WO2001038958A1 - Method and device for stimulating tactile sensation by electricity - Google Patents

Method and device for stimulating tactile sensation by electricity Download PDF

Info

Publication number
WO2001038958A1
WO2001038958A1 PCT/JP2000/008173 JP0008173W WO0138958A1 WO 2001038958 A1 WO2001038958 A1 WO 2001038958A1 JP 0008173 W JP0008173 W JP 0008173W WO 0138958 A1 WO0138958 A1 WO 0138958A1
Authority
WO
WIPO (PCT)
Prior art keywords
nerve
electrode
skin surface
presentation method
axon
Prior art date
Application number
PCT/JP2000/008173
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Tachi
Taro Maeda
Naoki Kawakami
Hiroyuki Kajimoto
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to AU14173/01A priority Critical patent/AU1417301A/en
Priority to JP2001540447A priority patent/JP3543097B2/en
Publication of WO2001038958A1 publication Critical patent/WO2001038958A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36034Control systems specified by the stimulation parameters

Definitions

  • the present invention relates to a tactile presentation method and apparatus, and more particularly, to a tactile presentation method and apparatus for firing a nerve axon connected to a receptor by electrical stimulation from the skin surface.
  • firing means a phenomenon in which the potential of a stimulation site on a nerve axon rises rapidly, and the phenomenon of potential rise propagates through the axon.
  • somatic sensations Human sensations are generally divided into special sensations and somatic sensations.
  • a special sensation is a sensation that has sensory organs that correspond to sight and eyes, and hearing and ears.
  • somatic sensations can be broadly divided into skin sensations derived from the skin and proprioceptive sensations derived from internal muscles and tendons. This somatic sensation means tactile sensation in a broad sense. In a narrow sense, tactile sense means contact and pressure in the skin sensation, including sensations such as warmth, cold, and pain.
  • Tactile sensation and pressure sensation correspond to sensory receptors such as Merkel cells, Meissner's body, and Pachinii's body in the skin.If the skin is dented or pulled, its deformation or vibration is applied to the receptor. A sense of communication occurs. In addition, in skin sensation, there are various sensory receptors corresponding to sensory points, and some receptors basically observe displacement, velocity and acceleration. It has recognized.
  • the present invention has been made to solve such a problem, and focuses on the existence of several types of mechanoreceptors under human skin, and selectively stimulates these from electrodes on the skin surface. It is characterized by doing. Specifically, we propose two methods. One is that the current electrical stimulation is cathodic In this method, anodic current is used to stimulate nerve axons selectively, while current is used as stimulation. The other is a method in which the electrodes are arrayed and the stimulation depth is changed by changing the weight of the current flowing through each electrode. In addition, symbols are presented by electrical stimulation using anodic current. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the skin structure of a hairless part of a human, where RA indicates Meissna body, S AI indicates Merkel cell, and PC indicates Patini body;
  • Figure 2 is a table showing the depth of various bodies and the diameter of axons connected to them at the fingertips;
  • Fig. 3 is a cross-sectional view and an equivalent circuit diagram illustrating electrical stimulation from the skin surface
  • Fig. 4 is a diagram illustrating current stimulation from the skin surface, showing a two-dimensional, single electrode case. ing ;
  • Figure 5 shows the stimulation function of a horizontally extending axon, showing the case of cathodic current from a single electrode
  • Figure 6 shows a one-dimensional array electrode
  • Figure 7 shows the stimulation by the cathodic current, where the stimulation function of the horizontally extending axons takes a positive value, whereas the stimulation function of the vertically extending axons takes a negative value;
  • FIG. 8 is a diagram showing anodic stimulation, in which the stimulus function is reversed, in which only axons in the vertical direction of the skin are stimulated;
  • Figure 9 shows stimulation of Merkel cells and nerve axons of Patini bodies by a single electrode
  • Figure 10 shows the stimulation of Merkel cell nerve axons by array electrodes
  • Fig. 11 shows the stimulation of the paxini body axons by array electrodes. is there ;
  • FIG. 12 is a system configuration diagram according to the embodiment.
  • Figure 13 shows the input pulse waveform
  • Fig. 14 is a diagram explaining the sensation movement phenomenon, and shows that the subject always feels vibration at a position shifted from the electrode by about 1 to 3 mm in the direction of the fingertip;
  • Fig. 15 shows the elasticity of the target object in the SAI mode.
  • the object that felt like a knife edge when the finger was not moved touched the soft elastic rod as soon as it was slightly moved. Feel like there is;
  • Figure 16 shows the difference between the stimulation point and the sensory origin in each electrical stimulation mode.
  • the left is the cathode (SAI) mode and the right is the anode (RA) mode.
  • SAI cathode
  • RA anode
  • RA Meissner body
  • S A1 Merkel cell
  • S A I Luffy terminal
  • PC Pacini body
  • SAI I Luffy Terminal
  • Figure 1 shows the structure of the hairless skin.
  • RA and PC are generally thought to sense high-speed changes or vibrations, and SAI is thought to sense pressure.
  • SAI is thought to sense pressure.
  • Figure 2 shows the depth of each body and the diameter of the axon connected to it. This depth depends on the body part, but the numbers given here are at your fingertips.
  • the characteristic of the skin at the fingertip is the thickness of the keratin, and at the fingertip it is 600 / xm In other parts of the body it is around 15 / m.
  • RA exists at the tip of Dermal papillae, and its depth from the surface is about 700 m.
  • the depth of the SAI is calculated to be about 900 ⁇ m from the height of the glandular ridge.
  • the PC is located between the dermis and the subcutaneous tissue and is 2 to 3 mm deep.
  • the nerve axon connected to the mechanoreceptor is type A
  • the diameter of RA is about half the diameter of the other two axons.
  • the threshold for electrical stimulation is much lower for mechanoreceptors than for other nerves, and the stimulation can be performed stably (for example, without pain).
  • each stimulus is referred to as an RA mode, an SAI mode, and a PC mode.
  • Figure 3 shows a model of a nerve axon, with the X axis taken in the direction of the axon.
  • the cell membrane of the axon has a capacitance C m and a conductance Gm.
  • G be the internal conductance.
  • the external potential and the internal potential across the membrane are denoted by ⁇ (X, t) and V (X, t), respectively, and the potential difference V— ⁇ is denoted by Vm (X, t). From this, assuming a temporal impulse input as the input, Equation (1) is obtained.
  • the right side of equation (1) will be called the stimulus function (AF).
  • AF This is a rule that predicts the maximum value of the transmembrane potential at the time of impulse input, and can be used as a criterion for determining whether or not a nerve is firing. If a nerve axon can be fired anywhere on the axon, the maximum value of the stimulation function along the axon should be evaluated to determine the ease of firing of the nerve with electrical stimulation.
  • G and Cm are the conductance and transmembrane capacitance per axon unit length, respectively.
  • G and Cm are the conductance and transmembrane capacitance per axon unit length, respectively.
  • G and Cm are the conductance and transmembrane capacitance per axon unit length, respectively.
  • G and Cm are the conductance and transmembrane capacitance per axon unit length, respectively.
  • unmyelinated nerves When comparing unmyelinated nerves and myelinated nerves of the same size, Cm 0 1: 1 0 3 times larger. Therefore, unmyelinated nerves are less likely to be electrically stimulated than myelinated nerves on the order of 10 i to 10 3 .
  • mechanoreceptor axons are the thickest and myelinated, and are the most irritating.
  • u x x (X) is the spatial second derivative of the potential along the axon. Electric potential is generated by current from the skin surface. For this reason, the stimulus function must be described by the current source density on the skin surface.
  • I This current is the cathode current (sink). For simplicity, it is assumed to be a uniform infinite space.
  • the X axis is taken toward the skin surface, and the y axis is taken along the skin depth. Take the electrode as the origin.
  • ⁇ (X, y) — p I log (R) / 2 ⁇ (where ⁇ is the resistance per unit volume and the potential at infinity is assumed to be 0).
  • FIG. 5 shows the following.
  • AF X . From oc 1 y 2 this attenuates in proportion to the square of the axon depth y. That is, the shallower part is more likely to be irritated.
  • Figure 5 shows the results for the cathodic current for horizontally extending axons. If it becomes anodic, the figure is inverted and the stimulus function has a negative value. This has been the case in conventional electrical stimulation experiments using cathodic currents. That's why.
  • I i is the current from the i-th electrode.
  • M represents the number of electrodes, and
  • X i represents the coordinates of the i-th electrode.
  • the main part of the present invention is a method of individually stimulating each receptor for each type, that is, individually stimulating axons connected to RA, SAI, PC
  • the RA mode, SAI mode, and PC mode are described.
  • the RA mode that stimulates only RA axons is described. It takes advantage of the fact that RA axons extend perpendicular to the skin surface.
  • the stimulus function is the second derivative of the potential along the axon. Therefore, in FIG. 7, the stimulation function of the axon extending in the X direction is d 2 VZ d X 2 , whereas the stimulation function of the axon extending in the y direction is d 2 V / dy 2 .
  • normal cathodic current stimulation can stimulate axons extending in the horizontal direction of the skin, but cannot stimulate axons extending in the depth direction of the skin, such as those of Meissner bodies. This is because the stimulus function takes a negative value.
  • the anode current is used. Then, the potential distribution is inverted, and the stimulus function is also inverted (Fig. 8). That is, only the axons of the Meissner body are stimulated, and other horizontally extending axons are suppressed from firing.
  • the SAI mode that stimulates only the SAI axon is described.
  • S AI is thought to control pressure sensation, and this mode is expected to be a pressure stimulus stimulus.
  • the RA axon was the shallowest and had the characteristic of extending in the vertical direction of the skin.
  • RA axons also run horizontally when they reach the deep dermal region, but since the diameter of RA axons is about half that of SAI or PC axons, the stimulus function is 1/4. Hard to irritate.
  • Figure 9 shows the SAI and PC stimulation functions produced by a single cathodic current.
  • the stimulus function of SAI is larger because SAI exists in the shallower part. Therefore, stimulation of only SAI is relatively easy. Furthermore, when an array electrode is used, the PC stimulus function can be suppressed while maintaining the S AI stimulus function.
  • the weight change here means that a positive electrode is arranged around a single negative electrode to speed up the decay of the stimulus function in the depth direction. It should be noted here that three or more electrodes are used to present a single point. (Electric tactile displays in the past only used at most a cathode and an indifferent electrode around it.) No. ). It is used to create the desired stimulus function at the desired depth.
  • AF represents the stimulation function of the axon horizontal to the skin.
  • the last equation is obtained from Gauss's law. This result indicates that the stimulus function is a harmonic function.
  • the maximum value and the minimum value are taken on the boundary line.
  • the maximum value of the SAI stimulus function is necessarily larger than the maximum value of the PC stimulus function.
  • the cathode current is also applied to the array around the central cathode electrode to virtually increase the electrode size.
  • the overlapping stimulus functions do not strengthen at the depth of the SAI, but strengthen at the depth of the PC (because the stimulus function spreads in the first place) (Fig. 11).
  • the decay of the stimulus function can be slowed down, and ideally a stimulus function equivalent to SAI can be given.
  • the weight change here means that a negative electrode is further arranged around the cathode electrode to slow down the stimulus function in the depth direction.
  • the axon at the end of Luffy II extends vertically.
  • the nerve axon is about twice as large as the Meissner body axon. Therefore, it is considered that if the stimulation is performed by the anodic current and the stimulation function reaches deep using the array electrode, it can be fired independently.
  • a configuration of a system embodying the present invention will be described with reference to FIGS.
  • Analog multiplication of the 1-channel high-speed pulse signal (1 MHz) and the 8-channel low-speed weighting signal yields a perfectly synchronized 8-channel stimulation signal. This is converted to a current by a V-I converter, and the subject is energized. The subject places his finger on the electrode array and wears a grounded ring.
  • the array consists of eight equally spaced linear electrodes. The spacing is 1 mm and the size of one electrode is 0.5 mm x 10 mm.
  • the current flowing from one electrode Limits to 2 mA.
  • the sum of the array weights is set to 0 so that the current flows only to the fingertip.
  • the time average of the current from one electrode is set to 0 to prevent accumulation of electric charge on the skin.
  • Figure 13 shows the waveform of the high-speed pulse. It looks like a cathodic electrode, but if the weighting signal to be multiplied is negative, it will be an anodic stimulation.
  • the pulse width is currently fixed at 200 / z s.
  • the method is described below. It uses the fact that the nerve fires on the axon where the stimulus function takes its maximum value. The limitations are that the total weight is 0 (to confine the current to the fingertip) and that the electrode spacing is fixed.
  • the optimization problem is formulated as follows.
  • equation (3) is an optimization problem, and by solving this numerically, the weight of the array is obtained. (- subject to> Wi ⁇ 0
  • a 3 ⁇ 4 A and AFSAI ⁇ AFpc are the weighting vectors for RA and SAL PC activating functions.
  • the numerator and denominator in Eq. (3) are the maximum stimulus functions for the PC, SAI, and RA, respectively, along the axon. Equation (3) attempts to suppress the PC and SAI stimulus functions while preserving the RA stimulus functions. As a result, a weight for firing only the RA is obtained.
  • equation (4) is an optimization problem,
  • the weight of the array is obtained by solving the problem. mm ⁇ ⁇ ) (A,
  • equation (5) is an optimization problem, and by solving this numerically, the weight of the array is obtained. m in)
  • the two phenomena of selecting the direction of the axon and selecting the depth of the axon can be uniformly described by the stimulus function (which also takes into account the direction of the axon).
  • the weighting tendency for each RA is that the center electrode is the anode and the stimulus function is desirably attenuated in RA
  • the SAI is that the center electrode is the cathode and the stimulus function is desirably attenuated in SAI.
  • RA [0.2, 0.2, 0.1, -1.0, 0.1, 0.2, 0.2] and SAI [0.5, -0.5, -0.5, 1.0, -0.5, -0.5, 0.5] and [-1.5, 0.0, 1.0, 1.0, 0.0, -1.5] for PC.
  • SAI since the original pulse is the cathode current, when the weight is positive, it is the cathode current, and when the weight is negative, it is the anode current. Because of the constraint that the sum of the weights is 0, there is an anode at the end even for PC.
  • SAI and RA the center electrode is surrounded by electrodes of opposite signs to achieve stimulation in a very shallow range.
  • the current was gradually increased from zero.
  • the frequency of the pulse was from 100 Hz to 800 Hz.
  • the subject felt vibration.
  • the location where the vibration sensation is generated is not directly below the center electrode, but always deviates from lmm to 3 mm in the fingertip direction. (Fig. 14). This is clear evidence that the current is stimulating the axons connected to the mechanoreceptors, not the mechanoreceptors themselves.
  • the firing frequency of SAI changes according to the pressure. The higher the pressure, the higher the firing frequency. If you were wielding a "hard” object, the frequency of fire should increase with increasing pressure when you press your finger. However, in this case, even if the finger was pressed, the frequency of the current did not change, so the firing frequency did not change. It is considered that the brain judged that the reaction force did not return when pressed, that is, it was "soft.” This phenomenon suggests the following two points. First, the skin sensation also feels soft. Second, in order to exhibit a certain hardness, it is necessary to feed back the finger pressure to the pulse frequency.
  • the tactile presentation according to the present invention can also be applied as symbol presentation.
  • the present invention is used as a device for presenting Braille to a blind person.
  • the greatest requirement for symbol presentation is a narrow receptive field, or resolution.
  • the cause of this "blur” is interpreted by the brain, whereas nerve axons are directly stimulated by electrical stimulation Since the stimulus site is a mechanoreceptor at the tip of the axon, a “deviation” of the sensation origin occurs, and the accumulation of this deviation in multiple directions is considered to have caused “blurring” of the sensation (Fig. 16 left) Figure).
  • the first way to reduce the shear effect is to stimulate the shallow skin. This is because the shallower axon is considered closer to the nerve endings, that is, the receptors. For this reason, conventional symbol presentation by electrical stimulation often employs concentric electrodes to improve the resolution by limiting the region where current flows. However, even with this, the gap cannot be completely eliminated.
  • the simulation showed that the most aggressive area near the tip of the axon was the Ranvier Node closest to the tip. For this reason, the firing site is at least one myelin sheath (about 0.5 mm) shifted from the tip. Given that this accumulates, it is in principle impossible to keep the receptive field below 1 mm in diameter.
  • the receptive field can be most limited by stimulating a shallow, vertically extending axon to present symbols by electrical stimulation. This corresponds to the anodic stimulus (RAMode).
  • any perceptible skin sensation can be presented by selectively stimulating the cutaneous sensory nerve, and can be used as an electrotactile display. Further, by applying the stimulation method according to the present invention to a symbol presenting device, it can be used as, for example, a Braille presenting device.

Abstract

More minute stimulation of sensation by selectively stimulating receptors of several types under the skin is provided. A method for selectively igniting the axon connected to a receptor by electrical stimulation of the skin surface, wherein array electrodes are arrayed lineally or two-dimensionally on the skin, an axon is selectively stimulated in the direction where the axon extends by weighted variation of the array electrodes, and an axon in different depth from the skin is selectively stimulated by varying the stimulation depth.

Description

明 細 書 電気刺激を用いた触覚呈示方法及び装置 技術分野  Description Tactile presentation method and device using electrical stimulation
本発明は、 触覚呈示方法及ぴ装置に係り、 詳しくは、 皮膚表面からの 電気刺激によって受容器に繋がつた神経軸索を発火させる触覚呈示方法 及ぴ装置に関するものである。 本明細書において、 「発火」 とは、 神経軸 索上の刺激部位の電位が急激に上昇し、 さらにその電位上昇現象が軸索 を伝搬する現象を意味するものとする。 背景技術  The present invention relates to a tactile presentation method and apparatus, and more particularly, to a tactile presentation method and apparatus for firing a nerve axon connected to a receptor by electrical stimulation from the skin surface. In the present specification, the term “firing” means a phenomenon in which the potential of a stimulation site on a nerve axon rises rapidly, and the phenomenon of potential rise propagates through the axon. Background art
人間の感覚は一般に特殊感覚と体性感覚とに分けられる。 特殊感覚と は、 視覚と眼球、 聴覚と耳というように対応した感覚器がある感覚を指 す。 一方体性感覚とは大きく分けると皮膚に由来する皮膚感覚と、 内部 の筋や腱に由来する固有受容感覚とに分けられ、 この体性感覚が広い意 味での触覚を意味する。 また、 狭い意味では触覚は、 温、 冷、 痛等の感 覚を含む皮膚感覚の中の接触覚や圧覚を意味する。  Human sensations are generally divided into special sensations and somatic sensations. A special sensation is a sensation that has sensory organs that correspond to sight and eyes, and hearing and ears. On the other hand, somatic sensations can be broadly divided into skin sensations derived from the skin and proprioceptive sensations derived from internal muscles and tendons. This somatic sensation means tactile sensation in a broad sense. In a narrow sense, tactile sense means contact and pressure in the skin sensation, including sensations such as warmth, cold, and pain.
接触覚や圧覚などは皮膚の中にあるメルケル細胞、 マイスナー小体、 パチニ小体等の感覚受容器に対応しており、 皮膚がへこんだり引っ張ら れたり した場合にその変形や振動が受容器に伝わり感覚が生じる。また、 皮膚感覚においては、 感覚点に対応する種々の感覚受容器があり、 受容 器には基本的に変位と速度と加速度を見るものがあり、 それによつて触 れた物の細かいパターン等を認識している。  Tactile sensation and pressure sensation correspond to sensory receptors such as Merkel cells, Meissner's body, and Pachinii's body in the skin.If the skin is dented or pulled, its deformation or vibration is applied to the receptor. A sense of communication occurs. In addition, in skin sensation, there are various sensory receptors corresponding to sensory points, and some receptors basically observe displacement, velocity and acceleration. It has recognized.
ここで、 仮に、 何かを触る、 あるいは擦るときに生じる皮膚感覚を V R空間内で呈示できれば、 より現実世界に近付いた実在感を得られると ともにより高度な作業が可能となる。 このよ うな触覚を再現する方法に は、 機械的に行う手法あるいは電気的に行う手法がある。 機械式のもの には、 振動子で振動を起こし、 振動の周波数やイ ンパルス成分の頻度を 変更させるもの、 電気式のものには、 皮膚電極を介して電気パルスを呈 示して、 振動感覚に似た感覚を伝えるようなものがある。 機械式と電気 式との大きな違いは、 機械式が各受容器を直接刺激するものであるのに 対して、 電気式は受容器に繋がつた神経軸索を刺激するものであるとい う点、にある。 Here, if the skin sensation that occurs when touching or rubbing something can be presented in the VR space, a sense of realism closer to the real world can be obtained. Both allow for advanced work. Methods for reproducing such tactile sensation include a mechanical method and an electric method. The mechanical type changes the frequency of vibration and the frequency of impulse components by vibrating the vibrator, and the electric type displays electric pulses through the skin electrode to provide a sense of vibration. There are things that convey a similar feeling. The major difference between mechanical and electrical is that mechanical stimulates each receptor directly, whereas electrical stimulates nerve axons connected to the receptors. It is in.
そして、 過去の多くの皮膚感覚ディ スプレイはア レイ状に並べたピン 構造か、 またはベルト状かのどちらかに分類できる。 これらは可動部を 持っため構造が大型となるという欠点があり、 研究の主体は小型化に絞 られている。 しかも現在のところ原理的に、 皮膚感覚のごく一部しか呈 示できていない。  And many past skin sensation displays can be categorized as either pin-like arrangements in an array or belt-like. These have the drawback of having a large structure due to the presence of moving parts, and the focus of research has been on miniaturization. Moreover, at present, only a small part of the skin sensation can be presented in principle.
これに対して、 外部からの電流によって神経活動が誘発されることを 利用する電気触覚ディスプレイの研究も行われている。 皮膚には電極を 取り付けるだけで良いため小型化は容易となった。 しかしながら、 ほと んどの研究が電流と皮膚下の神経活動の関係を定式化せずにシステムを 組んでいるためアドホックなものに終わっていた。  On the other hand, research is being conducted on electro-tactile displays that use the fact that neural activity is induced by external current. Since it is only necessary to attach electrodes to the skin, miniaturization was facilitated. However, most studies have been ad-hoc because systems have been formulated without formulating the relationship between current and neural activity under the skin.
本発明は、 皮膚下に存在する数種類の受容器を選択的に刺激すること で、よりきめの細かい触覚呈示を提供することを課題とするものである。 発明の開示  It is an object of the present invention to provide finer tactile presentation by selectively stimulating several types of receptors existing under the skin. Disclosure of the invention
本発明は、 かかる課題を解決するために創案されたものであって、 人 間の皮膚下には数種類の機械受容器が存在することに着目 し、 これらを 皮膚表面の電極から選択的に刺激することを特徴とするものである。 具 体的には二つの手法を提案する。 一つは、 これまでの電気刺激が陰極電 流を刺激と して用いていたのに対し陽極電流を使う ことで神経軸索の方 向に選択的な刺激を行う手法である。もう一つは、電極をァレイ状と し、 各電極に流す電流の重み付け変化で刺激深度を変化させる手法である。 また、 陽極電流を用いた電気刺激によつて記号呈示を行なう。 図面の簡単な説明 The present invention has been made to solve such a problem, and focuses on the existence of several types of mechanoreceptors under human skin, and selectively stimulates these from electrodes on the skin surface. It is characterized by doing. Specifically, we propose two methods. One is that the current electrical stimulation is cathodic In this method, anodic current is used to stimulate nerve axons selectively, while current is used as stimulation. The other is a method in which the electrodes are arrayed and the stimulation depth is changed by changing the weight of the current flowing through each electrode. In addition, symbols are presented by electrical stimulation using anodic current. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 人の無毛部の皮膚構造を示す図であり、 R Aはマイスナ小体、 S A I はメルケル細胞、 P Cはパチニ小体を示している ; FIG. 1 shows the skin structure of a hairless part of a human, where RA indicates Meissna body, S AI indicates Merkel cell, and PC indicates Patini body;
図 2は、 指先における、 各種小体の深さとそれに接続される軸索の直径 を示す表である ; Figure 2 is a table showing the depth of various bodies and the diameter of axons connected to them at the fingertips;
図 3は、皮膚表面からの電気刺激を説明する断面図と等価回路図である; 図 4は、 皮膚表面からの電流刺激を説明する図であり、 二次元、 単一電 極の場合を示している ; Fig. 3 is a cross-sectional view and an equivalent circuit diagram illustrating electrical stimulation from the skin surface; Fig. 4 is a diagram illustrating current stimulation from the skin surface, showing a two-dimensional, single electrode case. ing ;
図 5は、 水平方向に延びた軸索の刺激関数を示す図であり、 単一電極か らの陰極電流の場合を示している ; Figure 5 shows the stimulation function of a horizontally extending axon, showing the case of cathodic current from a single electrode;
図 6は、 1次元アレイ電極を示す図である ; Figure 6 shows a one-dimensional array electrode;
図 7は、 陰極電流による刺激を示す図であり、 水平に延びた軸索の刺激 関数が正の値をとるのに対して、 垂直に延びた軸索の刺激関数は負の値 をとる ; Figure 7 shows the stimulation by the cathodic current, where the stimulation function of the horizontally extending axons takes a positive value, whereas the stimulation function of the vertically extending axons takes a negative value;
図 8は、 陽極刺激を示す図であり、 刺激関数が正負逆転し、 このもので は、 皮膚垂直方向の軸索のみ刺激される ; FIG. 8 is a diagram showing anodic stimulation, in which the stimulus function is reversed, in which only axons in the vertical direction of the skin are stimulated;
図 9は、 単一電極による、 メルケル細胞とパチニ小体の神経軸索の刺激 を示す図である ; Figure 9 shows stimulation of Merkel cells and nerve axons of Patini bodies by a single electrode;
図 1 0は、 ア レイ電極による、 メルケル細胞の神経軸索の刺激を示す図 である ; Figure 10 shows the stimulation of Merkel cell nerve axons by array electrodes;
図 1 1は、 ア レイ電極による、 パチニ小体の神経軸索の刺激を示す図で ある ; Fig. 11 shows the stimulation of the paxini body axons by array electrodes. is there ;
図 1 2は、 実施の形態に係るシステム構成図である ; FIG. 12 is a system configuration diagram according to the embodiment;
図 1 3は、 入力パルス波形を示す図である ; Figure 13 shows the input pulse waveform;
図 1 4は、 感覚の移動現象を説明する図であり、 被験者はつねに電極か ら 1〜 3 mmほど指先方向にずれた場所に振動覚を感じることを示して おり ; Fig. 14 is a diagram explaining the sensation movement phenomenon, and shows that the subject always feels vibration at a position shifted from the electrode by about 1 to 3 mm in the direction of the fingertip;
図 1 5は、 S A Iモ一ドにおける対象物体の弾性を示す図であり、 指を 動かさないときナイフエッジのように感じていたものが、 微小に動かし た途端軟らかい弾性体の棒を触っているように感じる ; Fig. 15 shows the elasticity of the target object in the SAI mode.The object that felt like a knife edge when the finger was not moved touched the soft elastic rod as soon as it was slightly moved. Feel like there is;
図 1 6は、 各電気刺激モードにおける刺激点と感覚生起点のずれを示す 図であり、 左は陰極 ( S A I ) モード、 右は陽極 (RA) モー ドである。 発明を実施するための好ましい形態 Figure 16 shows the difference between the stimulation point and the sensory origin in each electrical stimulation mode. The left is the cathode (SAI) mode and the right is the anode (RA) mode. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 皮膚感覚生成のメカニズムについて説明する。 皮膚には 4種類 の機械受容器が存在する。 マイ スナー小体 (RA)、 メルケル細胞 (S A 1 )、 ルフィ二終末 ( S A I 1 )、 パチニ小体 (P C) である。 ルフィ二 終末 ( S A I I ) は密度が低いので、 以下 RA、 S A I 、 P Cを中心に 話を進める。  First, the mechanism of skin sensation generation will be described. There are four types of mechanoreceptors in the skin. Meissner body (RA), Merkel cell (S A1), Luffy terminal (S A I 1), and Pacini body (PC). Luffy Terminal (SAI I) has a low density, so we will focus on RA, SAI, and PC below.
図 1は無毛部の皮膚の構造であり、 一般に RAと P Cは高速の変化、 ないし振動を感知し、 S A I は圧力を感知すると考えられている。 そし て、 全体の構造に関しては、 ①各種小体は種類によって決まった深さに 存在する、 ②各種小体に接続される神経軸索は種類によって決まった太 さを持つ、 という特徴が知られている。 図 2は各種小体の深さとそれに 接続される軸索の直径である。 この深さは体の部分によって異なるが、 ここに挙げた数値は指先のものである。  Figure 1 shows the structure of the hairless skin. RA and PC are generally thought to sense high-speed changes or vibrations, and SAI is thought to sense pressure. As for the overall structure, it is known that (1) various bodies exist at a depth determined by the type, and (2) nerve axons connected to the various bodies have a thickness determined by the type. ing. Figure 2 shows the depth of each body and the diameter of the axon connected to it. This depth depends on the body part, but the numbers given here are at your fingertips.
指先の皮膚の特徴は角質の厚さにあり、 指先では 6 0 0 /x mであるの に対して体の他の部分では 1 5 / m程度である。 R Aは Dermal papillae先端に存在し、 表面からの深さは 7 0 0 m程度である。 S A I の深さは glandular ridge の高さから計算して 9 0 0 μ m程度とされ る。 P Cは真皮と皮下組織部の間に存在し、 2 mmから 3 mmの深さで ある。 The characteristic of the skin at the fingertip is the thickness of the keratin, and at the fingertip it is 600 / xm In other parts of the body it is around 15 / m. RA exists at the tip of Dermal papillae, and its depth from the surface is about 700 m. The depth of the SAI is calculated to be about 900 μm from the height of the glandular ridge. The PC is located between the dermis and the subcutaneous tissue and is 2 to 3 mm deep.
機械受容器に接続される神経軸索は A |3型とされ、 これは指に存在す る求心性神経と してはもつとも太い。 R Aの直径が他の二つの軸索の直 径の半分程度であることに留意する必要がある。 皮膚には他にも求心性 軸索は各種存在する (痛覚、 温覚等) 力 全て機械受容器の軸索に比べ て 1 / 1 0程度の直径しか持たない。 このことにより、 電気刺激の閾値 は機械受容器のほうが他の神経よりはるかに低くなり、 安定して (例え ば痛みを伴うことなく) 刺激を行うことができる。  The nerve axon connected to the mechanoreceptor is type A | 3, which is the thickest afferent nerve in a finger. It should be noted that the diameter of RA is about half the diameter of the other two axons. There are other types of afferent axons in the skin (pain sensation, warmth, etc.) Forces All have only a diameter of about 1/10 compared to mechanoreceptor axons. As a result, the threshold for electrical stimulation is much lower for mechanoreceptors than for other nerves, and the stimulation can be performed stably (for example, without pain).
電気刺激で重要なのは軸索の方向と深さである。 皮膚下に存在する神 経軸索の経路を定量的に詳細に調べた研究はなく、 したがって、 いく ら かの推量が必要となる。 発生の研究から、 R Aの軸索は dermal領域か ら垂直に延びていることが判っている。 これに対して S A Iの軸索の延 ぴ方ははつき り していない。 幾つかのスケッチは軸索が真皮 (dermal region) を水平に走っている様を描いている。 このことから S A I の軸 索は皮膚表面に対して水平であると仮定する。 P Cの軸索は多くの研究 で皮膚水平に走っていることが判っている。 したがって、 S A I 、 R A、 P Cに接続された軸索を別々に刺激することで各刺激の組み合わせによ りあらゆる皮膚感覚を生成できる。 本明細書では、 各刺激を、 R Aモー ド、 S A I モード、 P Cモードと呼ぶことにする。  The key to electrical stimulation is the direction and depth of axons. No studies have quantitatively examined the pathways of neural axons below the skin quantitatively and therefore require some inference. Developmental studies indicate that RA axons extend vertically from the dermal area. On the other hand, the extension of the SAI axon is not fixed. Some sketches show the axons running horizontally across the dermal region. From this, it is assumed that the axons of SAI are horizontal to the skin surface. Many studies show that PC axons run parallel to the skin. Therefore, by separately stimulating the axons connected to the SAI, RA, and PC, all skin sensations can be generated by a combination of the stimuli. In the present specification, each stimulus is referred to as an RA mode, an SAI mode, and a PC mode.
個々の刺激手法について述べる前に、 電気刺激の原理について説明す る。 図 3は神経軸索をモデル化したもので、 X軸を軸索の方向にとる。 軸索の細胞膜はキャパシタンス C mとコンダクタンス Gmを持つ。 軸索 内部のコンダクタンスを Gとおく。 膜を隔てた外部電位と内部電位をそ れぞれ Ψ ( X , t )、 V ( X , t ) とし、 電位差 V— Ψを Vm ( X , t ) とする。 ここから、 入力と して時間的イ ンパルス入力を仮定すると、 式 ( 1 ) が求められる。 Before describing the individual stimulation methods, the principle of electrical stimulation will be explained. Figure 3 shows a model of a nerve axon, with the X axis taken in the direction of the axon. The cell membrane of the axon has a capacitance C m and a conductance Gm. Axon Let G be the internal conductance. The external potential and the internal potential across the membrane are denoted by Ψ (X, t) and V (X, t), respectively, and the potential difference V—Ψ is denoted by Vm (X, t). From this, assuming a temporal impulse input as the input, Equation (1) is obtained.
X2 X 2
^xx っ 〔1)  ^ xx tsu (1)
T  T
ただし λ =、/ 、 r = Cm/Gm Where λ =, /, r = C m / G m
式 ( 1 ) の右辺を刺激関数 (A F) ど呼ぶことにする。 これはインパ ルス入力時の膜間電位差の最大値を予測する物差しであり、 よって神経 が発火するかどうか判定するための判断基準と して用いることができる。 もし、 神経軸索が軸索上のどこでも発火可能とすれば、 電気刺激でその 神経の発火しやすさを判定するためには軸索上に沿った刺激関数の最大 値を評価すればよい。 The right side of equation (1) will be called the stimulus function (AF). This is a rule that predicts the maximum value of the transmembrane potential at the time of impulse input, and can be used as a criterion for determining whether or not a nerve is firing. If a nerve axon can be fired anywhere on the axon, the maximum value of the stimulation function along the axon should be evaluated to determine the ease of firing of the nerve with electrical stimulation.
刺激関数について、 もう少し具体的に説明する。 sZ ^ GZCm であり、 G、 C mはそれぞれ軸索単位長当たりのコンダクタンス と膜間 キャパシタ ンスであり、 以下のことがわかる。 無髄神経の場合は、 神経 が n倍太く なつたとき Gは n 2、 C mは n倍となり、 したがって n倍刺 激しやすく なる。 有髄神経の場合には、 解剖学的的知見として、 Ranvier 間隙の幅は神経の太さによらないが、 間隙同士の間隔は神経の太さに比 例する。 このことに注意して計算すると、 神経が n倍太くなつたとき G は n 2、 Cmは変化せず、 したがって n 2倍刺激しやすくなる。 また、 同 じ大きさの無髄神経と有髄神経を比べた場合、 C mは無髄神経の方が 1 0 1〜: 1 0 3倍大きい。 したがって、 無髄神経は 1 0 i〜 1 0 3のオーダ 一で有髄神経より電気刺激しにくい。 ここにおいて、 機械受容器の軸索 は最も太く、 かつ有髄であり、 最も刺激しやすい。 The stimulus function will be described more specifically. sZ ^ GZCm, where G and Cm are the conductance and transmembrane capacitance per axon unit length, respectively. In the case of an unmyelinated nerve, when the nerve becomes n times thicker, G becomes n 2 and C m becomes n times, so that the stimulation becomes n times easier. In the case of myelinated nerves, as an anatomical finding, the width of the Ranvier gap does not depend on the thickness of the nerve, but the spacing between gaps is proportional to the thickness of the nerve. When calculated with this in mind, G becomes n 2 and Cm do not change when the nerve becomes n times thicker, so it becomes n 2 times easier to stimulate. When comparing unmyelinated nerves and myelinated nerves of the same size, Cm 0 1: 1 0 3 times larger. Therefore, unmyelinated nerves are less likely to be electrically stimulated than myelinated nerves on the order of 10 i to 10 3 . Here, mechanoreceptor axons are the thickest and myelinated, and are the most irritating.
刺激関数において、 u x x ( X ) は軸索に沿った電位の空間 2回微分 である。 電位は皮膚表面からの電流によって発生する。 このため刺激関 数は皮膚表面の電流源密度によつて表さなければならない。まず二次元、 単一電極の場合を考える (図 4 )。 電流を I とする。 この電流は陰極電流 である (吸い出し)。 簡単のため均一の無限空間とする。 X軸を皮膚表面 方向にと り、 y軸を皮膚深さ方向にとる。 電極を原点にとる。 (x, y ) おける電流密度 i は、 i ( X , y ) = I π R (但し、 R = x In the stimulus function, u x x (X) is the spatial second derivative of the potential along the axon. Electric potential is generated by current from the skin surface. For this reason, the stimulus function must be described by the current source density on the skin surface. First, consider the case of a two-dimensional, single electrode (Figure 4). Let the current be I. This current is the cathode current (sink). For simplicity, it is assumed to be a uniform infinite space. The X axis is taken toward the skin surface, and the y axis is taken along the skin depth. Take the electrode as the origin. The current density i at (x, y) is i (X, y) = I π R (where R = x
+ y 2は電極からの距離である)。 Ψ ( X , y ) =— p I log ( R ) / 2 π ( ρは単位体積当たりの抵抗、 無限遠電位を 0と仮定) となる。 + y 2 is the distance from the electrode). Ψ (X, y) = — p I log (R) / 2 π (where ρ is the resistance per unit volume and the potential at infinity is assumed to be 0).
ここで刺激関数を計算すると、 もし軸索が X軸方向に延びていれば、 d2 Ψ (X If we calculate the stimulus function here, if the axon extends in the X-axis direction, d 2 Ψ (X
AF ex  AF ex
dx2
Figure imgf000009_0001
となる。
dx 2
Figure imgf000009_0001
Becomes
式 ( 2 ) をプロッ トすると図 5のようになる。 図 5からは以下のこと が判る。 まず、 刺激関数は X = 0で最大値をとる。 これは電極直下でも つとも刺激されやすいことを意味する。 A F X =。 oc 1ノ y 2より、 これは軸索深さ yの二乗に比例して減衰する。 すなわち浅い部分ほど刺 激されやすい。 また、 図 5は水平に延びた軸索に対する陰極性電流に対 する結果を示している。 もし陽極性となれば図は正負反転し、 刺激関数 は負の値を持つ。 このことが、 従来電気刺激実験が陰極性電流を用いて いる理由である。 Plotting equation (2) results in Fig. 5. Figure 5 shows the following. First, the stimulus function takes its maximum value at X = 0. This means that it is easy to be stimulated immediately under the electrodes. AF X = . From oc 1 y 2 this attenuates in proportion to the square of the axon depth y. That is, the shallower part is more likely to be irritated. Figure 5 shows the results for the cathodic current for horizontally extending axons. If it becomes anodic, the figure is inverted and the stimulus function has a negative value. This has been the case in conventional electrical stimulation experiments using cathodic currents. That's why.
また、 一般に電流源が皮膚上に分布している場合には、
Figure imgf000010_0001
となり、
In general, if the current source is distributed on the skin,
Figure imgf000010_0001
Becomes
櫛形電極を使う場合には離散的になり (図 6)、 When comb electrodes are used, they become discrete (Fig. 6),
Figure imgf000010_0002
Figure imgf000010_0002
となる。但し、 I i は i番目の電極からの電流である。 Mは電極の個数、 X i は i番目の電極の座標を表す。 Becomes Where I i is the current from the i-th electrode. M represents the number of electrodes, and X i represents the coordinates of the i-th electrode.
皮膚構造および電気刺激の原理について述べたところで、 本発明の主 要部である各受容器を種類ごとに個別に刺激する手法、 すなわち R A、 S A I、 P Cに接続された軸索を個別に刺激する R Aモー ド、 S A Iモ ード、 P Cモードについて説明する。  Having described the skin structure and the principle of electrical stimulation, the main part of the present invention is a method of individually stimulating each receptor for each type, that is, individually stimulating axons connected to RA, SAI, PC The RA mode, SAI mode, and PC mode are described.
[R Aモー ド]  [RA mode]
R A軸索のみ刺激する R Aモードについて述べる。 RA軸索が皮膚表 面に垂直に延ぴていることを利用する。 刺激関数は軸索に沿った電位の 2回微分である。 したがって、 図 7において X方向に延びた軸索の刺激 関数は d 2VZ d X 2であるのに対して、 y方向に延びた軸索の刺激関数 は d 2 V / d y 2である。ガウスの法則により電荷の湧き出しの無い空間 では、 d Z VZ d x S - d VZd y 2であり、 すなわち、 d 2VZ d y 2 =一 d 2 V Z d x 2となる。すなわち通常の陰極電流による刺激では皮膚 水平方向に延びている軸索は刺激できるが、 マイスナー小体の軸索よう に皮膚深さ方向に延ぴている軸索は刺激できない。 刺激関数が負の値を とってしまうためである。 ここで陽極電流を用いる。 すると電位分布が 反転し、 そのため刺激関数も反転する (図 8 )。 すなわち、 マイスナー小 体の軸索のみ刺激され、他の水平方向に延びた軸索は発火を押えられる。 The RA mode that stimulates only RA axons is described. It takes advantage of the fact that RA axons extend perpendicular to the skin surface. The stimulus function is the second derivative of the potential along the axon. Therefore, in FIG. 7, the stimulation function of the axon extending in the X direction is d 2 VZ d X 2 , whereas the stimulation function of the axon extending in the y direction is d 2 V / dy 2 . In a space where there is no source of charge according to Gauss' law, d Z VZ dx S-d VZd y 2 , that is, d 2 VZ dy 2 = Serving as an d 2 VZ dx 2. In other words, normal cathodic current stimulation can stimulate axons extending in the horizontal direction of the skin, but cannot stimulate axons extending in the depth direction of the skin, such as those of Meissner bodies. This is because the stimulus function takes a negative value. Here, the anode current is used. Then, the potential distribution is inverted, and the stimulus function is also inverted (Fig. 8). That is, only the axons of the Meissner body are stimulated, and other horizontally extending axons are suppressed from firing.
[ S A Iモード]  [SAI mode]
S A I の軸索のみ刺激する S A Iモ一ドについて述べる。 S A I は圧 覚を司ると考えられており、 このモードは圧覚呈示刺激となることが期 待される。 ここで、 R A軸索は最も浅く、 皮膚垂直方向に延びていると いう特徴があった。 R A軸索も真皮下層部 (deep dermal region) に達 すると水平方向に走るよ うになるが、 R A軸索の直径は S A Iや P Cの 軸索の半分程度であるため刺激関数は 1 / 4 となり、 刺激しにくい。 し たがって、 水平方向に延びた S A I と P Cの軸索のみを考える。  The SAI mode that stimulates only the SAI axon is described. S AI is thought to control pressure sensation, and this mode is expected to be a pressure stimulus stimulus. Here, the RA axon was the shallowest and had the characteristic of extending in the vertical direction of the skin. RA axons also run horizontally when they reach the deep dermal region, but since the diameter of RA axons is about half that of SAI or PC axons, the stimulus function is 1/4. Hard to irritate. Thus, we consider only the horizontally extending S AI and PC axons.
図 9は、 単一の陰極電流によってできる S A I と P Cの刺激関数であ る。 S A I のほうが浅部に存在するために S A I の刺激関数のほうが大 きくなつている。 したがって、 S A I のみの刺激は比較的容易である。 さらにアレイ電極を用いると、 S A I の刺激関数を保ちながら、 P Cの 刺激関数を抑制することができる。  Figure 9 shows the SAI and PC stimulation functions produced by a single cathodic current. The stimulus function of SAI is larger because SAI exists in the shallower part. Therefore, stimulation of only SAI is relatively easy. Furthermore, when an array electrode is used, the PC stimulus function can be suppressed while maintaining the S AI stimulus function.
単一の電極を陰極と して使う場合に比べ、 その周りの電極を陽極と し て加えてやると刺激関数の深さ方向の減衰が早くなるので、 安定して S A Iだけを刺激することができる (図 1 0 )。 すなわち、 ここで言う重み 付け変化とは、 単一の陰電極の周りに陽電極を配設して、 刺激関数の深 さ方向の減衰を早めることを意味している。 ここで注意すべき点は、 一 点の提示のために 3つ以上の電極を用いているという点である (過去の 電気触覚ディスプレイは高々陰極とその周りの不関電極しか用いていな い。)。 あくまで、 所望の深さに所望の刺激関数を作るために使用してい る。 Compared to using a single electrode as the cathode, adding the surrounding electrodes as the anode increases the stimulus function in the depth direction faster, so that it is possible to stably stimulate only the SAI. Yes (Fig. 10). In other words, the weight change here means that a positive electrode is arranged around a single negative electrode to speed up the decay of the stimulus function in the depth direction. It should be noted here that three or more electrodes are used to present a single point. (Electric tactile displays in the past only used at most a cathode and an indifferent electrode around it.) No. ). It is used to create the desired stimulus function at the desired depth.
[ P Cモード]  [PC mode]
次に、 P Cの刺激について説明する。 これは S A I小体より も深いと ころにあり、 さらに S A I と P Cの軸索の直径は略等しいので、 P Cだ けを刺激することはできない。 なぜなら、 P Cの刺激関数の最大値は常 に S A I の刺激関数の最大値より小さいからである。 これは以下のよう にして示すことができる。 d2AF d2AF d2 d2V d 2' 92V Next, the stimulation of the PC will be described. It is deeper than the SAI body, and since the axons of SAI and PC are about the same diameter, only PC can be stimulated. This is because the maximum value of the PC stimulus function is always smaller than the maximum value of the SAI stimulus function. This can be shown as follows. d 2 AF d 2 AF d 2 d 2 V d 2 '92 V
O  O
dx2 dy 2 dx2 ax2 + dy2 dx2 d2 d2V d2 d2 V dx2 dx^ + d ム dy2
Figure imgf000012_0001
dx 2 dy 2 dx 2 ax 2 + dy 2 dx 2 d 2 d 2 V d 2 d 2 V dx 2 dx ^ + d m dy 2
Figure imgf000012_0001
0  0
ここで A Fは皮膚に対して水平な軸索の刺激関数を表す。 最後の等式 はガウスの法則から得られる。 この結果は、 刺激関数が調和関数である ことを表している。調和関数ではその最大値、最小値を境界線上でと り、 この場合、 S A I の刺激関数の最大値は P Cの刺激関数の最大値より必 ず大きい。  Where AF represents the stimulation function of the axon horizontal to the skin. The last equation is obtained from Gauss's law. This result indicates that the stimulus function is a harmonic function. In the harmonic function, the maximum value and the minimum value are taken on the boundary line. In this case, the maximum value of the SAI stimulus function is necessarily larger than the maximum value of the PC stimulus function.
しかし、なるべく P Cを S A I と同じく らいに刺激することはできる。 これは S A I モードの場合とは逆で、 中心陰極電極の周りのアレイにも 陰極電流を流してやり、 電極サイズをバーチャルに大きく してやること によって行う。 すると重なり合った刺激関数は S A I の深さでは強め合 わないのに P Cの深さでは (そもそも刺激関数が広がっているため) 強 め合う (図 1 1 )。 こう して刺激関数の減衰を遅く してやり、 理想的には S A I と同等の刺激関数を与えることができる。 すなわち、 ここで言う 重み付け変化とは、 陰極電極の周りにさらに陰電極を配設して、 刺激関 数の深さ方向の減衰を遅くすることを意味している。 However, it is possible to stimulate PCs as easily as SAI. This is the opposite of the SAI mode, in which the cathode current is also applied to the array around the central cathode electrode to virtually increase the electrode size. Done by Then, the overlapping stimulus functions do not strengthen at the depth of the SAI, but strengthen at the depth of the PC (because the stimulus function spreads in the first place) (Fig. 11). In this way, the decay of the stimulus function can be slowed down, and ideally a stimulus function equivalent to SAI can be given. In other words, the weight change here means that a negative electrode is further arranged around the cathode electrode to slow down the stimulus function in the depth direction.
P Cを発火させよう と したとき S A I も発火してしまう というのは問 題であるよ うに見える。 しかしながら、 P Cが振動覚、 S A I が圧覚を 担当していて、 現実の場面では P Cが発火する多くの状況では S A I も 発火していることが過去の知見から判つていることに鑑みれば (少なく とも数 1 0 0ヘルツの振動まで) それほど問題とはならないと考えられ る。  It seems to be a problem that if you try to ignite PC, S AI will also ignite. However, considering that the PC is responsible for the vibration sense and the SAI is responsible for the sense of pressure, it is known from past knowledge that in many situations where the PC is ignited, the SAI is also ignited in the actual situation (at least, (Up to the vibration of number 100 Hz) It is thought that this is not a problem.
尚、 ルフィ二終末の軸索については垂直方向に延ぴているものと考え られる。 またその神経軸索はマイスナー小体の軸索の倍程ある。 したが つて、 陽極電流による刺激で、 かつアレイ電極を用いて刺激関数が深部 まで届く ようにすれば、 単独で発火させることが可能であると考えられ る。  It is considered that the axon at the end of Luffy II extends vertically. The nerve axon is about twice as large as the Meissner body axon. Therefore, it is considered that if the stimulation is performed by the anodic current and the stimulation function reaches deep using the array electrode, it can be fired independently.
[システム構成]  [System configuration]
本発明を具現するシステムの構成について図 1 2に基づいて説明する。 1チャネル高速パルス信号 ( 1 MH z ) と 8チャネル低速重み付け信号 をアナログ乗算し、 完全に同期させた 8チャネル刺激信号を得る。 これ を V— I コンバータで電流に変換し、 被験者に通電する。 被験者は指を 電極アレイに載せ、 接地された指輪をはめる。  A configuration of a system embodying the present invention will be described with reference to FIGS. Analog multiplication of the 1-channel high-speed pulse signal (1 MHz) and the 8-channel low-speed weighting signal yields a perfectly synchronized 8-channel stimulation signal. This is converted to a current by a V-I converter, and the subject is energized. The subject places his finger on the electrode array and wears a grounded ring.
アレイは 8本の等間隔線状電極から構成される。 間隔は 1 mmで電極 一つのサイズは 0. 5 mmX 1 0 mmである。  The array consists of eight equally spaced linear electrodes. The spacing is 1 mm and the size of one electrode is 0.5 mm x 10 mm.
安全のため以下のような制限を設ける。 まず一つの電極から流れる電流 は 2 mAに制限する。 次にアレイの重み付けの和を 0と し、 電流が指先 に限定して流れるよ うにする。 最後に一つの電極からの電流の時間平均 が 0になるようにし、 皮膚への電荷の蓄積を防ぐ。 The following restrictions are set for safety. First, the current flowing from one electrode Limits to 2 mA. Next, the sum of the array weights is set to 0 so that the current flows only to the fingertip. Finally, the time average of the current from one electrode is set to 0 to prevent accumulation of electric charge on the skin.
図 1 3は高速パルスの波形である。 陰極性電極に見えるが、 乗算する 重み付け信号を負にとれば陽極性刺激となる。 パルス幅は現在のところ 2 0 0 /z sに固定している。  Figure 13 shows the waveform of the high-speed pulse. It looks like a cathodic electrode, but if the weighting signal to be multiplied is negative, it will be an anodic stimulation. The pulse width is currently fixed at 200 / z s.
実際に最適なア レイの重み付けパターンを求めるには、 最適化問題を 解く必要がある。 以下にその方法を述べる。 神経がその軸索上で刺激関 数が最大値をとる場所で発火することを利用する。 制限は、 重み付けの 合計は 0である (電流を指先に閉じ込めるため) ことと、 電極間隔は固 定であるという ことである。 最適化問題は以下のように定式化される。  To find the optimal array weighting pattern, it is necessary to solve an optimization problem. The method is described below. It uses the fact that the nerve fires on the axon where the stimulus function takes its maximum value. The limitations are that the total weight is 0 (to confine the current to the fingertip) and that the electrode spacing is fixed. The optimization problem is formulated as follows.
R Aモードについては、 式 ( 3 ) が最適化問題となり、 これを数値的 に解く ことでアレイの重み付けを得る。 (-
Figure imgf000014_0001
subject to > Wi ― 0
For the RA mode, equation (3) is an optimization problem, and by solving this numerically, the weight of the array is obtained. (-
Figure imgf000014_0001
subject to> Wi ― 0
ただし A ¾A、 AFSAI^ AFpcは RA、 SAL PCの activating function^ 'ιϊΗま求める重みべク トノレである。 式 ( 3 ) の分子、 分母はそれぞれ P C、 S A I、 R Aに対する刺激関 数の、 軸索に沿った最大値である。 式 ( 3 ) は R Aの刺激関数を保存し つつ、 P C、 S A I の刺激関数を押えよう と している。 これによつて R Aのみ発火する重み付けが得られる。 Where A ¾ A and AFSAI ^ AFpc are the weighting vectors for RA and SAL PC activating functions. The numerator and denominator in Eq. (3) are the maximum stimulus functions for the PC, SAI, and RA, respectively, along the axon. Equation (3) attempts to suppress the PC and SAI stimulus functions while preserving the RA stimulus functions. As a result, a weight for firing only the RA is obtained.
S A I モードに対しては、 式 ( 4 ) が最適化問題となり、 これを数値 的に解く ことでァレイの重み付けを得'る。 mm ^ Ά) (A、 For SAI mode, equation (4) is an optimization problem, The weight of the array is obtained by solving the problem. mm ^ Ά) (A,
^ ma,xX y(AFSAi) ^ ma, x X y (AF S Ai)
P Cモードに対しては、 式 ( 5 ) が最適化問題となり、 これを数値的 に解く ことでアレイの重み付けを得る。 minFor PC mode, equation (5) is an optimization problem, and by solving this numerically, the weight of the array is obtained. m in)
Figure imgf000015_0001
すなわち、 軸索の方向を選択するということ と、 軸索の深さを選択す るという二つの現象を、 刺激関数 (軸索の方向をも考慮した) によって 統一的に記述できる。 前述した各モー ドの原理からすると、 それぞれの 重み付けの傾向は、 R Aでは中心電極が陽極で刺激関数は減衰しゃすい 方が望ましく、 S A Iでは中心電極が陰極で刺激関数は減衰しやすい方 が望ましく、 そして P Cでは中心電極が陰極で刺激関数は減衰しにくい 方が望ましい。 これについて、 上記最適化問題に基づいて数値計算して も同様の結果が得られる。 アレイ間隔が l mmでアレイが 7個の場合に は、 R A用 [0.2, 0.2, 0.1, -1.0, 0.1, 0.2, 0.2]、 S A I用 [0.5, -0.5, -0.5, 1.0, -0.5, -0.5, 0.5]、 PC用 [-1.5, 0.0, 1.0, 1.0, 1.0, 0.0, -1.5] となる。 ここで、元のパルスが陰極電流であるから、重みが正のときは陰極電流、 負のときは陽極電流となる。 重み付けの和が 0になるという制約条件の ため、 P C用でも端に陽極がある。 S A I と R Aの場合はごく浅い範囲 の刺激を実現するために中心電極の周りは反対符合の電極で囲まれてい る。
Figure imgf000015_0001
In other words, the two phenomena of selecting the direction of the axon and selecting the depth of the axon can be uniformly described by the stimulus function (which also takes into account the direction of the axon). According to the principle of each mode described above, the weighting tendency for each RA is that the center electrode is the anode and the stimulus function is desirably attenuated in RA, while the SAI is that the center electrode is the cathode and the stimulus function is desirably attenuated in SAI. In a PC, it is desirable that the center electrode is a cathode and the stimulus function is hardly attenuated. Similar results can be obtained by performing numerical calculations based on the above optimization problem. If the array spacing is l mm and there are seven arrays, RA [0.2, 0.2, 0.1, -1.0, 0.1, 0.2, 0.2] and SAI [0.5, -0.5, -0.5, 1.0, -0.5, -0.5, 0.5] and [-1.5, 0.0, 1.0, 1.0, 1.0, 0.0, -1.5] for PC. Here, since the original pulse is the cathode current, when the weight is positive, it is the cathode current, and when the weight is negative, it is the anode current. Because of the constraint that the sum of the weights is 0, there is an anode at the end even for PC. In the case of SAI and RA, the center electrode is surrounded by electrodes of opposite signs to achieve stimulation in a very shallow range.
【実験 1 】 [ P cモードにおける感覚の移動現象] [Experiment 1] [Sensory movement in PC mode]
P Cモードにおいて、 電流を 0から徐々に上げて行った。 パルスの周 波数は 1 0 0 H zから 8 0 0 H z と した。 このとき被験者は振動を感じ た。 被験者の振動感覚と入力パルスの周波数の間の関係については現時 点では詳細には調べていないが、 振動感覚の生成する場所が中心電極の 真下ではなく、 つねに l m mから 3 m mほど指先方向にずれていること が分かった (図 1 4 )。 このことは、 電流が機械受容器そのものではなく それに接続された軸索を刺激していることの明白な証拠となる。  In the PC mode, the current was gradually increased from zero. The frequency of the pulse was from 100 Hz to 800 Hz. At this time, the subject felt vibration. Although the relationship between the subject's vibration sensation and the frequency of the input pulse has not been investigated in detail at this time, the location where the vibration sensation is generated is not directly below the center electrode, but always deviates from lmm to 3 mm in the fingertip direction. (Fig. 14). This is clear evidence that the current is stimulating the axons connected to the mechanoreceptors, not the mechanoreceptors themselves.
【実験 2 】  [Experiment 2]
[ S A Iモードにおける物体の硬さの感知]  [Sensitivity of object in SAI mode]
S A Iモードで安定して圧覚を感じているとき、 指は電極の形で押し 付けられているように感じる。 電極は線であるから、 この感覚はナイフ エッジを押し付けられた場合に近い。 このとき押し付けられる指の圧力 を微小に変化させる (接触面積が変わらない程度に)。 するとナイフェツ ジの感覚であったものが突然軟らかい弾性体の棒に変化した (図 1 5 )。 被験者によってはその部分が 「へこんだ」 と表現した。  When you feel a sense of pressure stably in the SAI mode, your finger feels like it is being pressed in the form of an electrode. Since the electrodes are wires, this sensation is similar to pressing a knife edge. At this time, the pressure of the pressed finger is slightly changed (to the extent that the contact area does not change). Then, the feeling of nifejji suddenly changed to a soft elastic rod (Fig. 15). Some subjects described that part as "dented."
これは次のように説明される。 本来 S A I は圧力に応じて発火頻度が 変化する。 圧力が高ければ発火頻度は増す。 もし 「硬い」 ものをさわつ ていたのなら、 指を押したとき圧力の増加に伴って発火頻度は増すはず である。 しかしこの場合、 指を押しても電流の周波数は変えていないた め発火頻度は変化していない。 これを脳は 「押したとき反力が帰って来 ない」、 すなわち 「軟らかい」 と判断したと考えられる。 尚、 この現象か らは次の 2点が示唆される。 第一に皮膚感覚も軟らかさを感じるという ことである。 第二にある硬さを呈示するためには指圧をパルス周波数に フィードバックすることが必要となるという ことである。  This is explained as follows. Originally, the firing frequency of SAI changes according to the pressure. The higher the pressure, the higher the firing frequency. If you were wielding a "hard" object, the frequency of fire should increase with increasing pressure when you press your finger. However, in this case, even if the finger was pressed, the frequency of the current did not change, so the firing frequency did not change. It is considered that the brain judged that the reaction force did not return when pressed, that is, it was "soft." This phenomenon suggests the following two points. First, the skin sensation also feels soft. Second, in order to exhibit a certain hardness, it is necessary to feed back the finger pressure to the pulse frequency.
【実験 3 】 [R Aモー ドの振動覚] [Experiment 3] [Vibration sense in RA mode]
R Aモードにおいて被験者は安定して振動を感じた。 パルス周波数が 1 0 0 H z以下のとき、 生成した感覚はスピーカのコーンを触っている 場合に近かった。 2 0 0 H zを超えると何とも形容しがたい感覚となつ た。 これは次のように説明される。 実験では R A軸索を刺激していた。 RAは低周波振動 ( 2 0から 7 0 H z ) に反応する受容器と して知られ ている。 そしてこのレンジでは、 機械振動周波数がそのまま神経の発火 周波数となる。 よって我々の場合、 被験者は電気パルスで与えた信号と 同じ周波数の振動を感じたと考えられる。 しかし RAのみの 2 0 0 H z 以上の振動は実際にはあり得ない ( 2 0 0 H z以上の振動は P Cの方が はるかに発火しやすくなる) ため、 これを被験者は不自然と感じたと思 われる。  In the RA mode, the subject felt a stable vibration. When the pulse frequency was below 100 Hz, the generated sensation was close to touching the speaker cone. Beyond 200 Hz, the feeling became indescribable. This is explained as follows. In the experiment, it stimulated RA axons. RA is known as a receptor that responds to low-frequency vibrations (20 to 70 Hz). And in this range, the mechanical vibration frequency becomes the firing frequency of the nerve as it is. Therefore, in our case, it is considered that the subject felt vibration at the same frequency as the signal given by the electric pulse. However, vibration of RA only above 200 Hz cannot actually occur (PCs are much easier to ignite vibration above 200 Hz), so subjects feel unnatural. I think it was.
前述したように、 S A I の軸索が皮膚水平方向に延びていると仮定し た。 もし S A Iが垂直方向に延びていれば、 R Aモードによる縦神経刺 激で圧覚も感じたはずであるが、実際には常に安定して振動覚を感じた。 このことから S A I が基本的に横であるという仮定は棄却されていない。 強い振動覚によって圧覚がマスクされたとも考えられるが、 実用上はそ れで問題ないと考えられる。  As described above, it was assumed that the SAI axons extended in the horizontal direction of the skin. If S AI extended in the vertical direction, pressure sensation would have been felt due to longitudinal nerve stimulation in RA mode, but in fact, vibration sensation was always felt stably. This does not reject the assumption that SAI is essentially horizontal. It is thought that the pressure sensation was masked by the strong vibration sense, but this is not a problem in practical use.
[記号呈示デバイス]  [Symbol presentation device]
本発明に係る触覚呈示は、記号呈示と しても応用できる。具体的には、 本発明を全盲者への点字呈示デバィスと して利用することが挙げられる。 記号呈示に要求される最大の要件は狭い受容野、 すなわち解像度であ る。 過去の電気刺激を用いた記号呈示の研究では、 電極の存在位置と皮 虜感覚の生起点がずれる、 あるいはぼやけてしまう という現象が観察さ れた。 我々の研究によると、 この 「ぼけ」 の原因は、 電気刺激によって 直接刺激されるのが神経軸索であるのに対して、 脳によって解釈される 刺激部位は軸索先端の機械受容器であるために、 感覚生起点の 「ずれ」 が生じ、 このずれの多方向の累積が感覚の 「ぼけ」 を生んだと考えられ る (図 1 6左図)。 The tactile presentation according to the present invention can also be applied as symbol presentation. Specifically, the present invention is used as a device for presenting Braille to a blind person. The greatest requirement for symbol presentation is a narrow receptive field, or resolution. In past studies of symbol presentation using electrical stimulation, it was observed that the location of the electrodes and the origin of the sense of captivity were shifted or blurred. According to our research, the cause of this "blur" is interpreted by the brain, whereas nerve axons are directly stimulated by electrical stimulation Since the stimulus site is a mechanoreceptor at the tip of the axon, a “deviation” of the sensation origin occurs, and the accumulation of this deviation in multiple directions is considered to have caused “blurring” of the sensation (Fig. 16 left) Figure).
ずれ効果を減らす第一の方法は皮膚浅部を刺激することである。 浅部 の軸索ほど神経末端、 すなわち受容器に近いと考えられるためである。 このため従来の電気刺激による記号呈示は多くが同心円電極を採用し、 電流の流れる領域を限定することで解像度の向上をはかっている。 しか しこれでも、 ずれを完全に無くすことはできない。 軸索の先端付近で最 も発火しゃすい部位は、先端に最も近い Ranvier Nodeであることがシ ミ ュ レ一シヨ ンからわかった。 このために発火部位は最低でも先端から 髄鞘一つ分 (約 0. 5 mm) ずれる。 これが累積することを考えると、 受容野を直径 1 mm以下に押さえることは原理的に不可能である。  The first way to reduce the shear effect is to stimulate the shallow skin. This is because the shallower axon is considered closer to the nerve endings, that is, the receptors. For this reason, conventional symbol presentation by electrical stimulation often employs concentric electrodes to improve the resolution by limiting the region where current flows. However, even with this, the gap cannot be completely eliminated. The simulation showed that the most aggressive area near the tip of the axon was the Ranvier Node closest to the tip. For this reason, the firing site is at least one myelin sheath (about 0.5 mm) shifted from the tip. Given that this accumulates, it is in principle impossible to keep the receptive field below 1 mm in diameter.
ここで注意すべきことは、 このずれ効果が、 水平方向に走る軸索に対 して最大値を取るという ことである。 逆に垂直方向に走る軸索を刺激す るのであれば、 やはり軸索発火部位と機械受容器の存在位置はずれるも のの、 皮膚鉛直方向のずれを感知する手段が無いため実質上ずれを生じ ないはずである (図 1 6右図)。  It should be noted that this shift effect has a maximum value for axons running in the horizontal direction. Conversely, if axons running in the vertical direction are to be stimulated, the location of the axon firing site and the mechanoreceptor will also deviate, but there will be no means to detect the vertical displacement of the skin, causing substantial displacement. It should not be present (Figure 16 right).
したがって、 電気刺激によって記号呈示を行なうには、 浅部の、 縦方 向に延びた軸索を刺激すれば最も受容野を限定できると考えられる。 こ れは、 前記陽極刺激 (R A M o d e ) に対応する。  Therefore, it is considered that the receptive field can be most limited by stimulating a shallow, vertically extending axon to present symbols by electrical stimulation. This corresponds to the anodic stimulus (RAMode).
R A M o d eの場合に生起する感覚が振動覚であることがわかって いる。 振動感覚は気付き易さと安全性を兼ね揃えており、 記号呈示と し ての役割を考えると他の皮膚感覚に比べて有利である。 実際に全盲者二 人に対し、 陽極刺激 (R A M o d e ), 陰極刺激 ( S A I M o d e ) を行なったところ、 陽極刺激が 「針のように」 鋭い感覚を生起するのに 対して陰極刺激では、 「感覚が広がっていく」 というコメントを得た。 産業上の利用可能性 It is known that the sensation that occurs in the case of RAM ode is vibration sense. Vibration sensation is both easy to notice and safe, and is more advantageous than other skin sensations, given its role as a symbol presentation. When anodic stimulation (RAM ode) and cathodic stimulation (SAIM ode) were actually performed on two blind people, anodic stimulation produced a sharp sensation "like a needle", whereas cathodic stimulation produced " The feeling will spread. " Industrial applicability
本発明によれば、 皮膚感覚神経を選択的に刺激することにより、 知覚 可能なあらゆる皮膚感覚を呈示することができ、 電気触覚ディスプレイ と して利用することができる。 また、 本発明に係る刺激手法を記号呈示 デバイスに応用することで、 例えば、 点字呈示デバイスと しての利用が 可能である。  According to the present invention, any perceptible skin sensation can be presented by selectively stimulating the cutaneous sensory nerve, and can be used as an electrotactile display. Further, by applying the stimulation method according to the present invention to a symbol presenting device, it can be used as, for example, a Braille presenting device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 皮膚表面からの電気刺激によって受容器に繋がった神経軸索を選択 的に発火させる触覚呈示方法であって、 皮膚表面からの陽極電流によつ て、 皮膚深さ方向に延びた神経軸索のみを刺激することを特徴とする触 覚呈示方法。 1. A tactile presentation method that selectively ignites nerve axons connected to receptors by electrical stimulation from the skin surface. The nerve axis extends in the skin depth direction by anodic current from the skin surface. A tactile presentation method characterized by stimulating only the cord.
2 . 皮膚表面からの電気刺激によつて受容器に繋がつた神経軸索を選択 的に発火させる触覚呈示方法であって、 皮膚表面からの電流の陽陰を選 択することによって、 神経軸索の延びる方向に対応して選択的に神経軸 索を刺激することを特徴とする触覚呈示方法。  2. A tactile presentation method that selectively ignites nerve axons connected to receptors by electrical stimulation from the skin surface. By selecting the positive and negative of the current from the skin surface, the nerve axon is selected. A tactile sensation presentation method characterized by selectively stimulating a nerve axon in accordance with a direction in which a human body extends.
3 . 皮膚深さ方向に延びた神経軸索は陽極電流によつて刺激することを 特徴とする請求の範囲 2に記載の触覚呈示方法。  3. The tactile sensation presentation method according to claim 2, wherein the nerve axon extending in the skin depth direction is stimulated by an anodic current.
4 . 皮膚表面方向に延びた神経軸索は陰極電流によって刺激することを 特徴とする請求の範囲 2に記載の触覚呈示方法。  4. The tactile sensation presentation method according to claim 2, wherein the nerve axon extending toward the skin surface is stimulated by a cathodic current.
5 . 前記皮膚深さ方向に延びた神経軸索は、 マイ スナー小体あるいはル フィニ終末に繋がった神経軸索であることを特徴とする請求の範囲 1 , 5. The nerve axon extending in the depth direction of the skin is a nerve axon connected to a Meissner body or a terminal of Rufini, according to claim 1,
3いずれかに記載の触覚呈示方法。 3. The tactile sensation presentation method according to any of 3.
6 . 前記皮膚表面方向に延びた神経軸索は、 パチニ小体あるいはメルケ ル細胞に繋がった神経軸索であることを特徴とする請求の範囲 4に記載 の触覚呈示方法。  6. The tactile sensation presentation method according to claim 4, wherein the nerve axon extending in the direction of the skin surface is a nerve axon connected to a Pachinii body or a Merkel cell.
7 . 皮膚表面からの電気刺激によつて受容器に繋がつた神経軸索を選択 的に発火させる触覚呈示方法であって、 皮膚表面に一元状あるいは二次 元状の複数のァレイ電極を設け、 該ァレイ電極の重み付け変化によって 刺激深度を変化させ、 皮膚表面に対して深度の異なる神経軸索を刺激す ることを特徴とする触覚呈示方法。  7. A tactile sensation presentation method for selectively firing nerve axons connected to receptors by electrical stimulation from the skin surface, where a plurality of unitary or two-dimensional array electrodes are provided on the skin surface, A tactile sensation presentation method, characterized in that the stimulation depth is changed by changing the weight of the array electrode, and nerve axons having different depths are stimulated on the skin surface.
8 . 前記神経軸索は、 皮膚表面方向に延ぴているものであることを特徴 とする請求の範囲 7に記載の触覚呈示方法。 8. The nerve axon extends in the direction of the skin surface. 8. The tactile sensation presentation method according to claim 7, wherein
9 . 皮膚表面からの電気刺激によって受容器に繋がった神経軸索を選択 的に発火させる触覚呈示方法であって、 皮膚表面に一元状あるいは二次 元状の複数のァレイ電極を設け、該ァレイ電極の重み付け変化によって、 神経軸索の延びる方向に対応して選択的に神経軸索を刺激すると共に、 刺激深度を変化させて皮膚表面に対して深度の異なる神経軸索を選択的 に刺激することを特徴とする触覚呈示方法。  9. A tactile sensation presentation method for selectively firing a nerve axon connected to a receptor by electrical stimulation from the skin surface, wherein a plurality of unary or two-dimensional array electrodes are provided on the skin surface, Selective stimulation of nerve axons corresponding to the direction in which the nerve axons extend, and selective stimulation of nerve axons with different depths to the skin surface by changing the stimulation depth by changing the electrode weighting A tactile sensation presentation method, characterized in that:
1 0 . 前記ア レイ電極の重み付け変化は、 陽陰の電極の配設を選択する ことによって、 皮膚表面からの電流の陽陰を選択すると共に、 刺激関数 の深さ方向の減衰を選択することを含むことを特徴とする請求の範囲 7 , 8, 9いずれかに記載の触覚呈示方法。  10. The weight change of the array electrodes is selected by selecting the arrangement of the positive and negative electrodes to select the positive and negative of the current from the skin surface and to select the depth attenuation of the stimulus function. The tactile sensation presentation method according to any one of claims 7, 8, and 9, characterized by comprising:
1 1 .選択された神経軸索はマイスナー小体に繋がった神経軸索であり、 前記アレイ電極の中心電極が陽極であり、 該中心電極の周りには陰極電 極が配設されることを特徴とする請求の範囲 1 0に記載の触覚呈示方法 t 1 2 . 選択された神経軸索はメルケル細胞に繋がった神経軸索であり、 前記ア レイ電極の中心電極が陰極であり、 該中心電極の周りには陽極電 極を配設することで刺激関数の深さ方向の減衰を早めることを特徴とす る請求の範囲 1 0に記載の触覚呈示方法。 11.The selected nerve axon is a nerve axon connected to the Meissner body, the center electrode of the array electrode is an anode, and a cathode electrode is provided around the center electrode. tactile presentation method t 1 2 according to the range 1 0 claims, characterized. the selected nerve axons are nerve axons that led to Merkel cells, a center electrode cathode of the array electrode, said center The tactile sensation presentation method according to claim 10, wherein an anode electrode is provided around the electrode to accelerate the attenuation of the stimulation function in the depth direction.
1 3 . 選択された神経軸索はパチニ小体に繋がった神経軸索であり、 前 記ァレイ電極の中心電極が陰極であり、 該中心電極の周りにはさらに陰 極電極を配設することで刺激関数の深さ方向の減衰を遅くすることを特 徴とする請求の範囲 1 0に記載の触覚呈示方法。  1 3. The selected nerve axon is a nerve axon connected to the Pachinii body, the center electrode of the array electrode is a cathode, and a negative electrode is further provided around the center electrode. 10. The tactile sensation presentation method according to claim 10, wherein the decay of the stimulus function in the depth direction is slowed down.
1 4 . 皮膚表面からの電気刺激によって受容器に繋がった神経軸索を選 択的に発火させる触覚呈示装置であって、 該装置は皮膚表面に一元状あ るいは二次元状に配設される複数のアレイ電極を有し、 該ア レイ電極の 重み付けは選択自在に構成されており、 該ァレイ電極の重み付けの変化 によって、 神経軸索の延びる方向に対応して選択的に神経軸索を刺激す ると共に、 刺激深度を変化させて皮膚表面に対して深度の異なる神経軸 索を選択的に刺激するように構成されていることを特徴とする触覚呈示 14. A tactile sensation presentation device that selectively ignites a nerve axon connected to a receptor by electrical stimulation from the skin surface, wherein the device is arranged on the skin surface in a unified or two-dimensional manner. A plurality of array electrodes, and the weight of the array electrodes is configured to be selectable. In addition to selectively stimulating nerve axons corresponding to the direction in which they extend, the stimulation depth is varied to selectively stimulate nerve axons with different depths on the skin surface. Tactile presentation characterized by being performed
1 5 . 前記アレイ電極の重み付けの選択は、 ア レイ電極を構成する各電 極の陰陽の選択および各電極の配設の選択によって行う ことを特徴とす る請求の範囲 1 4に記載の触覚呈示装置。 15. The tactile sensation according to claim 14, wherein the selection of the weight of the array electrode is performed by selecting the yin and yang of each electrode constituting the array electrode and selecting the arrangement of each electrode. Presentation device.
1 6 . 皮膚表面からの電気刺激を用いた記号呈示方法であって、 皮膚の 浅部に位置すると共に、 皮膚深さ方向に延びた神経軸索を刺激すること を特徴とする記号呈示方法。  16. A symbol presentation method using electrical stimulation from the skin surface, wherein the symbol presentation method is characterized by stimulating a nerve axon located in a shallow part of the skin and extending in a depth direction of the skin.
1 7 . 前記神経軸索はマイ スナー小体に繋がった神経軸索であることを 特徴とする請求の範囲 1 6に記載の記号呈示方法。  17. The method for presenting a symbol according to claim 16, wherein the nerve axon is a nerve axon connected to a Meissner body.
1 8 . 陽極電流によって神経軸索を刺激することを特徴とする請求の範 囲 1 6に記載の記号呈示方法。  18. The method for presenting a symbol according to claim 16, wherein a nerve axon is stimulated by an anodic current.
PCT/JP2000/008173 1999-11-24 2000-11-20 Method and device for stimulating tactile sensation by electricity WO2001038958A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU14173/01A AU1417301A (en) 1999-11-24 2000-11-20 Method and device for stimulating tactile sensation by electricity
JP2001540447A JP3543097B2 (en) 1999-11-24 2000-11-20 Tactile presentation method and device using electrical stimulation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33217799 1999-11-24
JP11/332177 1999-11-24

Publications (1)

Publication Number Publication Date
WO2001038958A1 true WO2001038958A1 (en) 2001-05-31

Family

ID=18252035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008173 WO2001038958A1 (en) 1999-11-24 2000-11-20 Method and device for stimulating tactile sensation by electricity

Country Status (3)

Country Link
JP (1) JP3543097B2 (en)
AU (1) AU1417301A (en)
WO (1) WO2001038958A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031918A (en) * 2003-07-10 2005-02-03 Ntt Docomo Inc Touch panel display unit
WO2007066717A1 (en) 2005-12-08 2007-06-14 The University Of Tokyo Electric tactile display
JP2009187579A (en) * 2009-05-15 2009-08-20 Ntt Docomo Inc Touch panel display device
WO2010134349A1 (en) * 2009-05-21 2010-11-25 パナソニック株式会社 Tactile sensation processing device
KR101563256B1 (en) 2013-11-20 2015-10-26 늘솜주식회사 Apparatus for driving actuator
JP2017023223A (en) * 2015-07-16 2017-02-02 国立大学法人埼玉大学 Bi-directional remote control system using functional electric stimulation

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20085475A0 (en) 2008-05-19 2008-05-19 Senseg Oy Touch Device Interface
CN103513764B (en) 2007-09-18 2017-04-26 森赛格公司 Method and apparatus for sensory stimulation
WO2010037894A1 (en) 2008-10-03 2010-04-08 Senseg Oy Techniques for presenting vehicle-related information
JP5385582B2 (en) 2008-10-10 2014-01-08 大学共同利用機関法人自然科学研究機構 Pain sensory nerve stimulator
US8766933B2 (en) 2009-11-12 2014-07-01 Senseg Ltd. Tactile stimulation apparatus having a composite section comprising a semiconducting material
JP5399939B2 (en) 2010-02-09 2014-01-29 大学共同利用機関法人自然科学研究機構 Pain sensory nerve stimulator
JP5549979B2 (en) * 2010-06-23 2014-07-16 国立大学法人大阪大学 Spatial transparent tactile presentation device and tool operation support system
TWI710934B (en) 2016-04-07 2020-11-21 國立硏究開發法人科學技術振興機構 Tactile information conversion device, tactile information conversion method, tactile information conversion program and component arrangement structure

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167471A2 (en) * 1984-05-30 1986-01-08 The University Of Melbourne Electrotactile vocoder
EP0184332A2 (en) * 1984-11-07 1986-06-11 Audiosonics Neural Communications Systems, Inc. Method and device for communicating information representing sound waves to the deaf
US4926879A (en) * 1988-06-13 1990-05-22 Sevrain-Tech, Inc. Electro-tactile stimulator
US4950229A (en) * 1989-09-25 1990-08-21 Becton, Dickinson And Company Apparatus for an electrode used for iontophoresis
JPH0720978A (en) * 1993-07-05 1995-01-24 Sony Corp Virtual reality device
WO1996004574A1 (en) * 1994-08-05 1996-02-15 Apollon's Algebra (Gibraltar) Limited Method and apparatus for the transmission of acoustic information as tactile vibrations
JPH0890472A (en) * 1994-09-26 1996-04-09 Olympus Optical Co Ltd Tactile sense transmitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167471A2 (en) * 1984-05-30 1986-01-08 The University Of Melbourne Electrotactile vocoder
EP0184332A2 (en) * 1984-11-07 1986-06-11 Audiosonics Neural Communications Systems, Inc. Method and device for communicating information representing sound waves to the deaf
US4926879A (en) * 1988-06-13 1990-05-22 Sevrain-Tech, Inc. Electro-tactile stimulator
US4950229A (en) * 1989-09-25 1990-08-21 Becton, Dickinson And Company Apparatus for an electrode used for iontophoresis
JPH0720978A (en) * 1993-07-05 1995-01-24 Sony Corp Virtual reality device
WO1996004574A1 (en) * 1994-08-05 1996-02-15 Apollon's Algebra (Gibraltar) Limited Method and apparatus for the transmission of acoustic information as tactile vibrations
JPH0890472A (en) * 1994-09-26 1996-04-09 Olympus Optical Co Ltd Tactile sense transmitting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI KAJIMOTO ET AL.: "Tactile feeling display using functional electrical stimulation", THE 9TH INTERNATIONAL CONFERENCE ON ARTIFICIAL REALITY AND TELEXISTENCE (ICAT99), THE VIRTUAL REALITY SOCIETY OF JAPAN, 16 December 1999 (1999-12-16), (TOKYO, JAPAN), pages 107 - 114, XP002936761 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031918A (en) * 2003-07-10 2005-02-03 Ntt Docomo Inc Touch panel display unit
JP4531358B2 (en) * 2003-07-10 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ Touch panel display device
WO2007066717A1 (en) 2005-12-08 2007-06-14 The University Of Tokyo Electric tactile display
US8920174B2 (en) 2005-12-08 2014-12-30 The University Of Tokyo Electric tactile display
JP2009187579A (en) * 2009-05-15 2009-08-20 Ntt Docomo Inc Touch panel display device
WO2010134349A1 (en) * 2009-05-21 2010-11-25 パナソニック株式会社 Tactile sensation processing device
JP4778591B2 (en) * 2009-05-21 2011-09-21 パナソニック株式会社 Tactile treatment device
CN102227696A (en) * 2009-05-21 2011-10-26 松下电器产业株式会社 Tactile sensation processing device
US8570291B2 (en) 2009-05-21 2013-10-29 Panasonic Corporation Tactile processing device
KR101563256B1 (en) 2013-11-20 2015-10-26 늘솜주식회사 Apparatus for driving actuator
JP2017023223A (en) * 2015-07-16 2017-02-02 国立大学法人埼玉大学 Bi-directional remote control system using functional electric stimulation

Also Published As

Publication number Publication date
JP3543097B2 (en) 2004-07-14
AU1417301A (en) 2001-06-04

Similar Documents

Publication Publication Date Title
Kajimoto et al. Tactile feeling display using functional electrical stimulation
Kajimoto et al. Electro-tactile display with tactile primary color approach
WO2001038958A1 (en) Method and device for stimulating tactile sensation by electricity
US10269223B2 (en) Haptic communication apparatus and method
JP3433236B2 (en) Tactile communication device and method
Kajimoto et al. Forehead electro-tactile display for vision substitution
US11520407B2 (en) Virtual reality haptic feedback interaction system
Kaczmarek et al. Pattern identification and perceived stimulus quality as a function of stimulation waveform on a fingertip-scanned electrotactile display
Kajimoto et al. Electro-tactile display with force feedback
Sato et al. Design of electrotactile stimulation to represent distribution of force vectors
CN1744152A (en) Touch visual-text display device based on jet technique and its display method
CN102805900A (en) Electrical stimulation system for producing artificial electric touch
Seo et al. Edge flows: Improving information transmission in mobile devices using two-dimensional vibrotactile flows
Kajimoto et al. Psychophysical evaluation of receptor selectivity in electro-tactile display
Kajimoto et al. Electrocutaneous display as an interface to a virtual tactile world
Kuroki et al. Proposal for tactile sense presentation that combines electrical and mechanical stimulus
KR20210146276A (en) Mask pack system including electrical stimulation device
Kajimoto et al. Electrocutaneous display with receptor selective stimulations
CN112057739B (en) Pulse output control method, device, electronic equipment and computer storage medium
JP2002328596A (en) Method and device for presenting tactile sense
Echenique et al. Electrical stimulation of mechanoreceptors
KR20020064603A (en) Touch Screen for Human Body Reaction
Hayashi et al. Two-point discrimination threshold as a function of frequency and polarity at fingertip by electrical stimulation
Yem et al. Masking of electrical vibration sensation using mechanical vibration for presentation of pressure sensation
CN117666778A (en) Electrostimulation haptic feedback wearing system with dynamic haptic hybrid rendering

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 540447

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase