WO2003042742A1 - Equipment for inspecting groove of spiral spacer for bearing optical fiber - Google Patents

Equipment for inspecting groove of spiral spacer for bearing optical fiber Download PDF

Info

Publication number
WO2003042742A1
WO2003042742A1 PCT/JP2001/009945 JP0109945W WO03042742A1 WO 2003042742 A1 WO2003042742 A1 WO 2003042742A1 JP 0109945 W JP0109945 W JP 0109945W WO 03042742 A1 WO03042742 A1 WO 03042742A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
spiral
spacer
optical fiber
rotating body
Prior art date
Application number
PCT/JP2001/009945
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Kawasaki
Hidenobu Nagaya
Original Assignee
Ube-Nittou Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nittou Kasei Co., Ltd. filed Critical Ube-Nittou Kasei Co., Ltd.
Priority to JP2003544516A priority Critical patent/JPWO2003042742A1/en
Priority to PCT/JP2001/009945 priority patent/WO2003042742A1/en
Priority to CNB018237932A priority patent/CN1284992C/en
Priority to KR1020047007344A priority patent/KR100816318B1/en
Priority to TW090131209A priority patent/TW528896B/en
Publication of WO2003042742A1 publication Critical patent/WO2003042742A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/449Twisting
    • G02B6/4491Twisting in a lobe structure

Definitions

  • the present invention relates to a groove inspection device for a spiral spacer for holding an optical fiber, and more particularly, to an optical fiber holding surface having a plurality of spiral grooves whose rotation direction changes at every predetermined angle and which runs continuously.
  • the present invention relates to a groove inspection apparatus for continuously measuring and inspecting an inner surface abnormality of a spiral groove, a spiral pitch, and a reversal angle while manufacturing a spiral groove.
  • optical fibers have a low transmission loss and a very large transmission amount, and their practical use has been promoted over a wide range in the field of communication.
  • a spacer in which a spiral groove for supporting the optical fiber is formed on the outer circumference as a cable core wire, and inserts the optical fiber into this spiral groove to avoid stress such as tension, compression, and bending. are doing.
  • the spiral groove of this type of spacer is provided so that the outer circumference goes around from one side to the other, and the outer circumference is inverted at a predetermined angle, for example, at an interval of 360 degrees. What is provided is provided.
  • the former spiral groove when an optical fiber is inserted into the groove, the bobbin around which the optical fiber is wound must be rotated, and a considerably large rotating equipment is required, which increases the equipment cost. .
  • the latter in which the inverted spiral groove is provided, is required to have no groove abnormality over its entire length and to have strict dimensional accuracy in the groove pitch and the inverted angle.
  • the present invention has been made in view of such a conventional problem, and has as its object to solve the problem, in particular, of the abnormal shape of a spiral groove that reverses at a predetermined angular interval and the groove pitch and the reverse angle.
  • An object of the present invention is to provide an apparatus for inspecting a groove abnormality of a spiral spacer for supporting an optical fiber, which can accurately detect fluctuations at the same time during a manufacturing process. Disclosure of the invention
  • the present invention provides an optical fiber supporting spacer in which a rotation direction is reversed at predetermined angular intervals and a plurality of spiral grooves running continuously are provided on the outer periphery.
  • a spiral groove inspection device comprising: a rotating body that rotates with the travel of the optical fiber supporting spacer; a groove abnormality detecting unit that detects a groove abnormality of the spiral groove that slides in contact with the rotational resistance of the rotating body; Of rotating body A groove pitch and groove reversal angle measuring unit for detecting a groove pitch of the spiral groove from a rotation angle and a running speed of the optical fiber supporting spacer is provided.
  • the groove abnormality detection unit includes a guide rail extending linearly, a support member slidably provided on the rail, and the rotating body rotatably supported by the support member.
  • a load detector coupled via a magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member can be provided.
  • the rotating body has a through-opening through which the spacer for holding the optical fiber is passed, and a pin gauge having a tip portion fitted into the spiral groove is provided around the opening. be able to.
  • the load detector can be constituted by a sealed load cell.
  • the groove pitch and groove reversal angle measuring unit of the present invention includes: a speed pulse generator that generates a signal corresponding to the advance amount of the soother; the rotating body fitted into the spiral groove; A rotation angle signal corresponding to the rotation angle, a rotation direction determination signal that has been delayed or advanced by a predetermined angle from the rotation angle signal, and a single rotation pulse signal associated with one rotation of the spiral groove are generated as the rotation body rotates. Receiving the rotation angle and rotation direction discrimination signal to determine the reversal position of the spiral groove, and the pulse of the speed pulse generator and the rotation angle signal between the adjacent reversal positions. And a calculating device for calculating the groove pitch and the groove reversal angle of the spiral groove.
  • the pulse generator includes a pair of first and second pulse generators and a third pulse generator that are arranged at a predetermined interval along a traveling direction of the optical fiber supporting spacer.
  • a rotation direction discrimination unit for receiving the rotation direction discrimination signal of each pulse generator and discriminating the rotation direction of the spacer for holding the optical fiber; and providing a rotation direction discrimination unit for the first and second pulse generators.
  • the time when the rotation direction discrimination signal coincides is set as a condition for starting the counting of the rotation angle signal of the third pulse generator, and the rotation angle of the third pulse generator is detected, and after the counting of the rotation angle signal is started. Before the inflection point detected after the elapse of the predetermined time It is possible to determine the inverted position and the arithmetic unit.
  • FIG. 1 is an external view of a main part of a spiral spacer to be inspected by a groove inspection device of a spiral spacer for carrying an optical fiber according to the present invention.
  • FIG. 2 is a cross-sectional view of the spiral spacer shown in FIG.
  • FIG. 3 is an overall layout diagram of a groove inspection device of a spiral spacer for supporting an optical fiber according to the present invention.
  • FIG. 4 is an explanatory diagram of a main part of FIG.
  • FIG. 5 is an enlarged view of a main part of FIG.
  • FIG. 6 is a block diagram of an electric system of the groove abnormality detecting section shown in FIG.
  • FIG. 7 is a flowchart of a processing procedure of the operation display unit shown in FIG.
  • FIG. 8 is a detailed view of the groove pitch and groove reversal angle measuring unit shown in FIG.
  • FIG. 9 is a configuration diagram of an arithmetic unit of the groove pitch and groove reversal angle measuring unit shown in FIG.
  • FIG. 10 is a flowchart of a groove inversion angle calculation processing procedure executed by the calculation device shown in FIG.
  • FIG. 11 is an explanatory diagram for obtaining a peak value and a bottom value in the flowchart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the spiral spacer A shown in FIGS. 1 and 2 is to be inspected.
  • the spiral spacer A shown in these figures has a tensile strength line A 1 disposed at the center and a synthetic resin main body A 2 formed on the outer periphery thereof. You.
  • the main body portion A 2 has a plurality of concave spiral grooves A 3 that are inverted at a predetermined rotation angle 2 ct along the longitudinal axis direction and continuously run, and each of the spiral grooves has a concave section.
  • A is formed at a predetermined groove inversion pitch p, and the inner surface abnormality of the spiral groove A3 and the groove inversion pitch p are measured and inspected.
  • the groove inspection device 1 is a pair of grooves provided in the middle of the manufacturing process of the threaded spacer A traveling in the direction of the arrow in FIG. It is provided between the take-off machines 14, 14, and comprises a groove abnormality detecting section 2 installed on the housing 24, and a groove pitch and groove inversion angle measuring section 10.
  • each guide roller device 26 is composed of four cross-girder rollers 26a to 26d that sandwich the spiral spacer A from four directions.
  • the guide roller device 26 configured in this way is capable of detecting the vertical and horizontal vibrations when the spiral spacer A is pulled by the puller 14 by the groove abnormality detector 2 and the groove pitch and groove reversal angle measuring unit 1.
  • the c- groove anomaly detector 2 which is designed so as not to appear as a measurement error of 0, is disposed in front of the groove pitch and groove reversal angle measurement unit 10 and is a spiral spacer for holding an optical fiber.
  • a basic configuration is provided with a rotating body 3 that rotates as the vehicle travels along A, and detects a groove abnormality of the spiral groove A 3 that is in sliding contact from the rotation resistance of the rotating body 3.
  • the groove abnormality detecting section 2 of the present embodiment is fixed to a housing 24 and installed on a guide rail 4 extending linearly.
  • a support member 5 force S of the rotating body 3 and a slide movable along the longitudinal axis direction of the guide rail 4 are provided.
  • the support member 5 is fitted on the guide rail 4 and slidably provided on a slide base 5a, and a vertical support plate 5 supported on the slide base 5a and extending vertically upward. has b.
  • the upper part of the vertical support plate 5b is rotatably supported about a horizontal axis via a disc-shaped rotating body 3 force S and a bearing 6.
  • the rotating body 3 has a central part of a disk-shaped main body 3a, through which a spiral sensor A running between a pair of take-off machines 14 and 14 provided in the middle of a manufacturing process is passed.
  • a circular through-opening 3b is formed.
  • the number of pin gauges 3 c corresponding to the number of the spiral grooves A 3 is fixed with screws S and screws, and the distal end side of each pin gauge 3 c is provided with the through-opening 3 b It protrudes inward.
  • Each of the pin gauges 3 c has a projecting shape corresponding to the shape of the spiral groove A.
  • the shape relationship between the spiral groove A 3 and the pin gauge 3 c is set such that the wall forming the spiral groove A 3 of the spiral spacer A and the outer surface of the gauge 3 c are in a state close to the close contact state. ing.
  • a sealed load cell (load detector) 7 that converts the magnitude of the load into an electric signal and sends it out is disposed near the support member 5. I have.
  • a typical example of the load cell 7 is a strain gauge and a strain gauge type in which a strain-generating column connected to the strain gauge is enclosed in a case.
  • this strain gauge type is adopted.
  • the load cell 7 and the slide table 5 a are connected by a connecting member 8.
  • the connecting member 8 includes a first connecting portion 8a fixed to the slide table 5a and a second connecting portion 8b fixed to the load cell 7 side.
  • a permanent magnet is built in the second connecting portion 8b, and the first connecting portion 8a is made of a metal material that can be attracted by this magnet.
  • the portion 8a is adsorbed to the second connecting portion 8b.
  • the rotating body 3 when the spiral spacer A travels, the rotating body 3 is fitted into the spiral groove A 3, and therefore, the rotating body 3 includes the spiral spacer A. As the vehicle travels, it rotates in the same direction as the rotation direction of the spiral groove A3 while reversing at predetermined angular intervals. At this time, the rotating body 3 becomes a load with respect to the traveling of the spiral spacer A, and the slide table 5a supporting the rotating body 3 is guided by the traveling of the spacer A. Attempts to move rearward on rail 4.
  • the horizontal acting force at this time is transmitted to the load cell 7 via the first and second connecting portions 8a and 8b, and as a result, the load cell 7 is driven by the spiral spacer A
  • the load is transmitted in the same direction as the direction.
  • the connecting member 8 for transmitting the acting force of the slide base 5a to slide and move to the load cell 7 is formed by the first and second connecting portions 8a and 8b attracted by the permanent magnet. It is configured.
  • the load cell 7 is electrically connected to the operation display 9b via the amplifier 9a.
  • the operation display 9b is composed of a so-called personal computer, and includes an interface, a memory, an input keyboard, and the like.
  • the operation display 9b is connected to a display 9c and an alarm 9d. I have.
  • the operation display 9b detects the groove abnormality of the spiral groove A3 according to the procedure shown in FIG. 7 using the load detection value R sent from the load cell 7 as an input signal. .
  • step 1 initial settings are performed.
  • a danger value R max that determines that the spiral groove A 3 is abnormal is set for the load detection value R detected by the load cell 7.
  • This risk value R max is derived from past experience values, averages of actually measured values, and the like.
  • step 2 the load detection value R of the load cell 7 is acquired, and the value is displayed on the display 9c as a measured value.
  • step 3 it is determined whether the load detection value R is greater than the danger value Rmax. If the load detection value R is smaller than the danger value Rmax, the groove is determined in step 4 in step 4. Judgment is made as to whether or not measurement of abnormality is to be completed.
  • step 3 if it is determined in step 3 that the load detection value R is larger than the dangerous value R max, it means that an abnormality has occurred in the spiral groove A 3, so that in step 5, Activate the alarm 9d to warn of this, display the length of the spacer A at the time of occurrence of the abnormality, and return to step 4.
  • the spiral groove A of the spiral spacer A 3 When the spiral spacer A is run in a state of passing through the through-opening 3b of the rotating body 3, the spiral groove A of the spiral spacer A 3 The rotational resistance of the rotating body 3 is converted into the rotating force of the rotating body 3 by the sliding resistance of the rotating body 3 fitted into the spiral groove A3 and the pin gauge 3c, and the slide table 5a is formed together with the sliding force. A horizontal force acts to move this rearward on the guide rail 4.
  • This horizontal force is transmitted to the load cell 7 via the connecting member 3 attracted and connected by the magnet.
  • the load cell 7 detects a load corresponding to the horizontal force, converts it into a load detection scale, converts it into an electric signal, and outputs it to the operation display 9b.
  • the operation indicator 9 b monitors the state of the spiral groove A of the threaded spacer A based on the output signal of the load cell 7, and based on the magnitude of the load detection value R, the inner surface of the spiral groove A 3 Detect abnormalities.
  • the groove pitch and groove inversion angle measuring unit 10 includes a speed pulse generator 16, a pair of first and second rotating bodies 17 and 18, and a first rotating body.
  • the first and third pulse generators 19 and 21 are provided above the first rotating body 17, the second pulse generator is provided above the second rotating body, and the arithmetic unit 22 is generally configured.
  • the speed pulse generator 16 generates a pulse signal corresponding to the travel of the spacer A, and is installed in the take-off machine 14 in front.
  • the first and second rotating bodies 17 and 18 have substantially the same configuration, and are provided at predetermined intervals along the traveling direction of the spiral spacer A. 17 and 18 are fitted into the spiral groove A 3 of the spiral spacer A and rotate as the spacer A advances, and are disposed between the take-off machines 14 and 14 ′. It is provided on the installed housing 24.
  • FIG. 8 shows the details of the first rotating body 17.
  • the configuration of the first and second rotating bodies 17 and 18 is completely the same except that the third pulse generator is mounted on the first rotating body 17.
  • a description will be given by taking the first rotating body 17 provided on the side as a representative.
  • the first rotating body 17 shown in the figure includes a hollow cylindrical main body 17b with a gear 17a fitted and fixed to the outer peripheral portion, and a plurality of pins 17c.
  • the pin 17c has a distal end fitted and inserted into the spiral groove A3 of the spacer A.
  • the pin 17c is recessed in a flange portion of the main body 17b, and is inserted into a radiation groove pointing in the center direction. It is fixed with screws.
  • the first rotating body 17 is rotatably supported by a holder 30 provided with a through hole for the spacer A.
  • the holder 30 is supported by support legs 32, and the support legs 32 are fixed on the housing 24.
  • the first pulse generator 19 and the third pulse generator 21 are mounted and supported on a flange 34 fixed to the upper end of the holder 30, and the rotation axis of the first pulse generator 19 is
  • the driven gear 191 which is in mesh with the gear 17a, has a driven force S, and the rotating shaft 21 of the third pulse generator 21 has a driven gear 191, The corresponding driven gear 2 1 1 is fixed.
  • the first pulse generator 19 and the second pulse generator 20 rotate the rotating bodies 17 and 18 accordingly, and rotate the rotating bodies 17 and 18.
  • the rotation is further performed, and the angle signals ⁇ 1 and 02 are respectively transmitted.
  • the SZ pitch signal (match signal) s is output from the comparator 30.
  • the determination of the condition that the angle signals 0 1 and ⁇ 2 match is made by an absolute value that does not consider the direction, and a pair of first and second rotating bodies 17 and 18 are installed at a predetermined interval. Therefore, as shown in Fig. 12 below, the first and second rotating bodies 17 and 18 are equally spaced on both sides of the peak and bottom values (i, iii). At the point (ii) where the first and second rotating bodies 17 and 18 are equally spaced on both sides with respect to the center of,, and 0, the SZ pitch signal s is output from the comparator 30 respectively. It will be.
  • the configuration diagram of the arithmetic unit 22 is shown in FIG.
  • the arithmetic unit 22 shown in the figure has a CPU 22a, a high-speed counter unit 22b, an input unit 22c, an output unit 22d, and a DZA conversion unit 22e. ing.
  • the output signals of the first and second pulse generators 19 and 20 are input to the input unit 22 c via the comparator 30 and the groove pitch provided in the housing 24.
  • the display 34 and the groove reversal angle display 36 are connected.
  • Each of these display sections 34 and 36 is capable of displaying a current measured value, a set value, and a permissible value. Further, in response to the angle signals 01 and 02 sent from the first and second pulse signal generators 19 and 20, a coincidence signal s is generated for each inversion pitch of the optical fiber supporting spacer A.
  • the comparator 30 is connected to the input unit 22c.
  • the third pulse generator 21 is connected to the input unit 22c via the direction determining unit 22f for transmitting the rotation direction determining signal f. Further, the third pulse generator 21 is connected to the high-speed counter unit 22b, and is connected to the input unit 22c via the high-speed counter unit 22b. Have been.
  • the speed pulse generator 16 is connected to the input unit 22c.
  • the output unit 22 d has an SZ waveform recorder via a pitch printing printer 40, a reverse angle printing printer 41, an alarm 46, and a D / A conversion unit 22 e. 4 2 are connected.
  • the CPU 22a receives the coincidence signal s from the rotation angle signals 01 and 02, determines the reversal position of the spiral groove 13a, and calculates the groove reversal pitch p of the spiral groove A3.
  • the pulses of the third pulse generator 21 between adjacent inversion positions are counted by the high-speed counter unit 22b, and the inversion angle (2 ⁇ ) is calculated.
  • step s1 the set value and the set value of the reversal angle 2 ⁇ and the groove pitch p of the spiral groove A3 are inputted, and these allowable values are set. The value is also entered.
  • step s2 the signal f of the direction discriminating unit 22f is acquired, and the process waits until the output signal d becomes CW. When it is determined that the signal f has become CW, the process proceeds to step s3.
  • step s3 the process waits until the coincidence signal s from the comparator 30 is sent.When the coincidence signal s is obtained, in step s4, the rotation angle signal b of the third pulse generator 21 is received.
  • the counter value of the high-speed counterunit 22b at each predetermined time is captured, and the peak value is detected by sequentially comparing the power counter value of the high-speed counterunit 22b before and after at predetermined time intervals. It is determined whether or not it has been performed, and its value is obtained.
  • the inflection point X of the rotation angle signal b of the third pulse generator 21 is determined. And this inflection point X. Is detected, the counter value of the high-speed counter unit 22b at that time becomes the peak value P. It is stored as
  • the high-speed counter measures the pulse signal sent from the device and shows this as a DZA-converted waveform.
  • step s5 the process waits until the direction discrimination unit 22f becomes CCW, and when it is determined that CCW has come, the process proceeds to step s6.
  • the coincidence signal s is centered around 0, and the first and second rotating bodies 17 and 18 are arranged at equal intervals on both sides thereof.
  • the coincidence signal s at this time is generated at the inflection point, that is, after the third pulse generator 21 transmits this signal. If the rotation direction does not change from CW to CCW, or from CCW to CW, this is ignored.
  • the signal transmission time becomes a predetermined time, for example, 0.7 seconds. In the following cases, this is ignored and is not adopted as the direction discrimination signal f.
  • step 6 the process waits until the next coincidence signal s is sent from the comparator 30.
  • step 7 the rotation angle signal b of the third pulse generator 21 is received.
  • the counter value of the high-speed counter unit 22b at each predetermined time is acquired, and the bottom value B is obtained by sequentially comparing the counter value of the high-speed counter unit 22b before and after. It is determined whether or not is detected, and its value is determined.
  • the groove pitch ⁇ is the peak value ⁇ . And the bottom value ⁇ .
  • the pulse number of the pulse generator 16 is calculated by the arithmetic circuit in the CPU (PLC, not shown) It is obtained by counting with.
  • step s12 If it is determined in step s10 that the measured value is within the allowable range, in step s12, the magnitudes of the previous measured values are compared, and if the current measured value is the maximum value or the minimum value, This is updated as the maximum value or the minimum value in step 13 and stored.
  • step 14 the inversion angle data is added, and in step 15, the value is sent to the printer 41.
  • step s16 it is determined whether or not the measurement has been completed. If the measurement has not been completed, the process returns to step s2 again.
  • step s17 If it is determined in step s16 that the measurement has been completed, in step s17, the maximum value MAX, the minimum value MIN, and the average value AVE of the inversion angle 2 ⁇ and the groove pitch p obtained by the measurement up to that point are calculated. Each calculation is performed and these values are output to the printers 40 and 41 (step s17), and the measurement is completed.
  • the inversion groove pitch p of the spacer A in which the spiral groove A 3 that inverts at a predetermined pitch and rotation angle is provided on the outer periphery Both the measurement of the reversal angle 2 ⁇ and the inversion angle 2 ⁇ are made possible during the manufacturing process, and can be carried out over the entire length of the spacer.
  • the inversion pitch p and the inversion angle 2 ⁇ of the spiral spacer A are determined based on the rotation angle and the rotation direction discrimination signal to determine the inversion position of the spiral groove A3, and the speed between the adjacent inversion positions. Since the pulse of the pulse generator 16 and the rotation angle signal are calculated by force, the reverse position is accurately measured even if there is a straight line between the reverse positions where the direction of the spiral groove A 3 changes. can do.
  • the groove detection of the spiral spacer A for supporting the optical fiber configured as described above is performed.
  • the groove abnormality detecting section 2 for detecting the groove abnormality of the spiral groove A3 slidingly contacting from the rotational resistance of the rotating body 3, and the rotation angles of the first and second rotating bodies 17 and 18a
  • a groove pitch and groove reversal angle measuring unit 10 for detecting the groove reversal pitch p and the groove reversal angle of the spiral groove A 3 based on the traveling speed of the optical fiber supporting spacer A and the traveling speed of the optical fiber carrying spacer A.
  • the abnormality and the abnormality of the reversal pitch and the reversal angle can be simultaneously detected during the manufacturing process.
  • the rotating bodies 3, 17, and 18 are provided in the groove abnormality detecting section 2 and the groove pitch and groove reversal angle measuring section 10, respectively.
  • the present invention is not limited to this configuration.
  • the rotating body 3 may be shared with the first rotating body 17.
  • only the measurement of the inversion pitch p is performed. Can also.
  • the arithmetic display 9c of the groove abnormality detecting unit 2 shown in the above embodiment can also be used with the arithmetic processing unit 22 of the groove pitch and groove inversion angle measuring unit 10.
  • the control procedure shown in FIG. 7 may be inserted before step s13 of the control procedure shown in FIG. 10 to form a series of procedures.
  • the inspection apparatus of the spiral spacer for holding an optical fiber of the present invention is installed in the course of the manufacturing process of the spiral spacer, so that the irregularity of the groove shape and the groove over the entire length of the spiral spacer to be manufactured. Since the pitch and the reversal angle can be measured, it is effective in maintaining the transmission performance of an optical cable in which optical fibers are densely assembled.

Abstract

An equipment for inspecting the grooves of a spiral spacer for bearing optical fibers provided, in the outer circumference thereof, with a plurality of spiral grooves running continuously while reversing the rotational direction at a specified angular interval, comprising a rotator rotating as the spacer travels, a section for detecting abnormality of a sliding spiral groove based on the rotational resistance of the rotator, and a section for detecting the pitch of the spiral groove based on the rotational angle of first and second rotators and the traveling speed of the spacer for bearing optical fibers. The abnormality detecting section comprises a guide rail extending linearly, a supporting member provided slidably on the guide rail, the first rotator supported rotatably by the supporting member, and a load detector coupled through a magnetic force attraction means for separating the load detector when a force of a specified level or above is applied to the supporting member.

Description

明細書 光フアイバ担持用螺旋スぺーサの溝検査装置 技術分野 Description Spiral spacer groove inspection device for supporting optical fiber
本発明は、光ファィバ担持用螺旋スぺーサの溝検査装置に係り、特に、 所定角度毎に回転方向が転換し、 かつ、 連続的に走行する複数の螺旋溝 を有する光ファイバ担持用スぺーサを、 製造しながら連続的に螺旋溝の 内面異常と螺旋ピツチ及び反転角度とを測定検査する溝検査装置に関す るものである。 背景技術  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a groove inspection device for a spiral spacer for holding an optical fiber, and more particularly, to an optical fiber holding surface having a plurality of spiral grooves whose rotation direction changes at every predetermined angle and which runs continuously. The present invention relates to a groove inspection apparatus for continuously measuring and inspecting an inner surface abnormality of a spiral groove, a spiral pitch, and a reversal angle while manufacturing a spiral groove. Background art
周知のよ うに、 光ファイバは、 低伝送損失でしかも伝送量が極めて大 きいので通信の分野で広範囲に亘つて実用化が促進されており 、 複数本 の光フアイバをケーブル化して敷設する際には、 外周に光ファイバを担 持するための螺旋溝が形成されたスぺーサをケーブル芯線と して用い、 この螺旋溝に光ファイバを挿入して、 引張, 圧縮, 曲げ等の応力を回避 している。  As is well known, optical fibers have a low transmission loss and a very large transmission amount, and their practical use has been promoted over a wide range in the field of communication.When installing multiple optical fibers in a cable, Uses a spacer in which a spiral groove for supporting the optical fiber is formed on the outer circumference as a cable core wire, and inserts the optical fiber into this spiral groove to avoid stress such as tension, compression, and bending. are doing.
と ころで、 この種のスぺーサの螺旋溝は、 外周を一方から他方に周回 するよ う にして設けられたものと、 外周を所定の角度、 例えば 3 6 0度 の間隔内で反転するよ うにして設けられたものとが提供されている。 前者の周回状の螺旋溝では、 光ファイバを溝内に挿入する場合、 光フ アイバを卷付けたボビンを回転させなければならず、 かなり大型の回転 設備が必要となり 、 設備費が高価になる。 また、 ケーブル化後、 光ファ ィバを途中から分岐しにく いなどの問題がある。  Here, the spiral groove of this type of spacer is provided so that the outer circumference goes around from one side to the other, and the outer circumference is inverted at a predetermined angle, for example, at an interval of 360 degrees. What is provided is provided. In the former spiral groove, when an optical fiber is inserted into the groove, the bobbin around which the optical fiber is wound must be rotated, and a considerably large rotating equipment is required, which increases the equipment cost. . In addition, there is a problem that it is difficult to split the optical fiber midway after the cable is formed.
これに対して後者の反転状の螺族溝では、 ケーブル途中からの分岐取 出しが容易であると と もに、 光ファイバを卷付けたボビンを回転させる 必要がなく 、 回転設備が不要で設備費が安価になるが、 特に、 この形式 の螺旋溝では、 所定の角度間隔毎に溝の方向が反転しており 、 この反転 部分で溝形状に異常が発生し易い。 On the other hand, in the latter inverted thread groove, it is easy to take out the branch from the middle of the cable, and it is not necessary to rotate the bobbin around which the optical fiber is wound, and no rotating equipment is required. Although the cost is low, especially in the spiral groove of this type, the direction of the groove is reversed every predetermined angular interval. Abnormality is likely to occur in the groove shape at the part.
螺旋溝の内周面に微小なこぶゃ凸部などの異常や、 溝ピッチおよび反 転角度に変動が発生すると、 ケーブル化する際に光ファィバを溝内に安 定して収容できないなどの トラブルが生じたり 、ケーブル化ができても、 使用時にこの異常個所によって、 光ファイバに不要な側圧が作用して伝 送損失が増加して、 光フアイバの伝送特性などに悪影響を及ぼす。  If there is an abnormality such as a small bump on the inner peripheral surface of the spiral groove, or if the groove pitch or reversal angle fluctuates, troubles such as the inability to stably store the optical fiber in the groove when making a cable. However, even if a cable can be used, an unnecessary portion acts on the optical fiber to cause an increase in transmission loss due to the abnormal portion during use, thereby adversely affecting the transmission characteristics of the optical fiber.
このよ うな観点から、 特に、 後者の反転状螺旋溝が設けられたスぺー サは、 全長に亘つて溝異常がないこと と、 溝ピッチ及び反転角度に厳格 な寸法精度を要求されている。  From this point of view, in particular, the latter, in which the inverted spiral groove is provided, is required to have no groove abnormality over its entire length and to have strict dimensional accuracy in the groove pitch and the inverted angle.
そこで、 従来は、 光ファイバ担持用スぺーサの走行に伴って回転する の回転体を製造工程の途中に装着し、 回転体の回転抵抗の相違に基づい て、 螺旋溝の内面異常を検知していた。  Therefore, conventionally, a rotating body that rotates with the movement of the optical fiber supporting spacer is mounted in the middle of the manufacturing process, and based on the difference in the rotating resistance of the rotating body, the inner surface abnormality of the spiral groove is detected. I was
しかしながら、 このよ うな従来の螺旋溝の溝異常検査装置では、 螺旋 溝の内周面に微小なこぶゃ凸部などの異常部分がある場合には、 その異 常の検出はできるが、 特に、 高精度が要求されている反転状螺旋溝の螺 ピツチおよび反転角度が正確に形成されているか否かは、 測定検出する こ とができないという問題があった。  However, such a conventional spiral groove anomaly inspection apparatus can detect an abnormal portion such as a small bump on the inner peripheral surface of the spiral groove, but can detect the abnormality. There has been a problem that it is not possible to measure and detect whether or not the screw pitch and the reversal angle of the reversal spiral groove, for which high precision is required, are accurately formed.
本発明は、 このよ うな従来の問題点に鑑みてなされたものであって、 その目的とすると ころは、 特に、 所定の角度間隔で反転する螺旋溝の形 状異常と溝ピッチ及び反転角度の変動を精度良く 、 製造工程の途中で同 時に検知することができる光ファイバ担持用螺旋スぺーザの溝異常検査 装置を提供するこ とにある。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and has as its object to solve the problem, in particular, of the abnormal shape of a spiral groove that reverses at a predetermined angular interval and the groove pitch and the reverse angle. An object of the present invention is to provide an apparatus for inspecting a groove abnormality of a spiral spacer for supporting an optical fiber, which can accurately detect fluctuations at the same time during a manufacturing process. Disclosure of the invention
上記目的を達成するため、 本発明は、 所定の角度間隔で回転方向が反 転し、 かつ、 連続的に走行する複数の螺旋溝が外周に設けられた光ファ ィバ担持用スぺーサの螺旋溝検査装置において、 前記光ファイバ担持用 スぺーザの走行に伴って回転する回転体を備え、 前記回転体の回転抵抗 から摺接する螺旋溝の溝異常を検出する溝異常検出部と、 前記回転体の 回転角度と前記光ファイバ担持用スぺーサの走行速度とから前記螺旋溝 の溝ピッチを検出する溝ピッチ及び溝反転角度測定部とを設けた。 In order to achieve the above object, the present invention provides an optical fiber supporting spacer in which a rotation direction is reversed at predetermined angular intervals and a plurality of spiral grooves running continuously are provided on the outer periphery. A spiral groove inspection device, comprising: a rotating body that rotates with the travel of the optical fiber supporting spacer; a groove abnormality detecting unit that detects a groove abnormality of the spiral groove that slides in contact with the rotational resistance of the rotating body; Of rotating body A groove pitch and groove reversal angle measuring unit for detecting a groove pitch of the spiral groove from a rotation angle and a running speed of the optical fiber supporting spacer is provided.
本発明では、 溝異常検出部は、 直線状に延びる案内レールと、 前記案 内レール上に摺動可能に設けられた支持部材と、 この支持部材に回転可 能に支持された前記回転体と、 前記支持部材に所定値以上の力が加わつ たときに離間する磁力吸着手段を介して結合された荷重検出器とを設け ることができる。  In the present invention, the groove abnormality detection unit includes a guide rail extending linearly, a support member slidably provided on the rail, and the rotating body rotatably supported by the support member. In addition, a load detector coupled via a magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member can be provided.
前記回転体には、 前記光ファイバ担持用スぺーサが揷通される貫通開 口を備え、 前記開口の周囲に、 前記螺旋溝に嵌合する先端部を備えたピ ンゲージを突設配置することができる。  The rotating body has a through-opening through which the spacer for holding the optical fiber is passed, and a pin gauge having a tip portion fitted into the spiral groove is provided around the opening. be able to.
前記荷重検出器は、 密封状態のロー ドセルで構成することができる。 さ らに、 本発明の溝ピッチ及び溝反転角度測定部は、 前記スぺーザの 進行量に対応した信号を発生させる速度パルス発生器と、 前記螺旋溝に 嵌合された前記回転体と、 前記回転角度に対応した回転角度信号と、 前 記回転角度信号から所定角度遅延ないしは進行した回転方向判定信号と . 前記螺旋溝の 1 回転に伴う 1 回転パルス信号とを前記回転体の回転に伴 つて送出するパルス発生器と、 前記回転角度および回転方向判別信号を 受けて、 前記螺旋溝の反転位置を判別し、 隣接する前記反転位置間での 前記速度パルス発生器のパルスおよび前記回転角度信号を計数して、 前 記螺旋溝の溝ピッチ及び溝反転角度を演算する演算装置とから構成され る。  The load detector can be constituted by a sealed load cell. Further, the groove pitch and groove reversal angle measuring unit of the present invention includes: a speed pulse generator that generates a signal corresponding to the advance amount of the soother; the rotating body fitted into the spiral groove; A rotation angle signal corresponding to the rotation angle, a rotation direction determination signal that has been delayed or advanced by a predetermined angle from the rotation angle signal, and a single rotation pulse signal associated with one rotation of the spiral groove are generated as the rotation body rotates. Receiving the rotation angle and rotation direction discrimination signal to determine the reversal position of the spiral groove, and the pulse of the speed pulse generator and the rotation angle signal between the adjacent reversal positions. And a calculating device for calculating the groove pitch and the groove reversal angle of the spiral groove.
また、 前記パルス発生器は、 前記光ファイバ担持用スぺーザの進行方 向に沿って所定の間隔を隔てて配置された一対の第 1, 第 2パルス発生 器からおよび第 3パルス発生器から構成され、 各パルス発生器の前記回 転方向判別信号を受けて、 前記光ファィバ担持用スぺーサの回転方向を 判別する回転方向判別ユニッ トを設け、 前記第 1, 第 2パルス発生器の 回転方向判別信号が一致した時を前記第 3パルス発生器の回転角度信号 の計数開始条件と して、 前記第 3パルス発生器の回転角度を検知し、 前 記回転角度信号の計数開始後の所定時間経過後に検出される変曲点を前 記反転位置と前記演算装置で判断することができる。 図面の簡単な説明 In addition, the pulse generator includes a pair of first and second pulse generators and a third pulse generator that are arranged at a predetermined interval along a traveling direction of the optical fiber supporting spacer. A rotation direction discrimination unit for receiving the rotation direction discrimination signal of each pulse generator and discriminating the rotation direction of the spacer for holding the optical fiber; and providing a rotation direction discrimination unit for the first and second pulse generators. The time when the rotation direction discrimination signal coincides is set as a condition for starting the counting of the rotation angle signal of the third pulse generator, and the rotation angle of the third pulse generator is detected, and after the counting of the rotation angle signal is started. Before the inflection point detected after the elapse of the predetermined time It is possible to determine the inverted position and the arithmetic unit. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明にかかる光ファィバ担持用螺旋スぺーサの溝検査装 置の検査対象である螺旋スぺーザの要部外観図である。  FIG. 1 is an external view of a main part of a spiral spacer to be inspected by a groove inspection device of a spiral spacer for carrying an optical fiber according to the present invention.
第 2図は、 図 1 に示した螺旋スぺーサの断面図である。  FIG. 2 is a cross-sectional view of the spiral spacer shown in FIG.
第 3図は、 本発明にかかる光ファイバ担持用螺旋スぺーザの溝検査装 置の全体配置図である。  FIG. 3 is an overall layout diagram of a groove inspection device of a spiral spacer for supporting an optical fiber according to the present invention.
第 4図は、 第 3図の要部説明図である。  FIG. 4 is an explanatory diagram of a main part of FIG.
第 5図は、 第 3図の要部拡大図である。  FIG. 5 is an enlarged view of a main part of FIG.
第 6図は、 第 5図に示した溝異常検出部の電気系統のブロ ック図であ る。  FIG. 6 is a block diagram of an electric system of the groove abnormality detecting section shown in FIG.
第 7図は、 第 6図に示した演算表示器の処理手順のフローチャー ト図 である。  FIG. 7 is a flowchart of a processing procedure of the operation display unit shown in FIG.
第 8図は、 第 3図に示した溝ピッチ及び溝反転角度測定部の詳細図で める。  FIG. 8 is a detailed view of the groove pitch and groove reversal angle measuring unit shown in FIG.
第 9図は、 第 8図に示した溝ピッチ及び溝反転角度測定部の演算装置 の構成図である。  FIG. 9 is a configuration diagram of an arithmetic unit of the groove pitch and groove reversal angle measuring unit shown in FIG.
第 1 0図は、 第 8図に示した演算装置で実行される溝反転角度演算処 理手順のフローチャー ト図である。  FIG. 10 is a flowchart of a groove inversion angle calculation processing procedure executed by the calculation device shown in FIG.
第 1 1 図は、 第 1 0図のフローチャー トでピーク値とボ トム値とを求 める際の説明図である。 発明を実施するための最良の形態  FIG. 11 is an explanatory diagram for obtaining a peak value and a bottom value in the flowchart of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の形態について実施例に基づいて詳細に説明す る。本発明にかかる光フアイバ担持用螺旋スぺーサの溝検査装置 1 では、 第 1 , 2図に示した螺旋スぺーサ Aがその検査対象となっている。  Hereinafter, embodiments of the present invention will be described in detail based on examples. In the groove inspection apparatus 1 for a spiral spacer for holding an optical fiber according to the present invention, the spiral spacer A shown in FIGS. 1 and 2 is to be inspected.
これらの図に示した螺旋スぺーサ Aは、 中央に配置された抗張力線 A 1 と、 その外周に被覆形成された合成樹脂製の本体部 A 2 とを備えてい る。 The spiral spacer A shown in these figures has a tensile strength line A 1 disposed at the center and a synthetic resin main body A 2 formed on the outer periphery thereof. You.
本体部 A 2には、 その長手軸方向に沿って所定の回転角度 2 ctで反転 し、 連続的に走行する断面が、 凹形の複数条の螺旋溝 A 3を有し、 各螺 旋溝 Aは、 所定の溝反転ピッチ pで形成されており、 この螺旋溝 A 3の 内面異常と、 その溝反転ピッチ p とが測定検査される。  The main body portion A 2 has a plurality of concave spiral grooves A 3 that are inverted at a predetermined rotation angle 2 ct along the longitudinal axis direction and continuously run, and each of the spiral grooves has a concave section. A is formed at a predetermined groove inversion pitch p, and the inner surface abnormality of the spiral groove A3 and the groove inversion pitch p are measured and inspected.
本実施例の場合、 溝検査装置 1 は、 第 3図にその全体配置状態を示す よ うに、 同図の矢印方向に走行する螺族スぺーサ Aの製造工程の途中に 設けられた一対の引取機 1 4 , 1 4間にあって、 筐体 2 4上に設置され ている溝異常検出部 2 と、 溝ピッチ及び溝反転角度測定部 1 0 とから構 成されている。  In the case of the present embodiment, as shown in FIG. 3, the groove inspection device 1 is a pair of grooves provided in the middle of the manufacturing process of the threaded spacer A traveling in the direction of the arrow in FIG. It is provided between the take-off machines 14, 14, and comprises a groove abnormality detecting section 2 installed on the housing 24, and a groove pitch and groove inversion angle measuring section 10.
筐体 2 4上には、 溝異常検出部 2 と溝ピッチ及び溝反転角度測定部 1 0 とを挟むよ うにして、 同一構成の一対の案内ローラ装置 2 6が設置さ れている。 各案内ローラ装置 2 6は、 第 4図にその詳細を示すよ うに、 螺旋スぺーサ Aを 4方向から挟み込むよ うにした 4個の井桁ローラ 2 6 a〜 2 6 dから構成されている。  A pair of guide roller devices 26 having the same configuration is provided on the housing 24 so as to sandwich the groove abnormality detection unit 2 and the groove pitch and groove inversion angle measurement unit 10. As shown in detail in FIG. 4, each guide roller device 26 is composed of four cross-girder rollers 26a to 26d that sandwich the spiral spacer A from four directions.
このよ う に構成した案内ローラ装置 2 6は、 螺旋スぺーサ Aを引取機 1 4で引取る際の上下, 左右の振動が、 溝異常検出部 2や溝ピッチ及び 溝反転角度測定部 1 0の測定誤差と して現われないよ う に配慮している c 溝異常検出部 2は、 溝ピッチ及び溝反転角度測定部 1 0の前段側に配 置され、 光フアイバ担持用螺旋スぺーサ Aの走行に伴って回転する回転 体 3を備え、 この回転体 3 の回転抵抗から摺接する螺旋溝 A 3 の溝異常 を検出することが基本構成となっている。 The guide roller device 26 configured in this way is capable of detecting the vertical and horizontal vibrations when the spiral spacer A is pulled by the puller 14 by the groove abnormality detector 2 and the groove pitch and groove reversal angle measuring unit 1. The c- groove anomaly detector 2, which is designed so as not to appear as a measurement error of 0, is disposed in front of the groove pitch and groove reversal angle measurement unit 10 and is a spiral spacer for holding an optical fiber. A basic configuration is provided with a rotating body 3 that rotates as the vehicle travels along A, and detects a groove abnormality of the spiral groove A 3 that is in sliding contact from the rotation resistance of the rotating body 3.
本実施例の溝異常検出部 2は、 第 5図に示すよ うに、 筐体 2 4に固定 され、 直線状に延びる案内レール 4上に設置されている。 この案内レー ル 4上には、 回転体 3 の支持部材 5力 S、 案内レール 4 の長手軸方向に沿 つてスライ ド移動自在に設けられている。  As shown in FIG. 5, the groove abnormality detecting section 2 of the present embodiment is fixed to a housing 24 and installed on a guide rail 4 extending linearly. On the guide rail 4, a support member 5 force S of the rotating body 3 and a slide movable along the longitudinal axis direction of the guide rail 4 are provided.
この支持部材 5は、 案内レール 4に嵌合されて、 摺動自在に設けられ たスライ ド台 5 a、 および、 このスライ ド台 5 a に支持され、 垂直方向 上方に延びる垂直支持プレー ト 5 bを有している。 垂直支持プレー ト 5 bの上部には、 円盤状の回転体 3力 S、 ベア リ ング 6を介して水平軸を中心と して回転可能に支持されている。 この回転体 3は、 円板状の本体 3 aの中心部に、 製造工程の途中に設けられた一対 の引取機 1 4 , 1 4間を走行する螺旋スぺ一サ Aが揷通される円形の貫 通開口 3 bが形成されている。 The support member 5 is fitted on the guide rail 4 and slidably provided on a slide base 5a, and a vertical support plate 5 supported on the slide base 5a and extending vertically upward. has b. The upper part of the vertical support plate 5b is rotatably supported about a horizontal axis via a disc-shaped rotating body 3 force S and a bearing 6. The rotating body 3 has a central part of a disk-shaped main body 3a, through which a spiral sensor A running between a pair of take-off machines 14 and 14 provided in the middle of a manufacturing process is passed. A circular through-opening 3b is formed.
回転体 3の貫通開口 3 bの内周側には、 螺旋溝 A 3の数に対応した本 数のピンゲージ 3 c力 S、ねじで固定され、各ピンゲージ 3 cの先端側が、 貫通開口 3 bの内方に突出している。  On the inner peripheral side of the through-opening 3 b of the rotating body 3, the number of pin gauges 3 c corresponding to the number of the spiral grooves A 3 is fixed with screws S and screws, and the distal end side of each pin gauge 3 c is provided with the through-opening 3 b It protrudes inward.
各ピンゲージ 3 cは、 その突出形状が、 螺旋溝 Aの形状に対応した形 に形成されている。 これらの螺旋溝 A 3 と ピンゲージ 3 c との形状関係 は、螺旋スぺーサ Aの螺旋溝 A 3 を形成する壁とゲージ 3 cの外面とが、 密着状態に近い状態となるよ うに設定されている。  Each of the pin gauges 3 c has a projecting shape corresponding to the shape of the spiral groove A. The shape relationship between the spiral groove A 3 and the pin gauge 3 c is set such that the wall forming the spiral groove A 3 of the spiral spacer A and the outer surface of the gauge 3 c are in a state close to the close contact state. ing.
一方、 案内レール 4の側方には、 支持部材 5の近傍に位置して、 荷重 の大き さを電気信号に変換して送出する密封状態のロー ドセル (荷重検 出器) 7が配置されている。  On the other hand, on the side of the guide rail 4, a sealed load cell (load detector) 7 that converts the magnitude of the load into an electric signal and sends it out is disposed near the support member 5. I have.
ロー ドセル 7 と して代表的なものは、 周知のよ うに、 歪ゲージ、 およ び、 これに連結された起歪柱がケースに封入された歪ゲージ式のもので あり、 本実施例では、 例えば、 この歪ゲージ式のものが採用される。  As is well known, a typical example of the load cell 7 is a strain gauge and a strain gauge type in which a strain-generating column connected to the strain gauge is enclosed in a case. For example, this strain gauge type is adopted.
このロー ドセル 7 とスライ ド台 5 a とは、 連結部材 8によって連結さ れている。 この連結部材 8は、 スライ ド台 5 a に固定された第 1連結部 8 a と、 ロー ドセル 7側に固定された第 2連結部 8 b とで構成されてい る。  The load cell 7 and the slide table 5 a are connected by a connecting member 8. The connecting member 8 includes a first connecting portion 8a fixed to the slide table 5a and a second connecting portion 8b fixed to the load cell 7 side.
本実施例の場合には、 第 2連結部 8 bに永久磁石が内蔵され、 第 1連 結部 8 aは、 この磁石で吸着可能な金属材料から構成され、 定常状態で は、 第 1連結部 8 aが第 2連結部 8 bに吸着結合されている。  In the case of the present embodiment, a permanent magnet is built in the second connecting portion 8b, and the first connecting portion 8a is made of a metal material that can be attracted by this magnet. The portion 8a is adsorbed to the second connecting portion 8b.
以上のよ うに構成された溝異常検出部 2では、 螺旋スぺーサ Aが走行 すると、 螺旋溝 A 3に回転体 3が嵌合されているので、 回転体 3は、 螺 旋スぺーサ Aの走行に伴って、 螺旋溝 A 3の回転方向と同方向に、 所定 の角度間隔毎に反転しながら回転する。 この際に、回転体 3は、螺旋スぺーサ Aの走行に対して、負荷となリ、 スぺーサ Aの走行に伴い、 回転体 3を支持しているスライ ド台 5 a は、 案内レール 4上を後方側へ摺勤移動しよ う とする。 In the groove abnormality detection unit 2 configured as described above, when the spiral spacer A travels, the rotating body 3 is fitted into the spiral groove A 3, and therefore, the rotating body 3 includes the spiral spacer A. As the vehicle travels, it rotates in the same direction as the rotation direction of the spiral groove A3 while reversing at predetermined angular intervals. At this time, the rotating body 3 becomes a load with respect to the traveling of the spiral spacer A, and the slide table 5a supporting the rotating body 3 is guided by the traveling of the spacer A. Attempts to move rearward on rail 4.
この時の水平方向の作用力は、 第 1および第 2連結部 8 a , 8 b を介 して、 ロー ドセル 7に伝達され、 その結果、 ロー ドセル 7には、 螺旋ス ぺーサ Aの走行方向と同じ方向の荷重が伝達される。  The horizontal acting force at this time is transmitted to the load cell 7 via the first and second connecting portions 8a and 8b, and as a result, the load cell 7 is driven by the spiral spacer A The load is transmitted in the same direction as the direction.
こ こで、 スライ ド台 5 aが摺動移動しょ う とする作用力をロー ドセル 7に伝達する連結部材 8は、 永久磁石によって吸着された第 1および第 2連結部 8 a , 8 bで構成されている。  Here, the connecting member 8 for transmitting the acting force of the slide base 5a to slide and move to the load cell 7 is formed by the first and second connecting portions 8a and 8b attracted by the permanent magnet. It is configured.
このため、 永久磁石の吸着力を、 回転体 3に所定値以上の力が作用し たときに、 第 1 および第 2連結部 8 a , 8 b の結合が離脱するよ うにし ておく と、 溝異常が発生した際に、 検出装置 2の破損を防止することが できる。  For this reason, if the attraction force of the permanent magnet is set so that the coupling between the first and second connecting portions 8a and 8b is released when a force of a predetermined value or more acts on the rotating body 3, When a groove abnormality occurs, it is possible to prevent the detection device 2 from being damaged.
一方、 ロー ドセル 7は、 第 6図に示すよ うに、 増幅器 9 a を介して演 算表示器 9 bに電気的に接続されている。 演算表示器 9 bは、 いわゆる パソコンから構成され、 インタフェイスやメモリおよび入力キーボー ド などを備えていて、 この演算表示器 9 bには、 表示器 9 c と警報器 9 d とが接続されている。  On the other hand, as shown in FIG. 6, the load cell 7 is electrically connected to the operation display 9b via the amplifier 9a. The operation display 9b is composed of a so-called personal computer, and includes an interface, a memory, an input keyboard, and the like. The operation display 9b is connected to a display 9c and an alarm 9d. I have.
本実施例の場合、 演算表示器 9 bは、 ロー ドセル 7から送出される荷 重検出値 Rを入力信号と して、 第 7図に示す手順に従い、 螺旋溝 A 3の 溝異常を検出する。  In the case of the present embodiment, the operation display 9b detects the groove abnormality of the spiral groove A3 according to the procedure shown in FIG. 7 using the load detection value R sent from the load cell 7 as an input signal. .
第 7図に示した手順では、 まず、 手順がスター トすると、 ステップ 1 で、 初期設定が行われる。 この初期設定では、 ロー ドセル 7 の検出する 荷重検出値 Rに対して、 螺旋溝 A 3が溝異常であると判断する危険値 R m a Xが設定される。  In the procedure shown in FIG. 7, first, when the procedure starts, in step 1, initial settings are performed. In this initial setting, a danger value R max that determines that the spiral groove A 3 is abnormal is set for the load detection value R detected by the load cell 7.
この危険値 R m a Xは、 過去の経験値や実測値の平均などから導き出 される。 危険値 R m a Xの設定が終了すると、 ステ ップ 2で、 ロー ドセ ル 7の荷重検出値 Rが取込まれ、 その値が、 測定値と して表示器 9 c に 表示される。 次に、 ステップ 3で、 荷重検出値 Rが危険値 R m a x よ り も大きいか 否かが判断され、荷重検出値 Rが危険値 R m a X よ り も小さい場合には、 ステップ 4で、 溝異常の測定を終了するか否かを判断して、 測定が終了 していなければ、 ステップ 2に戻り溝異常の測定を継続する。 This risk value R max is derived from past experience values, averages of actually measured values, and the like. When the setting of the dangerous value R max is completed, in step 2, the load detection value R of the load cell 7 is acquired, and the value is displayed on the display 9c as a measured value. Next, in step 3, it is determined whether the load detection value R is greater than the danger value Rmax. If the load detection value R is smaller than the danger value Rmax, the groove is determined in step 4 in step 4. Judgment is made as to whether or not measurement of abnormality is to be completed.
一方、 ステ ップ 3 で、 荷重検出値 Rが危険値 R m a X よ り も大きいと 判断された場合には、螺旋溝 A 3に異常が発生していることになるので、 ステップ 5で、 警報器 9 dを作動させて、 その旨を警告すると ともに、 異常が発生した時点のスぺーサ Aの条長を表示して、ステップ 4に戻る。 以上のよ う に構成した溝異常検出部 2においては、螺旋スぺーサ Aを、 回転体 3 の貫通開口 3 bに揷通した状態で走行させると、 螺旋スぺーサ Aの螺旋溝 A 3 と、 この螺旋溝 A 3に嵌合する回転体 3のピンゲージ 3 c との摺接に基づく走行抵抗によ り、 回転体 3 の回転力に転換され、 ス ライ ド台 5 a と と もにこれを案内レール 4上の後方側に移動させよ う と する水平方向の力が作用する。  On the other hand, if it is determined in step 3 that the load detection value R is larger than the dangerous value R max, it means that an abnormality has occurred in the spiral groove A 3, so that in step 5, Activate the alarm 9d to warn of this, display the length of the spacer A at the time of occurrence of the abnormality, and return to step 4. In the groove abnormality detection unit 2 configured as described above, when the spiral spacer A is run in a state of passing through the through-opening 3b of the rotating body 3, the spiral groove A of the spiral spacer A 3 The rotational resistance of the rotating body 3 is converted into the rotating force of the rotating body 3 by the sliding resistance of the rotating body 3 fitted into the spiral groove A3 and the pin gauge 3c, and the slide table 5a is formed together with the sliding force. A horizontal force acts to move this rearward on the guide rail 4.
この水平力は、 磁石で吸着結合された連結部材 3を介して、 ロー ドセ ル 7に伝達される。 ロー ドセル 7は、 この水平力に対応した荷重を検出 し、 これを荷重検出値尺と してそれを電気信号に変換して演算表示器 9 b に出力する。  This horizontal force is transmitted to the load cell 7 via the connecting member 3 attracted and connected by the magnet. The load cell 7 detects a load corresponding to the horizontal force, converts it into a load detection scale, converts it into an electric signal, and outputs it to the operation display 9b.
演算表示器 9 bは、 ロー ドセル 7 の出力信号に基づき、 螺施スぺーサ Aの螺旋溝 Aの状態を監視し、 荷重検出値 Rの大きさに基づいて、 螺旋 溝 A 3の内面の異常を検出する。  The operation indicator 9 b monitors the state of the spiral groove A of the threaded spacer A based on the output signal of the load cell 7, and based on the magnitude of the load detection value R, the inner surface of the spiral groove A 3 Detect abnormalities.
この場合、 螺旋溝 A 3の溝異常が、 極端に大きい場合には、 回転体 3 の走行抵抗が極めて大き く なるが、 その際には、 その走行抗力が永久磁 石の吸着力を超え、その結果、連結部材 8 の第 1および第 2連結部 8 a , 8 b間の結合がなく なり、 スライ ド台 5 aの後方移動が許容されて、 支 持部材 5, 回転体 3等の部品やロー ドセル 7が破損するよ うなことがな く なる。  In this case, when the groove abnormality of the spiral groove A 3 is extremely large, the running resistance of the rotating body 3 becomes extremely large, but in that case, the running drag exceeds the attraction force of the permanent magnet, As a result, the connection between the first and second connecting portions 8a and 8b of the connecting member 8 is lost, and the slide table 5a is allowed to move backward, and the support member 5, the rotating body 3 and other components are allowed. And the load cell 7 will not be damaged.
なお、 この際のスライ ド台 5 aの後方移動は、 スライ ド台 5 aが近接 スィ ッチ 5 c に当接すると、 引取機 1 4 の駆動を停止して、 安全性を確 保するよ う になつている。 In this case, when the slide base 5a moves rearward when the slide base 5a abuts on the proximity switch 5c, the drive of the take-off machine 14 is stopped to ensure safety. To keep it.
一方、 溝ピッチ及び溝反転角度測定部 1 0は、 第 3図に示すよ うに、 速度パルス発生器 1 6 と、 一対の第 1および第 2回転体 1 7, 1 8 と、 第 1回転体 1 7 の上部に配置された第 1および第 3パルス発生器 1 9, 2 1 と、 第 2回転体上部に第 2パルス発生器と、 演算装置 2 2 とから概 略構成されている。  On the other hand, as shown in FIG. 3, the groove pitch and groove inversion angle measuring unit 10 includes a speed pulse generator 16, a pair of first and second rotating bodies 17 and 18, and a first rotating body. The first and third pulse generators 19 and 21 are provided above the first rotating body 17, the second pulse generator is provided above the second rotating body, and the arithmetic unit 22 is generally configured.
速度パルス発生器 1 6は、 スぺーサ Aの進行量に対応したパルス信号 を発生するものであって、 前方の引取機 1 4内に設置されている。  The speed pulse generator 16 generates a pulse signal corresponding to the travel of the spacer A, and is installed in the take-off machine 14 in front.
第 1 , 第 2回転体 1 7, 1 8は、 実質的に同一構成のものであって、 螺旋スぺーサ Aの進行方向に沿って所定の間隔を隔てて設けられており . 各回転体 1 7, 1 8は、 螺旋スぺーサ Aの螺旋溝 A 3に嵌合して、 スぺ ーサ Aの進行に伴って回転するものであって、 引取機 1 4 , 1 4 ' 間に 設置された筐体 2 4上に設けられている。  The first and second rotating bodies 17 and 18 have substantially the same configuration, and are provided at predetermined intervals along the traveling direction of the spiral spacer A. 17 and 18 are fitted into the spiral groove A 3 of the spiral spacer A and rotate as the spacer A advances, and are disposed between the take-off machines 14 and 14 ′. It is provided on the installed housing 24.
第 1回転体 1 7 の詳細を第 8図に示している。 なお、 この第 1および 第 2回転体 1 7 , 1 8 の構成は、 第 1 回転体 1 7 の上部に第 3パルス発 生器を積載したこと以外は全く 同一なので、 以下の説明では、 前方側に 設けられた一方の第 1 回転体 1 7を代表にして説明する。  FIG. 8 shows the details of the first rotating body 17. The configuration of the first and second rotating bodies 17 and 18 is completely the same except that the third pulse generator is mounted on the first rotating body 17. A description will be given by taking the first rotating body 17 provided on the side as a representative.
同図に示した第 1 回転体 1 7は、 外周部にギア 1 7 a が嵌着固定され た鍔付き中空円筒状の本体 1 7 b と、複数のピン 1 7 c とを備えている。  The first rotating body 17 shown in the figure includes a hollow cylindrical main body 17b with a gear 17a fitted and fixed to the outer peripheral portion, and a plurality of pins 17c.
ピン 1 7 c は、 スぺーサ Aの螺旋溝 A 3内に先端側が嵌合挿入される ものであって、 本体 1 7 bの鍔部に凹設され、 中心方向を指向する放射 溝内にネジによ り 固定されている。  The pin 17c has a distal end fitted and inserted into the spiral groove A3 of the spacer A. The pin 17c is recessed in a flange portion of the main body 17b, and is inserted into a radiation groove pointing in the center direction. It is fixed with screws.
第 1回転体 1 7は、 スぺーサ Aの揷通孔が設けられたホルダ 3 0によ り回転自在支持されている。 ホルダ 3 0は、 支持脚 3 2によ り支持され ていて、 支持脚 3 2は、 筐体 2 4上に固設されている。  The first rotating body 17 is rotatably supported by a holder 30 provided with a through hole for the spacer A. The holder 30 is supported by support legs 32, and the support legs 32 are fixed on the housing 24.
第 1 パルス発生器 1 9及び第 3パルス発生器 2 1 は、 ホルダ 3 0の上 端側に固設されたフランジ 3 4に取付け支持されていて、 第 1 パルス発 生器 1 9 の回転軸 1 9 0には、ギア 1 7 a と歯合する従動ギア 1 9 1 力 S、 そして第 3パルス発生器 2 1 の回転軸 2 1 0には、 従動ギア 1 9 1 と歯 合する従動ギア 2 1 1 が固設されている。 The first pulse generator 19 and the third pulse generator 21 are mounted and supported on a flange 34 fixed to the upper end of the holder 30, and the rotation axis of the first pulse generator 19 is The driven gear 191, which is in mesh with the gear 17a, has a driven force S, and the rotating shaft 21 of the third pulse generator 21 has a driven gear 191, The corresponding driven gear 2 1 1 is fixed.
第 1パルス発生器 1 9および第 2パルス発生器 2 0は、 スぺーサ Aが 進行すると、 これに伴って回転体 1 7、 1 8が回転し、 回転体 1 7、 1 8の回転によ り回転駆動されて、 それぞれ角度信号 θ 1 , 0 2が送出さ れる。 これらの角度信号が一致したときに S Z ピッチ信号 (一致信号) s が比較器 3 0から出力される。  When the spacer A advances, the first pulse generator 19 and the second pulse generator 20 rotate the rotating bodies 17 and 18 accordingly, and rotate the rotating bodies 17 and 18. The rotation is further performed, and the angle signals θ 1 and 02 are respectively transmitted. When these angle signals match, the SZ pitch signal (match signal) s is output from the comparator 30.
角度信号 0 1 , Θ 2がー致する条件の判断は、 方向を考慮しない絶対 値で行われ、 一対の第 1および第 2回転体 1 7 , 1 8が所定の間隔を隔 てて設置されているので、 後述する図 1 2に示すよ うに、 ピークおよび ボ トム値を中心にして、 その両側に第 1および第 2回転体 1 7, 1 8が 等間隔になる個所 ( i , i i i )、 および、 0を中心にして、 その両側に 第 1および第 2回転体 1 7, 1 8が等間隔になる個所 ( i i ) で、 それ ぞれ S Z ピッチ信号 s が比較器 3 0から出力されるこ とになる。  The determination of the condition that the angle signals 0 1 and Θ 2 match is made by an absolute value that does not consider the direction, and a pair of first and second rotating bodies 17 and 18 are installed at a predetermined interval. Therefore, as shown in Fig. 12 below, the first and second rotating bodies 17 and 18 are equally spaced on both sides of the peak and bottom values (i, iii). At the point (ii) where the first and second rotating bodies 17 and 18 are equally spaced on both sides with respect to the center of,, and 0, the SZ pitch signal s is output from the comparator 30 respectively. It will be.
演算装置 2 2の構成図を第 9図に示している。 同図に示した演算装置 2 2は、 C P U 2 2 a、 高速カウンタユニッ ト 2 2 b、 入力ユニッ ト 2 2 c、 出力ユニッ ト 2 2 d、 及び DZA変換ユニッ ト 2 2 e とを有して いる。  The configuration diagram of the arithmetic unit 22 is shown in FIG. The arithmetic unit 22 shown in the figure has a CPU 22a, a high-speed counter unit 22b, an input unit 22c, an output unit 22d, and a DZA conversion unit 22e. ing.
入力ユニッ ト 2 2 c には、 第 1 , 第 2パルス発生器 1 9 , 2 0の出力 信号が、 比較器 3 0を介して入力されると ともに、 筐体 2 4に設けられ た溝ピツチ表示部 3 4および溝反転角度表示部 3 6が接続されている。  The output signals of the first and second pulse generators 19 and 20 are input to the input unit 22 c via the comparator 30 and the groove pitch provided in the housing 24. The display 34 and the groove reversal angle display 36 are connected.
これらの各表示部 3 4 , 3 6は、 現在の測定値の表示と、 設定値の表 示および許容値の表示が可能になっている。 また、 第 1および第 2パル ス信号発生器 1 9 , 2 0から送出される角度信号 0 1 , 0 2を受けて、 光ファイバ担持用スぺーサ Aの反転ピッチ毎に一致信号 s を発生させる 比較器 3 0が入力ユニッ ト 2 2 cに接続されている。  Each of these display sections 34 and 36 is capable of displaying a current measured value, a set value, and a permissible value. Further, in response to the angle signals 01 and 02 sent from the first and second pulse signal generators 19 and 20, a coincidence signal s is generated for each inversion pitch of the optical fiber supporting spacer A. The comparator 30 is connected to the input unit 22c.
第 3パルス発生器 2 1 は、 回転方向判別信号 f を送出させる方向判別 ユニッ ト 2 2 f を介して、 入力ユニッ ト 2 2 c に接続されている。 さ ら に第 3パルス発生器 2 1 は、 高速カウンタユニッ ト 2 2 bに接続され、 この高速カウンタュニッ ト 2 2 bを介して、 入力ユニッ ト 2 2 c に接続 されている。 The third pulse generator 21 is connected to the input unit 22c via the direction determining unit 22f for transmitting the rotation direction determining signal f. Further, the third pulse generator 21 is connected to the high-speed counter unit 22b, and is connected to the input unit 22c via the high-speed counter unit 22b. Have been.
なお、 速度パルス発生器 1 6は、 入力ユニッ ト 2 2 c に接続されてい る。 出力ユニッ ト 2 2 dには、 ピッチ印字用プリ ンタ 4 0 , 反転角度印 字用プリ ンタ 4 1 、 警報器 4 6、 および D / A変換ュニッ ト 2 2 e を介 して S Z波形記録計 4 2が接続されている。  The speed pulse generator 16 is connected to the input unit 22c. The output unit 22 d has an SZ waveform recorder via a pitch printing printer 40, a reverse angle printing printer 41, an alarm 46, and a D / A conversion unit 22 e. 4 2 are connected.
C P U 2 2 aでは、 回転角度信号 0 1, 0 2からの一致信号 s を受け て、 螺旋溝 1 3 a の反転位置を判別し、 螺旋溝 A 3 の溝反転ピッチ p を 演算すると と もに、 隣接する反転位置間での第 3パルス発生器 2 1 のパ ルスを高速カウンタュニッ ト 2 2 bで計数して、 反転角度 ( 2 α ) を演 算する。  The CPU 22a receives the coincidence signal s from the rotation angle signals 01 and 02, determines the reversal position of the spiral groove 13a, and calculates the groove reversal pitch p of the spiral groove A3. The pulses of the third pulse generator 21 between adjacent inversion positions are counted by the high-speed counter unit 22b, and the inversion angle (2α) is calculated.
次に、 C P U 2 2 aで実行されるの演算手順の一例を第 1 0図に基づ いて説明する。  Next, an example of a calculation procedure executed by the CPU 22a will be described with reference to FIG.
第 1 0図に示した手順が開始されると、 ステップ s 1 で、 螺旋溝 A 3 の反転角度 2 α及び溝ピッチ pの設定値および設定値が入力されると と もに、 これらの許容値も合せて入力される。  When the procedure shown in FIG. 10 is started, in step s1, the set value and the set value of the reversal angle 2α and the groove pitch p of the spiral groove A3 are inputted, and these allowable values are set. The value is also entered.
続く ステップ s 2では、 方向判別ュニッ ト 2 2 f の信号 f を取込み、 その出力信号 dが C Wになるまで待機する。 この信号 f が C Wになった と判断されるとステップ s 3に移行する。  In the following step s2, the signal f of the direction discriminating unit 22f is acquired, and the process waits until the output signal d becomes CW. When it is determined that the signal f has become CW, the process proceeds to step s3.
ステップ s 3では、 比較器 3 0からの一致信号 s が送られるまで待機 し、 一致信号 s が得られる と、 ステップ s 4で、 第 3パルス発生器 2 1 の回転角度信号 b を受けて、 その所定時間ごとの高速カウンタュニッ ト 2 2 bのカウンタ値を取込むと ともに、 高速カウンタュニッ ト 2 2 bの 力ゥンタ値の前後を、 所定時間間隔毎に順次比較することによ り ピーク 値が検出されたか否かが判断され、 その値が求められる。  In step s3, the process waits until the coincidence signal s from the comparator 30 is sent.When the coincidence signal s is obtained, in step s4, the rotation angle signal b of the third pulse generator 21 is received. The counter value of the high-speed counterunit 22b at each predetermined time is captured, and the peak value is detected by sequentially comparing the power counter value of the high-speed counterunit 22b before and after at predetermined time intervals. It is determined whether or not it has been performed, and its value is obtained.
このピーク値の判断手順では、 第 1 2図に示すよ うに、 第 3パルス発 生器 2 1 の回転角度信号 b の変曲点 X。を検出するものであって、 この変 曲点 X。が検出されると、その時の高速カウンタュニッ ト 2 2 bのカウン タ値がピーク値 P。と して記憶される。  In the procedure for determining the peak value, as shown in FIG. 12, the inflection point X of the rotation angle signal b of the third pulse generator 21 is determined. And this inflection point X. Is detected, the counter value of the high-speed counter unit 22b at that time becomes the peak value P. It is stored as
なお、 第 1 2図に示した回転角度信号 bは、 第 3パルス発生器 2 1 か ら送出されるパルス信号を、 高速カウンタにて計測し、 これを D Z A変 換した波形と して示している。 It should be noted that the rotation angle signal b shown in FIG. The high-speed counter measures the pulse signal sent from the device and shows this as a DZA-converted waveform.
続く ステップ s 5では、 方向判別ュニッ ト 2 2 f が C C Wになるまで 待機し、 C C Wになったと判断されると、 ステップ s 6 に移行する。 な お、 第 1 2図に示した例では、 一致信号 s は、 前述したよ う に、 0 を中 心にして、 その両側に第 1および第 2回転体 1 7, 1 8が等間隔になる 個所 ( i i ) でも送出されるが、 本実施例の場合には、 この時の一致信 号 s は、 第 3パルス発生器 2 1がこの信号が送出された後に、 変曲点、 すなわち、 回転方向が C Wから C C W、 ないしは、 C C Wから C Wに変 化しない場合には、 これを無視するよ うに構成している。  In the following step s5, the process waits until the direction discrimination unit 22f becomes CCW, and when it is determined that CCW has come, the process proceeds to step s6. In the example shown in FIG. 12, as described above, the coincidence signal s is centered around 0, and the first and second rotating bodies 17 and 18 are arranged at equal intervals on both sides thereof. However, in the case of the present embodiment, the coincidence signal s at this time is generated at the inflection point, that is, after the third pulse generator 21 transmits this signal. If the rotation direction does not change from CW to CCW, or from CCW to CW, this is ignored.
また、 本実施例の場合には、 第 1 1 図に示したよ うに、 方向判別信号 f にチャタ リ ング Cが発生した場合には、信号の送出時間が、所定時間、 例えば、 0 . 7秒以下であれば、 これを無視して、 方向判別信号 f と し て採用しないよ うにしている。  In the case of the present embodiment, as shown in FIG. 11, when chattering C occurs in the direction discrimination signal f, the signal transmission time becomes a predetermined time, for example, 0.7 seconds. In the following cases, this is ignored and is not adopted as the direction discrimination signal f.
一方、 ステップ 6では、 比較器 3 0から次の一致信号 sが送られるま で待機し、 一致信号 s が得られると、 ステップ 7で、 第 3パルス発生器 2 1 の回転角度信号 b を受けて、 その所定時間ごとの高速カ ウンタュニ ッ ト 2 2 bのカウンタ値を取込み、 高速カウンタュニッ ト 2 2 bのカウ ンタ値の前後を順次比較するこ とによ り ボ トム値 B。が検出されたか否 かが判断され、 その値が求められる。  On the other hand, in step 6, the process waits until the next coincidence signal s is sent from the comparator 30. When the coincidence signal s is obtained, in step 7, the rotation angle signal b of the third pulse generator 21 is received. Then, the counter value of the high-speed counter unit 22b at each predetermined time is acquired, and the bottom value B is obtained by sequentially comparing the counter value of the high-speed counter unit 22b before and after. It is determined whether or not is detected, and its value is determined.
このボ トム値 B。の判断手順では、第 3パルス発生器 2 1 の回転角度信 号 bの変曲点 を検出するものであって、 この変曲点 が検出される と、 その時の高速カウンタュニッ ト 2 2 bのカウンタ値がボ トム値 B。 と して記憶される。  This bottom value B. In this judgment procedure, the inflection point of the rotation angle signal b of the third pulse generator 21 is detected. When this inflection point is detected, the counter of the high-speed counter unit 22b at that time is detected. Value is bottom value B. It is stored as
次のステップ s 8で、 反転角度 2 αの演算が行われる。 この演算は、 カウンタ値差 =ピーク値 Ρ。一ボ トム値 Β。である。 また、 このステップ s 8では、 溝ピッチ ρ の演算も行われる。  In the next step s8, the calculation of the reversal angle 2α is performed. This calculation is: counter value difference = peak value Ρ. One bottom value Β. It is. In step s8, the calculation of the groove pitch ρ is also performed.
溝ピッチ ρは、 ピーク値 Ρ。とボ トム値 Β。とが求められた間の、 速度 パルス発生器 1 6のパルス数を C P U内の演算回路 ( P L C、 図示せず) で計数することで求められる。 The groove pitch ρ is the peak value Ρ. And the bottom value Β. During the calculation of the speed, the pulse number of the pulse generator 16 is calculated by the arithmetic circuit in the CPU (PLC, not shown) It is obtained by counting with.
反転角度 2 ctおよび溝ピッチ pが求められると、 それらの値が設定値 と と もに表示され、 設定値一測定値を演算し、 これが許容値以内に納ま つているか否かがステップ s 1 0で判断され、 許容値以内に納まってい ない場合には、 ステップ 1 1 で警報を発生させる。  When the reversal angle 2 ct and the groove pitch p are determined, those values are displayed together with the set value, and the set value-measured value is calculated, and it is determined whether or not this is within the allowable value in step s 1. If it is judged as 0 and the value is not within the allowable value, an alarm is generated in step 11.
ステップ s 1 0で許容値以内に納まっていると判断された場合には、 ステップ s 1 2で、 これまでの測定値の大小を比較し、 今回の測定値が 最大値ないしは最小値であれば、 これを最大値ないしは最小値と してス テツプ 1 3で更新し、 これを記憶する。  If it is determined in step s10 that the measured value is within the allowable range, in step s12, the magnitudes of the previous measured values are compared, and if the current measured value is the maximum value or the minimum value, This is updated as the maximum value or the minimum value in step 13 and stored.
ステップ 1 4では、 反転角データを追加し、 ステップ 1 5でその値を プリ ンタ 4 1 に送出する。 ステップ s 1 6では、 計測終了か否かが判断 され、 計測が終了していない場合には、 再びステップ s 2に戻る。  In step 14, the inversion angle data is added, and in step 15, the value is sent to the printer 41. In step s16, it is determined whether or not the measurement has been completed. If the measurement has not been completed, the process returns to step s2 again.
ステップ s 1 6で計測が終了したと判断されると、ステップ s 1 7で、 それまでの測定によって得られた反転角度 2 αおよび溝ピッチ pの最大 値 M A X , 最小値 M I N , 平均値 A V Eをそれぞれ演算し、 これらの各 値をプリ ンタ 4 0及び 4 1 に出力して (ステップ s 1 7 )、 測定を終了す る。  If it is determined in step s16 that the measurement has been completed, in step s17, the maximum value MAX, the minimum value MIN, and the average value AVE of the inversion angle 2α and the groove pitch p obtained by the measurement up to that point are calculated. Each calculation is performed and these values are output to the printers 40 and 41 (step s17), and the measurement is completed.
以上のよ うに構成された溝ピッチ及び溝反転角度測定部 1 0によれば, 外周に所定のピッチと回転角度とで反転する螺旋溝 A 3が設けられたス ぺーサ Aの反転溝ピッチ pおよび反転角度 2 αの測定のいずれもが、 製 造工程中で可能になり、 しかも、 スぺーサ Αの全長に亘ってこれを行う こ とができる。  According to the groove pitch and groove inversion angle measuring unit 10 configured as described above, the inversion groove pitch p of the spacer A in which the spiral groove A 3 that inverts at a predetermined pitch and rotation angle is provided on the outer periphery. Both the measurement of the reversal angle 2α and the inversion angle 2α are made possible during the manufacturing process, and can be carried out over the entire length of the spacer.
この場合、 螺旋スぺーサ Aの反転ピッチ pおよび反転角度 2 αは、 回 転角度および回転方向判別信号を受けて、 螺旋溝 A 3の反転位置を判別 し、 隣接する反転位置間での速度パルス発生器 1 6のパルスおよび回転 角度信号を力ゥン ト して求めるので、 螺旋溝 A 3 の方向が転換する反転 位置間に直線部分が存在したと しても、 反転位置を正確に測定すること ができる。  In this case, the inversion pitch p and the inversion angle 2α of the spiral spacer A are determined based on the rotation angle and the rotation direction discrimination signal to determine the inversion position of the spiral groove A3, and the speed between the adjacent inversion positions. Since the pulse of the pulse generator 16 and the rotation angle signal are calculated by force, the reverse position is accurately measured even if there is a straight line between the reverse positions where the direction of the spiral groove A 3 changes. can do.
さて、 以上のよ うに構成した光ファイバ担持用螺旋スぺーサ Aの溝検 查装置 1 によれば、 回転体 3の回転抵抗から摺接する螺旋溝 A 3の溝異 常を検出する溝異常検出部 2 と、 第 1 , 第 2回転体 1 7 , 1 8 aの回転 角度および光フアイバ担持用スぺーサ Aの走行速度とから螺旋溝 A 3の 溝反転ピッチ p及び溝反転角度を検出する溝ピッチ及び溝反転角度測定 部 1 0 とを備えているので、 溝形状の異常と反転ピッチおよび反転角度 の異常とを、 製造工程の途中で同時に検知することができる。 Now, the groove detection of the spiral spacer A for supporting the optical fiber configured as described above is performed. 查 According to the device 1, the groove abnormality detecting section 2 for detecting the groove abnormality of the spiral groove A3 slidingly contacting from the rotational resistance of the rotating body 3, and the rotation angles of the first and second rotating bodies 17 and 18a And a groove pitch and groove reversal angle measuring unit 10 for detecting the groove reversal pitch p and the groove reversal angle of the spiral groove A 3 based on the traveling speed of the optical fiber supporting spacer A and the traveling speed of the optical fiber carrying spacer A. The abnormality and the abnormality of the reversal pitch and the reversal angle can be simultaneously detected during the manufacturing process.
なお、 上記実施例では、 溝異常検出部 2 と溝ピッチ及び溝反転角度測 定部 1 0 とにそれぞれ回転体 3 , 1 7 , 1 8を設けた場合を例示したが、 本発明の実施は、 この構成に限定されることはなく 、 例えば、 回転体 3 を第 1回転体 1 7 と共用してもよい。  In the above embodiment, the case where the rotating bodies 3, 17, and 18 are provided in the groove abnormality detecting section 2 and the groove pitch and groove reversal angle measuring section 10, respectively, is exemplified. However, the present invention is not limited to this configuration. For example, the rotating body 3 may be shared with the first rotating body 17.
また、 上記実施例では、 溝ピッチ及び溝反転角度測定部 1 0で反転ピ ツチ P と反転角度 2 aの双方を測定する場合を例示した力 本発明では、 反転ピッチ pの測定だけを行う こともできる。  Further, in the above embodiment, the force exemplifying the case where both the inversion pitch P and the inversion angle 2a are measured by the groove pitch and groove inversion angle measuring unit 10 In the present invention, only the measurement of the inversion pitch p is performed. Can also.
さ らに、 上記実施例で示した溝異常検出部 2の演算表示器 9 c は、 溝 ピッチ及び溝反転角度測定部 1 0の演算処理装置 2 2 と供用することも できる。 この場合、 第 7図に示した制御手順は、 例えば、 第 1 0図に示 した制御手順のステップ s 1 3の前に挿入して、 これらを一連の手順と するこ と もできる。 産業上の利用可能性  Further, the arithmetic display 9c of the groove abnormality detecting unit 2 shown in the above embodiment can also be used with the arithmetic processing unit 22 of the groove pitch and groove inversion angle measuring unit 10. In this case, for example, the control procedure shown in FIG. 7 may be inserted before step s13 of the control procedure shown in FIG. 10 to form a series of procedures. Industrial applicability
本発明の光ファイバ担持用螺旋スぺーサの検査装置は、 螺旋スぺーサ の製造工程の途中に設置するこ とで、 製造する螺旋スぺーザの全長に亘 つて、 溝形状の異常と溝ピッチおよび反転角度の測定とが行えるので、 光フアイバを高密度に集合させた光ケーブルの伝送性能を維持する上で 効果的になる。  The inspection apparatus of the spiral spacer for holding an optical fiber of the present invention is installed in the course of the manufacturing process of the spiral spacer, so that the irregularity of the groove shape and the groove over the entire length of the spiral spacer to be manufactured. Since the pitch and the reversal angle can be measured, it is effective in maintaining the transmission performance of an optical cable in which optical fibers are densely assembled.

Claims

請求の範囲 The scope of the claims
1. 所定の角度間隔で回転方向が反転し、 かつ、 連続的に走行する複数 の螺旋溝が外周に設けられた光フアイバ担持用スぺーサの螺旋溝検査装 置において、  1. In a spiral groove inspection apparatus of an optical fiber supporting spacer in which a rotating direction is reversed at a predetermined angular interval and a plurality of spiral grooves running continuously are provided on an outer periphery,
前記光フアイバ担持用スぺーサの走行に伴って回転する回転体を備え 前記回転体の回転抵抗から摺接する螺旋溝の溝異常を検出する溝異常 検出部と、  A groove abnormality detecting unit that includes a rotating body that rotates with the traveling of the optical fiber supporting spacer, and detects a groove abnormality of a spiral groove that slides from the rotational resistance of the rotating body;
前記回転体の回転角度と前記光ファイバ担持用スぺーサの走行速度と から前記螺旋溝の溝ピッチ及び溝反転角度を検出する溝ピッチ及び溝反 転角度測定部とを設けたことを特徴とする光フアイバ担持用螺旋スぺー サの溝検査装置。  A groove pitch and groove reversal angle measuring unit for detecting a groove pitch and a groove reversal angle of the spiral groove from a rotation angle of the rotating body and a traveling speed of the optical fiber supporting spacer. Inspection equipment for spiral spacers for carrying optical fibers.
2 . 溝異常検出部は、 直線状に延びる案内レールと、  2. The groove abnormality detection part has a guide rail that extends linearly,
前記案内レール上に摺動可能に設けられた支持部材と、  A support member slidably provided on the guide rail,
前記支持部材に回転可能に支持された前記回転体と、  The rotating body rotatably supported by the support member,
前記支持部材に所定値以上の力が加わったときに離間する磁力吸着手 段を介して結合された荷重検出器とを有することを特徴とする特許請求 の範囲第 1項記載の光フアイバ担持用螺旋スぺーザの溝検査装置。  The optical fiber carrier according to claim 1, further comprising a load detector coupled via a magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member. Spiral souser groove inspection device.
3 . 前記回転体は、 前記光ファイバ担持用スぺーサが揷通される貫通 開口を備え、 前記開口の周囲に、 前記螺旋溝に嵌合する先端部を備えた ピンゲージを突設配置することを特徴とする特許請求の範囲第 1項記載 の光フアイバ担持用螺旋スぺーザの溝検査装置。 3. The rotating body has a through-opening through which the spacer for supporting the optical fiber is passed, and a pin gauge having a tip fitted into the helical groove is provided protrudingly around the opening. 3. The groove inspection device for a spiral fiber spacer for holding an optical fiber according to claim 1, wherein:
4 . 前記荷重検出器は、 密封状態のロー ドセルで構成するこ とを特徴 とする特許請求の範囲第 2項記載の光ファィバ担持用螺旋スぺーサの溝 検査装置。  4. The groove inspection device for a spiral spacer for holding an optical fiber according to claim 2, wherein the load detector is constituted by a load cell in a sealed state.
5 . 前記溝ピッチ及び溝反転角度測定部は、 前記スぺーサの進行量に 対応した信号を発生させる速度パルス発生器と、  5. The groove pitch and groove inversion angle measuring unit includes: a speed pulse generator that generates a signal corresponding to an amount of advance of the spacer;
前記螺旋溝に嵌合された前記回転体と、  The rotating body fitted in the spiral groove,
前記回転角度に対応した回転角度信号と、 前記回転角度信号から所定 角度遅延ないしは進行した回転方向判定信号と、 前記螺旋溝の反転に伴 う反転パルス信号とを前記回転体の回転に伴って送出するパルス発生器 と、 A rotation angle signal corresponding to the rotation angle; a rotation direction determination signal delayed or advanced by a predetermined angle from the rotation angle signal; A pulse generator for transmitting an inversion pulse signal with the rotation of the rotating body;
前記回転角度および回転方向判別信号を受けて、 前記螺旋溝の反転位 置を判別し、 隣接する前記反転位置間での前記速度パルス発生器のパル スおよび前記回転角度信号を力ゥン ト して、 前記螺旋溝の溝ピッチ及び 反転角度を演算する演算装置とから構成することを特徴とするを特徴と する特許請求の範囲第 1項記載の光ファィバ担持用螺旋スぺーザの溝検 査装置。  In response to the rotation angle and rotation direction determination signal, the inversion position of the spiral groove is determined, and the pulse of the speed pulse generator and the rotation angle signal between adjacent inversion positions are force-pointed. 2. A groove inspection of a spiral sober for carrying an optical fiber according to claim 1, further comprising: a calculating device for calculating a groove pitch and a reversal angle of said spiral groove. apparatus.
6 . 前記パルス発生器は、 前記光ファイバ担持用スぺーサの進行方向に 沿って所定の間隔を隔てて配置された一対の第 1 、 第 2 パルス発生器と 第 3 パルス発生器から構成され、  6. The pulse generator is composed of a pair of first and second pulse generators and a third pulse generator arranged at predetermined intervals along the traveling direction of the spacer for holding the optical fiber. ,
第 3 パルス発生器の前記回転方向判別信号を受けて、 前記光ファイバ 担持用スぺーサの回転方向を判別する回転方向判別ュニッ トを設け、 前記第 1 , 第 2パルス発生器の回転角度信号が一致した時を前記回転 角度信号の計数開始条件と して、 前記第 3 パルス発生器の回転角度を検 知し、 前記回転角度信号の計数開始後の所定時間経過後に検出される変 曲点を前記反転位置と前記演算装置で判断することを特徴とする特許請 求の範囲第 6項記載の光ファィバ担持用螺旋スぺーザの溝検査装置。  A rotation direction discrimination unit that receives the rotation direction discrimination signal of the third pulse generator and discriminates the rotation direction of the optical fiber supporting spacer is provided, and the rotation angle signal of the first and second pulse generators is provided. The rotation angle of the third pulse generator is detected as the count start condition of the rotation angle signal when the values of the rotation angle signal coincide with each other, and the inflection point detected after a predetermined time has elapsed after the start of the count of the rotation angle signal. 7. The groove inspection apparatus for a spiral spacer for holding an optical fiber according to claim 6, wherein the inversion position is determined by the arithmetic unit.
PCT/JP2001/009945 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber WO2003042742A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003544516A JPWO2003042742A1 (en) 2001-11-14 2001-11-14 Groove inspection device for spiral spacer for optical fiber support
PCT/JP2001/009945 WO2003042742A1 (en) 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber
CNB018237932A CN1284992C (en) 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber
KR1020047007344A KR100816318B1 (en) 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber
TW090131209A TW528896B (en) 2001-11-14 2001-12-17 Test instrument for testing the slots on spiral spacer for carrying the optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/009945 WO2003042742A1 (en) 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber

Publications (1)

Publication Number Publication Date
WO2003042742A1 true WO2003042742A1 (en) 2003-05-22

Family

ID=11737940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009945 WO2003042742A1 (en) 2001-11-14 2001-11-14 Equipment for inspecting groove of spiral spacer for bearing optical fiber

Country Status (5)

Country Link
JP (1) JPWO2003042742A1 (en)
KR (1) KR100816318B1 (en)
CN (1) CN1284992C (en)
TW (1) TW528896B (en)
WO (1) WO2003042742A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781434A (en) * 1986-07-24 1988-11-01 Ube-Nitto Kasei Co., Ltd. Spacer of optical fiber cable and method for forming the same
JPH11149024A (en) * 1997-11-18 1999-06-02 Fujikura Ltd Double detecting plate with pawl
JP2000065558A (en) * 1998-08-26 2000-03-03 Ube Nitto Kasei Co Ltd Groove pitch of optical fiber carrying spacer and groove reversing angle measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3611492A1 (en) * 1986-04-05 1987-10-22 Leybold Heraeus Gmbh & Co Kg METHOD AND DEVICE FOR COATING TOOLS FOR CUTTING AND FORMING TECHNOLOGY WITH PLASTIC LAYERS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781434A (en) * 1986-07-24 1988-11-01 Ube-Nitto Kasei Co., Ltd. Spacer of optical fiber cable and method for forming the same
JPH11149024A (en) * 1997-11-18 1999-06-02 Fujikura Ltd Double detecting plate with pawl
JP2000065558A (en) * 1998-08-26 2000-03-03 Ube Nitto Kasei Co Ltd Groove pitch of optical fiber carrying spacer and groove reversing angle measuring device

Also Published As

Publication number Publication date
TW528896B (en) 2003-04-21
JPWO2003042742A1 (en) 2005-03-10
CN1559016A (en) 2004-12-29
CN1284992C (en) 2006-11-15
KR20040053308A (en) 2004-06-23
KR100816318B1 (en) 2008-03-24

Similar Documents

Publication Publication Date Title
JP4598023B2 (en) Apparatus and method for combined testing of gears
US9194684B2 (en) System and method for verifying screw threads
EP0316798A2 (en) Apparatus for inserting optical fibers into a spacer having spiral grooves
US9964394B2 (en) Alignment apparatus and method
KR100814303B1 (en) Device for inspecting grooves of spiral spacer for carrying optical fiber
CN109974609A (en) A kind of brill ream quality on-line detecting device and method
WO2003042742A1 (en) Equipment for inspecting groove of spiral spacer for bearing optical fiber
CN111457841A (en) Continuous measuring method for runout of rotating body and centering measuring method for rotating body
CN112902821A (en) Method for measuring lay length on line and evaluating health state of steel wire rope according to lay length
JP5330008B2 (en) Rotation accuracy evaluation method and evaluation apparatus
KR0165028B1 (en) Apparatus and method of measuring bending strength of optic fiber
JP4367799B2 (en) Apparatus for measuring groove pitch and groove inversion angle of spacer for supporting optical fiber
CN110672059B (en) Calibrating device and calibrating method for slide micrometer
CN212340167U (en) Multi-point jitter tester
KR101791312B1 (en) Complex measurant apparatus of hollow type axle shaft for vehicle
CN116952151A (en) Cable deformation alarm system and method
CN211785618U (en) Measuring and tracing standard device of contact type and non-contact type linear velocity measuring instrument
CN218724729U (en) Adjustable optical fiber transmission power detector
CN219531968U (en) Automatic roundness detection device for titanium and titanium alloy bars
CN214039876U (en) Rotation angle measuring device and multi-angle traveling vehicle
CN211147563U (en) Shaft runout amount detection device based on virtual instrument
RU2019782C1 (en) Appliance for gear wheel run-out gauge
JPH08114730A (en) Pitch abnormality detector for spiral spacer for carrying optical fiber
SU1250835A2 (en) Automatic control device for checking pitch of twisted parts of cables and ropes
KR20040056097A (en) telescope detecting device for a winded coil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 2003544516

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20018237932

Country of ref document: CN

Ref document number: 1020047007344

Country of ref document: KR