WO2002103867A1 - Opto-elektronisches lasermodul - Google Patents

Opto-elektronisches lasermodul Download PDF

Info

Publication number
WO2002103867A1
WO2002103867A1 PCT/DE2001/002262 DE0102262W WO02103867A1 WO 2002103867 A1 WO2002103867 A1 WO 2002103867A1 DE 0102262 W DE0102262 W DE 0102262W WO 02103867 A1 WO02103867 A1 WO 02103867A1
Authority
WO
WIPO (PCT)
Prior art keywords
module according
optical waveguide
housing
laser
fiber
Prior art date
Application number
PCT/DE2001/002262
Other languages
English (en)
French (fr)
Inventor
Hans-Ludwig Althaus
Helmut Albrecht
Manfred Rothhardt
Martin Becker
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Priority to PCT/DE2001/002262 priority Critical patent/WO2002103867A1/de
Priority to US09/970,441 priority patent/US6647038B2/en
Publication of WO2002103867A1 publication Critical patent/WO2002103867A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • H01S5/147External cavity lasers using a fiber as external cavity having specially shaped fibre, e.g. lensed or tapered end portion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4256Details of housings
    • G02B6/4262Details of housings characterised by the shape of the housing
    • G02B6/4263Details of housings characterised by the shape of the housing of the transisitor outline [TO] can type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4285Optical modules characterised by a connectorised pigtail
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1039Details on the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • Designation of the invention Opto-electronic laser module.
  • the invention relates to an optoelectronic laser module according to the preamble of claim 1.
  • a laser module is particularly suitable for use in DWDM (Dense Wavelength Division Multiplex) systems.
  • DBR distributed Bragg reflector
  • the present invention is based on the object of making available a laser module in which the wavelength of a laser diode is obtained in a simple manner by means of a Bragg Interference grating stabilized and can be set to a desired value.
  • the invention is characterized in that the Bragg interference grating is embodied in an optical waveguide as a fiber Bragg grating and the optical waveguide is connected to the housing containing the laser diode via a receptacle. Due to the formation of the interference grating in an optical waveguide to be coupled to the laser diode, the invention provides a laser with an external resonator, an external cavity laser (ECL). A suitable wavelength of the laser diode can be set precisely by suitable selection of the grating period of the fiber Bragg grating.
  • ECL external cavity laser
  • a fiber Bragg grating can be provided with another desired grating period, which leads to a changed emission wavelength of the laser diode.
  • the invention thus allows the emission wavelength of a laser diode to be set or selected in a simple manner without the actual arrangement of the laser diode having to be changed.
  • the training according to the invention also has the advantage that when using quartz glass as the waveguide material, a very stable single-mode operation of the semiconductor laser is ensured.
  • the change in wavelength per Kelvin in quartz glass is approximately ten times smaller than in semiconductor material in which the Bragg grating is formed in a DBR laser.
  • the module has a coupling optic between the optical waveguide and the laser diode.
  • the coupling optics preferably comprise a high refractive index coupling lens with a focal length of preferably less than one millimeter.
  • Coupling lens is in particular a spherical or aspherical silicon lens, GaP lens, SiC lens or lens made of another suitable high-index optical material.
  • a particularly short focal length glass lens, in particular glass asphere, can also be used.
  • the laser diode advantageously has a rear facet coated with a highly reflective layer, which represents the highly mirrored mirror surface of the resonator.
  • the front facet of the laser diode is preferably coated with an antireflection layer which has a residual reflection of less than 0.1%, so that parasitic resonances of the optical resonator are suppressed.
  • Light is emitted or received by the fiber Bragg grating via the front facet, so that reflection on this facet is undesirable.
  • the rear and front facets are oriented slightly obliquely to the optical axis of the laser diode, in particular at an angle of approximately 1 ° to 5 °. This reduces undesired feedback due to back reflections on structures other than the fiber Bragg grating.
  • the optical waveguide is preferably embedded in a cylindrical tube which can be inserted into the receptacle of the housing.
  • the ferrule can be part of one c ⁇ U) h PO -> h- 1 c ⁇ o C ⁇ o C ⁇ o c ⁇ 1
  • the length of the optical resonator is preferably so short that the circulating frequency of the light is above a desired modulation frequency of the module. Otherwise it would not be possible to transmit information on the optical information channel provided by the laser.
  • the length of the optical resonator is preferably less than ten millimeters.
  • the module according to the invention has a plurality of laser diodes, optical resonators and fiber Bragg gratings each formed in an optical waveguide, the spatial grating period of the individual fiber Bragg gratings per waveguide being so different that light of a different one in each case Wavelength is coupled.
  • This provides a module with a large number of optical channels, as is used in particular in DWDM systems.
  • more than 40 channels with channel spacing of 100 GHz are realized in a dense wavelength division multiplex.
  • FIG. 1 shows a schematic illustration of a laser module according to the invention
  • FIG. 2 shows a first exemplary embodiment of a laser module according to the invention
  • FIG. 3 shows a second exemplary embodiment of a laser module according to the invention
  • Figure 4 shows schematically the laser diode of a laser module according to the invention and Figure 5 shows an inventive module with a
  • a laser module according to the invention has a laser chip 1 which is arranged on a TO base 2 of a TO housing 5.
  • the TO housing 5 has a cylindrical, coaxial geometry and forms a receptacle 51, into which a glass fiber 8 surrounded by a ferrule 6 can be inserted for optical coupling.
  • the electrical control and supply of the TO base 2 or the laser chip 1 arranged thereon takes place via electrical connections 3 which lead away from the TO base 2.
  • TO housings are standard housings known in the prior art for optical transmitter or receiver modules, the shape of which resembles the housing of a "classic transistor", but which have an opening at the top for light entry or exit.
  • a TO laser module in which a glass fiber is coupled to the TO laser module is also called a coax laser module, and the coupled glass fiber is also called a pigtail.
  • the facet or end face 81 of the glass fiber 8 is located according to FIG. 1 in the interior of the housing 5 and is over a
  • Coupling optics optically coupled to the laser chip 1.
  • the coupling optics are a deflection mirror 9 and a lens 4 located in a holder, which deflect light emitted by the laser chip 1 onto the end face of the glass fiber 8 or vice versa and thus a coupling of the
  • the laser chip is a Fabry-Perot semiconductor laser chip and is shown schematically in FIG. 4. Thereafter, the chip 1 has, in a manner known per se, a cuboid crystal volume with an active laser region 15 which is delimited by two plane-parallel crystal surfaces or facets 12, 13 is.
  • the rear facet 12 of the laser chip is provided with a highly reflective layer and represents a mirror surface.
  • the rear facet 12 can be assigned a monitor diode (not shown).
  • the front facet 13 differs from conventional Fabry-Perot interferometers, so that laser light 14 passes the front facet 13 without reflections and is coupled into the glass fiber 8 via the coupling optics 9, 4 (see FIG. 1).
  • the residual reflections reach values below 0.1%.
  • the front and rear facets of the laser chip are slightly tilted with respect to the laser axis in order to avoid undesired reflections and resonances (not shown).
  • a fiber Bragg grating 7 is formed in the region of the core of the glass fiber 8 adjoining the end face 81, which is preferably a single-mode fiber.
  • the fiber Bragg grating 7 is permanently inscribed in the fiber core of the single-mode fiber 8, for example by means of lateral UV radiation.
  • a conventional single-mode glass fiber or a specially doped UV photosensitive fiber can be used.
  • the grating period of the grating 7 is chosen such that only a desired wavelength ⁇ is reflected back.
  • the relationship applies here that the grating period is equal to ⁇ / 2n, where n is the refractive index of the glass fiber.
  • a typical spatial grating period is around 0.5 ⁇ m.
  • the optical resonator of the laser is formed by the rear, mirrored facet 12 of the laser chip 1 and the fiber grating 7 of the optical waveguide 8. This represents
  • Fiber grating 7 a frequency-selective feedback of the light emitted by the active region 15 of the laser chip 1 ready so that only the reflected frequency is amplified and emitted as laser light. Part of the laser light is transmitted through the fiber Bragg grating 7 into the light fiber 8.
  • FIG. 2 A first embodiment of the invention is shown in FIG. 2. The same elements are designated with the same reference numerals.
  • the ferrule 6, which surrounds the optical waveguide 8 is firmly connected to the housing 5 of the optoelectronic module.
  • a plastic grommet 10 abutting a projection 51 of the housing 5 ensures that the optical waveguide 8 cannot be bent too much.
  • the lens 4 is a silicon lens with a short focal length of preferably less than two, in particular less than one millimeter.
  • the numerical aperture of the lens 4 is sufficiently large and is typically above the value 0.4.
  • the silicon lens is e.g. made from a planar substrate using etched structures. Alternatively, other spherical or aspherical lenses made of a suitable optical material for the respective wavelength range, for example made of glass, plastic, GaP or SiC, can also be used.
  • the refractive index of the lens is preferably greater than 2.
  • the end face 81 ⁇ of the glass fiber 8 is slightly beveled in order to avoid undesired back reflections.
  • the bevel is typically 8 °, and depending on the application, larger or smaller angles, in particular between 5 ° and 25 °, can also be achieved.
  • FIG. 3 shows a module according to the invention, in which the optical waveguide 8 can be plugged into the housing 5 of the laser module.
  • the receptacle of the housing 5 is cylindrical and is designed in such a way that the coil 6 with the optical waveguide 8 only has to be inserted into the opening.
  • a screwable adjusting element 11 serves to firmly connect the casing 6 and the glass fiber 8 to the housing 5.
  • Emission wavelength of the laser module can be changed.
  • more than ten different channel wavelengths, which are each 100 MHz apart, for example, can be generated with only one laser. This is particularly advantageous for the provision of replacement laser modules in systems with many WDM channels.
  • the resonator length of the laser module is chosen to be so short that the circulating frequency of the light in the resonator is above the desired modulation frequency of the module.
  • the resonance frequency for bit rates of the modulated signal up to 10 Gbit / s is approximately 15 GHz.
  • FIG. 5 shows an exemplary embodiment of a module according to the invention, in which a large number of modules Housing 5 arranged laser diodes and coupled light fibers 8, 8 8 ⁇ X with fiber Bragg grating according to Figures 1 to 3 are arranged in an array on a carrier plate 16.
  • the spatial grating period of the fiber Bragg grating is different for each light fiber 8, 8 8 ⁇ , so that the respective laser has a slightly different emission wavelength and accordingly light of a different wavelength in each of the individual light fibers 8, 8 ⁇ , 8 , ⁇ is coupled.
  • a module with a large number of optical channels is provided using the same type of laser diodes, as is used in particular in DWDM systems.
  • the individual optical channels preferably have a fixed channel spacing of, for example, 100 GHz.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Bezeichnung der Erfindung: Opto-elektronisches Lasermodul.Die Erfindung betrifft ein opto-elektronisches Lasermodul, insbesondere für DWDM-Systeme, mit einer Laserdiode mit einem aktiven Bereich, einem optischen Resonator bestehend aus einer hochverspiegelten Spiegelfläche und einem Bragg-Interferenzgitter, das eine frequenzselektive Rückkopplung bereitstellt, und einem Gehäuse, das die Laserdiode aufnimmt und eine Aufnahme zur Ankopplung eines Lichtwellenleiters aufweist. Erfindungsgemäß ist das Bragg-Interferenzgitter als Faser-Bragg-Gitter (7) in einem Lichtwellenleiter (8) ausgeführt und der Lichtwellenleiter (8) über die Aufnahme mit dem Gehäuse (5) verbunden. Hierdurch kann unter Verwendung von Standardbauelementen ein Laser mit einem externen Resonator bereitgestellt werden, dessen Emissionswellenlänge durch geeignete Wahl des Faser-Bragg-Gitters in einfacher Weise einstellbar ist.(Fig. 3)

Description

Beschreibung
Bezeichnung der Erfindung: Opto-ele tronisches Lasermodul.
Die Erfindung betrifft ein opto-elektronisches Lasermodul gemäß dem Oberbegriff des Anspruchs 1. Ein solches Lasermodul eignet sich insbesondere für einen Einsatz in DWDM- (Dense Wavelength Division Multiplex) Systemen.
Es sind Laserdioden mit einer sogenannten verteilten
Rückkopplung bekannt, die aufgrund einer frequenzselektiven Rückkopplung anders als Laserdioden mit einem Fabry-Perot- Resonator nicht vielmodig, sondern einmodig emittieren. Insbesondere sind in diesem Zusammenhang DBR- (distributed Bragg reflector) Laser bekannt, bei denen außerhalb des üblichen schwingungsaktiven Gebietes ein Bragg-Reflektor angeordnet ist. Dabei handelt es sich um eine Struktur mit einer periodischen Störung, dem Bragg-Interferenzgitter, die eine elekromagnetische Welle frequenzselektiv reflektiert, vgl. Reinhold Paul: Optoelektronische Halbleiterbauelemente, Stuttgart 1992, S. 203-204.
Weiter ist es bekannt, in eine Lichtfaser ein sogenanntes Faser-Bragg-Gitter einzuschreiben. Hierbei wird zur Erzeugung einer Gitterstruktur in bestimmten Bereichen des Faserkerns einer Lichtfaser eine Brechzahlerhöhung herbeigeführt, etwa durch punktuelle Belichtung der Faser oder durch Verwendung einer Phasenmaske, die in der Lichtfaser ein Interferenzstreifenmuster erzeugt. Gängige Verfahren zur Erzeugung eines Faser-Bragg-Gitters sind in K.O. Hill et al . : "Fiber Bragg Grating Technology Fundamentals and Overview", Journal of Lightwave Technology, Vol. 15, No. 8, August 1997, Seiten 1263-1276 beschrieben.
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, ein Lasermodul zur Verfügung zu stellen, bei dem die Wellenlänge einer Laserdiode in einfacher Weise mittels eines Bragg- Interferenzgitters stabilisiert und dabei auf einen gewünschten Wert eingestellt werden kann.
Diese Aufgabe wird erfindungsgemäß durch ein opto- elektronisches Modul mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte und vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
Danach zeichnet sich die Erfindung dadurch aus, daß das Bragg-Interferenzgitter in einem Lichtwellenleiter als Faser- Bragg-Gitter ausgeführt ist und der Lichtwellenleiter über eine Aufnahme mit dem die Laserdiode enthaltenden Gehäuse verbunden ist. Die Erfindung stellt aufgrund der Ausbildung des Interferenzgitters in einem an die Laserdiode anzukoppelnden Lichtwellenleiter einen Laser mit einem externen Resonator, einen External Cavity Laser (ECL) zur Verfügung. Dabei kann durch geeignete Wahl der Gitterperiode des Faser-Bragg-Gitters eine gewünschte Wellenlänge der Laserdiode genau eingestellt werden.
Insbesondere kann durch Wechsel des steckbaren Lichtwellenleiters ein Faser-Bragg-Gitter mit einer anderen gewünschten Gitterperiode bereitgestellt werden, die zu einer geänderten Emissionswellenlänge der Laserdiode führt. Die Erfindung erlaubt somit in einfacher Weise eine Einstellung bzw. eine Auswahl der Emissionswellenlänge eines Laserdiode, ohne daß die eigentliche Anordnung der Laserdiode geändert werden müßte.
Die erfindunsgemäße Ausbildung weist darüber hinaus den Vorteil auf, daß bei Verwendung von Quarzglas als Wellenleitermaterial ein sehr stabiler Single-Mode Betrieb des Halbleiterlasers gewährleistet ist. So ist die Wellenlängenänderung pro Kelvin in Quarzglas im Vergleich zu Halbleitermaterial, in dem bei einem DBR-Laser das Bragg-Gitter ausgebildet ist, circa zehnfach kleiner. Auch liegt durch die Verwendung eines externen Resonators eine größere effektive Wellenlänge vor. Damit wird das Modul gegenüber Temperaturänderungen und gegenüber Veränderungen der optischen Eigenschaften der Laserdiode unempfindlicher.
In einer bevorzugten Ausgestaltung der Erfindung weist das Modul zwischen dem Lichtwellenleiter und der Laserdiode eine Koppeloptik auf. Die Koppeloptik umfaßt bevorzugt eine hochbrechende Koppellinse mit einer Brennweite von vorzugsweise kleiner als einem Millimeter. Bei der
Koppellinse handelt es sich insbesondere um eine sphärische oder asphärische Siliziumlinse, GaP-Linse, SiC-Linse oder Linse aus einem anderen geeigneten hochbrechenden optischen Material. Auch kann eine besonders kurzbrennweitige Glaslinse, insbesondere Glas-Asphäre zum Einsatz kommen.
Die Laserdiode weist mit Vorteil eine mit einer hochreflektierenden Schicht beschichtete hintere Facette auf, die die hochverspiegelten Spiegelfläche des Resonators darstellt. Die vordere Facette der Laserdiode ist dagegen bevorzugt mit einer Antireflexschicht beschichtet, die eine Restreflexion von weniger als 0.1 % aufweist, so daß parasitäre Resonanzen des optischen Resonators unterdrückt werden. Über die vordere Facette wird Licht zum Faser-Bragg- Gitter ausgesandt bzw. von diesem empfangen, so daß eine Reflexion an dieser Facette unerwünscht ist.
In einer bevorzugten Ausgestaltung der Erfindung ist vorgesehen, daß die hintere und die vordere Facette leicht schräg zur optischen Achse der Laserdiode ausgerichtet sind, insbesondere unter einem Winkel von etwa 1° bis 5°. Hierdurch wird eine unerwünschte Rückkopplung durch Rückreflexionen an anderen Strukturen als dem Faser-Bragg-Gitter verringert.
Der Lichtwellenleiter ist bevorzugt in eine zylindrische Ferulle eingebettet, die in die Aufnahme des Gehäuses einsteckbar ist. Die Ferrule kann dabei Teil eines cυ U) h PO -> h-1 cπ o Cπ o Cπ o cπ 1
SU
Cfl
Φ
1 tu
H
SU Q Q
1
Ω
H- rt rt
Φ l-i
N d
<
Φ
H
3
Φ p-
Φ
3
Figure imgf000006_0001
Die Länge des optischen Resonators ist bevorzugt so kurz, daß die Umlauffrequenz des Lichtes über einer gewünschten Modulationsfrequenz des Moduls liegt. Ansonsten wäre eine Informationsübertragung auf dem durch den Laser bereitgestellten optischen Informationskanal nicht möglich. Inbesondere ist die Länge des optischen Resonators bevorzugt kleiner als zehn Millimeter.
Das erfindungsgemäße Modul weist in einer bevorzugten Ausgestaltung eine Mehrzahl von Laserdioden, optischen Resonatoren und jeweils in einem Lichtwellenleiter ausgebildeten Faser-Bragg-Gittern auf, wobei die räumliche Gitterperiode der einzelnen Faser-Bragg-Gitter je Wellenleiter derart unterschiedlich ist, daß jeweils Licht einer unterschiedlichen Wellenlänge eingekoppelt wird.
Hierdurch wird ein Modul mit einer Vielzahl optischer Kanäle bereitgestellt, wie es insbesondere in DWDM-Systemen Anwendung findet. Dabei werden in einem dichten Wellenlängenmultiplex typischerweise mehr als 40 Kanäle mit Kanalabständen von 100 GHz realisiert.
Die Erfindung wird nachfolgend unter Bezugnahme auf die Figuren der Zeichnung anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
Figur 1 eine schematische Darstellung eines erfindungsgemäßen Lasermoduls,
Figur 2 ein erstes Ausführungsbeispiel eines erfindungsgemäßen Lasermoduls,
Figur 3 ein zweites Ausführungsbeispiel eines erfindungsgemäßen Lasermoduls,
Figur 4 schematisch die Laserdiode eines erfindungsgemäßen Lasermoduls und Figur 5 ein erfindungsgemäßes Modul mit einer
Mehrzahl von Laserdioden und TO-Gehäusen.
Gemäß Figur 1 weist ein erfindunsgemäßes Lasermodul einen Laserchip 1 auf, der auf einem TO-Sockel 2 eines TO-Gehäuses 5 angeordnet ist. Das TO-Gehäuse 5 besitzt eine zylindrische, koaxiale Geometrie und bildet eine Aufnahme 51 aus, in die zur optischen Kopplung eine von einer Ferulle 6 umgebene Glasfaser 8 einsteckbar ist.
Die elektrische Ansteuerung und Versorgung des TO-Sockels 2 bzw. des darauf angeordneten Laserchips 1 erfolgt über elektrische Anschlüsse 3, die vom TO-Sockel 2 wegführen.
TO-Gehäuse sind im Stand der Technik bekannte Standardgehäuse für optische Sende- oder Empfangsmodule, deren Form dem Gehäuse eines „klassischen Transistor" ähnelt, die jedoch an der Oberseite eine Öffnung zum Lichtein- oder -austritt aufweisen. Ein TO-Lasermodul, bei dem eine Glasfaser an das TO-Lasermodul angekoppelt ist, wird auch als Koax-Lasermodul bezeichnet. Die angekoppelte Glasfaser wird auch als Pigtail bezeichnet.
Die Facette bzw. Stirnfläche 81 der Glasfaser 8 befindet sich gemäß Fig. 1 im Inneren des Gehäuses 5 und ist über eine
Koppeloptik optisch mit dem Laserchip 1 gekoppelt. Bei der Koppeloptik handelt es sich um einen Umlenkspiegel 9 und eine in einer Fassung befindliche Linse 4, die vom Laserchip 1 ausgestrahltes Licht auf die Stirnfläche der Glasfaser 8 umlenken bzw. umgekehrt und damit eine Ankopplung des
Laserlichts von der Laserdiode in die Glasfaser bewirken.
Der Laserchip ist ein Fabry-Perot-Halbleiterlaser-Chip und schematisch in Figur 4 dargestellt. Danach weist der Chip 1 in an sich bekannter Weise ein quaderförmiges Kristallvolumen mit einem aktiven Laserbereich 15 auf, der von zwei planparallelen Kristallflächen bzw. Facetten 12, 13 begrenzt ist. Die hintere Facette 12 des Laserchips ist mit einer hochreflektierenden Schicht versehen und stellt eine Spiegelfläche dar. Der hinteren Facette 12 kann dabei eine Monitordiode zugeordnet sein (nicht dargestellt) .
Die vordere Facette 13 ist dagegen abweichend von üblichen Fabry-Perot-Interferometern antireflexbeschichtet, so daß Laserlicht 14 die vordere Facette 13 ohne Reflexionen passiert und über die Koppeloptik 9, 4 (vgl. Figur 1) in die Glasfaser 8 eingekoppelt wird. Die Restreflektionen erreichen dabei Werte unter 0,1 %.
In einer alternativen Ausgestaltung sind die vordere und die hintere Facette des Laserchips gegenüber der Laserachse leicht gekippt, um unerwünschte Reflektionen und Resonanzen zu vermeiden (nicht dargestellt) .
In dem an die Stirnfläche 81 angrenzenden Bereich des Kerns der Glasfaser 8, bei der es sich bevorzugt um eine Single- Mode-Faser handelt, ist gemäß Figur 1 ein Faser-Bragg-Gitter 7 ausgebildet. Das Faser-Bragg-Gitter 7 ist fest in den Faserkern der Single-Mode-Faser 8 eingeschrieben, beispielsweise durch eine seitliche UV-Bestrahlung. Dabei kann eine übliche Single-Mode-Glasfaser oder eine speziell dotierte UV-photoempfindliche Faser verwendet werden.
Die Gitterperiode des Gitters 7 wird derart gewählt, daß ausschließlich eine gewünschte Wellenlänge λ rückreflektiert wird. Dabei gilt die Beziehung, daß die Gitterperiode gleich λ/2n ist, wobei n die Brechzahl der Glasfaser ist. Eine typische räumliche Gitterperiode liegt bei ca. 0,5 μm.
Der optische Resonator des Lasers wird durch die hintere, verspiegelte Facette 12 des Laserchips 1 und das Fasergitter 7 des Lichtwellenleiters 8 gebildet. Dabei stellt das
Fasergitter 7 eine frequenzselektive Rückkopplung des vom aktiven Bereich 15 des Laserchips 1 ausgesandten Lichtes bereit, so daß nur die reflektierte Frequenz verstärkt und als Laserlicht abgestrahlt wird. Ein Teil des Laserlichts wird dabei durch das Faser-Bragg-Gitter 7 in die Lichtfaser 8 transmittiert .
Ein erstes Ausführungsbeispiel der Erfindung ist in der Figur 2 dargestellt. Gleiche Elemente sind dabei mit gleichen Bezugszeichen bezeichnet.
In dem Ausführungsbeispiel der Figur 2 ist die Ferulle 6, die den Lichtwellenleiter 8 umschließt, fest mit dem Gehäuse 5 des optoelektronischen Moduls verbunden. Eine an einem Vorsprung 51 des Gehäuses 5 anliegende Kunststofftülle 10 stellt dabei sicher, daß der Lichtwellenleiter 8 nicht zu stark gebogen werden kann.
Bei der Linse 4 handelt es sich um eine Siliciumlinse mit einer kurzen Brennweite von bevorzugt weniger als zwei, insbesondere weniger als einem Millimeter. Die numerische Apertur der Linse 4 ist ausreichend groß und liegt typischerweise über dem Wert 0,4. Die Siliciumlinse ist z.B. über geätzte Strukturen aus einem planaren Substrat hergestellt worden. Alternativ können auch andere sphärische oder asphärische Linsen aus einem geeigneten optischen Material für den jeweiligen Wellenlängenbereich, beispielsweise aus Glas, Kunststoff, GaP oder SiC verwendet werden. Die Brechzahl der Linse ist dabei bevorzugt größer als 2.
Durch geeignete Wahl der Gitterperiode des Faser-Bragg- Gitters 7 wird lediglich eine bestimmte, gewünschte Wellenlänge reflektiert, so daß der Laser nur für diese Wellenlänge anschwingt. Die übrigen Wellenlängen werden durch Interferenz ausgelöscht.
Die Stirnfläche 81 Λ der Glasfaser 8 ist leicht angeschrägt, um ungewünschte Rückreflektionen zu vermeiden. Die Anschrägung liegt typischerweise bei 8°, wobei je nach Anwendung auch größere oder kleinere Winkel insbesondere zwischen 5° und 25° verwirklicht werden können.
Die Figur 3 zeigt ein erfindungsgemäßes Modul, bei der der Lichtwellenleiter 8 steckbar mit dem Gehäuse 5 des Lasermoduls koppelbar ist. Die Aufnahme des Gehäuses 5 ist dabei zylindrisch und derart ausgebildet, daß die Ferulle 6 mit dem Lichtwellenleiter 8 lediglich in die Öffnung eingeschoben werden muß. Ein verschraubbares Fe'ststellelement 11 dient dazu, die Ferulle 6 und die Glasfaser 8 fest mit dem Gehäuse 5 zu verbinden.
Dabei besteht die Möglichkeit, in einfacher Weise ein anderes Faser-Bragg-Gitter 7 vorzusehen, indem die Ferulle 6 mit der Glasfaser 8 ausgewechselt und eine andere Glasfaser mit einem Fasergitter einer anderen Gitterperiode eingesteckt wird. Da eine unterschiedliche Gitterperiode zu einer Änderung der rückgekoppelten Frequenz führt, kann über das Wechseln des Lichtwellenleiters 8 bzw. des Fasergitters 7 die
Emissionswellenlänge des Lasermoduls verändert werden. Versuche haben gezeigt, daß auf diese Weise mehr als zehn verschiedene Kanalwellenlängen, die beispielsweise jeweils einen Abstand von 100 MHz aufweisen, mit nur einem Laser erzeugt werden können. Dies ist besonders vorteilhaft für die Bereitstellung von Ersatz-Lasermodulen in Systemen mit vielen WDM-Kanälen.
Bei den Ausführungsbeispielen der Figur 2 und 3 ist die Resonatorlänge des Lasermoduls derart kurz gewählt, daß die Umlauffrequenz des Lichtes im Resonator über der gewünschten Modulationsfrequenz des Moduls liegt. Dabei liegt die Resonanzfrequenz bei Bit-Raten des modulierten Signals bis zu 10 Gbit/s bei etwa 15 GHz.
Die Figur 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Moduls, bei dem eine Vielzahl von in TO- Gehäusen 5 angeordnete Laserdioden und angekoppelte Lichtfasern 8, 8 8λX mit Faser-Bragg-Gitter entsprechend den Figuren 1 bis 3 in einem Array auf einer Trägerplatte 16 angeordnet sind. Dabei ist die räumliche Gitterperiode der Faser-Bragg-Gitter für jede Lichtfaser 8, 8 8 λ unterschiedlich, so daß der jeweilige Laser jeweils eine etwas andere Emissionswellenlänge aufweist und dementsprechend jeweils Licht einer anderen Wellenlänge in die einzelnen Lichtfasern 8, 8Λ, 8 eingekoppelt wird. Hierdurch wird unter Verwendung gleichartiger Laserdioden ein Modul mit einer Vielzahl optischer Kanäle bereitgestellt, wie es insbesondere in DWDM-Systemen Anwendung findet. Bevorzugt weisen die einzelnen optischen Kanäle dabei einen festen Kanalabstand von beispielsweise 100 GHz auf.

Claims

Patentansprüche
1. Opto-elektronisches Lasermodul, insbesondere für DWDM- Systeme, mit - einer Laserdiode mit einem aktiven Bereich,
- einem optischen Resonator mit einer hochverspiegelten Spiegelfläche und einem Bragg-Interferenzgitter, das eine frequenzselektive Rückkopplung bereitstellt, und
- einem Gehäuse, das die Laserdiode aufnimmt und eine Aufnahme zur Ankopplung eines Lichtwellenleiters bzw.
Lichtwellenleitersteckers aufweist,
dadurch gekennzeichnet,
daß das Bragg-Interferenzgitter als Faser-Bragg-Gitter (7) in einem Lichtwellenleiter (8) ausgeführt ist und der Lichtwellenleiter (8) über die Aufnahme mit dem Gehäuse (5) verbunden ist.
2. Modul nach Anspruch 1, gekennzeichnet durch eine Koppeloptik (4, 9) zwischen dem Lichtwellenleiter (8) und der Laserdiode (1) .
3. Modul nach Anspruch 2, dadurch gekennzeichnet, daß die Koppeloptik eine hochbrechende Koppellinse (4) mit einer Brennweite von bevorzugt kleiner als zwei Millimeter, insbesondere kleiner als einem Millimeter aufweist.
4. Modul nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Koppellinse (4) eine
Siliziumlinse, GaP-Linse, SiC-Linse oder eine asphärische Glaslinse ist.
5. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Laserdiode (1) eine mit einer hochreflektierenden Schicht beschichtete hintere Facette (12) aufweist, die die hochverspiegelten Spiegelfläche des Resonators darstellt.
6. Modul nach Anspruch 5, dadurch gekennzeichnet , daß die Laserdiode (1) eine antireflex beschichtete vordere
Facette (13) aufweist, über die Licht zum Faser-Bragg-Gitter
(7) ausgesandt bzw. von diesem empfangen wird.
7. Modul nach Anspruch 4 und 5, dadurch gekennzeichnet, daß die vordere und hintere Facette (12, 13) schräg zur optischen Achse der Laserdiode ausgerichtet sind, insbesondere unter einem Winkel von etwa 1° bis 5°.
8. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Lichtwellenleiter
(8) in eine zylindrische Ferulle (6) eingebettet ist, die in die Aufnahme des Gehäuses (5) einsteckbar ist.
9. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Lichtwellenleiter (8) über einen Faserstecker (6, 11) an dem Gehäuse (5) befestigt ist.
10. Modul nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Ferrule (6) oder der Faserstecker (6, 11) lösbar mit dem Gehäuse (5) verbindbar sind.
11. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß Gehäuse eine zylindrische Aufnahme (5) für einen Lichtwellenleiter (8) aufweist .
12. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet , daß das Gehäuse (5) eine koaxiale Geometrie besitzt, insbesondere ein TO-Gehäuse ist.
13. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß der Lichtwellenleiter eine Single-Mode-Glasfaser (8) ist.
14. Modul nach Anspruch 13, dadurch gekennzeichnet , daß das Faser-Bragg-Gitter (7) sich in der Glasfaser (8) direkt hinter der Stirnfläche (81, 81') der Glasfaser befindet.
15. Modul nach Anspruch 13 oder 14, dadurch gekennzeichnet , daß die Stirnfläche ( 81 Λ ) der Glasfaser angeschrägt ist.
16. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Länge des optischen Resonators so kurz ist, daß die Umlauffrequenz des Lichtes über einer gewünschten Modulationsfrequenz des Moduls liegt.
17. Modul nach Anspruch 16, dadurch gekennzeichnet , daß die Länge des optischen Resonators kleiner als zehn Millimeter ist.
18. Modul nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das Modul eine Mehrzahl von Laserdioden, optischen Resonatoren und jeweils in einem Lichtwellenleiter (8, 8Λ, 8λΛ) ausgebildeten Faser- Bragg-Gittern aufweist, wobei die räumliche Gitterperiode der einzelnen Faser-Bragg-Gitter je Wellenleiter unterschiedlich ist, so daß in die einzelnen Wellenleiter jeweils Licht einer unterschiedlichen Wellenlänge eingekoppelt wird.
PCT/DE2001/002262 2001-06-15 2001-06-15 Opto-elektronisches lasermodul WO2002103867A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/DE2001/002262 WO2002103867A1 (de) 2001-06-15 2001-06-15 Opto-elektronisches lasermodul
US09/970,441 US6647038B2 (en) 2001-06-15 2001-10-03 Optoelectronic laser module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2001/002262 WO2002103867A1 (de) 2001-06-15 2001-06-15 Opto-elektronisches lasermodul

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/970,441 Continuation US6647038B2 (en) 2001-06-15 2001-10-03 Optoelectronic laser module

Publications (1)

Publication Number Publication Date
WO2002103867A1 true WO2002103867A1 (de) 2002-12-27

Family

ID=5648253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002262 WO2002103867A1 (de) 2001-06-15 2001-06-15 Opto-elektronisches lasermodul

Country Status (2)

Country Link
US (1) US6647038B2 (de)
WO (1) WO2002103867A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920158B2 (en) * 2001-12-25 2005-07-19 Mitsubishi Denki Kabushiki Kaisha Optical module
US6944203B2 (en) * 2002-05-08 2005-09-13 Sumitomo Electric Industries, Ltd. Multimode light generating module, semiconductor laser apparatus, and optical fiber amplifier
US7422377B2 (en) * 2003-06-30 2008-09-09 Finisar Corporation Micro-module with micro-lens
US20050025420A1 (en) * 2003-06-30 2005-02-03 Mina Farr Optical sub-assembly laser mount having integrated microlens
WO2005030980A2 (en) * 2003-09-22 2005-04-07 Snake Creek Lasers Llc High densiity methods for producing diode-pumped micro lasers
US20070166852A1 (en) * 2003-09-22 2007-07-19 Snake Creek Lasers Llc Diode-pumped microlasers including resonator microchips and methods for producing the same
US20070121689A1 (en) * 2003-09-22 2007-05-31 Snake Creek Lasers Llc Methods for Producing Diode-Pumped Micro Lasers
CA2502266A1 (en) * 2004-03-26 2005-09-26 Kyocera Corporation External resonator and semiconductor laser module using the same
DE102004038310A1 (de) * 2004-08-05 2006-02-23 Kuka Schweissanlagen Gmbh Lasereinrichtung und Betriebsverfahren
US20060083276A1 (en) * 2004-09-28 2006-04-20 Snake Creek Lasers, Llc. Cryogenically cooled solid state lasers
KR100647904B1 (ko) * 2004-12-20 2006-11-23 한국전자통신연구원 광섬유 브라그 격자 외부 공진기를 갖는 레이저의제조방법 및 이에 의해 제조된 레이저
US7519091B2 (en) * 2006-05-25 2009-04-14 National Chiao Tung University All-optical 2R regenerator using self-seeded laser diode
ES2776481T3 (es) * 2012-10-01 2020-07-30 Hoffmann La Roche Módulo de fuente de luz y procedimiento para modificar un instrumento analítico para analizar una muestra
CN110957637A (zh) * 2014-12-10 2020-04-03 特拉迪欧德公司 用于波长光束组合激光系统的光学交叉耦合抑制系统
EP3687009B1 (de) * 2017-09-19 2024-02-07 Kyocera Corporation Element zur aufnahme eines lichtemittierenden elements, arrayelement und lichtemittierende vorrichtung
US20190129108A1 (en) * 2017-10-31 2019-05-02 Versalume LLC Modular Laser Connector Packaging System and Method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305336A (en) * 1992-01-29 1994-04-19 At&T Bell Laboratories Compact optical pulse source
JPH0949948A (ja) * 1995-06-01 1997-02-18 Sumitomo Electric Ind Ltd アレイ型発光素子モジュールとその製造方法
US5832011A (en) * 1993-03-25 1998-11-03 British Telecommunications Public Limited Company Laser
DE19823691A1 (de) * 1998-05-27 1999-12-02 Siemens Ag Gehäuseanordnung für Lasermodul
EP1059711A2 (de) * 1999-06-10 2000-12-13 Sumitomo Electric Industries, Ltd. Halbleiterlaservorrichtung
WO2001024324A2 (en) * 1999-09-15 2001-04-05 Sarnoff Corporation High-power laser with transverse mode filter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1383549A (en) * 1972-07-28 1974-02-12 Post Office Optical communications systems
JPH0777279B2 (ja) * 1990-07-27 1995-08-16 パイオニア株式会社 光パルス発生装置
FR2741482B1 (fr) * 1995-11-21 1997-12-26 Alcatel Optronics Dispositif laser, notamment pour pompage optique, et son procede de fabrication
US5724377A (en) * 1996-02-29 1998-03-03 Lucent Technologies Inc. Method and apparatus for improving the instability of a laser
JPH1012959A (ja) * 1996-06-19 1998-01-16 Sumitomo Electric Ind Ltd 半導体発光素子、発光素子モジュールおよび半導体発光素子の製造方法
US5914972A (en) * 1997-03-24 1999-06-22 Sdl, Inc. Thermal compensators for waveguide DBR laser sources
ITTO980306A1 (it) * 1998-04-10 1999-10-10 Cselt Centro Studi Lab Telec O Modulo laser a cavita' esterna con riflettore in fibra ottica.
JPH11326709A (ja) * 1998-05-13 1999-11-26 Mitsubishi Electric Corp レーザダイオードモジュール
JP2937196B1 (ja) * 1998-08-27 1999-08-23 住友電気工業株式会社 ファイバグレーティング半導体レーザ
US6278721B1 (en) * 1999-03-03 2001-08-21 Lucent Technologies, Inc. Method for minimizing locking range variability of a laser module
US6337874B1 (en) * 1999-05-27 2002-01-08 Corning Lasertron, Inc. Optical component with polarization-maintaining fiber pigtail splice to regular fiber with grating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305336A (en) * 1992-01-29 1994-04-19 At&T Bell Laboratories Compact optical pulse source
US5832011A (en) * 1993-03-25 1998-11-03 British Telecommunications Public Limited Company Laser
JPH0949948A (ja) * 1995-06-01 1997-02-18 Sumitomo Electric Ind Ltd アレイ型発光素子モジュールとその製造方法
DE19823691A1 (de) * 1998-05-27 1999-12-02 Siemens Ag Gehäuseanordnung für Lasermodul
EP1059711A2 (de) * 1999-06-10 2000-12-13 Sumitomo Electric Industries, Ltd. Halbleiterlaservorrichtung
WO2001024324A2 (en) * 1999-09-15 2001-04-05 Sarnoff Corporation High-power laser with transverse mode filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06 30 June 1997 (1997-06-30) *

Also Published As

Publication number Publication date
US20020196824A1 (en) 2002-12-26
US6647038B2 (en) 2003-11-11

Similar Documents

Publication Publication Date Title
DE102018106899B4 (de) Integrierte optische Baugruppe und optisches Kommunikationssystem mit integrierter Photonikschaltung und MEMS-Spiegel
US7965949B1 (en) Robustly stabilizing laser systems
WO2002103867A1 (de) Opto-elektronisches lasermodul
DE60033839T2 (de) Abstimmbare ADD/DROP UND CROSS-CONNECT Vorrichtungen
DE60022232T2 (de) Wellenleiterpaar mit unterschiedlichen brechungsindizes
DE102005031132B4 (de) Optoelektronisches Modul mit hohem Kopplungswirkungsgrad
DE102004028117B4 (de) Optoelektronisches Bauelement und Verfahren zum Bilden eines optoelektronischen Bauelements
DE102009021043A1 (de) Planare Lichtwellenschaltung und abstimmbare Laservorrichtung, die diese aufweist
DE19917596B4 (de) Bidirektionales optisches Kommunikationsbauteil und bidirektionale optische Kommunikationsvorrichtung
DE60313113T2 (de) Optische Kopplungsvorrichtung und ihr Herstellungsverfahren
DE10349608B4 (de) Optische Vorrichtung und Verfahren zum Koppeln von Ausgangslicht von einer Lichtquelle zu einem Lichtwellenleiter
DE102008062307A1 (de) Optoelektronische Komponente basierend auf Premold-Technologie
DE10320152B4 (de) Optikfaserkoppler mit erweiterter Ausrichtungstoleranz
CN109478754A (zh) 光学谐振器、光学谐振器的制造方法及其应用
DE602004013460T2 (de) Faseroptischer verstärker
DE112021004960T5 (de) Optoelektronisches modul, verfahren zum betreiben eines optoelektronischen moduls und am kopf montierte anzeige
US20030133478A1 (en) Tunable diffractive device
EP1247127A1 (de) Optische kopplungsanordnung
EP3414804B1 (de) Laseranordnung, verfahren zum steuern eines lasers und messverfahren
DE10014644A1 (de) Optisches Modul zur Wellenlängen-Referenzmessung in WDM-Systemen
DE10237695A1 (de) Lasermodul für optische Übertragungssysteme und Verfahren zum Stabilisieren einer Ausgangswellenlänge eines Lasermoduls
DE10104563A1 (de) Halbleiterelement mit optoelektronischer Signalübertragung und Verfahren zum Erzeugen eines solchen Halbleiterelements
DE102019009399B4 (de) Optische Vorrichtung
DE19718997A1 (de) Laser-Sendeeinheit, insbesondere für die Nachrichtenübertragung im Wellenlängemultiplex
WO2020245259A1 (de) Optische vorrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09970441

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP