WO2003012570A1 - Power source circuit - Google Patents

Power source circuit Download PDF

Info

Publication number
WO2003012570A1
WO2003012570A1 PCT/JP2002/006555 JP0206555W WO03012570A1 WO 2003012570 A1 WO2003012570 A1 WO 2003012570A1 JP 0206555 W JP0206555 W JP 0206555W WO 03012570 A1 WO03012570 A1 WO 03012570A1
Authority
WO
WIPO (PCT)
Prior art keywords
fet
current
source
constant
power supply
Prior art date
Application number
PCT/JP2002/006555
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Miyagi
Original Assignee
Niigata Seimitsu Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Seimitsu Co., Ltd. filed Critical Niigata Seimitsu Co., Ltd.
Publication of WO2003012570A1 publication Critical patent/WO2003012570A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to a power supply circuit that generates a constant current and a constant voltage in various circuits.
  • a constant current source and a constant voltage source have been used in various circuits.
  • a constant current source composed of a current source and a current mirror circuit.
  • a constant current source is used to generate a predetermined reference voltage or to generate a constant operating voltage to be supplied to each part in the circuit.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a power supply circuit capable of reducing the power consumption when generating a constant voltage and a constant current and reducing the circuit scale. Is to do.
  • a power supply circuit includes a reference voltage generation unit that generates a reference voltage, an output buffer that generates a predetermined constant voltage corresponding to the reference voltage, and a predetermined voltage that corresponds to the reference voltage. And a current driver for generating a constant current of Since the reference voltage generator that generates the reference voltage required to generate the constant voltage and the constant current can be used in common, the circuit scale can be reduced, and Power consumption can be reduced as compared with the case where the voltage generation units are individually provided.
  • the above-described current driver generates a plurality of constant currents.
  • the number of generated constant currents it is possible to enhance the effects (reduced circuit scale and reduced power consumption) of sharing the reference voltage generator.
  • the above-described current driver include a plurality of FETs that form a current mirror circuit together with the FET included in the reference voltage generator when a reference voltage is applied to the gate. This makes it possible to generate a constant current separately for each FET.
  • the current driver generates a plurality of different constant currents by changing the gate length L and the gate width W of each of the plurality of FETs. This makes it possible to generate several types of constant current as needed.
  • FIG. 1 is a circuit diagram of a power supply circuit according to an embodiment
  • FIG. 2 is a circuit diagram showing a modification of the power supply circuit
  • FIG. 3 is a circuit diagram showing another modified example of the power supply circuit. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a circuit diagram of a power supply circuit according to the present embodiment.
  • the power supply circuit 10 shown in FIG. 1 includes FETs 20 to 23, 30, 40, and 42, a resistor 50, and an output buffer 60.
  • the power supply circuit 10 has a function as a constant voltage source for generating a predetermined constant voltage and a function as a constant current source for generating a plurality of constant currents. Next, each of these constant voltage sources and constant current sources will be described.
  • the FETs 20, 30, 40, and 42, the resistor 50, and the output buffer 60 form a constant voltage source.
  • the FETs 20, 30, 40, 42 and the resistor 50 except the output buffer 60 correspond to the reference voltage generator.
  • the p-channel FET 20 has a drain connected to the power supply line with the operating voltage Vdd. The source is grounded between the drain and the source of the n-channel type FET 40 and via the resistor 50. Further, the gate and the source of the FET 20 are connected.
  • the drain of the p-channel FET 30 is connected to the power supply line, and the source is grounded via the drain-source of the n-channel FET 42.
  • the gates of these two FETs 20, 30 are connected in common.
  • the gate of the FET 40 is connected to the drain of the FET 42, and the gate of the FET 42 is connected to the source of the T40.
  • the gate voltage of the FET 42 connected to one end of the resistor 50 increases.
  • the resistance between the drain and the source of the FET 42 decreases, so that the gate voltage of the FET 40 connected to the drain of the FET 42 decreases, and the current flowing between the drain and the source of the FET 40 decreases.
  • the gate voltage of the FET 42 connected to one end of the resistor 50 decreases.
  • the resistance between the drain and the source of the FET 42 increases, so that the gate voltage of the FET 40 connected to the drain of the FET 42 increases, and the current flowing between the drain and the source of the FET 40 increases.
  • the gate voltage of the FET 40 fluctuates so as to suppress the change, so that the current I stabilizes at a predetermined value.
  • the drain potential of the FET 42 also maintains a predetermined value, so that a constant output voltage appears at the output terminal of the output buffer 60.
  • the FETs 20 to 23, 30, 40, and 42 and the resistor 50 constitute a constant current source. Also in this constant current source, the reference voltage generator (FETs 20, 30, 40, 42, and resistor 50) included in the above-described constant voltage source is commonly used. Also, each of the FETs 21, 22, and 23 corresponds to a current driver.
  • the gates of the p-channel FETs 21, 22, and 23 are commonly connected to the gate of the FET 20. This allows FET 21 and FET 20 A first current mirror circuit is configured. As described above, since a constant current flows between the drain and source of the FET 40, a constant current also flows between the drain and source of the FET 20, and the gate and the source of the FET 20 have a predetermined potential. Therefore, the gate of the FET 21 also maintains a predetermined potential, and a constant current I i flows between the drain and the source. If the gate length L and the gate width W of the FETs 20 and 21 are equal, a current I 1 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 21.
  • the FET 22 and the FET 20 form a second current mirror circuit. Therefore, if the gate length L and the gate width W of the FETs 20 and 22 are equal, a current I 2 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 22. Also, by making the gate length L and the gate width W of the FET 22 different from the gate length L and the gate width W of the FET 20, a current I 2 different from the current I flowing between the drain and the source of the FET 40 is generated. Generated by 22.
  • the third current mirror circuit is constituted by the FET 23 and the FET 20. Therefore, if the gate length L and the gate width W of the FETs 20 and 23 are equal to each other, a current I 3 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 23. Also, by making the gate length L and the gate width W of the FET 23 different from the gate length L and the gate width W of the FET 20, a current I 3 different from the current I flowing between the drain and the source of the FET 40 is generated. C generated by 23 As described above, the power supply circuit 10 of the present embodiment generates a predetermined constant voltage and three types of the same or different constant currents.
  • the reference voltage generator (FET 20, 30, 40, 42, resistor 50) included in the constant voltage source that generates the constant voltage is commonly used in the constant current source that generates the constant current.
  • the circuit scale can be significantly reduced as compared to a case where these constant voltage sources and constant current sources are separately provided.
  • the parts that consume power are shared, if a constant current source and a constant voltage source are provided separately, Power consumption can be reduced compared to the case.
  • the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.
  • the configuration in which loads are connected to the respective source sides of the FETs 21, 22, and 23 constituting the constant current source has been described.
  • the load is connected to the drain side. You may.
  • FIG. 2 is a circuit diagram showing a modification of the power supply circuit.
  • the power supply circuit 110 shown in FIG. 2 includes FETs 20, 30, 40, 42, 71 to 73, resistors 50, 81 to 83, and an output buffer 60.
  • the power supply circuit 110 has a configuration in which the FETs 21 to 23 are replaced with FETs 71 to 73 and resistors 81 to 83 in the power supply circuit 10 shown in FIG.
  • a first current mirror circuit is configured by the FET 71 and the FET 40, and a predetermined current I 1 determined by the gate length L and the gate width W of the FET 71 is equal to the drain current of the FET 71. Flow between sources.
  • FE T 72 and by the FET 40 and the second current mirror circuit is constituted, FE T 72 gate one preparative length L and the drain of the predetermined current I 2 is FET 72 determined by the gate width W of the 'source one Flows between
  • a third current mirror circuit is constituted by the FET 73 and the FET 40, and a predetermined current I 3 determined by the gate length L and the gate width W of the FET 73 flows between the drain and the source of the FET 73.
  • the constant voltage is generated by one output buffer 60.
  • the number of output buffers 60 may be increased. .
  • FIG. 3 is a circuit diagram showing another modified example of the power supply circuit.
  • the power supply circuit 10A shown in FIG. 3 includes FETs 20 to 23, 30, 40, and 42, a resistor 50, and three output buffers 60. The difference is that the number of output buffers 60 is changed from one to three in the power supply circuit 10 shown in FIG. These three output buffers 60 are all connected to the drain of the FET 42, and can carry a load current within the range of the respective allowable current values. This allows a large load current to flow.
  • a reference voltage generation unit that generates a reference voltage required to generate a constant voltage and a constant current can be commonly used, so that the circuit size can be reduced. At the same time, power consumption can be reduced as compared with a case where the reference voltage generator is provided separately.

Abstract

A power source circuit (10) capable of reducing power consumption for generating a constant voltage and a constant current, and a circuit scale, comprising FETs (20-23, 30, 40, 42), a resistor (50), and an output buffer (60), wherein FETs (20, 30, 40, 42), the resistor (50) and the output buffer (60) constitute a constant voltage source, and FETs (20-23, 30. 40, 42) and the resistor (50) constitute a constant current source. Components necessary to generate one type of constant voltage and three types of constant current are shared.

Description

明 細 書 電源回路 技術分野  Description Power supply circuit Technical field
本発明は、 各種の回路内において定電流と定電圧を発生する電源回路に関する 背景技術  The present invention relates to a power supply circuit that generates a constant current and a constant voltage in various circuits.
従来から、 各種の回路には定電流源ゃ定電圧源が用いられている。 最も一般的 には、 電流源とカレントミラ一回路を用いて構成される定電流源が知られている 例えば、 2つの F E Tを用いた差動増幅器が複数段備わっている場合には、 各段 の差動増幅器に対応して定電流回路が設けられる。 また、 所定の基準電圧を生成 したり、 回路内の各部に供給する一定の動作電圧を生成するために定電圧源が使 用 5れる。  Conventionally, a constant current source and a constant voltage source have been used in various circuits. Most commonly, there is known a constant current source composed of a current source and a current mirror circuit.For example, if there are multiple stages of differential amplifiers using two FETs, each stage A constant current circuit is provided corresponding to the differential amplifier. In addition, a constant voltage source is used to generate a predetermined reference voltage or to generate a constant operating voltage to be supplied to each part in the circuit.
ところで、 上述したように回路内に定電圧源や複数の定電流源が含まれている 場合にそれそれが別々に動作しており、 動作に必要な電力が個別に消費されるた め、 回路全体の消費電力が多くなつてしまうという問題があった。 特に、 多くの 定電流源を含む場合に、 同じような構成が複数存在することになり、 回路規模が 大きくなつてしまうという問題があった。 発明の開示  By the way, when a constant voltage source and a plurality of constant current sources are included in a circuit as described above, they operate separately, and the power required for operation is individually consumed. There is a problem that the whole power consumption increases. In particular, when many constant current sources are included, there is a problem that a plurality of similar configurations exist and the circuit scale becomes large. Disclosure of the invention
本発明は、 このような点に鑑みて創作されたものであり、 その目的は、 定電圧 と定電流を生成する場合の消費電力を少なくするとともに回路規模を小さくする ことができる電源回路を提供することにある。  The present invention has been made in view of the above points, and an object of the present invention is to provide a power supply circuit capable of reducing the power consumption when generating a constant voltage and a constant current and reducing the circuit scale. Is to do.
上述した課題を解決するために、 本発明の電源回路は、 基準電圧を生成する基 準電圧生成部と、 基準電圧に対応する所定の定電圧を生成する出力バッファと、 基準電圧に対応する所定の定電流を生成する電流駆動部とを備えている。 定電圧 および定電流を生成するために必要な基準電圧を生成する基準電圧生成部を共通 に用いることができるため、 回路規模を小さくすることができるとともに、 基準 電圧生成部を個別に備える場合に比べて消費電力を低減することができる。 In order to solve the above-described problem, a power supply circuit according to the present invention includes a reference voltage generation unit that generates a reference voltage, an output buffer that generates a predetermined constant voltage corresponding to the reference voltage, and a predetermined voltage that corresponds to the reference voltage. And a current driver for generating a constant current of Since the reference voltage generator that generates the reference voltage required to generate the constant voltage and the constant current can be used in common, the circuit scale can be reduced, and Power consumption can be reduced as compared with the case where the voltage generation units are individually provided.
また、 上述した電流駆動部は、 複数の定電流を生成することが望ましい。 生成 する定電流の数を増やすことにより、 基準電圧生成部を共用化することによる効 果 (回路規模縮小、 低消費電力化) を高めることが可能になる。  Further, it is desirable that the above-described current driver generates a plurality of constant currents. By increasing the number of generated constant currents, it is possible to enhance the effects (reduced circuit scale and reduced power consumption) of sharing the reference voltage generator.
また、 上述した電流駆動部は、 基準電圧がゲートに印加されて基準電圧生成部 に含まれる FE Tとともにカレントミラー回路を構成する複数の FETを有する ことが望ましい。 これにより、 各 FET毎に別々に定電流を発生することが可能 になる。  Further, it is preferable that the above-described current driver include a plurality of FETs that form a current mirror circuit together with the FET included in the reference voltage generator when a reference voltage is applied to the gate. This makes it possible to generate a constant current separately for each FET.
また、 上述した複数の FE Tのそれぞれのゲート長 Lおよびゲート幅 Wを変え ることにより、 電流駆動部によって複数の異なる定電流を生成することが望まし い。 これにより、 必要に応じて数種類の定電流を発生することが可能になる。 図面の簡単な説明  It is also desirable that the current driver generates a plurality of different constant currents by changing the gate length L and the gate width W of each of the plurality of FETs. This makes it possible to generate several types of constant current as needed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 一実施形態の電源回路の回路図、  FIG. 1 is a circuit diagram of a power supply circuit according to an embodiment,
図 2は、 電源回路の変形例を示す回路図、  FIG. 2 is a circuit diagram showing a modification of the power supply circuit,
図 3は、 電源回路の他の変形例を示す回路図である。 発明を実施するための最良の形態  FIG. 3 is a circuit diagram showing another modified example of the power supply circuit. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を適用した一実施形態の半導体装置について詳細に説明する。 図 1は、 本実施形態の電源回路の回路図である。 図 1に示す電源回路 10は、 FET 20〜23、 30、 40、 42、 抵抗 50、 出力バッファ 60を含んで構 成されている。 この電源回路 10は、 所定の定電圧を発生する定電圧源としての 機能と、 複数の定電流を発生する定電流源としての機能を有している。 次に、 こ れら定電圧源および定電流源のそれそれについて説明する。  Hereinafter, a semiconductor device according to an embodiment of the present invention will be described in detail. FIG. 1 is a circuit diagram of a power supply circuit according to the present embodiment. The power supply circuit 10 shown in FIG. 1 includes FETs 20 to 23, 30, 40, and 42, a resistor 50, and an output buffer 60. The power supply circuit 10 has a function as a constant voltage source for generating a predetermined constant voltage and a function as a constant current source for generating a plurality of constant currents. Next, each of these constant voltage sources and constant current sources will be described.
定電圧源の構成および動作  Configuration and operation of constant voltage source
上述した電源回路 1 0の構成の中で、 FET 20、 30、 40、 42、 抵抗 5 0および出力バッファ 60が定電圧源を構成している。 出力バッファ 60を除く FET 20、 30、 40、 42、 抵抗 50が基準電圧生成部に対応している。 pチャネル型の FET 20は、 ドレインが動作電圧 Vddの電源ラインに接続さ れているとともに、 ソースが nチャネル型の F E T 40のドレイン · ソース間お よび抵抗 50を介して接地されている。 また、 FET 20は、 ゲートとソースが 接続されている。 In the configuration of the power supply circuit 10, the FETs 20, 30, 40, and 42, the resistor 50, and the output buffer 60 form a constant voltage source. The FETs 20, 30, 40, 42 and the resistor 50 except the output buffer 60 correspond to the reference voltage generator. The p-channel FET 20 has a drain connected to the power supply line with the operating voltage Vdd. The source is grounded between the drain and the source of the n-channel type FET 40 and via the resistor 50. Further, the gate and the source of the FET 20 are connected.
pチャネル型の FE T 30は、 ドレインが電源ラインに接続されているととも に、 ソースが nチャネル型の F E T 42のドレイン ' ソース間を介して接地され ている。 これら 2つの FET 20、 30の各ゲートは共通に接続されている。 ま た、 FET 40のゲートが FET 42のドレインに、 £丁 42のゲ一トが £ T 40のソースにそれぞれ接続されている。  The drain of the p-channel FET 30 is connected to the power supply line, and the source is grounded via the drain-source of the n-channel FET 42. The gates of these two FETs 20, 30 are connected in common. The gate of the FET 40 is connected to the drain of the FET 42, and the gate of the FET 42 is connected to the source of the T40.
FET 40のドレイン ' ソース間を流れる電流を Iとすると、 この電流 Iが増 加すると、 抵抗 50の一方端に接続された FE T 42のゲート電圧が上昇する。 これにより、 F E T 42のドレイン ' ソース間の抵抗が減少するため、 FET 4 2のドレインに接続された F E T 40のゲート電圧が低下し、 FET 40のドレ イン · ソース間に流れる電流が減少する。 反対に、 FET 40のドレイン · ソ一 ス間を流れる電流 Iが減少すると、 抵抗 50の一方端に接続された FET 42の ゲート電圧が低下する。 これにより、 FET 42のドレイン · ソース間の抵抗が 増加するため、 FET 42のドレインに接続された F E T 40のゲート電圧が上 昇し、 FET 40のドレイン ' ソース間に流れる電流が増加する。  Assuming that the current flowing between the drain and the source of the FET 40 is I, when the current I increases, the gate voltage of the FET 42 connected to one end of the resistor 50 increases. As a result, the resistance between the drain and the source of the FET 42 decreases, so that the gate voltage of the FET 40 connected to the drain of the FET 42 decreases, and the current flowing between the drain and the source of the FET 40 decreases. Conversely, when the current I flowing between the drain and the source of the FET 40 decreases, the gate voltage of the FET 42 connected to one end of the resistor 50 decreases. As a result, the resistance between the drain and the source of the FET 42 increases, so that the gate voltage of the FET 40 connected to the drain of the FET 42 increases, and the current flowing between the drain and the source of the FET 40 increases.
上述したように、 F E T 40を流れる電流 Iが変化する場合にこの変化を抑制 するように FET40のゲート電圧が変動するため、 この電流 Iが所定の値で安 定する。 この安定状態において FET42のドレイン電位も所定の値を維持する ため、 出力バッファ 60の出力端子には一定の出力電圧が現れる。  As described above, when the current I flowing through the FET 40 changes, the gate voltage of the FET 40 fluctuates so as to suppress the change, so that the current I stabilizes at a predetermined value. In this stable state, the drain potential of the FET 42 also maintains a predetermined value, so that a constant output voltage appears at the output terminal of the output buffer 60.
定電流源の構成および動作  Configuration and operation of constant current source
上述した電源回路 10の構成の中で、 FET 20〜23、 30、 40、 42お よび抵抗 50が定電流源を構成している。 この定電流源においても、 上述した定 電圧源に含まれる基準電圧生成部 (FET 20、 30、 40、 42、 抵抗 50) が共通に用いられている。 また、 FET 2 1、 22、 23のそれそれが電流駆動 部に対応している。  In the configuration of the power supply circuit 10 described above, the FETs 20 to 23, 30, 40, and 42 and the resistor 50 constitute a constant current source. Also in this constant current source, the reference voltage generator (FETs 20, 30, 40, 42, and resistor 50) included in the above-described constant voltage source is commonly used. Also, each of the FETs 21, 22, and 23 corresponds to a current driver.
pチャネル型の F E T 2 1、 22、 23のそれぞれのゲートは、 FET 20の ゲートと共通に接続されている。 これにより、 FET 2 1と FET 20によって 第 1のカレントミラー回路が構成される。 上述したように、 FET 40のドレイ ン · ソース間には一定の電流が流れるため、 FET 20のドレイン ' ソース間に も一定の電流が流れ、 FET 20のゲートおよびソースが所定の電位となる。 し たがって、 FET 2 1のゲートも所定の電位を維持し、 ドレイン ' ソース間に一 定の電流 I i が流れる。 仮に、 FET 20、 2 1のゲート長 Lとゲート幅 Wが等 しい場合には、 FET 40のドレイン ' ソース間に流れる電流 Iに等しい電流 I 1 が FET 2 1によって生成される。 また、 FET 2 1のゲート長 Lとゲート幅 Wを FET 20のゲート長 Lとゲート幅 Wに対して異ならせることにより、 FE T 40のドレイン ' ソース間に流れる電流 Iと異なる電流 I i が FET 2 1によ つて生成される。 The gates of the p-channel FETs 21, 22, and 23 are commonly connected to the gate of the FET 20. This allows FET 21 and FET 20 A first current mirror circuit is configured. As described above, since a constant current flows between the drain and source of the FET 40, a constant current also flows between the drain and source of the FET 20, and the gate and the source of the FET 20 have a predetermined potential. Therefore, the gate of the FET 21 also maintains a predetermined potential, and a constant current I i flows between the drain and the source. If the gate length L and the gate width W of the FETs 20 and 21 are equal, a current I 1 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 21. Also, by making the gate length L and the gate width W of the FET 21 different from the gate length L and the gate width W of the FET 20, a current I i different from the current I flowing between the drain and the source of the FET 40 is obtained. Generated by FET 21.
同様に、 FET 22と FET 20によって第 2のカレントミラ一回路が構成さ れる。 したがって、 仮に F E T 20、 22のゲート長 Lとゲート幅 Wが等しい場 合には、 FET 40のドレイン ' ソース間に流れる電流 Iに等しい電流 I 2 が F E T 22によって生成される。 また、 FET 22のゲート長 Lとゲート幅 Wを F ET 20のゲート長 Lとゲート幅 Wに対して異ならせることにより、 FET 40 のドレイン ' ソース間に流れる電流 Iと異なる電流 I 2 が F E T 22によって生 成される。 Similarly, the FET 22 and the FET 20 form a second current mirror circuit. Therefore, if the gate length L and the gate width W of the FETs 20 and 22 are equal, a current I 2 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 22. Also, by making the gate length L and the gate width W of the FET 22 different from the gate length L and the gate width W of the FET 20, a current I 2 different from the current I flowing between the drain and the source of the FET 40 is generated. Generated by 22.
FET 23と FET 20によって第 3のカレントミラー回路が構成される。 し たがって、 仮に FET 20、 23のゲート長 Lとゲート幅 Wが等しい場合には、 FET 40のドレイン ' ソース間に流れる電流 Iに等しい電流 I 3 が FET 23 によって生成される。 また、 FET 23のゲート長 Lとゲート幅 Wを FET 20 のゲート長 Lとゲート幅 Wに対して異ならせることにより、 FET 40のドレイ ン · ソース間に流れる電流 Iと異なる電流 I 3 が FET 23によって生成される c このように、 本実施形態の電源回路 10は、 所定の定電圧と 3種類の同じある いは異なる定電流を生成している。 特に、 定電圧を生成する定電圧源に含まれる 基準電圧生成部 (FET 20、 30、 40、 42、 抵抗 50) は、 定電流を生成 する定電流源においても共通に用いられているため、 これらの定電圧源と定電流 源を別々に備える場合に比べて、 回路規模を大幅に縮小することができる。 また、 電力を消費する部分が共通化されるため、 定電流源と定電圧源を別々に備える場 合に比べて、 消費電力を抑えることができる。 The third current mirror circuit is constituted by the FET 23 and the FET 20. Therefore, if the gate length L and the gate width W of the FETs 20 and 23 are equal to each other, a current I 3 equal to the current I flowing between the drain and the source of the FET 40 is generated by the FET 23. Also, by making the gate length L and the gate width W of the FET 23 different from the gate length L and the gate width W of the FET 20, a current I 3 different from the current I flowing between the drain and the source of the FET 40 is generated. C generated by 23 As described above, the power supply circuit 10 of the present embodiment generates a predetermined constant voltage and three types of the same or different constant currents. In particular, the reference voltage generator (FET 20, 30, 40, 42, resistor 50) included in the constant voltage source that generates the constant voltage is commonly used in the constant current source that generates the constant current. The circuit scale can be significantly reduced as compared to a case where these constant voltage sources and constant current sources are separately provided. In addition, since the parts that consume power are shared, if a constant current source and a constant voltage source are provided separately, Power consumption can be reduced compared to the case.
なお、 本発明は上記実施形態に限定されるものではなく、 本発明の要旨の範囲 内において種々の変形実施が可能である。 例えば、 上述した実施形態では、 定電 流源を構成する FET 2 1、 22、 23の各ソース側に負荷が接続される場合の 構成を説明したが、 ドレイン側に負荷が接続されるようにしてもよい。  The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, the configuration in which loads are connected to the respective source sides of the FETs 21, 22, and 23 constituting the constant current source has been described. However, the load is connected to the drain side. You may.
図 2は、 電源回路の変形例を示す回路図である。 図 2に示す電源回路 1 1 0は、 FET 20、 30、 40、 42、 7 1〜73、 抵抗 50、 8 1〜 83、 出力バヅ ファ 60を含んで構成されている。 この電源回路 1 10は、 図 1に示した電源回 路 10に対して、 FET 2 1〜23を FET 7 1〜73および抵抗 8 1〜83に 置き換えた構成を有している。  FIG. 2 is a circuit diagram showing a modification of the power supply circuit. The power supply circuit 110 shown in FIG. 2 includes FETs 20, 30, 40, 42, 71 to 73, resistors 50, 81 to 83, and an output buffer 60. The power supply circuit 110 has a configuration in which the FETs 21 to 23 are replaced with FETs 71 to 73 and resistors 81 to 83 in the power supply circuit 10 shown in FIG.
具体的には、 FET 7 1と FET40によって第 1のカレントミラ一回路が構 成されており、 FET 7 1のゲート長 Lとゲート幅 Wによって決まる所定の電流 I 1 が F E T 7 1のドレイン · ソース間に流れる。 同様に、 FE T 72と FET 40によって第 2のカレントミラー回路が構成されており、 FE T 72のゲ一ト 長 Lとゲート幅 Wによって決まる所定の電流 I 2 が FET 72のドレイン ' ソ一 ス間に流れる。 FET 73と FET 40によって第 3のカレントミラ一回路が構 成されており、 FET 73のゲート長 Lとゲート幅 Wによって決まる所定の電流 I 3 が FET 73のドレイン . ソース間に流れる。 Specifically, a first current mirror circuit is configured by the FET 71 and the FET 40, and a predetermined current I 1 determined by the gate length L and the gate width W of the FET 71 is equal to the drain current of the FET 71. Flow between sources. Likewise, FE T 72 and by the FET 40 and the second current mirror circuit is constituted, FE T 72 gate one preparative length L and the drain of the predetermined current I 2 is FET 72 determined by the gate width W of the 'source one Flows between A third current mirror circuit is constituted by the FET 73 and the FET 40, and a predetermined current I 3 determined by the gate length L and the gate width W of the FET 73 flows between the drain and the source of the FET 73.
また、 上述した実施形態では、 1つの出力バッファ 60によって定電圧を生成 していたが、 この定電圧を供給する際の許容電流値を増やす場合には、 出力バッ ファ 60の数を増やせばよい。  In the above-described embodiment, the constant voltage is generated by one output buffer 60. However, when increasing the allowable current value when supplying the constant voltage, the number of output buffers 60 may be increased. .
図 3は、 電源回路の他の変形例を示す回路図である。 図 3に示す電源回路 10 Aは、 FET 20〜23、 30、 40、 42、 抵抗 50および 3つの出力バッフ ァ 60を含んで構成されている。 図 1に示した電源回路 10に対して、 出力バヅ ファ 60の数を 1つから 3つに変更した点が異なっている。 これら 3つの出カバ ッファ 60は、 ともに FET 42のドレインに接続されており、 それそれの許容 電流値の範囲内で負荷電流を流すことができる。 これにより、 大きな負荷電流を 流すことが可能になる。  FIG. 3 is a circuit diagram showing another modified example of the power supply circuit. The power supply circuit 10A shown in FIG. 3 includes FETs 20 to 23, 30, 40, and 42, a resistor 50, and three output buffers 60. The difference is that the number of output buffers 60 is changed from one to three in the power supply circuit 10 shown in FIG. These three output buffers 60 are all connected to the drain of the FET 42, and can carry a load current within the range of the respective allowable current values. This allows a large load current to flow.
また、 上述した実施形態では、 3種類の定電流 I i 、 I 2 、 13 を生成するよ うにしたが、 生成する定電流の数は 2あるいは 4以上であってもよい。 産業上の利用可能性 Further, in the above embodiment, three constant current I i, and generates an I 2, 1 3 However, the number of generated constant currents may be two or four or more. Industrial applicability
上述したように、 本発明によれば、 定電圧および定電流を生成するために必要 な基準電圧を生成する基準電圧生成部を共通に用いることができるため、 回路規 模を小さくすることができるとともに、 基準電圧生成部を個別に備える場合に比 ベて消費電力を低減することができる。  As described above, according to the present invention, a reference voltage generation unit that generates a reference voltage required to generate a constant voltage and a constant current can be commonly used, so that the circuit size can be reduced. At the same time, power consumption can be reduced as compared with a case where the reference voltage generator is provided separately.

Claims

請 求 の 範 囲 The scope of the claims
1 . 基準電圧を生成する基準電圧生成部と、  1. a reference voltage generator for generating a reference voltage;
前記基準電圧に対応する所定の定電圧を生成する出力バッファと、  An output buffer that generates a predetermined constant voltage corresponding to the reference voltage,
前記基準電圧に対応する所定の定電流を生成する電流駆動部と、  A current driver that generates a predetermined constant current corresponding to the reference voltage;
を備える電源回路。  A power supply circuit comprising:
2 . 前記電流駆動部は、 複数の定電流を生成する請求の範囲第 1項記載の電源 回路。  2. The power supply circuit according to claim 1, wherein the current driver generates a plurality of constant currents.
3 . 前記電流駆動部は、 前記基準電圧がゲートに印加されて前記基準電圧生成 部に含まれる F E Tとともにカレントミラー回路を構成する複数の F E Tを有す る請求の範囲第 2項記載の電源回路。  3. The power supply circuit according to claim 2, wherein the current drive unit has a plurality of FETs that form a current mirror circuit together with an FET included in the reference voltage generation unit when the reference voltage is applied to a gate. .
4 . 前記複数の F E Tのそれそれのゲ一ト長 Lおよびゲート幅 Wを変えること により、 前記電流駆動部によつて複数の異なる定電流を生成する請求の範囲第 3 項記載の電源回路。  4. The power supply circuit according to claim 3, wherein a plurality of different constant currents are generated by the current driver by changing a gate length L and a gate width W of each of the plurality of FETs.
PCT/JP2002/006555 2001-07-30 2002-06-28 Power source circuit WO2003012570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-229649 2001-07-30
JP2001229649A JP2003044153A (en) 2001-07-30 2001-07-30 Power circuit

Publications (1)

Publication Number Publication Date
WO2003012570A1 true WO2003012570A1 (en) 2003-02-13

Family

ID=19061968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006555 WO2003012570A1 (en) 2001-07-30 2002-06-28 Power source circuit

Country Status (3)

Country Link
JP (1) JP2003044153A (en)
TW (1) TW567667B (en)
WO (1) WO2003012570A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4607482B2 (en) * 2004-04-07 2011-01-05 株式会社リコー Constant current circuit
JP2006109349A (en) * 2004-10-08 2006-04-20 Ricoh Co Ltd Constant current circuit and system power unit using the constant current circuit
KR101628013B1 (en) * 2008-10-02 2016-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and rfid tag using the semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391979A (en) * 1992-10-16 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Constant current generating circuit for semiconductor devices
US5572074A (en) * 1995-06-06 1996-11-05 Rockwell International Corporation Compact photosensor circuit having automatic intensity range control
US5652929A (en) * 1994-11-01 1997-07-29 Nikon Corporation Camera having a through-the-lens automatic light adjustment control device
US6060918A (en) * 1993-08-17 2000-05-09 Mitsubishi Denki Kabushiki Kaisha Start-up circuit
JP2000269426A (en) * 1999-03-17 2000-09-29 Toshiba Corp Mirror circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391979A (en) * 1992-10-16 1995-02-21 Mitsubishi Denki Kabushiki Kaisha Constant current generating circuit for semiconductor devices
US6060918A (en) * 1993-08-17 2000-05-09 Mitsubishi Denki Kabushiki Kaisha Start-up circuit
US5652929A (en) * 1994-11-01 1997-07-29 Nikon Corporation Camera having a through-the-lens automatic light adjustment control device
US5572074A (en) * 1995-06-06 1996-11-05 Rockwell International Corporation Compact photosensor circuit having automatic intensity range control
JP2000269426A (en) * 1999-03-17 2000-09-29 Toshiba Corp Mirror circuit

Also Published As

Publication number Publication date
TW567667B (en) 2003-12-21
JP2003044153A (en) 2003-02-14

Similar Documents

Publication Publication Date Title
US7304458B2 (en) Regulator circuit
WO2007136050A1 (en) High frequency switch circuit
JPH04229315A (en) Reference generator
US20050007150A1 (en) Semiconductor integrated circuit
US5894234A (en) Differential comparator with fixed and controllable hysteresis
KR100251254B1 (en) Voltage monitoring circuit capable of reducing power dissipation
JP3234732B2 (en) Level conversion circuit
JP2004194124A (en) Hysteresis comparator circuit
JP4792933B2 (en) Current control circuit and LED driving semiconductor integrated circuit
KR100573249B1 (en) Constant voltage power supply
WO2003012570A1 (en) Power source circuit
JPH11135725A (en) Semiconductor integrated circuit
JP3673479B2 (en) Voltage regulator
JP2005196251A (en) Constant voltage circuit
JP2005130020A (en) Analog level shifter
JPH05167364A (en) Semiconductor circuit
JP3052890B2 (en) Voltage controlled oscillator
KR100685107B1 (en) Out Terminal Circuit in Low-voltage CMOS OP AMP
KR100500445B1 (en) Differential output circuit
JPH11136090A (en) Active filter and integrated circuit for active filter
JP3767697B2 (en) Semiconductor integrated circuit device
KR100325429B1 (en) voltage division Circuit
JP3423634B2 (en) Constant current circuit
JP3850139B2 (en) Logic circuit
JP4134160B2 (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase