WO2002022757A1 - Dispersion for preventing electrification and antistatic film, and image display device - Google Patents

Dispersion for preventing electrification and antistatic film, and image display device Download PDF

Info

Publication number
WO2002022757A1
WO2002022757A1 PCT/JP2001/007863 JP0107863W WO0222757A1 WO 2002022757 A1 WO2002022757 A1 WO 2002022757A1 JP 0107863 W JP0107863 W JP 0107863W WO 0222757 A1 WO0222757 A1 WO 0222757A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic film
antistatic
resistance
dispersion
particles
Prior art date
Application number
PCT/JP2001/007863
Other languages
French (fr)
Japanese (ja)
Inventor
Takeo Ito
Tsuyoshi Oyaizu
Akira Mikami
Hitoshi Tabata
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Priority to EP01963575A priority Critical patent/EP1323804A4/en
Priority to KR10-2003-7003499A priority patent/KR100534508B1/en
Priority to US10/363,267 priority patent/US6992431B2/en
Publication of WO2002022757A1 publication Critical patent/WO2002022757A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/867Means associated with the outside of the vessel for shielding, e.g. magnetic shields
    • H01J29/868Screens covering the input or output face of the vessel, e.g. transparent anti-static coatings, X-ray absorbing layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/863Passive shielding means associated with the vessel
    • H01J2229/8635Antistatic shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating

Definitions

  • the present invention relates to an antistatic dispersion and an antistatic film, and to an image display device such as a color cathode ray tube and a field emission display (FED) provided with the antistatic film.
  • an image display device such as a color cathode ray tube and a field emission display (FED) provided with the antistatic film.
  • a specific resistance value such as IT 0 (Indium-Tin-Oxide), ATO (Antimony-Tin-Oxide), or Zn 2 There 1 0 5 Omega ⁇ cm or more semiconductive substance particles are used.
  • a surfactant or quaternary ⁇ Mi emissions either added during the S i 0 2, by some have the be coated on S i 0 2 film, is generally known a method of imparting ionic conductivity I have.
  • an antistatic film is not sufficiently satisfactory as an antistatic film provided on an insulating member disposed in a vacuum envelope, such as an inner wall portion of a neck of a color cathode ray tube.
  • a vacuum envelope such as an inner wall portion of a neck of a color cathode ray tube.
  • antistatic Tomemaku consisting semi-conductive fine particles such as ITO or ATO, since a large film thickness dependency of the resistance value (surface resistance) is the most preferable range of the surface resistance value 1 0 1 ( )
  • To control the thickness to 010 12 ⁇ / cm 2 it was necessary to control the film thickness extremely accurately.
  • it is difficult to precisely control the thickness of the antistatic film by using a spray coating method or a brush coating method.
  • the antistatic film was formed using the method.
  • even when using the dipping method or the spin coating method it is necessary to strictly control the film thickness, and there is a problem that the trouble of the film thickness control and the production cost are large.
  • the ion conductive film that has been used conventionally has a small dependence of the resistance value on the film thickness, but has a large dependence on the environment such as temperature and humidity. It could not be used as an antistatic film.
  • An object of the present invention is to provide an antistatic film, a dispersion capable of forming such an antistatic film by a simple coating method, and an image display device provided with the antistatic film. Disclosure of the invention
  • a first aspect of the present invention as described in claim 1, characterized in that it contains a high resistivity particles having a specific resistance of 1 0 6 ⁇ 1 0 9 ⁇ ⁇ cm as a main component charged It is a dispersion for prevention.
  • the resistance (surface resistance) has a small dependence on the film thickness, as well as a small environmental dependence, and a stable charge.
  • An antistatic film having antistatic properties can be formed by a simple method.
  • the high-resistance fine particles are formed of antimony pentoxide having a pyrochlore-type crystal structure.
  • the crystal structure is high and the symmetry of the crystal is high, so the effect of crystal orientation on the transfer of carrier electrons in the polycrystalline state is small. Further, since electrical resistance of the grain boundary is low, it is possible to obtain a high resistance particles having a specific resistance of 1 0 6 ⁇ 1 0 9 ⁇ ⁇ cm easily.
  • the high-resistance fine, S n 0 2, I n 2 0 3, S b 2 0 5, Z n 0 at least selected from 2 semiconductive one substance a core layer consisting of, the core layer periphery formed of, S i 0 2, T i 0 2, a 1 2 0 3, Z r 0 both least selected from consisting of one insulating material coating And a layer. Even in fine particle having such a structure, it is possible to easily realize a specific resistance of 1 0 6 ⁇ 1 0 9 ⁇ ⁇ cm.
  • the particle diameter of these high-resistance fine particles can be 5 to 10 Onm.
  • an antistatic film formed on the surface of the insulating substrate to be held in a vacuum atmosphere 1 0 6 -1 It is characterized by being composed mainly of high-resistance fine particles having a specific resistance of 09 ⁇ ⁇ cm.
  • the high-resistance fine particles may be an antimony pentoxide having a crystal structure of pyrochlore (S b 2 0 5). Further, as described in claim 7, the high-resistance fine particles, consisting of S n0 2, I n 20 as S b 2 0 5, Z n0 least for the at one semi-conductive material selected from the second core having a layer, the formed outer periphery of the core layer, the S i 0 2, T I_ ⁇ 2, a 1 2 0 3, Z R_ ⁇ coating layer consisting of at least one insulating material selected from 2
  • the high-resistance fine particles may have a particle size of 5 to 10 O nm, as described in claim 8.
  • the antistatic film of the present invention Since the antistatic film of the present invention has a small dependence of the surface resistance value on the film thickness, it is not necessary to control the film thickness precisely, and therefore, the antistatic film can be formed by a simple method such as spray coating and brush coating. Can be.
  • the relationship between the film thickness and the resistance value (surface resistance value) of each of the antistatic film of the present invention and the conventional antistatic film composed of fine particles of ITO or ATO is schematically shown in FIG. Show.
  • the antistatic film of the present invention has a smaller dependence of the resistance value on the film thickness as compared with the conventional antistatic film, and the width (range) of the film thickness at which a desired resistance value is obtained is wider.
  • the antistatic film of the present invention since it has a stable resistance value and low environmental dependency of the resistance value, it can be used in a vacuum atmosphere such as inside a vacuum tube.
  • a vacuum atmosphere such as inside a vacuum tube.
  • an antistatic film on the inner wall of the neck of a color cathode ray tube but also as an antistatic film on an insulating member such as a spacer in a field emission display (FED). It can be widely used as an antistatic film for products.
  • a translucent panel is provided. A vacuum envelope whose inside is held in a vacuum, a phosphor layer formed on the inner surface of the translucent panel, and electron emission means arranged inside the vacuum envelope.
  • An image display device comprising: an insulating member according to claim 5 on a surface of an insulating member disposed in the vacuum envelope.
  • the thickness of the antistatic film is desirably 50 to 100 nm. Further, as described in claim 12, it is desirable that the antistatic film be configured to cover 20% or more of the entire surface area of the insulating member disposed in the vacuum envelope.
  • the surface of the insulating member disposed in the vacuum envelope has a small dependence of the resistance value on the film thickness and environmental conditions, and has a stable antistatic property having a desired resistance value. Since the film is formed, good display characteristics are exhibited without the occurrence of orbital deformation of emitted electrons due to the application of voltage, spark in the tube, or deterioration of display characteristics due to leak current.
  • FIG. 1 is a graph schematically showing the relationship between the film thickness and the surface resistance value of the antistatic film of the present invention and the conventional antistatic film, respectively.
  • FIG. 2 is a sectional view showing a schematic configuration of the antistatic film of the present invention
  • FIG. 3 is a sectional view showing a schematic configuration of a color cathode ray tube which is a first embodiment of the image display device of the present invention.
  • FIG. 4 is a sectional view showing a schematic configuration of an FED which is a second embodiment of the image display device of the present invention.
  • FIG. 2 is a sectional view showing a schematic configuration of the antistatic film according to the present invention.
  • reference numeral 1 denotes an insulating substrate which is held in a vacuum atmosphere, and on the surface thereof, the high resistance that Yusuke 1 0 6 -1 0 resistivity of 9 Omega ⁇ cm (the resistivity)
  • An antistatic film 2 made of conductive fine particles is formed.
  • Such antistatic layer 2 a high-resistance fine particles having a specific resistance of 1 0 6 ⁇ 1 0 9 ⁇ ⁇ ⁇ m, added and mixed in a solvent, a liquid prepared by dispersing (min dispersion liquid) Is applied to the insulating base material 1, dried, and then fired at a temperature of 400 ° C. to 500 ° C.
  • the solvent include alcohols such as methanol, ethanol, and isopropyl alcohol; ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; ethylene glycol, propylene glycol, and hexylene glycol.
  • Organic solvents such as glycols and heterocycles such as tetrahydrofurfuryl alcohol and N-methylpyrrolidone can be used.
  • a known dispersant can be added to these solvents.
  • the high-resistance fine particles having a 1 0 6 ⁇ 1 0 9 ⁇ ⁇ resistivity of cm can be used antimony pentoxide having a crystal structure of pyrochlore (S b 2 0 5). Further, the outer periphery of the S nO There ln 2 0 3, S b 2 0 5, Z n0 at least selected from 2 one semiconductive core layer material, S i 0 2, T i 0 2, A 1 2 0 3, Z r 0 at least selected from 2 can be used one kind of insulating fine particles of the coating layer formed structure of matter Ru.
  • the particle diameter of these high resistance fine particles be 5 to 100 nm. If the particle size is less than 5 nm, the workability in applying the dispersion is poor, and it is difficult to obtain an antistatic film having a desired film thickness as described below. Anti On the other hand, when the particle size exceeds 100 nm, the film formability is poor and the uniformity of the antistatic film is deteriorated, which is not preferable.
  • a simple method such as a spray coating method and a brush coating method can be employed in addition to the dip coating method and the subbing method.
  • thickness of the antistatic film 5 0-1 0 Desirably, it is 0 O nm. If the thickness of the antistatic film is less than 5 O nm, the surface resistance becomes too high and desired antistatic properties cannot be obtained. Conversely, if the film thickness exceeds 100 nm, the surface resistance becomes too low to obtain the desired antistatic properties, and the film tends to crack.
  • the coverage of the antistatic film 2 is desirably 20% or more of the entire surface area of the insulating substrate 1 held in a vacuum atmosphere. If the coverage of the antistatic film 2 is less than 20%, desired antistatic properties cannot be obtained.
  • the antistatic film of the present invention has a small dependence of the surface resistance value on the film thickness. It is not necessary to control the film thickness so precisely to obtain a desired resistance value, and therefore, the film can be formed by a simple method such as spray coating or brush coating.
  • the antistatic film has a desired and stable resistance value and can be favorably used in a vacuum atmosphere such as inside a vacuum envelope.
  • the color cathode ray tube according to the first embodiment has a glass panel 3 and an envelope including a funnel 4 and a neck 5.
  • a phosphor screen 6 is formed on the inner surface of the panel 3, and a shadow mask 7 is arranged inside the panel 3 so as to face the phosphor screen 6.
  • a color filter corresponding to the emission color of the phosphor (not shown) is provided between the phosphor screen 6 and the panel 3. Can be provided.
  • an electron gun 8 for emitting an electron beam 8a is arranged inside a glass neck 5.
  • the antistatic film 9 is formed on the inner wall of the neck 5 so as to cover at least 20% of the entire inner wall, and the end is connected to a conductive layer (not shown).
  • An inner shield 10 is disposed inside the funnel 4 to shield the electron beam 8a emitted from the electron gun 8 from an external magnetic field, and an outer magnetic field is generated outside the funnel 4 by the generated magnetic field.
  • a deflecting device 11 for deflecting the beam 8a is arranged.
  • 1 0 In this color one cathode ray tube, on a glass substrate of the neck 5 internal wall, 1 0 consists of 6 to the high-resistance fine particles having a specific resistance of 1 0 9 Omega ⁇ cm, a stable desired properties (surface resistance Since the antistatic film 9 having the following value is formed, the orbital deformation of emitted electrons due to the application of a high voltage and the deterioration of display characteristics due to sparks in the tube or leak current do not occur.
  • the substrate 12 on the electron emission side and the substrate 13 on the light emission side are arranged in parallel at a predetermined interval. They are arranged facing each other, and the inside is kept at a high vacuum.
  • a plurality of cold cathode type electron emission elements 14 are formed on a substrate such as silicon.
  • the light-emitting side substrate 13 has a glass panel 15, and a phosphor screen 16 is formed on a surface of the glass panel 15 facing the electron-emitting device 14. Color filter corresponding to the emission color of the phosphor An evening (not shown) is provided.
  • the spacer 17 has an insulating member 18 such as a flat plate (I-shaped cross-section), a cross-shaped cross-section, and an L-shaped cross-section. % Or more.
  • the end of the antistatic film 19 is connected to a conductive layer (not shown).
  • the surface of the insulating substrate 1 8 forming the scan Bae colonel one 1 7, a high-resistance fine particles having a specific resistance of 1 0 6 ⁇ 1 0 9 ⁇ ⁇ cm As a result, since the antistatic film having stable and desired characteristics is formed, the orbital deformation of emitted electrons due to the application of a high voltage and the deterioration of display characteristics due to sparks in the tube or leak current do not occur.
  • dispersion A an antistatic dispersion A having the following composition (hereinafter referred to as dispersion A) was prepared.
  • Antimony pentoxide (pyrochlore crystalline form) (particle size: 20 nm)... 1.0% Ethanol 99.0% Dispersion A was added to the neck of a 15-inch single-cathode CRT (outer diameter 22.5 (mm) along the tube axis along a length of about 15 mm with a brush, and then heated and fired at a temperature of about 450 ° C to obtain a film thickness of 300 nm. Was formed.
  • an antistatic dispersion B (hereinafter, referred to as dispersion B) having the following composition was prepared, and this dispersion B was used in the same manner as in Example 1. Then, an antistatic film (100 nm thick) was formed on the inner wall surface of the neck of the empty cathode ray tube.
  • sol - coating layer consisting of S i 0 2 (thickness l nm) was formed by a gel method, producing the composite fine particles C (hereinafter, referred to as fine particles C.) did.
  • the resulting Toko filtrate obtained by measuring the resistivity of the fine particles C was 1 0 8 Q 'cm.
  • an antistatic dispersion D (hereinafter, referred to as a dispersion D) having the following composition was prepared using the fine particles C, and the dispersion D was used in the same manner as in Example 1 to prepare a dispersion.
  • An antistatic film (film thickness: 150 nm) was formed on the inner wall surface of the neck of the cathode ray tube.
  • Example 3 the antistatic films obtained in Examples 1 and 2 were The color cathode-ray tube that is equipped with the cathode-ray tube has much better performance than the color cathode-ray tube obtained in Comparative Example 1 in terms of the compactness drift characteristics, the presence or absence of sparks in the tube, and the focus deterioration characteristics due to leakage current. .
  • Example 3 the color cathode-ray tube that is equipped with the cathode-ray tube has much better performance than the color cathode-ray tube obtained in Comparative Example 1 in terms of the compactness drift characteristics, the presence or absence of sparks in the tube, and the focus deterioration characteristics due to leakage current.
  • the dispersion A prepared in Example 1 is applied by brush coating to the entire surface of a low-alkali glass FED sensor member, and then heated and fired at a temperature of about 450 ° C. As a result, an antistatic film having a thickness of 50 O nm was formed.
  • an FED was assembled and manufactured by a known method using this spacer. That is, a rear plate having a plurality of field emission electron sources and a face plate having phosphor layers arranged and formed in a predetermined pattern are opposed to each other via a spacer having the above-described antistatic film.
  • the FED was manufactured by arranging and sealing a side plate and the like to the periphery.
  • Comparative Example 2 an antistatic film was formed on the surface of a sensor member in the same manner as in Example 3 using the above-mentioned dispersion liquid B, and an FED was produced using the antistatic film.
  • Example 2 Using the dispersion D prepared in Example 2, an antistatic film was formed on the surface of a spacer member in the same manner as in Example 3, and an FED was produced using the antistatic film.
  • Example 3 Example 4 Comparative Example 2 Displacement of bright spots of electron beam and electron beam No No Partial Yes Spark in tube No No Partial Yes Focus deterioration due to leak current No No Yes
  • the FED having the antistatic film obtained in Examples 3 and 4 was obtained in Comparative Example 2 in terms of the shift characteristics of the luminescent spot of the electron beam, the spark characteristics in the tube, and the presence or absence of the leak current. It is superior to a color cathode ray tube.
  • the antistatic film having stable performance can be formed by spray coating or the like. It can be formed by a simple method such as brushing.
  • the antistatic film of the present invention can be used in a vacuum atmosphere such as inside a vacuum tube.
  • the surface of the insulating member arranged in the vacuum envelope has a small dependence of the resistance value on the film thickness and environmental conditions, and has a stable antistatic property having a desired resistance value. Since the film is formed, the display characteristics are not degraded due to the orbital deformation of the emitted electrons due to the application of the voltage and the spark or leak current in the tube, and stable and good display characteristics are exhibited. Therefore, its industrial value is extremely large.

