WO2002024078A1 - Linear suturing apparatus and methods - Google Patents

Linear suturing apparatus and methods Download PDF

Info

Publication number
WO2002024078A1
WO2002024078A1 PCT/US2001/042186 US0142186W WO0224078A1 WO 2002024078 A1 WO2002024078 A1 WO 2002024078A1 US 0142186 W US0142186 W US 0142186W WO 0224078 A1 WO0224078 A1 WO 0224078A1
Authority
WO
WIPO (PCT)
Prior art keywords
suturing device
needle
recited
jaw members
disposed
Prior art date
Application number
PCT/US2001/042186
Other languages
French (fr)
Inventor
Gregory H. Bain
Seth Foerster
Original Assignee
Opus Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Opus Medical, Inc. filed Critical Opus Medical, Inc.
Priority to AU2001295050A priority Critical patent/AU2001295050A1/en
Publication of WO2002024078A1 publication Critical patent/WO2002024078A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0482Needle or suture guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/2833Locking means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/047Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery having at least one proximally pointing needle located at the distal end of the instrument, e.g. for suturing trocar puncture wounds starting from inside the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0472Multiple-needled, e.g. double-needled, instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction

Definitions

  • the present invention relates to a method and apparatus for placing sutures in tissue, and more particularly to a method and device for arthroscopic repair of a torn rotator cuff.
  • endosurgery means endoscopic surgery or surgery performed using an endoscope.
  • the endoscope becomes the surgeons' substitute eyes by which they operate.
  • Operations using an endoscope are significantly less invasive when compared to traditional open surgery. Patients usually return home the next day or in some cases, the same day of the endosurgical procedure. This is in contrast to standard open surgical procedures where a large incision divides the muscle layers and allows the surgeon to directly visualize the operative area. Patients may stay in the hospital for 5 to 6 days or longer following open surgery. In addition, after endosurgical procedures, patients return to work within a few days versus the traditional 3 to 4 weeks at home following open surgery.
  • trocars Access to the operative site using endosurgical or minimally invasive techniques is accomplished by inserting small tubes called trocars into a body cavity. These tubes have a diameter of, for example, between 3mm and 30mm and a length of about 150mm (6 inches). There have been attempts to devise instruments and methods for suturing within a body cavity through these trocar tubes.
  • Mulhollan et al. Such an instrument is disclosed in U.S. Patent No. 4,621,640 to Mulhollan et al.
  • the Mulhollan et al. patent describes an instrument that may be used to hold and drive a needle, but makes no provision for retrieval of the needle from the body cavity, nor the completion of the suture by tying.
  • Mulhollan's instrument is limited in that the arc through which the needle must be driven is perpendicular to the axis of the device. Another such instrument intended for endoscopic use is described by
  • Caspari discloses an endoscopic instrument suitable for use through a trocar that resembles the Yoon approach, but with a single hollow needle on one of a set of oppositional jaws. The jaws simultaneously close, grasping the tissue. The jaw opposite the hollow needle has a window through which the hollow needle passes as the jaws close, freeing the lumen of the hollow needle from the tissue.
  • a suture or suture snare is pushed down through the lumen and retrieved from the suture site, the jaws are released, and the suture is pulled back out through the trocar.
  • This device may be used to place simple stitches in tissues that have been mobilized and have an edge accessible to the jaws.
  • a limitation of the device is the manipulation that must be done with the snare if a suture other than a monofilament is used.
  • U.S. Patent No. 4,836,205 to Barrett.
  • the Barrett patent combines in a single instrument the functions of grasping the tissue to be sutured and the passing of the needles through that tissue. It is to be understood that this instrument is designed for use specifically under endoscopic view, and through trocars as previously described.
  • a fairly generic endoscopic grasper is disclosed that has been adapted to allow for a hollow lumen from the handle of the grasper down to the distal tip of the grasper jaws. An elongate needle of 8 to 10 inches in length may be passed through this hollow lumen.
  • the needle being significantly longer than the grasper, is introduced through the handle of the grasper, and may be driven through the tissue being held in the grasping jaws of the device.
  • the needle is then retrieved from the tissue via a trocar port placed substantially opposite the port through which the grasper is introduced. If a mattress stitch is desired, two needles attached to opposite ends of a suture are both passed through the tissue and retrieved.
  • a limitation of this device is that there must be both visual and physical access to both sides of the tissue flap to be sutured. This requires trocars to be placed opposite each other and roughly on a line intercepting the tissue. This is a severe limitation in the instance of shoulder repair, and specifically in repair of the rotator cuff. There have been other attempts to improve the methods of tissue repair.
  • tissue staplers In response to some of the aforementioned problems in placing sutures in tissues endoscopically, manufacturers have developed tissue staplers. These devices utilize stainless steel or titanium staples that are constructed much like the staples used to hold papers together. The major disadvantage of these kinds of staplers is that they leave metal in the body. For some tissues this is not a problem, however in some procedures, metal staples left within the tissues can be a major hindrance to the healing process.
  • Bone anchors In orthopedic surgery, many different designs for bone anchors have been developed. These anchors allow soft tissues to be reattached to bone, and simplify the process by removing the need to create a trans-osseous tunnel. Trans-osseous tunnels are created in bones to allow suture material to be threaded through and tied across the bony bridge created by tunnels after it has been placed through the soft tissues and tied with conventional knots. Anchors fabricated from stainless steel or titanium are commonly used in joint reconstructions, and, because the metal is contained in the bone, it does not cause a problem with healing.
  • mini-incision surgery uses the principles of traditional open surgery, along with some of the equipment advances of endoscopy to provide the patient with the best of both worlds.
  • tear or detachment It is an increasingly common problem for tendons and other soft, connective tissues to tear or to detach from associated bone.
  • One such type of tear or detachment is a "rotator cuff tear, causing pain and loss of ability to elevate and externally rotate the arm. Complete separation can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients.
  • the rotator cuff or a shoulder joint is made up of a combination of the distal tendinous portion of four muscles, supraspinatus and subspinatus, subscapularis and teres minor.
  • the cuff is attached to the upper, anterior and posterior faces of the trochiter by covering the upper pole of the humeral head.
  • Proper functioning of the tendinous cuff 3 to 4 millimeters thick, depends on the fundamental centering and stabilizing role of the humeral head with respect to sliding action during anterior and lateral lifting and rotational movements of the arm.
  • the musculotendinous cuff passes under an osteofibrous arch, which is made up from the front to the rear by a portion of the acromion, the coracoacromial ligament and the coracoid process, thereby forming a canal.
  • a sliding bursa passes between the musculotendinous cuff and the walls of the osteofibrous arch. Therefore, there is a potential and sometimes detrimental interaction between the musculotendinous cuff and the acromiocoracoidian arch, particularly during lateral and anterior lifting movements of the arm.
  • the repeated rubbing of the cuff against the walls of the osteofibrous arch results in the wearing of the tendinous cuff by progressive abrasion.
  • the rubbing can be increased inasmuch as arthrosis lesions with severe osteophytes may thicken the walls of the aforementioned arch, becoming more aggressive as the cuff gets older.
  • the degenerative rupture of the rotator or musculotendinous cuff may be of a varied size: grade 1 — perforation (less than 1 cm 2 ) reaching the supraspinatus muscle; grade 2 — supraspinatus rupture (greater than 1 cm 2 ); grade 3 — massive rupture concerning the supraspinatus, subspinatus, subscapularis muscles and sometimes the teres minor muscle.
  • the "mini-open" technique which represents the current growing trend and the majority of all surgical repair procedures, differs from the classic approach by gaining access through a smaller incision of 3 to 5 cm and splitting rather than detaching the deltoid. Additionally, this procedure is typically used in conjunction with arthroscopic acromial decompression. Once the deltoid is split, it is retracted to expose the rotator cuff tear. The cuff is debrided and trimmed to ensure suture attachment to viable tissue and to create a reasonable edge approximation. In addition, the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface. A series of small diameter holes, referred to as trans-osseous tunnels, are "punched" through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm.
  • the cuff is secured to the bone by pulling the suture ends through the trans-osseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion.
  • the above described surgical technique is the current standard of care for rotator cuff repair, it is associated with a great deal of patient discomfort and a lengthy recovery time, ranging from at least four months to one year or more. It is the above described manipulation of the deltoid muscle together with the large skin incision that causes the majority of patient discomfort and an increased recovery time.
  • None of the prior art devices are adaptable to effect the placement of a mattress stitch in grasped tissues, nor are they adaptable to place sutures precisely and controllably while making provision for needle retrieval when using endoscopic techniques. None of the prior art devices make it possible to place a mattress stitch into, for example, the supraspinatus tendon utilizing an endoscopic approach.
  • the devices should be capable of arthroscopically creating a mattress stitch in a tendon to increase the soft tissue pullout strength of the repaired tendon. They should also be capable of suturing the tendon or other soft tissue without requiring traditional knots to secure the suture to the tendon.
  • the inventors have developed a new and novel approach for securing a mattress stitch in a tissue flap.
  • An instrument that combines the function of both grasping the tissue and passing sutures through the tissue to form a mattress stitch is herein described.
  • the instrument includes a pair of grasping jaws that oppose each other along a line parallel to the long axis of the instrument.
  • the distal end of the instrument incorporates the fixed jaw, and proximal to that jaw is a moveable jaw that is controlled by the user via an actuator, such as a lever, on the hand grip.
  • the present invention provides a family of novel suturing devices that overcome the above described disadvantages of known prior art devices in a simple and economic manner.
  • the inventive system creates a mattress stitch in the damaged tendon to be repaired which increases the soft tissue pullout strength substantially over prior art approaches, yet does not require the traditional knots to secure the suture to the tendon.
  • the instrument is inserted through a portal known as a trocar cannula.
  • the portal is created by first making an incision in the skin, and then inserting a cannula through the incision to the repair site.
  • the distal end of the instrument inserted through the cannula is under direct visualization from a second trocar cannula that has been previously inserted, using a visualization instrument, such as an endoscope, inserted through the second trocar cannula.
  • a visualization instrument such as an endoscope
  • the instrument is inserted until the jaws reach, for example, torn rotator cuff tissue.
  • the distal end of the grasper aspect of the instrument is positioned at the repair site beneath the tissue to be grasped.
  • the movable jaw slides toward the stationary jaw responsive to actuation of the aforementioned lever actuator, which is preferably disposed in a handle.
  • the handle lever moves inwardly to actuate the jaw by pivoting about a pivot pin. Once the appropriate section of tissue is isolated and grasped by the jaws, the lever may be locked in its closed position using a latch mechanism.
  • the suture needles may be advanced through the grasped tissues by pushing on a button or other suitable actuation means.
  • the button actuator is directly connected to the needles via a connecting rod, and the button is pushed against the force of a return spring.
  • the connecting rod pushes a needle carriage, wherein suture needles are held in the carriage.
  • the needle carriage resides behind the proximal movable jaw of the instrument, and responsive to the actuation of the button via the connecting rod described supra, is able to move distally to cause the needles to pass through the movable jaw. As the carriage continues to move distally, the tips of the suture needles begin to clear the distal edge of apertures created in the proximal movable jaw and then begin to penetrate through the top of the grasped tissue and to advance distally towards the stationary jaw.
  • the stationary jaw incorporates two apertures that are adapted to receive the ends of the suture.
  • Each suture has been crimped into a small piece of hypodermic tubing that has been configured to have a set of tabs, preferably about three or four, which are fabricated into the periphery of the tube and bent inwardly toward the central axis of the tube at an acute angle.
  • the distal end of the needles have passed completely through the grasped tissues and begin to enter the apertures in the stationary distal jaw.
  • those apertures are configured to accept the suture ends that have been attached to the modified hypodermic tubing.
  • any pull force being applied by the grasper on the grasped tissues is relaxed. Once the tissue is in a relaxed state, the jaws of the grasper are then opened.
  • the handle lever is unlocked from the locking mechanism, and returns to an open position due to the pull force exerted on it by means of a return spring. As the return spring pulls on the lever, it pivots about a pin.
  • the instrument can be retracted back through the portal via the trocar cannula. As the instrument is removed from the suture site, the free ends of the suture are removed as well. This causes the suture to pass through the tissues at the puncture sites. As the suture is pulled through, the loop end of the suture is pulled snug against the underside of the tissues to form what is referred to as a mattress stitch. This process may be repeated as necessary, depending upon the number of sutures required for the particular procedure being undertaken.
  • a suturing device for use endoscopically which comprises a first jaw member and a second jaw member, both ofwhich are disposed at a distal end ofthe suturing device.
  • An actuator preferably comprising a handpiece, is disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another.
  • a hollow barrel is disposed between the actuator and the first and second jaw members.
  • a linking member within the hollow barrel connects the actuator with the first jaw member;
  • At least one needle is disposed at the distal end ofthe suturing device, and is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members.
  • the first jaw member is axially movable relative to the second jaw member, to thereby move the jaw members between the aforementioned closed and open orientations.
  • the handpiece actuator comprises a handle grip and a handle lever, with the handle lever being movable relative to the handle grip. More particularly, the handle lever is pivotally mounted relative to the handle grip, such that it is pivotable between a first position corresponding to the closed orientation ofthe first and second jaw members and a second position corresponding to the open orientation ofthe first and second jaw members.
  • a latching mechanism such as a ratcheting system having complementary engaging teeth, is provided for securing the handle lever relative to the handle grip, to thereby also secure the first and second jaw members in a desired orientation.
  • At least one needle is disposed on a needle carriage, which is axially movable between distal and proximal positions at the distal end ofthe suturing device.
  • a second actuator preferably comprising a knob actuator (though, of course, many different types of actuation mechanisms may be employed) is disposed at the proximal end of the suturing device, for actuating the needle carriage to move axially between its distal and proximal positions.
  • a spring is provided for biasing the needle carriage in its proximal position.
  • a recess is provided in the distal end ofthe suturing device, for receiving portions ofthe tissue, such as a torn rotator cuff, which is to be grasped between the first and second jaw members.
  • the first jaw member slides axially across an opening ofthe recess when the first and second jaw members move between the open orientation and the closed orientation.
  • a suturing device for use endoscopically, which comprises a first jaw member and a second jaw member.
  • the first and second jaw members are disposed at a distal end ofthe suturing device and are movable between a closed orientation, wherein the first and second jaw members are in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another.
  • a needle carriage is provided, which is axially movable between distal and proximal positions at the distal end ofthe suturing device.
  • At least one needle (and preferably two spaced needles) is disposed on the needle carriage, the axial movement ofthe needle carriage functioning to move the at least one needle between a retracted position and an extended position, for passage through tissue grasped between the first and second jaw members.
  • an actuator is disposed at a proximal end of the suturing device, for actuating the first and second jaw members between the aforementioned closed and open orientations.
  • an actuator is disposed at a proximal end of the suturing device, for actuating the first and second jaw members between the aforementioned closed and open orientations.
  • only one ofthe first and second jaw members moves when the actuator actuates the jaw members between the closed and the open orientations, however.
  • a suturing device for use endoscopically, which comprises a first jaw member and a second jaw member, wherein the first and second jaw members are disposed at a distal end ofthe suturing device.
  • An actuator is disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another.
  • At least one, and preferably two spaced needles are disposed on the distal end ofthe suturing device, wherein each needle includes a penetrating tip and is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members.
  • the spaced needles are oriented so that the penetrating tip of each needle moves distally relative to the suturing device when the needle is moved from the retracted position to the extended position.
  • a suturing device which comprises a first jaw member and a second jaw member.
  • the first and second jaw members are disposed at a distal end ofthe suturing device, and are movable between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another.
  • At least one needle is disposed at the distal end ofthe suturing device, which is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members.
  • the at least one needle moves axially between the retracted and extended positions, and distally when moving from the retracted position to the extended position.
  • Apertures are disposed in each ofthe first and second jaw members, through which the at least one needle passes when moving between the retracted and extended positions.
  • the at least one needle is then received into at least one corresponding can when the at least one needle moves from the retracted position to the extended position.
  • the at least one can is disposed on an end of a length of suturing material.
  • the at least one can is disposed in the second jaw member, which is distal to the first jaw member, and remains stationary relative to the first j aw member when the j aw members are moved between their closed and open orientations.
  • the at least one can comprises a plurality of tabs for preventing separation ofthe at least one needle from the at least one can, once the at least one needle has been received by the at least one can.
  • the number of needles corresponds to the number of cans, which is preferably two in both instances (i.e. two needles and two corresponding cans).
  • a method of placing sutures in tissue using a suturing device which comprises first and second jaw members which are disposed at a distal end ofthe suturing device and at least one needle which is also disposed at the suturing device distal end, wherein at least one needle is movable from a retracted position to an extended position.
  • the method comprises steps of inserting the distal end ofthe suturing device through a trocar port until the first and second jaw members are adjacent to tissue which is to be repaired, and then actuating the first and second jaw members to close together, thus capturing the tissue therebetween (between the two jaw members).
  • the at least one needle is actuated to move from the retracted position to the extended position, so that the at least one needle extends through the captured tissue.
  • the at least one needle is received in at least one can, wherein each ofthe at least one cans is attached to a corresponding length of suturing material.
  • Additional preferred steps ofthe method may comprise, for example, a step of retracting the at least one needle proximally through the captured tissue, wherein the proximal travel ofthe at least one needle also causes the at least one can and attached length of suturing material to travel proximally through the captured tissue, thereby creating a stitch through the tissue.
  • This stitch is preferably a "mattress stitch”.
  • the suturing instrument is withdrawn proximally through the trocar port.
  • the at least one needle comprises a spaced pair of needles, and the at least one can comprises a corresponding pair of cans, each ofwhich is secured to an end of a corresponding length of suturing material.
  • Fig. 1 is a diagram of a typical shoulder joint, illustrating a torn rotator cuff
  • FIGs. 2 A through 2E are schematic plan views illustrating one embodiment ofthe invention, and a preferred method, in sequence, for using same;
  • FIGS. 3 A through 3G are schematic cross-sectional views of a distal tissue clamping portion ofthe instrument shown in Figs. 2A through 2E, illustrating in sequence the tissue clamping aspect ofthe procedure illustrated in Figs. 2A through 2E;
  • FIGs. 4A and 4B are perspective sequential views illustrating the needle coupling mechanism ofthe inventive instrument;
  • Figs. 5 A and 5B are cross-sectional sequential views ofthe needle coupling mechanism shown in Figs. 4 A and 4B;
  • Fig. 6 is a plan diagrammatic view of a proximal actuator end of the inventive suturing instrument
  • Fig. 7 is a plan diagrammatic view ofthe entire inventive suturing instrument, illustrating some ofthe internal features ofthe instrument;
  • Figs. 8A through 8G are schematic sequential cross-sectional views similar to Figs. 3 A through 3G, but showing an enlarged view ofthe tissue clamping portion ofthe instrument;
  • Fig. 9 is a perspective view ofthe distal end ofthe inventive suturing instrument.
  • Fig. 10 is an enlarged perspective view ofthe distal-most portion ofthe distal end of the inventive suturing instrument
  • Fig. 11 is a schematic perspective view showing a mattress stitch which is created in a portion of soft tissue using the inventive suturing instrument in accordance with the inventive methods taught herein;
  • Fig. 12 is a schematic perspective view, in isolation, ofthe needle magazine of the present invention
  • Fig. 13 is a schematic perspective view, in isolation, of a length of suturing material having needle capture cans attached to both free ends thereof, for use with the suturing instrument ofthe present invention
  • Fig. 14 is a perspective view ofthe inventive suturing instrument shown in Fig. 7;
  • Fig. 15 is plan view ofthe suturing instrument shown in Fig. 14;
  • Fig. 16 is cross-sectional view taken along lines 16-16 of Fig. 15.
  • the present invention relates to a method and apparatus for the arthroscopic repair of torn tissue and bone at a surgical repair site using a device, which is a combination tissue grasper and suture placement device.
  • the apparatus and method could also be used in arthroscopic repair at other sites, such as the knee, elbow, or hip, for example, as well as in conjunction with other surgical techniques, such as traditional open or mini-open surgical procedures.
  • FIG. 1 there is shown representative shoulder musculature 11, including a supraspinatus muscle 13, a deltoid muscle 15, a biceps tendon 17, a torn rotator cuff 19, and a humeral head 21.
  • the humeral head 21 is not normally visible, as it is typically covered by the rotator cuff 19.
  • the torn rotator cuff 19 has pulled away from the head 21 ofthe humerus, exposing it to view.
  • FIG. 2A through 2E there is illustrated the general structure and function of an embodiment constructed and operated in accordance with the principles ofthe present invention.
  • a trocar port 23 has been inserted into the shoulder joint, providing a conduit through which a linear suturing device 25 may be passed.
  • the linear suturing device 25 is provided with movable jaws 27 for grasping portions ofthe torn rotator cuff 19.
  • the j aws 27 are disposed at a distal end 29 of a hollow barrel 31.
  • a handpiece 33 is disposed at a proximal end 35 ofthe hollow barrel 31, and is adapted to actuate the movable jaws 27.
  • the handpiece 33 comprises a handle grip 37 and a handle lever 39, which pivots about a pivot pin 41.
  • the handle lever 39 is suitably connected to the jaws 27 to actuate the jaws between an open and a closed position, depending upon the position ofthe handle lever 39, relative to the handle grip 37.
  • the actuating mechanism which is illustrated for moving the jaws 27 between their open and closed positions, through presently preferred, is only exemplary. Many other types of similar actuating mechanisms are known to those skilled in the art, and any of those would be suitable for the present application.
  • Fig. 2A the suturing device 25 is shown with the jaws 27 open, trailing a suture 43, ready to be placed into the shoulder joint through the trocar port 23, which was previously created by first making an incision in the skin, and then inserting a cannula through the incision to the procedural site, in a manner known in the art.
  • Fig. 2B illustrates the suturing device 25 having been inserted through the trocar port 23 into the shoulder joint, with the jaws 27 remaining in an opened position.
  • the jaws 27 are oriented such that a portion ofthe torn rotator cuff 19 is situated in a recess 45 within the distal end 29 ofthe suturing device 25.
  • Visualization ofthe procedural site is obtained by means of an endoscope or the like, which is inserted into a position in proximity to the procedural site through a second trocar cannula, not shown.
  • the handle lever 39 is actuated by squeezing it toward the handle grip 37, in a direction shown by arrow 47. As the lever 39 travels toward the grip 37, it pivots about the pin 41. This lever action causes the jaws 27 to move distally, as illustrated, thereby grasping the tissues ofthe torn rotator cuff 19 which are disposed within the recess 45.
  • Fig. 2C the handle lever 39 is actuated by squeezing it toward the handle grip 37, in a direction shown by arrow 47.
  • the lever 39 pivots about the pin 41.
  • This lever action causes the jaws 27 to move distally, as illustrated, thereby grasping the tissues ofthe torn rotator cuff 19 which are disposed within the recess 45.
  • a pair of needles 49 which were stationed within the jaws 27, in a manner to be described more fully hereinbelow, are deployed distally through apertures in the jaws 27 and through the captured portion ofthe torn rotator cuff 19, once it has been grasped by the jaws 27.
  • a knob actuator 51 disposed on the handpiece 33, is moved distally to deploy the needles 49. Once through the tissue 19, the needles penetrate and capture needle couplers or cans 53 attached to distal ends ofthe suture 43. Then, after retracting the needles 49 and the jaws 27, as illustrated in Fig.
  • the device 25 may be withdrawn proximally from the operative site, through the trocar port 23. Because the needles 49 are still attached at their proximal ends to the distal end ofthe suturing device 25, this causes the suture 43 to be drawn proximally together with the suturing device 25. The suture 43 is drawn through the tissues 19 ofthe torn rotator cuff, thus forming a "mattress stitch" in the torn tendon 19.
  • Figs. 3 A through 3G are similar to Figs. 3A through 3G except that only the distal-most portion ofthe instrument 25 is illustrated in Figs. 8 A through 8G, in an enlarged fashion, the construction and operation ofthe suturing device 25 will be more particularly discussed, as the sequence of steps illustrated in Figs. 2A through 2E are described again in additional detail.
  • the jaws 27, disposed at the distal end 29 ofthe hollow barrel 31 comprise an axially movable proximal jaw 27a and a stationary distal jaw 27b.
  • proximal jaw 27a In their opened state, the proximal jaw 27a is retracted proximally relative to the distal jaw 27b, whereas in their closed state, the proximal jaw 27a is extended distally toward the distal jaw 27b.
  • Both jaws preferably include sharp edges or teeth 55 which are configured to atraumatically grip tissue such as the torn rotator cuff tendon 19.
  • Each jaw 27a, 27b also includes apertures 56a and 56b, respectively, which permit passage ofthe needles 49 therethrough, when the needles are extended through the tissue 19 and into the needle cans 53.
  • jaw 27a includes a pair of apertures 56a and jaw 27b includes a pair of apertures 56b, one for each needle 49, though, of course, a single large aperture could be disposed in each jaw as well.
  • the jaws 27 are actuated between their open and closed positions by means of a jaws push rod 57 (Figs. 3 A, 6, and 16, for example), which moves axially in a distal direction, to move the jaw 27a distally to the closed position, when the handle lever 39 is squeezed, and in a proximal direction, to move the jaw 27a to the opened position, when the handle lever 39 is released.
  • the needles 49 have proximal ends 59 which are disposed within a needle magazine 61, as shown in Figs. 3 A, 8 A, and 12.
  • the magazine is slidable axially respective to the hollow barrel 31 and the jaws push rod 57, so that the needles 49 may be extended and retracted relative to the jaws 27.
  • a needle push rod 63 (Figs. 3 A, 7, and 16, for example) is slidable axially responsive to actuation ofthe aforementioned knob actuator 51 to push the needle magazine 61 distally. It is secured to the needle magazine 61 as well, via a mechanical attachment 65, so that the knob actuator 51 may be actuated to retract the needle magazine proximally.
  • a needle push rod 63 (Figs. 3 A, 7, and 16, for example) is slidable axially responsive to actuation ofthe aforementioned knob actuator 51 to push the needle magazine 61 distally. It is secured to the needle magazine 61 as well, via a mechanical attachment 65, so that
  • a spring or other suitable biasing means 66 is disposed in the handle grip 37 for biasing the needle push rod 63 in a proximal position, so that the default position ofthe needles 49 are their retracted position.
  • the spring 66 is attached to the needle push rod 63 at a joint 66a., as shown in Figs. 6 and 7.
  • Figs. 3 A and 8 A the distal end 29 ofthe suturing device 25 is shown with the jaw 27a in its proximally retracted, open position relative to stationary jaw 27b.
  • the device has been inserted through the trocar port 23 into the shoulder joint, as illustrated previously in Fig. 2B, and the jaws 27 are oriented such that a portion ofthe torn rotator cuff 19 is adjacent to the recess 45 within the distal end 29 ofthe instrument 25.
  • Figs. 3B and 8B the distal end 29 ofthe instrument 25 has been manipulated so that a portion ofthe torn rotator cuff 19 is disposed within the recess 45, as shown previously in Fig. 2B.
  • the jaw 27a remains in its proximally retracted, open position.
  • the jaw 27a is then actuated to move to its distally extended, closed position relative to jaw 27b.
  • This is accomplished in the presently preferred embodiment, as discussed supra, by actuating handle lever 39 (Fig. 2C), which, in turn, moves the jaws push rod 57 in a distal direction, thereby moving the jaw 27a distally.
  • handle lever 39 Fig. 2C
  • the jaws push rod 57 moves in a distal direction, thereby moving the jaw 27a distally.
  • the tissue 19 which is disposed in the recess 45 is firmly grasped between the jaws 27a and 27b.
  • There is an ability to vary the degree to which the jaws 27 close by varying the travel through which the handle lever 39 is displaced. This is an advantageous feature to adjust for different thicknesses of tissue to be clamped.
  • a latching mechanism 66b preferably in the form of a ratcheting device having engaging teeth 66c is provided, as shown in Figs. 6 and 7, for example, which permit the jaws to be locked into a desired clamping position, by locking the position ofthe handle lever 39 relative to the handle grip 37, once an appropriate section of tissue has been isolated and grasped by the jaws.
  • Figs. 3D and 8D once the tissue 19 has been grasped in a satisfactory manner by the jaws 27, the pair of needles 49 which were stationed within the jaws 27 are deployed distally through the captured portion ofthe torn rotator cuff 19.
  • the knob actuator 51 Fig.
  • a distal end 67 ofthe needle 49 is preferably configured to include a relatively broad head with a slender neck disposed immediately proximally thereof.
  • the tabs 69 return to their inward position, as shown in Fig. 5B, so that the distal ends ofthe capture tabs 69 are disposed against a proximal face 71 ofthe head ofthe needle.
  • This action creates a permanent attachment ofthe needle 49 to the can 53, so that the suture 43 is irreversibly joined to the needle 49.
  • the cans 53 are preferably attached to the distal ends ofthe suture length 43 via crimped regions 73, which are typically created using a swaging process, as shown in Figs. 4 A, 4B, and particularly in Fig. 13.
  • the cans 53 are each fabricated of a small piece of hypodermic tubing that has been configured to have a set ofthe aforementioned tabs 69, preferably three or four per suture, fabricated into the periphery ofthe tube, and which are bent inwardly as above described, toward the central axis ofthe tube at an acute angle.
  • the needles 49 are withdrawn proximally back through the tissue 19 by actuating the knob actuator 51 proximally. Since the needles 49 are joined with the end ofthe suture 43 via the cans 53, the end ofthe suture is also withdrawn proximally through the tissue 19. As shown in Figs. 3G and 8G, the entire device 25 is then withdrawn proximally from the operative site, through the trocar port 23. Because there are two needles 49 in the preferred embodiment, and thus two suture ends 43, this action creates a mattress stitch 73 through the torn tendon 19, as illustrated best in Fig. 11.
  • an important feature ofthe invention is that the face 75 of the jaw 27a is oriented at an acute angle 77 relative to a longitudinal axis 79 ofthe instrument 25, as is shown in Fig. 8A, for example.
  • This acute angle in preferred embodiments, is approximately 30-45 degrees, with 45 degrees being presently preferred, although the important feature is that the acute angle be substantially more than 0 degrees and substantially less than 90 degrees. The reason for this is that it results in a suture angle through the tissue 19 which is approximately the same as the angle 77 (see Fig. 11).

Abstract

A suturing instrument and methods for placing mattress stitches in soft tissues comprises an elongate shaft with a stationary jaw and a movable jaw disposed at a distal end thereof. The movable jaw is coupled to a handle grip at the proximal end of the shaft and is configured to manipulate the movable jaw into open and closed positions respective to the stationary jaw. The jaws are configured to permit atraumatic grasping of soft tissues to be sutured. The stationary jaw is comprised of a serrated face, incorporating apertures through which needles may be driven distally into and through the grasped tissue and into needle capture cans attached to opposing ends of a single strand of suture material. The serrated upper jaw is configured with capture means adapted to accept and capture the needles and suture. The handle is released to open the movable jaw, after which the instrument may be withdrawn, trailing the suture, and leaving a mattress stitch in the grasped tissue.

Description

LINEAR SUTURING APPARATUS AND METHODS
This application is related to co-pending Application Serial No. 09/475,495, filed on December 30, 1999, and entitled Method and Apparatus or Attaching Connective Tissues to Bone Using a Knotless Suture Anchoring Device, and co-pending Application Serial No. 09/547,171, filed on April 11, 2000, and entitled Dual Function Suturing Apparatus and Method, both of which are herein expressly incorporated by reference.
Background of the Invention
The present invention relates to a method and apparatus for placing sutures in tissue, and more particularly to a method and device for arthroscopic repair of a torn rotator cuff.
Suturing of body tissues is a time consuming aspect of most surgical procedures. Many surgical procedures are currently being performed where it is necessary to make a large opening to expose an area of the body which requires surgical repair. There are instruments that are becoming increasingly available that allow the viewing of certain areas of the body through a small incision without exposing the entire body cavity. These viewing instruments, called endoscopes, can be used in conjunction with specialized surgical instrumentation to detect, diagnose, and repair areas of the body that were previously only able to be repaired using traditional "open" surgery. In the past, there have been many attempts to simplify the surgeons' task of driving a needle-carrying suture through body tissues to approximate, ligate and fixate them. Many prior disclosures, such as described in U.S. Patent No. 919,138 to Drake et al, employ a hollow needle driven through the tissue with the suture material passing through the hollow center lumen of the needle. The needle is withdrawn, leaving the suture material in place, and the suture is tied, completing the approximation. A limitation of these types of devices is that they are particularly adapted for use in open surgical procedures, involving a large incision, where there is room for the surgeon to manipulate the instrument.
Others have attempted to devise suturing instruments that resemble traditional forceps, such as U.S. Patent No. 3,946,740 to Bassett. These devices pinch tissue between opposing jaws and pass a needle from one jaw through the tissue to the other jaw, where grasping means pull the needle and suture material through the tissue. A limitation of these designs is that they also are adapted primarily for open surgery, in that they require exposure of the tissues to be sutured in order that the tissue may be grasped or pinched between the jaws of the instrument. This is a severe limitation in the case of endoscopic surgery.
The term "endosurgery" means endoscopic surgery or surgery performed using an endoscope. In conjunction with a video monitor, the endoscope becomes the surgeons' substitute eyes by which they operate. Operations using an endoscope are significantly less invasive when compared to traditional open surgery. Patients usually return home the next day or in some cases, the same day of the endosurgical procedure. This is in contrast to standard open surgical procedures where a large incision divides the muscle layers and allows the surgeon to directly visualize the operative area. Patients may stay in the hospital for 5 to 6 days or longer following open surgery. In addition, after endosurgical procedures, patients return to work within a few days versus the traditional 3 to 4 weeks at home following open surgery.
Access to the operative site using endosurgical or minimally invasive techniques is accomplished by inserting small tubes called trocars into a body cavity. These tubes have a diameter of, for example, between 3mm and 30mm and a length of about 150mm (6 inches). There have been attempts to devise instruments and methods for suturing within a body cavity through these trocar tubes.
Such an instrument is disclosed in U.S. Patent No. 4,621,640 to Mulhollan et al. The Mulhollan et al. patent describes an instrument that may be used to hold and drive a needle, but makes no provision for retrieval of the needle from the body cavity, nor the completion of the suture by tying. Mulhollan's instrument is limited in that the arc through which the needle must be driven is perpendicular to the axis of the device. Another such instrument intended for endoscopic use is described by
U.S. Patent No. 4,935,027 to Yoon. This instrument uses oppositional hollow needles or tracks pushed through the tissue and coapted to create a tract through which the suture material is pushed. It is not clear how the curved tracks would be adapted to both be able to pierce the tissue planes illustrated, parallel to the tips of the tracks, and be curved toward each other to form the hollow tract.
Yet another instrument and method is shown by Caspari in U. S. Patent Nos. 4,923,461 and 4,957,498. Caspari discloses an endoscopic instrument suitable for use through a trocar that resembles the Yoon approach, but with a single hollow needle on one of a set of oppositional jaws. The jaws simultaneously close, grasping the tissue. The jaw opposite the hollow needle has a window through which the hollow needle passes as the jaws close, freeing the lumen of the hollow needle from the tissue. Much like Yoon, a suture or suture snare is pushed down through the lumen and retrieved from the suture site, the jaws are released, and the suture is pulled back out through the trocar. This device may be used to place simple stitches in tissues that have been mobilized and have an edge accessible to the jaws. A limitation of the device is the manipulation that must be done with the snare if a suture other than a monofilament is used.
Another instrument specifically adapted for the orthopedic surgeon for the repair of a torn anterior cruciate ligament or for meniscal repair is disclosed by U.S. Patent No. 4,836,205 to Barrett. The Barrett patent combines in a single instrument the functions of grasping the tissue to be sutured and the passing of the needles through that tissue. It is to be understood that this instrument is designed for use specifically under endoscopic view, and through trocars as previously described. A fairly generic endoscopic grasper is disclosed that has been adapted to allow for a hollow lumen from the handle of the grasper down to the distal tip of the grasper jaws. An elongate needle of 8 to 10 inches in length may be passed through this hollow lumen. The needle, being significantly longer than the grasper, is introduced through the handle of the grasper, and may be driven through the tissue being held in the grasping jaws of the device. The needle is then retrieved from the tissue via a trocar port placed substantially opposite the port through which the grasper is introduced. If a mattress stitch is desired, two needles attached to opposite ends of a suture are both passed through the tissue and retrieved. A limitation of this device is that there must be both visual and physical access to both sides of the tissue flap to be sutured. This requires trocars to be placed opposite each other and roughly on a line intercepting the tissue. This is a severe limitation in the instance of shoulder repair, and specifically in repair of the rotator cuff. There have been other attempts to improve the methods of tissue repair.
These include the development of staplers and anchoring devices. In response to some of the aforementioned problems in placing sutures in tissues endoscopically, manufacturers have developed tissue staplers. These devices utilize stainless steel or titanium staples that are constructed much like the staples used to hold papers together. The major disadvantage of these kinds of staplers is that they leave metal in the body. For some tissues this is not a problem, however in some procedures, metal staples left within the tissues can be a major hindrance to the healing process.
In orthopedic surgery, many different designs for bone anchors have been developed. These anchors allow soft tissues to be reattached to bone, and simplify the process by removing the need to create a trans-osseous tunnel. Trans-osseous tunnels are created in bones to allow suture material to be threaded through and tied across the bony bridge created by tunnels after it has been placed through the soft tissues and tied with conventional knots. Anchors fabricated from stainless steel or titanium are commonly used in joint reconstructions, and, because the metal is contained in the bone, it does not cause a problem with healing.
While endoscopy has certainly found favor with many physicians as an alternative operative modality, the advanced skill set and operative time necessary to become an efficient and practiced endoscopist have proven to be a challenge for a large portion of the surgical community. The cost pressures brought about by large scale patient management (the continued rise and success of health maintenance organizations or HMO's) have also caused the surgical community to cast a critical eye on the overall costs and long-term outcomes of some of the procedures that have been tried via an endoscopic approach. While the laparoscopic cholecystectomy (gall bladder removal) has certainly proven its worth in the past 8-10 years, many other procedures have not shown similar cost effectiveness and positive long-term outcomes. Hence, alternatives have been sought to bridge the gap between the preferred endoscopic surgery, which is skill and equipment intensive, and the more familiar and easier open surgery, which is much more invasive and results in greater long-term discomfort and recovery time on the part of the patient. As such, under the broad umbrella of "minimally invasive surgery" which would include endoscopic surgery, a relatively new approach called "mini-incision surgery" has begun to emerge. This approach uses the principles of traditional open surgery, along with some of the equipment advances of endoscopy to provide the patient with the best of both worlds.
Perhaps the most visible of these new approaches is the emergence of minimally invasive heart surgery, both for coronary bypass and for valve replacement. Techniques and tools for cardiovascular surgery have begun to be used that allow the heart surgeon to perform procedures through small incisions between the ribs that previously required a massive incision and splitting the sternum to gain access to the heart. In a similar way, orthopedic surgeons have begun to explore alternatives to the traditional open approach for the many indications requiring reconstruction of some aspect of the shoulder. As they did in adopting minimally invasive approaches to knee repair and re-construction, the use of either an endoscopic or a "mini-open" approach is gaining in popularity with surgeons, patients and third party payers.
It is an increasingly common problem for tendons and other soft, connective tissues to tear or to detach from associated bone. One such type of tear or detachment is a "rotator cuff tear, causing pain and loss of ability to elevate and externally rotate the arm. Complete separation can occur if the shoulder is subjected to gross trauma, but typically, the tear begins as a small lesion, especially in older patients.
The rotator cuff or a shoulder joint is made up of a combination of the distal tendinous portion of four muscles, supraspinatus and subspinatus, subscapularis and teres minor. The cuff is attached to the upper, anterior and posterior faces of the trochiter by covering the upper pole of the humeral head. Proper functioning of the tendinous cuff, 3 to 4 millimeters thick, depends on the fundamental centering and stabilizing role of the humeral head with respect to sliding action during anterior and lateral lifting and rotational movements of the arm.
The musculotendinous cuff passes under an osteofibrous arch, which is made up from the front to the rear by a portion of the acromion, the coracoacromial ligament and the coracoid process, thereby forming a canal. A sliding bursa passes between the musculotendinous cuff and the walls of the osteofibrous arch. Therefore, there is a potential and sometimes detrimental interaction between the musculotendinous cuff and the acromiocoracoidian arch, particularly during lateral and anterior lifting movements of the arm. The repeated rubbing of the cuff against the walls of the osteofibrous arch results in the wearing of the tendinous cuff by progressive abrasion. The rubbing can be increased inasmuch as arthrosis lesions with severe osteophytes may thicken the walls of the aforementioned arch, becoming more aggressive as the cuff gets older.
With time, gradual thinning is brought about, accompanied by a trophic perforation (less than 1 cm2) of the cuff, particularly in the hypo-vascularized and fragile area where the supraspinatus muscle is joined. A fall may provide a more extensive rupture by dis-junction of the supraspinatus muscle, with extension towards the front (subscapularis muscle) or the rear (subspinatus muscle). The degenerative rupture of the rotator or musculotendinous cuff may be of a varied size: grade 1 — perforation (less than 1 cm2) reaching the supraspinatus muscle; grade 2 — supraspinatus rupture (greater than 1 cm2); grade 3 — massive rupture concerning the supraspinatus, subspinatus, subscapularis muscles and sometimes the teres minor muscle.
It is possible to carry out surgery to reconstruct the rotator cuff. This is done by re-covering the humeral head, giving back to the cuff its capturing and stabilizing role and re-establishing a harmonious scapulohumeral rhythm. Reconstruction requires excision of the coracoacromial ligament and cleaning the subacromial space, including suppression of the arthrosis legions and thinning of the anterior portion of the acromion.
The typical course for repair of a torn rotator cuff today is to do so through an open incision. This approach is presently taken in almost 99% of rotator cuff repair cases. Two types of open surgical approaches are known for repair of the rotator cuff, one of which is known as the "classic open" and the other as the "mini-open". The "classic open" approach typically requires a large incision of 6 to 9 centimeters (cm) and complete detachment of the deltoid muscle from the acromion to facilitate exposure. Following the suturing of the rotator cuff to the humeral head, the detached deltoid is surgically reattached. Because of this maneuver, the deltoid requires postoperative protection, thus retarding rehabilitation and possibly resulting in residual weakness. Complete rehabilitation takes approximately 9 to 12 months.
The "mini-open" technique, which represents the current growing trend and the majority of all surgical repair procedures, differs from the classic approach by gaining access through a smaller incision of 3 to 5 cm and splitting rather than detaching the deltoid. Additionally, this procedure is typically used in conjunction with arthroscopic acromial decompression. Once the deltoid is split, it is retracted to expose the rotator cuff tear. The cuff is debrided and trimmed to ensure suture attachment to viable tissue and to create a reasonable edge approximation. In addition, the humeral head is abraded or notched at the proposed soft tissue to bone reattachment point, as healing is enhanced on a raw bone surface. A series of small diameter holes, referred to as trans-osseous tunnels, are "punched" through the bone laterally from the abraded or notched surface to a point on the outside surface of the greater tuberosity, commonly a distance of 2 to 3 cm.
There are a few different methods for placing the suture material in the supraspinatus tendon. Because one of the most common failure modes for rotator cuff repair lies in the sutures pulling out of the soft tissue, much care is taken to place the sutures such that the most security possible is achieved. This is typically done by using a either a mattress stitch or a more complex stitch called a "modified Mason- Allen". The goal of both of these stitches is to spread the forces imparted by the sutures on the tissues by involving a pledget of tissue between the entry and exit points of the suture ends. The mattress stitch incorporates essentially a down, over and back up path for the suture.
Finally, the cuff is secured to the bone by pulling the suture ends through the trans-osseous tunnels and tying them together using the bone between two successive tunnels as a bridge, after which the deltoid muscle must be surgically reattached to the acromion. Although the above described surgical technique is the current standard of care for rotator cuff repair, it is associated with a great deal of patient discomfort and a lengthy recovery time, ranging from at least four months to one year or more. It is the above described manipulation of the deltoid muscle together with the large skin incision that causes the majority of patient discomfort and an increased recovery time.
Less invasive arthroscopic techniques are beginning to be developed in an effort to address the shortcomings of open surgical repair. Working through small trocar portals that minimize disruption of the deltoid muscle, a few surgeons have been able to reattach the rotator cuff using various bone anchor and suture configurations. The rotator cuff is sutured intracorporeally using instruments and techniques such as the Caspari punch previously described. This creates a simple stitch instead of the more desirable mattress or Mason- Allen stitch. Rather than threading the suture through trans-osseous tunnels which are difficult or impossible to create arthroscopically using current techniques, an anchor is driven into bone at a location appropriate for repair. The repair is completed by tying the cuff down against bone using the anchor and suture.
Early results of less invasive techniques are encouraging, with a substantial reduction in both patient recovery time and discomfort. However, as mentioned supra, this approach places only one loop of suture in the cuff for each anchor, reducing the fundamental strength of the repair. The knots in the tendon can be bulky and create a painful impingement of the tendon on the bone. This is because the knots end up on top of the cuff, in the sub-acromial space, and have a tendency to rub on the acromion as the arm is raised. Because non-absorbable suture materials are used for these types of repairs, the suture and associated knots are not absorbed into the body, and hence provide a constant, painful reminder of their presence.
None of the prior art devices are adaptable to effect the placement of a mattress stitch in grasped tissues, nor are they adaptable to place sutures precisely and controllably while making provision for needle retrieval when using endoscopic techniques. None of the prior art devices make it possible to place a mattress stitch into, for example, the supraspinatus tendon utilizing an endoscopic approach.
What is needed, therefore, is a family of novel suturing devices that overcome the above described disadvantages of prior known devices in a simple and economical manner. The devices should be capable of arthroscopically creating a mattress stitch in a tendon to increase the soft tissue pullout strength of the repaired tendon. They should also be capable of suturing the tendon or other soft tissue without requiring traditional knots to secure the suture to the tendon.
Summary of the Invention
Accordingly, the inventors have developed a new and novel approach for securing a mattress stitch in a tissue flap. An instrument that combines the function of both grasping the tissue and passing sutures through the tissue to form a mattress stitch is herein described. The instrument includes a pair of grasping jaws that oppose each other along a line parallel to the long axis of the instrument. The distal end of the instrument incorporates the fixed jaw, and proximal to that jaw is a moveable jaw that is controlled by the user via an actuator, such as a lever, on the hand grip.
Advantageously, the present invention provides a family of novel suturing devices that overcome the above described disadvantages of known prior art devices in a simple and economic manner. The inventive system creates a mattress stitch in the damaged tendon to be repaired which increases the soft tissue pullout strength substantially over prior art approaches, yet does not require the traditional knots to secure the suture to the tendon. In a preferred method of the present invention, the instrument is inserted through a portal known as a trocar cannula. The portal is created by first making an incision in the skin, and then inserting a cannula through the incision to the repair site. The distal end of the instrument inserted through the cannula is under direct visualization from a second trocar cannula that has been previously inserted, using a visualization instrument, such as an endoscope, inserted through the second trocar cannula. The instrument is inserted until the jaws reach, for example, torn rotator cuff tissue. In operation, the distal end of the grasper aspect of the instrument is positioned at the repair site beneath the tissue to be grasped. The movable jaw slides toward the stationary jaw responsive to actuation of the aforementioned lever actuator, which is preferably disposed in a handle. The handle lever moves inwardly to actuate the jaw by pivoting about a pivot pin. Once the appropriate section of tissue is isolated and grasped by the jaws, the lever may be locked in its closed position using a latch mechanism.
Once the practitioner is satisfied with the placement of the grasper on the grasped tissue, he or she can then deploy the suture needles to create a mattress stitch in the tissues to be repaired (a torn rotator cuff, for example). In operation, the suture needles may be advanced through the grasped tissues by pushing on a button or other suitable actuation means. The button actuator is directly connected to the needles via a connecting rod, and the button is pushed against the force of a return spring. In turn, the connecting rod pushes a needle carriage, wherein suture needles are held in the carriage. The needle carriage resides behind the proximal movable jaw of the instrument, and responsive to the actuation of the button via the connecting rod described supra, is able to move distally to cause the needles to pass through the movable jaw. As the carriage continues to move distally, the tips of the suture needles begin to clear the distal edge of apertures created in the proximal movable jaw and then begin to penetrate through the top of the grasped tissue and to advance distally towards the stationary jaw.
The stationary jaw incorporates two apertures that are adapted to receive the ends of the suture. Each suture has been crimped into a small piece of hypodermic tubing that has been configured to have a set of tabs, preferably about three or four, which are fabricated into the periphery of the tube and bent inwardly toward the central axis of the tube at an acute angle. As the suture needles approach the end of their stroke, the distal end of the needles have passed completely through the grasped tissues and begin to enter the apertures in the stationary distal jaw. As previously mentioned, those apertures are configured to accept the suture ends that have been attached to the modified hypodermic tubing.
At this point, any pull force being applied by the grasper on the grasped tissues is relaxed. Once the tissue is in a relaxed state, the jaws of the grasper are then opened. The handle lever is unlocked from the locking mechanism, and returns to an open position due to the pull force exerted on it by means of a return spring. As the return spring pulls on the lever, it pivots about a pin.
To complete the pull out of the suture needles, it is necessary to pull on the grasper and to remove it from the repair site. The instrument can be retracted back through the portal via the trocar cannula. As the instrument is removed from the suture site, the free ends of the suture are removed as well. This causes the suture to pass through the tissues at the puncture sites. As the suture is pulled through, the loop end of the suture is pulled snug against the underside of the tissues to form what is referred to as a mattress stitch. This process may be repeated as necessary, depending upon the number of sutures required for the particular procedure being undertaken.
Advantageously, as will be apparent to those skilled in the art, the implementation in one compact instrument of the combined function of grasping tissues to be sutured and precisely placing a mattress stitch in the grasped sutures, while working through a trocar port, is a significant advance in the art. The inventive instrument also permits the reloading of additional sutures and suture needles for the placement of subsequent stitches. More particularly, there is provided a suturing device for use endoscopically, which comprises a first jaw member and a second jaw member, both ofwhich are disposed at a distal end ofthe suturing device. An actuator, preferably comprising a handpiece, is disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another. A hollow barrel is disposed between the actuator and the first and second jaw members. A linking member within the hollow barrel connects the actuator with the first jaw member; and
Additionally, at least one needle is disposed at the distal end ofthe suturing device, and is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members.
Advantageously, the first jaw member is axially movable relative to the second jaw member, to thereby move the jaw members between the aforementioned closed and open orientations.
In preferred embodiments, the handpiece actuator comprises a handle grip and a handle lever, with the handle lever being movable relative to the handle grip. More particularly, the handle lever is pivotally mounted relative to the handle grip, such that it is pivotable between a first position corresponding to the closed orientation ofthe first and second jaw members and a second position corresponding to the open orientation ofthe first and second jaw members. A latching mechanism, such as a ratcheting system having complementary engaging teeth, is provided for securing the handle lever relative to the handle grip, to thereby also secure the first and second jaw members in a desired orientation.
Importantly, at least one needle (and preferably two spaced needles) is disposed on a needle carriage, which is axially movable between distal and proximal positions at the distal end ofthe suturing device. A second actuator, preferably comprising a knob actuator (though, of course, many different types of actuation mechanisms may be employed) is disposed at the proximal end of the suturing device, for actuating the needle carriage to move axially between its distal and proximal positions. In preferred embodiments, a spring is provided for biasing the needle carriage in its proximal position. A recess is provided in the distal end ofthe suturing device, for receiving portions ofthe tissue, such as a torn rotator cuff, which is to be grasped between the first and second jaw members. In preferred embodiments, the first jaw member slides axially across an opening ofthe recess when the first and second jaw members move between the open orientation and the closed orientation.
In another aspect ofthe invention, there is provided a suturing device for use endoscopically, which comprises a first jaw member and a second jaw member. The first and second jaw members are disposed at a distal end ofthe suturing device and are movable between a closed orientation, wherein the first and second jaw members are in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another. A needle carriage is provided, which is axially movable between distal and proximal positions at the distal end ofthe suturing device. At least one needle (and preferably two spaced needles) is disposed on the needle carriage, the axial movement ofthe needle carriage functioning to move the at least one needle between a retracted position and an extended position, for passage through tissue grasped between the first and second jaw members.
In preferred embodiments, an actuator is disposed at a proximal end of the suturing device, for actuating the first and second jaw members between the aforementioned closed and open orientations. Preferably, only one ofthe first and second jaw members moves when the actuator actuates the jaw members between the closed and the open orientations, however.
In yet another aspect ofthe invention, there is provided a suturing device for use endoscopically, which comprises a first jaw member and a second jaw member, wherein the first and second jaw members are disposed at a distal end ofthe suturing device. An actuator is disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another. At least one, and preferably two spaced needles are disposed on the distal end ofthe suturing device, wherein each needle includes a penetrating tip and is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members. The spaced needles are oriented so that the penetrating tip of each needle moves distally relative to the suturing device when the needle is moved from the retracted position to the extended position.
In still another aspect ofthe invention, there is provided a suturing device which comprises a first jaw member and a second jaw member. The first and second jaw members are disposed at a distal end ofthe suturing device, and are movable between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another. At least one needle is disposed at the distal end ofthe suturing device, which is movable between a retracted position and an extended position for passage through tissue grasped between the first and second jaw members. Preferably, the at least one needle moves axially between the retracted and extended positions, and distally when moving from the retracted position to the extended position.
Apertures are disposed in each ofthe first and second jaw members, through which the at least one needle passes when moving between the retracted and extended positions. The at least one needle is then received into at least one corresponding can when the at least one needle moves from the retracted position to the extended position. The at least one can is disposed on an end of a length of suturing material.
In preferred configurations, the at least one can is disposed in the second jaw member, which is distal to the first jaw member, and remains stationary relative to the first j aw member when the j aw members are moved between their closed and open orientations. The at least one can comprises a plurality of tabs for preventing separation ofthe at least one needle from the at least one can, once the at least one needle has been received by the at least one can. The number of needles corresponds to the number of cans, which is preferably two in both instances (i.e. two needles and two corresponding cans).
In another aspect ofthe invention, there is disclosed a method of placing sutures in tissue, using a suturing device which comprises first and second jaw members which are disposed at a distal end ofthe suturing device and at least one needle which is also disposed at the suturing device distal end, wherein at least one needle is movable from a retracted position to an extended position. The method comprises steps of inserting the distal end ofthe suturing device through a trocar port until the first and second jaw members are adjacent to tissue which is to be repaired, and then actuating the first and second jaw members to close together, thus capturing the tissue therebetween (between the two jaw members). Then the at least one needle is actuated to move from the retracted position to the extended position, so that the at least one needle extends through the captured tissue. As it becomes fully extended through the captured tissue, the at least one needle is received in at least one can, wherein each ofthe at least one cans is attached to a corresponding length of suturing material.
Additional preferred steps ofthe method may comprise, for example, a step of retracting the at least one needle proximally through the captured tissue, wherein the proximal travel ofthe at least one needle also causes the at least one can and attached length of suturing material to travel proximally through the captured tissue, thereby creating a stitch through the tissue. This stitch is preferably a "mattress stitch". Then, the suturing instrument is withdrawn proximally through the trocar port. In preferred embodiments, the at least one needle comprises a spaced pair of needles, and the at least one can comprises a corresponding pair of cans, each ofwhich is secured to an end of a corresponding length of suturing material.
The invention, together with additional features and advantages thereof, may best be understood by reference to the following description taken in conjunction with the accompanying illustrative drawing.
Brief Description of the Drawings
Fig. 1 is a diagram of a typical shoulder joint, illustrating a torn rotator cuff;
Figs. 2 A through 2E are schematic plan views illustrating one embodiment ofthe invention, and a preferred method, in sequence, for using same;
Figs. 3 A through 3G are schematic cross-sectional views of a distal tissue clamping portion ofthe instrument shown in Figs. 2A through 2E, illustrating in sequence the tissue clamping aspect ofthe procedure illustrated in Figs. 2A through 2E; Figs. 4A and 4B are perspective sequential views illustrating the needle coupling mechanism ofthe inventive instrument;
Figs. 5 A and 5B are cross-sectional sequential views ofthe needle coupling mechanism shown in Figs. 4 A and 4B;
Fig. 6 is a plan diagrammatic view of a proximal actuator end of the inventive suturing instrument;
Fig. 7 is a plan diagrammatic view ofthe entire inventive suturing instrument, illustrating some ofthe internal features ofthe instrument;
Figs. 8A through 8G are schematic sequential cross-sectional views similar to Figs. 3 A through 3G, but showing an enlarged view ofthe tissue clamping portion ofthe instrument;
Fig. 9 is a perspective view ofthe distal end ofthe inventive suturing instrument;
Fig. 10 is an enlarged perspective view ofthe distal-most portion ofthe distal end of the inventive suturing instrument;
Fig. 11 is a schematic perspective view showing a mattress stitch which is created in a portion of soft tissue using the inventive suturing instrument in accordance with the inventive methods taught herein;
Fig. 12 is a schematic perspective view, in isolation, ofthe needle magazine of the present invention; Fig. 13 is a schematic perspective view, in isolation, of a length of suturing material having needle capture cans attached to both free ends thereof, for use with the suturing instrument ofthe present invention;
Fig. 14 is a perspective view ofthe inventive suturing instrument shown in Fig. 7;
Fig. 15 is plan view ofthe suturing instrument shown in Fig. 14; and
Fig. 16 is cross-sectional view taken along lines 16-16 of Fig. 15.
Description ofthe Preferred Embodiment
The present invention relates to a method and apparatus for the arthroscopic repair of torn tissue and bone at a surgical repair site using a device, which is a combination tissue grasper and suture placement device.
Although the present invention is described primarily in conjunction with the repair of a torn rotator cuff, the apparatus and method could also be used in arthroscopic repair at other sites, such as the knee, elbow, or hip, for example, as well as in conjunction with other surgical techniques, such as traditional open or mini-open surgical procedures.
Referring now to Fig. 1, there is shown representative shoulder musculature 11, including a supraspinatus muscle 13, a deltoid muscle 15, a biceps tendon 17, a torn rotator cuff 19, and a humeral head 21. The humeral head 21 is not normally visible, as it is typically covered by the rotator cuff 19.
However, in the illustration, the torn rotator cuff 19 has pulled away from the head 21 ofthe humerus, exposing it to view.
Referring now more particularly to Figs. 2A through 2E, there is illustrated the general structure and function of an embodiment constructed and operated in accordance with the principles ofthe present invention. A trocar port 23 has been inserted into the shoulder joint, providing a conduit through which a linear suturing device 25 may be passed. The linear suturing device 25 is provided with movable jaws 27 for grasping portions ofthe torn rotator cuff 19. The j aws 27 are disposed at a distal end 29 of a hollow barrel 31. A handpiece 33 is disposed at a proximal end 35 ofthe hollow barrel 31, and is adapted to actuate the movable jaws 27. In the present preferred embodiment, the handpiece 33 comprises a handle grip 37 and a handle lever 39, which pivots about a pivot pin 41. In a manner to be fully described below, the handle lever 39 is suitably connected to the jaws 27 to actuate the jaws between an open and a closed position, depending upon the position ofthe handle lever 39, relative to the handle grip 37. Of course, the actuating mechanism which is illustrated for moving the jaws 27 between their open and closed positions, through presently preferred, is only exemplary. Many other types of similar actuating mechanisms are known to those skilled in the art, and any of those would be suitable for the present application.
In Fig. 2A, the suturing device 25 is shown with the jaws 27 open, trailing a suture 43, ready to be placed into the shoulder joint through the trocar port 23, which was previously created by first making an incision in the skin, and then inserting a cannula through the incision to the procedural site, in a manner known in the art.
Fig. 2B illustrates the suturing device 25 having been inserted through the trocar port 23 into the shoulder joint, with the jaws 27 remaining in an opened position. The jaws 27 are oriented such that a portion ofthe torn rotator cuff 19 is situated in a recess 45 within the distal end 29 ofthe suturing device 25. Visualization ofthe procedural site is obtained by means of an endoscope or the like, which is inserted into a position in proximity to the procedural site through a second trocar cannula, not shown.
As shown in Fig. 2C, the handle lever 39 is actuated by squeezing it toward the handle grip 37, in a direction shown by arrow 47. As the lever 39 travels toward the grip 37, it pivots about the pin 41. This lever action causes the jaws 27 to move distally, as illustrated, thereby grasping the tissues ofthe torn rotator cuff 19 which are disposed within the recess 45. Referring now to Fig. 2D, it is seen that a pair of needles 49 which were stationed within the jaws 27, in a manner to be described more fully hereinbelow, are deployed distally through apertures in the jaws 27 and through the captured portion ofthe torn rotator cuff 19, once it has been grasped by the jaws 27. In the illustrated embodiment, presently preferred, a knob actuator 51 disposed on the handpiece 33, is moved distally to deploy the needles 49. Once through the tissue 19, the needles penetrate and capture needle couplers or cans 53 attached to distal ends ofthe suture 43. Then, after retracting the needles 49 and the jaws 27, as illustrated in Fig. 2E, the device 25 may be withdrawn proximally from the operative site, through the trocar port 23. Because the needles 49 are still attached at their proximal ends to the distal end ofthe suturing device 25, this causes the suture 43 to be drawn proximally together with the suturing device 25. The suture 43 is drawn through the tissues 19 ofthe torn rotator cuff, thus forming a "mattress stitch" in the torn tendon 19.
Referring now largely to Figs. 3 A through 3G, as well as Figs. 8 A through 8G, which are similar to Figs. 3A through 3G except that only the distal-most portion ofthe instrument 25 is illustrated in Figs. 8 A through 8G, in an enlarged fashion, the construction and operation ofthe suturing device 25 will be more particularly discussed, as the sequence of steps illustrated in Figs. 2A through 2E are described again in additional detail. As shown in Figs. 3A and 8 A, the jaws 27, disposed at the distal end 29 ofthe hollow barrel 31 , comprise an axially movable proximal jaw 27a and a stationary distal jaw 27b. In their opened state, the proximal jaw 27a is retracted proximally relative to the distal jaw 27b, whereas in their closed state, the proximal jaw 27a is extended distally toward the distal jaw 27b. Both jaws preferably include sharp edges or teeth 55 which are configured to atraumatically grip tissue such as the torn rotator cuff tendon 19. Each jaw 27a, 27b also includes apertures 56a and 56b, respectively, which permit passage ofthe needles 49 therethrough, when the needles are extended through the tissue 19 and into the needle cans 53. Preferably, jaw 27a includes a pair of apertures 56a and jaw 27b includes a pair of apertures 56b, one for each needle 49, though, of course, a single large aperture could be disposed in each jaw as well. The jaws 27 are actuated between their open and closed positions by means of a jaws push rod 57 (Figs. 3 A, 6, and 16, for example), which moves axially in a distal direction, to move the jaw 27a distally to the closed position, when the handle lever 39 is squeezed, and in a proximal direction, to move the jaw 27a to the opened position, when the handle lever 39 is released.
The needles 49 have proximal ends 59 which are disposed within a needle magazine 61, as shown in Figs. 3 A, 8 A, and 12. The magazine is slidable axially respective to the hollow barrel 31 and the jaws push rod 57, so that the needles 49 may be extended and retracted relative to the jaws 27. A needle push rod 63 (Figs. 3 A, 7, and 16, for example) is slidable axially responsive to actuation ofthe aforementioned knob actuator 51 to push the needle magazine 61 distally. It is secured to the needle magazine 61 as well, via a mechanical attachment 65, so that the knob actuator 51 may be actuated to retract the needle magazine proximally. In fact, referring to Fig. 6, in the presently preferred embodiment, a spring or other suitable biasing means 66 is disposed in the handle grip 37 for biasing the needle push rod 63 in a proximal position, so that the default position ofthe needles 49 are their retracted position. The spring 66 is attached to the needle push rod 63 at a joint 66a., as shown in Figs. 6 and 7.
Now, the preferred procedure will be described again in greater detail. In Figs. 3 A and 8 A, the distal end 29 ofthe suturing device 25 is shown with the jaw 27a in its proximally retracted, open position relative to stationary jaw 27b. The device has been inserted through the trocar port 23 into the shoulder joint, as illustrated previously in Fig. 2B, and the jaws 27 are oriented such that a portion ofthe torn rotator cuff 19 is adjacent to the recess 45 within the distal end 29 ofthe instrument 25. In Figs. 3B and 8B, the distal end 29 ofthe instrument 25 has been manipulated so that a portion ofthe torn rotator cuff 19 is disposed within the recess 45, as shown previously in Fig. 2B. At this juncture, the jaw 27a remains in its proximally retracted, open position.
As shown in Figs. 3C and 8C, the jaw 27a is then actuated to move to its distally extended, closed position relative to jaw 27b. This is accomplished in the presently preferred embodiment, as discussed supra, by actuating handle lever 39 (Fig. 2C), which, in turn, moves the jaws push rod 57 in a distal direction, thereby moving the jaw 27a distally. The result is that the tissue 19 which is disposed in the recess 45 is firmly grasped between the jaws 27a and 27b. There is an ability to vary the degree to which the jaws 27 close by varying the travel through which the handle lever 39 is displaced. This is an advantageous feature to adjust for different thicknesses of tissue to be clamped. Additionally, a latching mechanism 66b, preferably in the form of a ratcheting device having engaging teeth 66c is provided, as shown in Figs. 6 and 7, for example, which permit the jaws to be locked into a desired clamping position, by locking the position ofthe handle lever 39 relative to the handle grip 37, once an appropriate section of tissue has been isolated and grasped by the jaws. Referring now to Figs. 3D and 8D, once the tissue 19 has been grasped in a satisfactory manner by the jaws 27, the pair of needles 49 which were stationed within the jaws 27 are deployed distally through the captured portion ofthe torn rotator cuff 19. As discussed supra, the knob actuator 51 (Fig. 2D) is actuated distally to move the needles 49 distally. Distal actuation ofthe knob actuator 51 moves the needle push rod 63 distally, which, in turn, pushes the needle magazine 61 distally (see also Figs. 9, 15, and 16).
Once through the tissue 19, as illustrated in Figs. 3E and 8E, the needle couplers or cans 53 are captured by the needles 49 in their fully distally extended state. The cans 53 are attached to distal ends ofthe suture lengths 43. This capture process is best shown in Figs. 4A through 5B. As shown therein, a distal end 67 ofthe needle 49 is preferably configured to include a relatively broad head with a slender neck disposed immediately proximally thereof. Thus, as the distal end 67 ofthe needle is inserted into the needle couplers/cans 53, capture tabs 69 on the sidewalls ofthe cans 53 are pushed outwardly by the distally moving head portion ofthe needle distal end 67. Then, once the head portion has moved distally past the capture tabs 69, the tabs 69 return to their inward position, as shown in Fig. 5B, so that the distal ends ofthe capture tabs 69 are disposed against a proximal face 71 ofthe head ofthe needle. This action creates a permanent attachment ofthe needle 49 to the can 53, so that the suture 43 is irreversibly joined to the needle 49. It is noted that the cans 53 are preferably attached to the distal ends ofthe suture length 43 via crimped regions 73, which are typically created using a swaging process, as shown in Figs. 4 A, 4B, and particularly in Fig. 13. In presently preferred embodiments, the cans 53 are each fabricated of a small piece of hypodermic tubing that has been configured to have a set ofthe aforementioned tabs 69, preferably three or four per suture, fabricated into the periphery ofthe tube, and which are bent inwardly as above described, toward the central axis ofthe tube at an acute angle.
Then, as illustrated in Figs. 3F and 8F, the needles 49 are withdrawn proximally back through the tissue 19 by actuating the knob actuator 51 proximally. Since the needles 49 are joined with the end ofthe suture 43 via the cans 53, the end ofthe suture is also withdrawn proximally through the tissue 19. As shown in Figs. 3G and 8G, the entire device 25 is then withdrawn proximally from the operative site, through the trocar port 23. Because there are two needles 49 in the preferred embodiment, and thus two suture ends 43, this action creates a mattress stitch 73 through the torn tendon 19, as illustrated best in Fig. 11. An important feature ofthe invention is that the face 75 of the jaw 27a is oriented at an acute angle 77 relative to a longitudinal axis 79 ofthe instrument 25, as is shown in Fig. 8A, for example. This acute angle, in preferred embodiments, is approximately 30-45 degrees, with 45 degrees being presently preferred, although the important feature is that the acute angle be substantially more than 0 degrees and substantially less than 90 degrees. The reason for this is that it results in a suture angle through the tissue 19 which is approximately the same as the angle 77 (see Fig. 11). By orienting the stitch 73 at such an angle 77 through the tissue 19, a great deal of stress on the suturing material 43 is alleviated, thereby improving substantially the durability ofthe stitch and, thus, the chance for a successful outcome.
The apparatus and method ofthe present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope ofthe invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency ofthe claims are to be embraced within their scope.

Claims

What is claimed is:
1. A suturing device for use endoscopically, comprising: a first jaw member; a second jaw member, said first and second jaw members being disposed at a distal end of said suturing device; an actuator disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein said first and second jaw members are substantially spaced from one another; a hollow barrel disposed between said actuator and said first and second jaw members; a linking member disposed within said hollow barrel, connecting said actuator with said first jaw member; and at least one needle disposed at the distal end of said suturing device, said at least one needle being movable between a retracted position and an extended position for passage through tissue grasped between said first and second jaw members.
2. The suturing device as recited in Claim 1, wherein said first jaw member is axially movable relative to said second jaw member, to thereby move said jaw members between said closed and open orientations.
3. The suturing device as recited in Claim 1, wherein said actuator comprises a handpiece.
4. The suttiring device as recited in Claim 3, wherein said handpiece comprises a handle grip and a handle lever, said handle lever being movable relative to said handle grip.
5. The suturing device as recited in Claim 4, wherein said handle lever is pivotally mounted relative to said handle grip, such that it is pivotable between a first position corresponding to said closed orientation of said first and second jaw members and a second position corresponding to said open orientation of said first and second j aw members.
6. The suturing device as recited in Claim 5, and further comprising a latching mechanism for securing said handle lever relative to said handle grip, to thereby also secure said first and second jaw members in a desired orientation.
7. The suturing device as recited in Claim 1, wherein said at least one needle is disposed on a needle carriage, said needle carriage being axially movable between distal and proximal positions at said distal end of said suturing device.
8. The suturing device as recited in Claim 1, and further comprising a second actuator disposed at the proximal end of said suturing device, for actuating said needle carriage to move axially between said distal and proximal positions.
9. The suturing device as recited in Claim 8, wherein said second actuator comprises a knob actuator.
10. The suturing device as recited in Claim 9, and further comprising a spring for biasing said needle carriage in said proximal position.
11. The suturing device as recited in Claim 1, wherein said at least one needle comprises two spaced needles.
12. The suturing device as recited in Claim 1, and further comprising a recess in said distal end of said suturing device, for receiving portions of said tissue which is to be grasped between said first and second jaw members.
13. The suturing device as recited in Claim 12, wherein said first jaw member slides axially across an opening of said recess when the first and second jaw members move between said open orientation and said closed orientation.
14. A suturing device for use endoscopically, comprising: a first jaw member; a second jaw member, said first and second jaw members being disposed at a distal end of said suturing device and being movable between a closed orientation, wherein the first and second jaw members are in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another; a needle carriage which is axially movable between distal and proximal positions at said distal end of said suturing device; and at least one needle disposed on said needle carriage, the axial movement of said needle carriage functioning to move said at least one needle between a retracted position and an extended position for passage through tissue grasped between said first and second jaw members.
15. The suturing device as recited in Claim 14, and further comprising an actuator disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between said closed orientation and said open orientation.
16. The suturing device as recited in Claim 15, wherein only one of said first and second jaw members moves when said actuator actuates the jaw members between said closed and said open orientations.
17. The suturing device as recited in Claim 15, wherein said actuator comprises a handpiece.
18. The suturing device as recited in Claim 17, wherein said handpiece comprises a handle grip and a handle lever, said handle lever being movable relative to said handle grip.
19. The suturing device as recited in Claim 18, wherein said handle lever is pivotally movable relative to said handle grip, and is pivotable between a first position corresponding to said closed orientation of said first and second jaw members and a second position corresponding to said open orientation of said first and second jaw members.
20. The suturing device as recited in Claim 15, and further comprising a second actuator disposed at the proximal end of said suturing device, for actuating said needle carriage to move axially between said distal and proximal positions.
21. The suturing device as recited in Claim 20, wherein said second actuator comprises a knob actuator.
22. The suturing device as recited in Claim 14, wherein said at least one needle comprises two spaced needles.
23. A suturing device for use endoscopically, comprising: a first jaw member; a second jaw member, said first and second jaw members being disposed at a distal end of said suturing device; an actuator disposed at a proximal end ofthe suturing device, for actuating the first and second jaw members between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein the first and second jaw members are substantially spaced from one another; and at least one needle disposed on the distal end of said suturing device, said at least one needle including a penetrating tip and being movable between a retracted position and an extended position for passage through tissue grasped between said first and second jaw members, said at least one needle being oriented so that said penetrating tip moves distally relative to said suturing device when said needle is moved from said retracted position to said extended position.
24. A suturing device, comprising: a first jaw member; a second jaw member, said first and second jaw members being disposed at a distal end of said suturing device, and being movable between a closed orientation, wherein the first and second jaw members are disposed in close proximity to one another, and an open orientation, wherein said first and second jaw members are substantially spaced from one another; and at least one needle disposed at the distal end of said suturing device, said at least one needle being movable between a retracted position and an extended position for passage through tissue grasped between said first and second j aw members.
25. The suturing device as recited in Claim 24, wherein said at least one needle moves axially between said retracted and extended positions.
26. The suturing device as recited in Claim 25, wherein said at least one needle moves distally when moving from said retracted position to said extended position.
27. The suturing device as recited in Claim 24, and further comprising apertures in each of said first and second jaw members through which said at least one needle passes when moving between said retracted and extended positions.
28. The suturing device as recited in Claim 24, and further comprising at least one can into which said at least one needle is received when said at least one needle moves from said retracted position to said extended position, said at least one can being disposed on an end of a length of suturing material.
29. The suturing device as recited in Claim 28, wherein said at least one can is disposed in said second jaw member, which is distal to said first jaw member.
30. The suturing device as recited in Claim 28, wherein said at least one can comprises a plurality of tabs for preventing separation of said at least one needle from said at least one can, once said at least one needle has been received by said at least one can.
31. The suturing device as recited in Claim 28, wherein the number of needles corresponds to the number of cans.
32. The suturing device as recited in Claim 31 , wherein there are two needles and two corresponding cans.
33. A method of placing sutures in tissue, using a suturing device which comprises first and second jaw members which are disposed at a distal end of said suturing device and at least one needle which is also disposed at said suturing device distal end, said at least one needle being movable from a retracted position to an extended position, the method comprising: inserting the distal end of said suturing device through a trocar port until said first and second jaw members are adjacent to tissue which is to be repaired;
actuating said first and second jaw members to close together, capturing said tissue therebetween; actuating said at least one needle to move from said retracted position to said extended position, so that said at least one needle extends through said captured tissue; and receiving said at least one needle in at least one can, wherein each said at least one can is attached to a corresponding length of suturing material.
34. The method as recited in Claim 33, and further comprising a step of retracting said at least one needle proximally through said captured tissue, wherein the proximal travel of said at least one needle also causes said at least one can and attached length of suturing material to travel proximally through said captured tissue, thereby creating a stitch through said tissue.
35. The method as recited in Claim 34, and further comprising a step of withdrawing said suturing instrument proximally through said trocar port.
36. The method as recited in Claim 33, wherein said at least one needle comprises a spaced pair of needles, and said at least one can comprises a corresponding pair of cans, each ofwhich is secured to an end of a corresponding length of suturing material.
PCT/US2001/042186 2000-09-21 2001-09-18 Linear suturing apparatus and methods WO2002024078A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001295050A AU2001295050A1 (en) 2000-09-21 2001-09-18 Linear suturing apparatus and methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/668,055 2000-09-21
US09/668,055 US6551330B1 (en) 2000-09-21 2000-09-21 Linear suturing apparatus and methods

Publications (1)

Publication Number Publication Date
WO2002024078A1 true WO2002024078A1 (en) 2002-03-28

Family

ID=24680821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/042186 WO2002024078A1 (en) 2000-09-21 2001-09-18 Linear suturing apparatus and methods

Country Status (3)

Country Link
US (2) US6551330B1 (en)
AU (1) AU2001295050A1 (en)
WO (1) WO2002024078A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021893A1 (en) * 2002-09-03 2004-03-18 Edwards Lifesciences Corporation Mitral valve repair device and method for use
US7094244B2 (en) 2002-03-26 2006-08-22 Edwards Lifesciences Corporation Sequential heart valve leaflet repair device and method of use
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
WO2009137766A1 (en) 2008-05-09 2009-11-12 Sutura, Inc. Suturing devices and methods for suturing an anatomic valve
WO2009151971A3 (en) * 2008-05-28 2010-02-25 Vibrynt, Inc. Tools and devices for performing minimally invasive abdominal surgical procedures
US7744609B2 (en) 1999-10-21 2010-06-29 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
EP2314227A1 (en) * 2009-10-01 2011-04-27 Tyco Healthcare Group LP Wound closure device including direct-driven needle
GB2475585A (en) * 2009-11-19 2011-05-25 Lsi Solutions Inc Suturing instrument
WO2012100782A1 (en) * 2011-01-28 2012-08-02 Coloplast A/S Suture system and assembly including a leader plug
US8246636B2 (en) 2007-03-29 2012-08-21 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
WO2012113408A1 (en) * 2011-02-24 2012-08-30 Coloplast A/S Suture system and assembly including a suture cap formed around a tubular sleeve
US8906042B2 (en) 2010-07-29 2014-12-09 Covidien Lp Wound closure device including mesh barrier
WO2014205279A1 (en) * 2013-06-19 2014-12-24 Endolutions, Llc Apparatus and method for fascial closure device for laparoscopic trocar port site and surgery
US9161751B2 (en) 2010-12-02 2015-10-20 Coloplast A/S Suture system and assembly
US9220495B2 (en) 2011-02-10 2015-12-29 Coloplast A/S Suture system and assembly including a suture clip
US9301749B2 (en) 2006-09-08 2016-04-05 Edwards Lifesciences Corporation Expandable clip for tissue repair
US9398907B2 (en) 1999-07-02 2016-07-26 Quickpass, Inc. Suturing device
US9642616B2 (en) 2005-06-20 2017-05-09 Nobles Medical Technologies, Inc. Method and apparatus for applying a knot to a suture
US9649106B2 (en) 2011-04-15 2017-05-16 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
EP2453809B1 (en) * 2009-07-15 2017-06-28 Pivot Medical, Inc. Apparatus for treating a hip joint, including the provision and use of a novel suture passer
US9706988B2 (en) 2012-05-11 2017-07-18 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
WO2019103615A3 (en) * 2017-11-24 2019-07-04 Mediclose Solutions B.V. Suture device
US10357243B2 (en) 2009-07-15 2019-07-23 Pivot Medical, Inc. Method and apparatus for treating a hip joint, including the provision and use of a novel suture passer
US10512458B2 (en) 2013-12-06 2019-12-24 Med-Venture Investments, Llc Suturing methods and apparatuses
US10687801B2 (en) 2016-04-11 2020-06-23 Nobles Medical Technologies Ii, Inc. Suture spools for tissue suturing device
US10828022B2 (en) 2013-07-02 2020-11-10 Med-Venture Investments, Llc Suturing devices and methods for suturing an anatomic structure
US11202624B2 (en) 2017-08-18 2021-12-21 Nobles Medical Technologies Ii, Inc. Apparatus for applying a knot to a suture
EP3500185B1 (en) * 2015-08-19 2022-04-27 LSI Solutions, Inc. Ferrule for use with a minimally invasive surgical suturing device
US11395658B2 (en) 2014-07-11 2022-07-26 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
US11957331B2 (en) 2017-06-19 2024-04-16 Heartstitch, Inc. Suturing systems and methods for suturing body tissue

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020095164A1 (en) * 1997-06-26 2002-07-18 Andreas Bernard H. Device and method for suturing tissue
US9521999B2 (en) 2005-09-13 2016-12-20 Arthrex, Inc. Fully-threaded bioabsorbable suture anchor
US8343186B2 (en) 2004-04-06 2013-01-01 Arthrex, Inc. Fully threaded suture anchor with transverse anchor pin
US7842048B2 (en) 2006-08-18 2010-11-30 Abbott Laboratories Articulating suture device and method
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US6964668B2 (en) * 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US6533795B1 (en) 2000-04-11 2003-03-18 Opus Medical, Inc Dual function suturing apparatus and method
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
US7993369B2 (en) 2000-06-22 2011-08-09 Arthrex, Inc. Graft fixation using a plug against suture
SE0002878D0 (en) * 2000-08-11 2000-08-11 Kimblad Ola Device and method of treatment of atrioventricular regurgitation
US6551330B1 (en) 2000-09-21 2003-04-22 Opus Medical, Inc. Linear suturing apparatus and methods
US6511487B1 (en) * 2000-11-28 2003-01-28 T. A. G. Medical Products Ltd. Suturing instrument and method
US7029480B2 (en) * 2001-01-24 2006-04-18 Abott Laboratories Device and method for suturing of internal puncture sites
US6605096B1 (en) * 2001-07-20 2003-08-12 Opus Medical Inc, Percutaneous suturing apparatus and method
JP3921681B2 (en) * 2001-10-01 2007-05-30 ニプロ株式会社 Intracardiac suture device
AU2002349994A1 (en) * 2001-10-22 2003-05-06 Interventional Therapies, L.L.C. Removable sleeve
JP4480936B2 (en) * 2001-11-26 2010-06-16 オリンパス株式会社 Tissue puncture system
US6780198B1 (en) 2001-12-06 2004-08-24 Opus Medical, Inc. Bone anchor insertion device
US7280865B2 (en) * 2001-12-20 2007-10-09 Accuray Incorporated Anchored fiducial apparatus and method
US8105342B2 (en) * 2002-05-08 2012-01-31 Apollo Endosurgery, Inc. Apparatus for ligating/suturing living tissues and system for resecting/suturing living tissues
US6984237B2 (en) 2002-05-22 2006-01-10 Orthopaedic Biosystems Ltd., Inc. Suture passing surgical instrument
US6770084B1 (en) * 2002-06-26 2004-08-03 Opus Medical, Inc. Suture capture device
EP1538992B1 (en) * 2002-06-26 2018-10-10 ArthroCare Corporation Suture capture device
US6936054B2 (en) * 2002-07-22 2005-08-30 Boston Scientific Scimed, Inc. Placing sutures
US20040102808A1 (en) * 2002-11-26 2004-05-27 Voss Laveille Kao Needle for retrieving a suture
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
US7862584B2 (en) * 2003-05-07 2011-01-04 Anpa Medical, Inc. Suture lock
US8109968B2 (en) * 2003-05-07 2012-02-07 Anpa Medical, Inc. Suture lock
ES2705604T3 (en) 2003-05-16 2019-03-26 Bard Inc C R Multi-point endoscopic suture system and single intubation
US7462188B2 (en) 2003-09-26 2008-12-09 Abbott Laboratories Device and method for suturing intracardiac defects
US7449024B2 (en) 2003-12-23 2008-11-11 Abbott Laboratories Suturing device with split arm and method of suturing tissue
US7608092B1 (en) 2004-02-20 2009-10-27 Biomet Sports Medicince, LLC Method and apparatus for performing meniscus repair
US20050267529A1 (en) 2004-05-13 2005-12-01 Heber Crockett Devices, systems and methods for tissue repair
MXPA06014064A (en) 2004-06-02 2007-07-13 Kfx Medical Corp System and method for attaching soft tissue to bone.
US8062334B2 (en) 2004-06-02 2011-11-22 Kfx Medical Corporation Suture anchor
WO2006007399A1 (en) 2004-06-16 2006-01-19 Smith & Nephew, Inc. Suture passing
US7232448B2 (en) * 2004-06-17 2007-06-19 Ethicon, Inc. - Usa Minimally invasive stitching device
US8172857B2 (en) * 2004-08-27 2012-05-08 Davol, Inc. Endoscopic tissue apposition device and method of use
US8088130B2 (en) 2006-02-03 2012-01-03 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US9017381B2 (en) 2007-04-10 2015-04-28 Biomet Sports Medicine, Llc Adjustable knotless loops
US8303604B2 (en) 2004-11-05 2012-11-06 Biomet Sports Medicine, Llc Soft tissue repair device and method
US20060189993A1 (en) 2004-11-09 2006-08-24 Arthrotek, Inc. Soft tissue conduit device
US7905903B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Method for tissue fixation
US8128658B2 (en) 2004-11-05 2012-03-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US8137382B2 (en) 2004-11-05 2012-03-20 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US7905904B2 (en) 2006-02-03 2011-03-15 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US8298262B2 (en) 2006-02-03 2012-10-30 Biomet Sports Medicine, Llc Method for tissue fixation
US8361113B2 (en) 2006-02-03 2013-01-29 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US7749250B2 (en) 2006-02-03 2010-07-06 Biomet Sports Medicine, Llc Soft tissue repair assembly and associated method
US7909851B2 (en) 2006-02-03 2011-03-22 Biomet Sports Medicine, Llc Soft tissue repair device and associated methods
US7658751B2 (en) 2006-09-29 2010-02-09 Biomet Sports Medicine, Llc Method for implanting soft tissue
US7857830B2 (en) 2006-02-03 2010-12-28 Biomet Sports Medicine, Llc Soft tissue repair and conduit device
US9801708B2 (en) 2004-11-05 2017-10-31 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8118836B2 (en) 2004-11-05 2012-02-21 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8840645B2 (en) 2004-11-05 2014-09-23 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8998949B2 (en) 2004-11-09 2015-04-07 Biomet Sports Medicine, Llc Soft tissue conduit device
US20060184201A1 (en) * 2005-02-17 2006-08-17 James Jervis E Suture retainer with suture guide and method of using a suture retainer with a suture guide
US20060271060A1 (en) * 2005-05-26 2006-11-30 Arthrocare Corporation Threaded knotless suture anchoring device and method
US7883517B2 (en) * 2005-08-08 2011-02-08 Abbott Laboratories Vascular suturing device
US8083754B2 (en) 2005-08-08 2011-12-27 Abbott Laboratories Vascular suturing device with needle capture
WO2007019016A1 (en) 2005-08-08 2007-02-15 Abbott Laboratories Vascular suturing device
US20070032801A1 (en) * 2005-08-08 2007-02-08 Pantages Anthony J Vascular suturing device
US20070060895A1 (en) 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
EP1762186B1 (en) 2005-09-12 2011-02-16 Arthrex, Inc. Suture anchor with eyelet
US20070232941A1 (en) * 2005-10-27 2007-10-04 Stan Rabinovich System, apparatus, and method for imaging and treating tissue
WO2007076018A2 (en) * 2005-12-22 2007-07-05 Kfx Medical Corporation System and method for attaching soft tissue to bone
US7959650B2 (en) 2006-09-29 2011-06-14 Biomet Sports Medicine, Llc Adjustable knotless loops
US8597327B2 (en) 2006-02-03 2013-12-03 Biomet Manufacturing, Llc Method and apparatus for sternal closure
US8968364B2 (en) 2006-02-03 2015-03-03 Biomet Sports Medicine, Llc Method and apparatus for fixation of an ACL graft
US9538998B2 (en) 2006-02-03 2017-01-10 Biomet Sports Medicine, Llc Method and apparatus for fracture fixation
US10517587B2 (en) 2006-02-03 2019-12-31 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9468433B2 (en) 2006-02-03 2016-10-18 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US8771352B2 (en) 2011-05-17 2014-07-08 Biomet Sports Medicine, Llc Method and apparatus for tibial fixation of an ACL graft
US8251998B2 (en) 2006-08-16 2012-08-28 Biomet Sports Medicine, Llc Chondral defect repair
US11259792B2 (en) 2006-02-03 2022-03-01 Biomet Sports Medicine, Llc Method and apparatus for coupling anatomical features
US8652171B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Method and apparatus for soft tissue fixation
US9078644B2 (en) 2006-09-29 2015-07-14 Biomet Sports Medicine, Llc Fracture fixation device
US8652172B2 (en) 2006-02-03 2014-02-18 Biomet Sports Medicine, Llc Flexible anchors for tissue fixation
US8574235B2 (en) 2006-02-03 2013-11-05 Biomet Sports Medicine, Llc Method for trochanteric reattachment
US9149267B2 (en) 2006-02-03 2015-10-06 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to a bone
US8801783B2 (en) 2006-09-29 2014-08-12 Biomet Sports Medicine, Llc Prosthetic ligament system for knee joint
US11311287B2 (en) 2006-02-03 2022-04-26 Biomet Sports Medicine, Llc Method for tissue fixation
US8562647B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for securing soft tissue to bone
US8562645B2 (en) 2006-09-29 2013-10-22 Biomet Sports Medicine, Llc Method and apparatus for forming a self-locking adjustable loop
US9271713B2 (en) 2006-02-03 2016-03-01 Biomet Sports Medicine, Llc Method and apparatus for tensioning a suture
US8506597B2 (en) 2011-10-25 2013-08-13 Biomet Sports Medicine, Llc Method and apparatus for interosseous membrane reconstruction
ES2350125T3 (en) * 2006-03-17 2011-01-18 T.A.G. Medical Products A Limited Partnership SURGICAL INSTRUMENT TO ADHER SOFT FABRIC TO A BONE.
US7731727B2 (en) * 2006-04-26 2010-06-08 Lsi Solutions, Inc. Medical instrument to place a pursestring suture, open a hole and pass a guidewire
US10743862B1 (en) 2006-05-04 2020-08-18 Alfredo Alvarado Laparoscopic suturing device and methods of use
US20080009900A1 (en) * 2006-06-12 2008-01-10 Kfx Medical Corporation Surgical grasping device
US8133258B2 (en) 2006-08-03 2012-03-13 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
EP2051640B1 (en) * 2006-08-16 2010-01-20 Wilson-Cook Medical Inc. Suturing device
WO2008030893A2 (en) * 2006-09-05 2008-03-13 Cayenne Medical, Inc. Arthroscopic soft tissue plication systems and methods
US8500818B2 (en) 2006-09-29 2013-08-06 Biomet Manufacturing, Llc Knee prosthesis assembly with ligament link
US9918826B2 (en) 2006-09-29 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US8672969B2 (en) 2006-09-29 2014-03-18 Biomet Sports Medicine, Llc Fracture fixation device
US11259794B2 (en) 2006-09-29 2022-03-01 Biomet Sports Medicine, Llc Method for implanting soft tissue
US8562629B2 (en) * 2006-10-24 2013-10-22 Arthrocare Corporation Suture device having selective needle actuation and related method
US7879094B2 (en) 2006-10-24 2011-02-01 Cayenne Medical, Inc. Systems for material fixation
WO2008070452A2 (en) * 2006-11-21 2008-06-12 Cayenne Medical, Inc. Suture management and tensioning devices
US8753373B2 (en) * 2007-05-08 2014-06-17 Edwards Lifesciences Corporation Suture-fastening clip
US8574244B2 (en) 2007-06-25 2013-11-05 Abbott Laboratories System for closing a puncture in a vessel wall
US8562631B2 (en) * 2009-11-09 2013-10-22 Ceterix Orthopaedics, Inc. Devices, systems and methods for meniscus repair
US8911456B2 (en) 2007-07-03 2014-12-16 Ceterix Orthopaedics, Inc. Methods and devices for preventing tissue bridging while suturing
US8500809B2 (en) 2011-01-10 2013-08-06 Ceterix Orthopaedics, Inc. Implant and method for repair of the anterior cruciate ligament
US20100130990A1 (en) * 2007-07-03 2010-05-27 Saliman Justin D Methods of suturing and repairing tissue using a continuous suture passer device
US8663253B2 (en) 2007-07-03 2014-03-04 Ceterix Orthopaedics, Inc. Methods of meniscus repair
US8465505B2 (en) 2011-05-06 2013-06-18 Ceterix Orthopaedics, Inc. Suture passer devices and methods
US10441273B2 (en) 2007-07-03 2019-10-15 Ceterix Orthopaedics, Inc. Pre-tied surgical knots for use with suture passers
US9861354B2 (en) 2011-05-06 2018-01-09 Ceterix Orthopaedics, Inc. Meniscus repair
US20090012538A1 (en) * 2007-07-03 2009-01-08 Justin Saliman Methods and devices for continuous suture passing
US9211119B2 (en) 2007-07-03 2015-12-15 Ceterix Orthopaedics, Inc. Suture passers and methods of passing suture
US20110130773A1 (en) * 2007-07-03 2011-06-02 Saliman Justin D Methods for continuous suture passing
US9314234B2 (en) 2007-07-03 2016-04-19 Ceterix Orthopaedics, Inc. Pre-tied surgical knots for use with suture passers
US8702731B2 (en) 2007-07-03 2014-04-22 Ceterix Orthopaedics, Inc. Suturing and repairing tissue using in vivo suture loading
EP2033583B1 (en) * 2007-08-27 2013-03-13 Arthrex, Inc. In-line suture passer
US7963972B2 (en) 2007-09-12 2011-06-21 Arthrocare Corporation Implant and delivery system for soft tissue repair
EP2211725A4 (en) * 2007-11-05 2015-04-01 Ceterix Orthopedics Inc Suture passing instrument and method
ES2612717T3 (en) * 2008-02-28 2017-05-18 T.A.G. Medical Products Corporation Ltd. Medical device to adhere a suture to a bone
US20090222027A1 (en) * 2008-02-28 2009-09-03 Lsi Solutions, Inc. Ferrule holder with suture relief lobes
US20090259251A1 (en) * 2008-04-11 2009-10-15 Cohen Matthew D Loop suture
US8858565B1 (en) 2008-05-08 2014-10-14 Cayenne Medical, Inc. Inserter for soft tissue or bone-to-bone fixation device and methods
US8123806B1 (en) 2008-05-09 2012-02-28 Cayenne Medical, Inc Method of tensioning a tissue graft having suture bundles using a cleated bar
US8828029B2 (en) * 2008-06-30 2014-09-09 Arthrocare Corporation Independent suture tensioning and snaring apparatus
US8863748B2 (en) * 2008-07-31 2014-10-21 Olympus Medical Systems Corp. Endoscopic surgical operation method
US8394112B2 (en) * 2008-10-22 2013-03-12 Cayenne Medical, Inc. Arthroscopic suture passing devices and methods
US20100121355A1 (en) * 2008-10-24 2010-05-13 The Foundry, Llc Methods and devices for suture anchor delivery
US20100121375A1 (en) * 2008-11-13 2010-05-13 Pandya Rajiv D Suture anchoring system and method
BRPI1006941A2 (en) * 2009-01-26 2016-09-27 Synthes Gmbh "bidirectional suture puller"
US8206446B1 (en) 2009-03-10 2012-06-26 Cayenne Medical, Inc. Method for surgically repairing a damaged ligament
BRPI1008926A2 (en) * 2009-03-11 2019-09-24 Synthes Gmbh passable knot system for repairing soft tissue injuries
US8147505B2 (en) * 2009-03-23 2012-04-03 Arthrocare Corporation Surgical instrument for manipulating surgical suture and methods of use
AU2010228986B2 (en) * 2009-03-23 2015-03-26 Linvatec Corporation Suture passing apparatus and method
KR100944411B1 (en) 2009-04-08 2010-02-25 주식회사 래보 Endo psi, method thereof and cabinet for it
EP2429409B1 (en) 2009-05-12 2017-11-15 The Foundry, LLC Suture anchors with one-way cinching mechanisms
EP2429411B1 (en) 2009-05-12 2017-03-08 The Foundry, LLC Devices to treat diseased or injured musculoskeletal tissue
US20100305710A1 (en) 2009-05-28 2010-12-02 Biomet Manufacturing Corp. Knee Prosthesis
DK200970073A (en) * 2009-07-22 2011-01-23 Coloplast As Suturing system and assembly
US20110046642A1 (en) * 2009-08-21 2011-02-24 Coloplast A/S Suture assembly and system
US20110060350A1 (en) * 2009-09-04 2011-03-10 Cost Containment, Inc. Suture passer device and suture needle
WO2011037977A1 (en) * 2009-09-22 2011-03-31 Synthes Usa, Llc Multi-stitch anchor suture-based soft tissue repair system
DK201070272A (en) * 2009-10-19 2011-04-20 Coloplast As Finger guided suture fixation system
US8758371B2 (en) * 2009-10-20 2014-06-24 Coloplast A/S Method of fixing a suture to tissue
US8465503B2 (en) * 2009-10-19 2013-06-18 Coloplast A/S Finger guided suture fixation system
DK201070270A (en) * 2009-10-19 2011-04-20 Coloplast As Finger guided suture fixation system
US9848868B2 (en) 2011-01-10 2017-12-26 Ceterix Orthopaedics, Inc. Suture methods for forming locking loops stitches
US9011454B2 (en) 2009-11-09 2015-04-21 Ceterix Orthopaedics, Inc. Suture passer with radiused upper jaw
US11744575B2 (en) 2009-11-09 2023-09-05 Ceterix Orthopaedics, Inc. Suture passer devices and methods
US9211118B2 (en) * 2009-11-16 2015-12-15 Arthrocare Corporation Suture passer
US8398659B2 (en) * 2010-03-12 2013-03-19 Coloplast A/S Method of intracorporeally suturing tissue
WO2011140486A1 (en) * 2010-05-06 2011-11-10 Synthes Usa, Llc Soft tissue defect device and associated method
US8936611B2 (en) 2010-05-27 2015-01-20 Raptor Surgical, LLC Apparatus and methods for achilles tendon repair
US8663252B2 (en) 2010-09-01 2014-03-04 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US9370353B2 (en) 2010-09-01 2016-06-21 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
US8568428B2 (en) * 2011-01-05 2013-10-29 Coloplast A/S Suture system and assembly including a tubular leader having a clasp
US9913638B2 (en) 2011-01-10 2018-03-13 Ceterix Orthopaedics, Inc. Transosteal anchoring methods for tissue repair
US8864777B2 (en) 2011-01-28 2014-10-21 Anchor Orthopedics Xt Inc. Methods for facilitating tissue puncture
US8556916B2 (en) 2011-02-14 2013-10-15 Smith & Nephew, Inc. Method and device for suture manipulation
US20130012964A1 (en) * 2011-07-07 2013-01-10 Steven Warnock Port closure device and method
US8888849B2 (en) * 2011-07-08 2014-11-18 Smith & Nephew, Inc. Soft tissue repair
US8882834B2 (en) * 2011-07-08 2014-11-11 Smith & Nephew, Inc. Soft tissue repair
US9955963B2 (en) * 2011-07-08 2018-05-01 Smith & Nephew, Inc. Soft tissue repair
US9662105B2 (en) 2011-07-08 2017-05-30 Smith & Nephew, Inc. Suture passer and method
US8951263B2 (en) 2011-07-08 2015-02-10 Smith & Nephew, Inc. Orthopedic suture passer and method
US9357997B2 (en) 2011-07-08 2016-06-07 Smith & Nephew, Inc. Suture passer and method
US8801727B2 (en) 2011-07-08 2014-08-12 Smith & Nephew, Inc. Orthopedic suture passer and method
US8992550B2 (en) 2011-07-20 2015-03-31 Coloplast A/S Suture system with capsule eyelet providing multiple suture tissue fixation
US9125644B2 (en) 2011-08-14 2015-09-08 SafePath Medical, Inc. Apparatus and method for suturing tissue
CA2856346C (en) * 2011-08-18 2022-08-30 Anchor Orthopedics Xt Inc. Suture passing instrumentation and methods of use thereof
US10524778B2 (en) 2011-09-28 2020-01-07 Ceterix Orthopaedics Suture passers adapted for use in constrained regions
US9357991B2 (en) 2011-11-03 2016-06-07 Biomet Sports Medicine, Llc Method and apparatus for stitching tendons
US9370350B2 (en) 2011-11-10 2016-06-21 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9314241B2 (en) 2011-11-10 2016-04-19 Biomet Sports Medicine, Llc Apparatus for coupling soft tissue to a bone
US9381013B2 (en) 2011-11-10 2016-07-05 Biomet Sports Medicine, Llc Method for coupling soft tissue to a bone
US9259217B2 (en) 2012-01-03 2016-02-16 Biomet Manufacturing, Llc Suture Button
GB2514505B (en) 2012-02-07 2016-07-06 Arthrocare Corp Surgical instrument for manipulating and passing suture
US10265062B2 (en) 2012-02-07 2019-04-23 Arthrocare Corporation Surgical instrument for manipulating and passing suture
WO2013126748A1 (en) 2012-02-22 2013-08-29 SafePath Medical, Inc. Means and methods for suturing tissue
US9451952B2 (en) 2012-03-22 2016-09-27 Boston Scientific Scimed, Inc. Suturing device
US8864778B2 (en) 2012-04-10 2014-10-21 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US8858573B2 (en) 2012-04-10 2014-10-14 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
US9241707B2 (en) 2012-05-31 2016-01-26 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
JP5963559B2 (en) 2012-06-18 2016-08-03 日本コヴィディエン株式会社 Medical suture tool
US10799235B2 (en) * 2012-08-16 2020-10-13 Boston Scientific Scimed, Inc. Suturing device for treament of pelvic floor disorders
US9289205B2 (en) 2012-12-11 2016-03-22 Raptor Surgical, LLC Systems for soft tissue repair
US9173654B2 (en) 2012-12-11 2015-11-03 Raptor Surgical, LLC System for tissue repair
US9757119B2 (en) 2013-03-08 2017-09-12 Biomet Sports Medicine, Llc Visual aid for identifying suture limbs arthroscopically
US9918827B2 (en) 2013-03-14 2018-03-20 Biomet Sports Medicine, Llc Scaffold for spring ligament repair
US9554793B2 (en) 2013-03-16 2017-01-31 SafePath Medical, Inc. Means and methods for suturing tissue
US9936940B2 (en) 2013-06-07 2018-04-10 Biomet Sports Medicine, Llc Method and apparatus for coupling soft tissue to bone
US9247935B2 (en) 2013-09-23 2016-02-02 Ceterix Orthopaedics, Inc. Arthroscopic knot pusher and suture cutter
CN204698630U (en) 2013-12-16 2015-10-14 赛特里克斯整形公司 Prestrain has the replaceable jaw box of suture and comprises its suture passer system
US10136886B2 (en) 2013-12-20 2018-11-27 Biomet Sports Medicine, Llc Knotless soft tissue devices and techniques
CN105250001B (en) 2014-04-08 2019-07-12 赛特里克斯整形公司 Suitable for suture passer used in confined area
US10765420B2 (en) 2014-04-24 2020-09-08 Smith & Nephew, Inc. Suture passer
WO2015179247A2 (en) 2014-05-17 2015-11-26 SafePath Medical, Inc. Systems and methods for suturing tissue
US9615822B2 (en) 2014-05-30 2017-04-11 Biomet Sports Medicine, Llc Insertion tools and method for soft anchor
US9700291B2 (en) 2014-06-03 2017-07-11 Biomet Sports Medicine, Llc Capsule retractor
US11103235B2 (en) * 2014-07-08 2021-08-31 Lsi Solutions, Inc. Rotation adapter and receiver for minimally invasive surgical devices
US9936943B1 (en) 2014-08-07 2018-04-10 Nicholas MANCINI Suture passing surgical device with atraumatic grasper preventing accidental perforations
US10478324B2 (en) 2014-08-12 2019-11-19 W. L. Gore & Associates, Inc. Handle for medical device deployment
US10039543B2 (en) 2014-08-22 2018-08-07 Biomet Sports Medicine, Llc Non-sliding soft anchor
US9833233B2 (en) * 2014-09-30 2017-12-05 Covidien Lp Methods and devices for tissue suturing
US9955980B2 (en) 2015-02-24 2018-05-01 Biomet Sports Medicine, Llc Anatomic soft tissue repair
US9974534B2 (en) 2015-03-31 2018-05-22 Biomet Sports Medicine, Llc Suture anchor with soft anchor of electrospun fibers
US10058325B2 (en) 2015-05-19 2018-08-28 Arthrex, Inc. Suture passer and method of tissue repair
US10548580B2 (en) * 2015-06-15 2020-02-04 The Curators Of The University Of Missouri Instrument to close fascia during laparoscopic surgery
US10226245B2 (en) 2015-07-21 2019-03-12 Ceterix Orthopaedics, Inc. Automatically reloading suture passer devices that prevent entanglement
US10405853B2 (en) 2015-10-02 2019-09-10 Ceterix Orthpaedics, Inc. Knot tying accessory
EP3434199A4 (en) * 2016-03-24 2019-11-13 National University Corporation Kagawa University Suturing device
WO2018081374A1 (en) 2016-10-31 2018-05-03 Smith & Nephew, Inc. Suture passer and grasper instrument and method
US10945723B2 (en) 2016-11-17 2021-03-16 SafePath Medical, Inc. Systems and methods for suturing tissue
US10426449B2 (en) 2017-02-16 2019-10-01 Abbott Cardiovascular Systems, Inc. Articulating suturing device with improved actuation and alignment mechanisms
US11591554B2 (en) 2017-09-11 2023-02-28 Heartstitch, Inc. Methods and devices for papillary suturing
US10966707B2 (en) * 2018-01-04 2021-04-06 Covidien Lp Surgical port closure system
WO2019231757A1 (en) * 2018-05-29 2019-12-05 Suture Ease, Inc. Biological tissue access and closure apparatus, systems and methods
US11284879B2 (en) 2018-12-13 2022-03-29 Howmedica Osteonics Corp. Systems for soft tissue repair

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946740A (en) * 1974-10-15 1976-03-30 Bassett John W Suturing device
US4923461A (en) * 1987-11-05 1990-05-08 Concept, Inc. Method of arthroscopic suturing of tissue
US4935027A (en) * 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
US4981149A (en) * 1989-05-16 1991-01-01 Inbae Yoon Method for suturing with a bioabsorbable needle
US5792153A (en) * 1994-03-23 1998-08-11 University College London Sewing device
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US919138A (en) 1909-03-16 1909-04-20 Clarence A Drake Surgical needle.
US2269963A (en) 1940-06-01 1942-01-13 Wappler Frederick Charles Implanting device
US2286578A (en) 1942-02-11 1942-06-16 Simon H Sauter Surgical instrument
US3842840A (en) 1973-05-07 1974-10-22 E Schweizer Suture applicator
DE2532242A1 (en) 1975-07-18 1977-02-10 Gerhard Seeh Suturing needle with thread feed and release - has sliding plunger in sealed needle shaft
US4109658A (en) 1977-02-04 1978-08-29 Hughes Joe L Needle holding device with pick-up means
US4164225A (en) 1977-12-28 1979-08-14 Johnson & Lorenz, Inc. Surgical suturing instrument
US4373530A (en) 1980-04-04 1983-02-15 Lisa Ann Kilejian Surgical stitching instrument
US4345601A (en) 1980-04-07 1982-08-24 Mamoru Fukuda Continuous suturing device
US4741330A (en) 1983-05-19 1988-05-03 Hayhurst John O Method and apparatus for anchoring and manipulating cartilage
US4493323A (en) 1982-12-13 1985-01-15 University Of Iowa Research Foundation Suturing device and method for using same
US4621640A (en) 1984-01-09 1986-11-11 Mulhollan James S Mechanical needle carrier and method for its use
US4635637A (en) 1984-03-29 1987-01-13 Schreiber Saul N Surgical suture
US4738255A (en) 1986-04-07 1988-04-19 Biotron Labs, Inc. Suture anchor system
US4781182A (en) 1986-10-03 1988-11-01 Purnell Mark L Apparatus and method for use in performing a surgical operation
US5366459A (en) 1987-05-14 1994-11-22 Inbae Yoon Surgical clip and clip application procedures
US5437680A (en) 1987-05-14 1995-08-01 Yoon; Inbae Suturing method, apparatus and system for use in endoscopic procedures
US4898156A (en) 1987-05-18 1990-02-06 Mitek Surgical Products, Inc. Suture anchor
US4957498A (en) 1987-11-05 1990-09-18 Concept, Inc. Suturing instrument
US4926860A (en) 1988-02-05 1990-05-22 Flexmedics Corporation ARthroscopic instrumentation and method
US4836205A (en) 1988-03-21 1989-06-06 Barrett Gene R Grasper-stitcher device for arthroscopic anterior cruciate ligament repair
US5059201A (en) * 1989-11-03 1991-10-22 Asnis Stanley E Suture threading, stitching and wrapping device for use in open and closed surgical procedures
WO1991006247A1 (en) * 1989-11-03 1991-05-16 Asnis Stanley E Suture threading, stitching and wrapping device
US5037433A (en) 1990-05-17 1991-08-06 Wilk Peter J Endoscopic suturing device and related method and suture
US5318577A (en) 1990-06-26 1994-06-07 Mitek Surgical Products, Inc. Suture threading device
US5037422A (en) 1990-07-02 1991-08-06 Acufex Microsurgical, Inc. Bone anchor and method of anchoring a suture to a bone
US5085661A (en) 1990-10-29 1992-02-04 Gerald Moss Surgical fastener implantation device
US5217471A (en) 1991-05-30 1993-06-08 Burkhart Stephen S Endoscopic suture knotting instrument
GB2260704B (en) * 1991-09-30 1995-08-23 Philip Richardson Suturing apparatus
US5269786A (en) 1992-02-20 1993-12-14 Arthrex Inc. PCL oriented placement tibial guide method
US5222977A (en) 1992-02-21 1993-06-29 Esser Rene D Surgical needle with an adjustable eye
US5312422A (en) 1992-07-16 1994-05-17 Linvatec Corporation Endoscopic suturing needle
US6048351A (en) 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
CA2106127A1 (en) 1992-09-23 1994-03-24 Peter W.J. Hinchliffe Instrument for closing trocar puncture wounds
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
DE4235602A1 (en) 1992-10-22 1994-04-28 Oktay Dr Med Sevinc Laparoscopic suture preforming instrument - has two jaws, one forked and other having inclined hole to hold needle head and also having recess to accommodate needle
EP0598219B1 (en) 1992-11-17 1997-12-17 Smith & Nephew, Inc. Suture securing device
US6036699A (en) 1992-12-10 2000-03-14 Perclose, Inc. Device and method for suturing tissue
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5522820A (en) 1993-01-15 1996-06-04 Arthrotech Method and apparatus for suturing tissue
US5336229A (en) * 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5618290A (en) 1993-10-19 1997-04-08 W.L. Gore & Associates, Inc. Endoscopic suture passer and method
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5397325A (en) 1993-11-09 1995-03-14 Badiaco, Inc. Laparoscopic suturing device
US5609597A (en) 1993-12-09 1997-03-11 Lehrer; Theodor Apparatus and method of extracorporeally applying and locking laparoscopic suture and loop ligatures
US5391173A (en) 1994-02-10 1995-02-21 Wilk; Peter J. Laparoscopic suturing technique and associated device
US5466243A (en) 1994-02-17 1995-11-14 Arthrex, Inc. Method and apparatus for installing a suture anchor through a hollow cannulated grasper
US5431666A (en) * 1994-02-24 1995-07-11 Lasersurge, Inc. Surgical suture instrument
US5573542A (en) 1994-08-17 1996-11-12 Tahoe Surgical Instruments-Puerto Rico Endoscopic suture placement tool
US5499991A (en) 1994-12-19 1996-03-19 Linvatec Corporation Endoscopic needle with suture retriever
US5665109A (en) 1994-12-29 1997-09-09 Yoon; Inbae Methods and apparatus for suturing tissue
US5645552A (en) 1995-01-11 1997-07-08 United States Surgical Corporation Surgical apparatus for suturing body tissue
US5902311A (en) 1995-06-15 1999-05-11 Perclose, Inc. Low profile intraluminal suturing device and method
US5700273A (en) 1995-07-14 1997-12-23 C.R. Bard, Inc. Wound closure apparatus and method
US6562052B2 (en) 1995-08-24 2003-05-13 Sutura, Inc. Suturing device and method
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5776150A (en) 1996-06-10 1998-07-07 Ethicon Endo Surgery, Inc. Suture assist device
US5855585A (en) 1996-06-11 1999-01-05 X-Site, L.L.C. Device and method for suturing blood vessels and the like
US5665108A (en) 1996-09-16 1997-09-09 Galindo; Eugene R. Surgical dressing strap
US5947982A (en) * 1997-04-02 1999-09-07 Smith & Nephew, Inc. Suture-passing forceps
US5904692A (en) 1997-04-14 1999-05-18 Mitek Surgical Products, Inc. Needle assembly and method for passing suture
US5908426A (en) 1997-04-24 1999-06-01 Pierce; Javin Suture needle manipulator
US5910148A (en) 1997-08-06 1999-06-08 Mitek Surgical Products, Inc. Suture retrograder
AT408832B (en) 1997-09-09 2002-03-25 Werner Ing Fuchs SURGICAL SEWING PLIERS
EP1067872B1 (en) * 1998-03-20 2006-03-01 Boston Scientific Limited Endoscopic suture system
US6143004A (en) 1998-08-18 2000-11-07 Atrion Medical Products, Inc. Suturing device
US6332889B1 (en) 1998-08-27 2001-12-25 Onux Medical, Inc. Surgical suturing instrument and method of use
US6217592B1 (en) 1998-10-06 2001-04-17 Vincent Freda Laproscopic instrument for suturing tissue
US6051006A (en) 1999-04-12 2000-04-18 Smith & Nephew, Inc. Suture-passing forceps
US6533795B1 (en) * 2000-04-11 2003-03-18 Opus Medical, Inc Dual function suturing apparatus and method
US6551330B1 (en) 2000-09-21 2003-04-22 Opus Medical, Inc. Linear suturing apparatus and methods
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US7842050B2 (en) 2001-02-26 2010-11-30 Diduch David R Suture passing devices
US6605096B1 (en) 2001-07-20 2003-08-12 Opus Medical Inc, Percutaneous suturing apparatus and method
US20040249394A1 (en) 2001-08-06 2004-12-09 Arthrex, Inc. Compact suture punch with malleable needle
WO2003028532A2 (en) 2001-10-01 2003-04-10 Surgical Solutions, Llc Suturing apparatus and method
US7585305B2 (en) 2002-05-15 2009-09-08 Arthrex, Inc. Suture passing instrument
US6984237B2 (en) 2002-05-22 2006-01-10 Orthopaedic Biosystems Ltd., Inc. Suture passing surgical instrument
US6770084B1 (en) 2002-06-26 2004-08-03 Opus Medical, Inc. Suture capture device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946740A (en) * 1974-10-15 1976-03-30 Bassett John W Suturing device
US4923461A (en) * 1987-11-05 1990-05-08 Concept, Inc. Method of arthroscopic suturing of tissue
US4923461B1 (en) * 1987-11-05 1994-10-18 Linvatec Corp Method of arthroscopic suturing of tissue
US4923461B2 (en) * 1987-11-05 1995-06-20 Linvatec Corp Method of arthroscopic suturing
US4981149A (en) * 1989-05-16 1991-01-01 Inbae Yoon Method for suturing with a bioabsorbable needle
US4935027A (en) * 1989-08-21 1990-06-19 Inbae Yoon Surgical suture instrument with remotely controllable suture material advancement
US5792153A (en) * 1994-03-23 1998-08-11 University College London Sewing device
US5860992A (en) * 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10194902B2 (en) 1999-07-02 2019-02-05 Quickpass, Inc. Suturing device
US9398907B2 (en) 1999-07-02 2016-07-26 Quickpass, Inc. Suturing device
US7744609B2 (en) 1999-10-21 2010-06-29 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US9999419B2 (en) 2000-05-01 2018-06-19 Edwards Lifesciences Corporation Single catheter heart repair device and method for use
US9314242B2 (en) 2000-05-01 2016-04-19 Edwards Lifesciences Corporation Single catheter heart repair device and method for use
US7094244B2 (en) 2002-03-26 2006-08-22 Edwards Lifesciences Corporation Sequential heart valve leaflet repair device and method of use
WO2004021893A1 (en) * 2002-09-03 2004-03-18 Edwards Lifesciences Corporation Mitral valve repair device and method for use
AU2003265916B2 (en) * 2002-09-03 2009-03-05 Edwards Lifesciences Corporation Mitral valve repair device and method for use
JP2005537110A (en) * 2002-09-03 2005-12-08 エドワーズ ライフサイエンシーズ コーポレイション Mitral valve repair device and method for use
US7083628B2 (en) 2002-09-03 2006-08-01 Edwards Lifesciences Corporation Single catheter mitral valve repair device and method for use
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US11744576B2 (en) 2005-06-20 2023-09-05 Scarab Technology Services, Llc Method and apparatus for applying a knot to a suture
US10758223B2 (en) 2005-06-20 2020-09-01 Scarab Technology Services, Llc Method and apparatus for applying a knot to a suture
US9642616B2 (en) 2005-06-20 2017-05-09 Nobles Medical Technologies, Inc. Method and apparatus for applying a knot to a suture
US9301749B2 (en) 2006-09-08 2016-04-05 Edwards Lifesciences Corporation Expandable clip for tissue repair
US11197661B2 (en) 2007-03-29 2021-12-14 Scarab Technology Services, Llc Device for applying a knot to a suture
US8246636B2 (en) 2007-03-29 2012-08-21 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US10182802B2 (en) 2007-03-29 2019-01-22 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US9131938B2 (en) 2007-03-29 2015-09-15 Nobles Medical Technologies, Inc. Suturing devices and methods for closing a patent foramen ovale
US11166712B2 (en) 2008-05-09 2021-11-09 Scarab Technology Services, Llc Suturing devices and methods for suturing an anatomic valve
US10285687B2 (en) 2008-05-09 2019-05-14 Nobles Medical Technologies Inc. Suturing devices and methods for suturing an anatomic valve
US9326764B2 (en) 2008-05-09 2016-05-03 Nobles Medical Technologies Inc. Suturing devices and methods for suturing an anatomic valve
WO2009137766A1 (en) 2008-05-09 2009-11-12 Sutura, Inc. Suturing devices and methods for suturing an anatomic valve
EP2361566A3 (en) * 2008-05-28 2012-06-13 Vibrynt, Inc. Tools and devices for performing minimally invasive abdominal surgical procedures
AU2009257775B2 (en) * 2008-05-28 2012-01-19 Vibrynt, Inc. Tools and devices for performing minimally invasive abdominal surgical procedures
WO2009151971A3 (en) * 2008-05-28 2010-02-25 Vibrynt, Inc. Tools and devices for performing minimally invasive abdominal surgical procedures
US10357243B2 (en) 2009-07-15 2019-07-23 Pivot Medical, Inc. Method and apparatus for treating a hip joint, including the provision and use of a novel suture passer
US10278690B2 (en) 2009-07-15 2019-05-07 Pivot Medical, Inc. Method and apparatus for treating a hip joint, including the provision and use of a novel suture passer
US11510666B2 (en) 2009-07-15 2022-11-29 Stryker Corporation Method and apparatus for treating a hip joint, including the provision and use of a novel suture passer
EP2453809B1 (en) * 2009-07-15 2017-06-28 Pivot Medical, Inc. Apparatus for treating a hip joint, including the provision and use of a novel suture passer
US9386980B2 (en) 2009-10-01 2016-07-12 Covidien Lp Wound closure device including direct-driven needle
US10631855B2 (en) 2009-10-01 2020-04-28 Covidien Lp Wound closure device including direct-driven needle
US8591529B2 (en) 2009-10-01 2013-11-26 Covidien Lp Wound closure device including direct-driven needle
US9980721B2 (en) 2009-10-01 2018-05-29 Covidien Lp Wound closure device including direct-driven needle
EP2314227A1 (en) * 2009-10-01 2011-04-27 Tyco Healthcare Group LP Wound closure device including direct-driven needle
US8398657B2 (en) 2009-11-19 2013-03-19 Lsi Solutions, Inc. Multi-fire suturing instrument with proximal ferrule release feature
GB2475585A (en) * 2009-11-19 2011-05-25 Lsi Solutions Inc Suturing instrument
GB2475585B (en) * 2009-11-19 2015-04-15 Lsi Solutions Inc A multi-fire suturing instrument with proximal ferrule release feature
US8906042B2 (en) 2010-07-29 2014-12-09 Covidien Lp Wound closure device including mesh barrier
US9687226B2 (en) 2010-07-29 2017-06-27 Covidien Lp Wound closure device including mesh barrier
US9161751B2 (en) 2010-12-02 2015-10-20 Coloplast A/S Suture system and assembly
WO2012100782A1 (en) * 2011-01-28 2012-08-02 Coloplast A/S Suture system and assembly including a leader plug
US9220495B2 (en) 2011-02-10 2015-12-29 Coloplast A/S Suture system and assembly including a suture clip
WO2012113408A1 (en) * 2011-02-24 2012-08-30 Coloplast A/S Suture system and assembly including a suture cap formed around a tubular sleeve
EP2805679A1 (en) * 2011-02-24 2014-11-26 Coloplast A/S Suture assembly including a suture cap formed around a tubular sleeve
US9649106B2 (en) 2011-04-15 2017-05-16 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US10610216B2 (en) 2011-04-15 2020-04-07 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US10624629B2 (en) 2011-04-15 2020-04-21 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic valve
US11051802B2 (en) 2012-05-11 2021-07-06 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US9706988B2 (en) 2012-05-11 2017-07-18 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
US10420545B2 (en) 2012-05-11 2019-09-24 Heartstitch, Inc. Suturing devices and methods for suturing an anatomic structure
WO2014205279A1 (en) * 2013-06-19 2014-12-24 Endolutions, Llc Apparatus and method for fascial closure device for laparoscopic trocar port site and surgery
US10828022B2 (en) 2013-07-02 2020-11-10 Med-Venture Investments, Llc Suturing devices and methods for suturing an anatomic structure
US10512458B2 (en) 2013-12-06 2019-12-24 Med-Venture Investments, Llc Suturing methods and apparatuses
US11779324B2 (en) 2013-12-06 2023-10-10 Med-Venture Investments, Llc Suturing methods and apparatuses
US11395658B2 (en) 2014-07-11 2022-07-26 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
EP3500185B1 (en) * 2015-08-19 2022-04-27 LSI Solutions, Inc. Ferrule for use with a minimally invasive surgical suturing device
US10687801B2 (en) 2016-04-11 2020-06-23 Nobles Medical Technologies Ii, Inc. Suture spools for tissue suturing device
US11839370B2 (en) 2017-06-19 2023-12-12 Heartstitch, Inc. Suturing devices and methods for suturing an opening in the apex of the heart
US11957331B2 (en) 2017-06-19 2024-04-16 Heartstitch, Inc. Suturing systems and methods for suturing body tissue
US11202624B2 (en) 2017-08-18 2021-12-21 Nobles Medical Technologies Ii, Inc. Apparatus for applying a knot to a suture
US11571204B2 (en) 2017-11-24 2023-02-07 Mediclose Solutions B.V. Suture device
WO2019103615A3 (en) * 2017-11-24 2019-07-04 Mediclose Solutions B.V. Suture device

Also Published As

Publication number Publication date
US6551330B1 (en) 2003-04-22
AU2001295050A1 (en) 2002-04-02
US20030181925A1 (en) 2003-09-25
US7544199B2 (en) 2009-06-09

Similar Documents

Publication Publication Date Title
US6551330B1 (en) Linear suturing apparatus and methods
US6533795B1 (en) Dual function suturing apparatus and method
US6605096B1 (en) Percutaneous suturing apparatus and method
US11202623B2 (en) Suture passer
US6770084B1 (en) Suture capture device
AU2002354945A1 (en) Percutaneous suturing apparatus and method
US7285124B2 (en) Single-tailed suturing method
US8562629B2 (en) Suture device having selective needle actuation and related method
US7585305B2 (en) Suture passing instrument
US7033370B2 (en) Suturing instruments and methods of use
US6346111B1 (en) Suturing instruments and methods of use
US20050033365A1 (en) Cannulated instrument with curved shaft for passing suture through tissue
EP2033583A1 (en) In-line suture passer
JP4986007B2 (en) Method and device for suturing with single tail
EP1538992B1 (en) Suture capture device
AU2001287151A1 (en) Single-tailed suturing method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP