WO2002084330A1 - Verfahren zur erkennung eines spurwechsels eines fahrzeugs - Google Patents

Verfahren zur erkennung eines spurwechsels eines fahrzeugs Download PDF

Info

Publication number
WO2002084330A1
WO2002084330A1 PCT/DE2002/000500 DE0200500W WO02084330A1 WO 2002084330 A1 WO2002084330 A1 WO 2002084330A1 DE 0200500 W DE0200500 W DE 0200500W WO 02084330 A1 WO02084330 A1 WO 02084330A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane change
yaw rate
angular velocity
lane
Prior art date
Application number
PCT/DE2002/000500
Other languages
English (en)
French (fr)
Inventor
Hermann Winner
Jens Lueder
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2002582030A priority Critical patent/JP2004523772A/ja
Priority to US10/311,176 priority patent/US6889161B2/en
Priority to EP02708234A priority patent/EP1388017B1/de
Priority to DE50213482T priority patent/DE50213482D1/de
Publication of WO2002084330A1 publication Critical patent/WO2002084330A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K31/00Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator
    • B60K31/0008Vehicle fittings, acting on a single sub-unit only, for automatically controlling vehicle speed, i.e. preventing speed from exceeding an arbitrarily established velocity or maintaining speed at a particular velocity, as selected by the vehicle operator including means for detecting potential obstacles in vehicle path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/08Lane monitoring; Lane Keeping Systems
    • B60T2201/081Lane monitoring; Lane Keeping Systems using distance control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/805Azimuth angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9321Velocity regulation, e.g. cruise control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons

Definitions

  • the invention relates to a method for detecting a lane change in a vehicle, which has an angle-resolving locating device for locating vehicles in front and a device for determining one's own yaw rate.
  • Speed control devices are known, which are also referred to as ACC systems ("Adaptive Cruise Control").
  • ACC systems Adaptive Cruise Control
  • objects for example vehicles in front, which are in the lane traveled by the own vehicle, are detected with the aid of a locating device, for example with the aid of an angle-resolving radar system, with which the distance and also the relative speed of the vehicle in front can be measured.
  • the angular resolution of such a radar system has hitherto been used to check the plausibility of the detected objects, so that vehicles in their own lane can be distinguished from traffic signs or markings on the road wheel or vehicles in other lanes can .
  • the driving speed is regulated by intervention in the drive or braking system of the vehicle so that a speed-dependent distance from the vehicle in front is maintained. If, on the other hand, there is no vehicle in the location area on its own lane, regulation is carried out to a desired speed selected by the driver.
  • DE 196 37 245 AI describes an ACC system in which the plausibility evaluation of the radar signals is modified when the driver indicates the intention to change lanes by actuating the left or right blinking switch.
  • the driving corridor considered for the distance control is temporarily expanded to the future new lane, and for the distance control both the vehicles in the previous lane and the vehicles in the future lane are taken into account.
  • the driving corridor is defined as a strip of certain, possibly variable, width on both sides of the expected driving course. If the road is straight, the driver's own driving course is given by a straight line that runs through the center of the vehicle in the direction of travel. If the course of the road is curved, it can be assumed that the expected driving course is a curve with a constant curvature.
  • the respective curvature can be calculated by defining the yaw rate of the own vehicle by the driving speed.
  • the yaw rate can be determined from the steering angle and the Determine driving speed, however, is preferably measured directly with the aid of a yaw rate sensor, especially since such a yaw rate sensor is present in any case in vehicles with an electronic stability control system (ESP).
  • ESP electronic stability control system
  • the object of the invention is to provide a method that a enables more accurate detection of a lane change.
  • This object is achieved in that the angular velocity of at least one preceding vehicle is measured relative to one's own vehicle with the aid of the locating device and a lane change signal indicating the lane change is formed by comparing the measured angular velocity with one's own yaw rate.
  • the invention is based on the consideration that when changing lanes, unlike when cornering, there is a pronounced negative correlation between the relative angular velocity of vehicles traveling in front and one's own yaw rate. This is because when a lane change begins, the own vehicle executes a yaw movement, i.e. a rotation about the vertical axis, with a relatively high yaw rate, ie, a relatively high angular velocity, while the objects detected by the locating device do not participate in this rotation and therefore relatively to the own vehicle have an angular velocity that is the same in amount but in the opposite direction.
  • a yaw movement i.e. a rotation about the vertical axis
  • a relatively high yaw rate ie, a relatively high angular velocity
  • Relative angular velocity of the vehicle in front and the yaw rate of the own vehicle occur, but these differences are generally significantly smaller than when changing lanes.
  • the comparison of the relative angular velocities with its own yaw rate therefore provides a very reliable criterion for the detection of a lane change.
  • a temporal notification can generally also be made. Since the radar measurements are generally repeated periodically in a fixed control cycle, it is advisable to provide information about several control cycles, and here, too, the more recent cycles can be weighted less.
  • Plausibility impact take place.
  • this can mitigate disruptive effects caused by a lane change in one of the vehicles in front. If there are only two vehicles in front in the location area, a lane change of one of the vehicles in front can generally only be assumed if one of these vehicles is starting to overtake or has finished the overtaking process. These situations can be recognized from the measured distance and relative speed data.
  • a vehicle that is being overtaken by its own vehicle has a non-zero relative angular velocity without indicating that the vehicle is changing lanes.
  • This relative angular velocity is proportional to the product of the relative velocity and the angle at which the vehicle is located divided by the distance between it Vehicle and can be eliminated by subtracting an appropriate correction term.
  • the signal of the flashing switch can optionally also be taken into account, for example in such a way that when the flashing signal is switched on, the threshold value with which the signal LC is compared is reduced.
  • a distinction can also be made as to whether the left or the right turn signal has been set, and the threshold value is only lowered if the lane change is in the correct direction.
  • the direction of the lane change is given by the sign of ⁇ p.
  • the yaw rate signal CO Q can also be checked for a pattern typical of lane change. When changing lanes, this signal shows a characteristic S-shaped course. According to a further embodiment of the invention, the expected end of the lane change can also be predicted from this pattern. Alternatively, it can be assumed that the lane change after a certain, possibly speed-dependent period of time after detection of the Lane change is complete.
  • the lane change signal obtained in this way can be used in a variety of ways within the framework of an ACC system and beyond.
  • the magnitude of this angular deviation can be determined quantitatively by integrating the yaw rate signal, the collective angular velocity signal or a combination of both in time and can then be used to correct the expected driving course and thus the driving corridor.
  • this effect can also be achieved in that the locating depth of the locating device is reduced during the lane change, so that objects which are further away are not taken into account in the distance control.
  • the lane change signal can be used to temporarily expand the driving corridor to the neighboring lane that forms the future lane and to narrow it again to the new lane after the lane change has ended. It is also conceivable to use the lane change signal to trigger certain additional functions that are implemented in the ACC system, for example an overtaking aid that supports the threading into the flowing traffic on the future lane by automatically accelerating or decelerating the vehicle. Furthermore the lane change signal can also be evaluated for special functions outside the actual ACC control, for example for a light control that automatically adjusts the beam direction of the headlights of the vehicle.
  • Control systems which detect the course of the road by evaluating a camera image or with the aid of other sensors and support lane keeping by intervening in the steering of the vehicle (lane keeping support). If the vehicle is equipped with such a system, the lane change can also be recognized directly by evaluating the sensor signals which detect the road wheel, but in this case the method according to the invention can be used in addition to the validity check.
  • Fig. 1 is a block diagram of a distance
  • Cruise control system for motor vehicles which is designed for carrying out the method according to the invention
  • Fig. 2 is a diagram of a three-lane road
  • FIG. 3 shows a diagram corresponding to FIG. 2, to illustrate a lane change of one's own vehicle; 4 shows the course over time of various variables which characterize the lane change shown in FIG. 3;
  • FIG. 5 shows a diagram of a driving situation in which the controlled vehicle and a vehicle in front exit a curve
  • FIG. 6 shows the course over time of the same variables as in FIG. 4 for the driving situation shown in FIG. 5.
  • FIG. 1 shows only those components of such a system that are important for understanding the invention.
  • a radar sensor 10 is provided as a locating device for vehicles in front, which is attached to the front of the controlled vehicle and periodically locates the target objects in front of the vehicle, for example vehicles in front and fixed stationary targets on the road wheel.
  • signals are generated in the radar sensor itself or in a downstream processing unit which indicate the distances d j _, the relative speeds VJ_ (in the radial direction) and the azimuth angle ⁇ ⁇ of the located objects.
  • the azimuth angles are related to the current straight-ahead direction of the vehicle. Positive azimuth angles correspond to an angular deviation in the mathematically positive sense, i.e. to the left.
  • An electronic control device 12 evaluates the data supplied by the radar sensor 10 and intervenes in the drive system and possibly also the braking system of the vehicle in order to regulate the vehicle speed in such a way that an appropriate, speed-dependent distance to the vehicle immediately ahead on one's own lane is maintained becomes. If no vehicle driving in front is located, regulation is based on a driver-selected one
  • Desired speed Stationary targets on the road wheel are differentiated based on the angle signals and the relative speed of vehicles in front. Since the ACC system is primarily intended for use on multi-lane expressways and motorways, a distinction must also be made in the lane ahead of vehicles in which lane they are. Normally, only the vehicles in their own lane should be considered for the distance control.
  • FIG. 2 shows an example of a directional lane with three lanes 14, 16, 18.
  • the driving corridor 30 is defined as a strip of predetermined width on both sides of the course 32 that is likely to be pursued by the driver's own vehicle 20, which is indicated in FIG. 2 by a dash-dotted straight line. In the example shown, there is a straight lane course and accordingly from a straight course 32 assumed.
  • a course offset y is determined for each located object, and it is checked whether this course offset is smaller in amount than a threshold value that corresponds to half the typical width of a lane.
  • the course offset y which is shown in FIG. 2 for the vehicle 26, can be calculated from the measured distance d and the azimuth angle ⁇ of the vehicle in question and corresponds approximately to the product d * ⁇ .
  • the distance control should also take into account the vehicles 26 and 28 that are located in the corridor 34 corresponding to the neighboring lane.
  • the driver's vehicle 20 is traveling approximately in the middle of the lane 16, only the driving corridor 34 is valid, but this is then defined by the same course offsets y as the driving corridor 30 originally.
  • the driver's own vehicle 20 changes temporarily Direction relative to the lanes 14, 16 so that the expected course 32, which is defined by the straight-ahead direction of the vehicle, no longer corresponds to the actual course of the lane.
  • a method is described here so that a consistent distance control can be carried out even during a lane change and malfunctions that irritate the driver or impair comfort can be avoided. which allows the start and end of a lane change to be recognized automatically.
  • the signals ⁇ j_ supplied by the distance sensor 10, which indicate the azimuth angles of the located objects, are fed to a differentiator 36, which calculates the associated relative angular velocities ⁇ ⁇ .
  • this can be done by subtracting the azimuth angles measured in successive control cycles and dividing the difference by the duration of the control cycle (of the order of 1 ms).
  • the raw data obtained in this way can subsequently be subjected to low-pass filtering with a suitable time constant of, for example, 0.5 s.
  • the filtered relative angular velocities ⁇ > i are then corrected in a correction module 38 with regard to effects dependent on the relative speed. The nature and purpose of this correction will be explained later.
  • Collective angular velocity ⁇ e only takes into account vehicles driving in front, while the signals from stationary targets are not taken into account.
  • the link consists of averaging over all vehicles in front, ie the sum of the relative angular velocities ⁇ '- ⁇ of all vehicles in front is divided by the number of vehicles considered.
  • the collective angular velocity ⁇ e is then compared in a comparison circuit 42 with the yaw rate ⁇ g of the own vehicle 20.
  • the known yaw rate sensor 44 is used to determine the yaw rate ⁇ g, which measures the Coriolis force occurring when the vehicle yaws and whose signals can also be evaluated as part of a stability control for the vehicle 20.
  • a possible systematic error (offset) of the yaw rate sensor 44 can, if necessary, be eliminated by taking into account the signals of a steering wheel angle sensor, a lateral acceleration sensor, a wheel speed sensor and the like.
  • the individual signals are also checked for plausibility, and if there is no plausibility, a failure of a sensor is concluded.
  • the signal from the yaw rate sensor 44 can also be subjected to low-pass filtering, preferably with the same time constant as with the relative angular velocity signals.
  • the lane change signal LC is fed to the control device 12 which, by comparing this signal with a suitable threshold value, symbolized in FIG. 1, symbolized by a threshold value switch 46, recognizes that a lane change of the own vehicle 20 is present and then makes the corresponding adjustments in the distance control, in particular in the determination of the driving corridor.
  • a suitable threshold value symbolized in FIG. 1, symbolized by a threshold value switch 46
  • FIG. 3 shows the time course of a lane change of one's own vehicle 20, in this case from the middle lane 16 to the left lane 18.
  • FIG. 4 shows the corresponding time course of the yaw rate ⁇ g, the
  • the lane change has not yet begun at time tg, and the heading direction of the vehicle 20 remains parallel to the lane. As a result, the yaw rate ⁇ g is zero.
  • the relative angular velocity ⁇ ⁇ of the vehicle VEH1 immediately ahead in the lane 16 is also zero. For vehicles VEH2 and VEH3 in the neighboring lanes, however, this only applies if they have zero relative speed, i.e. if their distance from their own vehicle 20 remains unchanged. If, on the other hand, the own vehicle 20 has a higher speed than the vehicle VEH2 on the lane 14, the (negative) azimuth angle ⁇ 2 of this vehicle increases in amount and a negative result results
  • Relative angular velocity C02. there is also a negative relative angular velocity ⁇ .3 for the vehicle VEH3 on the left side lane, if this vehicle is faster than the own vehicle. Without additional corrections, a negative collective angular velocity would result when averaging. In order to compensate for this effect, the following correction is carried out by the correction element 38:
  • vehicle 20 pivots to the left onto the neighboring lane, and during this phase it has a positive yaw rate, which is maximum at time t ] _.
  • the course direction of the vehicle 20 also changes in accordance with the yaw movement. Since the azimuth angles measured by the location sensor 10 are related to this changed course direction, the collective angular velocity ⁇ e has a value which is equal to the yaw rate ⁇ g, but an opposite sign Has. The product of yaw rate and collective angular velocity is therefore negative, and accordingly LC takes on relatively high positive values.
  • the yaw rate of vehicle 20 has decreased again to 0, and a counter-movement begins to swivel into the new lane.
  • the lane change is characterized by a characteristic S-shaped course of the yaw rate ⁇ g and by a characteristic "camel stool" of the lane change signal LC.
  • the threshold value sensor 46 recognizes the beginning of a lane change by the fact that the lane change signal LC exceeds a certain threshold value TH (at the time t s in FIG. 4). Thereafter, a short-term undershoot of this threshold value, for example at time t2, marks the middle of the lane change process, while a new signing of the threshold value TH at time t e marks the end of the lane change.
  • FIGS. 5 and 6 illustrate a driving situation in which no lane change takes place, but one's own vehicle 20 and a vehicle VEH1 driving in front exit a curve.
  • the positions of the two vehicles at time t ⁇ are shown in bold lines in FIG. 5, while the positions at time t2 are shown in thinner lines and at times t3 in dashed lines.
  • the vehicle VEH1 in front begins to drive out of the curve. Its relative angular velocity therefore decreases, while the yaw rate ⁇ g of the own vehicle remains constant.
  • the lane change signal LC therefore becomes positive and assumes a flat maximum at t2.
  • the yaw rates and relative angular velocities occurring here are very low, so that the lane change signal LC remains below the threshold value TH.
  • a modification of the described method could consist in that it is not the actually measured yaw rate that is used as the signal ⁇ g, which is used to calculate the lane change signal LC, but rather the currently measured yaw rate minus a moving average value from the previously measured yaw rates.
  • the moving average When driving through the curve with a constant actual yaw rate, the moving average would then gradually approach the current yaw rate, so that the signal ⁇ g would decrease to almost zero. Accordingly, the lane change signal LC would remain smaller between times t 1 and t 2 in FIG. 6. After the time t2, the current yaw rate would decrease below the moving average, so that the signal ⁇ g would become negative. This would also make the signal LC negative between times t2 and t3.
  • the threshold value TH could therefore be reduced, so that the sensitivity of the lane change detection would be increased.
  • the control device 12 can react to the detection of a lane change, at time t s in FIG. 4, in different ways, depending on the embodiment. For example, the depth of location of the radar sensor can be reduced so that the control device 12 only reacts to vehicles in front if they are very close to the vehicle 20 and there is an immediate risk of collision. This prevents irrelevant objects that are outside the lanes of interest from being evaluated at time t2 in FIG. 3, when the course direction of vehicle 20 is at an angle to the lane.
  • the original driving corridor is "frozen". This can be done, for example, by integrating the measured yaw rate ⁇ g from time t s . The integral then indicates approximately the angle between the current heading direction of the vehicle and the direction of the road. If this angle is subtracted from the measured azimuth angles ⁇ -j_, the result is that the original driving corridor is retained.
  • the location data dj_, v-j_ and ⁇ ⁇ measured for the same vehicle differ very little from one another from control cycle to control cycle, so that the individual vehicles can be identified and their movement can be tracked.
  • a collision avoidance strategy can be pursued, in which the system also applies to vehicles that have not previously been considered reacts when they are at a very short distance in front of their own vehicle 20.
  • the driving corridor can already be expanded to a combination of the two driving corridors 30 and 34.
  • the threshold value TH can be reduced so that the actual start of the lane change is recognized earlier.

Abstract

Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs (20), das ein winkelauflösendes Ortungsgerät (10) zur Ortung vorausfahrender Fahrzeuge (VEH1, VEH2, VEH3) und eine Einrichtung (44) zur Bestimmung der eigenen Gierrate (φ0) aufweist, dadurch gekennzeichnet, dass die Winkelgeschwindigkeit (φi) mindestens eines vorausfahrenden Fahrzeugs relativ zum eigenen Fahrzeug (20) mit Hilfe des Ortungsgerätes (10) gemessen wird und ein den Spurwechsel anzeigendes Spurwechselsignal (LC) durch Vergleich der gemessenen Winkelgeschwindigkeit (φi) mit der eigenen Gierrate (φ0) gebildet wird.

Description

Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs, das ein winkelauflösendes Ortungsgerät zur Ortung vorausfahrender Fahrzeuge und eine Einrichtung zur Bestimmung der eigenen Gierrate aufweist.
Für Kraftfahrzeuge sind Abstands- und
Geschwindigkeitsregeleinrichtungen bekannt, die auch als ACC- Systeme ("Adaptive Cruise Control") bezeichnet werden. Bei diesen Systemen werden Objekte, beispielsweise vorausfahrende Fahrzeuge, die sich auf der von dem eigenen Fahrzeug befahrenen Fahrspur befinden, mit Hilfe eines Ortungsgerätes erfaßt, beispielsweise mit Hilfe eines winkelauflösenden Radarsystems, mit dem der Abstand und auch die Relativgeschwindigkeit des vorausfahrenden Fahrzeugs gemessen werden kann. Das Winkelauflösungsvermögen eines solchen Radarsystems wird bisher dazu benutzt, die erfaßten Objekte auf ihre Plausibilität überprüfen, so daß beispielsweise Fahrzeuge auf der eigenen Spur von Verkehrsschildern oder Markierungen am Fahrbahnrad oder von Fahrzeugen auf anderen Spuren unterschieden werden können .
Wenn sich ein vorausfahrendes Fahrzeug auf der eigenen Spur im Ortungsbereich des Radars befindet, wird die Fahrgeschwindigkeit durch Eingriff in das Antriebs- oder Bremssystem des Fahrzeugs so geregelt, daß ein geschwindigkeitsabhangiger Abstand zum vorausfahrenden Fahrzeug eingehalten wird. Befindet sich dagegen kein Fahrzeug im Ortungsbereich auf der eigenen Spur, so erfolgt eine Regelung auf eine vom Fahrer gewählte Wunschgeschwindigkeit.
In DE 196 37 245 AI wird ein ACC-System beschrieben, bei dem die Plausibilitatsauswertung der Radarsignale modifiziert wird, wenn der Fahrer durch Betatigen des linken oder rechten Blinkschalters die Absicht zu einem Spurwechsel zu erkennen gibt. In dieser Situation wird der für die Abstandsregelung in Betracht gezogene Fahrkorridor vorübergehend auf die künftige neue Fahrspur erweitert, und für die Abstandsregelung werden sowohl die Fahrzeuge auf der bisherigen Fahrspur als auch die Fahrzeuge auf der künftigen Fahrspur berücksichtigt. Der Fahrkorridor ist dabei definiert als ein Streifen bestimmter, ggf. variabler Breite beiderseits des voraussichtlichen eigenen Fahrkurses. Bei geradem Fahrbahnverlauf ist der eigene Fahrkurs durch eine Gerade gegeben, die in Fahrtrichtung durch die Mitte des Fahrzeugs verlauft. Bei gekrümmtem Fahrbahnverlauf kann naherungsweise angenommen werden, daß der voraussichtliche Fahrkurs eine Kurve mit konstanter Krümmung ist. Unter der Annahme einer stationären Kurvensituation kann die jeweilige Krümmung berechnet werden, indem die Gierrate des eigenen Fahrzeugs durch die Fahrgeschwindigkeit definiert wird. Die Gierrate laßt sich im Prinzip aus dem Lenkeinschlag und der Fahrgeschwindigkeit bestimmen, wird jedoch vorzugsweise mit Hilfe eines Gierratensensors direkt gemessen, zumal ein solcher Gierratensensor bei Fahrzeugen mit einem elektronischen Stabiltatsregelsystem (ESP) ohnehin vorhanden ist.
In nichtstationaren Situationen, insbesondere wahrend eines Spurwechsels, erweist sich eine genaue Bestimmung des Fahrkorridors jedoch als schwierig. Eine Auswertung des Signals des Blinkschalters fuhrt hier für sich allem nicht weiter, da das Setzen des Blinkers nur die Absicht zu einem Spurwechsel anzeigt, jedoch nicht erkennen laßt, wann genau der Spurwechsel beginnt und wann er endet. Auch durch zusatzliche Berücksichtigung der Lenkbefehle des Fahrers laßt sich der Spurwechsel nicht zweifelsfrei erkennen, da die Lenkbefehle auch durch einen gekrümmten Fahrbahnverlauf veranlaßt sein können. Aufgrund dieser Unsicherheiten bei der Erkennung eines Spurwechsels kann es bisher leicht zu Störungen des Regelsystems kommen, etwa dergestalt, daß die Radarkeule wahrend des Spurwechsels vorübergehend über den Fahrbahnrad hinaus schwenkt und Standziele wie Verkehrsschilder oder dergleichen am Fahrbahnrand als vermeintlich relevante Objekte identifiziert oder daß bei drei- oder mehrspurigen Fahrbahnen Fahrzeuge auf der übernächsten Spur irrtumlich dem eigenen Fahrkorridor zugeordnet werden. Für eine genaue Zuordnung der mit dem Ortungsgerät erfaßten Objekte zum relevanten Fahrkorridor des Fahrzeugs wäre es deshalb wünschenswert, wenn ein Spurwechsel zuverlässig erkannt werden konnte.
Aufgabe, Losung und Vorteile der Erfindung
Aufgabe der Erfindung ist es, ein Verfahren anzugeben, daß eine genauere Erkennung eines Spurwechsels ermöglicht.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Winkelgeschwindigkeit mindestens eines vorausfahrenden Fahrzeugs relativ zum eigenen Fahrzeug mit Hilfe des Ortungsgerätes gemessen wird und ein den Spurwechsel anzeigendes Spurwechselsignal durch Vergleich der gemessenen Winkelgeschwindigkeit mit der eigenen Gierrate gebildet wird.
Die Erfindung beruht auf der Überlegung, daß bei einem Spurwechsel, anders als bei einer Kurvenfahrt, eine ausgeprägte negative Korrelation zwischen der Relativwinkelgeschwindigkeit vorausfahrender Fahrzeuge und der eigenen Gierrate besteht. Dies liegt daran, daß bei einem beginnenden Spurwechsel das eigene Fahrzeug eine Gierbewegung, also eine Drehung um die Hochachse, mit einer relativ hohen Gierrate, d.h., einer relativ hohen Winkelgeschwindigkeit ausführt, während die vom Ortungsgerät erfaßten Objekte an dieser Drehung nicht teilnehmen und deshalb relativ zum eigenen Fahrzeug eine dem Betrage nach gleiche aber entgegengesetzt gerichtete Winkelgeschwindigkeit haben. Beim Durchfahren einer Kurve mit konstanter Krümmung führen dagegen das eigene Fahrzeug und die vorausfahrenden Fahrzeuge - per gleicher Fahrgeschwindigkeit - dieselbe Drehung aus, so daß die Relativwinkelgeschwindigkeit der vorausfahrenden Fahrzeuge annähernd null bleibt. Lediglich beim Einfahren in eine Kurve oder beim Ausfahren aus der Kurve kann ein gewisser Unterschied zwischen der
Relativwinkelgeschwindigkeit des vorausfahrenden Fahrzeuges und der Gierrate des eigenen Fahrzeugs auftreten, doch sind diese Unterschiede im allgemeinen deutlich geringer als bei einem Spurwechsel. Der Vergleich der Relativwinkelgeschwindigkeiten mit der eigenen Gierrate liefert daher ein sehr zuverlässiges Kriterium für die Erkennung eines Spurwechsels.
Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteranspruchen .
Da bei höherer Verkehrsdichte im allgemeinen mehrere vorausfahrende Fahrzeuge gleichzeitig vom Ortungsgerät erfaßt werden, ist es zweckmäßig, aus den gemessenen Relativwinkelgeschwindigkeiten mehrerer oder aller erfaßten Fahrzeuge eine Kollektivwinkelgeschwindigkeit zu bilden, beispielsweise durch Bildung eines Mittelwertes oder eines abstands- oder winkelabhangig gewichteten Mittelwertes. Durch stärkere Gewichtung von Fahrzeugen, die nur eine geringe Winkelabweichung zum eigenen Kurs haben, lassen sich Storeffekte mildern, die durch Relativgeschwindigkeiten der vorausfahrenden Fahrzeuge verursacht werden. Ahnlich lassen durch stärkere Gewichtung von Fahrzeugen, die nur einen geringen Abstand zum eigenen Fahrzeug haben, Storeffekte mildern, die beim Einfahren in Kurven auftreten. Allerdings wird das Winkelsignal von Fahrzeugen mit geringem Abstand im allgemeinen aufgrund der Eigenbewegungen dieser Fahrzeuge starker verrauscht sein. Zur Unterdrückung eines solchen Rauschens kann generell zusatzlich zu der Mitteilung über die Fahrzeuge auch eine zeitliche Mitteilung vorgenommen werden. Da die Radarmessungen im allgemeinen periodisch in einem festen Regelzyklus wiederholt werden, bietet sich eine Mitteilung über mehrere Regelzyklen an, wobei auch hier wieder die weiter zurückliegenden Zyklen schwacher gewichtet werden können.
Darüber hinaus kann bei der Bestimmung der Kollektivwinkelgeschwindigkeit auch eine
Plausibilitatsauswirkung stattfinden. Beispielsweise kann es bei drei oder mehr georteten Fahrzeugen zweckmäßig sein, "Ausreißer" zu eliminieren, deren Winkelgeschwindigkeit deutlich von der der übrigen Fahrzeuge abweicht. Dadurch lassen sich insbesondere Storeffekte mildern, die durch einen Spurwechsel eines der vorausfahrenden Fahrzeuge verursacht werden. Wenn sich nur zwei vorausfahrende Fahrzeuge im Ortungsbereich befinden, wird ein Spurwechsel eines der vorausfahrenden Fahrzeuge generell nur dann anzunehmen sein, wenn eines dieser Fahrzeuge zum Überholen ansetzt oder den Uberholvorgang beendet hat. Diese Situationen lassen sich anhand der gemessenen Abstands- und Relativgeschwindigkeitsdaten erkennen .
Aufgrund ahnlicher Überlegungen kann es zweckmäßig sein, Fahrzeuge, die gerade erst im Ortungsbereich erschienen sind, weil sie das eigene Fahrzeug überholt haben, erst mit einer gewissen zeitlichen Verzögerung in die Berechnung der Kollektivwinkelgeschwindigkeit einzubeziehen.
Bei der Ermittlung der Relativwinkelgeschwindigkeiten der einzelnen Fahrzeuge kann es zweckmäßig sein, eine Korrektur im Hinblick auf die Relativgeschwindigkeit dieser Fahrzeuge vorzunehmen. Zum Beispiel hat ein Fahrzeug, das gerade vom eigenen Fahrzeug überholt wird, eine von Null verschiedene Relativwinkelgeschwindigkeit, ohne daß dies auf einen Spurwechsel des eigenen Fahrzeugs hindeutet. Diese Relativwinkelgeschwindigkeit ist proportional zu dem Produkt aus der Relativgeschwindigkeit und dem Winkel, unter dem das Fahrzeug geortet wird, dividiert durch den Abstand dieses Fahrzeugs und kann durch Subtraktion eines entsprechenden Korrekturterms eliminiert werden.
Wenn die Kollektivwinkelgeschwindigkeit ωe der vorausfahrenden Fahrzeuge und die Gierrate CÖQ des eigenen Fahrzeugs ermittelt wurden, so erhalt man ein Signal LC, das mit hoher Verläßlichkeit auf einen Spurwechsel des eigenen Fahrzeugs hindeutet, indem man das Negative des Kreuzkorrelationswertes dieser Großen bildet: LC = - ωo*ωe/(ωe + ωg) . Sobald dieses Signal einen bestimmten Schwellenwert übersteigt, kann angenommen werden, daß ein Spurwechsel des eigenen Fahrzeugs vorliegt.
Wahlweise kann zusatzlich das Signal des Blinkschalters berücksichtigt werden, etwa dergestalt, daß bei eingeschaltetem Blinksignal der Schwellenwert, mit dem das Signal LC verglichen wird, herabgesetzt wird. Dabei kann auch unterschieden werden, ob der linke oder der rechte Blinker gesetzt wurde, und eine Schwellwertherabsetzung findet nur dann statt, wenn der Spurwechsel in der richtigen Richtung erfolgt. Die Richtung des Spurwechsels ist durch das Vorzeichen von ωp gegeben.
Zur Stutzung der Aussagesicherheit kann auch das Gierratensignal COQ auf ein für Spurwechsel typisches Muster überprüft werden. Bei einem Spurwechsel zeigt dieses Signal einen charakteristischen S-formigen Verlauf. Gemäß einer weiteren Ausgestaltung der Erfindung laßt sich aus diesem Muster auch das voraussichtliche Ende des Spurwechsels vorhersagen. Alternativ kann angenommen werden, daß der Spurwechsel nach Ablauf einer bestimmten, ggf. geschwindigkeitsabhangigen Zeitspanne nach Erkennung des Spurwechsels abgeschlossen ist.
Das in dieser Weise gewonnene Spurwechselsignal kann im Rahmen eines ACC-Systems und auch darüber hinaus in vielfaltiger Weise genutzt werden. Insbesondere ist es möglich, bei Erkennung eines beginnenden Spurwechsels den eigenen Fahrkorridor geeignet anzupassen. Dabei kann auch berücksichtigt werden, daß in der Mitte des Spurwechsels die Fahrtrichtung des eigenen Fahrzeugs von der Fahrbahnrichtung abweicht. Die Große dieser Winkelabweichung laßt sich durch zeitliche Integration des Gierratensignals, des Kollektivwinkelgeschwindigkeitssignals oder einer Kombination aus beiden quantitativ bestimmen und kann dann zur Korrektur des voraussichtlichen Fahrkurses und damit des Fahrkorridors benutzt werden. So laßt sich verhindern, daß wahrend des Spurwechsels irrtumlich Standziele am Fahrbahnrad ausgewertet werden. In einer einfacheren Ausfuhrungsform laßt sich dieser Effekt auch dadurch erreichen, daß wahrend des Spurwechsels die Ortungstiefe des Ortungsgerätes reduziert wird, so daß weiter entfernte Objekte bei der Abstandsregelung unberücksichtigt bleiben.
Weiterhin kann das Spurwechselsignal dazu benutzt werden, den Fahrkorridor vorübergehend auf die Nachbarspur, die die zukunftige Fahrspur bildet, zu erweitern und ihn nach Beendigung des Spurwechsels wieder auf die neue Fahrspur zu verengen. Ebenso ist es denkbar, mit Hilfe des Spurwechselsignals bestimmte Zusatzfunktionen auszulosen, die in dem ACC-System implementiert sind, beispielsweise eine Uberholhilfe, die durch automatische Beschleunigung oder Verzögerung des Fahrzeugs das Einfädeln in den fließenden Verkehr auf der künftigen Fahrspur unterstutzt. Darüber hinaus kann das Spurwechselsignal auch für Sonderfunktionen außerhalb der eigentlichen ACC-Regelung ausgewertet werden, beispielsweise für eine Lichtsteuerung, die die Strahlrichtung der Scheinwerfer des Fahrzeugs automatisch anpaßt.
Es sind auch Regelsysteme bekannt, die durch Auswertung eines Kamerabildes oder mit Hilfe sonstiger Sensoren den Fahrbahnverlauf erfassen und durch Eingriff in die Lenkung des Fahrzeugs die Spurhaltung unterstutzen (Lane Keeping Support) . Wenn das Fahrzeug mit einem solchen System ausgestattet ist, laßt sich der Spurwechsel zwar auch direkt durch Auswertung der Sensorsignale erkennen, die den Fahrbahnrad erfassen, doch kann in diesem Fall das erfindungsgemaße Verfahren ergänzend zur Validitatsprufung eingesetzt werden.
KURZBESCHREIBUNG DER ZEICHNUNG
Im folgenden wird ein Ausfuhrungsbeispiel der Erfindung anhand der Zeichnung naher erläutert.
Es zeigen:
Fig. 1 ein Blockdiagramm eines Abstands- und
Geschwindigkeitsregelsystems für Kraftfahrzeuge, das für die Durchfuhrung des erfindungsgemaßen Verfahrens ausgebildet ist;
Fig. 2 ein Diagramm einer dreispurigen Fahrbahn mit
Fahrkorridoren, in denen sich für die Abstandsregelung relevante vorausfahrende Fahrzeuge befinden;
Fig, 3 ein Diagramm entsprechend Figur 2, zur Illustration eines Spurwechsels des eigenen Fahrzeugs; Fig. 4 den zeitlichen Verlauf verschiedener Großen, die den in Figur 3 gezeigten Spurwechsel charakterisieren;
Fig. 5 ein Diagramm einer Fahrsituation, bei der das geregelte Fahrzeug und ein vorausfahrendes Fahrzeug aus einer Kurve ausfahren; und
Fig. 6 den zeitlichen Verlauf derselben Großen wie in Figur 4 für die in Figur 5 gezeigte Fahrsituation.
BESCHREIBUNG EINES AUSFUHRUNGSBEISPIELS
Da der Aufbau und die Wirkungsweise eines Abstands- und Geschwindigkeitsregelsystems, im folgenden als ACC-System bezeichnet, als solche bekannt sind, werden in Figur 1 nur diejenigen Komponenten eines solchen Systems gezeigt, die für das Verständnis der Erfindung von Bedeutung sind.
Als Ortungsgerät für vorausfahrende Fahrzeuge ist ein Radarsensor 10 vorgesehen, der vorn am geregelten Fahrzeug angebracht ist und periodisch die vor dem Fahrzeug befindlichen Zielobjekte, beispielsweise vorausfahrende Fahrzeuge und feste Standziele am Fahrbahnrad ortet. Durch Auswertung des Radarechos werden im Radarsensor selbst oder in einer nachgeschalteten Verarbeitungseinheit Signale erzeugt, die die Abstände dj_, die Relativgeschwindigkeiten VJ_ (in Radialrichtung) und die Azimutwinkel ψ^ der georteten Objekte angeben. Die Azimutwinkel sind hier auf die augenblickliche Geradeaus-Richtung des Fahrzeugs bezogen. Positive Azimutwinkel entsprechen einer Winkelabweichung im mathematisch positiven Sinn, also nach links. Eine elektronische Regeleinrichtung 12 wertet die vom Radarsensor 10 gelieferten Daten aus und greift in das Antriebssystem und ggf. auch das Bremssystem des Fahrzeugs ein, um die Fahrzeuggeschwindigkeit so zu regeln, daß ein angemessener, geschwindigkeitsabhangiger Abstand zu dem auf der eigenen Spur unmittelbar vorausfahrenden Fahrzeug eingehalten wird. Wenn kein vorausfahrendes Fahrzeug geortet wird, erfolgt eine Regelung auf eine vom Fahrer gewählte
Wunschgeschwindigkeit. Standziele am Fahrbahnrad werden anhand der Winkelsignale und der Relativgeschwindigkeit von vorausfahrenden Fahrzeugen unterschieden. Da das ACC-System vornehmlich für den Einsatz auf mehrspurigen Schnellstraßen und Autobahnen vorgesehen ist, muß bei vorausfahrenden Fahrzeugen auch unterschieden werden, auf welcher Fahrspur sie sich befinden. Im Normalfall sollten für die Abstandsregelung nur - die Fahrzeuge auf der eigenen Spur berücksichtigt werden.
Figur 2 zeigt als Beispiel eine Richtungsfahrbahn mit drei Spuren 14, 16, 18. Ein mit dem ACC-System nach Figur 1 ausgerüstetes Fahrzeug 20, im folgenden als das "eigene Fahrzeug" bezeichnet, befahrt die rechte Spur 14, und vorausfahrende Fahrzeuge 22, 24, 26, 28 befinden sich auf den Spuren 14 und 16. Für die Abstandsregelung werden nur die Daten der Fahrzeuge 22, 24 berücksichtigt, die sich innerhalb eines begrenzten Abstandsbereiches in einem Fahrkorridor 30 befinden, der im Idealfall mit der Spur 14 deckungsgleich ist. Der Fahrkorridor 30 ist definiert als ein Streifen vorgegebener Breite beiderseits des voraussichtlich von dem eigenen Fahrzeug 20 verfolgten Kurses 32, der in Figur 2 durch eine strichpunktierte Gerade angegeben ist. Im gezeigten Beispiel wird von einem geraden Fahrbahnverlauf und entsprechend von einem geradlinigen Kurs 32 ausgegangen. Verfahren zur Vorhersage des Fahrkurses bei gekrümmtem Fahrbahnverlauf sind als solche bekannt, sollen jedoch hier nicht naher erörtert werden. Zur Entscheidung, ob sich ein Fahrzeug innerhalb des Fahrkorridors 30 befindet, wird für jedes geortete Objekt ein Kursversatz y ermittelt, und es wird überprüft, ob dieser Kursversatz dem Betrage nach kleiner ist als ein Schwellenwert, der der Hälfte der typischen Breite einer Fahrspur entspricht. Der Kursversatz y, der in Figur 2 für das Fahrzeug 26 gezeigt ist, laßt sich aus dem gemessenen Abstand d und dem Azimutwinkel ψ des betreffenden Fahrzeugs berechnen und entspricht naherungsweise dem Produkt d*ψ.
Wenn der Fahrer des eigenen Fahrzeugs 20 beabsichtigt, auf die mittlere Spur 16 zu wechseln, so sollten für die Abstandsregelung auch die Fahrzeuge 26 und 28 berücksichtigt werden, die sich in dem der Nachbarspur entsprechenden Fahrkorridor 34 befinden. Nach vollzogenem Spurwechsel, wenn das eigene Fahrzeug 20 etwa auf der Mitte der Spur 16 fahrt, ist allein der Fahrkorridor 34 gültig, der dann jedoch durch dieselben Kursversatze y definiert ist wie ursprunglich der Fahrkorridor 30. Wahrend des Spurwechsels ändert das eigene Fahrzeug 20 vorübergehend seine Richtung relativ zu den Fahrbahnen 14, 16, so daß der voraussichtliche Kurs 32, der durch die Geradaus-Richtung des Fahrzeugs definiert ist, nicht mehr dem tatsachlichen Fahrbahnverlauf entspricht.
Damit auch wahrend eines Spurwechsels eine konsistente Abstandsregelung durchgeführt werden kann und Fehlfunktionen vermieden werden, die den Fahrer irritieren oder den Komfort beeinträchtigen können, wird hier ein Verfahren beschrieben, das es gestattet, den Beginn und auch das Ende eines Spurwechsels automatisch zu erkennen.
Wie in Figur 1 gezeigt ist, werden die vom Abstandssensor 10 gelieferten Signale ψj_, die die Azimutwinkel der georteten Objekte angeben, einem Differenzierglied 36 zugeführt, das die zugehörigen Relativwinkelgeschwindigkeiten ω^ berechnet. Dies kann in der Praxis so geschehen, daß die in aufeinanderfolgenden Regelzyklen gemessenen Azimutwinkel voneinander subtrahiert werden und die Differenz durch die Dauer des Regelzyklus (in der Größenordnung von 1ms) dividiert wird. Zur Unterdrückung von Rauscheffekten können die so erhaltenen Rohdaten nachtraglich noch einer Tiefpaßfilterung mit einer geeigneten Zeitkonstanten von beispielsweise 0,5s unterzogen werden.
Die gefilterten Relativwinkelgeschwindigkeiten α>i werden anschließend in einem Korrekturmodul 38 im Hinblick auf relativgeschwindigkeitsabhangige Effekte korrigiert. Art und Zweck dieser Korrektur werden spater erläutert werden.
Die korrigierten Relativwinkelgeschwindigkeiten ω'j_ werden in einer Verknupfungsschaltung 40 zu einer
Kollektivwinkelgeschwindigkeit ωe verknüpft, die ein Maß für die Winkelanderung des Gesamtkollektivs aller vorausfahrenden Fahrzeuge 22, 24, 26, 28 relativ zum eigenen Fahrzeug 20 darstellt. Bei der Berechnung der
Kollektivwinkelgeschwindigkeit ωe werden nur vorausfahrende Fahrzeuge berücksichtigt, wahrend die Signale von Standzielen unberücksichtigt bleiben. Die Verknüpfung besteht im einfachsten Fall in einer Mittelwertbildung über alle vorausfahrenden Fahrzeuge, d.h., die Summe der Relativwinkelgeschwindigkeiten ω'-^ aller vorausfahrenden Fahrzeuge wird durch die Anzahl der berücksichtigten Fahrzeuge dividiert. Die Kollektivwinkelgeschwindigkeit ωe wird dann in einer Vergleichsschaltung 42 mit der Gierrate ωg des eigenen Fahrzeugs 20 verglichen. Zur Ermittlung der Gierrate ωg dient im gezeigten Beispiel an sich bekannter Gierratensensor 44, der die bei einer Gierbewegung des Fahrzeugs auftretende Corioliskraft mißt und dessen Signale auch im Rahmen einer Stabilitätsregelung für das Fahrzeug 20 ausgewertet werden können. Ein eventueller systematischer Fehler (Offset) des Gierratensensors 44 kann erforderlichenfalls eliminiert werden unter Berücksichtigung der Signale eines Lenkradwinkelsensors, einen Querbeschleunigungssensors, eines Raddrehzahlfuhlers und dergleichen. Dabei werden die Einzelsignale auch auf Plausibilität geprüft, und bei nicht vorhandener Plausibilität wird auf den Ausfall eines Sensors geschlossen. Auch das Signal des Gierratensensors 44 kann einer Tiefpaßfilterung unterzogen werden, vorzugsweise mit derselben Zeitkonstanten wie bei den Relativwinkelgeschwindigkeitssignalen.
In der Vergleichsschaltung 42 wird aus der
Kollektivwinkelgeschwindigkeit ωe und der Gierrate ωg gemäß nachstehender Formel ein Spurwechselsignal LC gebildet:
LC = - ωe*ωo/(ωe + ÜQ ) (!)
Das Spurwechselsignal LC wird der Regeleinrichtung 12 zugeführt, die durch Vergleich dieses Signals mit einem geeigneten Schwellenwert, in Figur 1, symbolisiert durch einen Schwellwertschalter 46, erkennt, daß ein Spurwechsel des eigenen Fahrzeugs 20 vorliegt und daraufhin die entsprechenden Anpassungen bei der Abstandsregelung, insbesondere bei der Bestimmung des Fahrkorridors vornimmt.
Figur 3 zeigt den zeitlichen Verlauf eines Spurwechsels des eigenen Fahrzeugs 20, in diesem Fall von der mittleren Spur 16 auf die linke Spur 18. Figur 4 zeigt den entsprechenden zeitlichen Verlauf der Gierrate ωg, der
Kollektivwinkelgeschwindigkeit ωe und des Spurwechselsignals LC.
Zur Zeit tg hat der Spurwechsel noch nicht begonnen, und die Kursrichtung des Fahrzeugs 20 bleibt parallel zur Fahrspur. Folglich ist die Gierrate ωg gleich null. Auch die Relativwinkelgeschwindigkeit ω^ des unmittelbar auf der Spur 16 vorausfahrenden Fahrzeugs VEHl ist gleich null. Für die Fahrzeuge VEH2 und VEH3 auf den Nachbarspuren gilt dies jedoch nur dann, wenn sie die Relativgeschwindigkeit null haben, d.h., wenn ihr Abstand zum eigenen Fahrzeug 20 unverändert bleibt. Wenn dagegen das eigene Fahrzeug 20 eine höhere Geschwindigkeit als das Fahrzeug VEH2 auf der Spur 14 hat, so vergrößert sich der (negative) Azimutwinkel ψ2 dieses Fahrzeugs dem Betrage nach, und es ergibt sich eine negative
Relativwinkelgeschwindigkeit C02. Entsprechend ergibt sich auch für das Fahrzeug VEH3 auf der linken Nebenspur eine negative Relativwinkelgeschwindigkeit α.3, falls dieses Fahrzeug schneller ist als das eigene Fahrzeug. Ohne zusätzliche Korrekturen würde sich daher bei der Mittelwertbildung eine negative Kollektivwinkelgeschwindigkeit ergeben. Um diesen Effekt auszugleichen, wird durch das Korrekturglied 38 die folgende Korrektur vorgenommen:
Figure imgf000018_0001
Aufgrund dieser Korrektur ist zum Zeitpunkt tg auch die durch Mittelwertbildung erhaltene Kollektivwinkelgeschwindigkeit ωe gleich null. Auch das gemäß der Gleichung (1) gebildete Spurwechselsignal LC hat dann den Wert Null.
Zwischen den Zeitpunkten tg und t2 schwenkt das Fahrzeug 20 nach links auf die Nachbarspur, und es hat wahrend dieser Phase eine positive Gierrate, die zum Zeitpunkt t]_ maximal ist. Entsprechend der Gierbewegung ändert sich auch die Kursrichtung des Fahrzeugs 20. Da die vom Ortungssensor 10 gemessenen Azimutwinkel auf diese geänderte Kursrichtung bezogen sind, ergibt sich für die Kollektivwinkelgeschwindigkeit ωe ein Wert, der dem Betrage nach gleich der Gierrate ωg ist, jedoch ein entgegengesetzten Vorzeichen hat. Das Produkt aus Gierrate und Kollektivwinkelgeschwindigkeit ist daher negativ, und dementsprechend nimmt LC relativ hohe positive Werte an. Zum Zeitpunkt t2 hat die Gierrate des Fahrzeugs 20 wieder auf 0 abgenommen, und es setzt eine Gegenbewegung zum Einschwenken auf die neue Fahrspur ein. In diesem Augenblick ist auch LC wieder gleich 0. Die Kollektivwinkelgeschwindigkeit ωe hat dagegen noch einen geringen negativen Wert. Dies liegt daran, daß die Kursrichtung des Fahrzeugs 20 zum Zeitpunkt t2 nicht parallel zur Kursrichtung der vorausfahrenden Fahrzeuge ist. Insbesondere für die Fahrzeuge VEHl und VEH2 ergibt sich daher auch bei nicht verschwindender Relativgeschwindigkeit eine negative Relativwinkelgeschwindigkeit. Dementsprechend erfolgt der Nulldurchgang der Kurve ωe erst zu einem spateren Zeitpunkt, so daß LC vorübergehend negative Werte annimmt. Zum Zeitpunkt t3 erreicht die Gierrate ωg ein Minimum und die Kollektivwinkelgeschwindigkeit ωe ein Maximum, und auch LC nimmt erneut ein Maximum an. Bis zum Abschluß des Spurwechsels zur Zeit tq nehmen dann samtliche Signale wieder auf 0 ab.
Man erkennt in Figur 4, daß der Spurwechsel durch einen charakteristischen S-formigen Verlauf der Gierrate ωg und durch einen charakteristischen "Kamelhocker" des Spurwechselsignals LC gekennzeichnet ist. Der Schwellwertsensor 46 erkennt einen beginnenden Spurwechsel daran, daß das Spurwechselsignal LC einen bestimmten Schwellenwert TH überschreitet (zur Zeit ts in Figur 4) . Danach markiert eine kurzfristige Unterschreitung dieses Schwellenwertes, etwa zur Zeit t2, die Mitte des Spurwechselvorgangs, während eine erneute Unterschreibung des Schwellenwertes TH zur Zeit te das Ende des Spurwechsels markiert .
Zum Vergleich illustrierten Figuren 5 und 6 eine Fahrsituation, bei der kein Spurwechsel stattfindet, sondern das eigene Fahrzeug 20 und ein vorausfahrendes Fahrzeug VEHl aus einer Kurve ausfahren. Die Positionen der beiden Fahrzeuge zum Zeitpunkt t^ sind in Figur 5 in fetten Linien eingezeichnet, während die Positionen zur Zeit t2 in dünneren Linien und zur Zeit t3 gestrichelt eingezeichnet sind.
Zur Zeit t^ befinden sich beide Fahrzeuge noch in der Kurve. Das eigene Fahrzeug 20 hat eine positive Gierrate ωg # Bei annähernd gleicher Fahrzeuggeschwindigkeit bleiben die Positionen der Fahrzeuge 20 und VEHl relativ zueinander jedoch unverändert, so daß die Kollektivwinkelgeschwindigkeit ωg (die in diesem Fall allein durch ω ' ., gegeben ist) den Wert 0 hat. Folglich hat auch LC den Wert 0. Dies bedeutet, daß das Durchfahren einer Kurve von dem System nicht fälschlich als ein Spurwechsel interpretiert wird.
Zwischen den zwei Punkten t]_ und t beginnt das vorausfahrende Fahrzeug VEHl, aus der Kurve auszufahren. Seine Relativwinkelgeschwindigkeit nimmt daher ab, während die Gierrate ωg des eigenen Fahrzeugs noch konstant bleibt. Das Spurwechselsignal LC wird daher positiv und nimmt bei t2 ein flaches Maximum an. Da mehrspurige Schnellstraßen jedoch im allgemeinen sehr große Krümmungsradien haben, sind die hier auftretenden Gierraten und Relativwinkelgeschwindigkeiten sehr niedrig, so daß das Spurwechselsignal LC unterhalb des Schwellenwertes TH bleibt.
Eine Abwandlung des beschriebenen Verfahrens könnte darin bestehen, daß als das Signal ωg, das zur Berechnung des Spurwechselsignals LC dient, nicht die tatsächlich gemessene Gierrate herangezogen wird, sondern die aktuell gemessene Gierrate abzüglich eines gleitenden Mittelwertes aus den zuvor gemessenen Gierraten. Beim Durchfahren der Kurve mit konstanter tatsächlicher Gierrate würde sich dann der gleitende Mittelwert allmählich der aktuellen Gierrate annähern, so daß das Signal ωg auf nahezu 0 abnähme. Dementsprechend bliebe das Spurwechselsignal LC zwischen den Zeitpunkten t^ und t2 in Figur 6 kleiner. Nach dem Zeitpunkt t2 würde die aktuelle Gierrate unter den gleitenden Mittelwert abnehmen, so daß das Signal ωg negativ würde. Damit würde auch das Signal LC zwischen den Zeiten t2 und t3 negativ. Bei dieser Variante könnte deshalb der Schwellenwert TH verringert werden, so daß die Empfindlichkeit der Spurwechselerkennung gesteigert würde. Die Regeleinrichtung 12 kann auf die Erkennung eines Spurwechsels, zur Zeit ts in Figur 4, j e nach Ausfuhrungsform auf unterschiedliche Weise reagieren. Beispielsweise kann die Ortungstiefe des Radarsensors verringert werden, so daß die Regeleinrichtung 12 nur noch dann auf vorausfahrende Fahrzeuge reagiert, wenn diese sich in sehr geringem Abstand vor dem Fahrzeug 20 befinden und unmittelbare Kollisionsgefahr besteht. Hierdurch wird verhindert, daß zum Zeitpunkt t2 in Figur 3, wenn die Kursrichtung des Fahrzeugs 20 schräg zur Fahrbahn verlauft, irrelevante Objekte ausgewertet werden, die sich außerhalb der interessierenden Fahrspuren befinden.
In einer anderen Ausfuhrungsform wird bei erkanntem Spurwechsel der ursprungliche Fahrkorridor "eingefroren". Dies kann etwa dadurch geschehen, daß die gemessene Gierrate ωg vom Zeitpunkt ts an aufintegriert wird. Das Integral gibt dann naherungsweise den Winkel zwischen der aktuellen Kursrichtung des Fahrzeugs und der Fahrbahnrichtung an. Wenn dieser Winkel von den gemessenen Azimutwinkeln ψ-j_ abgezogen wird, entspricht dies im Ergebnis einer Beibehaltung des ursprunglichen Fahrkorridors.
Alternativ ist es möglich, die Auswertung der Ortungssignale zum Zeitpunkt ts auf diejenigen Fahrzeuge zu beschranken, die sich vor diesem Zeitpunkt im aktuellen Fahrkorridor befunden haben. Dies ist möglich, da sich die für dasselbe Fahrzeug gemessenen Ortungsdaten dj_, v-j_ und ψ^ von Regelzyklus zu Regelzyklus nur sehr wenig voneinander unterscheiden, so daß die einzelnen Fahrzeuge identifiziert und in ihrer Bewegung verfolgt werden können. Ergänzend dazu kann eine Kollisionsverhinderungsstrategie verfolgt werden, bei der das System auch auf bisher nicht berücksichtigte Fahrzeuge reagiert, wenn diese sich in sehr geringem Abstand vor dem eigenen Fahrzeug 20 befinden.
Darüber hinaus ist es möglich, auch das Signal des Blinkschalters in die Auswertung einzubeziehen. Wenn in der m Figur 2 gezeigten Situation durch Setzen des Blinkschalters eine Spurwechselabsicht des Fahrers erkennbar wird, kann der Fahrkorridor bereits auf eine Kombination der beiden Fahrkorridore 30 und 34 erweitert werden. Gleichzeitig kann der Schwellenwert TH reduziert werden, damit der tatsachliche Beginn des Spurwechsels früher erkannt wird. Bei erkanntem Beginn des Spurwechsels wird dann der erweiterte Fahrkorridor eingefroren, und wenn schließlich bei te das Ende des Spurwechsels erkannt wird, erfolgt eine Verengung auf den neuen Fahrkorridor 34.

Claims

Ansprüche
1. Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs (20) , das ein winkelauflosendes Ortungsgerät (10) zur Ortung vorausfahrender Fahrzeuge (VEHl, VEH2, VEH3) und eine Einrichtung (44) zur Bestimmung der eigenen Gierrate (ωg) aufweist, dadurch gekennzeichnet, daß die Winkelgeschwindigkeit (CÖJ mindestens eines vorausfahrenden Fahrzeugs relativ zum eigenen Fahrzeug (20) mit Hilfe des Ortungsgerätes (10) gemessen wird und ein den Spurwechsel anzeigendes Spurwechselsignal (LC) durch Vergleich der gemessenen Winkelgeschwindigkeit {(0^ ) mit der eigenen Gierrate (ωg) gebildet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die gemessene Relativwinkelgeschwindigkeit (CÖ_) des vorausfahrenden Fahrzeugs vor dem Vergleich mit der eigenen Gierrate (ωg) einer Korrektur unterzogen wird, die eine von der Relativgeschwindigkeit (v-j_) des vorausfahrenden Fahrzeugs unabhängige Relativwinkelgeschwindigkeit (ω'j_) liefert.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß aus den korrigierten oder unkorrigierten Relativwinkelgeschwindigkeiten (ω^, ω' mehrerer vorausfahrender Fahrzeuge (VEHl, VEH2, VEH3) eine Kollektivwinkelgeschwindigkeit (ωe) gebildet wird, die eine relative Winkelanderung des Ensembles des vorausfahrenden Fahrzeuge repräsentiert, und daß die eigene Gierrate (ωg) mit dieser Kollektivwinkelgeschwindigkeit (ωe) verglichen wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Kollektivwinkelgeschwindigkeit (ωe) ein gewichteter oder ungewichteter Mittelwert der korrigierten oder unkorrigierten Relativwinkelgeschwindigkeiten (ω-j_, ω'-j der vorausfahrenden Fahrzeuge ist.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Gierrate (ωg) des eigenen Fahrzeugs (20) das Signal eines Gierratensensors (44) ausgewertet wird.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Spurwechselsignal (LC) nach einer Formel berechnet wird, die genau dann einen hohen positiven Wert aufweist, wenn die eigene Gierrate (ωg) und die Relativoder Kollektivwinkelgeschwindigkeit (ω^_, ωe) von null verschiedene Betrage und entgegengesetzte Vorzeichen haben.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß zur Berechnung des Spurwechselsignals LC die Kreuzkorrelation der eigenen Gierrate (ωg) mit der Relativ- oder Kollektivwinkelgeschwindigkeit (ω^, ωe) berechnet wird.
8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß ein beginnender Spurwechsel daran erkannt wird, daß das Spurwechselsignal (LC) einen vorgegebenen Schwellenwert (TH) überschreitet.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Schwellenwert (TH) verringert wird, wenn ein Blinkschalter des eigenen Fahrzeugs (20) gesetzt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß das Ende des Spurwechsels erkannt wird, wenn nach erkanntem Beginn des Spurwechsels das Spurwechselsignal (LC) zum zweiten Mal unter den Schwellenwert (TH) sinkt.
PCT/DE2002/000500 2001-04-12 2002-02-13 Verfahren zur erkennung eines spurwechsels eines fahrzeugs WO2002084330A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002582030A JP2004523772A (ja) 2001-04-12 2002-02-13 車両の車線変更を検知する方法
US10/311,176 US6889161B2 (en) 2001-04-12 2002-02-13 Method for recognizing a change in lane of a vehicle
EP02708234A EP1388017B1 (de) 2001-04-12 2002-02-13 Verfahren zur erkennung eines spurwechsels eines fahrzeugs
DE50213482T DE50213482D1 (de) 2001-04-12 2002-02-13 Verfahren zur erkennung eines spurwechsels eines fahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118265A DE10118265A1 (de) 2001-04-12 2001-04-12 Verfahren zur Erkennung eines Spurwechsels eines Fahrzeugs
DE10118265.1 2001-04-12

Publications (1)

Publication Number Publication Date
WO2002084330A1 true WO2002084330A1 (de) 2002-10-24

Family

ID=7681343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000500 WO2002084330A1 (de) 2001-04-12 2002-02-13 Verfahren zur erkennung eines spurwechsels eines fahrzeugs

Country Status (5)

Country Link
US (1) US6889161B2 (de)
EP (1) EP1388017B1 (de)
JP (1) JP2004523772A (de)
DE (2) DE10118265A1 (de)
WO (1) WO2002084330A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045890A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur erkennung eines spurwechsels bei einem fahrzeug
WO2004045895A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur erkennung von links-oder rechtsverkehr
GB2396339A (en) * 2002-11-21 2004-06-23 Visteon Global Tech Inc Preceding vehicle lane change identification
US7177750B2 (en) 2002-11-21 2007-02-13 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7212907B2 (en) 2002-11-21 2007-05-01 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7248962B2 (en) 2002-11-21 2007-07-24 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7386385B2 (en) 2002-11-21 2008-06-10 Lucas Automotive Gmbh System for recognising the lane-change manoeuver of a motor vehicle
US7774123B2 (en) 2002-11-21 2010-08-10 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
CN101817326A (zh) * 2009-02-27 2010-09-01 株式会社东海理化电机制作所 车辆转向信号器装置
US7831368B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831367B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7840330B2 (en) 2002-11-21 2010-11-23 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle

Families Citing this family (161)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877897A (en) 1993-02-26 1999-03-02 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
US6822563B2 (en) 1997-09-22 2004-11-23 Donnelly Corporation Vehicle imaging system with accessory control
US6891563B2 (en) 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
US7655894B2 (en) 1996-03-25 2010-02-02 Donnelly Corporation Vehicular image sensing system
US7697027B2 (en) 2001-07-31 2010-04-13 Donnelly Corporation Vehicular video system
US6882287B2 (en) 2001-07-31 2005-04-19 Donnelly Corporation Automotive lane change aid
JP3944022B2 (ja) * 2001-12-05 2007-07-11 本田技研工業株式会社 車両の走行制御装置
US8718919B2 (en) * 2002-04-23 2014-05-06 Robert Bosch Gmbh Method and apparatus for lane recognition for a vehicle
WO2003093857A2 (en) 2002-05-03 2003-11-13 Donnelly Corporation Object detection system for vehicle
EP1537440B1 (de) * 2002-07-15 2016-04-06 Automotive Systems Laboratory, Inc. Strassenkrümmungsschätzung und kraftfahrzeug-zielzustandsschützsystem
DE10251357A1 (de) * 2002-11-05 2004-05-13 Daimlerchrysler Ag Setzen oder Abschalten eines Fahrtrichtungsanzeigers
DE10342528A1 (de) * 2003-09-12 2005-04-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrerunterstützung
WO2005037592A1 (de) * 2003-09-23 2005-04-28 Daimlerchrysler Ag Verfahren und vorrichtung zur erkennung von spurwechselvorgängen für ein fahrzeug
US7308341B2 (en) 2003-10-14 2007-12-11 Donnelly Corporation Vehicle communication system
JP4496760B2 (ja) * 2003-10-29 2010-07-07 日産自動車株式会社 車線逸脱防止装置
JP4513318B2 (ja) * 2003-12-10 2010-07-28 日産自動車株式会社 後側方画像制御装置および方法
US7482916B2 (en) 2004-03-15 2009-01-27 Anita Au Automatic signaling systems for vehicles
US7526103B2 (en) 2004-04-15 2009-04-28 Donnelly Corporation Imaging system for vehicle
JP4400316B2 (ja) * 2004-06-02 2010-01-20 日産自動車株式会社 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
JP2006023278A (ja) * 2004-06-07 2006-01-26 Nissan Motor Co Ltd 車載用ナビゲーション装置とこれに用いる車線位置推定装置
DE102004028404A1 (de) * 2004-06-14 2006-01-19 Daimlerchrysler Ag Verfahren zur Schätzung des Verlaufs einer Fahrspur eines Kraftfahrzeuges
DE102004029369B4 (de) * 2004-06-17 2016-09-15 Robert Bosch Gmbh Spurwechselassistent für Kraftfahrzeuge
DE102004031788B4 (de) * 2004-07-01 2017-06-08 Robert Bosch Gmbh Verfahren und Gerät zur Spurwechselerkennung in Kraftfahrzeugen
DE102004039741A1 (de) * 2004-08-17 2006-02-23 Robert Bosch Gmbh Fahrerassistenzsystem mit Einrichtung zur Spurwechselerkennung
US7881496B2 (en) 2004-09-30 2011-02-01 Donnelly Corporation Vision system for vehicle
JP4400418B2 (ja) * 2004-10-29 2010-01-20 日産自動車株式会社 車間距離制御装置及び車間距離制御方法並びに運転操作支援装置及び運転操作支援方法
JP4229051B2 (ja) * 2004-11-26 2009-02-25 日産自動車株式会社 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両
US7720580B2 (en) 2004-12-23 2010-05-18 Donnelly Corporation Object detection system for vehicle
DE102005007802A1 (de) 2005-02-21 2006-08-24 Robert Bosch Gmbh Verfahren zur Objektplausibilisierung in Fahrerassistenzsystemen
DE102006010275A1 (de) * 2005-03-03 2006-12-14 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zum Vermeiden einer Kollision bei einem Spurwechsel eines Fahrzeugs
DE102005032848A1 (de) * 2005-07-14 2007-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Fahrerunterstützung
US20070052555A1 (en) * 2005-09-08 2007-03-08 Visteon Global Technologies, Inc. Predictive adaptive front lighting integrated system
WO2007031578A1 (de) * 2005-09-15 2007-03-22 Continental Teves Ag & Co. Ohg Verfahren und vorrichtung zum lenken eines kraftfahrzeugs
DE102005048014A1 (de) * 2005-10-07 2007-04-12 Robert Bosch Gmbh Fahrerassistenzsystem
DE102009028880A1 (de) * 2009-08-26 2011-03-03 Robert Bosch Gmbh Fahrtrichtungsstabilisierungssystem für Fahrzeuge
DE102006033487A1 (de) * 2006-07-19 2008-01-31 Robert Bosch Gmbh Verfahren zur Unterstützung eines Überholvorgangs bei einem Kraftfahrzeug
WO2008024639A2 (en) 2006-08-11 2008-02-28 Donnelly Corporation Automatic headlamp control system
JP4946298B2 (ja) * 2006-09-19 2012-06-06 株式会社デンソー 車両用ナビゲーション装置
US8013780B2 (en) 2007-01-25 2011-09-06 Magna Electronics Inc. Radar sensing system for vehicle
US7914187B2 (en) 2007-07-12 2011-03-29 Magna Electronics Inc. Automatic lighting system with adaptive alignment function
US8017898B2 (en) 2007-08-17 2011-09-13 Magna Electronics Inc. Vehicular imaging system in an automatic headlamp control system
WO2009036176A1 (en) 2007-09-11 2009-03-19 Magna Electronics Imaging system for vehicle
WO2009046268A1 (en) 2007-10-04 2009-04-09 Magna Electronics Combined rgb and ir imaging sensor
DE102008005316A1 (de) * 2008-01-21 2009-07-23 Robert Bosch Gmbh Fahrerassistenzsystem mit Schätzmodul für Kursversatz
JP2009190650A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 旋回方向指示装置
US8060280B2 (en) 2008-04-15 2011-11-15 Autoliv Asp, Inc. Vision system for deploying safety systems
US7898400B2 (en) * 2008-04-15 2011-03-01 Autoliv Asp, Inc. Enhanced vision road detection system
EP2179892A1 (de) 2008-10-24 2010-04-28 Magna Electronics Europe GmbH & Co. KG Verfahren zum automatischen Kalibrieren einer virtuellen Kamera
KR101428102B1 (ko) * 2008-11-27 2014-09-23 현대자동차주식회사 차간거리 제어시스템
US8964032B2 (en) 2009-01-30 2015-02-24 Magna Electronics Inc. Rear illumination system
EP2401176B1 (de) 2009-02-27 2019-05-08 Magna Electronics Fahrzeugalarmsystem
US20100266326A1 (en) * 2009-04-21 2010-10-21 Chuang Cheng-Hua Mark-erasable pen cap
US8376595B2 (en) 2009-05-15 2013-02-19 Magna Electronics, Inc. Automatic headlamp control
US9495876B2 (en) 2009-07-27 2016-11-15 Magna Electronics Inc. Vehicular camera with on-board microcontroller
KR101735134B1 (ko) 2009-07-27 2017-05-24 마그나 일렉트로닉스 인크. 주차 보조 시스템
US9041806B2 (en) 2009-09-01 2015-05-26 Magna Electronics Inc. Imaging and display system for vehicle
US9150155B2 (en) 2010-01-13 2015-10-06 Magna Electronics Inc. Vehicular camera and method for periodic calibration of vehicular camera
US8890955B2 (en) 2010-02-10 2014-11-18 Magna Mirrors Of America, Inc. Adaptable wireless vehicle vision system based on wireless communication error
DE102010010856A1 (de) * 2010-03-10 2011-09-15 Continental Teves Ag & Co. Ohg Verfahren zur automatischen Unterstützung eines Fahrers eines Kraftfahrzeugs bei seiner Fahraufgabe
US9117123B2 (en) 2010-07-05 2015-08-25 Magna Electronics Inc. Vehicular rear view camera display system with lifecheck function
US9180908B2 (en) 2010-11-19 2015-11-10 Magna Electronics Inc. Lane keeping system and lane centering system
US9900522B2 (en) 2010-12-01 2018-02-20 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
US9264672B2 (en) 2010-12-22 2016-02-16 Magna Mirrors Of America, Inc. Vision display system for vehicle
US9085261B2 (en) 2011-01-26 2015-07-21 Magna Electronics Inc. Rear vision system with trailer angle detection
SE536369C2 (sv) * 2011-03-14 2013-09-17 Scania Cv Ab Anordning och metod för uppskattning av parametrar tillhörande ett framförvarande fordon för detektion av sladd hos detframförvarande fordonet
US9194943B2 (en) 2011-04-12 2015-11-24 Magna Electronics Inc. Step filter for estimating distance in a time-of-flight ranging system
WO2012145819A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Image processing method for detecting objects using relative motion
US9357208B2 (en) 2011-04-25 2016-05-31 Magna Electronics Inc. Method and system for dynamically calibrating vehicular cameras
WO2012145822A1 (en) 2011-04-25 2012-11-01 Magna International Inc. Method and system for dynamically calibrating vehicular cameras
FR2976886B1 (fr) * 2011-06-24 2014-12-05 Renault Sa Gestion de regulation de vitesse d'un vehicule
WO2013016409A1 (en) 2011-07-26 2013-01-31 Magna Electronics Inc. Vision system for vehicle
WO2013019707A1 (en) 2011-08-01 2013-02-07 Magna Electronics Inc. Vehicle camera alignment system
EP2562060B1 (de) 2011-08-22 2014-10-01 Honda Research Institute Europe GmbH Verfahren und System zur Vorhersage des Bewegungsverhaltens eines Zielverkehrsobjekts
US20140218535A1 (en) 2011-09-21 2014-08-07 Magna Electronics Inc. Vehicle vision system using image data transmission and power supply via a coaxial cable
WO2013048994A1 (en) 2011-09-26 2013-04-04 Magna Electronics, Inc. Vehicle camera image quality improvement in poor visibility conditions by contrast amplification
US9146898B2 (en) 2011-10-27 2015-09-29 Magna Electronics Inc. Driver assist system with algorithm switching
US9491451B2 (en) 2011-11-15 2016-11-08 Magna Electronics Inc. Calibration system and method for vehicular surround vision system
WO2013081985A1 (en) 2011-11-28 2013-06-06 Magna Electronics, Inc. Vision system for vehicle
US9762880B2 (en) 2011-12-09 2017-09-12 Magna Electronics Inc. Vehicle vision system with customized display
WO2013126715A2 (en) 2012-02-22 2013-08-29 Magna Electronics, Inc. Vehicle camera system with image manipulation
JP5964609B2 (ja) * 2012-02-23 2016-08-03 株式会社日本自動車部品総合研究所 車両用追従制御装置
US8694224B2 (en) 2012-03-01 2014-04-08 Magna Electronics Inc. Vehicle yaw rate correction
US10609335B2 (en) 2012-03-23 2020-03-31 Magna Electronics Inc. Vehicle vision system with accelerated object confirmation
WO2013158592A2 (en) 2012-04-16 2013-10-24 Magna Electronics, Inc. Vehicle vision system with reduced image color data processing by use of dithering
US10089537B2 (en) 2012-05-18 2018-10-02 Magna Electronics Inc. Vehicle vision system with front and rear camera integration
US9340227B2 (en) 2012-08-14 2016-05-17 Magna Electronics Inc. Vehicle lane keep assist system
DE102013217430A1 (de) 2012-09-04 2014-03-06 Magna Electronics, Inc. Fahrerassistenzsystem für ein Kraftfahrzeug
US9558409B2 (en) 2012-09-26 2017-01-31 Magna Electronics Inc. Vehicle vision system with trailer angle detection
US9446713B2 (en) 2012-09-26 2016-09-20 Magna Electronics Inc. Trailer angle detection system
US9723272B2 (en) 2012-10-05 2017-08-01 Magna Electronics Inc. Multi-camera image stitching calibration system
US9743002B2 (en) 2012-11-19 2017-08-22 Magna Electronics Inc. Vehicle vision system with enhanced display functions
US9090234B2 (en) 2012-11-19 2015-07-28 Magna Electronics Inc. Braking control system for vehicle
US10025994B2 (en) 2012-12-04 2018-07-17 Magna Electronics Inc. Vehicle vision system utilizing corner detection
US9481301B2 (en) 2012-12-05 2016-11-01 Magna Electronics Inc. Vehicle vision system utilizing camera synchronization
US9092986B2 (en) 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US20140218529A1 (en) 2013-02-04 2014-08-07 Magna Electronics Inc. Vehicle data recording system
US10179543B2 (en) 2013-02-27 2019-01-15 Magna Electronics Inc. Multi-camera dynamic top view vision system
US9688200B2 (en) 2013-03-04 2017-06-27 Magna Electronics Inc. Calibration system and method for multi-camera vision system
US10027930B2 (en) 2013-03-29 2018-07-17 Magna Electronics Inc. Spectral filtering for vehicular driver assistance systems
US9327693B2 (en) 2013-04-10 2016-05-03 Magna Electronics Inc. Rear collision avoidance system for vehicle
US10232797B2 (en) 2013-04-29 2019-03-19 Magna Electronics Inc. Rear vision system for vehicle with dual purpose signal lines
US9508014B2 (en) 2013-05-06 2016-11-29 Magna Electronics Inc. Vehicular multi-camera vision system
US9563951B2 (en) 2013-05-21 2017-02-07 Magna Electronics Inc. Vehicle vision system with targetless camera calibration
US9205776B2 (en) 2013-05-21 2015-12-08 Magna Electronics Inc. Vehicle vision system using kinematic model of vehicle motion
US10567705B2 (en) 2013-06-10 2020-02-18 Magna Electronics Inc. Coaxial cable with bidirectional data transmission
US9260095B2 (en) 2013-06-19 2016-02-16 Magna Electronics Inc. Vehicle vision system with collision mitigation
US20140375476A1 (en) 2013-06-24 2014-12-25 Magna Electronics Inc. Vehicle alert system
US10755110B2 (en) 2013-06-28 2020-08-25 Magna Electronics Inc. Trailering assist system for vehicle
KR101528882B1 (ko) * 2013-07-19 2015-06-15 현대모비스 주식회사 요 레이트 센서의 오프셋 보정 장치와 방법 및 상기 장치를 구비하는 차량 속도 제어 시스템
US10326969B2 (en) 2013-08-12 2019-06-18 Magna Electronics Inc. Vehicle vision system with reduction of temporal noise in images
US9619716B2 (en) 2013-08-12 2017-04-11 Magna Electronics Inc. Vehicle vision system with image classification
US9499139B2 (en) 2013-12-05 2016-11-22 Magna Electronics Inc. Vehicle monitoring system
KR101480652B1 (ko) * 2013-12-11 2015-01-09 현대자동차주식회사 차선 변경 제어 장치 및 그 변경 제어 방법
US9988047B2 (en) 2013-12-12 2018-06-05 Magna Electronics Inc. Vehicle control system with traffic driving control
US10160382B2 (en) 2014-02-04 2018-12-25 Magna Electronics Inc. Trailer backup assist system
US9623878B2 (en) 2014-04-02 2017-04-18 Magna Electronics Inc. Personalized driver assistance system for vehicle
US9487235B2 (en) 2014-04-10 2016-11-08 Magna Electronics Inc. Vehicle control system with adaptive wheel angle correction
US9460624B2 (en) 2014-05-06 2016-10-04 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for determining lane identification in a roadway
US10328932B2 (en) 2014-06-02 2019-06-25 Magna Electronics Inc. Parking assist system with annotated map generation
US9925980B2 (en) 2014-09-17 2018-03-27 Magna Electronics Inc. Vehicle collision avoidance system with enhanced pedestrian avoidance
EP3007150A1 (de) * 2014-10-07 2016-04-13 Autoliv Development AB Spurwechselerkennung
US9946940B2 (en) 2014-12-18 2018-04-17 Magna Electronics Inc. Vehicle vision system with adaptive lane marker detection
US10713506B2 (en) 2014-12-18 2020-07-14 Magna Electronics Inc. Vehicle vision system with 3D registration for distance estimation
US9916660B2 (en) 2015-01-16 2018-03-13 Magna Electronics Inc. Vehicle vision system with calibration algorithm
JP6137212B2 (ja) * 2015-02-02 2017-05-31 トヨタ自動車株式会社 運転支援装置
US9764744B2 (en) 2015-02-25 2017-09-19 Magna Electronics Inc. Vehicle yaw rate estimation system
US10286855B2 (en) 2015-03-23 2019-05-14 Magna Electronics Inc. Vehicle vision system with video compression
US10946799B2 (en) 2015-04-21 2021-03-16 Magna Electronics Inc. Vehicle vision system with overlay calibration
US10819943B2 (en) 2015-05-07 2020-10-27 Magna Electronics Inc. Vehicle vision system with incident recording function
US10449899B2 (en) 2015-05-08 2019-10-22 Magna Electronics Inc. Vehicle vision system with road line sensing algorithm and lane departure warning
US10214206B2 (en) 2015-07-13 2019-02-26 Magna Electronics Inc. Parking assist system for vehicle
US10078789B2 (en) 2015-07-17 2018-09-18 Magna Electronics Inc. Vehicle parking assist system with vision-based parking space detection
JP6252559B2 (ja) * 2015-07-27 2017-12-27 トヨタ自動車株式会社 移動体検出装置及び運転支援装置
KR102319082B1 (ko) * 2015-09-14 2021-10-29 주식회사 만도모빌리티솔루션즈 추종 제어 방법 및 그 장치
US10187590B2 (en) 2015-10-27 2019-01-22 Magna Electronics Inc. Multi-camera vehicle vision system with image gap fill
US10144419B2 (en) 2015-11-23 2018-12-04 Magna Electronics Inc. Vehicle dynamic control system for emergency handling
US10030978B2 (en) 2016-01-17 2018-07-24 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for detection of surrounding vehicle lane departure
US11277558B2 (en) 2016-02-01 2022-03-15 Magna Electronics Inc. Vehicle vision system with master-slave camera configuration
US11433809B2 (en) 2016-02-02 2022-09-06 Magna Electronics Inc. Vehicle vision system with smart camera video output
DE102016001101A1 (de) * 2016-02-02 2017-08-03 Audi Ag Verfahren zur Erkennung und Identifikation eines Fahrmanövers eines Verkehrsteilnehmers und Kraftfahrzeug
US10160437B2 (en) 2016-02-29 2018-12-25 Magna Electronics Inc. Vehicle control system with reverse assist
US20170253237A1 (en) 2016-03-02 2017-09-07 Magna Electronics Inc. Vehicle vision system with automatic parking function
US10055651B2 (en) 2016-03-08 2018-08-21 Magna Electronics Inc. Vehicle vision system with enhanced lane tracking
US10300859B2 (en) 2016-06-10 2019-05-28 Magna Electronics Inc. Multi-sensor interior mirror device with image adjustment
DE102017120954A1 (de) * 2017-09-11 2019-03-14 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Verfahren und Einrichtung zur Ausgabe eines Kollisionswarnsignals an die Umgebung einer mittelspurgeführten Straßenbahn
US10657811B2 (en) 2017-10-04 2020-05-19 Toyota Motor Engineering & Manufacturing North America, Inc. Travel lane identification without road curvature data
US10668922B2 (en) 2017-10-04 2020-06-02 Toyota Motor Engineering & Manufacturing North America, Inc. Travel lane identification without road curvature data
US10227039B1 (en) * 2018-02-19 2019-03-12 Delphi Technologies, Llc Warning system
KR102553247B1 (ko) * 2018-04-27 2023-07-07 주식회사 에이치엘클레무브 전방 차량 추종 제어 시 안전성을 향상할 수 있는 차선 유지 보조 시스템 및 방법
DE102018209274A1 (de) * 2018-06-11 2019-12-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung einer Begrenzung eines Spurwechselmanövers
JP6958500B2 (ja) * 2018-07-20 2021-11-02 株式会社デンソー 移動物体検出装置
JP7264167B2 (ja) * 2018-07-30 2023-04-25 コニカミノルタ株式会社 レーザーレーダー装置及びフレームデータの補正システム
DE102018216364B4 (de) * 2018-09-25 2020-07-09 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Unterstützen eines Spurwechselvorgangs für ein Fahrzeug
EP3640109A1 (de) * 2018-10-17 2020-04-22 Volvo Car Corporation System und verfahren zur erkennung und/oder verhinderung einer automatisierungserwartungsfehlanpassung in einem fahrzeug
CN111439263B (zh) * 2018-12-29 2022-05-20 沈阳美行科技股份有限公司 车辆变道识别方法、装置、电子设备和存储介质
CN109795477B (zh) * 2019-02-22 2020-11-06 百度在线网络技术(北京)有限公司 消除稳态横向偏差的方法、装置及存储介质
CN109955849A (zh) * 2019-04-16 2019-07-02 新疆天池能源有限责任公司 应用于露天煤矿车辆防撞预警的方法及装置
US11210941B2 (en) 2019-11-22 2021-12-28 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for mitigating anomalies in lane change detection
US11488424B2 (en) 2020-03-19 2022-11-01 Toyota Motor North America, Inc. Motion-based transport assessment
US11097735B1 (en) 2020-03-19 2021-08-24 Toyota Motor North America, Inc. Transport lane usage
US11720114B2 (en) 2020-03-19 2023-08-08 Toyota Motor North America, Inc. Safety of transport maneuvering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637245A1 (de) 1996-09-13 1998-03-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs
EP0890470A2 (de) * 1997-07-07 1999-01-13 Honda Giken Kogyo Kabushiki Kaisha Fahrzeug-Steuerungsystem zum Fahrspurwechsel
WO1999030919A1 (de) * 1997-12-15 1999-06-24 Volkswagen Aktiengesellschaft Verfahren zur regelung von geschwindigkeit und abstand bei überholvorgängen
WO1999032318A1 (de) * 1997-12-20 1999-07-01 Bayerische Motoren Werke Aktiengesellschaft Regelsystem für geschwindigkeit und abstand bei fahrspurwechsel eines kraftfahrzeuges
EP1034963A1 (de) * 1997-12-01 2000-09-13 Hitachi, Ltd. Fahrgeschwindigkeitsregler für automobile
WO2001079882A1 (de) * 2000-04-14 2001-10-25 Robert Bosch Gmbh Verfahren zur regelung der geschwindigkeit eines fahrzeugs
WO2001079013A1 (de) * 2000-04-14 2001-10-25 Robert Bosch Gmbh Abstandsbezogenes verfahren zur regelung der geschwindigkeit eines fahrzeugs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08216777A (ja) * 1995-02-17 1996-08-27 Nippon Soken Inc 車両の割り込み進入処理装置
JPH10338057A (ja) * 1997-06-10 1998-12-22 Hitachi Ltd 自動車の自動走行制御装置および車間距離警報装置
JP3763211B2 (ja) * 1998-07-10 2006-04-05 日産自動車株式会社 レーンキープシステム
JP2000343980A (ja) * 1999-03-29 2000-12-12 Denso Corp 自動走行制御装置及び記録媒体並びに自動走行制御方法
JP3800007B2 (ja) * 2001-01-09 2006-07-19 日産自動車株式会社 制動制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19637245A1 (de) 1996-09-13 1998-03-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Fahrzeugs
EP0890470A2 (de) * 1997-07-07 1999-01-13 Honda Giken Kogyo Kabushiki Kaisha Fahrzeug-Steuerungsystem zum Fahrspurwechsel
EP1034963A1 (de) * 1997-12-01 2000-09-13 Hitachi, Ltd. Fahrgeschwindigkeitsregler für automobile
WO1999030919A1 (de) * 1997-12-15 1999-06-24 Volkswagen Aktiengesellschaft Verfahren zur regelung von geschwindigkeit und abstand bei überholvorgängen
WO1999032318A1 (de) * 1997-12-20 1999-07-01 Bayerische Motoren Werke Aktiengesellschaft Regelsystem für geschwindigkeit und abstand bei fahrspurwechsel eines kraftfahrzeuges
WO2001079882A1 (de) * 2000-04-14 2001-10-25 Robert Bosch Gmbh Verfahren zur regelung der geschwindigkeit eines fahrzeugs
WO2001079013A1 (de) * 2000-04-14 2001-10-25 Robert Bosch Gmbh Abstandsbezogenes verfahren zur regelung der geschwindigkeit eines fahrzeugs

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248962B2 (en) 2002-11-21 2007-07-24 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
WO2004045895A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur erkennung von links-oder rechtsverkehr
GB2396339A (en) * 2002-11-21 2004-06-23 Visteon Global Tech Inc Preceding vehicle lane change identification
GB2396339B (en) * 2002-11-21 2004-11-24 Visteon Global Tech Inc Method and system for identifying a lane change
US7177750B2 (en) 2002-11-21 2007-02-13 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7212907B2 (en) 2002-11-21 2007-05-01 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
WO2004045890A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur erkennung eines spurwechsels bei einem fahrzeug
US7386385B2 (en) 2002-11-21 2008-06-10 Lucas Automotive Gmbh System for recognising the lane-change manoeuver of a motor vehicle
US7774123B2 (en) 2002-11-21 2010-08-10 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831368B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7831367B2 (en) 2002-11-21 2010-11-09 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
US7840330B2 (en) 2002-11-21 2010-11-23 Lucas Automotive Gmbh System for influencing the speed of a motor vehicle
CN101817326A (zh) * 2009-02-27 2010-09-01 株式会社东海理化电机制作所 车辆转向信号器装置

Also Published As

Publication number Publication date
JP2004523772A (ja) 2004-08-05
DE10118265A1 (de) 2002-10-17
EP1388017A1 (de) 2004-02-11
US20030156015A1 (en) 2003-08-21
EP1388017B1 (de) 2009-04-22
DE50213482D1 (de) 2009-06-04
US6889161B2 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
EP1388017B1 (de) Verfahren zur erkennung eines spurwechsels eines fahrzeugs
DE19722947C1 (de) Verfahren und Vorrichtung zur Bestimmung eines zukünftigen Kursbereichs eines Fahrzeugs
DE602004000990T2 (de) Fahrassistenzsystem für Fahrzeuge
EP1577682B1 (de) Objektortungssystem für Kraftfahrzeuge zur Erkennung eines Spurwechsels
EP1276626B2 (de) Abstandsbezogenes verfahren zur regelung der geschwindigkeit eines fahrzeugs
DE60123640T2 (de) Verfahren und vorrichtung zur voraussage eines fahrwegs
DE19637053C2 (de) Verfahren und Vorrichtung zur automatischen Erkennung von Rechts- oder Linksverkehr
EP1736797B1 (de) Fahrerassistenzsystem mit Navigationssystemschnittstelle
DE10015300B4 (de) Verfahren und Vorrichtung zur Steuerung der Fahrgeschwindigkeit eines Fahrzeugs
WO2000033151A1 (de) Verfahren und vorrichtung zur bestimmung eines zukünftigen kursbereichs eines fahrzeugs
EP1381530A1 (de) Verfahren und vorrichtung zur unterstützung eines überholvorgangs bei kraftfahrzeugen
EP2162872A1 (de) Kollisionswarngerät mit leitplankenerkennung
WO2007033867A1 (de) Vorrichtung zur längsführung eines kraftfahrzeugs
WO2013020619A1 (de) Verfahren zum betreiben eines kraftfahrzeuges und fahrerassistenzsystem zur durchführung des verfahrens
WO2004027450A1 (de) Sensoranordnung und verfahren zur abstandsregelung bei kraftfahrzeugen
DE102007044761A1 (de) Verfahren und Vorrichtung zur Bestimmung eines sich entlang einer Bewegungsbahn eines Fahrzeuges erstreckenden Fahrschlauches
EP1627766B1 (de) Fahrerassistenzsystem mit Einrichtung zur Spurwechselerkennung
DE19828160B4 (de) Verfahren zum automatischen Erkennen der Hauptrichtungsfahrbahn bei einer mehrspurigen Strecke
DE10059891A1 (de) Kraftfahrzeugabstandssensor
EP1915281A1 (de) Verfahren zur bestimmung eines fahrschlauchs innerhalb dem sich ein fahrzeug mit grosser wahrscheinlichkeit fortbewegt
WO2008040607A1 (de) Fahrerassistenzsystem und verfahren zum verfolgen von georteten objekten
DE102022119571A1 (de) Benachrichtigungssteuerungsvorrichtung für ein Fahrzeug
DE10335898A1 (de) Vorrichtung zur Bewertung von stehenden Objekten in einem Fahrerassistenzsystem
EP1829760B1 (de) Fahrerassistenzsystem mit Kursprädiktionsmodul
DE102006001993A1 (de) Strassenformschätzeinrichtung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002708234

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10311176

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002582030

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002708234

Country of ref document: EP