Abstract

A dispersion for preventing electrification, characterized in that it contains, as a primary component, high-resistance particles having a resistivity of 10?6 to 109¿ Φ.cm. The application of the dispersion by a simple and easy method such as spray coating or brushing followed by firing can provide an antistatic film having stable antistatic properties, since the resultant antistatic film exhibits a reduced dependency of electric resistance on the sickness of a film and on environmental conditions. Such high-resistance particles include antimony pentoxide (Sb¿2?O5) particles having a pyrochlore crystal structure, and particles having a core layer of at least one semiconductive substance selected from among SnO2, In2O3, and Sb2O5 and ZnO2 and a covering layer of at least one insulating substance selected from SiO2, TiO2, Al2O3 and ZrO2. An image display device which has insulating members, arranged in a vacuum envelope, having the above antistatic film formed on the surface thereof is free from the deterioration of display characteristics caused by the change of the track of electrons emitted by the application of voltage, or by a spark in a tube or a leakage current, and accordingly exhibits stable and good display characteristics.

Description

帯電防止用分散液と帯電防止膜および画像表示装置  Dispersion for antistatic, antistatic film, and image display device
技術分野 Technical field
本発明は、 帯電防止用分散液と帯電防止膜、 および帯電防止膜を備え たカラー陰極線管、 フィールドェミ ッションディスプレイ (F E D ) な どの画像表示装置に関する。 明  The present invention relates to an antistatic dispersion and an antistatic film, and to an image display device such as a color cathode ray tube and a field emission display (FED) provided with the antistatic film. Light
細 背景技術  Background technology
従来からカラ一陰極線管 ( C R T ) では、 ネックの内壁部に電子銃か ら放出された電子の一部が当たることにより、 あるいは放出電子により イオン化されたイオンが付着することにより、 帯電が引き起こされる。 そのため、 帯電によって放出電子の軌道が曲げられ、 蛍光体上の正規位 置への到達が妨げられることを防止するため、 ネック内壁部のガラス基 材上に帯電防止膜を形成することが行われている。  Conventionally, in a cathode ray tube (CRT), charging is caused by a part of the electrons emitted from the electron gun hitting the inner wall of the neck, or by the ionization of the ions emitted by the emitted electrons. . For this reason, an antistatic film is formed on the glass substrate on the inner wall of the neck in order to prevent the trajectory of the emitted electrons from being bent due to charging, and preventing the electrons from reaching the normal position on the phosphor. ing.
このような帯電防止膜を形成するための材料として、 従来から、 I T 0 ( Indium- Tin-Oxide) や A T O (Antimony-Tin-Oxide) あるいは Z n 0 2のような固有抵抗値 (抵抗率) が 1 0 5 Ω · c m以上の半導電性物 質の微粒子が用いられている。 As a material for forming such an antistatic film, conventionally, a specific resistance value (resistivity) such as IT 0 (Indium-Tin-Oxide), ATO (Antimony-Tin-Oxide), or Zn 2 There 1 0 5 Omega · cm or more semiconductive substance particles are used.
また、 界面活性剤や 4級ァミ ンを、 S i 0 2中に添加するか、 あるい は S i 0 2膜上に塗布することにより、 イオン導電性を付与する方法も 一般に知られている。 Further, a surfactant or quaternary § Mi emissions, either added during the S i 0 2, by some have the be coated on S i 0 2 film, is generally known a method of imparting ionic conductivity I have.
しかしながら、 このような帯電防止膜は、 カラー陰極線管のネック内 壁部のような、 真空外囲器内に配置される絶縁部材に設けられる帯電防 止膜として、 十分に満足のいくものではなかった。 すなわち、 I T Oや A T Oのような半導電性の微粒子から成る帯電防 止膜は、 抵抗値 (表面抵抗値) の膜厚依存性が大きいため、 表面抵抗値 を最も好ましい範囲である 1 0 1 ()〜 1 0 1 2 Ω / c m 2に制御するには、 膜厚を極めて精確に制御する必要があった。 そして、 スプレーコ一トや 刷毛塗りの方法では、 帯電防止膜の膜厚を精密に制御することが難しい ため、 これらの方法を用いることができず、 製造コストが高いディ ップ コート法やスピンコート法を用いて、 帯電防止膜が形成されていた。 ま た、 デイ ツビング法やスピンコート法を用いる場合でも、 膜厚制御を厳 密に行う必要があり、 膜厚管理の手間や製造コストが大きくかかるとい う問題があった。 However, such an antistatic film is not sufficiently satisfactory as an antistatic film provided on an insulating member disposed in a vacuum envelope, such as an inner wall portion of a neck of a color cathode ray tube. Was. That is, antistatic Tomemaku consisting semi-conductive fine particles such as ITO or ATO, since a large film thickness dependency of the resistance value (surface resistance) is the most preferable range of the surface resistance value 1 0 1 ( ) To control the thickness to 010 12 Ω / cm 2 , it was necessary to control the film thickness extremely accurately. In addition, it is difficult to precisely control the thickness of the antistatic film by using a spray coating method or a brush coating method. The antistatic film was formed using the method. In addition, even when using the dipping method or the spin coating method, it is necessary to strictly control the film thickness, and there is a problem that the trouble of the film thickness control and the production cost are large.
さらに、 従来から用いられているイオン導電性を有する膜は、 抵抗値 の膜厚依存性は小さいが、 温度や湿度などの環境に対する依存性が大き いため、 信頼性に乏しく、 特に真空管内部などの帯電防止膜としては用 いることができなかった。  Furthermore, the ion conductive film that has been used conventionally has a small dependence of the resistance value on the film thickness, but has a large dependence on the environment such as temperature and humidity. It could not be used as an antistatic film.
本発明は、 これらの問題を解決するためになされたもので、 抵抗値の 膜厚依存性が小さく、 さらに温度や湿度などの環境に対する依存性も小 さいため、 安定した帯電防止特性を有する帯電防止膜と、 そのような帯 電防止膜を簡便な塗布方法により形成することができる分散液、 および 帯電防止膜を備えた画像表示装置を提供することを目的とする。 発明の開示  The present invention has been made to solve these problems. Since the resistance value has a small dependency on the film thickness and also has a small dependence on the environment such as temperature and humidity, the charging device has stable antistatic characteristics. An object of the present invention is to provide an antistatic film, a dispersion capable of forming such an antistatic film by a simple coating method, and an image display device provided with the antistatic film. Disclosure of the invention
本発明の第 1の態様は、 請求項 1に記載するように、 1 0 6〜 1 0 9 Ω · c mの固有抵抗値を有する高抵抗性微粒子を主成分として含有する ことを特徴とする帯電防止用分散液である。 A first aspect of the present invention, as described in claim 1, characterized in that it contains a high resistivity particles having a specific resistance of 1 0 6 ~ 1 0 9 Ω · cm as a main component charged It is a dispersion for prevention.
この帯電防止用分散液を用いることにより、 抵抗値 (表面抵抗値) の 膜厚に対する依存性が小さいうえに環境依存性も小さく、 安定した帯電 防止性能を有する帯電防止膜を、 簡便な方法により形成することができ る。 By using this antistatic dispersion, the resistance (surface resistance) has a small dependence on the film thickness, as well as a small environmental dependence, and a stable charge. An antistatic film having antistatic properties can be formed by a simple method.
分散液中の高抵抗性微粒子の固有抵抗値が 1 0 6 Ω · c m未満の場合 には、 この分散液から得られる帯電防止膜の抵抗値が膜厚に大きく依存 することになり、 スプレーコートゃ刷毛塗りのような低コストで簡便な 方法では、 所望の安定した抵抗値を有する帯電防止膜を得ることができ ない。 反対に、 1 0 9 Ω · c mを越える固有抵抗値を有する微粒子を使 用した場合には、 十分な帯電防止性を有する膜が得られない。 When specific resistance of the high resistance fine particles in the dispersion is less than 1 0 6 Ω · cm is made that the resistance value of the antistatic film obtained from the dispersion is highly dependent on the film thickness, spray coating (4) A low-cost and simple method such as brush coating cannot provide an antistatic film having a desired stable resistance value. Conversely, 1 when a 0 exceeds 9 Omega · cm using a fine particle having an inherent resistance value is not a film having a sufficient antistatic property can be obtained.
本発明の帯電防止用分散液において、 請求項 2に記載するように、 高 抵抗性微粒子を、 パイロクロア型の結晶構造を有する五酸化アンチモン In the antistatic dispersion according to the present invention, as described in claim 2, the high-resistance fine particles are formed of antimony pentoxide having a pyrochlore-type crystal structure.
( S b 2 0 5 ) とすることができる。 パイロクロア型の結晶は、 立方晶May be (S b 2 0 5). Pyrochlore type crystals are cubic
(等軸晶) 系の構造を有し結晶の対称性が高いため、 多結晶状態でキヤ リア電子の移動に対する結晶配向の影響が少ない。 また、 結晶粒界の電 気抵抗が低いため、 1 0 6〜 1 0 9 Ω · c mの固有抵抗値を有する高抵 抗性微粒子を容易に得ることができる。 (Equiaxed) The crystal structure is high and the symmetry of the crystal is high, so the effect of crystal orientation on the transfer of carrier electrons in the polycrystalline state is small. Further, since electrical resistance of the grain boundary is low, it is possible to obtain a high resistance particles having a specific resistance of 1 0 6 ~ 1 0 9 Ω · cm easily.
また、 請求項 3に記載するように、 高抵抗性微粒子を、 S n 0 2、 I n 2 0 3、 S b 2 0 5、 Z n 0 2から選ばれる少なく とも 1種の半導電性 物質から成るコア層と、 このコア層の外周に形成された、 S i 0 2、 T i 0 2、 A 1 2 0 3、 Z r 0 2から選ばれる少なく とも 1種の絶縁性物質 から成る被覆層とを有する構造とすることができる。 このような構造の 微粒子においても、 1 0 6〜 1 0 9 Ω · c mの固有抵抗値を容易に実現 することができる。 Further, as described in claim 3, the high-resistance fine, S n 0 2, I n 2 0 3, S b 2 0 5, Z n 0 at least selected from 2 semiconductive one substance a core layer consisting of, the core layer periphery formed of, S i 0 2, T i 0 2, a 1 2 0 3, Z r 0 both least selected from consisting of one insulating material coating And a layer. Even in fine particle having such a structure, it is possible to easily realize a specific resistance of 1 0 6 ~ 1 0 9 Ω · cm.
さらに、 請求項 4に記載するように、 これら高抵抗性微粒子の粒径を、 5〜 1 0 O n mとすることができる。  Further, as described in claim 4, the particle diameter of these high-resistance fine particles can be 5 to 10 Onm.
本発明の第 2の態様は、 請求項 5に記載するように、 真空雰囲気中に 保持される絶縁基材の表面に形成される帯電防止膜であり、 1 0 6〜 1 09 Ω · c mの固有抵抗値を有する高抵抗性微粒子を主体として構成さ れることを特徴とする。 A second aspect of the present invention, as described in claim 5, an antistatic film formed on the surface of the insulating substrate to be held in a vacuum atmosphere, 1 0 6 -1 It is characterized by being composed mainly of high-resistance fine particles having a specific resistance of 09 Ω · cm.
この帯電防止膜において、 請求項 6に記載するように、 高抵抗性微粒 子を、 パイロクロア型の結晶構造を有する五酸化アンチモン ( S b20 5) とすることができる。 また、 請求項 7に記載するように、 高抵抗性 微粒子を、 S n02、 I n 20 a s S b205、 Z n02から選ばれる少な く とも 1種の半導電性物質から成るコア層と、 このコア層の外周に形成 された、 S i 02、 T i〇 2、 A 1203、 Z r〇 2から選ばれる少なく とも 1種の絶縁性物質から成る被覆層を有する構造とすることができる, さらに、 請求項 8に記載するように、 これら高抵抗性微粒子の粒径を、 5〜 1 0 O nmとすることができる。 In this antistatic film, as described in claim 6, the high-resistance fine particles may be an antimony pentoxide having a crystal structure of pyrochlore (S b 2 0 5). Further, as described in claim 7, the high-resistance fine particles, consisting of S n0 2, I n 20 as S b 2 0 5, Z n0 least for the at one semi-conductive material selected from the second core having a layer, the formed outer periphery of the core layer, the S i 0 2, T I_〇 2, a 1 2 0 3, Z R_〇 coating layer consisting of at least one insulating material selected from 2 The high-resistance fine particles may have a particle size of 5 to 10 O nm, as described in claim 8.
本発明の帯電防止膜は、 表面抵抗値の膜厚に対する依存性が小さいの で、 膜厚を精確にコン トロールする必要がなく、 したがってスプレー コートゃ刷毛塗りのような簡易な方法により形成することができる。 ここで、 本発明の帯電防止膜と従来の I TOや ATOの微粒子から成 る帯電防止膜のそれぞれについて、 膜厚と抵抗値 (表面抵抗値) との関 係を、 図 1に概略的に示す。 本発明の帯電防止膜は、 従来の帯電防止膜 に比べて、 抵抗値の膜厚に対する依存性が小さく、 所望の抵抗値が得ら れる膜厚の幅 (範囲) が広くなつている。  Since the antistatic film of the present invention has a small dependence of the surface resistance value on the film thickness, it is not necessary to control the film thickness precisely, and therefore, the antistatic film can be formed by a simple method such as spray coating and brush coating. Can be. Here, the relationship between the film thickness and the resistance value (surface resistance value) of each of the antistatic film of the present invention and the conventional antistatic film composed of fine particles of ITO or ATO is schematically shown in FIG. Show. The antistatic film of the present invention has a smaller dependence of the resistance value on the film thickness as compared with the conventional antistatic film, and the width (range) of the film thickness at which a desired resistance value is obtained is wider.
また、 本発明の帯電防止膜は、 安定した抵抗値を有し、 かつ抵抗値の 環境依存性も低いので、 真空管内部のような真空雰囲気中での使用も可 能である。 すなわち、 カラー陰極線管におけるネック内壁部の帯電防止 膜としてだけでなく、 フィールドェミッションディスプレイ (F E D) のスぺーサ一のような絶縁部材の帯電防止膜としてなど、 高電圧が印加 される真空管内部品の帯電防止膜として、 広く用いることができる。 本発明の第 3の態様は、 請求項 9に記載するように、 透光性のパネル を有し内部が真空に保持された真空外囲器と、 前記透光性パネルの内面 に形成された蛍光体層と、 前記真空外囲器の内部に配置された電子放出 手段とを備えた画像表示装置であり、 前記真空外囲器内に配置される絶 縁部材の表面に、 請求項 5記載の帯電防止膜を有することを特徴とする < 本発明の画像表示装置において、 請求項 1 0に記載するように、 帯電 防止膜の膜厚を 5 0〜 1 0 0 0 n mとすることが望ましい。 また、 請求 項 1 2に記載するように、 帯電防止膜が、 真空外囲器内に配置される絶 縁部材の表面積全体の 2 0 %以上を被覆するように構成することが望ま しい。 Further, since the antistatic film of the present invention has a stable resistance value and low environmental dependency of the resistance value, it can be used in a vacuum atmosphere such as inside a vacuum tube. In other words, not only as an antistatic film on the inner wall of the neck of a color cathode ray tube but also as an antistatic film on an insulating member such as a spacer in a field emission display (FED). It can be widely used as an antistatic film for products. According to a third aspect of the present invention, as described in claim 9, a translucent panel is provided. A vacuum envelope whose inside is held in a vacuum, a phosphor layer formed on the inner surface of the translucent panel, and electron emission means arranged inside the vacuum envelope. An image display device, comprising: an insulating member according to claim 5 on a surface of an insulating member disposed in the vacuum envelope. As described in 0, the thickness of the antistatic film is desirably 50 to 100 nm. Further, as described in claim 12, it is desirable that the antistatic film be configured to cover 20% or more of the entire surface area of the insulating member disposed in the vacuum envelope.
本発明の画像表示装置においては、 真空外囲器内に配置される絶縁部 材の表面に、 膜厚や環境条件に対する抵抗値の依存性が小さく、 安定し た所望の抵抗値を有する帯電防止膜が形成されているので、 電圧印加に よる放出電子の軌道変形や管内スパーク、 あるいはリーク電流による表 示特性の劣化などが生じず、 良好な表示特性が示される。 図面の簡単な説明  In the image display device of the present invention, the surface of the insulating member disposed in the vacuum envelope has a small dependence of the resistance value on the film thickness and environmental conditions, and has a stable antistatic property having a desired resistance value. Since the film is formed, good display characteristics are exhibited without the occurrence of orbital deformation of emitted electrons due to the application of voltage, spark in the tube, or deterioration of display characteristics due to leak current. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の帯電防止膜と従来の帯電防止膜にそれそれについて、 膜厚と表面抵抗値との関係を概略的に示すグラフであり、  FIG. 1 is a graph schematically showing the relationship between the film thickness and the surface resistance value of the antistatic film of the present invention and the conventional antistatic film, respectively.
図 2は、 本発明の帯電防止膜の概略構成を示す断面図であり、 図 3は、 本発明の画像表示装置の第 1の実施例であるカラ一陰極線管 の概略構成を示す断面図であり、  FIG. 2 is a sectional view showing a schematic configuration of the antistatic film of the present invention, and FIG. 3 is a sectional view showing a schematic configuration of a color cathode ray tube which is a first embodiment of the image display device of the present invention. Yes,
図 4は、 本発明の画像表示装置の第 2の実施例である F E Dの概略構 成を示す断面図である。 発明を実施するための最良の形態  FIG. 4 is a sectional view showing a schematic configuration of an FED which is a second embodiment of the image display device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態について説明する。 なお、 本発明は 以下の実施形態に限定されるものではない。 Hereinafter, a preferred embodiment of the present invention will be described. Note that the present invention It is not limited to the following embodiment.
図 2は、 本発明に係わる帯電防止膜の概略構成を示す断面図である。 この図において、 符号 1は、 真空雰囲気中に保持される絶縁基材を示し、 その表面には、 1 06〜 1 09 Ω · c mの固有抵抗値 (抵抗率) を有す る高抵抗性微粒子から成る帯電防止膜 2が形成されている。 FIG. 2 is a sectional view showing a schematic configuration of the antistatic film according to the present invention. In this figure, reference numeral 1 denotes an insulating substrate which is held in a vacuum atmosphere, and on the surface thereof, the high resistance that Yusuke 1 0 6 -1 0 resistivity of 9 Omega · cm (the resistivity) An antistatic film 2 made of conductive fine particles is formed.
このような帯電防止膜 2は、 1 06〜 1 09 Ω · ο mの固有抵抗値を 有する高抵抗性微粒子を、 溶剤中に添加して混合し、 分散させた液 (分 散液) を、 絶縁基材 1上に塗布し乾燥した後、 400 °Cから 5 00 °Cの 温度で焼成することにより形成される。 溶剤としては、 メタノール、 ェ 夕ノール、 イソプロピルアルコール等のアルコール類、 エチレングリ コ一ルモノメチルエーテル、 エチレングリコールモノエチルエーテル等 のエーテル類、 エチレングリコ一ル、 プロピレングリコ一ル、 へキシレ ングリコール等のグリコール類、 およびテ トラヒ ドロフルフ リルアル コール、 N—メチルピロリ ドン等の複素環類のような有機溶剤を用いる ことができる。 また、 これらの溶剤中に公知の分散剤を添加することが できる。 Such antistatic layer 2, a high-resistance fine particles having a specific resistance of 1 0 6 ~ 1 0 9 Ω · ο m, added and mixed in a solvent, a liquid prepared by dispersing (min dispersion liquid) Is applied to the insulating base material 1, dried, and then fired at a temperature of 400 ° C. to 500 ° C. Examples of the solvent include alcohols such as methanol, ethanol, and isopropyl alcohol; ethers such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether; ethylene glycol, propylene glycol, and hexylene glycol. Organic solvents such as glycols and heterocycles such as tetrahydrofurfuryl alcohol and N-methylpyrrolidone can be used. A known dispersant can be added to these solvents.
1 06〜 1 09 Ω ■ c mの固有抵抗値を有する高抵抗性微粒子として は、 パイロクロア型の結晶構造を有する五酸化アンチモン ( S b 20 5) を使用することができる。 また、 S nOい l n 203、 S b 205、 Z n02から選ばれる少なく とも 1種の半導電性物質のコア層の外周に、 S i 02、 T i 02、 A 1203、 Z r 02から選ばれる少なく とも 1種 の絶縁性物質の被覆層が形成された構造の微粒子を使用することもでき る。 The high-resistance fine particles having a 1 0 6 ~ 1 0 9 Ω ■ resistivity of cm, can be used antimony pentoxide having a crystal structure of pyrochlore (S b 2 0 5). Further, the outer periphery of the S nO There ln 2 0 3, S b 2 0 5, Z n0 at least selected from 2 one semiconductive core layer material, S i 0 2, T i 0 2, A 1 2 0 3, Z r 0 at least selected from 2 can be used one kind of insulating fine particles of the coating layer formed structure of matter Ru.
これらの高抵抗性微粒子の粒径は、 5~ 100 nmとすることが望ま しい。 粒径が 5 nm未満では、 分散液の塗布の際の作業性が悪いため、 以下に記載するような所望の膜厚の帯電防止膜を得ることが難しい。 反 対に、 粒径が 1 0 0 n mを越える塌合には、 成膜性が不良となり帯電防 止膜の均一性が悪化するため、 好ましくない。 It is desirable that the particle diameter of these high resistance fine particles be 5 to 100 nm. If the particle size is less than 5 nm, the workability in applying the dispersion is poor, and it is difficult to obtain an antistatic film having a desired film thickness as described below. Anti On the other hand, when the particle size exceeds 100 nm, the film formability is poor and the uniformity of the antistatic film is deteriorated, which is not preferable.
分散液の塗布方法としては、 ディ ップコ一ト法ゃスビンコ一ト法の他 に、 スプレーコ一ト法ゃ刷毛塗りのような簡便な方法を採ることができ る。  As a method for applying the dispersion, a simple method such as a spray coating method and a brush coating method can be employed in addition to the dip coating method and the subbing method.
さらに、 こうして形成される帯電防止膜の表面抵抗値を最も好ましい 範囲 ( 1 0 1 °〜 1 0 1 2 Ω Ζ c m 2 ) に制御するために、 帯電防止膜の 膜厚は 5 0〜 1 0 0 O n mとすることが望ましい。 帯電防止膜の膜厚が 5 O n m未満の場合には、 表面抵抗値が高くなりすぎて所望の帯電防止 特性が得られない。 反対に、 膜厚が 1 0 0 0 n mを越えると、 表面抵抗 値が低くなりすぎて所望の帯電防止性が得られないばかりでなく、 膜に クラックが入りやすい。 Furthermore, in this way to control the most preferred range of the surface resistance of the antistatic film formed (1 0 1 ° ~ 1 0 1 2 Ω Ζ cm 2), thickness of the antistatic film 5 0-1 0 Desirably, it is 0 O nm. If the thickness of the antistatic film is less than 5 O nm, the surface resistance becomes too high and desired antistatic properties cannot be obtained. Conversely, if the film thickness exceeds 100 nm, the surface resistance becomes too low to obtain the desired antistatic properties, and the film tends to crack.
また、 帯電防止膜 2の被覆率は、 真空雰囲気中に保持されている絶縁 基材 1の表面積全体の 2 0 %以上とすることが望ましい。 帯電防止膜 2 の被覆率が 2 0 %未満である場合には、 所望の帯電防止性が得られない, 本発明の帯電防止膜は、 表面抵抗値の膜厚に対する依存性が小さいの で、 所望の抵抗値を得るために膜厚をそれほど精確にコントロールする 必要がなく、 したがってスプレーコー トや刷毛塗りのような簡易な方法 により形成することができる。 そしてこの帯電防止膜は、 所望の安定し た抵抗値を有し、 かつ真空外囲器内部のような真空雰囲気中でも良好に 使用することができる。  Further, the coverage of the antistatic film 2 is desirably 20% or more of the entire surface area of the insulating substrate 1 held in a vacuum atmosphere. If the coverage of the antistatic film 2 is less than 20%, desired antistatic properties cannot be obtained.The antistatic film of the present invention has a small dependence of the surface resistance value on the film thickness. It is not necessary to control the film thickness so precisely to obtain a desired resistance value, and therefore, the film can be formed by a simple method such as spray coating or brush coating. The antistatic film has a desired and stable resistance value and can be favorably used in a vacuum atmosphere such as inside a vacuum envelope.
次に、 このような帯電防止膜を有する画像表示装置の実施例として、 力ラ一陰極線管およびフィール ドエミヅシヨンディ スプレイ ( F E D ) について、 図面に基づいて説明する。  Next, as examples of an image display device having such an antistatic film, a cathode ray tube and a field emission display (FED) will be described with reference to the drawings.
第 1の実施形態であるカラー陰極線管は、 図 3に示すように、 ガラス 製のパネル 3とファンネル 4およびネヅク 5から成る外囲器を有してい る。 パネル 3の内面には蛍光体スクリーン 6が形成され、 さらにその内 側に、 蛍光体スクリーン 6に対向してシャ ドウマスク 7が配置されてい る。 なお、 輝度やコン トラス ト、 発光色度などの改善のために、 蛍光体 スクリーン 6 とパネル 3 との間に、 蛍光体の発光色に対応した色の力 ラ一フィルター (図示を省略。 ) を設けることができる。 As shown in FIG. 3, the color cathode ray tube according to the first embodiment has a glass panel 3 and an envelope including a funnel 4 and a neck 5. You. A phosphor screen 6 is formed on the inner surface of the panel 3, and a shadow mask 7 is arranged inside the panel 3 so as to face the phosphor screen 6. In order to improve brightness, contrast, emission chromaticity, etc., a color filter corresponding to the emission color of the phosphor (not shown) is provided between the phosphor screen 6 and the panel 3. Can be provided.
一方、 ガラス製のネック 5の内部には、 電子ビーム 8 aを放出する電 子銃 8が配置されている。 そして、 ネック 5の内壁部には、 前記した帯 電防止膜 9が内壁面全体の 2 0 %以上の面積を覆うように形成され、 端 部が導電層 (図示を省略。 ) に接続されている。 また、 ファンネル 4の 内側には、 電子銃 8から放出される電子ビーム 8 aを外部磁界から遮蔽 するために、 インナ一シールド 1 0が配置され、 ファンネル 4の外側に は、 発生する磁界で電子ビーム 8 aを偏向させる偏向装置 1 1が配置さ れている。  On the other hand, an electron gun 8 for emitting an electron beam 8a is arranged inside a glass neck 5. The antistatic film 9 is formed on the inner wall of the neck 5 so as to cover at least 20% of the entire inner wall, and the end is connected to a conductive layer (not shown). I have. An inner shield 10 is disposed inside the funnel 4 to shield the electron beam 8a emitted from the electron gun 8 from an external magnetic field, and an outer magnetic field is generated outside the funnel 4 by the generated magnetic field. A deflecting device 11 for deflecting the beam 8a is arranged.
このカラ一陰極線管においては、 ネック 5内壁部のガラス基材上に、 1 0 6〜 1 0 9 Ω · c mの固有抵抗値を有する高抵抗性微粒子から成り、 安定した所望の特性 (表面抵抗値) を有する帯電防止膜 9が形成されて いるので、 高電圧印加による放出電子の軌道変形や管内スパークあるい はリーク電流による表示特性の劣化が生じない。 In this color one cathode ray tube, on a glass substrate of the neck 5 internal wall, 1 0 consists of 6 to the high-resistance fine particles having a specific resistance of 1 0 9 Omega · cm, a stable desired properties (surface resistance Since the antistatic film 9 having the following value is formed, the orbital deformation of emitted electrons due to the application of a high voltage and the deterioration of display characteristics due to sparks in the tube or leak current do not occur.
本発明の画像表示装置の第 2の実施形態である F E Dにおいては、 図 4に示すように、 電子放出側の基板 1 2 と発光側の基板 1 3とが、 所定 の間隔をおいて平行に対向配置され、 内部が高真空に保持されている。 電子放出側の基板 1 2においては、 シリコン等の基板上に複数の冷陰極 型電子放出素子 1 4が形成されている。 また、 発光側の基板 1 3は、 ガ ラスパネル 1 5を有し、 このガラスパネル 1 5の電子放出素子 1 4と対 向する面に、 蛍光体スクリーン 1 6が形成され、 蛍光体スクリーン 1 6 とガラスパネル 1 5との間に、 蛍光体の発光色に対応したカラ一フィル 夕一 (図示を省略。 ) が設けられている。 In the FED according to the second embodiment of the image display device of the present invention, as shown in FIG. 4, the substrate 12 on the electron emission side and the substrate 13 on the light emission side are arranged in parallel at a predetermined interval. They are arranged facing each other, and the inside is kept at a high vacuum. In the substrate 12 on the electron emission side, a plurality of cold cathode type electron emission elements 14 are formed on a substrate such as silicon. The light-emitting side substrate 13 has a glass panel 15, and a phosphor screen 16 is formed on a surface of the glass panel 15 facing the electron-emitting device 14. Color filter corresponding to the emission color of the phosphor An evening (not shown) is provided.
さらに、 ガラスパネル 1 5などの重量並びに大気圧によってシリコン 基板などに加わる荷重を支えるために、 電子放出側の基板 1 2 と発光側 の基板 1 3との間には、 スぺ一サ一 1 7が配設されている。 スぺ一サー 1 7は、 平板形 (断面 I字形) 、 断面十字形、 断面 L字形などの絶縁部 材 1 8を有し、 その表面に、 前記した帯電防止膜 1 9が全体の 2 0 %以 上の面積を覆うように形成されている。 そして、 この帯電防止膜 1 9の 端部は導電層 (図示を省略。 ) に接続されている。  In addition, in order to support the weight of the glass panel 15 and the like and the load applied to the silicon substrate and the like due to the atmospheric pressure, a space between the substrate 12 on the electron emission side and the substrate 13 on the light emission side is required. 7 are arranged. The spacer 17 has an insulating member 18 such as a flat plate (I-shaped cross-section), a cross-shaped cross-section, and an L-shaped cross-section. % Or more. The end of the antistatic film 19 is connected to a conductive layer (not shown).
第 2の実施形態の F E Dにおいては、 スぺ一サ一 1 7をなす絶縁性基 材 1 8の表面に、 1 0 6〜 1 0 9 Ω · c mの固有抵抗値を有する高抵抗 性微粒子から成り、 安定した所望の特性を有する帯電防止膜が形成され ているので、 高電圧印加による放出電子の軌道変形や管内スパークある いはリーク電流による表示特性の劣化が生じない。 In the FED of the second embodiment, the surface of the insulating substrate 1 8 forming the scan Bae colonel one 1 7, a high-resistance fine particles having a specific resistance of 1 0 6 ~ 1 0 9 Ω · cm As a result, since the antistatic film having stable and desired characteristics is formed, the orbital deformation of emitted electrons due to the application of a high voltage and the deterioration of display characteristics due to sparks in the tube or leak current do not occur.
次に、 本発明を具体的実施例に基づいてさらに説明する。 なお、 %は いずれも重量%である。  Next, the present invention will be further described based on specific examples. All percentages are by weight.
実施例 1 Example 1
まず、 以下の組成を有する帯電防止用分散液 A (以下、 分散液 Aと示 す。 ) を調製した。  First, an antistatic dispersion A having the following composition (hereinafter referred to as dispersion A) was prepared.
五酸化アンチモン (パイロクロア結晶形) (粒径 2 0 n m ) … 1 . 0 % ェ夕ノール 9 9 . 0 % この分散液 Aを、 1 5ィンチカラ一陰極線管のネック部 (外径 2 2 . 5 m m ) の内壁面に、 管軸方向に沿って約 1 5 m mの長さに亘つて刷毛 塗りし、 次いで約 4 5 0 °Cの温度で加熱し焼成することにより、 膜厚 3 0 0 n mの帯電防止膜を形成した。 Antimony pentoxide (pyrochlore crystalline form) (particle size: 20 nm)… 1.0% Ethanol 99.0% Dispersion A was added to the neck of a 15-inch single-cathode CRT (outer diameter 22.5 (mm) along the tube axis along a length of about 15 mm with a brush, and then heated and fired at a temperature of about 450 ° C to obtain a film thickness of 300 nm. Was formed.
また、 比較例 1 として、 以下の組成で帯電防止用分散液 B (以下、 分 散液 Bと示す。 ) を調製し、 この分散液 Bを用いて実施例 1と同様にし て、 カラ一陰極線管のネック部の内壁面に帯電防止膜 (膜厚 1 0 0 n m) を形成した。 As Comparative Example 1, an antistatic dispersion B (hereinafter, referred to as dispersion B) having the following composition was prepared, and this dispersion B was used in the same manner as in Example 1. Then, an antistatic film (100 nm thick) was formed on the inner wall surface of the neck of the empty cathode ray tube.
AT 0 (粒径 1 0 nm) 1. 0% ェ夕ノ一ル 99. 0 % 実施例 2  AT 0 (particle size 10 nm) 1.0%
粒径 5 0 nmの A T 0微粒子の表面に、 ゾル—ゲル法により S i 02 から成る被覆層 (膜厚 l nm) を形成し、 複合微粒子 C (以下、 微粒子 Cと示す。 ) を作製した。 得られた微粒子 Cの固有抵抗を測定したとこ ろ、 1 08Q ' cmであった。 On the surface of the particle size 5 0 nm of AT 0 microparticles, sol - coating layer consisting of S i 0 2 (thickness l nm) was formed by a gel method, producing the composite fine particles C (hereinafter, referred to as fine particles C.) did. The resulting Toko filtrate obtained by measuring the resistivity of the fine particles C, was 1 0 8 Q 'cm.
次いで、 この微粒子 Cを用いて以下の組成で帯電防止用分散液 D (以 下、 分散液 Dと示す。 ) を調製した後、 この分散液 Dを使用し実施例 1 と同様にして、 カラ一陰極線管のネック部の内壁面に帯電防止膜 (膜厚 1 50 nm) を形成した。  Next, an antistatic dispersion D (hereinafter, referred to as a dispersion D) having the following composition was prepared using the fine particles C, and the dispersion D was used in the same manner as in Example 1 to prepare a dispersion. An antistatic film (film thickness: 150 nm) was formed on the inner wall surface of the neck of the cathode ray tube.
微粒子 C 1. 0% ェタノール 99. 0% 次に、 実施例 1、 2および比較例 1で得られた帯電防止膜を有する力 ラー陰極線管について、 コンパージヱンス ドリフ ト特性 (変化量) 、 管 内スパークの有無、 およびリーク電流によるフォ一カス特性の劣化の有 無をそれそれ調べた。 これらの評価結果を表 1に示す。  Fine particles C 1.0% Ethanol 99.0% Next, for the cathode ray tube having an antistatic film obtained in Examples 1 and 2 and Comparative Example 1, the compassance drift characteristics (change amount), spark in the tube The presence and absence of deterioration of the focus characteristics due to leakage current were examined. Table 1 shows the results of these evaluations.
【表 1】  【table 1】
Figure imgf000012_0001
表 1から明らかなように、 実施例 1および 2で得られた帯電防止膜を 有するカラー陰極線管は、 コンパージエンス ドリフ ト特性、 管内スパー クの有無およびリーク電流によるフォーカス劣化特性のそれそれにおい て、 比較例 1で得られたカラ一陰極線管に比べて格段に優れている。 実施例 3
Figure imgf000012_0001
As is clear from Table 1, the antistatic films obtained in Examples 1 and 2 were The color cathode-ray tube that is equipped with the cathode-ray tube has much better performance than the color cathode-ray tube obtained in Comparative Example 1 in terms of the compactness drift characteristics, the presence or absence of sparks in the tube, and the focus deterioration characteristics due to leakage current. . Example 3
実施例 1で調製された分散液 Aを、 F E D用低アルカリガラス製のス ぺ一サ一部材の表面全体に、 刷毛塗りにより塗布し、 次いで約 4 5 0 °C の温度で加熱し焼成することにより、 膜厚 5 0 O n mの帯電防止膜を形 成した。  The dispersion A prepared in Example 1 is applied by brush coating to the entire surface of a low-alkali glass FED sensor member, and then heated and fired at a temperature of about 450 ° C. As a result, an antistatic film having a thickness of 50 O nm was formed.
次いで、 このスぺ一サーを用いて公知の方法で F E Dを組立て作製し た。 すなわち、 複数の電界放出型電子源を備えたリアプレートと、 蛍光 体層が所定のパターンで配列 ·形成されたフェイスプレートとを、 前記 した帯電防止膜を有するスぺ一サーを介して対向 ·配置し、 周縁部に側 板等を接合し封着することにより、 F E Dを作製した。  Next, an FED was assembled and manufactured by a known method using this spacer. That is, a rear plate having a plurality of field emission electron sources and a face plate having phosphor layers arranged and formed in a predetermined pattern are opposed to each other via a spacer having the above-described antistatic film. The FED was manufactured by arranging and sealing a side plate and the like to the periphery.
また、 比較例 2として、 前記した分散液 Bを用い、 実施例 3と同様に してスぺ一サ一部材の表面に帯電防止膜を形成し、 さらにこれを用いて F E Dを作製した。  Further, as Comparative Example 2, an antistatic film was formed on the surface of a sensor member in the same manner as in Example 3 using the above-mentioned dispersion liquid B, and an FED was produced using the antistatic film.
実施例 4 Example 4
実施例 2で調製された分散液 Dを用いて、 実施例 3 と同様にしてス ぺーサ一部材の表面に帯電防止膜を形成し、 さらにこれを用いて F E D を作製した。  Using the dispersion D prepared in Example 2, an antistatic film was formed on the surface of a spacer member in the same manner as in Example 3, and an FED was produced using the antistatic film.
次に、 実施例 3、 4および比較例 2で得られた F E Dについて、 電子 ビームの輝点のずれ特性、 管内スパークの有無、 およびリーク電流の有 無をそれそれ調べた。 これらの評価結果を表 2に示す。  Next, with respect to the FEDs obtained in Examples 3 and 4 and Comparative Example 2, the shift characteristics of the bright spot of the electron beam, the presence or absence of a spark in the tube, and the presence or absence of a leak current were examined. Table 2 shows the results of these evaluations.
【表 2】 実施例 3 実施例 4 比較例 2 電子ヒ、、 -ムの輝点のずれ なし なし 部分的にあり 管内スパーク なし なし 部分的にあり リ-ク電流によるフォ-カス劣化 なし なし あり 表 2から明らかなように、 実施例 3および 4で得られた帯電防止膜を 有する F E Dは、 電子ビームの輝点のずれ特性、 管内スパーク特性、 お よびリーク電流の有無のそれそれにおいて、 比較例 2で得られたカラ一 陰極線管に比べて優れている。 産業上の利用可能性 [Table 2] Example 3 Example 4 Comparative Example 2 Displacement of bright spots of electron beam and electron beam No No Partial Yes Spark in tube No No Partial Yes Focus deterioration due to leak current No No Yes Thus, the FED having the antistatic film obtained in Examples 3 and 4 was obtained in Comparative Example 2 in terms of the shift characteristics of the luminescent spot of the electron beam, the spark characteristics in the tube, and the presence or absence of the leak current. It is superior to a color cathode ray tube. Industrial applicability
以上の説明から明らかなように、 本発明の帯電防止用分散液によれば, 抵抗値の膜厚に対する依存性および環境に対する依存性が小さく、 安定 した性能を有する帯電防止膜を、 スプレーコートや刷毛塗りのような簡 便な方法により形成することができる。 そして、 本発明の帯電防止膜は、 真空管内部のような真空雰囲気中での使用も可能である。  As is clear from the above description, according to the antistatic dispersion of the present invention, the dependency of the resistance value on the film thickness and the environment is small, and the antistatic film having stable performance can be formed by spray coating or the like. It can be formed by a simple method such as brushing. The antistatic film of the present invention can be used in a vacuum atmosphere such as inside a vacuum tube.
さらに、 本発明の画像表示装置においては、 真空外囲器内に配置され る絶縁部材の表面に、 抵抗値の膜厚や環境条件に対する依存性が小さく、 安定した所望の抵抗値を有する帯電防止膜が形成されているので、 電圧 印加による放出電子の軌道変形や管内スパークあるいはリーク電流によ る表示特性の劣化が生じることがなく、 安定した良好な表示特性が示さ れる。 したがって、 産業上の価値が極めて大きい。  Further, in the image display device of the present invention, the surface of the insulating member arranged in the vacuum envelope has a small dependence of the resistance value on the film thickness and environmental conditions, and has a stable antistatic property having a desired resistance value. Since the film is formed, the display characteristics are not degraded due to the orbital deformation of the emitted electrons due to the application of the voltage and the spark or leak current in the tube, and stable and good display characteristics are exhibited. Therefore, its industrial value is extremely large.

Claims

請求の範囲  The scope of the claims
1. 1 06〜 1 09 Ω · ο mの固有抵抗値を有する高抵抗性微粒子を、 主成分として含有することを特徴とする帯電防止用分散液。 1. 1 0 6 ~ 1 0 9 Ω · ο high resistivity particles having a specific resistance value of m, antistatic dispersion characterized by containing as a main component.
2. 前記高抵抗性微粒子が、 パイロクロア型の結晶構造を有する五酸化 アンチモン ( S b 205 ) であることを特徴とする請求項 1記載の帯電 防止用分散液。 2. The high resistance particles, antistatic dispersion according to claim 1, characterized in that antimony pentoxide having a crystal structure of pyrochlore (S b 2 0 5).
3. 前記高抵抗性微粒子が、 S n02、 l n 203、 S b 205、 Z n02 から選ばれる少なく とも 1種の半導電性物質から成るコア層と、 該コア 層の外周に形成された、 S i 02、 T i 02、 A 1203 s Z r 02から 選ばれる少なく とも 1種の絶縁性物質から成る被覆層を有することを特 徴とする請求項 1記載の帯電防止用分散液。 3. periphery of the high-resistance fine particles, S n0 2, ln 2 0 3, S b 2 0 5, Z n0 at least selected from 2 core layer comprising one of the semi-conductive material and, the core layer formed, S i 0 2, T i 0 2, a 1 2 0 3 s Z r 0 claims to feature in that it has at least selected from 2 coating layer comprising one of the insulating material The antistatic dispersion according to 1.
4. 前記高抵抗性微粒子の粒径が 5〜 1 00 nmであることを特徴とす る請求項 1記載の帯電防止用分散液。  4. The antistatic dispersion according to claim 1, wherein the high-resistance fine particles have a particle size of 5 to 100 nm.
5. 真空雰囲気中に保持される絶縁基材の表面に形成される帯電防止膜 であり、 1 06〜 1 09 Ω · c mの固有抵抗値を有する高抵抗性微粒子 を主体として構成されることを特徴とする帯電防止膜。 5. a antistatic film formed on the surface of the insulating substrate to be held in a vacuum atmosphere, and a high resistance particles having a specific resistance of 1 0 6 ~ 1 0 9 Ω · cm mainly An antistatic film, characterized in that:
6. 前記高抵抗性微粒子が、 パイロクロア型の結晶構造を有する五酸化 アンチモン ( S b 205 ) であることを特徴とする請求項 5記載の帯電 防止膜。 6. The high resistance fine particles, antimony pentoxide (S b 2 0 5) antistatic film according to claim 5, characterized in that a having a crystal structure of pyrochlore type.
7. 前記高抵抗性微粒子が、 S n02、 l n 203、 S b 205、 Z n 02 から選ばれる少なく とも 1種の半導電性物質から成るコア層と、 該コア 層の外周に形成された、 S i 02、 T i 02、 A 1203、 Z r 02から 選ばれる少なく とも 1種の絶縁性物質から成る被覆層を有することを特 徴とする請求項 5記載の帯電防止膜。 7. The high-resistance fine particles, the S n0 2, ln 2 0 3 , S b 2 0 5, Z n 0 at least selected from 2 and a core layer comprising one of the semi-conductive material, the core layer formed on the outer periphery, claims and S i 0 2, T i 0 2, a 1 2 0 3, feature that it has a Z r 0 both least selected from the covering layer consisting of one of the insulating material Item 6. The antistatic film according to Item 5.
8. 前記高抵抗性微粒子の粒径が 5〜 1 00 nmであることを特徴とす る請求項 5記載の帯電防止膜。 8. The antistatic film according to claim 5, wherein the high-resistance fine particles have a particle size of 5 to 100 nm.
9. 透光性のパネルを有し内部が真空に保持された真空外囲器と、 前記 透光性パネルの内面に形成された蛍光体層と、 前記真空外囲器の内部に 配置された電子放出手段とを備えた画像表示装置であり、 9. A vacuum envelope having a translucent panel and the inside is kept in a vacuum, a phosphor layer formed on an inner surface of the translucent panel, and disposed inside the vacuum envelope. An image display device comprising electron emission means,
前記真空外囲器内に配置される絶縁部材の表面に、 請求項 5記載の帯 電防止膜を有することを特徴とする画像表示装置。  An image display device, comprising: the antistatic film according to claim 5 on a surface of an insulating member arranged in the vacuum envelope.
1 0. 前記帯電防止膜の膜厚が 50〜 1 000 nmであることを特徴と する請求項 9記載の画像表示装置。  10. The image display device according to claim 9, wherein the antistatic film has a thickness of 50 to 1,000 nm.
1 1. 前記帯電防止膜が、 前記絶縁部材の表面積の 20 %以上を被覆し て成ることを特徴とする請求項 9記載の画像表示装置。  10. The image display device according to claim 9, wherein the antistatic film covers at least 20% of a surface area of the insulating member.
PCT/JP2001/007863 2000-09-11 2001-09-11 Dispersion for preventing electrification and antistatic film, and image display device WO2002022757A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01963575A EP1323804A4 (en) 2000-09-11 2001-09-11 Dispersion for preventing electrification and antistatic film, and image display device
KR10-2003-7003499A KR100534508B1 (en) 2000-09-11 2001-09-11 Dispersion for preventing electrification and antistatic film, and image display device
US10/363,267 US6992431B2 (en) 2000-09-11 2001-09-11 Dispersion for preventing electrification antistatic film and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000275197A JP2002080828A (en) 2000-09-11 2000-09-11 Antistatic dispersion and antistatic film and image display
JP2000-275197 2000-09-11

Publications (1)

Publication Number Publication Date
WO2002022757A1 true WO2002022757A1 (en) 2002-03-21

Family

ID=18760855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007863 WO2002022757A1 (en) 2000-09-11 2001-09-11 Dispersion for preventing electrification and antistatic film, and image display device

Country Status (7)

Country Link
US (1) US6992431B2 (en)
EP (1) EP1323804A4 (en)
JP (1) JP2002080828A (en)
KR (1) KR100534508B1 (en)
CN (1) CN1282726C (en)
TW (1) TWI221622B (en)
WO (1) WO2002022757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592065B2 (en) * 2003-02-17 2009-09-22 Mitsubishi Gas Chemical Company Inc. Insulated ultrafine powder, process for producing same and resin composite material with high dielectric constant using same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8038786B2 (en) * 2003-03-17 2011-10-18 Hae-Wook Lee Composition for cutting off heat-ray, film formed therefrom, and method for forming the composition and the film
US8004173B2 (en) 2004-01-22 2011-08-23 Canon Kabushiki Kaisha Antistatic film, spacer using it and picture display unit
TWI232707B (en) * 2004-03-31 2005-05-11 Fujitsu Ltd Display
JP4824924B2 (en) * 2004-12-10 2011-11-30 株式会社ブリヂストン Antistatic filler, antireflection film having the filler, and display filter having the antireflection film
US7798764B2 (en) * 2005-12-22 2010-09-21 Applied Materials, Inc. Substrate processing sequence in a cartesian robot cluster tool
KR20070042648A (en) * 2005-10-19 2007-04-24 삼성에스디아이 주식회사 Electron emission display device
JP4187757B2 (en) * 2006-06-22 2008-11-26 日東電工株式会社 Printed circuit board
DE102010052889A1 (en) 2010-12-01 2012-06-06 Merck Patent Gmbh Semiconductive dielectric coatings and articles
JP2013004680A (en) * 2011-06-15 2013-01-07 Canon Inc Charged particle beam lens
JP6144470B2 (en) 2012-09-05 2017-06-07 浜松ホトニクス株式会社 Electron tube and method for manufacturing electron tube
JP5956292B2 (en) 2012-09-05 2016-07-27 浜松ホトニクス株式会社 Electron tube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301104A1 (en) * 1987-02-10 1989-02-01 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming electroconductive coat
US5189337A (en) * 1988-09-09 1993-02-23 Hitachi, Ltd. Ultrafine particles for use in a cathode ray tube or an image display face plate
JPH08114803A (en) * 1994-10-13 1996-05-07 Catalysts & Chem Ind Co Ltd Coating liquid for forming oriented film and liquid crystal display cell
US5785892A (en) * 1991-04-24 1998-07-28 Catalysts & Chemicals Industries Co., Ltd. Organo-antimony oxide sols and coating compositions thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101803A (en) * 1977-06-01 1978-07-18 Zenith Radio Corporation Arc suppression and static elimination system for a television crt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301104A1 (en) * 1987-02-10 1989-02-01 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming electroconductive coat
US5189337A (en) * 1988-09-09 1993-02-23 Hitachi, Ltd. Ultrafine particles for use in a cathode ray tube or an image display face plate
US5785892A (en) * 1991-04-24 1998-07-28 Catalysts & Chemicals Industries Co., Ltd. Organo-antimony oxide sols and coating compositions thereof
JPH08114803A (en) * 1994-10-13 1996-05-07 Catalysts & Chem Ind Co Ltd Coating liquid for forming oriented film and liquid crystal display cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1323804A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592065B2 (en) * 2003-02-17 2009-09-22 Mitsubishi Gas Chemical Company Inc. Insulated ultrafine powder, process for producing same and resin composite material with high dielectric constant using same
US8173051B2 (en) 2003-02-17 2012-05-08 Mitsubishi Gas Chemical Co., Inc. Insulated ultrafine powder, process for producing same and resin composite material with high dielectric constant using same
US8187710B2 (en) 2003-02-17 2012-05-29 Mitsubishi Gas Chemical Company, Inc. Insulated ultrafine powder, process for producing same and resin composite material with high dielectric constant using same

Also Published As

Publication number Publication date
EP1323804A4 (en) 2004-05-26
EP1323804A1 (en) 2003-07-02
KR20030041989A (en) 2003-05-27
US6992431B2 (en) 2006-01-31
US20040058148A1 (en) 2004-03-25
CN1454250A (en) 2003-11-05
CN1282726C (en) 2006-11-01
KR100534508B1 (en) 2005-12-08
JP2002080828A (en) 2002-03-22
TWI221622B (en) 2004-10-01

Similar Documents

Publication Publication Date Title
JP3340440B2 (en) Spacer structure for flat panel display and method of manufacturing the same
WO2002022757A1 (en) Dispersion for preventing electrification and antistatic film, and image display device
WO1998050936A2 (en) Tunable low secondary electron emission diamond-like coatings
US6509677B2 (en) Focusing electrode and method for field emission displays
EP1603150B1 (en) Electron emission device and manufacturing method thereof
US20070290602A1 (en) Image display device and manufacturing method of the same
JP3272764B2 (en) Cathode ray tube and method of manufacturing cathode ray tube
US20050264168A1 (en) Electron emission device and manufacturing method of the same
JP4457011B2 (en) Display device having spacer
KR20130052543A (en) Manufacturing method for plasma display panel
KR100298387B1 (en) Color cathod ray tube with electrificationn and reflection preventing function
US20100047441A1 (en) Method of manufacturing plasma display panel
KR101126470B1 (en) Plasma display panel manufacturing method
US6597103B1 (en) Display tube
KR101137605B1 (en) Method for manufacturing plasma display panel
US20080129186A1 (en) Image display device and spacer
US20080007151A1 (en) Image display device and spacer for use therein
JP2001093448A (en) Cathode-ray tube
JP2001196013A (en) Cathode-ray tube
KR20130010071A (en) Manufacturing method for plasma display panel
JP2008192489A (en) Image forming device and spacer used for it
JPS5918827B2 (en) electron gun
JPH07161307A (en) Electron gun and electron tube provided with electron gun
KR20000052230A (en) Electrode material for plasma display panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001963575

Country of ref document: EP

Ref document number: 10363267

Country of ref document: US

Ref document number: 1020037003499

Country of ref document: KR

Ref document number: 018154085

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037003499

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001963575

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037003499

Country of ref document: KR