WO2001086141A1 - Azimutantrieb für windenergieanlagen - Google Patents

Azimutantrieb für windenergieanlagen Download PDF

Info

Publication number
WO2001086141A1
WO2001086141A1 PCT/EP2001/005239 EP0105239W WO0186141A1 WO 2001086141 A1 WO2001086141 A1 WO 2001086141A1 EP 0105239 W EP0105239 W EP 0105239W WO 0186141 A1 WO0186141 A1 WO 0186141A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
azimuth
wind energy
rotor
drive unit
Prior art date
Application number
PCT/EP2001/005239
Other languages
English (en)
French (fr)
Inventor
Aloys Wobben
Original Assignee
Aloys Wobben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7641891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001086141(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE10023440A external-priority patent/DE10023440C1/de
Priority to EP01945101A priority Critical patent/EP1290343B1/de
Priority to NZ522582A priority patent/NZ522582A/en
Priority to AU2001267415A priority patent/AU2001267415B2/en
Priority to CA002409509A priority patent/CA2409509C/en
Application filed by Aloys Wobben filed Critical Aloys Wobben
Priority to US10/276,117 priority patent/US6927502B2/en
Priority to AU6741501A priority patent/AU6741501A/xx
Priority to DE50109161T priority patent/DE50109161D1/de
Priority to BRPI0110792-5A priority patent/BR0110792B1/pt
Priority to MXPA02011137A priority patent/MXPA02011137A/es
Priority to JP2001582714A priority patent/JP4141689B2/ja
Publication of WO2001086141A1 publication Critical patent/WO2001086141A1/de
Priority to NO20025388A priority patent/NO324945B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0204Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • wind turbines have an active drive for tracking wind direction. This rotates the nacelle of the wind turbine so that the rotor blades of the rotor are aligned in the direction of the wind.
  • This drive required for the wind direction tracking is regularly an azimuth drive, which is usually located with the associated azimuth bearings between the tower head and the machine house. An adjustment drive is sufficient for small wind turbines, larger wind turbines are usually equipped with several azimuth drives.
  • a company wind measuring system provides an average value for the wind direction over a certain period of time, for example 10 seconds. This mean value is always compared with the current azimuth position of the machine house. As soon as a deviation exceeds a certain value, the nacelle is adjusted accordingly set so that the wind direction deviation of the rotor, the yaw angle, is as small as possible to avoid loss of performance. How a wind direction tracking is carried out in known wind turbines is described in "Wind Power Plants", Erich Hau, 2nd edition, 1995, page 268 ff. And 31 6 ff.
  • a motorized wind direction tracking of the nacelle, the azimuth adjustment system takes over the task of automatically aligning the rotor and the nacelle according to the wind direction.
  • the wind direction tracking is an independent assembly. Viewed from a design point of view, it forms the transition from the machine house to the tower head. Your components are partly integrated in the machine house and partly in the tower head.
  • the overall system of wind direction tracking consists of the components actuator, holding brakes, locking device, azimuth bearing and control system.
  • an anti-rotation device or a yaw brake is required. Otherwise the lifespan of the drive units or the upstream gearboxes could hardly be guaranteed.
  • Small systems are usually satisfied with an escapement in the azimuth bearing, for larger systems several releasable holding brakes are known. These engage a brake ring on the inside of the tower or vice versa on a ring on the nacelle.
  • one or two azimuth brakes are engaged to control the to ensure the required damping of the adjustment dynamics.
  • the actuator must be designed so that it can track against this friction damping.
  • the azimuth or tower head bearing is regularly designed as a roller bearing.
  • FIG. 7 shows a partial sectional view of a known wind direction tracking system with an electric actuator of the Westinghaus WTG-0600.
  • the wind power plant according to the invention with a machine house, which receives a rotor with at least one rotor blade, is characterized in that the adjusting device for adjusting the machine house according to the respective wind direction has at least one three-phase asynchronous motor which, during the adjustment of the machine house, has three-phase current and Direct or partial current is applied to the machine house during downtime.
  • the motors are switched off and therefore no longer generate any torque.
  • the three-phase asynchronous motor is supplied with a direct current immediately after disconnection from the three-phase network. This direct current creates a standing magnetic field in the asynchronous motor, which is immediately braked.
  • the DC power supply remains as possible during the entire downtime.
  • a torque control is provided to suppress undesired torque fluctuations.
  • the braking of the three-phase asynchronous motor can be linear with the help of the level of the direct current can be set. This results in a simple torque control for the azimuth drives of wind turbines during the actual standstill.
  • the adjusting device has a plurality of three-phase asynchronous motors
  • the three-phase asynchronous motors are coupled in negative feedback with the aid of a current transformer, so that the individual drive is stabilized and the previously undesirable spring effect is suppressed.
  • FIG. 1 shows a schematic arrangement of four azimuth drives of an adjusting device on the machine house
  • Fig. 3 shows the characteristic of a three-phase asynchronous motor in
  • FIG. 4 shows an alternative representation to FIG. 3
  • Figure 5 is a block diagram of a current transformer coupling of two asynchronous azimuth drives
  • FIG. 7 partial sectional view of a known wind direction tracking with an electric actuator
  • wind turbines have an active drive for tracking wind direction. This rotates the machine head of the wind turbine so that the rotor blades of the rotor are optimally aligned in the direction of the wind.
  • the active drive for the wind direction tracking is an azimuth drive 1 with the associated azimuth bearing 2 and is usually located between the Tower head and the machine house. In the case of small wind energy plants, an azimuth drive is sufficient; larger wind energy plants are generally with several drives, for example four drives, as shown in FIG. 1. The four drives 1 are evenly distributed over the circumference of the tower head 3 (an uneven distribution is also possible).
  • the adjustment direction for adjusting the machine head has more than one azimuth drive 1, there is also a very high asymmetry in the individual drives 1.
  • These drives have a transmission gear 4 (gear; not shown) with a gear ratio of approx. 1 5,000. Smallest deviations in the toothing of the transmission gears on the circumference of the tower bearing immediately lead to very strong asymmetries if more than one drive is attached to the circumference of the tower bearing with integrated toothing. Because of the high gear ratio, these small deviations on the input side of the drive correspond to up to 15 to 20 revolutions on the output side.
  • Each azimuth drive 1 has its own motor 5 and the motors are interconnected and are controlled together. If strong torques occur during the wind tracking of the machine head of the wind energy installation - caused by strong turbulence - these torques excite the azimuth drives so that the motors oscillate against one another or cause vibrations incline.
  • the gear 4 with its very high transmission ratio react like a spring, which results in large torque fluctuations in the individual drives.
  • the four three-phase asynchronous motors are switched off and therefore no longer generate any torque.
  • the motors are charged with a direct current as soon as possible after disconnection from the three-phase network (see FIG. 6a).
  • This direct current creates a standing magnetic field in the motors (asynchronous machine), which are braked immediately.
  • This DC power supply remains as possible during the entire downtime and the amplitude can be regulated.
  • the ASM drives are supplied with a regulated direct current by means of a control device - in FIG. 6b.
  • Slow rotary movements of the tower head which are caused by asymmetrical gusts of wind, are only damped by a small direct current (approx. 10% of the nominal current), but permitted.
  • Faster rotating movements are avoided by an adapted higher direct current, and thus higher braking torque.
  • the direct current is raised to the nominal current of the motor.
  • the torque / speed characteristic of an asynchronous motor in DC operation is shown in FIG. 3.
  • the drive motor generates no torque with the DC magnetization at standstill. But as the speed increases - up to around 6% of the nominal speed - the torque generated increases linearly and symmetrically in both directions of rotation. According to this characteristic, the occurring load is evenly distributed to all azimuth drives and a passive balance is always achieved.
  • ASM means asynchronous machine. Such a simple negative feedback shown stabilizes the drives.
  • Figure 7 shows a partial sectional view of a known wind direction tracking with electric actuator, as is known from Erich Hau, "Wind Turbines” Springer Verlag Berlin Heidelberg 1996, pages 268-271.
  • FIG. 8 shows a block diagram of how an asynchronous machine, preferably a three-phase asynchronous motor, connected to a frequency converter is supplied with electrical current.
  • the asynchronous motor is supplied with a three-phase current with variable frequency.
  • the asynchronous machine is supplied with a three-phase current with the frequency of zero Hz, that is to say direct current.

Abstract

Windenergieanlagen haben in der Regel für die Windrichtungsnachführung einen aktiven Antrieb. Dieser verdreht das Maschinenhaus der Windenergieanlage so, dass die Rotorblätter des Rotors in Richtung des Windes ausgerichtet werden. Dieser für die Windrichtungsnachführung benötigte Antrieb ist regelmässig ein Azimutantrieb, welcher sich mit den zugehörigen Azimutlagern gewöhnlich zwischen Turmkopf und dem Maschinenhaus befindet. Bei kleinen Windenergieanlagen genügt ein Verstellantrieb, grössere Windenergieanlagen sind in der Regel mit mehreren Azimutantrieben ausgestattet. Es ist Aufgabe der Erfindung, den Azimutantrieb für Windenergieanlagen zu verbessern, so dass die vorstehend genannten Probleme beseitigt werden, einen konstruktiv einfachen Azimutantrieb zu schaffen, eine gleichmässige Lastenverteilung für jeden Azimutantrieb zu gewährleisten und unerwünschte Drehmomentschwankungen der einzelnen Antriebe zu vermeiden. Windenergieanlage mit einem Maschinenhaus, der einen Rotor mit wenigstens einem Rotorblatt aufnimmt und einer Verstelleinrichtung zur Verstellung des Maschinenhauses zur gewünschten Ausrichtung des Rotors in Richtung des Windes, wobei die Verstelleinrichtung als Antrieb einen Drehstrom-Asynchronmotor aufweist, der für eine Verstellung des Maschinenhauses mit einem Drehstrom variabler Frequenz beaufschlagt wird.

Description

Azimutantrieb für Windenergieanlagen
Windenergieanlagen haben in der Regel für die Windrichtungsnachführung einen aktiven Antrieb. Dieser verdreht das Maschinenhaus der Windenergieanlage so, dass die Rotorblätter des Rotors in Richtung des Windes ausgerichtet werden. Dieser für die Windrichtungsnachführung benötigte Antrieb ist regelmäßig ein Azimutantrieb, welcher sich mit den zugehörigen Azimutlagern gewöhnlich zwischen Turmkopf und dem Maschinenhaus befindet. Bei kleinen Windenergieanlagen genügt ein VerStellantrieb, größere Windenergieanlagen sind in der Regel mit mehreren Azimutantrieben ausgestattet.
Bei der Windrichtungsnachführung des Maschinenhauses liefert ein Betriebswind- Meßsystem einen Mittelwert für die Windrichtung über einen gewissen Zeitraum, z.B. 10 Sekunden. Dieser Mittelwert wird immer wieder mit der momentanen Azimutposition des Maschinenhauses verglichen. Sobald eine Abweichung einen bestimmten Wert überschreitet, wird das Maschinenhaus entsprechend nach gestellt, so dass die Windrichtungsabweichung des Rotors, der Gierwinkel, möglichst gering ist, um Leistungsverluste zu vermeiden. Wie eine Windrichtungsnachführung bei bekannten Windenergieanlagen durchgeführt wird, ist in "Windkraftanlagen", Erich Hau, 2. Auflage, 1995, Seite 268 ff. bzw. 31 6 ff. beschrieben.
Bei bisher bekannten Windenergieanlagen übernimmt eine motorische Windrichtungsnachführung des Maschinenhauses, das Azimutverstellsystem, die Aufgabe, den Rotor und das Maschinenhaus automatisch nach der Windrichtung auszurichten. Funktionen gesehen ist die Windrichtungsnachführung eine selbständige Baugruppe. Vom konstruktiven Standpunkt aus betrachtet, bildet sie den Übergang des Maschinenhauses zum Turmkopf. Ihre Komponenten sind teils im Maschinenhaus, teils in den Turmkopf integriert. Das Gesamtsystem der Windrichtungsnachführung besteht aus den Komponenten Stellantrieb, Haltebremsen, Verriegelungseinrichtung, Azimutlager und Regelungssystem. Diese Komponenten arbeiten wie folgt:
Für den Stellantrieb gibt es ähnlich wie für den Rotorblattverstellantrieb die Alternative hydraulisch oder elektrisch. Beide Ausführungen sind bei Windenergieanlagen üblich. Kleine Anlagen verfügen meistens über ungeregelte elektrische Antriebsmotoren. Bei großen Anlagen sind die hydraulischen Stellantriebe in der Überzahl.
Um zu vermeiden, dass das Giermoment um die Drehachse nach erfolgter Nachführung von Antriebsmotoren gehalten werden muß, ist eine Drehhemmung oder eine Gierbremse erforderlich. Anderenfalls wäre die Lebensdauer der Antriebsaggregate oder der vorgeschalteten Getriebe kaum zu gewährleisten. Kleine Anlagen begnügen sich meistens mit einer Drehhemmung im Azimutlager, für größere Anlagen sind mehrere lösbare Haltebremsen bekannt. Diese greifen auf einen Bremsring an der Innenseite des Turms oder umgekehrt an einem Ring am Maschinenhaus an. Während des Nachführvorgangs sind eine oder zwei Azimutbremsen im Eingriff, um die erforderliche Dämpfung der Verstelldynamik zu gewährleisten. DerStellantrieb muß dabei so ausgelegt werden, dass er gegen diese Reibungsdämpfung nachführen kann. Das Azimut- oder Turmkopflager wird regelmäßig als Wälzlager ausgeführt.
In Figur 7 ist eine Teilschnittansicht eines bekannten Windrichtungsnachführungs- systems mit elektrischem Stellantrieb der Westinghaus WTG-0600 dargestellt.
Während des Betriebs einer Windenergieanlage mit turbulenten Winden treten - in Abhängigkeit vom Drehwinkel des Rotors - sehr hohe Kräfte und damit verbundene hohe und häufige Lastspitzen in den Azimutantrieben auf.
Wenn mehr als ein Azimutantrieb vorgesehen ist, kommt es zusätzlich zu einer sehr hohen Unsymmetrie in den einzelnen Antrieben. Diese Antriebe haben eine Übersetzung mittels eines Getriebes von ca. 1 5.000. Kleinste Abweichungen in der Verzahnung am Umfang des Trumlagers führen sofort zu sehr starken Unsymmetrien, wenn mehr als ein Antrieb, z.B. vier Azimutantriebe, am Umfang des Trumlagers mit integrierter Verzahnung angebracht ist. Wegen der hohen Getriebeübersetzung entsprechen diese kleinen Abweichungen auf der Eingangsseite des Antriebs bis zu 1 5 bis 20 Umdrehungen auf der Ausgangsseite.
Das bedeutet im Ergebnis, dass während und nach jedem Verdrehvorgang des Maschinenhauses die gesamte Last und das gesamte Drehmoment gleichzeitig auf einzelne Antriebe, wenn möglich, gleichmäßig verteilt werden muß. Zusätzlich sollen die Antriebe bei starken Azimutlasten während der Stillstandszeiten bei zu hohen Lasten nachgeben und eine leichte Drehung des Maschinenhauses ermöglichen, damit sich eine entsprechende Entlastung einstellen kann.
Ferner treten während der Windnachführung des Maschinenhauses der Windenergieanlage bei starken Turbulenzen auch entsprechend hohe Drehmomente auf. Diese regen die Azimutantriebe derart an, dass die Motoren gegeneinander schwingen. Die Getriebe mit ihrem sehr hohen Übersetzungsverhältnis reagieren dabei wie eine Feder und große Drehmomentschwankungen der einzelnen Antriebe sind die Folge.
Es ist Aufgabe der Erfindung, den Azimutantrieb für Windenergieanlagen zu verbessern, so dass die vorstehend genannten Probleme beseitigt werden, eine konstruktiv einfachen Azimutantrieb zu schaffen, eine gleichmäßige Lastenverteilung für jeden Azimutantrieb zu gewährleisten und unerwünschte Drehmomentschwankungen der einzelnen Antriebe zu vermeiden.
Erfindungsgemäß wird eine Windenergieanlage nach Anspruch 1 vorgeschlagen. Vorteilhafte Weiterbildungen sind in den Unteransprüchen beschrieben.
Die erfindungsgemäße Windenergieanlage mit einem Maschinenhaus, das einen Rotor mit wenigstens einem Rotorblatt aufnimmt, zeichnet sich dadurch aus, dass die Versteileinrichtung zur Verstellung des Maschinenhauses gemäß der jeweiligen Windrichtung als Azimutantrieb mindestens einen Drehstrom-Asynchronmotor aufweist, der während der Verstellung des Maschinenhauses mit Drehstrom und während der Stillstandszeit des Maschinenhauses zeitweise oder vollständig mit Gleichstrom beaufschlagt wird.
Nach dem Verstellvorgang mittels Drehstrom wird die Motoren abgeschaltet und erzeugt somit kein Drehmoment mehr. Um nunmehr auch für eine Bremswirkung des Antriebsmotors zu sorgen und während der Stillstandszeit beim Auftreten von Lastspitzen noch ein ausreichendes Bremsmoment zu erhalten, wird der Drehstrom- Asynchronmotor unmittelbar nach der Trennung vom Drehstromnetz mit einem Gleichstrom beaufschlagt. Dieser Gleichstrom erzeugt ein stehendes Magnetfeld in den Asynchronmotor, der damit sofort abgebremst wird. Die Gleichstromversorgung bleibt möglichst während der gesamten Stillstandszeit bestehen.
Zur Unterdrückung von unerwünschten Drehmomentschwankungen wird erfindungsgemäß eine Drehmomentkontrolle vorgesehen. Die Abbremsung des Drehstrom-Asynchronmotors kann linear mit Hilfe der Höhe des Gleichstroms eingestellt werden. Damit ergibt sich eine einfache Drehmomentkontrolle für die Azimutantriebe von Windenergieanlagen während des eigentlichen Stillstandes.
Ferner werden, wenn die VerStelleinrichtung mehrere Drehstrom-Asynchronmotoren aufweist, die Drehstrom-Asynchronmotoren mit Hilfe eines Stromtransformators in Gegenkopplung gekoppelt, so dass der einzelne Antrieb stabilisiert ist und der bislang unerwünschte Federeffekt unterdrückt wird.
Die Erfindung wird nachstehend anhand eines Ausführungsbeispiels in den Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine schematische Anordnung von vier Azimutantrieben einer VerStelleinrichtung am Maschinenhaus;
Fig. 2 eine Drehmoment/Drehzahl-Kennlinie eines Drehstrom-
Asynchronmotors;
Fig. 3 die Kennlinie eines Drehstrom-Asynchronmotors im
Gleichstrombetrieb;
Fig. 4 eine alternative Darstellung zur Fig. 3;
Fig. 5 ein Blockschaltbild einerStromtransformatorkopplung von zwei Asynchron-Azimutantrieben;
Fig. 6 Schaltbild für einen Azimutmotor;
Fig. 7 Teilschnittansicht einer bekannten Windrichtungsnachführung mit elektrischem Stellantrieb;
Fig. 8 Blockschaltbild einer mit einem Frequenzumrichter angesteuerten Asynchronmaschine.
Windenergieanlagen haben in der Regel für die Windrichtungsnachführung einen aktiven Antrieb. Dieser verdreht den Maschinenkopf der Windenergieanlage so, dass die Rotorblätter des Rotors in Richtung des Windes optimal ausgerichtet werden. Der aktive Antrieb für die Windrichtungsnachführung ist ein Azimutantrieb 1 mit dem zugehörigen Azimutlager 2 und befindet sich in der Regel zwischen dem Turmkopf und dem Maschinenhaus. Bei kleinen Windenergieanlagen genügt ein Azimutantrieb, größere Windenergieanlagen sind in der Regel mit mehreren Antrieben, zum Beispiel vier Antrieben, wie in Figur 1 dargestellt. Die vier Antriebe 1 sind gleichmäßig über dem Umfang des Turmkopfes 3 verteilt (auch eine ungleichmäßige Verteilung ist möglich).
Während des Betriebs einer Windenergieanlage mit turbulenten Winden treten - in Abhängigkeit vom Drehwinkel des Rotors - sehr hohe Kräfte und damit verbundene hohe und häufige Lastspitzen in den Azimutantrieben auf.
Wenn die Verstellrichtung zur Verstellung des Maschinenkopfes mehr als einen Azimutantrieb 1 aufweist, kommt es zusätzlich zu einer sehr hohen Unsymmetrie in den einzelnen Antrieben 1 . Diese Antriebe haben ein Übersetzungsgetriebe 4 (Getriebe; nicht dargestellt) mit einer Übersetzung von ca. 1 5.000. Kleinste Abweichungen in der Verzahnung der Übersetzungsgetriebe am Umfang des Turmlagers führen sofort zu sehr starken Unsymmetrien, wenn mehr als ein Antrieb, am Umfang des Turmlagers mit integrierter Verzahnung angebracht ist. Wegen der hohen Getriebeübersetzung entsprechen diese kleinen Abweichungen auf der Eingangsseite des Antriebs bis zu 1 5 bis 20 Umdrehungen auf der Ausgangsseite.
Das bedeutet, dass während und nach jedem Verdrehvorgang des Turmkopfes die gesamte Last/Drehmoment gleichmäßig auf einzelne Antriebe verteilt werden muß. Zusätzlich sollen die Antriebe bei starken Azimutlasten während der Stillstandszeiten - des Turmkopfes - bei zu hohen Lasten nachgeben und eine leichte Drehung des Maschinenkopfes ermöglichen.
Jeder Azimutantrieb 1 weist einen eigenen Motor 5 auf und die Motoren sind untereinander verschaltet und werden gemeinsam gesteuert. Wenn während der Windnachführung des Maschinenkopfes der Windenergieanlage - verursacht durch starke Turbulenzen - starke Drehmomente auftreten, regen diese Drehmomente die Azimutantriebe an, dass die Motoren gegeneinander schwingen oder zu Schwingun- gen neigen. Die Getriebe 4 mit ihrem sehr hohen Übersetzungsverhältnis reagieren dabei wie eine Feder, was große Drehmomentenschwankungen der einzelnen Antriebe zur Folge hat.
Zur gleichmäßigen Aufteilung der Lasten während der Zeit, in der das Maschinenhaus nicht verdreht wird, zu gewährleisten, wird erfindungsgemäß vorgeschlagen, als Antriebsmotoren zum Azimutantrieb einen Drehstrom-Asynchronmotor als Asynchron-Antriebsmaschine einzusetzen. Deren Drehmoment/Drehzahl-Kennlienie ist in Figur 2 dargestellt. MA bedeutet Anfangsdrehmoment, Mκ bedeutet Kippmoment.
Nach dem Verstellvorgang des Maschinenhauses werden die vier Drehstrom- Asynchron-Motoren (ASM) abgeschaltet und erzeugen somit kein Drehmoment mehr. Um die Motoren gleichmäßig abzubremsen und auch danach noch ein Bremsmoment zu erhalten, werden die Motoren umgehend nach der Trennung vom Drehstromnetz, möglichst sofort, mit einem Gleichstrom beauftragt (siehe Figur 6a).
Dieser Gleichstrom erzeugt ein stehendes Magnetfeld in den Motoren (Asynchronmaschine), die damit sofort abgebremst werden. Diese Gleichstromversorgung bleibt möglichst während der gesamten Stillstandzeit bestehen und kann in der Amplitude geregelt werden.
Nach dem Verstellvorgang werden die ASM-Antriebe mittels einer Regeleinrichtung - in Figur 6b - mit einem geregelten Gleichstrom versorgt. Langsame Drehbewegungen des Turmkopfes, die durch unsymmetrische Windböen verursacht werden, werden durch einen kleinen Gleichstrom (ca. 10% vom Nennstrom) nur gedämpft, aber zugelassen. Schnellere Drehbewegungen werden durch einen angepaßten höheren Gleichstrom, und damit höheren Bremsmoment, vermieden. Bei sehr schnellen Drehbewegungen wird der Gleichstrom bis auf den Nennstrom des Motors angehoben. Die Drehmomenten/Drehzahl-Kennlinie eines Asynchronmotors im Gleichstrombetrieb ist in Figur 3 dargstellt. Der Antriebsmotor erzeugt mit der Gleichstrommagnetisierung im Stillstand kein Drehmoment. Aber mit steigender Drehzahl - bis etwa 6 % der Nenndrehzahl - steigt das erzeugte Drehmoment linear an und das symetrisch in beide Drehrichtungen. Gemäß dieser Kennlinie wird die auftretende Last auch gleichmäßig auf alle Azimutantriebe verteilt und es stellt sich passiv immer ein Gleichgewicht ein.
Zur Drehmomentkontrolle der Azimutantriebe kann die Steilheit der Bremskurve linear mit der Höhe des Gleichstroms eingestellt werden. Dies ist in Figur 4 dargestellt. Damit ergibt sich eine einfache Drehmomentkontrolle für die Azimutantriebe von Windenergieanlagen während des eigentlichen Stillstandes.
Ferner ist es sinnvoll, die einzelnen Motoren der Azimutantriebe mit Hilfe eines Stromtransformators zu koppeln. Dies ist in Figur 5 gezeigt. ASM bedeutet hierbei Asychronmaschine. Eine solche einfache dargestellte Gegenkoppelung stabilisiert die Antriebe.
Figur 7 zeigt eine Teilschnittansicht einer bekannten Windrichtungsnachführung mit elektrischem Stellantrieb, wie sie aus Erich Hau, "Windkraftanlagen" Springer- Verlag Berlin Heidelberg 1996, Seiten 268-271 bekannt ist.
Fig. 8 zeigt ein Blockschaltbild wie eine mit einem Frequenzumrichter verbundene Asynchronmaschine, vorzugsweise Drehstrom-Asynchronmotor, mit elektrischem Strom versorgt wird.
Während des Verstellvorgangs des Drehstrom-Asynchronmotors, wenn also das Maschinenhaus der Windenergieanlage auf eine gewünschte Position eingestellt (verdreht) wird, wird der Asynchronmotor mit einem Drehstrom mit variabler Frequenz versorgt. Während der Stillstandszeit der Asynchronmaschine wird die Asynchronmaschine mit einem Drehstrom mit der Frequenz von Null Hz, also Gleichstrom, versorgt.

Claims

A n s p r ü c h e
1 . Windenergieanlage mit einem Maschinenhaus, der einen Rotor mit wenigstens einem Rotorblatt aufnimmt und einer VerStelleinrichtung zur Verstellung des Maschinenhauses zur gewünschten Ausrichtung des Rotors in Richtung des Windes, wobei die Versteileinrichtung als Antrieb (1 ) einen Drehstrom-Asynchronmotor aufweist, der für eine Verstellung des Maschinenhauses mit einem Drehstrom variabler Frequenz beaufschlagt wird.
2. Windenergieanlage nach Anspruch 1 , dadurch gekennzeichnet, dass der Drehstrom-Asynchronmotor mittels eines Frequenzumrichters mit elektrischem Strom versorgt wird.
3. Windenergieanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass während der Stillstandszeit des Maschinenhauses der Drehstrom-Asynchronmotors mit einer Frequenz von Null Hz, also Gleichstrom versorgt wird.
4. Windenergieanlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die VerStelleinrichtung mehrere Drehstrom-Asynchronmotoren aufweist, welche miteinander gekoppelt sind.
5. Windenergieanlage nach Anspruch 4, dadurch gekennzeichnet, dass die Drehstrom-Asynchronmotoren mittels eines Stromtransformators elektrisch miteinander gekoppelt sind.
PCT/EP2001/005239 2000-05-12 2001-05-09 Azimutantrieb für windenergieanlagen WO2001086141A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001582714A JP4141689B2 (ja) 2000-05-12 2001-05-09 風力装置の方位角駆動装置
MXPA02011137A MXPA02011137A (es) 2000-05-12 2001-05-09 Impulsor azimutal para instalaciones de energia eolica.
NZ522582A NZ522582A (en) 2000-05-12 2001-05-09 Azimuth drive for wind energy plants
AU2001267415A AU2001267415B2 (en) 2000-05-12 2001-05-09 Azimuth drive for wind energy plants
CA002409509A CA2409509C (en) 2000-05-12 2001-05-09 Azimuth drive for wind energy plants
EP01945101A EP1290343B1 (de) 2000-05-12 2001-05-09 Azimutantrieb für windenergieanlagen
US10/276,117 US6927502B2 (en) 2000-05-12 2001-05-09 Three-phase asynchronous motor driven azimuthal drive for wind power installations
AU6741501A AU6741501A (en) 2000-05-12 2001-05-09 Azimuth drive for wind energy plants
DE50109161T DE50109161D1 (de) 2000-05-12 2001-05-09 Azimutantrieb für windenergieanlagen
BRPI0110792-5A BR0110792B1 (pt) 2000-05-12 2001-05-09 instalação de energia eólica e processo para deslocar uma casa de máquinas de tal instalação.
NO20025388A NO324945B1 (no) 2000-05-12 2002-11-11 Asimutdrivanordning for vindkraftanlegg

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10023440.2 2000-05-12
DE10023440A DE10023440C1 (de) 1999-05-05 2000-05-12 Azimutantrieb für Windenergieanlagen

Publications (1)

Publication Number Publication Date
WO2001086141A1 true WO2001086141A1 (de) 2001-11-15

Family

ID=7641891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005239 WO2001086141A1 (de) 2000-05-12 2001-05-09 Azimutantrieb für windenergieanlagen

Country Status (18)

Country Link
US (1) US6927502B2 (de)
EP (1) EP1290343B1 (de)
JP (1) JP4141689B2 (de)
KR (1) KR100617399B1 (de)
CN (1) CN1289813C (de)
AT (1) ATE319929T1 (de)
AU (2) AU2001267415B2 (de)
BR (1) BR0110792B1 (de)
CA (1) CA2409509C (de)
DE (1) DE50109161D1 (de)
DK (1) DK1290343T3 (de)
ES (1) ES2258093T3 (de)
MX (1) MXPA02011137A (de)
NO (1) NO324945B1 (de)
NZ (1) NZ522582A (de)
PT (1) PT1290343E (de)
WO (1) WO2001086141A1 (de)
ZA (1) ZA200209258B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1650431A2 (de) * 2004-10-19 2006-04-26 REpower Systems AG Vorrichtung für eine Windenergieanlage
EP1882852A1 (de) 2006-06-28 2008-01-30 NORDEX ENERGY GmbH Windenergieanlage mit einem Maschinenhaus
US7347667B2 (en) * 2001-02-10 2008-03-25 Aloys Wobben Wind power installation
US7452185B2 (en) 2003-09-10 2008-11-18 Mitsubishi Heavy Industries, Ltd Blade-pitch-angle control device and wind power generator
DE102010003879A1 (de) * 2010-04-12 2011-10-13 Aloys Wobben Windenergieanlagen-azimut- oder Pitchantrieb
US8480367B2 (en) 2006-11-03 2013-07-09 Vestas Wind Systems A/S Yawing system for a wind turbine
WO2014118322A1 (de) * 2013-02-01 2014-08-07 2-B Energy Holding B.V. Steuervorrichtung für ein giersystem einer windkraftanlage
DE202017004995U1 (de) 2017-09-26 2017-10-25 Ralf Stöcker Azimutverstelleinrichtung sowie Turmkopfadapter und Windenergieanlage mit einer solchen Azimutverstelleinrichtung
WO2022073773A1 (de) * 2020-10-09 2022-04-14 PROKON Regenerative Energien eG Verfahren zur überwachung eines oder mehrerer elektrischer antriebe einer elektromechanischen anlage

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571334A1 (de) * 2004-03-04 2005-09-07 Gamesa Eolica, S.A. (Sociedad Unipersonal) Vorrichtung und Verfahren zur Windnachführung einer Windturbine
DE102006015511A1 (de) * 2006-03-31 2007-10-04 Robert Bosch Gmbh Windkraftanlage
US20100038192A1 (en) * 2008-08-15 2010-02-18 Culbertson Michael O Floating yaw brake for wind turbine
US20100038191A1 (en) * 2008-08-15 2010-02-18 Culbertson Michael O Modular actuator for wind turbine brake
US20100054941A1 (en) * 2008-08-27 2010-03-04 Till Hoffmann Wind tracking system of a wind turbine
DE102009035197A1 (de) * 2009-07-29 2011-02-17 Liebherr-Werk Biberach Gmbh Antriebseinheit mit Überlastschutz zum Antrieb eines Zahnkranzes
CN102022262B (zh) * 2009-08-25 2013-12-11 维斯塔斯风力系统集团公司 用于风轮机机舱的偏航系统和风轮机
KR101099674B1 (ko) 2009-12-16 2011-12-28 삼성중공업 주식회사 풍력 발전기
EP2354539B1 (de) * 2010-01-14 2012-05-23 Nordex Energy GmbH Windenergieanlage mit einem Azimutsystem sowie Verfahren zur Azimutverstellung einer Windenergieanlage
DE102010006299B4 (de) * 2010-01-20 2013-02-28 Stromag Wep Gmbh Hydraulische Bremsvorrichtung für einen Azimutantrieb einer Windkraftanlage sowie Steuervorrichtung hierfür
US9869298B2 (en) 2010-06-29 2018-01-16 Vestas Wind Systems A/S Rotational positioning system in a wind turbine
DK2402597T3 (en) * 2010-06-29 2016-11-28 Siemens Ag The wind turbine yaw system and method for controlling thereof
EP2495435B1 (de) 2011-03-01 2015-10-14 Areva Wind GmbH Blattwinkel-Verstellsystem und Verfahren zur Verstellung des Blattwinkels einer Windkraftanlage
EP3581792A1 (de) 2011-05-03 2019-12-18 Siemens Gamesa Renewable Energy A/S Verfahren zum prüfen einer windturbine in einem windpark auf gierfehlausrichtung, verfahren zur überwachung einer windturbine in einem windpark und überwachungsvorrichtung
FR2984356B1 (fr) * 2011-12-14 2016-12-30 Ifp Energies Now Procede de production de substrat lignocellulosique liquefie optimise
DE102012106554A1 (de) * 2012-07-19 2014-05-15 Thyssenkrupp Resource Technologies Gmbh Verfahren und Anlage zur Zerkleinerung von Mahlgut mit einer Rollenmühle
US10215156B2 (en) 2015-05-04 2019-02-26 General Electric Company Autonomous yaw control for a wind turbine
DE102016002006A1 (de) * 2015-11-20 2017-05-24 Liebherr-Components Biberach Gmbh Verstelleinheit, Windkraftanlage mit einer solchen Verstelleinheit und Verfahren zum Steuern einer solchen Verstelleinheit
EP3702612A1 (de) * 2019-02-27 2020-09-02 B&R Industrial Automation GmbH Verfahren zum halten eines beweglichen teils einer windkraftanlage
US11186468B2 (en) * 2020-04-08 2021-11-30 Comeup Industries Inc. Winch capable of externally connecting motor to increase dynamic power

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1145328A (fr) * 1956-01-11 1957-10-24 Comp Generale Electricite Dispositif d'équilibrage pour installation mécanique entraînée par au moins deux moteurs électriques par l'intermédiaire de variateurs de vitesse associés à chaque moteur
DE3306980A1 (de) * 1983-02-28 1984-09-13 Siemens AG, 1000 Berlin und 8000 München Antriebseinrichtung fuer eine rundsuch-radarantenne
US4554980A (en) * 1982-10-13 1985-11-26 Daiichi Dentsu, K.K. Nut runner using induction motor
US4966525A (en) * 1988-02-01 1990-10-30 Erik Nielsen Yawing device and method of controlling it
US5035575A (en) * 1988-02-01 1991-07-30 I.K. Trading Aps. Yawing system for a wind mill

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE299200C (de)
US2733393A (en) * 1956-01-31 Dynamic braking hoist control
DE2506160C3 (de) * 1975-02-14 1978-04-13 Alberto 8136 Percha Kling Windkraftwerk
US4047832A (en) * 1975-04-03 1977-09-13 Polytechnic Institute Of New York Fluid flow energy conversion systems
US4066911A (en) * 1976-10-04 1978-01-03 Sarchet Douglas P Wind-driven prime mover
US4116581A (en) * 1977-01-21 1978-09-26 Bolie Victor W Severe climate windmill
US4161658A (en) * 1978-06-15 1979-07-17 United Technologies Corporation Wind turbine generator having integrator tracking
US4160170A (en) * 1978-06-15 1979-07-03 United Technologies Corporation Wind turbine generator pitch control system
US4189648A (en) * 1978-06-15 1980-02-19 United Technologies Corporation Wind turbine generator acceleration control
US4193005A (en) * 1978-08-17 1980-03-11 United Technologies Corporation Multi-mode control system for wind turbines
US4305030A (en) * 1980-06-13 1981-12-08 Fmc Corporation Electronic motor braking system
DE3043611C2 (de) * 1980-11-19 1984-07-05 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Drehpositionierbare Anlage
US4703189A (en) * 1985-11-18 1987-10-27 United Technologies Corporation Torque control for a variable speed wind turbine
US4700081A (en) * 1986-04-28 1987-10-13 United Technologies Corporation Speed avoidance logic for a variable speed wind turbine
DE3625840A1 (de) * 1986-07-30 1988-02-11 Scholz Hans Ulrich Windkraftanlage
FR2642495B1 (fr) * 1989-01-31 1991-05-24 Europ Propulsion Systeme de stabilisation mecanique a contre-rotation a moteur unique
NL8902534A (nl) * 1989-10-12 1991-05-01 Holec Projects Bv Windturbine.
DE9007406U1 (de) * 1990-03-21 1991-08-22 Truetzschler Gmbh & Co Kg, 4050 Moenchengladbach, De
US5178518A (en) * 1990-05-14 1993-01-12 Carter Sr J Warne Free-yaw, free-pitch wind-driven electric generator apparatus
US5172310A (en) * 1991-07-10 1992-12-15 U.S. Windpower, Inc. Low impedance bus for power electronics
US5213470A (en) * 1991-08-16 1993-05-25 Robert E. Lundquist Wind turbine
US5149998A (en) * 1991-08-23 1992-09-22 Eaton Corporation Eddy current drive dynamic braking system for heat reduction
US5198734A (en) * 1992-03-09 1993-03-30 Marathon Oil Company Method and means for stopping backspinning motor
US5449990A (en) 1993-04-26 1995-09-12 The Whitaker Corporation Single cycle positioning system
US5332354A (en) * 1993-07-15 1994-07-26 Lamont John S Wind turbine apparatus
JP2981818B2 (ja) 1994-03-01 1999-11-22 東京エレクトロン株式会社 誘導電動機の制御回路
US5828195A (en) * 1996-08-29 1998-10-27 Universal Instruments Corporation Method and apparatus for electronic braking of an electric motor having no permanent magnets
US5746576A (en) * 1996-10-15 1998-05-05 World Power Technologies, Inc. Wind energy conversion device with angled governing mechanism
DE19717059C1 (de) 1997-04-23 1998-07-09 Aerodyn Eng Gmbh Verfahren zum Verbringen einer Windkraftanlage in eine Parkstellung
US5910688A (en) * 1997-05-12 1999-06-08 Li; Wan-Tsai Windmill
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
US5977649A (en) * 1997-11-26 1999-11-02 Dahill; Henry W. Wind energy conversion system
JP3973124B2 (ja) * 1999-01-22 2007-09-12 覺 井村 風力利用船
US5986370A (en) * 1999-04-21 1999-11-16 Cheng; Shui-Jung Autonomous generation brake
US6118678A (en) * 1999-06-10 2000-09-12 Limpaecher; Rudolf Charge transfer apparatus and method therefore
NL1013129C2 (nl) * 1999-09-24 2001-03-27 Lagerwey Windturbine B V Windmolen.
DE19955586A1 (de) * 1999-11-18 2001-06-13 Siemens Ag Windkraftanlage
ES2160078B1 (es) * 1999-11-23 2002-05-01 Marrero O Shanahan Pedro M Torre eolica con aceleracion de flujo.
JP3873634B2 (ja) * 2001-02-28 2007-01-24 株式会社日立製作所 風力発電システム
US6800956B2 (en) * 2002-01-30 2004-10-05 Lexington Bartlett Wind power system
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1145328A (fr) * 1956-01-11 1957-10-24 Comp Generale Electricite Dispositif d'équilibrage pour installation mécanique entraînée par au moins deux moteurs électriques par l'intermédiaire de variateurs de vitesse associés à chaque moteur
US4554980A (en) * 1982-10-13 1985-11-26 Daiichi Dentsu, K.K. Nut runner using induction motor
DE3306980A1 (de) * 1983-02-28 1984-09-13 Siemens AG, 1000 Berlin und 8000 München Antriebseinrichtung fuer eine rundsuch-radarantenne
US4966525A (en) * 1988-02-01 1990-10-30 Erik Nielsen Yawing device and method of controlling it
US5035575A (en) * 1988-02-01 1991-07-30 I.K. Trading Aps. Yawing system for a wind mill

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICH HAU, WINDKRAFTANLAGEN, - 1996, SPRINGER-VERLAG BERLIN HEIDELBERG, pages 268 - 271
ERICH HAU, WINDKRAFTANLAGEN, vol. 2, - 1995, pages 316 - 322
ERICH HAU, WINDKRAFTANLAGEN, vol. 2, 1995, pages 268 - 272

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7347667B2 (en) * 2001-02-10 2008-03-25 Aloys Wobben Wind power installation
US7452185B2 (en) 2003-09-10 2008-11-18 Mitsubishi Heavy Industries, Ltd Blade-pitch-angle control device and wind power generator
EP2803854A1 (de) 2003-09-10 2014-11-19 MITSUBISHI HEAVY INDUSTRIES, Ltd. Vorrichtung zur Steuerung des Schaufelanstellwinkels und Windkraftgenerator
EP2562415A1 (de) 2003-09-10 2013-02-27 Mitsubishi Heavy Industries Vorrichtung zur Steuerung des Blattanstellwinkels und Windkraftgenerator
EP1650431A3 (de) * 2004-10-19 2009-06-10 REpower Systems AG Vorrichtung für eine Windenergieanlage
EP1650431B2 (de) 2004-10-19 2019-11-20 Senvion GmbH Vorrichtung für eine Windenergieanlage
EP1650431A2 (de) * 2004-10-19 2006-04-26 REpower Systems AG Vorrichtung für eine Windenergieanlage
EP2602482A1 (de) * 2004-10-19 2013-06-12 REpower Systems SE Windenergieanlage
EP1882852A1 (de) 2006-06-28 2008-01-30 NORDEX ENERGY GmbH Windenergieanlage mit einem Maschinenhaus
DE102006029640B4 (de) * 2006-06-28 2010-01-14 Nordex Energy Gmbh Windenergieanlage mit einem Maschinenhaus
US8480367B2 (en) 2006-11-03 2013-07-09 Vestas Wind Systems A/S Yawing system for a wind turbine
DE102010003879B4 (de) * 2010-04-12 2012-02-23 Aloys Wobben Windenergieanlagen-azimut- oder Pitchantrieb
WO2011128291A2 (de) 2010-04-12 2011-10-20 Wobben, Aloys Windenergieanlagen-azimut- oder pitchantrieb
DE102010003879A1 (de) * 2010-04-12 2011-10-13 Aloys Wobben Windenergieanlagen-azimut- oder Pitchantrieb
WO2014118322A1 (de) * 2013-02-01 2014-08-07 2-B Energy Holding B.V. Steuervorrichtung für ein giersystem einer windkraftanlage
DE202017004995U1 (de) 2017-09-26 2017-10-25 Ralf Stöcker Azimutverstelleinrichtung sowie Turmkopfadapter und Windenergieanlage mit einer solchen Azimutverstelleinrichtung
WO2022073773A1 (de) * 2020-10-09 2022-04-14 PROKON Regenerative Energien eG Verfahren zur überwachung eines oder mehrerer elektrischer antriebe einer elektromechanischen anlage

Also Published As

Publication number Publication date
ES2258093T3 (es) 2006-08-16
CN1437683A (zh) 2003-08-20
DE50109161D1 (de) 2006-05-04
EP1290343A1 (de) 2003-03-12
AU2001267415B2 (en) 2005-06-02
ZA200209258B (en) 2003-09-05
MXPA02011137A (es) 2004-08-19
CA2409509C (en) 2007-01-02
NO20025388D0 (no) 2002-11-11
JP4141689B2 (ja) 2008-08-27
US6927502B2 (en) 2005-08-09
BR0110792B1 (pt) 2012-10-30
KR20020093987A (ko) 2002-12-16
BR0110792A (pt) 2003-05-06
CA2409509A1 (en) 2001-11-15
DK1290343T3 (da) 2006-07-10
CN1289813C (zh) 2006-12-13
AU6741501A (en) 2001-11-20
KR100617399B1 (ko) 2006-08-31
NO20025388L (no) 2003-01-10
EP1290343B1 (de) 2006-03-08
PT1290343E (pt) 2006-05-31
US20030160456A1 (en) 2003-08-28
ATE319929T1 (de) 2006-03-15
JP2003532834A (ja) 2003-11-05
NO324945B1 (no) 2008-01-07
NZ522582A (en) 2006-01-27

Similar Documents

Publication Publication Date Title
EP1290343B1 (de) Azimutantrieb für windenergieanlagen
EP1133638B1 (de) Azimutantrieb für windenergieanlagen
EP2101058B1 (de) Verfahren und Vorrichtung zum Drehen einer Komponente einer Windenergieanlage
WO2004088132A1 (de) Antriebsstrang zum übertragen einer variablen leistung
EP2411670B1 (de) Energiegewinnungsanlage, insbesondere windkraftanlage
DE10141098A1 (de) Windkraftanlage
WO2005121550A1 (de) Drehzahlgeregeltes getriebe für eine energieerzeugungsanlage
EP1125060A1 (de) Steuerlogik für eine windenergieanlage
DE102007044601A1 (de) Windpark mit Spannungsregelung der Windenergieanlagen und Betriebsverfahren
AT507394A2 (de) Windkraftanlage
EP3443223A1 (de) Verfahren zum betreiben einer windenergieanlage
EP2411668B1 (de) Energiegewinnungsanlage, insbesondere windkraftanlage
EP3754178B1 (de) Verfahren zum betreiben eines windparks
DE19920504C2 (de) Azimutantrieb für Windenergieanlagen
EP2885533B1 (de) Strömungskraftanlage
DE10023440C1 (de) Azimutantrieb für Windenergieanlagen
WO2018091144A1 (de) Verstell- und/oder antriebseinheit, windkraftanlage mit einer solchen verstell- und/oder antriebseinheit und verfahren zum steuern einer solchen verstell- und/oder antriebseinheit
DE102015004393A1 (de) Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage
DE102013101011A1 (de) Steuervorrichtung für ein Giersystem einer Windkraftanlage
WO2004094872A1 (de) Antriebsstrang mit variabler eingangs- und konstanter ausgangsdrehzahl
DE102007019665A1 (de) Windenergieanlage mit Stallregelung sowie Verfahren zum Betrieb einer solchen
EP3887677B1 (de) Verfahren zum betrieb einer windenergieanlage, windenergieanlage und computerprogrammprodukt
EP2342455B1 (de) Windkraftanlage
DE102017004909A1 (de) Vorrichtung zur Verstellung der Rotorblätter einer Strömungskraftanlage
WO2020109483A1 (de) Verfahren zum betrieb einer windenergieanlage

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2409509

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001267415

Country of ref document: AU

Ref document number: 2002/02511

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011137

Country of ref document: MX

Ref document number: 1020027015202

Country of ref document: KR

Ref document number: IN/PCT/2002/1850/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 522582

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2002/09258

Country of ref document: ZA

Ref document number: 200209258

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2001945101

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027015202

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018115616

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001945101

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10276117

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001267415

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 522582

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001945101

Country of ref document: EP