WO2002003110A2 - Fibre bragg grating assembly - Google Patents

Fibre bragg grating assembly Download PDF

Info

Publication number
WO2002003110A2
WO2002003110A2 PCT/DE2001/002323 DE0102323W WO0203110A2 WO 2002003110 A2 WO2002003110 A2 WO 2002003110A2 DE 0102323 W DE0102323 W DE 0102323W WO 0203110 A2 WO0203110 A2 WO 0203110A2
Authority
WO
WIPO (PCT)
Prior art keywords
bragg grating
fiber bragg
fiber
carrier element
fibre
Prior art date
Application number
PCT/DE2001/002323
Other languages
German (de)
French (fr)
Other versions
WO2002003110A3 (en
Inventor
Ingolf Baumann
Original Assignee
Advanced Optics Solutions Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optics Solutions Gmbh filed Critical Advanced Optics Solutions Gmbh
Publication of WO2002003110A2 publication Critical patent/WO2002003110A2/en
Publication of WO2002003110A3 publication Critical patent/WO2002003110A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35303Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using a reference fibre, e.g. interferometric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients

Definitions

  • the invention relates to a fiber Bragg grating arrangement, in particular for use in telecommunications and sensors, consisting of at least one optical fiber cable, in the fiber of which at least one fiber Bragg grating is introduced and a holding device on which the fiber is attached prestressed fiber Bragg grid is attached.
  • fiber Bragg gratings are used for a wide variety of applications. For example in transmission and circuit technology, as tunable fiber lasers or in multiplexers. In order to ensure that the fiber Bragg grating works safely, ie to prevent the fiber Bragg grating from experiencing unwanted changes in wavelength due to temperature changes, measures for temperature stabilization or temperature compensation are necessary.
  • fiber Bragg gratings are also increasingly used in sensor technology to measure physical quantities such as strain, compression, pressure or temperature.
  • fiber Bragg gratings can be produced by exposing a fiber that is photosensitive to UV light to an interference pattern that is formed with UV light. This creates one permanent periodic change in the refractive index of the glass fiber, each change in refractive index representing a reflection point Depending on the wavelength radiated into the glass fiber with fiber Bragg grating, there is a constructive or destructive superposition of the reflected power components.
  • Excimer lasers or argon ion lasers for example, can be used as the source for the UV radiation.
  • the interference pattern can be formed with a phase mask or by beam splitters and deflecting mirrors. Since the condition of the constructive superimposition for the back reflection according to equation 1 is only fulfilled in a small wavelength range, fiber Bragg gratings are narrow-band band stops. The performance is reflected in this narrow band.
  • the Bragg wavelength of a grating can be determined with:
  • the period length changes and, due to the optoelastic effect, also the mean effective refractive index of the grating. Both effects result in a change in the Bragg wavelength.
  • thermo-optical effect which changes the refractive index in the fiber Bragg grating and the length of the fiber, which changes the distances between the individual reflection points in the Bragg grating.
  • the physical principle on which the arrangement according to the invention is based consists in using a holder, whose thermal behavior specifically changes the mechanical stress of the fiber Bragg grating.
  • a holder whose thermal behavior specifically changes the mechanical stress of the fiber Bragg grating.
  • fiber Bragg gratings are mounted on support materials that have a large coefficient of thermal expansion. When heated, the fiber with fiber Bragg grating is thus additionally stretched and the change in the Bragg wavelength of the grating is increased.
  • the disadvantage of this arrangement is that the elongation of the lattice is determined by the expansion coefficient of the carrier material and can therefore only be changed if a different material is used.
  • the temperature behavior can be determined using the dimensioning can be adjusted through a suitable choice of materials and rod lengths, but for interesting settings, such as passive temperature stabilization of fiber Bragg grids, the arrangement is mechanically very long and unwieldy.
  • the holding device of the fiber Bragg grating arrangement consists of a carrier element made of a bimetal and is designed to be rigid over part of its length and that the fiber with the fiber Bragg grating at two fastening points on one Side of the support member is attached, wherein one of the attachment points is arranged on the rigid part.
  • the wavelength drift can be preset in a dimensionable range due to the thermal influence on the fiber Bragg grating.
  • the fiber Bragg grating By attaching the fiber Bragg grating on one of the two sides of the carrier element, either a compensation or an intensification of the temperature effect can be achieved.
  • the strength of the respective effect can be set with the ratio of the immovable to the freely movable part of the carrier element.
  • the fiber Bragg grating is attached to the side of the carrier element, the material of which has the smaller coefficient of expansion and thus curves concavely when heated, the prestressed fiber Bragg grating is relaxed when heated and compensation of the wavelength drift occurs Fiber Bragg grating due to the temperature change.
  • This version is intended for use in telecommunications as a passive, temperature-independent component.
  • the fiber Bragg grating is attached to the side of the carrier element, the material of which has the greater coefficient of expansion, the wavelength drift of the fiber Bragg grating is amplified by the additional mechanical tensile stress caused by the expansion of the material becomes. This can be used, for example, in temperature measurements to increase the temperature sensitivity of the fiber Bragg grating, so that this embodiment can be used in conjunction with corresponding evaluation units as a long-term stable temperature sensor.
  • the carrier element is fixedly connected over a predetermined length on the side opposite the fiber Bragg grating to a fastening element made of a rigid material.
  • the support element is designed to be rigid over a certain length, despite the change in temperature.
  • the fastening element is rectangular, its width is adapted to that of the carrier element and the carrier element is glued to the fastening element.
  • the carrier element must adhere firmly to the fastening element over the predetermined length.
  • the carrier element can be fixed rigidly over the predetermined length using a clamping device.
  • a particularly simple clamping device is a profile piece into which the carrier element is inserted and fixed over a partial length.
  • the attachment of the fiber with the fiber Bragg grating on the carrier element should advantageously be done by gluing at two attachment points, since this allows the distance between the two gluing points to be precisely defined.
  • the fiber Bragg grating can be used in different configurations.
  • the variability can be further increased by arranging a plurality of fibers with fiber Bragg gratings on a carrier element and / or by writing additional fiber Bragg gratings into one fiber. If several fibers are arranged on a carrier element, it should be noted that the fastening points for the fibers on the carrier element are at the same distance.
  • the invention will be explained in more detail below using an exemplary embodiment.
  • the drawing shows a basic illustration of an arrangement structure.
  • the fiber Bragg grating arrangement essentially consists of the optical waveguide cable 1 with the fiber 2, into which a fiber Bragg grating 3 is inscribed.
  • the fiber 2 is fastened at two fastening points 4, 5, which are at a predetermined distance from one another, on one side of the carrier element 6 under prestress.
  • the carrier element 6 is made of a bimetal and thus has two sides, the materials of which have different coefficients of expansion. Bimetals are simply commercially available and have often such a strong, thermally dependent bending that the temperature response of a fiber Bragg grating 3 can be overcompensated.
  • the carrier element 6 is fastened on a rigid fastening element 7 over a certain length. It has a rectangular shape, its width is adapted to that of the carrier element 6 and is made of such a steel or brass material which has approximately the same thermal expansion coefficient as the side of the carrier element 6 on which the fiber 2 is connected to the Fiber Bragg grid 3 is attached.
  • the carrier element 6 is glued onto the fastening element 7.
  • a full-surface adhesive layer 8 is not necessary, it is important that the carrier element 6 is firmly connected to the fastening element 7 over the precisely specified length.
  • a ceramic adhesive which has a certain basic elasticity can be used for the adhesive layer 8.
  • the fiber 2 with the fiber Bragg grating 3 is arranged with a fastening part 4 on the fastening element 7 and with the other fastening point 5 at a predetermined distance from the first fastening point 4 on the freely movable end 8 of the carrier element 6, so that the fiber -Bragg grating 3 undergoes a change in length with the slightest changes in temperature, which, with appropriate dimensioning of the arrangement and depending on which of the two sides of the bimetal carrier element 6 the fiber 2 is fastened with the fiber Bragg grating, either to compensate for the wavelength drift or leads to their reinforcement.
  • Fiber optic cable Fiber Bragg grating Fastening point of the fiber Fastening point of the fiber Carrier element Fastening element Adhesive layer Free moving end

Abstract

The invention relates to a fibre Bragg grating assembly, in particular, for use in telecommunications engineering and sensor engineering. Said assembly consists of at least one fibre-optic cable, into whose fibre at least one fibre Bragg grating is integrated and a retaining device, onto which the fibre containing the pretensioned fibre Bragg grating is fixed. The aim of the invention is to develop a cost-effective fibre Bragg grating, which has a simple construction and whose temperature behaviour can be adjusted during assembly, despite its small dimensions. To achieve this, the retaining device is configured as a support element (6) consisting of a bimetal and is flexurally rigid over one section of its length and the fibre (2) containing the fibre Bragg grating (3) is fixed at two fixing points (4, 5) on one side of the support element (6), one of said fixing points (4) being located on the flexurally rigid section (7).

Description

Faser-Bragg-Gitter-Anordnung Fiber Bragg grating arrangement
Die Erfindung betrifft eine Faser-Bragg-Gitter-Anordnung, insbesondere zum Einsatz in der Nachrichtentechnik und Senso- rik, bestehend aus wenigstens einem Lichtwellenleiterkabel, in dessen Faser mindestens ein Faser-Bragg-Gitter eingebracht ist und einer Haltevorrichtung, auf der die Faser mit vorgespanntem Faser-Bragg-Gitter befestigt ist.The invention relates to a fiber Bragg grating arrangement, in particular for use in telecommunications and sensors, consisting of at least one optical fiber cable, in the fiber of which at least one fiber Bragg grating is introduced and a holding device on which the fiber is attached prestressed fiber Bragg grid is attached.
In der Nachrichtentechnik kommen Faser-Bragg-Gitter für vielfältigste Anwendungsgebiete zum Einsatz. So beispielsweise in der übertragungs- und Schaltungstechnik, als abstimmbare Faserlaser oder auch in Multiplexern. Um eine sichere Arbeits- weise des Faser-Bragg-Gitters zu gewährleisten, das heißt zu verhindern, daß das Faser-Bragg-Gitter durch Temperaturänderungen ungewollte Wellenlängenänderungen erfährt, sind Maßnahmen zur Temperaturstabilisierung beziehungsweise Temperaturkompensation notwendig.In communication technology, fiber Bragg gratings are used for a wide variety of applications. For example in transmission and circuit technology, as tunable fiber lasers or in multiplexers. In order to ensure that the fiber Bragg grating works safely, ie to prevent the fiber Bragg grating from experiencing unwanted changes in wavelength due to temperature changes, measures for temperature stabilization or temperature compensation are necessary.
Andererseits werden Faser-Bragg-Gitter auch immer häufiger in der Sensortechnik zur Messung physikalischer Größen wie Dehnung, Stauchung, Druck oder auch Temperatur eingesetzt.On the other hand, fiber Bragg gratings are also increasingly used in sensor technology to measure physical quantities such as strain, compression, pressure or temperature.
Entsprechend der Ausführungen in DE 43 37 103 können Faser- Bragg-Gitter durch die Belichtung einer für UV-Licht photosensitiven Faser mit einem Interferenzmuster, welches mit UV- Licht gebildet wird, hergestellt werden. Dabei entsteht eine dauerhafte periodische Brechzahländerung der Glasfaser, wobei jede Brechzahländerung eine Reflexionsstelle darstellt. In Abhängigkeit der in die Glasfaser mit Faser-Bragg-Gitter eingestrahlten Wellenlänge kommt es zu einer konstruktiven oder destruktiven Überlagerung der reflektierten Leistungsanteile. Als Quelle für die UV-Strahlung können beispielsweise Excimer- Laser oder Argon-Ionenlaser verwendet werden. Das Interferenzmuster kann mit einer Phasenmaske oder durch Strahlteiler und Umlenkspiegel gebildet werden. Da die Bedingung der konstruk- tiven Überlagerung für die Rückreflexion nach Gleichung 1 nur in einem geringen Wellenlängenbereich erfüllt wird, sind Faser-Bragg-Gitter schmalbandige Bandsperren. In diesem schmalen Band wird die Leistung reflektiert.According to the statements in DE 43 37 103, fiber Bragg gratings can be produced by exposing a fiber that is photosensitive to UV light to an interference pattern that is formed with UV light. This creates one permanent periodic change in the refractive index of the glass fiber, each change in refractive index representing a reflection point Depending on the wavelength radiated into the glass fiber with fiber Bragg grating, there is a constructive or destructive superposition of the reflected power components. Excimer lasers or argon ion lasers, for example, can be used as the source for the UV radiation. The interference pattern can be formed with a phase mask or by beam splitters and deflecting mirrors. Since the condition of the constructive superimposition for the back reflection according to equation 1 is only fulfilled in a small wavelength range, fiber Bragg gratings are narrow-band band stops. The performance is reflected in this narrow band.
Die Bragg-Wellenlänge eines Gitters ist bestimmbar mit:The Bragg wavelength of a grating can be determined with:
^-BRΆGG ~ ' nm Λ^ -BRΆGG ~ ' n m Λ
^BRAGG Bragg-Wellenlänge des Gitters m Ordnung des Bragg-Gitters nm mittlere effektive Brechzahl^ BRAGG Bragg wavelength of the grating m order of the Bragg grating n m mean effective refractive index
