subject to further interleaving 411.
A transport format combination indicators is generated by a transport format combination indicator generating process 412 from information from the medium access control layer and coded by a coding process 413. The transport format combination indicator is inserted into the data stream by a transport format combination indicator insertion process after the further interleaving 411. The transport format combination indicator is spread across one radio block with portions placed in fixed positions in each burst, on either side of the training symbols (Figure 9) in this example. The complete transport format combination indicator therefore occurs at fixed intervals, i.e. the block length 20ms. This makes it possible to ensure transport format combination indicator detection when different interleaving types are used e.g. 8 burst diagonal and 4 burst rectangular interleaving. Since the transport format combination indicator is not subject to variable interleaving, it can be readily located by the receiving station and used to control processing of the received data.
The location of data for each transport channel within the multiplexed bit stream can be determined by a received station from the transport format combination indicator and knowledge of the multiplexing process which is deterministic.
In the foregoing, the physical channel or subchannel is dedicated to a particular mobile station for a particular call. When physical channels and subchannels are shared, it is necessary for a mobile stations to know when it has access to the uplink. For this purpose, in shared channel operation, uplink state flags are included in each downlink radio block. This flag indicates to the receiving mobile station whether it may start sending data in the next uplink radio block. For compatibility with GPRS and EGPRS mobile stations, the uplink status flags preferably occupy the same bit positions as are specified for EGPRS, e.g. data bits 150, 151, 168, 169, 171, 172 174, 175, 177, 178 and 195 of each 348-data-bit burst when 8PSK modulation is used. When GMSK modulation is used the situation is more comphcated in that different bit positions are used in different burst, albeit in an overall cyclical manner. More particularly, in a four burst cycle, bits 0, 51, 56, 57, 58 and 100 are used in the first burst, bits 35, 56, 57, 58, 84 and 98 are used in the second burst, bits 19, 56, 57, 58, 68 and 82 are used in the third burst and bits 3, 52, 56, 57, 58 and 66 are used in the fourth burst.
Similarly, downlink status flags are included in downlink radio bursts to indicate which mobile station a burst is intended for. These flags always have the same position within bursts so that a receiving mobile station can easily locate them. In the preferred embodiment, the uplink and downlink flags have the same mapping onto mobile stations 6a, 6b.
A mobile station 6a, 6b using a shared subchannel includes its identifier, which is used for the above-described uplink and downlink access control, in its own transmission. Again, this identifier is located in a predetermined position within each burst. Although the network will generally know the identity of the transmitting mobile station 6a, 6b because it scheduled the transmission, corruption of transmissions from the base transceiver station could result in the wrong mobile station transmitting. Including the identifier in this way enables the base transceiver station to identify the transmitting mobile station from the received signal and then decode the current block, starting by reading the transport format combination indicator and then selecting the correct transport channel decoding processes in dependence on the identity of the transmitting mobile station 6a, 6b and the decoded transport format combination indicator.
Referring to Figure 10,. in another embodiment, the medium access control layer 402 can support a plurality of active transport format combination sets 501, 502. Each transport format combination set 501, 502 is applicable to transmission according to a different modulation technique, e.g. GMSK and 8PSK. All of the active transport format combination sets 501, 502 are established at call set up.
Signals in a control channel from the network to a mobile station 6a, 6b cause the mobile station 6a, 6b to switch modulation techniques and, consequently, transport format combination sets 501, 502. The control signals can be generated in response to path quality or congestion levels. The mobile station 6a, 6b may also unilaterally decide which modulation technique to employ.
Referring to Figure 11, at a receiving station, be it a mobile station 6a, 6b or a base transceiver station 4, a received signal is apphed to demodulating processes 601, 602 for each modulation type. The results of the demodulating processes 601, 602 are analysed 603, 604 to determine which modulation technique is being employed and then the transport format combination indicator is extracted 605 from the output of the appropriate demodulated signal and used to control further processing of the signal.
It will be appreciated that the above-described embodiments may be modified in many ways without departing from the spirit and scope of the claims appended hereto.

Claims

Claims
1. A method of wirelessly transmitting data signals to one of a plurahty of mobile stations, each of which can sense the transmitted signal, the method comprising:- allocating a locally unique code to a destination mobile station; and transmitting a radio block, comprising a plurahty of bursts and conveying data belonging to a plurahty of data streams, to said mobile station, wherein said code is included in each of said bursts at a predetermined location therein.
2. A method according to claim 1, wherein said location is static.
3. A method according to claim 1 or 2, including transmitting a further radio block, comprising a plurahty of bursts and conveying data belonging to a plurahty of data streams, to said mobile station, wherein said code is included in each of said bursts at another predetermined location therein to indicate that said mobile station may transmit in the next uplink radio block.
4. A method of operating a mobile station for the reception of data signals, the method comprising:- receiving a locally unique code; receiving a burst of a radio block, the radio block comprising a plurahty of bursts and conveying data belonging to a plurahty of data streams, to said mobile station; and extracting a code from a predetermined location in said burst and decoding said radio block if the extracted code matches said locally unique code[Nokia5].
5. A method of operating a mobile station comprising performing a method according to claim 4, and transmitting a radio block comprising a plurahty of bursts, each burst containing said extracted code in a predetermined location.
6. A mobile station including receiving means and processing means, wherein the processing means is configured for controlhng the mobile station to perform a method according to claim 4.
7.. A mobile station including receiving means and processing means, wherein the processing means is configured for controlhng the mobile station to perform a method according to claim 5.
PCT/EP2002/014724 2001-12-31 2002-12-23 Downlink access control WO2003056864A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002358175A AU2002358175A1 (en) 2001-12-31 2002-12-23 Downlink access control

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/029,970 US20030123416A1 (en) 2001-12-31 2001-12-31 Interleaving for multiplexed data
US10/029,970 2001-12-31
US10/029,933 2001-12-31
US10/029,933 US20030125061A1 (en) 2001-12-31 2001-12-31 Downlink access control

Publications (2)

Publication Number Publication Date
WO2003056864A2 true WO2003056864A2 (en) 2003-07-10
WO2003056864A3 WO2003056864A3 (en) 2003-10-02

Family

ID=26705485

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2002/014724 WO2003056864A2 (en) 2001-12-31 2002-12-23 Downlink access control
PCT/EP2002/014725 WO2003056716A2 (en) 2001-12-31 2002-12-23 Interleaving for multiplexed data

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014725 WO2003056716A2 (en) 2001-12-31 2002-12-23 Interleaving for multiplexed data

Country Status (10)

Country Link
EP (1) EP1461876A2 (en)
JP (1) JP2005513948A (en)
KR (1) KR20040072690A (en)
CN (1) CN100418309C (en)
AU (2) AU2002358175A1 (en)
BR (1) BR0215390A (en)
CA (1) CA2472013A1 (en)
MX (1) MXPA04006431A (en)
RU (1) RU2315432C2 (en)
WO (2) WO2003056864A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7616697B2 (en) * 2006-04-07 2009-11-10 Intel Corporation Cooperative inter-carrier channel coding apparatus, systems, and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761778A (en) * 1985-04-11 1988-08-02 Massachusetts Institute Of Technology Coder-packetizer for random accessing in digital communication with multiple accessing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0709982B1 (en) * 1994-10-26 2004-06-30 International Business Machines Corporation Medium access control scheme for wireless LAN using a variable length interleaved time division frame
US5640386A (en) * 1995-06-06 1997-06-17 Globalstar L.P. Two-system protocol conversion transceiver repeater
KR100595147B1 (en) * 1998-12-09 2006-08-30 엘지전자 주식회사 Method and device for transmitting and frceiving transport channel multiplexing information
FI107424B (en) * 1999-03-22 2001-07-31 Nokia Mobile Phones Ltd Method and arrangement to prepare for the transport of multimedia-related information in a cellular radio network
PT1250822E (en) * 2000-01-25 2006-08-31 Siemens Ag PROCESS FOR THE SIGNALING OF A CHANNEL ATTRIBUTION IN A VIA RADIO COMMUNICATION SYSTEM

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761778A (en) * 1985-04-11 1988-08-02 Massachusetts Institute Of Technology Coder-packetizer for random accessing in digital communication with multiple accessing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"ETSI TS 125 212 Universal Mobile Telecommunications system (UMTS);Multiplexing and channel coding (FDD)" ETSI TS 125 212 V3.1.1, XX, XX, January 2000 (2000-01), XP002161524 *

Also Published As

Publication number Publication date
AU2002358175A1 (en) 2003-07-15
EP1461876A2 (en) 2004-09-29
WO2003056864A3 (en) 2003-10-02
CA2472013A1 (en) 2003-07-10
RU2315432C2 (en) 2008-01-20
AU2002367207B2 (en) 2007-08-16
KR20040072690A (en) 2004-08-18
WO2003056716A3 (en) 2003-09-25
WO2003056716A2 (en) 2003-07-10
MXPA04006431A (en) 2004-10-04
AU2002367207A1 (en) 2003-07-15
BR0215390A (en) 2004-12-07
JP2005513948A (en) 2005-05-12
CN100418309C (en) 2008-09-10
CN1625852A (en) 2005-06-08
RU2004123629A (en) 2006-01-20

Similar Documents

Publication Publication Date Title
KR20080018911A (en) Expanded signalling capability for network element, user equipment and system
US7848304B2 (en) Transmitting interleaved multiple data flows
EP1461874B1 (en) Transport format combination indicator signalling
WO2005101716A1 (en) Received signal quality determination
US20070213035A1 (en) Method and a Device for Reconfiguration in a Wireless System
US20030125061A1 (en) Downlink access control
US20030123426A1 (en) Uplink access control
WO2003056720A1 (en) Transport channel interleaving
AU2002367207B2 (en) Interleaving for multiplexed data
WO2003056768A1 (en) Modulation-dependant transport channel configuration
US20030123416A1 (en) Interleaving for multiplexed data
US20030147366A1 (en) Combining transport formats having heterogeneous interleaving schemes
US20050170830A1 (en) Link adaptation in a mobile communication network
KR100782591B1 (en) A method and a device for reconfiguration in a wireless system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP