WO2003041240A1 - Method and apparatus for controlling charge/discharge of lead battery - Google Patents

Method and apparatus for controlling charge/discharge of lead battery Download PDF

Info

Publication number
WO2003041240A1
WO2003041240A1 PCT/JP2001/009755 JP0109755W WO03041240A1 WO 2003041240 A1 WO2003041240 A1 WO 2003041240A1 JP 0109755 W JP0109755 W JP 0109755W WO 03041240 A1 WO03041240 A1 WO 03041240A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
charge
battery
discharge
lead
Prior art date
Application number
PCT/JP2001/009755
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuyuki Yoshihara
Ayako Hirao
Kiichi Koike
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000159846A priority Critical patent/JP4566334B2/en
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2001/009755 priority patent/WO2003041240A1/en
Publication of WO2003041240A1 publication Critical patent/WO2003041240A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the charge / discharge control of a lead storage battery is repeated based on a state in which the capacity (state of charge (hereinafter, referred to as S0C)) is lowered instead of a fully charged state.
  • S0C state of charge
  • batteries such as electric hybrids and hybrid vehicles (Hybrid Electric Vehicle 1 e), which are being developed mainly in the automotive industry, use SOCs to fully charge the SOC even after discharging. It is proposed to use it in an intermediate area without reverting. This is to improve the energy efficiency as a whole by mainly using regenerative energy without constantly charging the battery.
  • Hybrid Electric Vehicle 1 e Hybrid Electric Vehicle 1 e
  • the present invention solves the above-described problems, and provides a charge and discharge method and a device that can be used with high reliability over the battery life even when a lead storage battery is used in an area where S 0 C is intermediate.
  • the purpose is to: Disclosure of the invention
  • the present invention sets the charging and discharging standard S 0C to an intermediate range in which it exceeds 0% and does not reach 100%, and sets this standard SOC to the number of charge / discharge cycles. It is characterized in that it is raised according to the following.
  • Fig. 1 is a graph showing the life characteristics of the conventional example.
  • Fig. 2 is a graph showing the relationship between S0C and internal resistance after the cycle elapses during the life test of the conventional example.
  • FIG. 3 is a graph showing the SOC adjustment pattern used in the present example
  • FIG. 4 is a graph showing the life characteristics of the present invention and the conventional example.
  • an expanded lattice that cuts and expands the strip-shaped sheet material obtained by rolling the lead alloy was used as the lattice.
  • a paste containing an active material as a main component a cathode prepared by kneading a lead oxide as a main component with water, sulfuric acid, etc. added was prepared.
  • the negative electrode was prepared by adding additives such as lignin, water, sulfuric acid and the like to lead powder and kneading them. this These pastes were applied to the above-described expanded lattice, and were aged and dried to prepare an electrode plate.
  • Electrode plates were prepared as a positive electrode and seven electrode plates were prepared as a negative electrode, and they were laminated through a glass mat, Separet, to form an electrode plate group. Six of these electrode groups were created, housed in a battery case made of synthetic resin divided into six cell chambers, and connected in series to create a 12 V, 30 Ah battery.
  • Figure 1 shows the cycle progress of the 10th second voltage of 3CA discharge. As can be seen from this figure, the voltage characteristics dropped sharply after 10,000 cycles, and to 7 V at 17,500 cycles.
  • Figure 2 shows the relationship between the SOC and the internal resistance of the tested batteries at the initial, 5,000, 10,000, and 15,000 cycles. The internal resistance is shown as a percentage with the initial battery S ° C 0%, that is, the internal resistance value in the fully discharged state being 100%. In addition, due to the decrease in battery capacity over the course of the test, the internal resistance of SOC 90% or less was measured at 5000 cycles, and the SOC was 80% or less at 10,000 cycles and 15000 cycles. From FIG.
  • the cause of battery deterioration is that in the conventional example, the temperature began to increase at 13,000 cycles and rapidly increased after 15,000 cycles, which is considered to be accelerating the battery deterioration.
  • the present invention since the charge / discharge cycle is repeated in the S0C region where the internal resistance is small, it is considered that heat generation can be suppressed and battery deterioration can also be suppressed.
  • the SOC setting is controlled stepwise, and the charging time is changed to increase the SOC.
  • the effect of the present invention does not depend on the setting method of SOC. Industrial applicability
  • the reference SOC for charging and discharging is set to an intermediate range in which the SOC is not more than 0% and does not reach 100%, and S0C is increased with the aging of the battery characteristics. Since the battery is used in the SOc region where the internal resistance is small, it is useful for realizing an excellent lead-acid battery that maintains stable discharge voltage characteristics and has improved life characteristics.

Abstract

A method and an apparatus for controlling charge/discharge of a lead battery principally used not under fully charged state but under a state where SOC is lowered, in which SOC is increased as the characteristics of the battery deteriorates due to aging.

Description

明 細 書 鉛蓄電池の充放電制御方法および充放電制御装置 技術分野  Description Charge / discharge control method and charge / discharge control device for lead-acid battery
本発明は、 完全充電状態ではなく、 容量 (充電状態: St at e of Ch ar ge (以下、 S 0 Cと表す) ) を下げた状態を基準として充放鼋を繰り返す 鉛蓄電池の充放電制御方法および装置に関するものである。 背景技術  According to the present invention, the charge / discharge control of a lead storage battery is repeated based on a state in which the capacity (state of charge (hereinafter, referred to as S0C)) is lowered instead of a fully charged state. The present invention relates to a method and an apparatus. Background art
近年、 自動車業界を中心として開発が進められている電動ハイプリ、ソド自動車 (Hybr id E le ct r i c V e h i c 1 e ) に代表される電池の使用 方法として、 放電した後でも SOCを完全充電状態まで戻すことなく、 中間的な 領域で使用することが提案されている。 これは、 常に電池に充電することなく、 主に回生エネルギーによる充電を生かして、 全体としてのエネルギー効率を上げ ようとするものである。  In recent years, batteries such as electric hybrids and hybrid vehicles (Hybrid Electric Vehicle 1 e), which are being developed mainly in the automotive industry, use SOCs to fully charge the SOC even after discharging. It is proposed to use it in an intermediate area without reverting. This is to improve the energy efficiency as a whole by mainly using regenerative energy without constantly charging the battery.
従来、 鉛蓄電池は使用中の殆どが完全充電状態 (SOC=100%) であるト リクル用途や自動車の主にエンジンスタート用の電池、 および深い放電を行って も直ちに充電し、 完全充電状態に戻すといつた充放電を繰り返すサイクル用途な ど、 いずれも充電の終了は完全充電状態を基準としていた。 これらの充放電制御 は、 鉛蓄電池特有の以下の問題点があるからである。  Conventionally, lead-acid batteries are mostly fully charged (SOC = 100%) during use, and are mainly used for starting engines in automobiles and engines, and even when they are deeply discharged, they are charged immediately and fully charged. In any case, such as a cycle application where charge and discharge are repeated when returned, the end of charging was based on the fully charged state. This is because these charge / discharge controls have the following problems unique to lead-acid batteries.
すなわち、 鉛蓄電池を SO Cが中間的な領域で使用すると、 充電不足となり極 板の活物質に不活性な硫酸鉛が固定化しやすく、 その結果電池としては内部抵抗 の上昇とそれに伴う出力特性の低下が生じる。  In other words, if a lead-acid battery is used in an area where SOC is in the middle, charging becomes insufficient and inactive lead sulfate is likely to be fixed to the active material of the electrode. A drop occurs.
これにより、 実際の SOCと充放電の制御に使用されている設定 S0Cとが大 きくずれることとなる。 その結果、 容量の低い電池では放電量が多くなつてしま い、 過放電となるほか、 必要な電流を取り出すことが出来ないといった課題があ つた。 As a result, the actual SOC greatly deviates from the setting S0C used for charge / discharge control. As a result, batteries with lower capacities will discharge more. In addition to overdischarging and the inability to extract the required current.
本発明は上記課題を解決するものであり、 鉛蓄電池を S 0 Cが中間的な領域で 使用した場合でも、 電池寿命まで信頼性高く使用することが出来る充放電方法お よびその装置を提供することを目的とする。 発明の開示  The present invention solves the above-described problems, and provides a charge and discharge method and a device that can be used with high reliability over the battery life even when a lead storage battery is used in an area where S 0 C is intermediate. The purpose is to: Disclosure of the invention
本発明は上記目的を達成するために、 充電および放電の基準 S 0 Cを 0 %を越 え 1 0 0 %に至らないとする中間的な領域に設定し、 この基準 S O Cを充放電回 数にしたがい上昇させることを特徴とするものである。 上記構成とすることによ り、 電池寿命となるまで必要な充電および放電電気量を適切に制御することがで きるため、 鉛蓄電池の寿命特性を優れたものとすることができる。 また、 電池使 用中においても必要な放電電気量を確保することができる。 図面の簡単な説明  In order to achieve the above object, the present invention sets the charging and discharging standard S 0C to an intermediate range in which it exceeds 0% and does not reach 100%, and sets this standard SOC to the number of charge / discharge cycles. It is characterized in that it is raised according to the following. With the above configuration, the amount of charge and discharge required for the life of the battery can be appropriately controlled, so that the life characteristics of the lead storage battery can be improved. In addition, the required amount of discharged electricity can be secured even during use of the battery. BRIEF DESCRIPTION OF THE FIGURES
図 1は従来例の寿命特性を示すグラフであり、  Fig. 1 is a graph showing the life characteristics of the conventional example.
図 2は、 従来例の寿命試験中のサイクル経過時の S 0 Cと内部抵抗の関係を 示すグラフであり、  Fig. 2 is a graph showing the relationship between S0C and internal resistance after the cycle elapses during the life test of the conventional example.
図 3は、 本実施例に用いた S O C調整パターンを示すグラフであり、 図 4は、 本発明と従来例の寿命特性を示すグラフである。 発明を実施するための最良の形態  FIG. 3 is a graph showing the SOC adjustment pattern used in the present example, and FIG. 4 is a graph showing the life characteristics of the present invention and the conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する。 まず、 格子体として鉛合金を圧 延した帯状シート材料に切り目を入れ、 展開して、 ます目を形成するエキスパン ド格子体を用いた。 つぎに、 活物質を主成分とするペーストとして、 正極には鉛 酸化物を主成分に水、 硫酸等を加え練合されたものを用意した。 また、 負極には 鉛粉にリグニン等の添加物、 水、 硫酸等を加え練合されたものを用意した。 これ らのペーストを上述したエキスパンド格子体に塗着し、 熟成乾燥させることによ り極板を作成した。 Hereinafter, embodiments of the present invention will be described. First, as the lattice, an expanded lattice that cuts and expands the strip-shaped sheet material obtained by rolling the lead alloy was used. Next, as a paste containing an active material as a main component, a cathode prepared by kneading a lead oxide as a main component with water, sulfuric acid, etc. added was prepared. The negative electrode was prepared by adding additives such as lignin, water, sulfuric acid and the like to lead powder and kneading them. this These pastes were applied to the above-described expanded lattice, and were aged and dried to prepare an electrode plate.
これらの極板を正極として 6枚、 負極として 7枚用意し、 ガラスマットである セパレ一夕を介して積層することにより極板群を形成した。 この電極群を 6つ作 成し、 内部が 6つのセル室に分割された合成樹脂からなる電槽に収納し、 直列接 続することにより 12 V、 30 Ahの電池を作成した。  Six electrode plates were prepared as a positive electrode and seven electrode plates were prepared as a negative electrode, and they were laminated through a glass mat, Separet, to form an electrode plate group. Six of these electrode groups were created, housed in a battery case made of synthetic resin divided into six cell chambers, and connected in series to create a 12 V, 30 Ah battery.
以上のように構成された鉛蓄電池を用いて 30°Cの環境温度下で充放電サイク ル寿命試験により評価を行った。 このサイクル寿命試験では 3 C Aの定電流で 1 0秒間放電した後、 10秒間休止し、 最大電流を 3 C A、 設定電圧を 14. 4 V として 30秒間の定電圧充電を行った後、 10秒間の休止を行う合計 60秒の過 程を 1サイクルとした。 また、 電池は高い SO C領域では充電受入性が低いので、 放電量とバランスのとれた充電量を確保するためには SO Cを下げた領域で試験 を行う必要があり、 その設定 SO Cは電池によって異なる。 そこで、 本試験では 事前に試験電池の S 0 Cと充電特性の関係を調べ、 充電量と放電量のバランスが とれる SOC (=50%) に設定した後、 サイクル寿命試験を始めた。 また、 S OCが 80%を越える領域では、 回生充電が効率よく行うことができないため、 好ましくは、 50%以上 80%以下がよい。 なお、 SOC 100%は電池の初期 1/3 C A放電容量 30 Ahと定義するものとする。  Using the lead-acid battery configured as described above, evaluation was performed by a charge-discharge cycle life test at an ambient temperature of 30 ° C. In this cycle life test, after discharging for 10 seconds at a constant current of 3 CA, pause for 10 seconds, perform a constant voltage charge for 30 seconds at a maximum current of 3 CA and a set voltage of 14.4 V, and then charge for 10 seconds. A total of 60 seconds during which the pause was performed was defined as one cycle. Also, since the battery has low charge acceptability in the high SOC range, it is necessary to conduct tests in a low SOC range in order to ensure a well-balanced charge with the amount of discharge. Varies by battery. Therefore, in this test, the relationship between the S0C of the test battery and the charging characteristics was examined in advance, and after setting the SOC (= 50%) to balance the charge and discharge, the cycle life test was started. Further, in a region where the SOC exceeds 80%, the regenerative charging cannot be performed efficiently, so that it is preferably 50% or more and 80% or less. Note that SOC 100% is defined as the initial 1/3 CA discharge capacity of the battery, 30 Ah.
図 1に 3 CA放電の 1 0秒目電圧のサイクル経過を示す。 この図より分かるよ うに、 10000サイクルを経過した後、 急激に電圧特性は低下し、 17500 サイクル時では 7 Vまで低下した。 また、 図 2に試験を行った電池の初期時、 5 000サイクル時、 10000サイクル時、 15000サイクル時の SOCと内 部抵抗の関係を示す。 内部抵抗は初期電池の S◦ C 0 %すなわち完全放電状態時 の内部抵抗値を 100%とした比率で示している。 また、 試験経過によって電池 容量が低下するために 5000サイクル時は SOC 90%以下の内部抵抗、 10 000サイクル時、 15000サイクル時は SOC 80%以下の内部抵抗を測定 した。 図 2より、 サイクル経過にしたがって S 0 Cの低い領域での内部抵抗が極端に 上昇していることが分かる。 サイクル試験の基準とした SOC 50%でもこの傾 向はみられ、 10000サイクル以降の電圧特性 (3 CA放電 10秒目電圧) の 低下と対応していると考えられる。 Figure 1 shows the cycle progress of the 10th second voltage of 3CA discharge. As can be seen from this figure, the voltage characteristics dropped sharply after 10,000 cycles, and to 7 V at 17,500 cycles. Figure 2 shows the relationship between the SOC and the internal resistance of the tested batteries at the initial, 5,000, 10,000, and 15,000 cycles. The internal resistance is shown as a percentage with the initial battery S ° C 0%, that is, the internal resistance value in the fully discharged state being 100%. In addition, due to the decrease in battery capacity over the course of the test, the internal resistance of SOC 90% or less was measured at 5000 cycles, and the SOC was 80% or less at 10,000 cycles and 15000 cycles. From FIG. 2, it can be seen that the internal resistance in the region where the S 0 C is low increases extremely with the passage of the cycle. This tendency is observed even at the SOC of 50%, which is the standard for the cycle test, and is considered to correspond to the decrease in the voltage characteristics (voltage at the 10th second of 3CA discharge) after 10,000 cycles.
一方、 SOCの高い領域になるほど、 サイクル経過による内部抵抗上昇が小さ いことが観察される。 このことから、 サイクル経過にしたがって、 基準とする S OCを上昇させることで、 内部抵抗の小さい SO C領域で電池を使用でき、 寿命 末期まで安定した電圧特性を確保できると考えられる。  On the other hand, it is observed that the higher the SOC, the smaller the increase in internal resistance due to the cycling. From this, it is considered that by increasing the reference SOC with the cycle, the battery can be used in the SOC region where the internal resistance is small, and stable voltage characteristics can be secured until the end of the life.
図 3に示すように S 0 Cをサイクル経過によって上昇するようにしたサイクル 試験を行った。 この図に示されるサイクル経過による SO Cの階段状の上昇パ夕 —ンは、 図 2に示されるサイクル毎の SOCと内部抵抗の関係より、 電池劣化に よる内部抵抗上昇を SOC設定で補えるように設定した。 なお、 基準 SOCを上 昇させると電池の充電受入性が低下するために放電量に対して充電量が確保でき ずサイクル中に S 0 Cが低下するため、 それそれの設定したい S 0 C毎にサイク ル中の充電時間を長くすることで S OCを調整し充電量を確保するようにした。 この試験結果を示した図 4から分かるように、 本発明は、 電圧特性の低下を抑 制し優れた寿命特性を発揮している。 また、 電池劣化の原因としては、 従来例で は 13000サイクル時より温度上昇が始まり 15000サイクル以上では急激 に上昇しており、 電池劣化を加速していると考えられる。 これに対して、 本発明 では内部抵抗の小さい S 0C領域で充放電サイクルを繰り返しているために発熱 を抑制でき電池劣化も抑制していると考えられる。  As shown in FIG. 3, a cycle test was performed in which S0C was increased as the cycle progressed. The step-like increase in SOC over the course of the cycle shown in this figure indicates that the SOC setting can compensate for the increase in internal resistance due to battery deterioration based on the relationship between SOC and internal resistance for each cycle shown in Figure 2. Set to. If the reference SOC is increased, the charge acceptability of the battery decreases, so that the amount of charge cannot be secured with respect to the amount of discharge, and the S 0 C decreases during the cycle. By increasing the charging time during the cycle, the SOC was adjusted to secure a sufficient amount of charge. As can be seen from FIG. 4 showing the test results, the present invention suppresses the voltage characteristics from deteriorating and exhibits excellent life characteristics. In addition, the cause of battery deterioration is that in the conventional example, the temperature began to increase at 13,000 cycles and rapidly increased after 15,000 cycles, which is considered to be accelerating the battery deterioration. On the other hand, in the present invention, since the charge / discharge cycle is repeated in the S0C region where the internal resistance is small, it is considered that heat generation can be suppressed and battery deterioration can also be suppressed.
尚、 本実施例では階段状に SO C設定を制御し、 また SOCを上昇するために 充電時間を変化させたが本発明の効果は S OCの設定方法に依存しない。 産業上の利用可能性  In this embodiment, the SOC setting is controlled stepwise, and the charging time is changed to increase the SOC. However, the effect of the present invention does not depend on the setting method of SOC. Industrial applicability
本発明によれば、 充電および放電の基準 SO Cを 0%を越え 100%に至らな いとする中間的な領域に設定し、 電池特性の経時劣化に従って S 0Cを上昇させ 内部抵抗の小さい S O c領域で電池を使用することから、 安定した放電電圧特性 を維持して寿命特性が向上した、 優れた鉛蓄電池を実現するうえで有用である。 According to the present invention, the reference SOC for charging and discharging is set to an intermediate range in which the SOC is not more than 0% and does not reach 100%, and S0C is increased with the aging of the battery characteristics. Since the battery is used in the SOc region where the internal resistance is small, it is useful for realizing an excellent lead-acid battery that maintains stable discharge voltage characteristics and has improved life characteristics.

Claims

請 求 の 範 囲 The scope of the claims
1. 充電および放電時の基準 S O Cを 0%を越え 100%に至らない 領域に設定して、 前記基準 SO Cを充放電回数にしたがい上昇させることを特徴 とする鉛蓄電池の充放電制御方法。 1. A charge / discharge control method for a lead-acid battery, wherein the reference SOC at the time of charging and discharging is set to a range exceeding 0% and not reaching 100%, and the reference SOC is increased according to the number of times of charging / discharging.
2. 基準 S OCは 50%以上 80%以下であることを特徴とする請求 の範囲第 1項に記載の鉛蓄電池の充放電制御方法。 2. The charge / discharge control method for a lead storage battery according to claim 1, wherein the reference SOC is 50% or more and 80% or less.
3. 1つもしくは複数の鉛蓄電池に接続され、 この鉛蓄電池の充電お よび放電を S O Cの 0%を越え 1 00%に至らない領域に設定された基準 S O C に基づいて制御する制御手段を備えた鉛蓄電池の充放電制御装置であって、 前記制御手段は、 前記鉛蓄電池の S 0 Cが前記基準 S 0 Cを越えた場合には 放電し、 前記鉛蓄電池の S 0 Cが前記基準 S 0 Cより低い場合には充電する手段 と、 タイマーおよびサイクルカウン夕一の少なくとも 1つと、 前記タイマーおよ びサイクルカウンターの少なくとも 1つに基づいて前記基準 SO Cを上昇させる 基準 S 0 C変更手段とを備えたことを特徴とする鉛蓄電池の充放電制御装置。 3. Equipped with control means connected to one or more lead-acid batteries to control the charging and discharging of the lead-acid batteries based on the reference SOC set in the region that exceeds 0% and does not reach 100% of SOC A charging / discharging control device for a lead storage battery, wherein the control means discharges when S 0 C of the lead storage battery exceeds the reference S 0 C; Means for charging when the temperature is lower than 0 C; at least one of a timer and a cycle counter; and a means for changing the reference SOC based on at least one of the timer and the cycle counter. And a charge / discharge control device for a lead-acid battery.
PCT/JP2001/009755 2000-05-30 2001-11-07 Method and apparatus for controlling charge/discharge of lead battery WO2003041240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000159846A JP4566334B2 (en) 2000-05-30 2000-05-30 Charge / discharge control method and charge / discharge control device for lead-acid battery
PCT/JP2001/009755 WO2003041240A1 (en) 2000-05-30 2001-11-07 Method and apparatus for controlling charge/discharge of lead battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000159846A JP4566334B2 (en) 2000-05-30 2000-05-30 Charge / discharge control method and charge / discharge control device for lead-acid battery
PCT/JP2001/009755 WO2003041240A1 (en) 2000-05-30 2001-11-07 Method and apparatus for controlling charge/discharge of lead battery

Publications (1)

Publication Number Publication Date
WO2003041240A1 true WO2003041240A1 (en) 2003-05-15

Family

ID=27624513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009755 WO2003041240A1 (en) 2000-05-30 2001-11-07 Method and apparatus for controlling charge/discharge of lead battery

Country Status (2)

Country Link
JP (1) JP4566334B2 (en)
WO (1) WO2003041240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305085B2 (en) 2010-10-12 2012-11-06 Honda Motor Co., Ltd. Lithium-ion battery controlling apparatus and electric vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688075B2 (en) * 2005-04-20 2010-03-30 Sion Power Corporation Lithium sulfur rechargeable battery fuel gauge systems and methods
JP5285337B2 (en) * 2008-06-13 2013-09-11 株式会社エヌ・ティ・ティ・ドコモ Battery test apparatus and battery test method
US9496748B2 (en) * 2011-10-25 2016-11-15 General Electric Company Integrated power system control method and related apparatus with energy storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121463A (en) * 1992-10-02 1994-04-28 Mitsubishi Heavy Ind Ltd Controller of refrigeration unit for transportation
US5578915A (en) * 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
JPH10189058A (en) * 1996-12-20 1998-07-21 Ricoh Co Ltd Battery device
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery
JP2000030753A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Control device of battery for hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121463A (en) * 1992-10-02 1994-04-28 Mitsubishi Heavy Ind Ltd Controller of refrigeration unit for transportation
US5578915A (en) * 1994-09-26 1996-11-26 General Motors Corporation Dynamic battery state-of-charge and capacity determination
JPH10189058A (en) * 1996-12-20 1998-07-21 Ricoh Co Ltd Battery device
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery
JP2000030753A (en) * 1998-07-15 2000-01-28 Nissan Motor Co Ltd Control device of battery for hybrid vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305085B2 (en) 2010-10-12 2012-11-06 Honda Motor Co., Ltd. Lithium-ion battery controlling apparatus and electric vehicle

Also Published As

Publication number Publication date
JP4566334B2 (en) 2010-10-20
JP2001339864A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
Savoye et al. Impact of periodic current pulses on Li-ion battery performance
JP4567109B2 (en) Secondary battery charge / discharge control method
JP5464119B2 (en) Method for producing lithium ion secondary battery
Motloch et al. High-power battery testing procedures and analytical methodologies for HEV's
JP2012084322A (en) Method for producing lithium ion secondary battery
Barai et al. A study of the effects of external pressure on the electrical performance of a lithium-ion pouch cell
JP5464117B2 (en) Method for producing lithium ion secondary battery
KR20190003688A (en) How to Heat Treatment Lithium Batteries
Valeriote et al. Fast charging of lead-acid batteries
El Mejdoubi et al. Experimental investigation of calendar aging of lithium-ion batteries for vehicular applications
Trinidad et al. High power valve regulated lead-acid batteries for new vehicle requirements
WO2003041240A1 (en) Method and apparatus for controlling charge/discharge of lead battery
JP2021093312A (en) Lithium ion battery manufacturing method
JP4140277B2 (en) Control valve type lead acid battery
Malysz et al. Fundamentals of electric energy storage systems
Yanagihara et al. Residual capacity estimation of sealed lead-acid batteries for electric vehicles
Bhardwaj et al. Lead acid battery with thin metal film (TMF®) technology for high power applications
JP3491473B2 (en) Battery pack
CN114300759B (en) Method for manufacturing nickel-hydrogen storage battery
JP2003346911A (en) Method for charging lead storage battery
JPH0869811A (en) Lead-acid battery
JP4557372B2 (en) Battery life evaluation method
Jin et al. Lifetime evaluation of lithium-ion batteries under pulsed charging currents
JP2003100289A (en) Sealed lead acid battery and method of using the same
WO2018015853A1 (en) High energy density fast re-chargeable lead-acid batteries with plastic-reinforced conductors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase