WO2003046960A1 - Procede et dispositif permettant de traiter une tranche semi-conductrice - Google Patents

Procede et dispositif permettant de traiter une tranche semi-conductrice Download PDF

Info

Publication number
WO2003046960A1
WO2003046960A1 PCT/JP2002/012549 JP0212549W WO03046960A1 WO 2003046960 A1 WO2003046960 A1 WO 2003046960A1 JP 0212549 W JP0212549 W JP 0212549W WO 03046960 A1 WO03046960 A1 WO 03046960A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
conditioning
time
vessel
vessels
Prior art date
Application number
PCT/JP2002/012549
Other languages
English (en)
French (fr)
Inventor
Shinji Arai
Takamasa Chikuma
Masahiro Mochizuki
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/496,980 priority Critical patent/US6999830B2/en
Priority to KR1020047008213A priority patent/KR100633890B1/ko
Publication of WO2003046960A1 publication Critical patent/WO2003046960A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/41865Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32239Avoid deadlock, lockup
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32297Adaptive scheduling, feedback of actual proces progress to adapt schedule
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a semiconductor wafer processing method and apparatus using a plurality of processing vessels for performing processing such as film formation on a semiconductor wafer.
  • processing of a semiconductor wafer is performed by providing a plurality of processing vessels (chambers) in a processing apparatus and transporting the semiconductor wafer into each processing vessel by a transport mechanism.
  • Such semiconductor wafer processing includes permutation processing and parallel processing.
  • permutation process a plurality of processing vessels that perform different processing are used, and the processing is performed while the semiconductor wafer is sequentially transferred to each processing vessel.
  • parallel processing a plurality of processing vessels performing the same processing (for example, film formation processing) and a common transport mechanism for each processing vessel are used, and semiconductor wafers are sequentially transported to each processing vessel by the transport mechanism. The same processing is performed for each wafer in each processing container.
  • Different processes in the permutation process include, for example, different types of processes such as film formation and etching, and even in the case of film formation processes, films with different components such as Ti, TiN, W, and WSi are formed.
  • Processing By the way, in any of the processing methods, the temperature, pressure, other environment, and the like in each processing container are set to be in a state where the processing can be performed before the semiconductor wafer is loaded into each processing container. Adjusting the state in each processing container to a state in which processing can be performed in advance in this way is referred to as conditioning here.
  • conditioning includes, for example, a cleaning operation and a precoating operation in which the inside of the processing container is made to have the same atmosphere as during processing.
  • the time required for this conditioning differs for each processing vessel. This is because, for example, when the processing temperature in each processing container is different, the time required for the temperature rise is different. Also, if different processing is performed for each processing container, Since the time required is different, the conditioning time is also different. Furthermore, when performing the parallel processing, when the cleaning time is determined in accordance with the accumulated number of wafers processed in each processing container, the cleaning time generally differs for each processing container, and the conditioning time is generally reduced. Will be different.
  • conditioning is started simultaneously for all processing vessels A to D as shown in FIG. 8, for example. Then, when the conditioning S D has finished the conditioning time (S) is the longest processing vessel D, and performs the first processing vessel A process to transfer the wafer to the P A. After that, every time the processing (P) in the previous processing chamber is completed, the wafer is transferred (C) to the next processing container and the processing (P) is executed.
  • the waiting time WA, WB, W C , W D which differs for each processing vessel, from the completion of the conditioning to the transfer of the wafers Will occur.
  • the waiting time W A occurs until the conditioning S D of the processing vessel D, which takes the longest time, is completed. Also, for the processing vessel D, processing last P D is performed, also S D despite the long time conditioning, because the start timing of the conditioning is fast, the processing of another processing vessel A ⁇ C termination Long waiting time w. Occurs.
  • the internal state of each processing container is slightly changed before the wafer is loaded.
  • the temperature inside the processing vessel (such as the temperature of the susceptor provided in the processing vessel and the temperature of the processing vessel itself due to radiant heat from the susceptor) varies slightly for each processing vessel if the waiting time is different.
  • the present invention has been made in view of such a problem, and in regard to a plurality of processing containers, a variation in the waiting time from the completion of conditioning to the transfer of a wafer causes a variation in the processing containers. It is an object of the present invention to provide a method and an apparatus for processing a semiconductor wafer that can perform stable processing while preventing the states from becoming uneven.
  • the present invention provides a semiconductor wafer that performs a permutation process in which a plurality of processing vessels performing different processes are used and the semiconductor wafer is sequentially transferred to each processing container and the processing is performed.
  • the processing of the wafer in each processing container is performed after the conditioning of the processing container is completed, and the conditioning of the next processing container is completed in accordance with the completion of the processing of the previous processing container.
  • the present invention provides a processing method characterized by adjusting the timing of starting conditioning of the next processing container.
  • the time from the end of the conditioning to the start of the processing is the same for all the processing containers, and the waiting time after the completion of the conditioning can be minimized.
  • the conditioning time (S) of a specific processing vessel is set to the wafer transfer time and processing time for one or more preceding processing vessels, which are processing vessels to be processed earlier than the specific processing chamber.
  • the total time (T) of the processing time of the processing vessel that performs the first processing among the preceding processing vessels based on the criterion of which time (S, T) is larger. It is necessary to determine in a stepwise manner which of the processing vessels from which conditioning is to be started first. Is preferred.
  • the present invention uses a plurality of processing vessels that perform the same processing and a common transport mechanism for each processing vessel, and sequentially transports semiconductor wafers to each processing vessel using the transport mechanism.
  • a method of processing semiconductor wafers which performs parallel processing such as processing on one or more wafers, wherein the processing of the wafers in each processing vessel is performed after the conditioning of the processing vessel is completed, and the wafer is transferred to a certain processing vessel.
  • the conditioning start timing of the latter processing container is adjusted so that the conditioning of the processing container to which the wafer is next transported is completed.
  • the time from the end of the conditioning to the start of the processing is the same for all the processing containers, and the waiting time after the completion of the conditioning can be minimized.
  • the present invention provides a method for processing a semiconductor wafer using a plurality of processing vessels, wherein after the conditioning in each processing vessel is completed, the wafer is transferred into the processing vessel and the processing is performed.
  • a processing method characterized in that the conditioning start timing of each processing container is adjusted so that the time from the end of conditioning to the start of processing is the same.
  • the processing method of the present invention it is possible to reduce the energy consumption of the processing gas used, such as power consumption, by increasing the efficiency of the entire processing.
  • the present invention provides a plurality of processing vessels configured to perform different processing on a semiconductor wafer and to perform conditioning before the start of processing, respectively, and a wafer between these processing vessels.
  • a transport mechanism for transporting the wafers wherein the transport mechanism sequentially processes the wafers while sequentially transferring the wafers to the respective processing containers.
  • a semiconductor wafer processing apparatus configured to execute the following processing containers so that conditioning of the next processing container is completed in accordance with the end of processing of the previous processing container for each of the processing containers.
  • a conditioning control means for starting conditioning of each processing container in accordance with the start time calculated by the calculation means.
  • a processing device is provided. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic horizontal sectional view showing an example of an apparatus to which a wafer processing method according to an embodiment of the present invention is applied.
  • FIG. 2 is a schematic side view of the wafer processing apparatus shown in FIG.
  • FIG. 3 is a flowchart showing a conditioning start process of each processing container when performing a permutation process in the wafer processing apparatus shown in FIG.
  • FIG. 4 is a timing chart showing an example when the processing of FIG. 3 is applied.
  • FIG. 5 is a flowchart showing a comparison process of the conditioning time of each processing vessel when the parallel processing is performed by the wafer processing apparatus shown in FIG.
  • FIG. 6 is a flowchart showing the comparison processing of the conditioning time of each processing container when the result of the processing in FIG. 5 is S13, S12, and S11.
  • FIG. 7 is a timing chart showing an example when the processing of FIGS. 5 and 6 is applied.
  • FIG. 7A is a flowchart showing a part of the conditioning start processing when performing the processing of the second and subsequent rounds.
  • FIG. 8 is a timing chart of a permutation process in a conventional wafer processing method.
  • Fig. 9 is a timing chart of parallel processing in a conventional wafer processing method.
  • FIG. 1 and 2 are a horizontal sectional view and a side view schematically showing a so-called multi-chamber type wafer processing apparatus 1 having a plurality of processing vessels (chambers).
  • Figure 1 The overall configuration of the processing apparatus 1 will be described with reference to FIG.
  • the processing apparatus 1 includes a vacuum transfer chamber 4, two load lock chambers 6, 8, and four vacuum processing containers (process modules) A to D.
  • FIG. 2 shows a state where the processing containers A to D have been removed from the processing apparatus 1.
  • Each of the load lock chambers 6 and 8 and the processing vessels A to D are connected around the transfer chamber 4 through gate valves G1 to G6, respectively.
  • a transfer arm 2 common to the load lock chambers 6 and 8 and the processing vessels A to D is provided as a transfer mechanism for transferring the semiconductor wafer H.
  • the processing containers A to D are configured to perform, for example, mutually different processing. Examples of different processes include processes of different types such as film formation and etching, and processes of forming films of different components such as Ti, TiN, W, and WSi even in the process of film formation. is there. With such a configuration, the permutation processing can be performed while sequentially transferring one wafer H to each of the processing containers A to D. Further, the processing vessels A to D may be configured to be capable of performing the same processing (for example, Ti film formation processing). With such a configuration, it is possible to perform the parallel processing in which the wafers H are sequentially transferred to the processing vessels A to D and the same processing is performed on each wafer H in each processing vessel.
  • the load lock chambers 6 and 8 are for transferring the wafer H between the inside of the transfer chamber 4 and the atmospheric pressure outside the transfer chamber 4 while maintaining the reduced-pressure atmosphere in the transfer chamber 4.
  • the pressure inside the load lock chambers 6 and 8 can be set appropriately by a pressure adjusting mechanism 18 (Fig. 2) consisting of a vacuum pump and a gas supply system provided below the load lock chambers 6 and 8. .
  • the atmosphere-side openings of the load lock chambers 6 and 8 are closed and opened by gate valves G 7 and G 8 respectively.
  • the opening and closing operations of the gate valves G1 to G8 are performed by moving the valve elements constituting each gate valve up and down by a driving mechanism (not shown).
  • the processing device 1 is provided with a control unit (calculation unit, conditioning control unit) (not shown) for performing operation control and calculation of each unit.
  • the control unit stores a CPU (central processing unit), program data for the CPU to control the operation of each unit, and the like: ROM, a memory area for various data processing performed by the CPU, and the like. It is composed of the provided RAM.
  • the processing is performed while the wafer is sequentially transferred to each of the processing containers A to D by the transfer arm 2 under the control of the control unit.
  • cleaning, pre-coating, etc. are performed prior to loading the wafers in each of the processing vessels A to D to condition the temperature, pressure, environment inside the processing vessel, etc. so that processing can be performed.
  • FIG. 3 shows the contents of control up to the start of conditioning of each of the processing vessels A to D by the control unit
  • FIG. 4 shows an example of a timing diagram of the permutation processing based thereon.
  • S1 to S4 indicate the time required for conditioning the processing vessels A to D
  • P1 to P4 indicate the time required for processing in the processing vessels A to D
  • C1 to C4 indicate the time required to transfer the wafer to each of the processing vessels A to D (the time from the end of the conditioning to the start of the processing).
  • D1 to D4 indicate standby times (delay times described later) for adjusting the conditioning start timing of each of the processing vessels A to D.
  • the control unit first determines a processing vessel to be conditioned in steps ST1 to ST16.
  • the control unit detects the current state in the processing vessel for each of the processing vessels A to D, and adjusts the conditioning time S1 to time required for shifting from this state to a state in which processing can be performed.
  • step ST2 the total time (S1 + C1 + P1) of the conditioning time S1, the transport time C1, and the processing time PI of the processing vessel A to be processed first, and the processing to be performed next.
  • a comparison is made with the conditioning time S2 of container B.
  • step ST3 compare the sum of each time of processing vessel B (S2 + C2 + P2) with the conditioning time S3 of processing vessel C to be processed next I do.
  • step ST4 the sum of each time of processing vessel C (S3 + C3 + P3) and the processing contents to perform processing next (last) Compare with the conditioning time S4 of the container D. If S3 + C3 + P3 ⁇ S4, the processing vessel to be conditioned first is determined to be D in step ST5, and the conditioning of the processing vessel D is started in step ST17. In this case, the condition that processing vessel D is started first is that processing (from conditioning to transport and processing) to other processing vessels A to C is completed while processing vessel D is being conditioned. This is because it can be kept.
  • step ST4 the processing vessel to be conditioned first is determined to be C in step ST6, and the conditioning of the processing vessel C is started in step ST17.
  • the condition that the conditioning of the processing vessel C is started first is that the processing of the processing vessels A and B is completed while the conditioning of the processing vessel C is being performed, and the conditioning of the processing vessel C is not performed. This is because the conditioning of the processing container D can be completed during the period from the processing to the processing.
  • step ST7 when S2 + C2 + P2> S3 in step ST3, in step ST7, the conditioning time S2 of the processing vessel B and the sum of the transport time and the processing time of the processing vessels: B and C (S2 + C2 + P2 + C3 + P3) and the conditioning time S4 of processing vessel D are compared. Then, if S2 + C2 + P2 + C30 + P3 ⁇ S4, the processing vessel to be conditioned first is determined to be D in step ST8, and the conditioning of the processing vessel D is started in step ST17. I do. If S2 + C2 + P2 + C3 + P3> S4 in step ST7, the processing vessel to be conditioned first is determined to be B in step ST9, and the processing vessel B is set in step ST17. Start conditioning.
  • step ST10 when S1 + C1 + P1> S2, in step ST10, the conditioning time S1 of the processing vessel A, the transport time of the processing vessels A and B, and the like. And the sum of processing time (S1 + C1 + P1 + C2 + P2) and the conditioning time S3 of processing vessel C are compared. Then, in the case of S1 + C1 + P1 + C2 + P2 and S3, in step ST11, a comparison between the total time (S3 + C3 + P3) of the processing vessel C and the conditioning time S4 of the processing vessel D is performed. Do.
  • step ST11 If S3 + C3 + P3 + S4 in step ST11, the processing container to be conditioned first is determined to be D in step ST12, and the conditioning of the processing container D is started in step ST17. If S3 + C3 + P3> S4 in step ST11, the processing vessel to be conditioned first is determined to be C in step ST13, and the processing vessel C is conditioned in step ST17. Start.
  • step ST14 the conditioning time S1 of processing vessel A and the transport time and processing time of processing vessels A, B, and C. (S1 + C1 + P1 + C2 + P2 + C3 + P3) and the conditioning time S4 of processing vessel D are compared. Then, if S1 + C1 + P1 + C2 + P2 + C3 + P3 ⁇ S4, the processing vessel to be conditioned first is determined to be D in step ST15, and the processing vessel D is determined in step ST17. Start conditioning. If S1 + C1 + P1 + C2 + P2 + C3 + P3> S4 in step ST14, the processing vessel to be conditioned first is determined to be A in step ST16, and processed in step ST17. Start conditioning of container A.
  • a delay time (D) which is a standby time until the start of conditioning of another processing container, is calculated in step ST18.
  • This delay time (D) can be determined by first determining the processing vessels to be conditioned, and then the conditioning time S1 to S4, transport time C1 to C4, and processing time P1 to P4 of each processing vessel A to D are all known. Therefore, if the reference time is determined, it can be calculated from the reference time. For example, in the example of FIG. 4 in which the conditioning of the processing vessel B is started first, the processing end time of the processing vessel C is set to the reference time R.
  • step ST19 conditioning is started after waiting for the calculated delay time (D) for other processing containers.
  • D delay time
  • the conditioning time (S) of each processing vessel the processing vessel at which conditioning is first started is determined (steps ST1 to ST16), and the delay time of other processing vessels is reduced.
  • the time (D) is calculated (step ST 18). Using these delay times (D), the conditioning start timing is adjusted so that the conditioning of the next processing container ends in accordance with the end of the processing of the previous processing container (steps ST17, ST17). 1 9)
  • the delay time (D) is calculated for all the processing containers A to D so that the conditioning is completed immediately before the transfer of the wafer (step ST18), and the conditioning start timing is adjusted based on the calculated delay time (D). ing.
  • the waiting time after the completion of conditioning can be minimized (in theory, to zero) for any of the processing vessels.
  • the example of FIG. 4 based on the present invention will be compared with the conventional example of FIG.
  • the waiting times W A , WB, W C , and W differ for the processing containers A to D after the completion of the conditioning. Existed.
  • the example of Fig. 4 it can be seen that such a waiting time (W) is eliminated by adjusting the delay time (D).
  • the conditioning time (S) of a specific processing chamber is set to the wafer transfer time (C) for one or more preceding processing vessels, which are processing vessels to be processed before the specific processing chamber.
  • Which time (S, T) is greater than the total time (T) between the processing time (P) and the conditioning time of the processing vessel that performs the processing first among the preceding processing vessels Is the criterion of whether
  • Processing vessel B has priority over processing vessel A (step ST 2 in FIG. 3).
  • the processing vessel that starts conditioning first is finally determined as the processing vessel B (step ST3 in FIG. 3).
  • the processing P1 of the preceding processing vessel A has also been completed. In this way, the efficiency of the processing for the plurality of processing containers A to D can be improved, and the throughput of the permutation processing can be improved.
  • the processing apparatus 1 configured so that the processing vessels A to D can perform the same processing.
  • the wafers are sequentially transferred to the processing vessels A to D, and the same processing is performed on each wafer H in each processing vessel.
  • cleaning, pre-coating, etc. are performed prior to loading the wafer, and the temperature, pressure, environment inside the processing vessel, etc. can be processed. Perform conditioning to adjust the condition.
  • FIGS. 5 and 6 show the contents of control by the control unit up to the start of the conditioning of each processing vessel X, ⁇ , ⁇ , and FIG. 7 shows an example of a timing diagram of the parallel processing based thereon.
  • FIG. 7 shows an example of a timing diagram of the parallel processing based thereon.
  • Sll, S12, and S13 indicate the time required for conditioning each processing vessel X, ⁇ , and Z
  • Pll, P12, and P13 indicate the time required for processing each processing vessel X, Y, and ⁇ .
  • Cll, C12, and C13 indicate the time required to transfer a wafer to each of the processing vessels X, Z, and Z (the time from the end of conditioning to the start of processing).
  • the control unit first compares the conditioning time S as shown in FIG. 5 in order to determine the processing vessel in which conditioning is to be started first. That is, in step ST21, similarly to the case of step ST1 in FIG. 3, the conditioning times Sll, S12, and S13 of the processing vessels X, ⁇ , and Z are calculated.
  • step ST22 Sll, S12, and S13 are compared, and conditioning is started in the order of processing containers having the shorter conditioning time (S).
  • the conditioning timing adjustment is performed so that the conditioning of the processing container to which the next wafer is transferred (hereinafter also referred to as “the next processing container”) is completed.
  • the delay time (D) is calculated for the processing vessel in which the wafer is to be transferred, and the conditioning is started such that the processing vessel waits for the delay time (D) before starting conditioning. Adjust.
  • step ST23 the conditioning of the processing vessel with the shortest conditioning time S13 is started in step ST23.
  • step ST24 the total (S13 + C13) of the conditioning time and the transport time of the processing container is compared with the conditioning time S12 of the next processing container Y. If S13 + C13 ⁇ S12 in step ST24, conditioning of the processing container Y is started in step ST25.
  • step ST26 the sum (S12 + C12) of the conditioning time and the transport time of the processing container Y is compared with the conditioning time S11 of the next processing container X.
  • step ST27 If S12 + C12 and S11, the conditioning of the processing vessel X is started in step ST27. If S12 + C12> S11 in step ST26, the delay time D11 of the processing vessel X is calculated from D11-S12 + C12-S11 in step ST28. Then, in step ST29, the conditioning of the processing container X is started after waiting for the delay time D11.
  • the processing vessel to start conditioning first is determined (steps ST21 to ST22), and the delay time ( D) is calculated (steps ST28, ST30, ST34).
  • the conditioning start timing of the next processing container is adjusted so that the conditioning of the next processing container ends in accordance with the completion of the transfer of the wafer to one processing container (steps ST23, ST25, ST27, ST 29, ST 31, ST 33, ST 35).
  • the delay time (D) is calculated so that the conditioning is completed immediately before the transfer of the wafers in all the processing vessels X, Y, and Z (steps ST28, ST30, ST34).
  • the timing of the start of conditioning is adjusted.
  • the waiting time after the completion of the conditioning can be minimized for any of the processing containers, and a single transfer arm common to each processing container can be operated efficiently. Therefore, it is possible to improve the processing efficiency of the entire parallel processing using one transport arm common to each processing container.
  • FIG. 7 based on the present invention is compared with the conventional example of FIG.
  • W X 0
  • W X 0
  • D delay time
  • the conditioning is started in the order of the processing containers having the shorter conditioning time (S). This makes it possible to increase the efficiency of the processing for the plurality of processing vessels X, ⁇ , ⁇ , and improve the throughput of the parallel processing.
  • step ST40 first, when the processing of the (first) wafer in the processing vessel C is completed (step ST40), the remaining processing of the ⁇ -th wafer in the processing vessel B is performed. The interval is calculated (step ST41). Then, the calculated remaining amount of the processing container ⁇ The time is compared with the conditioning time of processing vessel C (step ST42). As a result, if the remaining time is longer (step ST43), the conditioning start time before processing the second wafer in the processing container C is set using the delay time described above (step ST43). ST 44). On the other hand, if the remaining time is not longer (step ST43), the same conditioning of the processing vessel C is started immediately (step ST45).
  • the conditioning time may fluctuate, but the next conditioning time can be easily predicted by detecting the state in the processing vessel. It is.
  • the transfer arm 2 is located at the center of the vacuum transfer chamber 4 and the processing vessels A to D (X, Y, ⁇ ) It is assumed that they are almost equidistant from the load entrance rooms 6 and 8. Therefore, the wafer transfer times C1 to C4 (C11 to C13) are set to be substantially equal to each other. However, for example, when the transport times are significantly different from each other, or when it is desired to strictly align the time from the end of the conditioning to the start of the process, the following may be performed.
  • the time from the end of the conditioning to the start of the process can be strictly matched in each processing container, similarly to the permutation processing.
  • cleaning, pre-coating, etc. are performed as conditioning, and the temperature, pressure,
  • the conditioning may include any process content as long as the process in each process vessel is in a state where each process can be performed.
  • the processing method of the present invention is also applicable to a case where a processing container performing different processing and a processing container performing the same processing are used in combination.
  • each processing is performed before the first wafer is transferred into each processing container.
  • the present invention is not necessarily limited to this.
  • conditioning of the processing container is required before transporting the wafer to be processed, it is applied to processing of the second and subsequent wafers (including restarting the processing interrupted by stopping the equipment, etc.). It may be applied when a plurality of wafers are not processed continuously. However, it is particularly effective if the present invention is applied to a method premised on conditioning before transporting the first wafer into each processing container when processing a plurality of wafers.
  • the present invention may be applied to the case where a single processing vessel is used. Specifically, even for a single processing container, by adjusting the conditioning start time, it is possible to minimize the time from the end of conditioning to the start of processing, thereby reducing the effect. In this case as well, it is particularly effective if the present invention is applied to a method premised on conditioning before transporting the first wafer into the processing container when processing a plurality of wafers.
  • the present invention can be applied to a case where a plurality of transfer mechanisms such as a transfer arm are used.
  • an effect of reducing energy consumption such as used processing gas and electric power can be obtained by increasing the efficiency of the entire processing.

Description

明 細 書 半導体ウェハの処理方法および装置
技術分野
本発明は、 半導体ウェハに成膜などの処理を行うための複数の処理容器を用い た半導体ウェハの処理方法および装置に関する。 背景技術
半導体ウェハの処理は一般に、 処理装置に複数の処理容器 (チャンバ) を設け、 各処理容器内に半導体ウェハを搬送機構で搬送して行われる。 このような半導体 ウェハの処理としては、 順列処理と並列処理とがある。 順列処理は、 互いに異な る処理を行う複数の処理容器を用いて、 半導体ウェハを各処理容器に順次移し換 えながら処理を行うものである。 また、 並列処理は、 互いに同じ処理 (例えば成 膜処理) を行う複数の処理容器と、 各処理容器に共通の搬送機構とを用い、 各処 理容器に搬送機構で半導体ウェハを順次搬送し、 各処理容器内でそれそれのゥェ ハに同じ処理を行うものである。 順列処理における互いに異なる処理としては、 例えば成膜やエッチングなどの異なる種類の処理や、 成膜の処理であっても T i、 T i N、 W、 W S iなどそれそれ異なる成分の膜を形成する処理などがある。 ところで、 いずれの処理方法においても、 各処理容器内に半導体ウェハを搬入 する前に、 各処理容器内の温度、 圧力、 その他の環境などを処理が可能な状態に している。 このように各処理容器内の状態を予め処理が可能な状態に整えること を、 ここではコンディショニングと呼ぶことにする。 そのようなコンディショニ ングとしては、 例えば、 クリーニング作業や、 処理容器内を処理時と同じ雰囲気 にして行うプリコートなどの作業が行われる。
このコンディショニングにかかる時間は各処理容器ごとに異なる。 これは、 例 えば各処理容器での処理温度が異なる場合には、 温度上昇に必要な時間が異なる からである。 また、 処理容器ごとに異なる処理を行う場合には、 クリーニングに 要する時間も異なるので、 コンディショニング時間も異なる。 さらに、 並列処理 を行う場合において、 処理容器ごとのウェハの累積処理枚数に応じクリーニング 時間を決定する場合にも、 一般的には各処理容器ごとのクリーニング時間の違い が生じて、 ユンディショニング時間が異なることになる。
上記のような順列処理を行う場合、 従来は、 例えば図 8に示すように、 すべて の処理容器 A〜: Dについて同時にコンディショニングを開始している。 そして、 コンディショニング時間 (S ) が最も長い処理容器 Dのコンディショニング S Dが 終了した時点で、 最初の処理容器 Aへウェハを搬送して処理 P Aを実行する。 その 後は、 前の処理室での処理 (P ) が終了するごとに、 次の処理容器へウェハの搬 送 (C ) を行って処理 ( P ) を実行する。
しかしながら、 このように全処理室のコンディショニングを一斉に開始するよ うにしたのでは、 コンディショニングが終了してからウェハを搬送するまでに、 処理容器ごとに異なる待ち時間 WA、 WB、 WC、 WDが発生してしまう。
例えば、 最初に処理を行うべき処理容器 Aであっても、 最も長い時間がかかる 処理容器 Dのコンディショニング S Dが終了するまで待ち時間 WAが発生する。 ま た、 処理容器 Dについては、 最後に処理 P Dが行われ、 またコンディショニング時 間 S Dも長いにも拘わらず、 コンディショニングの開始時期が早いため、 他の処理 容器 A〜Cの処理が終了するまでの長い待ち時間 W。が発生する。
このように、 コンディショニング終了後に処理容器 A〜Dごとに異なる待ち時 間 WA、 WB、 WCS WDが発生すると、 ウェハが搬入されるまでに処理容器ごとに 内部の状態が微妙に変化してしまう。 特に処理容器内の温度 (処理容器内に設け られたサセプ夕の温度や、 サセプ夕からの輻射熱による処理容器自体の温度な ど) は、 待ち時間が異なると各処理容器ごとに微妙に変化する。 また、 上記のよ うな並列処理の場合においても、 例えば図 9に示すように、 すべての処理容器 X , Υ, Ζについて同時にコンディショニングを開始していたので、 処理容器ごとに 異なる待ち時間 (WX = 0 ) , WY , WZが発生する。 このため、 処理容器ごとに処 理の結果、 例えばウェハに形成した膜の厚さが微妙に異なるという問題がある。 このような問題は、 複数枚のウェハを連続的に処理する場合の最初の 1枚の処 理において特に顕著に現れる。 これは、 例えば 2枚目以降の処理を行うときの処 理容器内の環境が、 1枚目の処理を通じて比較的安定に維持される一方、 1枚目 の処理を行うときの処理容器内の環境が未だ安定していない傾向があるためと考 えられる。
近年では、 半導体製品の高度化により精度の高い半導体を製造することが要求 されることに伴って、 半導体ウェハに対する処理、 例えば成膜の均一性などもよ り高精度にすることが要求される。 発明の開示
本発明は、 このような問題に鑑みてなされたものであり、 複数の処理容器につ いて、 それそれコンディショニングが終了してからウェハが搬送されるまでの待 ち時間のばらつきによって処理容器内の状態が互いに不均一となることを防止し て、 安定した処理ができるような半導体ウェハの処理方法および装置を提供する ことを目的とする。
上記課題を解決するために、 本発明は、 互いに異なる処理を行う複数の処理容 器を用いて、 半導体ウェハを各処理容器に順次移し換えながら処理を行うような 順列処理を実行する半導体ウェハの処理方法であって、 各処理容器におけるゥェ ハの処理は、 当該処理容器のコンディショニング終了後に行われると共に、 前の 処理容器の処理終了に合わせて次の処理容器のコンディショニングが終了するよ うに、 次の処理容器のコンディショニング開始時期を調整する、 ことを特徴とす る処理方法を提供する。
これによれば、 いずれの処理容器についてもコンディショニング終了から処理 開始までの時間が同じになるとともに、 コンディショニング終了後の待ち時間を 極力少なくすることができる。
その場合、 ある特定の処理容器のコンディショニング時間 (S ) を、 その特定 の処理室より先に処理を行うべき処理容器である 1又は 2以上の先行処理容器に ついてのウェハの搬送時間および処理時間と、 当該先行処理容器のうち最初に処 理を行う処理容器のコンディショニング時間との合計時間 (T ) と比較して、 何 れの時間 (S , T ) の方が大きいかという基準に基づいて、 前記処理容器のうち どの処理容器から最初にコンディショニングを開始するかを段階的に決定するこ とが好ましい。
また、 本発明は、 互いに同じ処理を行う複数の処理容器と、 各処理容器に共通 の搬送機構とを用い、 各処理容器に前記搬送機構で半導体ウェハを順次搬送し、 各処理容器内でそれぞれのウェハに処理を行うような並列処理を実行する半導体 ウェハの処理方法であって、 各処理容器におけるウェハの処理は、 当該処理容器 のコンディショニング終了後に行われると共に、 ある処理容器へのウェハの搬送 終了に合わせて、 次にウェハの搬送される処理容器のコンディショニングが終了 するように、 後者の処理容器のコンディショニング開始時期を調整する、 ことを 特徴とする処理方法を提供する。
これによれば、 いずれの処理容器についてもコンディショニング終了から処理 開始までの時間が同じになるとともに、 コンディショニング終了後の待ち時間を 極力少なくすることができる。
その場合、 コンディショニング時間の短い処理容器の順にコンディショニング を開始することが好ましい。
これによれば、 複数の処理容器による並列処理全体としての時間を短縮するこ とができ、 処理の効率化を図ることができる。
さらに、 本発明は、 複数の処理容器を用いた半導体ウェハの処理方法において、 各処理容器内のコンディショニング終了後に、 当該処理容器内にウェハを搬送し て処理を行うと共に、 いずれの処理容器についてもコンディショニング終了から 処理開始までの時間が同じになるように、 各処理容器のコンディショニ開始時期 を調整する、 ことを特徴とする処理方法を提供する。
これによれば、 処理容器ごとのコンディショニング終了から処理開始までの時 間のばらつきを解消することができる。
なお、 本発明の処理方法によれば、 処理全体の効率化により、 使用する処理ガ スゃ電力などのエネルギー消費を少なくすることができる。
他の観点からは、 本発明は、 半導体ウェハに対して互いに異なる処理を行うと 共に、 それそれ処理開始前のコンディショニングを行うように構成された複数の 処理容器と、 これらの処理容器間でウェハを搬送する搬送機構と、 を備え、 前記 搬送機構でウェハを各処理容器に順次移し換えながら処理を行うような順列処理 を実行するように構成された半導体ウェハの処理装置であって、 前記処理容器ご とに、 前の処理容器の処理終了に合わせて次の処理容器のコンディショニングが 終了するように、 次の処理容器のコンディショニング開始時期を算出する算出手 段と、 この算出手段によって算出された開始時期に応じて、 各処理容器のコンデ イショニングを開始させるコンディショニング制御手段と、 を更に備えた、 こと を特徴とする処理装置を提供する。 図面の簡単な説明
図 1は、 本発明の一実施形態にかかるウェハ処理方法を適用する装置例を示す 概略水平断面図。
図 2は、 図 1に示したウェハ処理装置の概略側面図。
図 3は、 図 1に示したウェハ処理装置で順列処理を行う場合における、 各処理 容器のコンディショニング開始処理を示す流れ図。
図 4は、 図 3の処理を適用した場合の例を示すタイミング図。
図 5は、 図 1に示したウェハ処理装置で並列処理を行う場合における、 各処理 容器のコンディショニング時間の比較処理を示す流れ図。
図 6は、 図 5の処理の結果、 S 13く S 12く S11となった場合における各処理容 器のコンディショニング時間の比較処理を示す流れ図。
図 7は、 図 5、 図 6の処理を適用した場合の例を示すタイミング図。
図 7 Aは、 第 2巡目以降の処理を行う場合におけるコンディショニング開始処 理の一部を示す流れ図。
図 8は、 従来のウェハ処理方法における順列処理のタイミング図。
図 9は、 従来のウェハ処理方法における並列処理のタイミング図。 発明を実施するための最良の形態
以下、 図面に基づいて本発明の実施の形態を詳細に説明する。 図 1および図 2は、 複数の処理容器 (チャンバ) を備えた、 いわゆるマルチチ ャンバ型のウェハ処理装置 1の概略を示す水平断面図および側面図である。 図 1 および図 2を参照しながらこの処理装置 1の全体構成について説明する。
処理装置 1は、 真空搬送室 4、 2つのロードロック室 6、 8および 4つの真空 処理容器 (プロセスモジュール) A〜Dを備えている。 なお、 図 2は、 処理装置 1から処理容器 A〜Dを取り外した状態を示している。 各ロードロック室 6、 8 および処理容器 A〜Dは、 それそれゲートバルブ G 1〜G 6を介して搬送室 4の 周囲に接続されている。 搬送室 4の内部には、 半導体ウェハ Hを搬送する搬送機 構として、 各ロードロック室 6、 8および処理容器 A〜Dに共通の搬送アーム 2 が設けられている。
処理容器 A〜Dは、 例えば互いに異なる処理を行うことができるように構成さ れる。 互いに異なる処理としては、 成膜やエッチングなどの異なる種類の処理や、 成膜の処理であっても T i、 T i N、 W、 W S iなどそれそれ異なる成分の膜を 形成する処理などがある。 このように構成することにより、 1枚のウェハ Hを各 処理容器 A〜Dに順次移し換えながら順列処理を行うことができる。 また、 処理 容器 A〜Dを互いに同じ処理 (例えば T iの成膜処理) を行うことができるよう に構成してもよい。 このように構成することにより、 各処理容器 A〜Dにウェハ Hを順次搬送し、 各処理容器内でそれそれのウェハ Hに同じ処理を行うような並 列処理を行うことができる。
ロードロック室 6、 8は、 搬送室 4内の減圧雰囲気を維持しながら、 搬送室 4 内部と搬送室 4外部の大気圧雰囲気との間でウェハ Hを搬送するためのものであ る。 ロードロック室 6、 8の下部に設けられた真空ポンプおよびガス供給系から 成る圧力調整機構 1 8 (図 2 ) により、 ロードロック室 6、 8内の圧力を適宜設 定可能に構成されている。 ロードロック室 6、 8の大気側開口部は、 それそれゲ —トバルブ G 7、 G 8により開閉自在に密閉されている。 ゲートバルブ G 1〜G 8の開閉動作は、 各ゲートバルブを構成する弁体を駆動機構 (未図示) により上 下動させることにより行われる。
この処理装置 1には、 各部の動作制御や演算を行うための図示しない制御部 (算出手段、 コンディショニング制御手段) が設けられている。 この制御部は、 C P U (中央処理装置) 、 C P Uが各部の動作を制御するためのプ Dグラムデー 夕等を格納した: R O M、 C P Uが行う各種データ処理のためのメモリエリァ等を 設けた R AM等で構成される。
順列処理
ここで、 処理容器 A〜Dを互いに異なる処理が可能に構成した処理装置 1によ りウェハの順列処理を行う場合の手順について説明する。 この場合、 制御部の制 御の下で、 搬送アーム 2でウェハを各処理容器 A〜Dに順次移し換えながら処理 を行う。 各処理容器 A〜Dにおいては、 ウェハを搬入するのに先立って、 クリ一 ニング、 プリコートなどを行い、 温度や圧力や処理容器内環境などを処理が可能 な状態に整えるコンディショニングを行う。
ここでは、 複数枚のウェハを順列処理して行く場合における 1枚目のウェハを 処理する前に行うコンディショニングについて説明する。 この場合、 制御部によ る各処理容器 A〜Dのコンディショニングの開始までの制御内容を図 3に示し、 それに基づく順列処理のタイミング図の例を図 4に示す。 図 4において S l~ S 4 は各処理容器 A〜 Dのコンディショニングにかかる時間を示し、 P 1〜 P 4は各処 理容器 A〜Dでの処理にかかる時間を示している。 また C 1〜C4は、 各処理容器 A〜Dへウェハを搬送するのにかかる時間 (コンディショニング終了から処理開 始までの時間) を示している。 なお、 D 1〜D4は、 各処理容器 A〜: Dのコンディ ショニング開始時期を調整するための待機時間 (後述するディレイ時間) を示し ている。
図 3において、 制御部はステップ S T 1〜S T 1 6にて最初にコンディショニ ングを行うべき処理容器を決定する。 先ずステップ S T 1にて、 制御部は、 各処 理容器 A〜Dについて、 現在の処理容器内の状態を検出し、 この状態から処理が 可能な状態に移行するためにかかるコンディショニング時間 S 1〜 S 4の算出を行 う。 例えば、 各処理容器 A〜Dに設けられたヒー夕温度を検出して、 現在の温度 と処理が可能な温度との差分を求める。 これらの差分値と、 予めメモリなどに記 憶しておいた昇降温レートとに基づいて、 処理可能までの時間を算出し、 これを コンディショニング時間 S 1〜S4とする。
次にステップ S T 2にて、 最初に処理を行う処理容器 Aのコンディショニング 時間 S l、 搬送時間 C 1および処理時間 P Iの総和 (S 1+ C 1 + P 1) と、 次に処理 を行う処理容器 Bのコンディショニング時間 S 2との比較を行う。 そして、 S 1 + 〇1+卩1く32のときは、 ステップ ST 3にて、 処理容器 Bの各時間の総和 (S2 + C2+P2) と、 その次に処理を行う処理容器 Cのコンディショニング時間 S3と の比較を行う。
ステップ S T 3にて S2+C2 + P2く S3のときは、 ステップ ST 4にて、 処理 容器 Cの各時間の総和 (S3+C3+P3) と、 その次 (最後) に処理を行う処理容 器 Dのコンディショニング時間 S4との比較を行う。 そして、 S3+C3 + P3<S 4のときは、 ステップ S T 5にて最初にコンディショニングを行う処理容器を Dに 決定し、 ステップ S T 17にて処理容器 Dのコンディショニングを開始する。 こ の場合、 最初に処理容器 Dのコンディショニングを開始するのは、 処理容器 Dの コンディショニングを行っている間に他の処理容器 A〜Cまでの処理 (コンディ ショニングから搬送、 処理まで) を終了させておくことができるためである。 また、 ステップ S T 4にて S3+C3+P3> S4のときは、 ステップ S T 6にて 最初にコンディショニングを行う処理容器を Cに決定し、 ステップ ST 17にて 処理容器 Cのコンディショニングを開始する。 この場合、 最初に処理容器 Cのコ ンディショニングを開始するのは、 処理容器 Cのコンディショニングを行ってい る間に、 処理容器 A〜Bまでの処理を終了し、 かつ、 処理容器 Cのコンディショ 二ング〜処理までを行っている間に処理容器 Dのコンディショニングを終了する ことができるからである。
一方、 ステップ S T 3にて S2+C2+P2> S3のときは、 ステップ S T 7にて、 処理容器 Bのコンディショニング時間 S 2並びに処理容器: B、 Cの搬送時間および 処理時間の総和 (S2+C2+P2+C3 + P3) と、 処理容器 Dのコンディショニン グ時間 S4との比較を行う。 そして、 S2+C2+P2+C3十 P3<S4のときは、 ス テヅプ ST 8にて、 最初にコンディショニングを行う処理容器を Dに決定し、 ス テヅプ ST 17にて処理容器 Dのコンディショニングを開始する。 また、 ステツ プ ST 7にて S2+C2+P2+C3+P3>S4のときは、 ステップ ST 9にて最初 にコンディショニングを行う処理容器を Bに決定し、 ステップ S T 17にて処理 容器 Bのコンディショニングを開始する。
ステップ ST 2に戻って、 S1+C1 + P1>S2のときは、 ステップ ST 10に て、 処理容器 Aのコンディショニング時間 S1並びに処理容器 A、 Bの搬送時間お よび処理時間の総和 (S1+C1+P1+C2+P2) と、 処理容器 Cのコンディショ ニング時間 S3との比較を行う。 そして、 S1+C1+P1+C2+P2く S3のときは ステップ ST 1 1にて、 処理容器 Cの各時間の総和 (S3+C3 + P3) と処理容器 Dのコンディショニング時間 S4との比較を行う。
ステップ ST 11にて S3+C3+P3く S4のときは、 ステップ ST 12にて最 初にコンディショニングを行う処理容器を Dに決定し、 ステップ ST 17にて処 理容器 Dのコンディショニングを開始する。 また、 ステップ ST 1 1にて S3+C 3 + P3>S4のときは、 ステップ ST 13にて最初にコンディショニングを行う処 理容器を Cに決定し、 ステップ ST 17にて処理容器 Cのコンディショニングを 開始する。
一方、 ステップ S T 10にて S1+C1 + P1+C2+P2>S3のときは、 ステツ プ ST 14にて、 処理容器 Aのコンディショニング時間 S1並びに処理容器 A、 B、 Cの搬送時間および処理時間の総和 (S1+C1+P1+C2+P2+C3+P3) と、 処理容器 Dのコンディショニング時間 S4との比較を行う。 そして、 S1+C1+P 1+C2+P2+C3+P3<S4のときは、 ステヅプ S T 15にて最初にコンディシ ョニングを行う処理容器を Dに決定し、 ステップ S T 17にて処理容器 Dのコン ディショニングを開始する。 また、 ステップ S T 14にて S1+C1 + P1 + C2 + P2+C3+P3>S4のときは、 ステップ ST 16にて最初にコンディショニング を行う処理容器を Aに決定し、 ステップ ST 17にて処理容器 Aのコンディショ ニングを開始する。
こうして、 ステップ ST 17にて最初の処理容器のコンディショニングを開始 した後、 ステップ ST 18にて、 他の処理容器のコンディショニング開始までの 待機時間であるディレイ時間 (D) の算出を行う。 このディレイ時間 (D) は、 最初にコンディショニング処理を行う処理容器が決定すれば、 各処理容器 A〜D のコンディショニング時間 S1〜S4、 搬送時間 C1〜C4、 処理時間 P1〜P4はす ベて分かっているので、 基準とする時点を決めれば、 その基準時から算出できる。 例えば、 処理容器 Bのコンディショニングが最初に開始されるような図 4の例 では、 処理容器 Cの処理終了時間を基準時 Rとしている。 これにより、 処理容器 Aのディレイ時間は D1 = R— (Sl+Cl + Pl+C2+P2+C3-t-P3) として求 められ、 処理容器 Cのディレイ時間は D3=R— (S3+C3+P3) として求めら れる。 また、 処理容器 Dのディレイ時間は D4=R— S4として求められる。
続いてステヅプ ST 19にて、 他の処理容器について、 それそれ算出されたデ ィレイ時間 (D) だけ待ってからコンディショニングを開始する。 図 4の例では、 最初に処理容器 Bのコンディショニングを開始した後、 他の処理容器 A、 C, D のコンディショニングは、 それそれディレイ時間 Dl、 D3、 D4だけ待ってから開 '口される。
このように、 各処理容器のコンディショニング時間 (S) に応じて、 最初にコ ンディショニングを開始する処理容器を決定するとともに (ステップ S T 1〜S T 16) 、 他の処理容器についてはそれそれのディレイ時間 (D) を算出する (ステップ S T 1 8) 。 これらのディレイ時間 (D) を用いて、 前の処理容器の 処理終了に合わせて次の処理容器のコンディショニングが終了するように、 コン ディショニングの開始時期が調整される (ステップ S T 1 7、 S T 1 9)
これにより、 処理容器ごとのコンディショニング終了から処理開始までの時間 のばらつきを解消することができる。 このため、 コンディショニング終了からゥ ェハが搬送されるまでの間に処理容器ごとの内部の状態が変化して不均一となる ことを防止できる。 従って、 例えば各処理容器で行う半導体ウェハに対する処理、 例えば成膜の均一性 (膜厚や膜質など) を向上させることができる。
また、 すべての処理容器 A〜Dについて、 ウェハの搬送直前にコンディショニ ングを完了させるようにディレイ時間 (D) を算出し (ステップ S T 1 8) 、 こ れに基づいてコンディショニング開始時期を調整している。 これにより、 いずれ の処理容器についてもコンディショニング終了後の待ち時間を極力少なく (理論 上はゼロに) することができる。
ここで、 本発明に基づく図 4の例を図 8の従来例と比較する。 図 8の従来例で は、 コンディショニング終了後に処理容器 A〜Dごとに異なる待ち時間 WA、 WB、 WC、 W。が存在していた。 これに対して、 図 4の例では、 ディレイ時間 (D) で 調整することにより、 そのような待ち時間 (W) がなくなつていることがわかる。 また、 本発明では、 複数の処理容器 A〜Dのうちどの処理容器から最初にコン ディショニングを開始するかを段階的に決定するのに (図 3のステップ ST 2〜 ST 16) 、 次のような基準を用いている。 すなわち、 ある特定の処理容器のコ ンディショニング時間 (S) を、 その特定の処理室より先に処理を行うべき処理 容器である 1又は 2以上の先行処理容器についてのウェハの搬送時間 (C)およ び処理時間 (P) と、 当該先行処理容器のうち最初に処理を行う処理容器のコン ディショニング時間との合計時間 (T) と比較して、 何れの時間 (S, T) の方 が大きいかという基準である。
例えば、 図 4の例では、 処理容器 Bのコンディショニング時間 S2が、 先行処理 容器 Aについての合計時間 T = S1+C1十 P1よりも長いことから、 コンディショ ニングを最初に開始する処理容器の候補としは、 処理容器 Aよりも処理容器 Bの 方が優先される (図 3のステップ ST 2) 。 そして、 他の処理容器 C, Dについ ても同様の基準で比較を行うことで、 結局、 コンディショニングを最初に開始す る処理容器が最終的に処理容器 Bに決定する (図 3のステップ ST3、 ST7、 ST 9) 。 この場合、 例えば処理容器 Bのコンディショニング S2が終了するまで には、 先行処理容器 Aの処理 P1も終了している。 このようにして、 複数の処理容 器 A〜Dについての処理の効率化を図って、 順列処理のスル一プヅトを向上させ ることができる。
並列処理
次に、 上記処理容器 A〜Dを互いに同じ処理が可能に構成した処理装置 1によ りウェハの並列処理を行う場合の手順について説明する。 この場合、 制御部の制 御の下で、 各処理容器 A~Dにウェハを順次搬送し、 各処理容器内でそれそれの ウェハ Hに同じ処理を行う。 また、 順列処理の場合と同様、 各処理容器 A~Dに おいては、 ウェハを搬入するのに先立って、 クリーニング、 プリコートなどを行 い、 温度や圧力や処理容器内環境などを処理が可能な状態に整えるコンディショ ニングを行う。
特に、 図 1の処理装置 1のように、 各処理容器 A~Dに共通の 1つの搬送ァー ム 2で順次、 各処理容器へウェハを搬送しなければならない場合には、 次のこと が考えられる。 すなわち、 ある処理容器へのウェハ搬送終了までに、 次に処理を 行う処理容器のコンディショニングを終了するようにすれば、 いずれの処理容器 についてもコンディショニング終了から処理開始までの時間を同じにすることが できると共に、 効率よくウェハを搬送することができる。
このような考え方に基づき、 並列処理において各処理容器について 1枚目のゥ ェハを処理する前に行うべきコンディショニングの開始時点の設定について説明 する。 ここでは、 図 1の処理装置 1とは異なり、 3つの処理容器 X, Y, Ζを用 いて並列処理を行う場合について説明する。 この場合、 制御部による各処理容器 X、 Υ, Ζのコンディショニングの開始時期までの制御内容を図 5および図 6に 示し、 それに基づく並列処理のタイミング図の例を図 7に示す。 なお、 図 7にお いて Sll、 S12、 S13は各処理容器 X、 Υ, Zのコンディショニングにかかる時 間を示し、 Pll、 P12、 P13は各処理容器 X、 Y, Ζの処理にかかる時間を示し ている。 また、 Cll、 C12、 C13は各処理容器 X、 Υ, Zへウェハを搬送するの にかかる時間 (コンディショニング終了から処理開始までの時間) を示している。 上記制御部は、 先ず、 最初にコンディショニングを開始する処理容器を決定す るため、 図 5に示すようにコンディショニング時間 Sの比較を行う。 すなわち、 ステップ ST 21にて、 図 3のステップ S T 1の場合と同様に、 各処理容器 X、 Υ, Zのコンディショニング時間 Sll、 S12、 S13を算出する。 続いて、 ステヅ プ ST22にて Sll、 S12、 S 13を比較し、 コンディショニング時間 (S) が短 い処理容器の順にコンディショニングを開始する。 その際、 ある処理容器のゥェ ハの搬送終了に合わせて、 次にウェハの搬送される処理容器 (以下 「次の処理容 器」 ともいう) のコンディショニングが終了するようにコンディショニング閧始 時期調整する。 具体的には、 次にウェハの搬送される処理容器についてディレイ 時間 (D) を算出し、 その処理容器については当該ディレイ時間 (D) だけ待つ てからコンディショニングを開始するように、 コンディショニング閧始時期を調 整する。
図 5のステップ S T 22の比較結果によって、 ディレイ時間の算出処理は異な る。 図 6には、 S13<S12<S11となる場合の例が示されている。 この場合、 先 ずステップ S T 23にて、 最も短いコンディショニング時間 S 13の処理容器 の コンディショニングを開始する。 続いて、 ステップ ST 24にて、 処理容器 の コンディショニング時間と搬送時間との総和 (S13+C13) と、 次の処理容器 Y のコンディショニング時間 S12とを比較する。 そして、 ステップ ST 24にて S13+C13<S12のときは、 ステップ ST 25 にて処理容器 Yのコンディショニングを開始する。 次に、 ステップ ST 26にて、 処理容器 Yのコンディショニング時間と搬送時間との総和 (S12+C12) と、 そ の次の処理容器 Xのコンディショニング時間 S 11とを比較する。 そして S12+C 12く S 11のときは、 ステップ S T 27にて処理容器 Xのコンディショニングを開 始する。 また、 ステップ S T 26にて S12+C12>S11のときは、 ステップ ST 28にて処理容器 Xのディレイ時間 D11を D11-S12+C12— S11により算出す る。 そして、 ステップ ST 29にて、 ディレ 時間 D11だけ待ってから処理容器 Xのコンディショニングを開始する。
一方、 ステップ S T 24にて S13+C13>S12のときは、 ステップ ST 30に て処理容器 Yのディレイ時間 D 12を D 12= S 13+ C 13— S 12により算出する。 そ して、 ステップ ST 31にて、 ディレイ時間 D12だけ待ってから処理容器 Yのコ ンディショニングを開始する。
次に、 ステップ ST32にて、 処理容器 Yのディレイ時間、 コンディショニン グ時間および搬送時間の総和 (D12+S12+C12) と、 次の処理容器 Xのコンデ イショニング時間 S11とを比較する。 そして、 ステップ S T 32にて D12+S12 + C12く S11のときは、 ステップ S T 33にて処理容器 Xのコンディショニング を開女台する。 また、 ステヅプ S T 32にて D12+ S12+C12>S11のときはステ ヅプ S T 34にて処理容器 Xのディレイ時間 D11を D11 = D12+S12+C12—S 11により算出し、 ステップ ST 35にてディレイ時間 D 11だけ待ってから処理容 器 Xのコンディショニングを開始する。
このように、 各処理容器のコンディショニング時間 (S) に応じて、 最初にコ ンディショニングを開始する処理容器を決定するとともに (ステップ ST 2 1〜 ST 22) 、 他の処理容器についてはディレイ時間 (D) を算出する (ステップ ST 28、 ST 30、 ST 34) 。 これにより、 ある処理容器へのウェハの搬送 終了に合わせて、 次の処理容器のコンディショニングが終了するように、 次の処 理容器のコンディショニング開始時期を調整する (ステップ ST 23、 ST 25、 ST27、 ST 29、 ST 31、 ST 33、 ST 35) 。 これにより、 処理容器 ごとのコンディショニング終了から処理開始までの時間のばらつきを解消するこ とができる。 このため、 コンディショニング終了からウェハが搬送されるまでの 間に処理容器ごとの内部の状態が変化して不均一となることを防止できる。 従つ て、 例えば各処理容器で行う半導体ウェハに対する処理、 例えば成膜の均一性 (膜厚や膜質など) を向上させることができる。
また、 ここではすべての処理容器 X、 Y , Zについてウェハの搬送直前にコン ディショニングを完了させるように、 ディレイ時間 (D ) を算出し (ステップ S T 2 8、 S T 3 0、 S T 3 4 ) 、 コンディショニング開始時期を調整している。 これにより、 いずれの処理容器についてもコンディショニング終了後の待ち時間 を極力少なくすることができるとともに、 各処理容器に共通の 1つの搬送アーム を効率よく動作させることができる。 従って、 各処理容器に共通の 1つの搬送ァ ームを用いた並列処理全体の処理効率を向上させることができる。
ここで、 本発明に基づく図 7の例を図 9の従来例と比較する。 図 9の従来例で は、 コンディショニング終了後に処理容器 X、 Υ, Ζごとに異なる待ち時間 (W X = 0 ) 、 WY Wzが存在していた。 これに対して、 図 7の例では、 ディレイ時間 ( D ) で調整することにより、 そのような待ち時間 (W) がなくなつていること がわかる。
また、 本発明では、 コンディショニング時間 (S ) が短い処理容器の順にコン ディショニングを開始するようにした。 これにより、 複数の処理容器 X、 Υ, Ζ についての処理の効率化を図って、 並列処理のスループットを向上させることが できる。
他の実施形態
以上の実施形態では各処理容器で 1枚目のウェハを処理する場合について述べ たが、 2枚目以降のウェハを処理する場合にも応用が可能である。 例えば、 図 7 Αには、 図 4に示すような順列処理において、 処理容器 Cで 2枚目以降 (例えば α枚目) のウェハの処理 (第 2巡目以降の処理) を行う前のコンディショニング 開始処理の流れが例示されている。
図 7 Αにおいて、 まず処理容器 Cでの (ひ— 1 ) 枚目のウェハの処理が終了し た時点で (ステップ S T 4 0 ) 、 処理容器 Bでの α枚目のウェハの処理の残り時 間を算出する (ステップ S T 4 1 ) 。 そして、 算出した処理容器 Βの処理の残り 時間と、 処理容器 Cのコンディショニング時間とを比較する (ステップ ST4 2) 。 その結果、 残り時間の方が長かった場合は (ステップ ST 43) 、 上述し たディレイ時間を用いて、 処理容器 Cでのひ枚目のウェハの処理前のコンディシ ョニング開始時期を設定する (ステップ ST 44) 。 一方、 残り時間の方が長く なかった場合は (ステップ ST43) 、 処理容器 Cの同様のコンディショニング を直ぐに開始する (ステップ ST 45) 。
なお、 2枚目以降のウェハを処理する場合にはコンディショニング時間が変動 することが考えられるが、 処理容器内の状態を検出することで、 容易に次のコン ディショニング時間を予測することが可能である。
変形例
なお、 上記実施形態においては、 順列処理、 並列処理いずれの場合であっても、 搬送アーム 2が、 真空搬送室 4の中心に位置して、 各処理容器 A〜D (X、 Y, Ζ) およびロード口ヅク室 6、 8とほぼ等距離にあることを前提としている。 こ のため、 ウェハの搬送時間 C1〜C4 (C11~C13) は互いにほぼ等しいものとし ている。 しかしながら、 例えばこれらの搬送時間が互いに大きく異なっている場 合、 あるいはコンディショニング終了からプロセス開始までの時間を厳密に揃え たい場合などにおいては、 以下のようにしてもよい。
例えば図 3および図 4の順列処理においては、 互いに異なる C 1〜 C 4のうちの 最大値を Cmaxとした場合、 Cl=C2=C3=C4=Cmaxとなるようにする。 こう することで、 コンディショニング終了からプロセス開始までの時間が多少長くな る処理容器も出てくるが、 コンディショニング終了からプロセス開始までの時間 を各処理容器で厳密に一致させることができる。 さらに、 C1=C2=C3=C4 = Cmax+ACとし、 この△ Cの値を変えることにより、 これらの時間 Cl〜 C4を任 意に調整することもできる。 また、 図 6および図 7の並列処理においても、 C11 〜C13のうちの最大値を Cmaxとした場合に、 Cll= C12= C13= Cmaxとしても よい。 これにより、 並列処理においても順列処理と同様に、 コンディショニング 終了からプロセス開始までの時間を各処理容器で厳密に一致させることができる。 また、 上述した本発明の実施形態においては、 コンディショニングとしてクリ 一二ング、 プリコートなどを行い、 各処理容器内の温度、 圧力、 その他の環境な どを処理が可能な状態に整える場合について述べたが、 必ずしもこれに限定され るものではない。 すなわち、 コンディショニングとしては、 各処理容器内の状態 をそれそれの処理が可能な状態にする工程であれば、 任意の工程内容を含んでい てもよい。 また、 本発明の処理方法は、 互いに異なる処理を行う処理容器と、 互 いに同じ処理を行う処理容器とが組み合わされて用いられる場合にも適用可能で ある。
また、 上記実施形態では (他の実施形態として説明したものを除いて) 、 複数 枚のウェハを処理して行く場合における 1枚目のウェハを各処理容器内に搬送す る前に、 各処理容器のコンディショニングの開始タイミングを調整するものにつ いて説明したが、 必ずしもこれに限定されるものではない。 すなわち、 処理すベ きウェハの搬送前に処理容器のコンディショニングが必要な場合であれば、 2枚 目以降のウェハの処理 (装置の停止等により中断した処理を再開する場合なども 含む) に適用してもよく、 複数枚のウェハを連続処理しない場合に適用してもよ い。 但し、 複数枚のウェハを処理して行く場合における 1枚目のウェハを各処理 容器内に搬送する前のコンディショニングを前提とする方法に本発明を適用すれ ば特に有効である。
さらに、 上記本実施形態では、 複数の処理容器を用いる場合について説明した が、 単一の処理容器を用いる場合に適用してもよい。 具体的には、 単一の処理容 器についても、 コンディショニング開始時期を調整することにより、 コンデイシ ョニング終了から処理開始までの時間を極力短くし、 その影響を小さくすること が可能である。 この場合も、 複数枚のウェハを処理して行く場合における 1枚目 のウェハを処理容器内に搬送する前のコンディショニングを前提とする方法に本 発明を適用すれば特に有効である。
また、 上記本実施形態では、 単一の搬送アームを用いる場合について説明した が、 搬送アーム等の搬送機構を複数用いる場合にも、 本発明を適用することが可 能である。
なお、 本発明によれば、 処理全体の効率化により、 使用する処理ガスや電力な どのエネルギー消費を少なくする効果も得られる。
以上、 添付図面を参照しながら本発明にかかる好適な実施形態について説明し たが、 本発明はかかる例に限定されないことは言うまでもない。 当業者であれば、 請求の範囲に記載された技術的思想の範囲内において、 各種の変更例または修正 例に相当し得ることは明らかであり、 それらについても当然に本発明の技術的範 囲に属するものと了解される。

Claims

請 求 の 範 囲
1 . 互いに異なる処理を行う複数の処理容器を用いて、 半導体ウェハを各処 理容器に順次移し換えながら処理を行うような順列処理を実行する半導体ウェハ の処理方法であって、
各処理容器におけるウェハの処理は、 当該処理容器のコンディショニング終了 後に行われると共に、
前の処理容器の処理終了に合わせて次の処理容器のコンディショニングが終了 するように、 次の処理容器のコンディショニング開始時期を調整する、 ことを特 徴とする処理方法。
2 . 請求項 1記載の処理方法において、
ある特定の処理容器のコンディショニング時間 (S ) を、 その特定の処理室よ り先に処理を行うべき処理容器である 1又は 2以上の先行処理容器についてのゥ ェハの搬送時間および処理時間と、 当該先行処理容器のうち最初に処理を行う処 理容器のコンディショニング時間との合計時間 (T ) と比較して、 何れの時間 ( S , T ) の方が大きいかという基準に基づいて、 前記処理容器のうちどの処理 容器から最初にコンディショニングを開始するかを段階的に決定する、 ことを特 徴とする処理方法。
3 . 互いに同じ処理を行う複数の処理容器と、 各処理容器に共通の搬送機構 とを用い、 各処理容器に前記搬送機構で半導体ウェハを順次搬送し、 各処理容器 内でそれそれのウェハに処理を行うような並列処理を実行する半導体ウェハの処 理方法であって、
各処理容器におけるウェハの処理は、 当該処理容器のコンディショニング終了 後に行われると共に、
ある処理容器へのウェハの搬送終了に合わせて、 次にウェハの搬送される処理 容器のコンディショニングが終了するように、 後者の処理容器のコンディショニ ング開始時期を調整する、 ことを特徴とする処理方法。
4 . 請求項 3記載の処理方法において、
コンディショニング時間の短い処理容器の順にコンディショニングを開始する、 ことを特徴とする処理方法。
5 . 複数の処理容器を用いた半導体ウェハの処理方法において、
各処理容器内のコンディショニング終了後に、 当該処理容器内にウェハを搬送 して処理を行うと共に、
いずれの処理容器についてもコンディショニング終了から処理開始までの時間 が同じになるように、 各処理容器のコンディショニ開始時期を調整する、 ことを 特徴とする処理方法。
6 . 半導体ウェハに対して互いに異なる処理を行うと共に、 それそれ処理開 始前のコンディショニングを行うように構成された複数の処理容器と、
これらの処理容器間でウェハを搬送する搬送機構と、
を備え、
前記搬送機構でウェハを各処理容器に順次移し換えながら処理を行うような順 列処理を実行するように構成された半導体ウェハの処理装置であって、
前記処理容器ごとに、 前の処理容器の処理終了に合わせて次の処理容器のコン ディショニングが終了するように、 次の処理容器のコンディショニング閧始時期 を算出する算出手段と、
この算出手段によって算出された開始時期に応じて、 各処理容器のコンデイシ ョニングを開始させるコンディショニング制御手段と、
を更に備えた、 ことを特徴とする処理装置。
PCT/JP2002/012549 2001-11-29 2002-11-29 Procede et dispositif permettant de traiter une tranche semi-conductrice WO2003046960A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/496,980 US6999830B2 (en) 2001-11-29 2002-11-29 Method and device for processing semiconductor wafer
KR1020047008213A KR100633890B1 (ko) 2001-11-29 2002-11-29 반도체 웨이퍼의 처리 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/365247 2001-11-29
JP2001365247A JP4076762B2 (ja) 2001-11-29 2001-11-29 半導体ウエハ処理装置

Publications (1)

Publication Number Publication Date
WO2003046960A1 true WO2003046960A1 (fr) 2003-06-05

Family

ID=19175299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012549 WO2003046960A1 (fr) 2001-11-29 2002-11-29 Procede et dispositif permettant de traiter une tranche semi-conductrice

Country Status (4)

Country Link
US (1) US6999830B2 (ja)
JP (1) JP4076762B2 (ja)
KR (1) KR100633890B1 (ja)
WO (1) WO2003046960A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101485A1 (ja) * 2004-03-31 2005-10-27 Tokyo Electron Limited 基板処理装置及び基板処理方法
JP2006278531A (ja) * 2005-03-28 2006-10-12 Toshiba Corp 工程管理システム、工程管理方法及び半導体装置の製造方法
WO2007091555A1 (ja) * 2006-02-07 2007-08-16 Tokyo Electron Limited 基板処理装置の制御装置および基板処理装置の制御プログラム
CN102549192B (zh) * 2009-10-19 2014-09-24 株式会社爱发科 进行成膜和清洗的真空处理方法
JP5695956B2 (ja) 2011-03-31 2015-04-08 東京エレクトロン株式会社 コンディショニング方法、コンピュータ読み取り可能な記憶媒体及び基板処理装置
JP6216530B2 (ja) * 2013-03-29 2017-10-18 株式会社日立ハイテクノロジーズ 真空処理装置の運転方法
US9606532B2 (en) * 2014-01-29 2017-03-28 Taiwan Semiconductor Manufacturing Company Limited Method and manufacturing system
JP6320457B2 (ja) * 2016-05-31 2018-05-09 キヤノン株式会社 基板処理装置、基板処理方法、プログラム、及び物品製造方法
JP6999410B2 (ja) * 2017-12-25 2022-01-18 東京エレクトロン株式会社 基板処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335616A (ja) * 1994-06-06 1995-12-22 Hitachi Ltd ウエハ処理装置
US5943230A (en) * 1996-12-19 1999-08-24 Applied Materials, Inc. Computer-implemented inter-chamber synchronization in a multiple chamber substrate processing system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04143819A (ja) * 1989-12-15 1992-05-18 Hitachi Ltd 消費電力制御方法、半導体集積回路装置およびマイクロプロセツサ
US5473572A (en) * 1993-02-16 1995-12-05 Chips And Technologies, Inc. Power saving system for a memory controller
US6073204A (en) * 1997-04-23 2000-06-06 Micron Technology, Inc. Memory system having flexible architecture and method
US5848022A (en) * 1997-05-02 1998-12-08 Integrated Silicon Solution Inc. Address enable circuit in synchronous SRAM
US6233661B1 (en) * 1998-04-28 2001-05-15 Compaq Computer Corporation Computer system with memory controller that hides the next cycle during the current cycle
US6269433B1 (en) * 1998-04-29 2001-07-31 Compaq Computer Corporation Memory controller using queue look-ahead to reduce memory latency
US6038673A (en) * 1998-11-03 2000-03-14 Intel Corporation Computer system with power management scheme for DRAM devices
US6418356B1 (en) * 1998-12-31 2002-07-09 Silicon Valley Group, Inc. Method and apparatus for resolving conflicts in a substrate processing system
US6111812A (en) * 1999-07-23 2000-08-29 Micron Technology, Inc. Method and apparatus for adjusting control signal timing in a memory device
US6523089B2 (en) * 2000-07-19 2003-02-18 Rambus Inc. Memory controller with power management logic
US6535450B1 (en) * 2000-08-18 2003-03-18 Micron Technology, Inc. Method for selecting one or a bank of memory devices
US6535784B2 (en) * 2001-04-26 2003-03-18 Tokyo Electron, Ltd. System and method for scheduling the movement of wafers in a wafer-processing tool
US6510099B1 (en) * 2001-09-28 2003-01-21 Intel Corporation Memory control with dynamic driver disabling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335616A (ja) * 1994-06-06 1995-12-22 Hitachi Ltd ウエハ処理装置
US5943230A (en) * 1996-12-19 1999-08-24 Applied Materials, Inc. Computer-implemented inter-chamber synchronization in a multiple chamber substrate processing system

Also Published As

Publication number Publication date
US6999830B2 (en) 2006-02-14
JP4076762B2 (ja) 2008-04-16
US20050015174A1 (en) 2005-01-20
JP2003168637A (ja) 2003-06-13
KR20040053384A (ko) 2004-06-23
KR100633890B1 (ko) 2006-10-13

Similar Documents

Publication Publication Date Title
US7201851B2 (en) Vacuum processing apparatus and substrate transfer method
JPH10326731A (ja) 全プロセス集積化用プロセスレシピと調整レシピのチャンバ間同期化
US8055378B2 (en) Device for controlling processing system, method for controlling processing system and computer-readable storage medium stored processing program
US20050189074A1 (en) Gas processing apparatus and method and computer storage medium storing program for controlling same
WO2003046960A1 (fr) Procede et dispositif permettant de traiter une tranche semi-conductrice
US20090226294A1 (en) Processing System and Method for Operating the Same
JPH11186363A (ja) 半導体製造装置
JP2002305225A (ja) クラスタツールおよび搬送制御方法
US6561796B1 (en) Method of semiconductor wafer heating to prevent bowing
WO2003098684A1 (fr) Dispositif de traitement de substrats et procede de traitement de substrat
JPH08264618A (ja) 半導体製造装置及び半導体装置の製造方法
JP4505915B2 (ja) 成膜方法
JP2000232071A (ja) 基板処理方法および基板処理装置
KR102660270B1 (ko) 기판 처리 시스템, 기판 처리 방법, 및 제어 프로그램
US20220148898A1 (en) Substrate processing system, substrate processing method, and control program
WO2021049368A1 (ja) 基板処理装置及び基板処理装置制御方法
JP2007308730A (ja) 真空処理装置および真空処理方法
JP7324811B2 (ja) 基板処理装置、半導体装置の製造方法、及びプログラム
JP4657528B2 (ja) 処理システムおよび処理方法
JP2005136021A (ja) 基板処理装置
JP2006222328A (ja) 基板処理装置
WO2023176457A1 (ja) 基板処理装置及び基板処理方法
JP2000012649A (ja) 半導体製造方法
JP2000020138A (ja) 真空圧力制御システム
JP2005252105A (ja) 基板処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10496980

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047008213

Country of ref document: KR