WO2003038455A2 - Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen - Google Patents

Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen Download PDF

Info

Publication number
WO2003038455A2
WO2003038455A2 PCT/DE2002/004042 DE0204042W WO03038455A2 WO 2003038455 A2 WO2003038455 A2 WO 2003038455A2 DE 0204042 W DE0204042 W DE 0204042W WO 03038455 A2 WO03038455 A2 WO 03038455A2
Authority
WO
WIPO (PCT)
Prior art keywords
coupling element
attenuator
phase
measurement object
measured
Prior art date
Application number
PCT/DE2002/004042
Other languages
English (en)
French (fr)
Other versions
WO2003038455A3 (de
Inventor
Gregor Nowok
Peter Pospiech
Original Assignee
T-Mobile Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2001153090 external-priority patent/DE10153090C1/de
Priority claimed from DE2001161399 external-priority patent/DE10161399A1/de
Application filed by T-Mobile Deutschland Gmbh filed Critical T-Mobile Deutschland Gmbh
Priority to AU2002363257A priority Critical patent/AU2002363257A1/en
Priority to EP02802272A priority patent/EP1440323B1/de
Priority to US10/490,751 priority patent/US7002357B2/en
Priority to DE50212368T priority patent/DE50212368D1/de
Publication of WO2003038455A2 publication Critical patent/WO2003038455A2/de
Publication of WO2003038455A3 publication Critical patent/WO2003038455A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/11Locating faults in cables, transmission lines, or networks using pulse reflection methods

Definitions

  • the invention relates to the field of so-called FDR measurement (Frequency Domain Reflectometry) and relates in particular to a method and a device for phase calculation from the attenuation values by means of Hilbert transformation in FDR measurements according to the preamble of the independent claims.
  • FDR measurement Frequency Domain Reflectometry
  • FDR measurements are carried out with the help of network analyzers, which can determine the reflection factor according to magnitude and phase, or with spectrum analyzers, which can only measure the magnitude of the reflection factor.
  • network analyzers which can determine the reflection factor according to magnitude and phase
  • spectrum analyzers which can only measure the magnitude of the reflection factor.
  • the phase is calculated by Hilbert transformation. It is important for the numerical quality of the Hilbert transformation that all pole points of the logarithmic damping function are as far to the left of the imaginary axis in the pole-zero diagram. In the measuring systems currently in existence, this is realized by a fully symmetrical parallel branching in the measuring circuit, which is implemented by using a coupling element (coupler).
  • the object of the invention is to demonstrate a method by means of which an increase in the accuracy of the phase calculation from the damping values is achieved by means of Hilbert transformation.
  • a device for carrying out the method is also to be specified. According to the invention, the object is achieved by the features specified in the independent patent claims.
  • the coupler is designed such that it has a high insertion loss between the source and the measurement object and between the measurement object and the sink.
  • the poles of the damping function are shifted further into the left complex half-plane of the pole-zero diagram, which results in a qualitatively better phase calculation.
  • the same effect is achieved by inserting an attenuator between the coupler and the test object.
  • Figure 1 the block diagram of the measuring arrangement according to the invention
  • Figure 2 Representation of a measured phase curve without
  • FIG. 5 Representation of a measured phase curve with an attenuator
  • FIG. 6 representation of a calculated phase curve with an attenuator
  • Figure 7 Representation of the absolute phase error over the frequency with
  • Attenuator First, the system function for wiring the measuring system with the attenuator is specified. Then specialize in the case without an attenuator and in both cases the corresponding phase (Hilbert transform of attenuation) and its deviations from the original phase are specified.
  • Figure 1 shows the block diagram of the measuring arrangement.
  • a measurement signal is sent from a signal source 1 via a coupler 3 and an attenuator 4 to a measurement object 5.
  • the portion of the measurement signal reflected in the measurement object is decoupled in coupler 3 and led to sink 2 (receiver).
  • sink 2 sink 2
  • the power wave b 2 running towards the receiver 2, that is to say reflected by the measurement object 5, is measured.
  • the associated system function for wiring with attenuator 4 at gate 3 is:
  • R is now at gate 3 '.
  • FIGS. 2 to 4 show the differences between the measured and calculated phase and the error functions without an attenuator 4.
  • the frequency is given in MHz on the abscissa, while the phase is shown in rad on the ordinate.
  • the curve according to FIG. 2 is the measured original phase, while the curve in FIG. 3 represents the phase determined by Hilbert transformation.
  • FIG. 4 certain absolute phase errors over frequency are shown between FIGS. 2 and 3. You can clearly see that especially in the middle
  • FIGS. 5 to 7 show in comparison the differences between the measured and calculated phase and the error functions when using an attenuator 4 of -6 dB, which was connected between the coupler 3 and the measurement object 5.
  • the self-reflection factor D1 1 of the attenuator 4 is 12% in the example shown.
  • the frequency is given in MHz on the abscissa, while the phase is shown in rad on the ordinate.
  • the absolute phase error is plotted against the frequency in FIG. It can be seen from the illustration that a phase error occurs only in the middle of the data set, whereas the phase over the entire range is calculated incorrectly in the measuring system without an attenuator 4 according to FIGS.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Measuring Phase Differences (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen, wobei das Messsystem eine Signalquelle für ein Messsignal, ein mit der Signalquelle verbundenes Kopplungsglied und ein mit dem Kopplungsglied verbundenes Messobjekt aufweist. Der vom Messobjekt reflektierte Anteil des Messsignals wird über das Kopplungsglied ausgekoppelt und an einer Senke gemessen. Erfindungsgemäss ist zwischen dem Kopplungsglied und dem Messobjekt ein Dämpfungsglied in den Signalpfad geschaltet. Das Dämpfungsglied kann auch im Kopplungsglied enthalten sein.

Description

Verfahren und Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen
Die Erfindung betrifft das Gebiet der sogenannten FDR-Messung (Frequency Domain Reflectometry) und bezieht sich insbesondere auf ein Verfahren und eine Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen nach dem Oberbegriff der unabhängigen Patentansprüche.
FDR-Messungen werden mit Hilfe von Netzwerkanalysatoren, die den Reflexionsfaktor nach Betrag und Phase bestimmen können, oder durch Spektrumanalysatoren, die nur den Betrag des Reflexionsfaktors messen können, vorgenommen. Bei den zur Zeit gängigen Messverfahren mit Hilfe von Spektrumanalysatoren mit Trackinggenerator wird die Berechnung der Phase durch Hilberttransformation vorgenommen. Wichtig für die numerische Qualität der Hilberttransformation ist die Tatsache, dass sich alle Polstellen der logarithmierten Dämpfungsfunktion möglichst weit links der imaginären Achse im Pol-Nullstellen-Diagramm befinden. Bei den zur Zeit existierenden Messsystemen wird dies durch eine vollsymmetrische Parallelverzweigung in der Messschaltung realisiert, die durch den Einsatz eines Koppelgliedes (Koppler) realisiert wird. Derartige Koppler haben allerdings einen sehr hohen Eigenreflexionsfaktor zum Messobjekt und eine geringe Einfügedämpfung von der Quelle zum Messobjekt und wieder zurück vom Messobjekt zum Leistungsmesser. Diese Schaltung gewährleistet nur die Vorrausetzungen zur Durchführung der Hilberttransformation, das heißt alle Pole der Dämpfungsfunktion liegen in der linken komplexen Halbebene. Dennoch treten in der Regel unerwünschte und relativ große Fehler bei der Berechnung der Phase auf.
Die Aufgabe der Erfindung liegt darin, ein Verfahren aufzuzeigen, mittels dem eine Genauigkeitssteigerung der Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation erreicht wird. Eine Vorrichtung zur Durchführung des Verfahrens soll ebenfalls angegeben werden. Die Aufgabe wird erfindungsgemäß durch die in den unabhängigen Patentansprüchen angegeben Merkmale gelöst.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Patentansprüche.
Erfindungsgemäß wird der Koppler so gestaltet, dass er eine hohe Einfügedämpfung zwischen Quelle und Messobjekt und zwischen Messobjekt und Senke aufweist. Dadurch werden die Pole der Dämpfungsfunktion weiter in die linke komplexe Halbebene des Pol-Nullstellen-Diagramms verschoben, was eine qualitativ bessere Phasenberechnung nach sich zieht. Dieselbe Wirkung wird erzielt, indem ein Dämpfungsglied zwischen Koppler und Messobjekt eingefügt wird.
Im folgenden wir ein Ausführungsbeispiei der Erfindung anhand der Zeichnungen beschrieben. Aus den Zeichnungen und ihrer Beschreibung ergeben sich weitere Merkmale, Vorteile und Anwendungsgebiete der Erfindung.
Es zeigen:
Figur 1 : das Blockschaltbild der erfindungsgemäßen Messanordnung; Figur 2: Darstellung eines gemessenen Phasenverlaufs ohne
Dämpfungsglied; Figur 3: Darstellung eines berechneten Phasenverlaufs ohne
Dämpfungsglied; Figur 4: Darstellung des absoluten Phasenfehlers über der Frequenz ohne
Dämpfungsglied; Figur 5: Darstellung eines gemessenen Phasenverlaufs mit Dämpfungsglied; Figur 6: Darstellung eines berechneten Phasenverlaufs mit Dämpfungsglied; Figur 7: Darstellung des absoluten Phasenfehlers über der Frequenz mit
Dämpfungsglied. Zunächst wird die Systemfunktion für die Beschaltung des Messsystems mit dem Dämpfungsglied angegeben. Danach wird auf den Fall ohne Dämpfungsglied spezialisiert und für beide Fälle die entsprechende Phase (Hilberttransformierte der Dämpfung) und deren Abweichungen zur Originalphase angegeben.
Figur 1 zeigt das Blockschaltbild der Messanordnung. Von einer Signalquelle 1 , wird ein Messsignal über einen Koppler 3 und ein Dämpfungsglied 4 zu einem Messobjekt 5 gesendet. Der im Messobjekt reflektierte Anteil des Messsignals wird im Koppler 3 ausgekoppelt und zur Senke 2 (Empfänger) geführt. Gemessen wird die auf den Empfänger 2 zulaufende, also vom Messobjekt 5 reflektierte Leistungswelle b2. Die zugehörige Systemfunktion für die Beschaltung mit dem Dämpfungsglied 4 am Tor 3 lautet:
ax , mit den folgenden Matrizen:
Figure imgf000004_0001
Figure imgf000004_0002
Wird das Dämpfungsglied 4 entfernt, so wird Du = D22 = 0 und D12 = D2ι = 1 und die obige Systemfunktion vereinfacht sich zu:
b2 = £ , ^23 ' ^31 ' R a.
1 — K33 R
R liegt jetzt am Tor 3'.
Die Berechnung der Phase aus dem Betrag der Leistungswerte erfolgt durch Hilberttransformation, die ihrerseits numerisch durch schnelle Faltung realisiert wird: Φ2 =FFτlFFT- -l n\b2\{f)]-~sign{
Die nachfolgenden Figuren 2 bis 4 zeigen die Unterschiede zwischen der gemessenen und berechneten Phase und die Fehlerfunktionen ohne Dämpfungsglied 4. Auf der Abszisse ist jeweils die Frequenz in MHz angegeben, während auf der Ordinate die Phase in rad aufgetragen ist.
Die Kurve gemäß Figur 2 ist die gemessene Originalphase, während die Kurve in Figur 3 die durch Hilberttransformation bestimmte Phase darstellt.
In Figur 4 ist zwischen den Figuren 2 und 3 bestimmte absolute Phasenfehler über der Frequenz dargestellt. Man erkennt deutlich, dass gerade im mittleren
Frequenzbereich ein sehr großer Phasenfehler bei den berechneten Werten auftritt.
Die Figuren 5 bis 7 zeigen im Vergleich die Unterschiede von gemessener und berechneter Phase sowie die Fehlerfunktionen bei Einsatz eines Dämpfungsglieds 4 von -6 dB, das zwischen Koppler 3 und Messobjekt 5 geschaltet wurde. Der Eigenreflexionsfaktor D1 1 des Dämpfungsglieds 4 beträgt im gezeigten Beispiel 12%. Auch hier ist auf der Abszisse jeweils die Frequenz in MHz angegeben, während auf der Ordinate die Phase in rad aufgetragen ist.
Man erkennt, dass die Phasenkurven der Figuren 5 und 6 nahezu identisch sind, und praktisch kein Phasenfehler auftritt, was auf den Einfluss der zusätzlichen Dämpfung zurückzuführen ist.
In Figur 7 ist wieder der absolute Phasenfehler über der Frequenz aufgetragen. Aus der Darstellung ist zu erkennen, dass nur in der Mitte des Datensatzes ein Phasenfehler auftritt, dagegen wird beim Messsystem ohne Dämpfungsglied 4 gemäß den Figuren 2 bis 4 die Phase über den gesamten Bereich falsch berechnet.

Claims

Patentansprüche
1 . Verfahren zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen, bei dem ein Messsignal über ein Kopplungsglied (3) auf ein Messobjekt (5) geführt wird und der vom Messobjekt reflektierte Anteil am Kopplungsglied (3) ausgekoppelt und gemessen wird, dadurch gekennzeichnet, dass zwischen dem Kopplungsglied (3) und dem Messobjekt (5) ein
Dämpfungsglied (4) in den Signalpfad geschaltet wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Koppler selbst als Dämpfungsglied wirkt.
3. Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen, mit einer Signalquelle (1 ) für ein Messsignal, einem mit der Signalquelle (1 ) verbundenen Kopplungsglied (3) und einem mit dem Kopplungsglied (3) verbundenen Messobjekt, wobei das Messsignal über das Kopplungsglied (3) auf das Messobjekt (5) geführt wird und der vom Messobjekt (5) reflektierte Anteil des Messsignals über das Kopplungsglied (3) ausgekoppelt und an einer Senke (2) gemessen wird, dadurch gekennzeichnet, dass zwischen dem Kopplungsglied (3) und dem Messobjekt (5) ein Dämpfungsglied (4) in den Signalpfad geschaltet ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Dämpfungsglied im Kopplungsglied enthalten ist.
PCT/DE2002/004042 2001-10-30 2002-10-30 Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen WO2003038455A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002363257A AU2002363257A1 (en) 2001-10-30 2002-10-30 Method and device for phase calculation from attenuation values using a hilbert transform for reflectometric measurements in the frequency domain
EP02802272A EP1440323B1 (de) 2001-10-30 2002-10-30 Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen
US10/490,751 US7002357B2 (en) 2001-10-30 2002-10-30 Method and apparatus for phase calculation from attenuation values using a Hilbert transform for FDR measurements
DE50212368T DE50212368D1 (de) 2001-10-30 2002-10-30 Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2001153090 DE10153090C1 (de) 2001-10-30 2001-10-30 Verfahren und Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen
DE10153090.0 2001-10-30
DE2001161399 DE10161399A1 (de) 2001-12-13 2001-12-13 Verfahren und Vorrichtung zur Berechnung der Phase eines reflektierten Signals bei FDR-Messungen
DE10161399.7 2001-12-13

Publications (2)

Publication Number Publication Date
WO2003038455A2 true WO2003038455A2 (de) 2003-05-08
WO2003038455A3 WO2003038455A3 (de) 2003-07-31

Family

ID=26010469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004042 WO2003038455A2 (de) 2001-10-30 2002-10-30 Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen

Country Status (6)

Country Link
US (1) US7002357B2 (de)
EP (1) EP1440323B1 (de)
AT (1) ATE398290T1 (de)
AU (1) AU2002363257A1 (de)
DE (1) DE50212368D1 (de)
WO (1) WO2003038455A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012387B2 (en) 2004-04-20 2011-09-06 Dow Corning Corporation Silicone vesicles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104597376B (zh) * 2015-01-07 2018-08-03 西安理工大学 一种考虑实测波速的高压直流输电线路故障测距方法
CN105301444A (zh) * 2015-10-14 2016-02-03 云南电网有限责任公司普洱供电局 一种基于单端口检测的电缆故障定位装置
US10642243B2 (en) 2018-03-01 2020-05-05 Semiconductor Components Industries, Llc Methods and apparatus for an encoder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482044A (en) * 1992-01-14 1996-01-09 Diasonics Ultrasound, Inc. Direct demodulation in ultrasound instruments
US5990687A (en) * 1997-05-29 1999-11-23 Williams; Thomas H. Measuring shield breaks in coaxial cable by a sheath test current
US5994905A (en) * 1997-12-02 1999-11-30 Wavetek Corporation Frequency domain reflectometer and method of suppressing harmonics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4229626A (en) * 1979-08-01 1980-10-21 Bell Telephone Laboratories, Incorporated Loop fault sectionalization
US5705984A (en) * 1996-05-10 1998-01-06 The United States Of America As Represented By The Secretary Of The Navy Passive intrusion detection system
US5937006A (en) * 1997-05-28 1999-08-10 The Aerospace Corporation Frequency translating device transmission response method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482044A (en) * 1992-01-14 1996-01-09 Diasonics Ultrasound, Inc. Direct demodulation in ultrasound instruments
US5990687A (en) * 1997-05-29 1999-11-23 Williams; Thomas H. Measuring shield breaks in coaxial cable by a sheath test current
US5994905A (en) * 1997-12-02 1999-11-30 Wavetek Corporation Frequency domain reflectometer and method of suppressing harmonics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012387B2 (en) 2004-04-20 2011-09-06 Dow Corning Corporation Silicone vesicles

Also Published As

Publication number Publication date
US20040251911A1 (en) 2004-12-16
US7002357B2 (en) 2006-02-21
EP1440323B1 (de) 2008-06-11
AU2002363257A1 (en) 2003-05-12
DE50212368D1 (de) 2008-07-24
ATE398290T1 (de) 2008-07-15
WO2003038455A3 (de) 2003-07-31
EP1440323A2 (de) 2004-07-28

Similar Documents

Publication Publication Date Title
DE4417838B4 (de) Verfahren zum Charakterisieren eines nicht-reflektierenden Ereignisses in einem durch optische Zeitbereichs-Reflektometrie erhaltenen Digitaldaten-Signalzug
DE102013014175A1 (de) Verfahren zur Kalibrierung eines Messaufbaus
EP2204660A1 (de) Vorrichtung und Verfarhren zum Bestimmen von Teilentladungen an einer elektrischen Komponente
DE102009014780A1 (de) Zeitbereichsreflektometrie
DE60314830T2 (de) Verfahren zur Diagnose eines Fehlers in einer Transformatorwindung
EP3102961B1 (de) Zeitbereichsmessverfahren mit kalibrierung im frequenzbereich
DE102014005698A1 (de) Verfahren sowie Vorrichtung zur ortsaufgelösten Diagnose
DE102008009338A1 (de) Verfahren zur Messfehlerermittlung bei Streuparametermessungen
DE102009018703B4 (de) Netzwerkanalysator und ein Verfahren zum Betrieb eines Netzwerkanalysators mit 9-Term Kalibrierung
DE60118586T2 (de) Verfahren und vorrichtung zur leitungsdämpfungsmessung
DE3912795A1 (de) Verfahren zum kalibrieren eines netzwerkanalysators
EP1131643B1 (de) Verfahren zur korrektur der frequenz- und längenabhängigen leitungsdämpfung bei fdr-messungen an hochfrequenzkabeln
WO2003107558A1 (de) Verfahren und schaltungsanordnung zum ermitteln von übertragungsparametern
EP1440323B1 (de) Verfahren und vorrichtung zur phasenberechnung aus den dämpfungswerten mittels hilberttransformation bei fdr-messungen
WO2004042415A1 (de) Verfahren zum messen der streuparameter eines mehrtor-messobjektes mittels eines mehrtor-netzwerkanalysators mit nichtsinusförmigen messsignalen
EP1483593B1 (de) Verfahren zum messen der effektiven direktivität und/oder effektiven quelltor-anpassung eines systemkalibrierten vektoriellen netzwerkanalysators
DE10233617B4 (de) Ableitung eines zusammengesetzten Stufenfunktionsverhaltens
EP1290458B1 (de) Verfahren zur fehlerortsmessung bei hochfrequenzkabeln und -leitungen
EP3462194A1 (de) Verfahren und schaltungsanordnungen zur lokalisierung eines fehlerortes auf einer elektrischen leitung auf basis der zeitbereichsreflektometrie
DE10153090C1 (de) Verfahren und Vorrichtung zur Phasenberechnung aus den Dämpfungswerten mittels Hilberttransformation bei FDR-Messungen
EP0520193A1 (de) Verfahren zum Messen von Teilentladungen
DE10137128B4 (de) Testvorrichtung zum Testen von Testobjekten und Verfahren zum Übermitteln eines Testsignals
EP0933883A2 (de) Verfahren und Anordnung zum Bestimmen der Übertragungsfunktion von Übertragungsmedien
EP1430318B1 (de) Verfahren und vorrichtung zur lokalisierung eines leitungsfehlers
DE10161399A1 (de) Verfahren und Vorrichtung zur Berechnung der Phase eines reflektierten Signals bei FDR-Messungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002802272

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10490751

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002802272

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2002802272

Country of ref document: EP