Λ räumliche Periodenlänge des GittersΛ spatial period length of the grid
Wenn das Faser-Bragg-Gitter einem mechanischen Streß aus- gesetzt wird, ändert sich die Periodenlänge und durch den optoelastischen Effekt auch die mittlere effektive Brechzahl des Gitters . Durch beide Effekte kommt es zu einer Änderung der Bragg-Wellenlänge.If the fiber Bragg grating is subjected to mechanical stress, the period length changes and, due to the optoelastic effect, also the mean effective refractive index of the grating. Both effects result in a change in the Bragg wavelength.
Bei einer Änderung der Temperatur des Faser-Bragg-Gitters kommt es ebenfalls zu einer Änderung der Bragg-Wellenlänge. Ursache dafür ist im Wesentlichen der thermooptische Effekt, durch den sich die Brechzahl im Faser-Bragg-Gitter ändert und die Längenausdehnung der Faser, durch die sich die Abstände der einzelnen Reflexionsstellen im Bragg-Gitter ändern.When the temperature of the fiber Bragg grating changes, the Bragg wavelength also changes. The main reason for this is the thermo-optical effect, which changes the refractive index in the fiber Bragg grating and the length of the fiber, which changes the distances between the individual reflection points in the Bragg grating.
Das der erfindungsgemäßen Anordnung zugrundeliegende physikalische Prinzip besteht darin, eine Halterung zu verwenden, deren thermisches Verhalten den mechanischen Streß des Faser- Bragg-Gitters gezielt ändert. Verschiedene solche Anordnungen sind bereits bekannt. So werden Faser-Bragg-Gitter auf Trägermaterialien als Halterung montiert, die einen großen ther- mischen Ausdehnungskoeffizienten besitzen. Damit wird bei einer Erwärmung die Faser mit Faser-Bragg-Gitter zusätzlich gedehnt und es kommt zu einer Vergrößerung der Änderung der Bragg-Wellenlänge des Gitters.The physical principle on which the arrangement according to the invention is based consists in using a holder, whose thermal behavior specifically changes the mechanical stress of the fiber Bragg grating. Various such arrangements are already known. For example, fiber Bragg gratings are mounted on support materials that have a large coefficient of thermal expansion. When heated, the fiber with fiber Bragg grating is thus additionally stretched and the change in the Bragg wavelength of the grating is increased.
Nachteil dieser Anordnung ist, daß die Dehnung des Gitters durch den Ausdehnungskoeffizienten des Trägermaterials bestimmt wird und somit nur geändert werden kann, wenn ein anderes Material verwendet wird.The disadvantage of this arrangement is that the elongation of the lattice is determined by the expansion coefficient of the carrier material and can therefore only be changed if a different material is used.
Bei anderen bekannten Anordnungen wird versucht, die Änderung der Bragg-Wellenlänge des Gitters auf Grund der Änderung der Temperatur durch eine gezielte Änderung des mechanischen Stresses zu kompensieren. Problematisch ist dabei, daß das Trägermaterial einen negativen Ausdehnungskoeffizienten besit- zen muß, das heißt die Faser muß bei Erwärmung mechanisch entspannt werden. Diese Materialien sind teuer, schwer beschaffbar und weisen häufig einen stark nichtlinearen Ausdehnungskoeffizienten auf.In other known arrangements, attempts are made to compensate for the change in the Bragg wavelength of the grating due to the change in temperature by a specific change in the mechanical stress. The problem here is that the carrier material must have a negative coefficient of expansion, ie the fiber must be mechanically relaxed when heated. These materials are expensive, difficult to obtain and often have a highly non-linear expansion coefficient.
Des weiteren kommen zur Verringerung des mechanischen Stresses des Faser-Bragg-Gitters Anordnungen zum Einsatz, wie sie in ähnlicher Form in Pendeluhren zur Konstanthaltung der Pendellänge verwendet werden. Dabei werden zwei stabförmige Materialien mit unterschiedlichen positiven Temperaturkoeffizienten auf einer Seite miteinander verbunden. Das Material mit dem geringeren Ausdehnungskoeffizienten wird etwas länger gewählt und mit einer Faseraufnahme versehen. Wird anschließend die Faser mit dem Faser-Bragg-Gitter mit einer geeigneten Vorspannung auf die beiden Materialien aufgebracht, kann bei richtiger Dimensionierung zum Beispiel ein passiv temperaturstabilisiertes Faser-Bragg-Gitter hergestellt werden.In addition, arrangements are used to reduce the mechanical stress of the fiber Bragg grating, as are used in a similar form in pendulum clocks to keep the pendulum length constant. Two rod-shaped materials with different positive temperature coefficients are connected on one side. The material with the lower coefficient of expansion is chosen a little longer and provided with a fiber holder. If the fiber with the fiber Bragg grating is then applied to the two materials with a suitable pretension, a passively temperature-stabilized fiber Bragg grating can be produced if the dimensions are correct.
Bei diesen Anordnungen kann das Temperaturverhalten mit Hilfe der Dimensionierung durch geeignete Wahl der Materialien und der Stablängen zwar eingestellt werden, aber für interessante Einstellungen, wie beispielsweise eine passive Temperatur- Stabilisierung von Faser-Bragg-Gittern wird die Anordung e- chanisch sehr lang und unhandlich.With these arrangements, the temperature behavior can be determined using the dimensioning can be adjusted through a suitable choice of materials and rod lengths, but for interesting settings, such as passive temperature stabilization of fiber Bragg grids, the arrangement is mechanically very long and unwieldy.
Es ist deshalb Aufgabe der Erfindung, eine konstruktiv einfach aufgebaute und kostengünstige Faser-Bragg-Gitter-Anordnung zu entwickeln, die bei kleiner Baugröße ein bei der Konfektionie- rung einstellbares Temperaturverhalten realisieren kann.It is therefore an object of the invention to develop a structurally simple and inexpensive fiber Bragg grating arrangement which, with a small size, can implement a temperature behavior which can be adjusted during assembly.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, daß die Haltevorrichtung der Faser-Bragg-Gitter-Anordnung aus einem Trägerelement aus einem Bimetall besteht und über einen Teil seiner Länge biegesteif ausgebildet ist und daß die Faser mit dem Faser-Bragg-Gitter an zwei Befestigungsstellen auf einer Seite des Trägerelementes befestigt ist, wobei eine der Befestigungsstellen auf dem biegesteifen Teil angeordnet ist.According to the invention the object is achieved in that the holding device of the fiber Bragg grating arrangement consists of a carrier element made of a bimetal and is designed to be rigid over part of its length and that the fiber with the fiber Bragg grating at two fastening points on one Side of the support member is attached, wherein one of the attachment points is arranged on the rigid part.
Mit der erfindungsgemäßen Sensoranordnung wird erreicht, daß die Wellenlängendrift aufgrund des thermischen Einflusses auf das Faser-Bragg-Gitter in einem dimensionierbaren Bereich voreinstellbar ist. Dabei kann durch die Befestigung des Faser-Bragg-Gitters auf einer der beiden Seiten des Träger- elementes entweder eine Kompensation oder eine Verstärkung des Temperatureffektes erreicht werden. Mit dem Verhältnis von unbeweglichem zu frei beweglichem Teil des Trägerelementes kann die Stärke des jeweiligen Effektes eingestellt werden.With the sensor arrangement according to the invention it is achieved that the wavelength drift can be preset in a dimensionable range due to the thermal influence on the fiber Bragg grating. By attaching the fiber Bragg grating on one of the two sides of the carrier element, either a compensation or an intensification of the temperature effect can be achieved. The strength of the respective effect can be set with the ratio of the immovable to the freely movable part of the carrier element.
Wird das Faser-Bragg-Gitter auf der Seite des Trägerelementes befestigt, dessen Material den kleineren Ausdehnungskoeffizient aufweist und sich somit bei Erwärmung konkav krümmt, wird das vorgespannt befestigte Faser-Bragg-Gitter bei Erwärmung entspannt und es tritt eine Kompensation der Wellenlän- gendrift des Faser-Bragg-Gitters durch die Temperaturänderung ein. Diese Ausführung ist für den Einsatz in der Nachrichtentechnik als passives temperaturunabhängiges Bauelement vorgesehen. Erfolgt die Befestigung des Faser-Bragg-Gitters auf der Seite des Trägerelementes, dessen Material den größeren Ausdehnungskoeffizienten aufweist, kommt es zu einer Verstärkung der Wellenlängendrift des Faser-Bragg-Gitters durch die zusätzli- ehe mechanische Zugspannung, die durch die Ausdehnung des Materials hervorgerufen wird. Dies kann zum Beispiel bei Temperaturmessungen zur Erhöhung der Temperaturempfindlichkeit des Faser-Bragg-Gitters genutzt werden, so daß diese Ausführungsform in Verbindung mit entsprechenden Auswerteeinheiten als langzeitstabiler Temperatursensor einsetzbar ist.If the fiber Bragg grating is attached to the side of the carrier element, the material of which has the smaller coefficient of expansion and thus curves concavely when heated, the prestressed fiber Bragg grating is relaxed when heated and compensation of the wavelength drift occurs Fiber Bragg grating due to the temperature change. This version is intended for use in telecommunications as a passive, temperature-independent component. If the fiber Bragg grating is attached to the side of the carrier element, the material of which has the greater coefficient of expansion, the wavelength drift of the fiber Bragg grating is amplified by the additional mechanical tensile stress caused by the expansion of the material becomes. This can be used, for example, in temperature measurements to increase the temperature sensitivity of the fiber Bragg grating, so that this embodiment can be used in conjunction with corresponding evaluation units as a long-term stable temperature sensor.
Durch die Einstellbarkeit des Temperaturverhaltens bei der Konfektionierung des Faser-Bragg-Gitters können des weiteren Toleranzen im thermischen Verhalten sowohl des Faser-Bragg- Gitters als auch des Trägerelementes kompensiert werden.Due to the adjustability of the temperature behavior when assembling the fiber Bragg grating, tolerances in the thermal behavior of both the fiber Bragg grating and the carrier element can also be compensated for.
Nach einer vorzugsweisen Ausführungsform der erfindungsgemäßen Anordnung ist das Trägerelement über eine vorgegebene Länge auf der dem Faser-Bragg-Gitter gegenüberliegenden Seite mit einem Befestigungselement aus einem starren Material fest verbunden .According to a preferred embodiment of the arrangement according to the invention, the carrier element is fixedly connected over a predetermined length on the side opposite the fiber Bragg grating to a fastening element made of a rigid material.
Damit wird auf technologisch einfache und kostengünstige Art erreicht, daß das Trägerelement über eine bestimmte Länge, trotz Temperaturänderung biegesteif ausgebildet ist.It is achieved in a technologically simple and inexpensive way that the support element is designed to be rigid over a certain length, despite the change in temperature.
Technologisch besonders einfach ausführbar ist es, wenn das Befestigungselement rechteckförmig ausgebildet ist, seine Breite der des Trägerelementes angepaßt ist und das Träger- element auf das Befestigungselement aufgeklebt ist.It is technologically particularly simple to carry out if the fastening element is rectangular, its width is adapted to that of the carrier element and the carrier element is glued to the fastening element.
Dabei muß das Trägerelement über die vorgegebene Länge fest auf dem Befestigungselement haften.The carrier element must adhere firmly to the fastening element over the predetermined length.
Nach einer anderen vorteilhaften Ausführung der erfindungsgemäßen Faser-Bragg-Gitter-Anordnung kann das Trägerelement über die vorgegebene Länge mittels einer Klemmvorrichtung biegesteif befestigt sein. Eine besonders einfach ausgebildete Klemmvorrichtung ist ein Profilstück, in das das Trägerelement über eine Teillänge eingeschoben und fixiert ist.According to another advantageous embodiment of the fiber Bragg grating arrangement according to the invention, the carrier element can be fixed rigidly over the predetermined length using a clamping device. A particularly simple clamping device is a profile piece into which the carrier element is inserted and fixed over a partial length.
Die Befestigung der Faser mit dem Faser-Bragg-Gitter auf dem Trägerelement sollte vorteilhafterweise durch Aufkleben an zwei Befestigungsstellen erfolgen, da hierdurch der Abstand zwischen den beiden Klebestellen genau definierbar ist.The attachment of the fiber with the fiber Bragg grating on the carrier element should advantageously be done by gluing at two attachment points, since this allows the distance between the two gluing points to be precisely defined.
Erfindungsgemäß ist des weiteren vorgesehen, daß das Faser- Bragg-Gitter in unterschiedlichen Konfektionierungen einsetzbar ist.According to the invention it is further provided that the fiber Bragg grating can be used in different configurations.
Damit können unterschiedliche und vielseitige Einsatz- möglichkeiten der Faser-Bragg-Gitter-Anordnung realisiert werden.Different and versatile possible uses of the fiber Bragg grating arrangement can thus be realized.
Die Variabilität kann des weiteren dadurch erhöht werden, daß mehrere Fasern mit Faser-Bragg-Gittern auf einem Trägerelement angeordnet sind und/oder weitere Faser-Bragg-Gitter in eine Faser geschrieben sind. Werden mehrere Fasern auf einem Trägerelement angeordnet, ist zu beachten, daß die Befestigungsstellen für die Fasern auf dem Trägerelement den gleichen Abstand aufweisen.The variability can be further increased by arranging a plurality of fibers with fiber Bragg gratings on a carrier element and / or by writing additional fiber Bragg gratings into one fiber. If several fibers are arranged on a carrier element, it should be noted that the fastening points for the fibers on the carrier element are at the same distance.
Die -Erfindung soll nachfolgend anhand eines Ausführungsbeispieles näher läutert werden. Die Zeichnung zeigt dabei eine prinzipielle Darstellung eines Anordnungsaufbaus .The invention will be explained in more detail below using an exemplary embodiment. The drawing shows a basic illustration of an arrangement structure.
Die Faser-Bragg-Gitter-Anordnung besteht im wesentlichen aus dem Lichtwellenleiterkabel 1 mit der Faser 2, in die ein Faser-Bragg-Gitter 3 eingeschrieben ist. Die Faser 2 ist an zwei Befestigungsstellen 4, 5, die einen vorgegebenen Abstand zueinander aufweisen, auf einer Seite des Trägerelementes 6 unter Vorspannung befestigt. Das Trägerelement 6 ist aus einem Bimetall hergestellt und weist somit zwei Seiten auf, deren Materialien unterschiedliche Ausdehnungskoeffizienten besitzen. Bimetalle sind einfach kommerziell erhältlich und haben häufig eine so starke, thermisch abhängige Verbiegung, daß der Temperaturgang eines Faser-Bragg-Gitters 3 überkompensiert werden kann.The fiber Bragg grating arrangement essentially consists of the optical waveguide cable 1 with the fiber 2, into which a fiber Bragg grating 3 is inscribed. The fiber 2 is fastened at two fastening points 4, 5, which are at a predetermined distance from one another, on one side of the carrier element 6 under prestress. The carrier element 6 is made of a bimetal and thus has two sides, the materials of which have different coefficients of expansion. Bimetals are simply commercially available and have often such a strong, thermally dependent bending that the temperature response of a fiber Bragg grating 3 can be overcompensated.
Das Trägerelement 6 ist über eine bestimmte Länge auf einem starren Befestigungselement 7 befestigt. Es ist rechteckförmig ausgebildet, in seiner Breite der des Trägerelementes 6 angepaßt und aus einem solchen Stahl- oder Messingmaterial hergestellt, das in etwa den gleichen thermischen Ausdehnungs- koef.fizienten aufweist, wie die Seite des Trägerelement 6, auf der die Faser 2 mit dem Faser-Bragg-Gitter 3 befestigt ist. Das Trägerelement 6 ist auf das Befestigungselement 7 aufgeklebt. Eine ganzflächige Klebeschicht 8 ist nicht notwendig, wichtig ist, daß das Trägerelement 6 über die genau vorgegebe- ne Länge fest mit dem Befestigungselement 7 verbunden ist. Für die Klebeschicht 8 kann ein Keramikkleber eingesetzt werden, der eine gewisse Grundelastizität aufweist.The carrier element 6 is fastened on a rigid fastening element 7 over a certain length. It has a rectangular shape, its width is adapted to that of the carrier element 6 and is made of such a steel or brass material which has approximately the same thermal expansion coefficient as the side of the carrier element 6 on which the fiber 2 is connected to the Fiber Bragg grid 3 is attached. The carrier element 6 is glued onto the fastening element 7. A full-surface adhesive layer 8 is not necessary, it is important that the carrier element 6 is firmly connected to the fastening element 7 over the precisely specified length. A ceramic adhesive which has a certain basic elasticity can be used for the adhesive layer 8.
Die Faser 2 mit dem Faser-Bragg-Gitter 3 ist mit einer Be- festigungssteile 4 auf dem Befestigungselement 7 und mit der anderen Befestigungsstelle 5 in vorgegebenem Abstand zur ersten Befestigungsstelle 4 auf dem frei beweglichen Ende 8 des Trägerelementes 6 angeordnet, so daß das Faser-Bragg-Gitter 3 bei geringsten Temeraturänderungen eine Längenänderung er- fährt, die bei entsprechender Dimensionierung der Anordnung und je nachdem, auf welcher der beiden Seiten des Bimetallträgerelementes 6 die Faser 2 mit dem Faser-Bragg-Gitter befestigt ist, entweder zur Kompensation der Wellenlängendrift oder aber zu deren Verstärkung führt.The fiber 2 with the fiber Bragg grating 3 is arranged with a fastening part 4 on the fastening element 7 and with the other fastening point 5 at a predetermined distance from the first fastening point 4 on the freely movable end 8 of the carrier element 6, so that the fiber -Bragg grating 3 undergoes a change in length with the slightest changes in temperature, which, with appropriate dimensioning of the arrangement and depending on which of the two sides of the bimetal carrier element 6 the fiber 2 is fastened with the fiber Bragg grating, either to compensate for the wavelength drift or leads to their reinforcement.
Eine weitere einfache Ausführung für die starre Befestigung des Trägerelementes 6 über eine Teillänge ist in der Zeichnung nicht dargestellt. Mittels eines einfachen Klemmprofiles, in das das Trägerelement 6 an einem Ende eingeschoben und darin verklemmt wird, ist es möglich, das Trägerelement in diesem Bereich biegesteif auszuführen.Another simple embodiment for the rigid attachment of the carrier element 6 over a partial length is not shown in the drawing. By means of a simple clamping profile, into which the carrier element 6 is inserted at one end and clamped therein, it is possible to design the carrier element to be rigid in this area.
In der Zeichnung ebenfalls nicht gezeigt sind weitere Anord- nungen, die die Befestigung mehrerer Fasern 2 mit Faser-Bragg- Gittern 3 betreffen oder aber die Anordnung einer Faser 2 mit weiteren Faser-Bragg-Gittern 3 auf einem Trägerelement 6. Der Einsatz von Faser-Bragg-Gittern unterschiedlicher Konfektio- nierungen ist ebenfalls möglich. Solcherart Anordnungen haben den Vorteil, daß mehrerer Faser-Bragg-Gitter gleichzeitig oder in unterschiedlichen Ausführungsformen mit einer passiven Temperaturkompensation zum Einsatz kommen können, was sich vor allem bei Verwendung in nachrichtentechnischen Bereichen raum- und kostensparend auswirken kann. Further arrangements are also not shown in the drawing. Solutions that concern the attachment of several fibers 2 with fiber Bragg gratings 3 or the arrangement of a fiber 2 with additional fiber Bragg gratings 3 on a carrier element 6. The use of fiber Bragg gratings of different configurations is also possible. Such arrangements have the advantage that several fiber Bragg gratings can be used simultaneously or in different embodiments with passive temperature compensation, which can save space and costs, especially when used in communications technology areas.
Faser-Bragg-Gitter-AnordnungFiber Bragg grating arrangement
BezuαszeichenlisteLIST OF REFERENCE NUMERALS
Lichtwellenleiterkabel Faser Faser-Bragg-Gitter Befestigungsstelle der Faser Befestigungsstelle der Faser Trägerelement Befestigungselement Klebeschicht frei bewegliches Ende Fiber optic cable Fiber Bragg grating Fastening point of the fiber Fastening point of the fiber Carrier element Fastening element Adhesive layer Free moving end

Claims

Faser-Bragg-Gitter-AnordnungPatentansprüche Fiber Bragg grating arrangement Patent claims
1. Faser-Bragg-Gitter-Anordnung, insbesondere zum Einsatz in der Nachrichtentechnik und Sensorik, bestehend aus wenigstens einem Lichtwellenleiterkabel, in dessen Faser wenigstens ein Faser-Bragg-Gitter eingebracht ist und einer Haltevorrichtung, auf der die Faser mit vorgespanntem Faser-Bragg-Gitter befestigt ist, d a d u r c h g e k e n n z e i c h n e t, daß die Haltevorrichtung aus einem Trägerelement (6) aus einem Bimetall besteht und über einen Teil seiner Länge biegesteif ausgebildet ist und daß die Faser (2) mit dem Faser-Bragg-Gitter (3) an zwei Befestigungsstellen (4, 5) auf einer Seite des Trägerelementes (6) befestigt ist, wobei eine der Befestigungsstellen (4) auf dem biegesteifen Teil (7) angeordnet ist.1. Fiber Bragg grating arrangement, in particular for use in communications and sensor technology, consisting of at least one optical waveguide cable, in the fiber of which at least one fiber Bragg grating is introduced and a holding device on which the fiber is biased with fiber Bragg Grid is fastened, characterized in that the holding device consists of a carrier element (6) made of a bimetal and is designed to be rigid over part of its length and that the fiber (2) with the fiber Bragg grating (3) at two fastening points ( 4, 5) is fastened on one side of the carrier element (6), one of the fastening points (4) being arranged on the rigid part (7).
2. Sensoranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Trägerelement (6) über eine vorgegebene Länge auf der dem Faser-Bragg-Gitter (3) gegenüberliegenden Seite mit einem Befestigungselement (7) aus einem starren Material fest verbunden ist.2. Sensor arrangement according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the carrier element (6) over a predetermined length on the fiber Bragg grating (3) opposite side with a fastening element (7) made of a rigid material is firmly connected.
3. Sensoranordnung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß das Befestigungselement (7) rechteckförmig ausgebildet und in seiner Breite der des Trägerelementes (6) angepaßt ist und auf das Trägerelement (6) aufgeklebt ist.3. Sensor arrangement according to claim 2, characterized in that the fastening element (7) Rectangular and the width of the carrier element (6) is adapted and glued to the carrier element (6).
4. Sensoranordnung nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Trägerelement (6) über die vorgegebene Länge mittels einer Klemmvorrichtung biegesteif befestigt ist.4. Sensor arrangement according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the carrier element (6) over the predetermined length is rigidly attached by means of a clamping device.
5. Sensoranordnung nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t, daß die Klemmvorrichtung als Profilstück ausgebildet ist, in das das Trägerelement (6) eingeschoben und über diese Teillänge fixiert ist.5. Sensor arrangement according to claim 4, d a d u r c h g e k e n n z e i c h n e t that the clamping device is designed as a profile piece, into which the carrier element (6) is inserted and fixed over this partial length.
6. Sensoranordnung nach Anspruch 1 und einem der Ansprüche 2 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß die Faser (2) mit dem Faser-Bragg-Gitter (3) auf dem Trägerelement (6) an zwei Befestigungsstellen (4, 5) aufgeklebt ist.6. Sensor arrangement according to claim 1 and one of claims 2 to 5, d a d u r c h g e k e n n z e i c h n e t that the fiber (2) with the fiber Bragg grating (3) on the carrier element (6) at two fastening points (4, 5) is glued.
Sensoranordnung nach Anspruch 1 und einem der Ansprüche 2 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß das Faser-Bragg-Gitter (3) in unterschiedlichen Konfektionierungen einsetzbar ist. Sensor arrangement according to Claim 1 and one of Claims 2 to 6, that the fiber Bragg grating (3) can be used in different configurations.
PCT/DE2001/002323 2000-07-05 2001-06-27 Fibre bragg grating assembly WO2002003110A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10032060.0 2000-07-05
DE10032060A DE10032060C2 (en) 2000-07-05 2000-07-05 Fiber Bragg grating arrangement

Publications (2)

Publication Number Publication Date
WO2002003110A2 true WO2002003110A2 (en) 2002-01-10
WO2002003110A3 WO2002003110A3 (en) 2002-05-02

Family

ID=7647453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002323 WO2002003110A2 (en) 2000-07-05 2001-06-27 Fibre bragg grating assembly

Country Status (2)

Country Link
DE (1) DE10032060C2 (en)
WO (1) WO2002003110A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG126809A1 (en) * 2005-05-06 2006-11-29 Qing Song Dong Sensor and installation method for long-term measurement of average physical quantities

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028361A1 (en) * 1998-11-06 2000-05-18 Corning Incorporated Athermal optical waveguide grating device
FR2795528A1 (en) * 1999-06-22 2000-12-29 Highwave Optical Tech METHOD FOR THE STABILIZATION AND ACCORDABILITY OF WAVELENGTH OF BRAGG NETWORKS

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5042898A (en) * 1989-12-26 1991-08-27 United Technologies Corporation Incorporated Bragg filter temperature compensated optical waveguide device
EP0798573A4 (en) * 1995-10-16 1998-06-17 Sumitomo Electric Industries Optical fiber diffraction grating, production method thereof and laser light source
US5841920A (en) * 1997-03-18 1998-11-24 Lucent Technologies Inc. Fiber grating package
AUPO745897A0 (en) * 1997-06-19 1997-07-10 Uniphase Fibre Components Pty Limited Temperature stable bragg grating package with post tuning for accurate setting of center frequency
US5999671A (en) * 1997-10-27 1999-12-07 Lucent Technologies Inc. Tunable long-period optical grating device and optical systems employing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028361A1 (en) * 1998-11-06 2000-05-18 Corning Incorporated Athermal optical waveguide grating device
FR2795528A1 (en) * 1999-06-22 2000-12-29 Highwave Optical Tech METHOD FOR THE STABILIZATION AND ACCORDABILITY OF WAVELENGTH OF BRAGG NETWORKS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG126809A1 (en) * 2005-05-06 2006-11-29 Qing Song Dong Sensor and installation method for long-term measurement of average physical quantities

Also Published As

Publication number Publication date
DE10032060A1 (en) 2002-01-17
WO2002003110A3 (en) 2002-05-02
DE10032060C2 (en) 2002-11-21

Similar Documents

Publication Publication Date Title
DE69829211T2 (en) TEMPERATURE STABILIZATION OF OPTICAL WAVEGUIDES
DE60037052T2 (en) Optical grating device with variable coating
DE19724528B4 (en) Temperature compensated fiber optic Bragg grating
DE60130351T2 (en) FIBER OPTIC CONNECTOR AND OPTICAL CONSTRUCTION ELEMENT
US20020150335A1 (en) Fine-tuning assembly for optical gratings
DE102016107276B4 (en) THERMALLY COMPENSATED AND SPRED COMPACT FIBER BRAGG GRILLE WAVELENGTH FILTER DEVICE
DE2737499B2 (en) Fiber optic circuit element
DE19717015A1 (en) Miniaturized optical component and method for its production
DE102005030751A1 (en) Optical strain gauge
DE69727475T2 (en) Method for producing a cavity resonator in an optical fiber, in particular for an interferometric sensor, and cavity resonator produced by this method
DE60203933T2 (en) Thermally adjustable optical fiber devices with microcapillary heating elements
DE3621669A1 (en) OPTICAL PRESSURE SENSOR
DE2822726A1 (en) COUPLING DEVICE FOR COUPLING FIBER OPTICAL FIBERS TO OPTICAL INTERFACES
DE602004003526T2 (en) Structure for temperature compensation of a fiber grating
WO2002003110A2 (en) Fibre bragg grating assembly
DE19943387A1 (en) Method for producing an optical grating on an optical conductor and arrangement with such a grating and such a conductor
EP1451617B1 (en) Mirror, optical imaging system and use thereof
DE10031412C2 (en) Optical sensor arrangement for strain and compression measurement
EP1203252B1 (en) Optical coupling device
EP1236067B1 (en) Optical coupling device
DE3929453C1 (en) Fibre-Fabry-Perot interferometer - has slot in substrate enabling opposite regions to be moved w.r.t. V=shaped groove for optical fibres
EP0515784B1 (en) Apparatus for positioning of optical fibres
DE69824453T2 (en) MANUFACTURE OF GRIDS IN OPTICAL WAVEGUIDERS
DE19934184A1 (en) Optical waveguide end-faces light coupling device e.g. for light-guide chip
Wei et al. Fabrication of high quality chirped fiber Bragg grating by establishing strain gradient

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP