WO2002091095A1 - Calibrating method - Google Patents

Calibrating method Download PDF

Info

Publication number
WO2002091095A1
WO2002091095A1 PCT/EP2002/005183 EP0205183W WO02091095A1 WO 2002091095 A1 WO2002091095 A1 WO 2002091095A1 EP 0205183 W EP0205183 W EP 0205183W WO 02091095 A1 WO02091095 A1 WO 02091095A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reference objects
scanning
sensor
calibration field
Prior art date
Application number
PCT/EP2002/005183
Other languages
German (de)
French (fr)
Inventor
Volker Willhoeft
Kay Fürstenberg
Roland Krzikalla
Original Assignee
Ibeo Automobile Sensor Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibeo Automobile Sensor Gmbh filed Critical Ibeo Automobile Sensor Gmbh
Priority to EP02735349A priority Critical patent/EP1386202A1/en
Priority to JP2002588290A priority patent/JP2004527852A/en
Publication of WO2002091095A1 publication Critical patent/WO2002091095A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor

Definitions

  • the invention relates to a method for calibrating an optoelectronic transmitter / receiver device attached to a vehicle for optical detection of the surroundings of the vehicle, in which the vehicle provided with the device is brought into a calibration field formed by a plurality of reference objects, with the device at least a part of the Calibration field is scanned, and if the position and / or orientation of the vehicle in the calibration field is known, the position and / or the orientation of the device on the vehicle is determined from the scanning data obtained by the scanning on the one hand and known calibration field data on the other hand.
  • Vehicle-fixed optoelectronic transmitting / receiving devices which are also referred to simply as sensors below, are suitable for diverse applications.
  • the sensors can be used, for example, to monitor the vehicle environment, for example to detect dangerous situations with pedestrians or cyclists, to serve as parking aids, to ensure a sufficient distance from vehicles in front or to ensure a sufficient distance from the lane boundary.
  • the position and orientation of the sensor on the vehicle must be known.
  • the object of the invention is to provide a method of the type mentioned at the outset, with which at least the mounting or installation location of the optoelectronic transmitting and receiving device on the vehicle and in particular also its orientation on the vehicle are determined in the simplest possible manner and with the highest possible accuracy can, which should in particular be possible regardless of the position of the vehicle at which the transmitting and receiving device is arranged.
  • This object is achieved by the features of claim 1 and in particular in that, by scanning at least part of the calibration field with the device, an image of the known arrangement pattern of the reference objects is determined from the point of view of the device and from the determined image of the arrangement pattern to the Position of the device in the calibration field is closed.
  • a calibration field is used, into which the vehicle is brought for calibrating the transmitter / receiver device or sensor attached to the vehicle or which is arranged in the vicinity of the vehicle.
  • the arrangement of the vehicle and the calibration field is such that the position and / or orientation of the vehicle in the calibration field are known. Both the position and the orientation of the vehicle are preferably known in a coordinate system of the calibration field formed by the reference objects.
  • To determine the mounting or mounting location of the sensor on the vehicle at least part of the calibration field is scanned with the sensor.
  • the scan data obtained in this way represent an image of the calibration field, ie the arrangement pattern of the reference objects, or a part thereof from the point of view of the sensor.
  • the mounting or installation location of the sensor on the vehicle can then be determined from this using the known information about the calibration field and about the arrangement of the vehicle in the calibration field.
  • the senor itself ensures its own calibration, which is preferably carried out automatically using at least one predetermined algorithm.
  • the known calibration field data thus comprise information about the arrangement pattern of the reference objects, i.e. via the coordinates of the reference objects in the calibration field with regard to the coordinate system used in each case.
  • the distances of the reference objects from one another and from a common reference point - the origin of the coordinate system - are known.
  • An advantage of the method according to the invention is that the calibration field is statically scanned with the sensor at rest.
  • the scanning can be repeated any number of times, whereby the accuracy can in principle be increased as desired by using statistical evaluation methods.
  • the static calibration or determination of position and orientation according to the invention is particularly robust against temporary disturbances, for example due to persons or objects entering the calibration field, since these influence only one or a few scanning processes and have practically no influence on the measurement result in a large number of scanning processes.
  • Other types of interference such as, for example, due to raindrops in the beam path, which can distort individual measurements, do not have a disadvantage because of the possibility according to the invention of carrying out a large number of scans.
  • the vehicles can in principle be any type of vehicle, including self-driving vehicles, the invention preferably being used in conjunction with cars and trucks.
  • a camera for example an optoelectronic transmission / reception device, e.g. to provide a video camera with which at least a part of the calibration field is also scanned by taking pictures of the calibration field or the relevant calibration field area and then evaluating them.
  • a laser scanner as the optoelectronic sensor.
  • This is preferably a laser scanner which emits a laser beam in at least one scanning plane and repeatedly sweeps with this scanning beam a predetermined, basically any angular range of up to 360 °.
  • the distance voltage to the objects reflecting the emitted scanning beams is preferably determined according to the time-of-flight method.
  • the scanning radiation can be in the wavelength range visible to the human eye as well as outside this range.
  • a laser scanner is preferably used, which for each distance value supplies an angle value related to a predetermined axis of the scanner.
  • the arrangement pattern of the reference objects is preferably selected in such a way that the images of the arrangement pattern corresponding to the positions of the device in question on the vehicle differ from one another.
  • the reference objects are arranged at a relatively short distance from the vehicle.
  • the lengthening of the calibration field is preferably carried out in such a way that no ambiguities are generated and even in the lengthened calibration field there is still a clear association between the sensor position on the one hand and the determined image on the other hand. It is particularly preferred if the vehicle is brought into a position in which the reference objects are arranged distributed around the vehicle.
  • the vehicle is surrounded on all sides by reference objects during the scanning.
  • the calibration field is independent of the mounting or installation location of the sensor on the vehicle and can in principle be used for any mounting or installation location.
  • the reference objects be arranged in dependence on the size of the field of view of the device in such a way that at least two reference objects are in the field of view of the device for each possible position of the device on the vehicle.
  • reference objects of different object classes are used, which are at least in terms of distinguish a reference feature recognizable with the transceiver.
  • the distinguishing feature can be, for example, the diameter of the reference objects.
  • the reflectivity of the reference objects can be provided, i.e.
  • the reference objects can be given a different reflectivity in such a way that the sensor can distinguish them from each other.
  • objects that do not serve as reference objects can be recognized as such if their reflectivity lies outside a predeterminable range.
  • the reference features of the reference objects are preferably chosen such that the sensor can distinguish the reference objects from other objects located in its field of vision.
  • their diameter can either be selected to be smaller or larger than the diameter of an average human lower leg, so that the sensor is not irritated by persons in the calibration field.
  • At least two reference objects are provided with detection devices for radiation emitted by the device.
  • At least two reference objects are preferably checked to determine whether the reference objects in particular have height-adjustable attachments Detector devices are acted upon by scanning beams of the device.
  • the detection or detector devices can be used to determine information about the height at which the scanning beams emitted by the sensor strike the reference objects. With this information e.g. the pitch angle (tilting about a vehicle transverse axis) and the roll angle (tilting about a vehicle longitudinal axis) of the sensor are determined or it can be determined whether the pitch angle and the roll angle each assume predetermined target values.
  • This information can also be used to determine whether the sensor is attached to the vehicle at a predetermined target height.
  • At least two individual detectors are used for the detector devices and are arranged at a vertical distance from one another on the reference object, in particular in such a way that the individual detectors can be acted upon simultaneously by expanded scanning beams of the device.
  • information about the direction of a deviation from a target orientation can be obtained by determining whether the scanning beams strike the reference object above or below a target height.
  • An expansion of the scanning beams can be used, for example, by interpreting only a simultaneous application of the two vertically spaced individual detectors as the target alignment of the sensor.
  • Height-adjustable detector devices are preferably used on the reference objects, as a result of which simple adaptation to different vehicles, sensors and target orientations of the sensors is possible.
  • the reference object can hereby be adapted to the expansion of the radiation spot which is dependent on the beam expansion and is dependent on its distance from the sensor.
  • the application or non-application of the detector devices is indicated in particular optically.
  • a display device is preferably provided on the respective reference object and in particular directly on the detector device in question. The display is preferably carried out only after a predeterminable intensity value for the incident radiation is exceeded.
  • each individual detector can be provided with a light-emitting diode which lights up when the intensity received at the detector exceeds a predetermined threshold.
  • a user observing the calibration field can determine at a glance when a target alignment of the sensor has been reached.
  • the detection devices can simultaneously measure the intensity of the radiation emitted by the sensor. In this way, regardless of the determination of the position and orientation of the Sensor with the reference objects are checked whether the sensor meets existing safety regulations, especially with regard to eye safety, which is particularly advantageous when using laser scanners.
  • the position and / or the orientation of the transmitting / receiving device with respect to a vehicle axis is determined.
  • This axis is preferably the vehicle axis that coincides with the direction of travel during normal straight-ahead travel.
  • the position and / or the orientation of the transmitting / receiving device is determined with respect to a reference point.
  • this reference point can be located at any location known during the calibration process. This is preferably a reference point fixed to the vehicle.
  • FIG. 1 shows a schematic top view of a vehicle arranged in a calibration field according to an embodiment of the invention
  • Fig. 2 is a view corresponding to FIG. 1 with another
  • Fig. 3 is an illustration for explaining the orientation of a sensor attached to a vehicle.
  • an optoelectronic transmitter / receiver device or a sensor 13 which e.g. a laser scanner delivering an angular value related to a sensor axis is designed as distances and for each distance value.
  • the scanner thus simultaneously serves as a transmitter for outgoing scanning laser beams and as a receiver for radiation reflected from the vehicle surroundings or from the vehicle itself.
  • the transmitter and receiver could also be arranged spatially separated from one another.
  • the vehicle 11 is in a calibration field which is formed by a plurality of reference objects 15, 17, 19, 21 which are positioned around the vehicle 11 in a distributed manner in accordance with a predetermined arrangement pattern.
  • the reference objects are preferably mobile, rod-shaped or rod-shaped objects.
  • the reference objects can be dimensioned or designed so that they can be carried easily in the trunk of the vehicle 11. The calibration of the sensor 13 can thus be carried out by the driver at any time and at any location.
  • the calibration field can be implemented in any way.
  • the reference objects are integrated into the production line in the form of reflection marks and are used to check the correct position and orientation on the vehicle after the sensor has been installed.
  • the reference objects are arranged along two parallel lines 23, which run parallel and at the same distance from the longitudinal axis of the vehicle 11 which coincides with the direction of travel F when driving straight ahead.
  • the lines 23 can be formed, for example, by the road boundary or the lane marking.
  • the reference objects 15, 17, 19, 21 indicated by circles of different sizes and blackening are selected from a total of four different object classes in the example shown.
  • the object classes differ, for example, by different diameters of the respective reference objects, which the sensor 13 can distinguish from one another as a result.
  • the arrangement pattern of the reference objects 15, 17, 19, 21 is selected in such a way that the sensor 13 "sees” the calibration field differently for each possible installation or installation location of the sensor 13 on the vehicle 11 from what the sensor 13 "sees", that is, it can be unambiguously inferred from its position in the calibration field.
  • the senor 13 is activated, whereupon according to its field of view, for example an angular range of 360 °, 270 °, 180 ° or 90 °, the entire calibration field or a part thereof is scanned by sending and receiving scanning beams.
  • a laser scanner is preferably used as the sensor 13, which is capable of 360 ° scanning.
  • the position of the sensor 13 in the calibration field with respect to one determined by the x and y-axes indicated coordinate system is calculated.
  • the mounting or installation location of the sensor 13 on the vehicle 11 can then be determined from the knowledge of the position and the orientation of the vehicle 11 in this coordinate system.
  • the vehicle 11 is preferably aligned in the calibration field such that - with respect to a projection onto the x-y plane - the x-axis coincides with the central longitudinal axis of the vehicle 11 and the y-axis with its rear axle.
  • the calibration preferably includes plausibility checks with which results are rejected, according to which the sensor 13 should be in a position or should behave in a manner that contradicts the actual conditions, which can be taken into account in the evaluation by determining that the result Must meet conditions. For example, if it is known that the sensor 13 according to FIG. 1 is attached to the side and outside of the vehicle 11, results are rejected, according to which the sensor 13 should lie inside or outside the outer contour of the vehicle 11.
  • the calibration according to the invention can also be carried out with sensors mounted on the vehicle roof or on the underside of the vehicle 11. In this case, results according to which the sensor lies inside or outside the outer contour of the vehicle 11 are not rejected, but other known sensor properties can be used as conditions to be fulfilled, for example the field of vision or the direction of view of the sensor.
  • the known diameter of the reference objects 15, 17, 19, 21 can be used to increase the accuracy of the position determination by taking the finite extent of the reference objects into account in the evaluation.
  • FIG. 1 shows the total of ten reference objects 15, 17, 19, 21 in the calibration field according to FIG. 1 in such a way that the sensor 13 detects more than two reference objects regardless of its mounting or installation location on the outside of the vehicle 11 during each scanning process and thus If the variant shown in FIG. 2 is overdetermined, sensor positions are also possible, for example on the front or on the rear of the vehicle 11, for which even with a 360 ° scanner there are only two reference objects in its field of vision.
  • FIG. 3 shows the determination or checking of the mounting or mounting height of the sensor 13 on the vehicle 11 and the sensor alignment, ie the orientation of the scanning plane 25 of the sensor 13.
  • At least two reference objects are each provided with an electrically operated detector device in the form of two individual detectors 29, 31, which are attached to the reference rod 15 so as to be adjustable in height.
  • the detectors 29, 31 are provided with receiving elements sensitive to the radiation emitted by the sensor 13 and facing the sensor 13. As soon as the radiation impinging on these receivers exceeds a predefined threshold value, one is transmitted directly to the respective one
  • Detector 29, 31 attached optical signaling device e.g. activated in the form of a light emitting diode.
  • the lighting up of the light-emitting diode thus indicates the impact of a scanning beam 33 from the sensor 13 on the detector 29, 31 concerned.
  • the two detectors 29, 31 are vertically spaced from one another in such a way that the laser spot, which has a finite vertical extent due to the expansion of the laser scanning beam 33 on the reference object 15, simultaneously both detectors 29, 31, each with a sufficient to exceed a preset threshold Intensity applied and thus detected by both detectors 29, 31.
  • both LEDs light up, which means that the A correct orientation of the scanning plane 25 is signaled by the reference object 15.
  • a horizontal orientation of the scanning plane 25 is preferably sought.
  • the detectors 29, 31 are fixed to the at least two reference objects 15, taking into account the distance-dependent laser spot size, at a height which, with the scanning plane 25 running horizontally, leads to simultaneous exposure of both detectors 29, 31 with a sufficiently high intensity.
  • both light-emitting diodes on both reference objects 15 light up during the subsequent calibration, the desired horizontal alignment of the sensor 13 is thereby indicated.
  • a display for example in the form of a so-called bar graph, can also be provided on the detectors 29, 31, from which the intensity of the incident radiation can be read. Regardless of the absolute value of the radiation intensity, it can thus be determined whether both detectors 29, 31 are subjected to the same or different intensities, that is to say the sensor 13 is correctly aligned or is set too high or too low. With the aid of the height-adjustable detectors 29, 31, in principle, any desired target orientation of the sensor scanning plane 25 can be set or verified.
  • the invention is not restricted to sensors that emit radiation in a scanning plane. Basically, according to the invention, the radiation emitted can assume any spatial shape.

Abstract

The invention relates to a method for calibrating an optoelectronic transmitter/receiver (13) device mounted on a vehicle (11), said device optically detecting the surroundings of the vehicle, wherein the vehicle equipped with said device is placed in a calibrating field formed by several reference objects (15, 17, 19, 21) and at least part of the calibrating field is scanned with said device. The position and/or orientation of the device in the vehicle is detected based on the known position and/or orientation of the vehicle in the calibrating field by scanning the scanning data obtained and on the basis of known calibrating field data, wherein an image of the known arrangement pattern of the reference objects (15, 17, 19, 21) is detected from the perspective of the device and the position of the device in the calibrating field is inferred from the detected image of the arrangement pattern.

Description

Kalibrierverfahren calibration
Die Erfindung betrifft ein Verfahren zum Kalibrieren einer an einem Fahrzeug angebrachten optoelektronischen Sende-/ Empfangseinrichtung zur optischen Erfassung der Umgebung des Fahrzeugs, bei dem das mit der Einrichtung versehene Fahrzeug in ein von mehreren Referenzobjekten gebildetes Kalibrierfeld gebracht wird, mit der Einrichtung zumindest ein Teil des Kalibrierfeldes abgetastet wird, und bei bekannter Position und/ oder Ausrichtung des Fahrzeugs im Kalibrierfeld aus durch die Abtastung erhaltenen Abtastdaten einerseits und bekannten Kalibrierfelddaten andererseits die Position und/ oder die Ausrichtung der Einrichtung am Fahrzeug ermittelt wird.The invention relates to a method for calibrating an optoelectronic transmitter / receiver device attached to a vehicle for optical detection of the surroundings of the vehicle, in which the vehicle provided with the device is brought into a calibration field formed by a plurality of reference objects, with the device at least a part of the Calibration field is scanned, and if the position and / or orientation of the vehicle in the calibration field is known, the position and / or the orientation of the device on the vehicle is determined from the scanning data obtained by the scanning on the one hand and known calibration field data on the other hand.
Derartige Kalibrierverfahren sind grundsätzlich bekannt.Such calibration methods are generally known.
Fahrzeugfeste optoelektronische Sende-/ Empfangseinrichtungen, die im folgenden auch einfach als Sensoren bezeichnet werden, kommen für mannigfaltige Anwendungen in Frage. Die Sensoren können beispielsweise zur Überwachung der Fahrzeugumgebung eingesetzt werden, um z.B. Gefahrensituationen mit Fußgängern oder Radfahrern zu erkennen, als Einparkhilfe dienen, einen ausreichenden Abstand zu vorausfahrenden Fahrzeugen sicherstellen oder einen ausreichenden Abstand zur Fahrbahnbegrenzung gewährleisten. Für die meisten Anwendungen müssen die Position und die Ausrichtung des Sensors am Fahrzeug bekannt sein.Vehicle-fixed optoelectronic transmitting / receiving devices, which are also referred to simply as sensors below, are suitable for diverse applications. The sensors can be used, for example, to monitor the vehicle environment, for example to detect dangerous situations with pedestrians or cyclists, to serve as parking aids, to ensure a sufficient distance from vehicles in front or to ensure a sufficient distance from the lane boundary. For most applications, the position and orientation of the sensor on the vehicle must be known.
Aufgabe der Erfindung ist es, ein Verfahren der eingangs genannten Art zu schaffen, mit dem zumindest der Anbau- oder Einbauort der optoelektronischen Sende- /und Empfangseinrichtung am Fahrzeug und insbesondere auch deren Ausrichtung am Fahrzeug auf möglichst einfache Weise und mit möglichst hoher Genauigkeit bestimmt werden kann, wobei dies insbesondere unabhängig davon möglich sein soll, an welcher Position des Fahrzeugs die Sende- /und Empfangseinrichtung angeordnet ist.The object of the invention is to provide a method of the type mentioned at the outset, with which at least the mounting or installation location of the optoelectronic transmitting and receiving device on the vehicle and in particular also its orientation on the vehicle are determined in the simplest possible manner and with the highest possible accuracy can, which should in particular be possible regardless of the position of the vehicle at which the transmitting and receiving device is arranged.
Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1 und insbesondere dadurch, daß durch Abtasten zumindest eines Teils des Kalibrierfeldes mit der Einrichtung ein Bild des bekannten Anordnungs- musters der Referenzobjekte aus der Sicht der Einrichtung ermittelt und aus dem ermittelten Bild des Anordnungsmusters auf die Position der Einrichtung im Kalibrierfeld geschlossen wird.This object is achieved by the features of claim 1 and in particular in that, by scanning at least part of the calibration field with the device, an image of the known arrangement pattern of the reference objects is determined from the point of view of the device and from the determined image of the arrangement pattern to the Position of the device in the calibration field is closed.
Erfindungsgemäß wird ein Kalibrierfeld verwendet, in welches das Fahr- zeug zur Kalibrierung der fahrzeugfesten Sende- /Empfangseinrichtung bzw. des fahrzeugfesten Sensors gebracht wird oder welches in der Umgebung des Fahrzeugs angeordnet wird. Die Anordnung des Fahrzeugs und des Kalibrierfeldes erfolgt derart, daß Position und/ oder Ausrichtung des Fahrzeugs im Kalibrierfeld bekannt sind. Vorzugsweise sind sowohl die Position als auch die Ausrichtung des Fahrzeugs in einem Koordinatensystem des von den Referenzobjekten gebildeten Kalibrierfeldes bekannt. Zur Bestimmung des Anbau- oder Einbauortes des Sensors am Fahrzeug wird erfindungsgemäß zumindest ein Teil des Kalibrierfeldes mit dem Sensor abgetastet. Die dabei gewonnenen Abtastdaten repräsentieren ein Bild des Kalibrierfeldes, d.h. des Anordnungsmusters der Referenzobjekte, oder eines Teils davon aus der Sicht des Sensors. Es wird also ermittelt, wie der Sensor das Kalibrierfeld "sieht", und aus dem ermittelten Bild des Anordnungsmusters der Referenzobjekte kann auf die Position des Sensors im Kalibrierfeld geschlossen werden. Daraus kann dann mit Hilfe der bekannten Informationen über das Kalibrierfeld und über die Anordnung des Fahrzeugs im Kalibrierfeld der Anbau- oder Einbauort des Sensors am Fahrzeug ermittelt werden.According to the invention, a calibration field is used, into which the vehicle is brought for calibrating the transmitter / receiver device or sensor attached to the vehicle or which is arranged in the vicinity of the vehicle. The arrangement of the vehicle and the calibration field is such that the position and / or orientation of the vehicle in the calibration field are known. Both the position and the orientation of the vehicle are preferably known in a coordinate system of the calibration field formed by the reference objects. To determine the mounting or mounting location of the sensor on the vehicle, at least part of the calibration field is scanned with the sensor. The scan data obtained in this way represent an image of the calibration field, ie the arrangement pattern of the reference objects, or a part thereof from the point of view of the sensor. It is thus determined how the sensor "sees" the calibration field, and the position of the sensor in the calibration field can be inferred from the determined image of the arrangement pattern of the reference objects. The mounting or installation location of the sensor on the vehicle can then be determined from this using the known information about the calibration field and about the arrangement of the vehicle in the calibration field.
Erfindungsgemäß sorgt der Sensor selbst für seine eigene Kalibrierung, die vorzugsweise automatisch mit Hilfe wenigstens eines vorgegebenen Algorithmus durchgeführt wird.According to the invention, the sensor itself ensures its own calibration, which is preferably carried out automatically using at least one predetermined algorithm.
Die bekannten Kalibrierfelddaten umfassen somit Informationen über das Anordnungsmuster der Referenzobjekte, d.h. über die Koordinaten der Referenzobjekte im Kalibrierfeld bezüglich des jeweils verwendeten Koor- dinatensystems. Die Abstände der Referenzobjekte untereinander sowie zu einem gemeinsamen Bezugspunkt - dem Ursprung des Koordinatensystems - sind bekannt.The known calibration field data thus comprise information about the arrangement pattern of the reference objects, i.e. via the coordinates of the reference objects in the calibration field with regard to the coordinate system used in each case. The distances of the reference objects from one another and from a common reference point - the origin of the coordinate system - are known.
Ein Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß eine statische Abtastung des Kalibrierfeldes bei ruhendem Sensor erfolgt. Die Abtastung kann beliebig oft wiederholt werden, wodurch die Genauigkeit durch Anwendung statistischer Auswerteverfahren prinzipiell beliebig gesteigert werden kann. Ferner ist die erfindungsgemäße statische Kalibrierung bzw. Positionsund Ausrichtungsbestimmung besonders robust gegen vorübergehende Störungen z.B. aufgrund von in das Kalibrierfeld eindringenden Personen oder Gegenständen, da diese nur einen oder wenige Abtastvorgänge beeinflussen und bei einer Vielzahl von Abtastvorgängen auf das Meßergebnis praktisch keinen Einfluß haben. Auch Störungen anderer Art wie z.B. aufgrund von Regentropfen im Strahlengang, die Einzelmessungen verfälschen können, wirken sich wegen der erfindungsgemäßen Möglichkeit, eine Vielzahl von Abtastungen durchzuführen, nicht nachteilig aus.An advantage of the method according to the invention is that the calibration field is statically scanned with the sensor at rest. The scanning can be repeated any number of times, whereby the accuracy can in principle be increased as desired by using statistical evaluation methods. Furthermore, the static calibration or determination of position and orientation according to the invention is particularly robust against temporary disturbances, for example due to persons or objects entering the calibration field, since these influence only one or a few scanning processes and have practically no influence on the measurement result in a large number of scanning processes. Other types of interference, such as, for example, due to raindrops in the beam path, which can distort individual measurements, do not have a disadvantage because of the possibility according to the invention of carrying out a large number of scans.
Bei den Fahrzeugen kann es sich grundsätzlich um beliebige, auch selbstfahrende Fahrzeuge handeln, wobei bevorzugt die Erfindung in Verbindung mit PKWs und LKWs eingesetzt wird.The vehicles can in principle be any type of vehicle, including self-driving vehicles, the invention preferably being used in conjunction with cars and trucks.
Prinzipiell ist es erfindungsgemäß möglich, als optoelektronische Sende- ZEmpfangseinrichtung eine Kamera, z.B. eine Videokamera, vorzusehen, mit der die Abtastung zumindest eines Teils des Kalibrierfeldes ebenfalls dadurch erfolgt, daß Bilder des Kalibrierfeldes bzw. des betreffenden Kalibrierfeldbereiches aufgenommen und anschließend ausgewertet werden.In principle, it is possible according to the invention to use a camera, for example an optoelectronic transmission / reception device, e.g. to provide a video camera with which at least a part of the calibration field is also scanned by taking pictures of the calibration field or the relevant calibration field area and then evaluating them.
Besonders bevorzugt allerdings ist es gemäß einer praktischen Ausführungsform der Erfindung, als optoelektronischen Sensor einen Laserscan- ner zu verwenden. Dabei handelt es sich vorzugsweise um einen Laserscanner, der in wenigstens einer Abtastebene einen Laserstrahl aussendet und mit diesem Abtaststrahl wiederholend einen vorgegebenen, grundsätzlich beliebigen Winkelbereich von bis zu 360° überstreicht. Die Entfer- nung zu den die ausgesandten Abtaststrahlen reflektierenden Objekten wird dabei vorzugsweise nach dem Lichtlaufzeitverfahren bestimmt. Die Abtaststrahlung kann sowohl im für das menschliche Auge sichtbaren Wellenlängenbereich als auch außerhalb dieses Bereiches liegen. Bevor- zugt wird ein Laserscanner verwendet, der zu jedem Entfernungswert einen auf eine vorgegebene Achse des Scanners bezogenen Winkelwert liefert.According to a practical embodiment of the invention, however, it is particularly preferred to use a laser scanner as the optoelectronic sensor. This is preferably a laser scanner which emits a laser beam in at least one scanning plane and repeatedly sweeps with this scanning beam a predetermined, basically any angular range of up to 360 °. The distance voltage to the objects reflecting the emitted scanning beams is preferably determined according to the time-of-flight method. The scanning radiation can be in the wavelength range visible to the human eye as well as outside this range. A laser scanner is preferably used, which for each distance value supplies an angle value related to a predetermined axis of the scanner.
Vorzugsweise wird das Anordnungsmuster der Referenzobjekte derart gewählt, daß die den in Frage kommenden Positionen der Einrichtung am Fahrzeug entsprechenden Bilder des Anordnungsmusters sich voneinander unterscheiden.The arrangement pattern of the reference objects is preferably selected in such a way that the images of the arrangement pattern corresponding to the positions of the device in question on the vehicle differ from one another.
Hierdurch wird eine eindeutige Zuordnung zwischen Sensorposition am Fahrzeug einerseits und durch die Abtastung ermitteltem Bild des Anordnungsmusters andererseits gewährleistet. Fehlinterpretationen bei der Auswertung der jeweils vom Sensor "gesehenen" Umgebung werden vermieden.This ensures an unambiguous assignment between the sensor position on the vehicle on the one hand and the image of the arrangement pattern determined by the scanning on the other hand. Misinterpretations when evaluating the environment "seen" by the sensor are avoided.
Es kann vorteilhaft sein, wenn die Referenzobjekte in relativ geringem Abstand zum Fahrzeug angeordnet werden. In diesem Fall kann es erforderlich werden, ein für PKWs geeignetes Kalibrierfeld zu verlängern, um an LKWs angebrachte Sensoren kalibrieren zu können. Die Verlängerung des Kalibrierfeldes wird bevorzugt derart vorgenommen, daß keine Mehrdeutigkeiten erzeugt werden und auch im verlängerten Kalibrierfeld nach wie vor eine eindeutige Zuordnung zwischen Sensorposition einerseits und ermitteltem Bild andererseits gegeben ist. Besonders bevorzugt ist es, wenn das Fahrzeug in eine Position gebracht wird, in der die Referenzobjekte um das Fahrzeug herum verteilt angeordnet sind.It can be advantageous if the reference objects are arranged at a relatively short distance from the vehicle. In this case it may be necessary to extend a calibration field suitable for cars in order to be able to calibrate sensors attached to trucks. The lengthening of the calibration field is preferably carried out in such a way that no ambiguities are generated and even in the lengthened calibration field there is still a clear association between the sensor position on the one hand and the determined image on the other hand. It is particularly preferred if the vehicle is brought into a position in which the reference objects are arranged distributed around the vehicle.
Hierbei ist das Fahrzeug während der Abtastung allseitig von Referenzobjekten umgeben. Das Kalibrierfeld ist auf diese Weise vom Anbau- oder Einbauort des Sensors am Fahrzeug unabhängig und kann somit prinzipiell für jeden beliebigen Anbau- oder Einbauort verwendet werden.The vehicle is surrounded on all sides by reference objects during the scanning. In this way, the calibration field is independent of the mounting or installation location of the sensor on the vehicle and can in principle be used for any mounting or installation location.
Des weiteren wird vorgeschlagen, daß die Referenzobjekte in Abhängigkeit von der Größe des Sichtfeldes der Einrichtung derart angeordnet werden, daß für jede in Frage kommende Position der Einrichtung am Fahrzeug wenigstens zwei Referenzobjekte im Sichtfeld der Einrichtung liegen.Furthermore, it is proposed that the reference objects be arranged in dependence on the size of the field of view of the device in such a way that at least two reference objects are in the field of view of the device for each possible position of the device on the vehicle.
Durch diese Anordnung der Referenzobjekte kann ein einziges Kalibrierfeld für alle in Frage kommenden Anbau- oder Einbaupositionen der Einrichtung am Fahrzeug verwendet werden, da für eine eindeutige Bestimmung der Position und/ oder der Ausrichtung des Sensors am Fahrzeug zwei Referenzobjekte ausreichend sind.With this arrangement of the reference objects, a single calibration field can be used for all possible mounting or installation positions of the device on the vehicle, since two reference objects are sufficient for a clear determination of the position and / or the orientation of the sensor on the vehicle.
Um eine besonders genaue und sichere Kalibrierung des Sensors zu erzielen, kann vorgesehen sein, daß bei der Abtastung des Kalibrierfeldes mehr als zwei und insbesondere genau drei Referenzobjekte berücksichtigt werden. Durch diese Überbestimmung können die Position und die Aus- richtung des Sensors am Fahrzeug eineindeutig ermittelt werden.In order to achieve a particularly precise and reliable calibration of the sensor, it can be provided that more than two and in particular exactly three reference objects are taken into account when scanning the calibration field. This over-determination enables the position and the orientation of the sensor on the vehicle to be determined unambiguously.
Des weiteren ist bevorzugt vorgesehen, daß Referenzobjekte unterschiedlicher Objektklassen verwendet werden, die sich zumindest hinsichtlich eines mit der Sende- /Empfangseinrichtung erkennbaren Referenzmerkmals voneinander unterscheiden.Furthermore, it is preferably provided that reference objects of different object classes are used, which are at least in terms of distinguish a reference feature recognizable with the transceiver.
Das Unterscheidungsmerkmal kann beispielsweise der Durchmesser der Referenzobjekte sein. Als alternatives oder zusätzliches Unterscheidungsmerkmal kann die Reflektivität der Referenzobjekte vorgesehen sein, d.h. den Referenzobjekten kann gezielt ein unterschiedliches Refiexionsvermö- gen derart verliehen werden, daß der Sensor sie voneinander unterscheiden kann. Außerdem können auf diese Weise nicht als Referenzobjekte dienende Gegenstände als solche erkannt werden, wenn deren Reflektivität außerhalb eines vorgebbaren Bereiches liegt.The distinguishing feature can be, for example, the diameter of the reference objects. As an alternative or additional distinguishing feature, the reflectivity of the reference objects can be provided, i.e. The reference objects can be given a different reflectivity in such a way that the sensor can distinguish them from each other. In addition, objects that do not serve as reference objects can be recognized as such if their reflectivity lies outside a predeterminable range.
Die Referenzmerkmale der Referenzobjekte werden vorzugsweise derart gewählt, daß der Sensor die Referenzobjekte von anderen in seinem Sicht- feld liegenden Objekten unterscheiden kann. Bei zumindest bereichsweise stab- oder stangenförmigen Referenzobjekten beispielsweise kann deren Durchmesser entweder kleiner oder größer als der Durchmesser eines durchschnittlichen menschlichen Unterschenkels gewählt werden, so daß der Sensor nicht durch im Kalibrierfeld befindliche Personen irritiert wird.The reference features of the reference objects are preferably chosen such that the sensor can distinguish the reference objects from other objects located in its field of vision. In the case of rod-shaped or rod-shaped reference objects, for example, at least in regions, their diameter can either be selected to be smaller or larger than the diameter of an average human lower leg, so that the sensor is not irritated by persons in the calibration field.
Um Informationen über die Orientierung einer Abtastebene der Einrichtung und/ oder über die Anbau- oder Einbauhöhe der Einrichtung am Fahrzeug zu beschaffen, werden gemäß einer bevorzugten Weiterbildung der Erfindung wenigstens zwei Referenzobjekte mit Nachweiseinrichtun- gen für von der Einrichtung ausgesandte Strahlung versehen.In order to obtain information about the orientation of a scanning plane of the device and / or about the mounting or installation height of the device on the vehicle, according to a preferred development of the invention, at least two reference objects are provided with detection devices for radiation emitted by the device.
Bevorzugt werden wenigstens zwei Referenzobjekte daraufhin überprüft, ob an den Referenzobjekten insbesondere höhenverstellbar angebrachte Detektoreinrichtungen von Abtaststrahlen der Einrichtung beaufschlagt werden.At least two reference objects are preferably checked to determine whether the reference objects in particular have height-adjustable attachments Detector devices are acted upon by scanning beams of the device.
Mit den Nachweis- bzw. Detektoreinrichtungen lassen sich Informationen darüber ermitteln, in welcher Höhe vom Sensor ausgesandte Abtaststrahlen auf die Referenzobjekte auftreffen. Mit diesen Informationen können z.B. der Nickwinkel (Verkippen um eine Fahrzeug-Querachse) und der Wankwinkel (Verkippen um eine Fahrzeug-Längsachse) des Sensors bestimmt werden bzw. kann festgestellt werden, ob der Nickwinkel und der Wankwinkel jeweils vorgegebene Sollwerte annehmen.The detection or detector devices can be used to determine information about the height at which the scanning beams emitted by the sensor strike the reference objects. With this information e.g. the pitch angle (tilting about a vehicle transverse axis) and the roll angle (tilting about a vehicle longitudinal axis) of the sensor are determined or it can be determined whether the pitch angle and the roll angle each assume predetermined target values.
Ferner läßt sich mit diesen Informationen bestimmen, ob der Sensor in einer vorgegebenen Sollhöhe am Fahrzeug angebracht ist.This information can also be used to determine whether the sensor is attached to the vehicle at a predetermined target height.
Ferner kann erfindungsgemäß vorgesehen sein, daß für die Detektoreinrichtungen jeweils wenigstens zwei Einzeldetektoren verwendet und mit vertikalem Abstand voneinander am Referenzobjekt insbesondere derart angeordnet werden, daß die Einzeldetektoren von aufgeweiteten Abtaststrahlen der Einrichtung gleichzeitig beaufschlagbar sind.Furthermore, it can be provided according to the invention that at least two individual detectors are used for the detector devices and are arranged at a vertical distance from one another on the reference object, in particular in such a way that the individual detectors can be acted upon simultaneously by expanded scanning beams of the device.
Durch Verwendung zweier vertikal beabstandeter Detektoren an einem Referenzobjekt lassen sich Informationen über die Richtung einer Abweichung von einer Soll-Orientierung gewinnen, indem festgestellt wird, ob die Abtaststrahlen oberhalb oder unterhalb einer Sollhöhe auf dem Refe- renzobjekt auftreffen. Eine Aufweitung der Abtaststrahlen kann z.B. dadurch genutzt werden, daß nur eine gleichzeitige Beaufschlagung der beiden vertikal beabstande- ten Einzeldetektoren als Sollausrichtung des Sensors interpretiert wird.By using two vertically spaced detectors on a reference object, information about the direction of a deviation from a target orientation can be obtained by determining whether the scanning beams strike the reference object above or below a target height. An expansion of the scanning beams can be used, for example, by interpreting only a simultaneous application of the two vertically spaced individual detectors as the target alignment of the sensor.
Bevorzugt werden an den Referenzobjekten in der Höhe verstellbare Detektoreinrichtungen eingesetzt, wodurch eine einfache Anpassung an verschiedene Fahrzeuge, Sensoren und Sollausrichtungen der Sensoren möglich ist. Außerdem kann hierdurch das Referenzobjekt an die strahl- aufweitungsbedingte, von seinem Abstand zum Sensor abhängige Ausdeh- nung des Strahlungsflecks angepaßt werden.Height-adjustable detector devices are preferably used on the reference objects, as a result of which simple adaptation to different vehicles, sensors and target orientations of the sensors is possible. In addition, the reference object can hereby be adapted to the expansion of the radiation spot which is dependent on the beam expansion and is dependent on its distance from the sensor.
In einer weiteren bevorzugten Ausführungsform der Erfindung ist vorgesehen, daß das Beaufschlagen oder Nichtbeaufschlagen der Detektoreinrichtungen insbesondere optisch angezeigt wird. Bevorzugt ist hierzu eine am jeweiligen Referenzobjekt und insbesondere direkt an der betreffenden Detektoreinrichtung angeordnete Anzeigeeinrichtung vorgesehen. Vorzugsweise erfolgt die Anzeige erst nach Überschreiten eines vorgebbaren Intensitätswertes für die auftreffende Strahlung.In a further preferred embodiment of the invention it is provided that the application or non-application of the detector devices is indicated in particular optically. For this purpose, a display device is preferably provided on the respective reference object and in particular directly on the detector device in question. The display is preferably carried out only after a predeterminable intensity value for the incident radiation is exceeded.
So kann beispielsweise jeder Einzeldetektor mit einer Leuchtdiode versehen sein, die aufleuchtet, wenn die am Detektor empfangene Intensität eine vorgegebene Schwelle übersteigt. Anhand der Leuchtdioden kann ein das Kalibrierfeld beobachtender Benutzer mit einem Blick feststellen, wann eine Sollausrichtung des Sensors erreicht ist.For example, each individual detector can be provided with a light-emitting diode which lights up when the intensity received at the detector exceeds a predetermined threshold. Using the light-emitting diodes, a user observing the calibration field can determine at a glance when a target alignment of the sensor has been reached.
Mit den Nachweiseinrichtungen kann gleichzeitig die Intensität der vom Sensor ausgesandten Strahlung gemessen werden. Auf diese Weise kann unabhängig von der Bestimmung der Position und der Ausrichtung des Sensors mit den Referenzobjekten überprüft werden, ob der Sensor bestehenden Sicherheitsvorschriften vor allem hinsichtlich der Augensicherheit genügt, was insbesondere bei der Verwendung von Laserscannern von Vorteil ist.The detection devices can simultaneously measure the intensity of the radiation emitted by the sensor. In this way, regardless of the determination of the position and orientation of the Sensor with the reference objects are checked whether the sensor meets existing safety regulations, especially with regard to eye safety, which is particularly advantageous when using laser scanners.
In einer weiteren bevorzugten Ausführung der Erfindung ist vorgesehen, daß die Position und/ oder die Ausrichtung der Sende-ZEmpfangseinrichtung bezüglich einer Fahrzeugachse ermittelt wird. Bei dieser Achse handelt es sich bevorzugt um die bei normaler Geradeausfahrt mit der Fahrt- richtung zusammenfallende Fahrzeugachse.In a further preferred embodiment of the invention it is provided that the position and / or the orientation of the transmitting / receiving device with respect to a vehicle axis is determined. This axis is preferably the vehicle axis that coincides with the direction of travel during normal straight-ahead travel.
Es kann erfindungsgemäß auch vorgesehen sein, daß die Position und/ oder die Ausrichtung der Sende- /Empfangseinrichtung bezüglich eines Referenzpunktes ermittelt wird. Dieser Referenzpunkt kann sich grundsätzlich an einem beliebigen, während des Kalibriervorgangs bekannten Ort befinden. Vorzugsweise handelt es sich dabei um einen fahrzeugfesten Referenzpunkt.It can also be provided according to the invention that the position and / or the orientation of the transmitting / receiving device is determined with respect to a reference point. In principle, this reference point can be located at any location known during the calibration process. This is preferably a reference point fixed to the vehicle.
Weitere Ausführungsformen der Erfindung sind sowohl in den Unteran- Sprüchen, der Beschreibung sowie der Zeichnung angegeben.Further embodiments of the invention are specified in the subclaims, the description and the drawing.
Die Erfindung wird im folgenden beispielhaft unter Bezugnahme auf die Zeichnung beschrieben. In dieser zeigt:The invention is described below by way of example with reference to the drawing. In this shows:
Fig. 1 schematisch in Draufsicht ein in einem Kalibrierfeld gemäß einer Ausführungsform der Erfindung angeordnetes Fahrzeug, Fig. 2 eine Ansicht entsprechend Fig. 1 mit einem anderen1 shows a schematic top view of a vehicle arranged in a calibration field according to an embodiment of the invention, Fig. 2 is a view corresponding to FIG. 1 with another
Kalibrierfeld, undCalibration field, and
Fig. 3 eine Darstellung zur Erläuterung der Ausrichtung eines an einem Fahrzeug angebrachten Sensors.Fig. 3 is an illustration for explaining the orientation of a sensor attached to a vehicle.
Gemäß Fig. 1 ist am Fahrzeug 11, z.B. einem üblichen Personenkraftwagen, eine optoelektronische Sende- /Empfangseinrichtung bzw. ein Sensor 13 angebracht, der z.B. als Entfernungen und für jeden Entfernungswert einen auf eine Sensorachse bezogenen Winkelwert liefernder Laserscanner ausgebildet ist. Der Scanner dient somit gleichzeitig als Sender für ausgehende Abtastlaserstrahlen und als Empfänger für von der Fahrzeugumgebung oder dem Fahrzeug selbst reflektierte Strahlung. Sender und Empfänger könnten jedoch prinzipiell auch räumlich voneinander getrennt angeordnet sein.1, on the vehicle 11, e.g. a conventional passenger car, an optoelectronic transmitter / receiver device or a sensor 13, which e.g. a laser scanner delivering an angular value related to a sensor axis is designed as distances and for each distance value. The scanner thus simultaneously serves as a transmitter for outgoing scanning laser beams and as a receiver for radiation reflected from the vehicle surroundings or from the vehicle itself. In principle, however, the transmitter and receiver could also be arranged spatially separated from one another.
Das Fahrzeug 11 steht in einem Kalibrierfeld, das von mehreren Referenzobjekten 15, 17, 19, 21 gebildet wird, die um das Fahrzeug 11 herum gemäß einem vorgegebenen Anordnungsmuster verteilt positioniert sind. Bei den Referenzobjekten handelt es sich bevorzugt um mobile, Stab- oder stangenförmige Gegenstände. Die Referenzobjekte können so bemessen oder ausgestaltet sein, daß sie problemlos im Kofferraum des Fahrzeugs 11 mitgeführt werden können. Die Kalibrierung des Sensors 13 kann vom Fahrzeugführer somit zu jedem beliebigen Zeitpunkt an jedem beliebigen Ort durchgeführt werden.The vehicle 11 is in a calibration field which is formed by a plurality of reference objects 15, 17, 19, 21 which are positioned around the vehicle 11 in a distributed manner in accordance with a predetermined arrangement pattern. The reference objects are preferably mobile, rod-shaped or rod-shaped objects. The reference objects can be dimensioned or designed so that they can be carried easily in the trunk of the vehicle 11. The calibration of the sensor 13 can thus be carried out by the driver at any time and at any location.
Grundsätzlich kann das Kalibrierfeld auf beliebige Art und Weise realisiert werden. So können beispielsweise bei der Herstellung von Kraftfahrzeugen die Referenzobjekte in Form von Reflexionsmarken in die Fertigungsstraße integriert und im Anschluß an die Montage des Sensors zur Überprüfung von dessen korrekter Position und Ausrichtung am Fahrzeug verwendet werden.In principle, the calibration field can be implemented in any way. For example, in the manufacture of motor vehicles the reference objects are integrated into the production line in the form of reflection marks and are used to check the correct position and orientation on the vehicle after the sensor has been installed.
Fig. 1 zeigt lediglich ein Beispiel für eine mögliche Anordnung der Referenzobjekte 15, 17, 19, 21 zur Bildung des Kalibrierfeldes. Die Referenzobjekte sind entlang zweier paralleler Linien 23 angeordnet, die parallel und mit gleichem Abstand zu der bei Geradeausfahrt mit der Fahrtrich- tung F zusammenfallenden Längsachse des Fahrzeugs 11 verlaufen. Die Linien 23 können in der Praxis beispielsweise durch die Straßenbegrenzung oder die Fahrbahnmarkierung gebildet werden.1 only shows an example of a possible arrangement of the reference objects 15, 17, 19, 21 for forming the calibration field. The reference objects are arranged along two parallel lines 23, which run parallel and at the same distance from the longitudinal axis of the vehicle 11 which coincides with the direction of travel F when driving straight ahead. In practice, the lines 23 can be formed, for example, by the road boundary or the lane marking.
Die durch Kreise unterschiedlicher Größe und Schwärzung angedeuteten Referenzobjekte 15, 17, 19, 21 sind in dem dargestellten Beispiel aus insgesamt vier unterschiedlichen Objektklassen ausgewählt. Die Objektklassen unterscheiden sich beispielsweise durch unterschiedliche Durchmesser der jeweiligen Referenzobjekte, die der Sensor 13 dadurch voneinander unterscheiden kann.The reference objects 15, 17, 19, 21 indicated by circles of different sizes and blackening are selected from a total of four different object classes in the example shown. The object classes differ, for example, by different diameters of the respective reference objects, which the sensor 13 can distinguish from one another as a result.
Das Anordnungsmuster der Referenzobjekte 15, 17, 19, 21 ist derart gewählt, daß für jeden in der Praxis in Frage kommenden Anbau- oder Einbauort des Sensors 13 am Fahrzeug 11 der Sensor 13 das Kalibrierfeld anders "sieht", aus dem, was der Sensor 13 "sieht", also eindeutig auf dessen Position im Kalibrierfeld geschlossen werden kann.The arrangement pattern of the reference objects 15, 17, 19, 21 is selected in such a way that the sensor 13 "sees" the calibration field differently for each possible installation or installation location of the sensor 13 on the vehicle 11 from what the sensor 13 "sees", that is, it can be unambiguously inferred from its position in the calibration field.
Zur Durchführung des Kalibriervorgangs wird der Sensor 13 aktiviert, woraufhin entsprechend seinem Sichtfeld, das z.B. einen Winkelbereich von 360°, 270°, 180° oder 90° umfaßt, das gesamte Kalibrierfeld oder ein Teil davon durch Aussenden und Empfangen von Abtaststrahlen abgetastet wird. Vorzugsweise wird als Sensor 13 ein Laserscanner verwendet, der zu einer 360°-Abtastung in der Lage ist. Bei seitlicher Anbringung des Sensors 13 außen am Fahrzeug 11 kann so ein Winkelbereich von maximal 270° unbeeinflußt durch das Fahrzeug 11 vom Sensor 13 eingesehen werden.To carry out the calibration process, the sensor 13 is activated, whereupon according to its field of view, for example an angular range of 360 °, 270 °, 180 ° or 90 °, the entire calibration field or a part thereof is scanned by sending and receiving scanning beams. A laser scanner is preferably used as the sensor 13, which is capable of 360 ° scanning. When the sensor 13 is attached to the outside of the vehicle 11, an angular range of at most 270 ° can be seen by the sensor 13 without being influenced by the vehicle 11.
Durch Bestimmen der Entfernung zu wenigstens zwei identifizierten Refe- renzobjekten sowie des Winkels zwischen den Richtungen zu diesen Referenzobjekten wird mittels eines geeigneten Algorithmus in einer mit dem Sensor 13 verbundenen Auswerteeinheit (nicht dargestellt) die Position des Sensors 13 im Kalibrierfeld bezüglich eines durch die x- und y- Achsen angedeuteten Koordinatensystems berechnet. Aus der Kenntnis der Positi- on und der Ausrichtung des Fahrzeugs 11 in diesem Koordinatensystem läßt sich dann der Anbau- oder Einbauort des Sensors 13 am Fahrzeug 11 bestimmen.By determining the distance to at least two identified reference objects and the angle between the directions to these reference objects, using a suitable algorithm in an evaluation unit (not shown) connected to the sensor 13, the position of the sensor 13 in the calibration field with respect to one determined by the x and y-axes indicated coordinate system is calculated. The mounting or installation location of the sensor 13 on the vehicle 11 can then be determined from the knowledge of the position and the orientation of the vehicle 11 in this coordinate system.
Bevorzugt wird das Fahrzeug 11 im Kalibrierfeld derart ausgerichtet, daß - bezüglich einer Projektion auf die x-y-Ebene - die x-Achse mit der Mittellängsachse des Fahrzeugs 1 1 und die y-Achse mit dessen Hinterachse zusammenfällt.The vehicle 11 is preferably aligned in the calibration field such that - with respect to a projection onto the x-y plane - the x-axis coincides with the central longitudinal axis of the vehicle 11 and the y-axis with its rear axle.
Die Kalibrierung umfaßt bevorzugt Plausibilitätsprüfungen, mit denen Resultate verworfen werden, nach denen der Sensor 13 sich an einer Position befinden oder in einer Art und Weise verhalten müßte, die den tatsächlichen Verhältnissen widerspricht, welche bei der Auswertung dadurch berücksichtigt werden können, daß das Ergebnis bestimmte Bedingungen erfüllen muß. Ist z.B. bekannt, daß der Sensor 13 entsprechend Fig. 1 seitlich und außen am Fahrzeug 11 angebracht ist, werden Resultate verworfen, nach denen der Sensor 13 innerhalb oder außerhalb der Außenkontur des Fahrzeugs 1 1 liegen müßte.The calibration preferably includes plausibility checks with which results are rejected, according to which the sensor 13 should be in a position or should behave in a manner that contradicts the actual conditions, which can be taken into account in the evaluation by determining that the result Must meet conditions. For example, if it is known that the sensor 13 according to FIG. 1 is attached to the side and outside of the vehicle 11, results are rejected, according to which the sensor 13 should lie inside or outside the outer contour of the vehicle 11.
Die erfindungsgemäße Kalibrierung kann auch bei auf dem Fahrzeugdach oder an der Unterseite des Fahrzeugs 11 angebrachten Sensoren durchgeführt werden. In diesen Fall werden Resultate, nach denen der Sensor innerhalb oder außerhalb der Außenkontur des Fahrzeugs 11 liegt, nicht verworfen, sondern es können andere bekannte Sensoreigenschaften als zu erfüllende Bedingungen herangezogen werden, beispielsweise der Sichtbereich oder die Blickrichtung des Sensors.The calibration according to the invention can also be carried out with sensors mounted on the vehicle roof or on the underside of the vehicle 11. In this case, results according to which the sensor lies inside or outside the outer contour of the vehicle 11 are not rejected, but other known sensor properties can be used as conditions to be fulfilled, for example the field of vision or the direction of view of the sensor.
Der bekannte Durchmesser der Referenzobjekte 15, 17, 19, 21 kann zur Erhöhung der Genauigkeit der Positionsbestimmung verwendet werden, indem die endliche Ausdehnung der Referenzobjekte bei der Auswertung berücksichtigt wird.The known diameter of the reference objects 15, 17, 19, 21 can be used to increase the accuracy of the position determination by taking the finite extent of the reference objects into account in the evaluation.
Während bei dem Kalibrierfeld gemäß Fig. 1 die insgesamt zehn Referenz- Objekte 15, 17, 19, 21 derart angeordnet sind, daß der Sensor 13 unabhängig von seinem Anbau- oder Einbauort außen am Fahrzeug 11 bei jedem Abtastvorgang mehr als zwei Referenzobjekte detektiert und somit eine Überbestimmung erfolgt, sind bei der in Fig. 2 dargestellten Variante auch solche Sensorpositionen z.B. an der Vorderseite oder an der Hinter- seite des Fahrzeugs 11 möglich, für die auch bei einem 360°-Scanner lediglich zwei Referenzobjekte in dessen Sichtfeld liegen. Anhand von Fig. 1 und 2 wurde die horizontale Kalibrierung des Sensors 13, d.h. die Bestimmung der Sensorposition in der x-y-Ebene erläutert. Fig. 3 zeigt die Bestimmung bzw. Überprüfung der Anbau- oder Einbauhöhe des Sensors 13 am Fahrzeug 11 sowie der Sensorausrichtung, d.h. der Orientierung der Abtastebene 25 des Sensors 13.While the total of ten reference objects 15, 17, 19, 21 are arranged in the calibration field according to FIG. 1 in such a way that the sensor 13 detects more than two reference objects regardless of its mounting or installation location on the outside of the vehicle 11 during each scanning process and thus If the variant shown in FIG. 2 is overdetermined, sensor positions are also possible, for example on the front or on the rear of the vehicle 11, for which even with a 360 ° scanner there are only two reference objects in its field of vision. The horizontal calibration of the sensor 13, ie the determination of the sensor position in the xy plane, was explained with reference to FIGS. 1 and 2. FIG. 3 shows the determination or checking of the mounting or mounting height of the sensor 13 on the vehicle 11 and the sensor alignment, ie the orientation of the scanning plane 25 of the sensor 13.
Wenigstens zwei Referenzobjekte (Fig. 3 zeigt beispielhaft lediglich ein stab- oder stangenförmiges Objekt 15) sind jeweils mit einer elektrisch betriebenen Detektoreinrichtung in Form zweier Einzeldetektoren 29, 31 versehen, die in der Höhe verstellbar am Referenzstab 15 angebracht sind.At least two reference objects (FIG. 3 shows by way of example only a rod-shaped or rod-shaped object 15) are each provided with an electrically operated detector device in the form of two individual detectors 29, 31, which are attached to the reference rod 15 so as to be adjustable in height.
Die Detektoren 29, 31 sind mit für die vom Sensor 13 ausgesandte Strahlung empfindlichen, dem Sensor 13 zugewandten Empfangselementen versehen. Sobald die auf diese Empfänger auftreffende Strahlung einen vorgegebenen Schwellenwert übersteigt, wird eine direkt am jeweiligenThe detectors 29, 31 are provided with receiving elements sensitive to the radiation emitted by the sensor 13 and facing the sensor 13. As soon as the radiation impinging on these receivers exceeds a predefined threshold value, one is transmitted directly to the respective one
Detektor 29, 31 angebrachte optische Signaleinrichtung z.B. in Form einer Leuchtdiode aktiviert. Das Aufleuchten der Leuchtdiode zeigt somit das Auftreffen eines Abtaststrahles 33 des Sensors 13 auf dem betreffenden Detektor 29, 31 an.Detector 29, 31 attached optical signaling device e.g. activated in the form of a light emitting diode. The lighting up of the light-emitting diode thus indicates the impact of a scanning beam 33 from the sensor 13 on the detector 29, 31 concerned.
Die beiden Detektoren 29, 31 sind vertikal derart voneinander beabstandet, daß der durch die Aufweitung des Laser-Abtaststrahles 33 am Referenzobjekt 15 eine endliche vertikale Ausdehnung aufweisende Laser- Fleck gleichzeitig beide Detektoren 29, 31 jeweils mit einer zum Über- schreiten einer voreingestellten Schwelle ausreichenden Intensität beaufschlagt und somit von beiden Detektoren 29, 31 nachgewiesen wird. Es leuchten folglich beide Leuchtdioden auf, wodurch bezüglich des betref- fenden Referenzobjektes 15 eine ordnungsgemäße Orientierung der Abtastebene 25 signalisiert wird.The two detectors 29, 31 are vertically spaced from one another in such a way that the laser spot, which has a finite vertical extent due to the expansion of the laser scanning beam 33 on the reference object 15, simultaneously both detectors 29, 31, each with a sufficient to exceed a preset threshold Intensity applied and thus detected by both detectors 29, 31. As a result, both LEDs light up, which means that the A correct orientation of the scanning plane 25 is signaled by the reference object 15.
Vorzugsweise wird eine horizontale Orientierung der Abtastebene 25 angestrebt. Vor der Kalibrierung werden an den wenigstens zwei Referenzobjekten 15 die Detektoren 29, 31 unter Berücksichtigung der entfernungsabhängigen Laserfleckgröße in einer Höhe fixiert, die bei horizontal verlaufender Abtastebene 25 zu einer gleichzeitigen Beaufschlagung beider Detektoren 29, 31 mit ausreichend hoher Intensität führt.A horizontal orientation of the scanning plane 25 is preferably sought. Before the calibration, the detectors 29, 31 are fixed to the at least two reference objects 15, taking into account the distance-dependent laser spot size, at a height which, with the scanning plane 25 running horizontally, leads to simultaneous exposure of both detectors 29, 31 with a sufficiently high intensity.
Wenn während der anschließenden Kalibrierung an beiden Referenzobjekten 15 jeweils beide Leuchtdioden aufleuchten, dann wird hierdurch die gewünschte horizontale Ausrichtung des Sensors 13 angezeigt.If both light-emitting diodes on both reference objects 15 light up during the subsequent calibration, the desired horizontal alignment of the sensor 13 is thereby indicated.
Leuchtet an einem Referenzobjekt 15 lediglich eine Diode auf, so kann hieraus nicht nur auf eine Fehl-Orientierung der Abtastebene 25 an sich geschlossen, sondern auch die Richtung der Fehl-Orientierung erkannt werden, was die Korrektur der Sensor-Ausrichtung erleichtert.If only one diode lights up on a reference object 15, not only can it be concluded that the scanning plane 25 is misaligned per se, but also the direction of the misalignment can be recognized, which facilitates the correction of the sensor alignment.
Anstatt lediglich das Erreichen oder Nicht-Erreichen einer vorgegebenen Intensitätsschwelle anzuzeigen, kann erfindungsgemäß auch jeweils eine z.B. als sogenannter Bargraph ausgebildete Anzeige an den Detektoren 29, 31 vorgesehen sein, an der die Intensität der auftreffenden Strahlung abgelesen werden kann. Unabhängig von dem Absolutwert der Strah- lungsintensität kann so festgestellt werden, ob beide Detektoren 29, 31 mit gleicher oder unterschiedlich hoher Intensität beaufschlagt werden, der Sensor 13 also korrekt ausgerichtet oder zu hoch bzw. niedrig eingestellt ist. Mit Hilfe der in der Höhe verstellbaren Detektoren 29, 31 kann prinzipiell jede gewünschte Soll-Orientierung der Sensor-Abtastebene 25 eingestellt bzw. verifiziert werden.Instead of merely indicating that a predetermined intensity threshold has been reached or not reached, according to the invention a display, for example in the form of a so-called bar graph, can also be provided on the detectors 29, 31, from which the intensity of the incident radiation can be read. Regardless of the absolute value of the radiation intensity, it can thus be determined whether both detectors 29, 31 are subjected to the same or different intensities, that is to say the sensor 13 is correctly aligned or is set too high or too low. With the aid of the height-adjustable detectors 29, 31, in principle, any desired target orientation of the sensor scanning plane 25 can be set or verified.
Die Erfindung ist nicht auf Sensoren beschränkt, die Strahlung in einer Abtastebene aussenden. Grundsätzlich kann erfindungsgemäß die ausgesandte Strahlung jede beliebige Raumform annehmen. The invention is not restricted to sensors that emit radiation in a scanning plane. Basically, according to the invention, the radiation emitted can assume any spatial shape.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Fahrzeugvehicle
Sende- /Empfangseinrichtung, Sensor, LaserscannerTransceiver, sensor, laser scanner
Referenzobj ektReference object
Referenzobjektreference object
Referenzobjektreference object
Referenzobjektreference object
Linie, Straßenbegrenzung, FahrbahnmarkierungLine, road boundary, lane marking
Abtastebenescan
Einzeldetektorsingle detector
Einzeldetektorsingle detector
Abtaststrahlscanning beam
Fahrtrichtung direction of travel

Claims

Ansprüche Expectations
1. Verfahren zum Kalibrieren einer an einem Fahrzeug (11) angebrach- ten optoelektronischen Sende-/ Empfangseinrichtung (13) zur optischen Erfassung der Umgebung des Fahrzeugs (11), bei dem das mit der Einrichtung (13) versehene Fahrzeug (11) in ein von mehreren Referenzobjekten (15, 17, 19, 21) gebildetes Kalibrierfeld gebracht wird, - mit der Einrichtung (13) zumindest ein Teil des Kalibrierfeldes abgetastet wird, und bei bekannter Position und/ oder Ausrichtung des Fahrzeugs (11) im Kalibrierfeld aus durch die Abtastung erhaltenen Abtastdaten einerseits und bekannten Kalibrierfelddaten ande- rerseits die Position und/ oder die Ausrichtung der Einrichtung (13) am Fahrzeug (11) ermittelt wird, dadurch g e k e n n z e i c h n e t , daß durch Abtasten zumindest eines Teils des Kalibrierfeldes mit der Einrichtung (13) ein Bild des bekannten Anordnungsmusters der Referenzobjekte (15, 17, 19, 21) aus der Sicht der Einrichtung1. A method for calibrating an optoelectronic transmitting / receiving device (13) attached to a vehicle (11) for optically detecting the surroundings of the vehicle (11), in which the vehicle (11) provided with the device (13) fits into one calibration field formed by a plurality of reference objects (15, 17, 19, 21) is brought, - at least a part of the calibration field is scanned with the device (13), and if the position (and / or orientation) of the vehicle (11) is known in the calibration field, through the Scanning data obtained on the one hand and known calibration field data on the other hand the position and / or the orientation of the device (13) on the vehicle (11) is determined, characterized in that by scanning at least a part of the calibration field with the device (13) an image of the known arrangement pattern of the reference objects (15, 17, 19, 21) from the point of view of the device
(13) ermittelt und aus dem ermittelten Bild des Anordnungsmusters auf die Position der Einrichtung (13) im Kalibrierfeld geschlossen wird.(13) is determined and the position of the device (13) in the calibration field is inferred from the determined image of the arrangement pattern.
2. Verfahren nach Anspruch 1 , dadurch g e k e n n z e i c h n e t , daß das Anordnungsmuster der Referenzobjekte (15, 17, 19, 21) derart gewählt wird, daß die den in Frage kommenden Positionen der Einrichtung (13) am Fahrzeug (11) entsprechenden Bilder des Anordnungsmusters sich voneinander unterscheiden.2. The method according to claim 1, characterized in that the arrangement pattern of the reference objects (15, 17, 19, 21) is selected such that the positions in question Images of the arrangement pattern corresponding to the device (13) on the vehicle (11) differ from one another.
3. Verfahren nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , daß das Fahrzeug (11) in eine Position gebracht wird, in der die Referenzobjekte (15, 17, 19, 21) um das Fahrzeug (11) herum verteilt angeordnet sind.3. The method according to claim 1 or 2, characterized in that the vehicle (11) is brought into a position in which the reference objects (15, 17, 19, 21) are arranged distributed around the vehicle (11).
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß die Referenzobjekte (15, 17, 19, 21) in Abhängigkeit von der Größe des Sichtfeldes der Einrichtung (13) derart angeordnet werden, daß für jede in Frage kommende Position der Einrichtung (13) am Fahrzeug (11) wenigstens zwei Referenzobjekte (15, 17, 19, 21) im Sichtfeld der Einrichtung (13) liegen.4. The method according to any one of the preceding claims, characterized in that the reference objects (15, 17, 19, 21) depending on the size of the field of view of the device (13) are arranged such that for each possible position of the device ( 13) at least two reference objects (15, 17, 19, 21) lie on the vehicle (11) in the field of view of the device (13).
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß bei der Abtastung des Kalibrierfeldes mehr als zwei und insbesondere drei Referenzobjekte (15, 17, 19, 21) berücksichtigt werden.5. The method according to any one of the preceding claims, characterized in that more than two and in particular three reference objects (15, 17, 19, 21) are taken into account when scanning the calibration field.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß Referenzobjekte (15, 17, 19, 21) unterschiedlicher Objektklassen verwendet werden, die sich zumindest hinsichtlich eines mit der Einrichtung (13) erkennbaren Referenzmerkmals voneinander unterscheiden. 6. The method according to any one of the preceding claims, characterized in that reference objects (15, 17, 19, 21) of different object classes are used, which differ from one another at least with respect to a reference feature recognizable with the device (13).
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß Referenzobjekte (15, 17, 19, 21) unterschiedlichen Durchmes- sers und/ oder unterschiedlicher Reflektivität verwendet werden.7. The method according to any one of the preceding claims, characterized in that reference objects (15, 17, 19, 21) of different diameter and / or different reflectivity are used.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß zur Beschaffung von Informationen über die Orientierung einer Abtastebene oder -fläche (25) der Einrichtung (13) und/ oder über die Anbau- oder Einbauhöhe der Einrichtung (13) am Fahrzeug (11) wenigstens zwei Referenzobjekte (15, 17, 19, 21) mit Nachweiseinrichtungen (29, 31) für von der Einrichtung (13) ausgesandte Strahlung versehen werden.8. The method according to any one of the preceding claims, characterized in that for obtaining information about the orientation of a scanning plane or surface (25) of the device (13) and / or about the mounting or installation height of the device (13) on the vehicle ( 11) at least two reference objects (15, 17, 19, 21) are provided with detection devices (29, 31) for radiation emitted by the device (13).
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß wenigstens zwei Referenzobjekte (15, 17, 19, 21) daraufhin überprüft werden, ob an den Referenzobjekten (15, 17, 19, 21) insbesondere höhenverstellbar angebrachte Detektoreinrichtungen9. The method according to any one of the preceding claims, characterized in that at least two reference objects (15, 17, 19, 21) are checked to determine whether the reference objects (15, 17, 19, 21) in particular have height-adjustable detector devices
(29, 31) von Abtaststrahlen (33) der Einrichtung (13) beaufschlagt werden.(29, 31) of scanning beams (33) of the device (13).
10. Verfahren nach Anspruch 9, dadurch g e k e n n z e i c h n e t , daß die Überprüfung bei in gleicher Höhe an den Referenzobjekten (15, 17, 19, 21) angebrachten Detektoreinrichtungen (29, 31) durchgeführt wird. 10. The method according to claim 9, characterized in that the check is carried out at the same height on the reference objects (15, 17, 19, 21) attached detector devices (29, 31).
11. Verfahren nach Anspruch 9 oder 10, dadurch g e k e n n z e i c h n e t , daß für die Detektoreinrichtungen jeweils wenigstens zwei Einzeldetektoren (29, 31) verwendet und mit vertikalem Abstand voneinan- der am Referenzobjekt (15, 17, 19, 21) insbesondere derart angeordnet werden, daß die Einzeldetektoren (29, 31) von aufgeweiteten Abtaststrahlen (33) der Einrichtung (13) gleichzeitig beaufschlagbar sind.11. The method according to claim 9 or 10, characterized in that at least two individual detectors (29, 31) are used for the detector devices and are arranged at a vertical distance from one another on the reference object (15, 17, 19, 21) in particular such that the individual detectors (29, 31) can be simultaneously acted upon by expanded scanning beams (33) of the device (13).
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß das Beaufschlagen oder Nichtbeaufschlagen der Detektoreinrichtungen (29, 31) insbesondere optisch angezeigt wird, bevorzugt durch eine am jeweiligen Referenzobjekt (15, 17, 19, 21) angeordne- te Anzeigeeinrichtung, wobei bevorzugt die Anzeige erst nach Überschreiten eines vorgebbaren Intensitätswertes für die auftreffende Strahlung erfolgt und/ oder ein Maß für die Höhe der Intensität der auftreffenden Strahlung angezeigt wird.12. The method according to any one of the preceding claims, characterized in that the application or non-application of the detector devices (29, 31) is particularly indicated optically, preferably by a display device arranged on the respective reference object (15, 17, 19, 21), wherein the display is preferably carried out only after a predeterminable intensity value for the incident radiation is exceeded and / or a measure for the level of the intensity of the incident radiation is displayed.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß die Kalibrierung automatisch mittels zumindest eines vorgegebenen Algorithmus durchgeführt wird.13. The method according to any one of the preceding claims, characterized in that the calibration is carried out automatically by means of at least one predetermined algorithm.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch g e k e n n z e i c h n e t , daß als optoelektronische Einrichtung (13) ein Laserscanner ver- wendet wird, insbesondere ein Entfernungen und Winkel messender Laserscanner, der in zumindest einer Abtastebene (25) zu jedem Entfernungswert einen auf eine vorgegebene Achse bezogenen Winkelwert liefert. 14. The method according to any one of the preceding claims, characterized in that a laser scanner is used as the optoelectronic device (13). is used, in particular a laser scanner measuring distances and angles, which in at least one scanning plane (25) delivers an angle value relating to a given axis for each distance value.
PCT/EP2002/005183 2001-05-10 2002-05-10 Calibrating method WO2002091095A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02735349A EP1386202A1 (en) 2001-05-10 2002-05-10 Calibrating method
JP2002588290A JP2004527852A (en) 2001-05-10 2002-05-10 Calibration method for optoelectronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122664A DE10122664A1 (en) 2001-05-10 2001-05-10 calibration
DE10122664.0 2001-05-10

Publications (1)

Publication Number Publication Date
WO2002091095A1 true WO2002091095A1 (en) 2002-11-14

Family

ID=7684255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005183 WO2002091095A1 (en) 2001-05-10 2002-05-10 Calibrating method

Country Status (4)

Country Link
EP (1) EP1386202A1 (en)
JP (1) JP2004527852A (en)
DE (1) DE10122664A1 (en)
WO (1) WO2002091095A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396005A (en) * 2002-10-02 2004-06-09 Bosch Gmbh Robert Calibrating an image sensor system in an automotive vehicle
EP2196884A1 (en) * 2008-12-12 2010-06-16 Honda Motor Co., Ltd. Performance inspection method for autonomous mobile apparatus, and performance inspection sheet therefor
GB2540816A (en) * 2015-07-30 2017-02-01 Guidance Automation Ltd Calibrating an automated guided vehicle
CN114353729A (en) * 2021-07-19 2022-04-15 襄阳达安汽车检测中心有限公司 Vehicle center line calibration method and system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217295B4 (en) * 2002-04-18 2014-05-15 Ibeo Automotive Systems GmbH Determining the orientation of an optoelectronic sensor
EP1584946A3 (en) * 2004-04-02 2006-03-22 Omron Corporation Method of adjusting monitor axis of optical sensors
DE102005054658A1 (en) 2005-11-16 2007-05-24 Sick Ag Method for automatically paramenting measuring systems
DE102006012237B3 (en) * 2006-03-16 2007-04-05 Siemens Ag Device for determining sensor position of driver support system for motor vehicle, has sensor units with data input and data output whereby data bus connects data output of a sensor unit with data input of following sensor unit
DE102015105720A1 (en) * 2015-04-15 2016-10-20 Valeo Schalter Und Sensoren Gmbh Method for determining a respective installation position of at least two sensors of a motor vehicle, control device, driver assistance system and motor vehicle
DE102015119707B8 (en) 2015-11-16 2017-08-24 Sick Ag Method for aligning a laser scanner and laser scanner arrangement
CN109215083B (en) * 2017-07-06 2021-08-31 华为技术有限公司 Method and device for calibrating external parameters of vehicle-mounted sensor
EP3454075B1 (en) * 2017-09-11 2021-10-06 Nxp B.V. Object-detection system calibration
DE102018133693B3 (en) 2018-12-28 2020-06-04 Volkswagen Aktiengesellschaft Procedure for calibrating the alignment of a moving object sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647784A (en) * 1983-05-14 1987-03-03 The General Electric Company Plc Vehicle guidance and control system
GB2259823A (en) * 1991-09-17 1993-03-24 Radamec Epo Limited Navigation system
EP0706105A1 (en) * 1994-10-04 1996-04-10 Consorzio Telerobot Navigation system for an autonomous mobile robot
US5525883A (en) * 1994-07-08 1996-06-11 Sara Avitzour Mobile robot location determination employing error-correcting distributed landmarks
FR2762085A1 (en) * 1997-04-09 1998-10-16 Cilas Method for determining the position of a sensor with respect to a longitudinal guide strip, for moving vehicle guidance in public works
US5974348A (en) * 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680403B2 (en) * 1985-06-03 1994-10-12 日本電信電話株式会社 Moving body position and orientation measurement method
DE3700777C2 (en) * 1986-01-14 1994-05-05 Canon Kk Device for detecting the position of an object
FR2656700B1 (en) * 1989-12-28 1992-08-07 Aerospatiale METHOD FOR RESTORING THE MOVEMENT OF A MOBILE BY OBSERVING A SYMBOL FORMED THEREON AND DEVICES FOR IMPLEMENTING THE METHOD.
JPH0833767B2 (en) * 1990-04-20 1996-03-29 本田技研工業株式会社 Steering control device for self-propelled vehicle
EP0543954B1 (en) * 1990-08-17 1996-10-30 Spatial Positioning Systems, Inc. Spatial positioning system
FR2721395B1 (en) * 1994-06-17 1996-08-14 Homer Eaton Method for locating a trihedron in space and device for implementing this method.
DE19907592A1 (en) * 1999-02-22 2000-08-24 Volkswagen Ag Device and method for adjusting a distance measuring device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647784A (en) * 1983-05-14 1987-03-03 The General Electric Company Plc Vehicle guidance and control system
GB2259823A (en) * 1991-09-17 1993-03-24 Radamec Epo Limited Navigation system
US5525883A (en) * 1994-07-08 1996-06-11 Sara Avitzour Mobile robot location determination employing error-correcting distributed landmarks
EP0706105A1 (en) * 1994-10-04 1996-04-10 Consorzio Telerobot Navigation system for an autonomous mobile robot
US5974348A (en) * 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
FR2762085A1 (en) * 1997-04-09 1998-10-16 Cilas Method for determining the position of a sensor with respect to a longitudinal guide strip, for moving vehicle guidance in public works

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396005A (en) * 2002-10-02 2004-06-09 Bosch Gmbh Robert Calibrating an image sensor system in an automotive vehicle
GB2396005B (en) * 2002-10-02 2005-04-27 Bosch Gmbh Robert Method and device for calibrating an image sensor system in an automotive vehicle
EP2196884A1 (en) * 2008-12-12 2010-06-16 Honda Motor Co., Ltd. Performance inspection method for autonomous mobile apparatus, and performance inspection sheet therefor
US8170738B2 (en) 2008-12-12 2012-05-01 Honda Motor Co., Ltd Performance inspection method for autonomous mobile apparatus, and performance inspection sheet therefor
GB2540816A (en) * 2015-07-30 2017-02-01 Guidance Automation Ltd Calibrating an automated guided vehicle
GB2540816B (en) * 2015-07-30 2021-10-27 Guidance Automation Ltd Calibrating an Automated Guided Vehicle
CN114353729A (en) * 2021-07-19 2022-04-15 襄阳达安汽车检测中心有限公司 Vehicle center line calibration method and system

Also Published As

Publication number Publication date
EP1386202A1 (en) 2004-02-04
DE10122664A1 (en) 2002-11-14
JP2004527852A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
DE19852101C2 (en) Method and device for adjusting a beam path of a beam-emitting sensor
WO2002099458A1 (en) Sensing method and device
WO2002091095A1 (en) Calibrating method
EP1355128A1 (en) Automatic alignment of a sensor
EP2732309B1 (en) Optical measurement device for a vehicle, driver-assistance device comprising such a measurement device, and a vehicle which comprises a corresponding measurement device
DE102006007805A1 (en) Trailer angle determining method for use between tow vehicle and trailer, involves determining trailer angle based on edge points and object points with less distance to sensor and in acknowledgement to position of towing bar pivot point
EP3311196A1 (en) Maneuvering a road train comprising a motor vehicle and a trailer
WO2021001341A1 (en) Calibrating an active optical sensor system with the aid of a calibration target
DE102005037094B3 (en) Calibration method for a sensor for measuring distances such as for detecting the distance of an object from e.g. a vehicle
EP1421430B1 (en) Scanning device
DE102016210925A1 (en) System and method for interior sensing in a vehicle
WO2003087873A1 (en) Determination of the orientation of an opto-electronic sensor
EP3583444B1 (en) Lidar sensor for detecting an object
EP1186856B1 (en) Device for measuring profiles
DE19914962A1 (en) Optoelectronic device
EP3519857B1 (en) Detection device for a motor vehicle, driver assistance system, motor vehicle, and method
DE102014113070B4 (en) Alignment device and method for aligning a component on a vehicle
DE10117390A1 (en) Device for quantitative assessment of the spatial position of two machine parts, workpieces or other objects relative to one another
DE10210472B4 (en) Method for adjusting the alignment of a sensor unit and apparatus for carrying out the method
DE102019118481A1 (en) Calibrating an active optical sensor system
DE102019117312A1 (en) Determining a pitch angle position of an active optical sensor system
DE102022204362B3 (en) Procedure for checking a time-of-flight camera for dirt detection
WO2003009044A1 (en) Method for optically scanning a scene
EP3788406B1 (en) Method for determining the alignment of an optoelectronic sensor using scanning points of a sensor image, and optoelectronic sensor
DE102020214216A1 (en) lidar sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002735349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002588290

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002735349

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642