WO2001035872A1 - Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants - Google Patents

Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants Download PDF

Info

Publication number
WO2001035872A1
WO2001035872A1 PCT/IL2000/000757 IL0000757W WO0135872A1 WO 2001035872 A1 WO2001035872 A1 WO 2001035872A1 IL 0000757 W IL0000757 W IL 0000757W WO 0135872 A1 WO0135872 A1 WO 0135872A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial
joint
detection system
resonance circuit
bone
Prior art date
Application number
PCT/IL2000/000757
Other languages
French (fr)
Inventor
David Mendes
Ruth Beer
Emanuel Mendes
Original Assignee
Intellijoint Systems Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellijoint Systems Ltd. filed Critical Intellijoint Systems Ltd.
Priority to AU14102/01A priority Critical patent/AU1410201A/en
Priority to US09/774,019 priority patent/US6583630B2/en
Priority to US09/774,017 priority patent/US6573706B2/en
Publication of WO2001035872A1 publication Critical patent/WO2001035872A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/076Permanent implantations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1076Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions inside body cavities, e.g. using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/468Testing instruments for artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/48Operating or control means, e.g. from outside the body, control of sphincters
    • A61F2/488Means for detecting or monitoring wear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2072Reference field transducer attached to an instrument or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4547Evaluating teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • A61F2/3804Joints for elbows or knees for elbows
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/40Joints for shoulders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4202Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for ankles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4261Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for wrists
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/3006Properties of materials and coating materials
    • A61F2002/30079Properties of materials and coating materials magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30667Features concerning an interaction with the environment or a particular use of the prosthesis
    • A61F2002/30668Means for transferring electromagnetic energy to implants
    • A61F2002/3067Means for transferring electromagnetic energy to implants for data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30907Nets or sleeves applied to surface of prostheses or in cement
    • A61F2002/30909Nets
    • A61F2002/30912Nets made of expanded metal, e.g. diamond mesh or metal nets having lozenge-shaped apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4225Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for feet, e.g. toes
    • A61F2002/4233Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for feet, e.g. toes for metatarso-phalangeal joints, i.e. MTP joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • A61F2002/4243Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for interphalangeal joints, i.e. IP joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • A61F2002/4251Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for metacarpo-phalangeal joints, i.e. MCP or MP joints, e.g. knuckle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • A61F2002/4256Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for carpo-metacarpal joints, i.e. CMC joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4631Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor the prosthesis being specially adapted for being cemented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4658Measuring instruments used for implanting artificial joints for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/4657Measuring instruments used for implanting artificial joints
    • A61F2002/4671Measuring instruments used for implanting artificial joints for measuring resonant frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/009Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof magnetic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0001Means for transferring electromagnetic energy to implants
    • A61F2250/0002Means for transferring electromagnetic energy to implants for data transfer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00017Iron- or Fe-based alloys, e.g. stainless steel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00029Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00395Coating or prosthesis-covering structure made of metals or of alloys
    • A61F2310/00407Coating made of titanium or of Ti-based alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00592Coating or prosthesis-covering structure made of ceramics or of ceramic-like compounds
    • A61F2310/00796Coating or prosthesis-covering structure made of a phosphorus-containing compound, e.g. hydroxy(l)apatite

Abstract

A detection system (20) for detecting wear of, and/or relative displacement between, artificial joint members (12) adjacent vertebrae, segments of fractured bones (18) or dental implants is provided. The detection system (20) serves for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with such wear or displacement.

Description

SYSTEMS AND METHODS FOR MONITORING WEAR AND/OR DISPLACEMENT OF ARTIFICIAL JOINT MEMBERS, VERTEBRAE, SEGMENTS OF FRACTURED BONES AND DENTAL
IMPLANTS
FIELD AND BACKGROUND OF THE INVENTION
The present invention relates to systems and methods for monitoring wear of, and/or displacement between, artificial joint members, vertebrae, segments of fractured bones, and dental implants. More specifically, embodiments of the present invention relate to detection systems capable of determining a distance between, for example, joint members of an artificial joint or between adjacent vertebrae, thus enabling to determine, for example, relative displacement therebetween. Artificial Joints Total joint arthroplasty is an operation involving the replacement of a damaged joint with an artificial joint assembly in order to restore motion to the joint and function to the muscles and ligaments and other soft tissue structures that operate and control the joint.
The operation is typically performed on individuals with a painful, disabling arthritic joint that is no longer responsive to conservative treatment regimens. This operation typically entails implantation of two or more artificial joint members into respective natural joint members so as to replace deteriorated natural articulating surfaces with artificial equivalents- Artificial joint assemblies have been devised for a variety of joints including hips, knees, ankles, shoulders, elbows, fingers, toes and wrists (see, as examples, Figures la-k). Typically, components of artificial joints such as that shown in, for example, U.S. Pat. No. 4,068,342 to Townley et al. mimic the structure and function of joint members of a natural joint, thus providing as natural as possible articulation motion. While artificial joint components are designed to provide stable and permanent attachment to the natural adjacent body tissue(s), at attachment interfaces, motion and/or loosening of the artificial joint member can occur, resulting in artificial joint relocation, which can lead to a loss of function, bone deterioration and tissue debris generation.
Such relocation can lead to an increase in wear to the articulating surfaces of the artificial joint. Such wear typically results in reduced function of the artificial joint and, in addition, produces joint debris which are expelled from the joint area to the surrounding tissues and may cause adverse reactions, such as inflammatory granulatoma, in these tissues.
The debris expelled from the artificial joint includes microscopic particles typically measuring up to a few microns in size. These particles provoke various tissue reactions, which affect the bones hosting the artificial joint implant. The type and severity of the biological reaction to wear generated particles depend mainly on the physical properties and to a lesser degree also on the chemical properties of the wear particles. For example, in joints which include polyethylene component three types of particles are observed, chunks, flakes and granules. The granules, which are approximately one micron in size, are responsible for an intense inflammatory reaction. The histology is characterized by phagocytosis of the particles, resulting in large conglomerations of macrophages due to their inability to digest the polyethylene. The inflammatory process is accompanied by release of biochemical mediators such as prostaglandins and interleukins that cause absorption of the host native bone. Wear particles of other plastics, such as acetyl-copolymer, are of similar physical shapes but may cause an even more intense reaction. Wear in metallic and ceramic joints is typically characterized by small granules which are taken in by macrophages, leading to a similar biochemical reaction to that caused by plastics.
As a wear of a joint progresses and larger amount of particles are expelled to the surrounding tissues, further bone absorption and loosening of the joint implant may occur. Such loosening of a prosthetic joint implant and damage to surrounding tissues is often left undetected in a patient even if regularly checked by a physician. Most modern methods currently employed for determining the extent of loosening and/or wear of an artificial joint, rely upon either X-ray, computer tomography, isotope bone scan or magnetic resonance to image the implanted joint and are of insufficient accuracy or technically difficult to perform and/or interpret even by highly skilled professionals. In fact, the most modern joint replacement assemblies incorporate metal backed plastic components, metallic components, or ceramic components within metallic shells and as such the available imaging methods cannot produce sufficient contrast in order to determine artificial joint loosening and/or articulating surface wear.
As a result of inefficient detection methods, oftentimes the only indication of early joint loosening is the pain and discomfort suffered by the patient. Oftentimes bone absorption progresses to a stage necessitating replacement surgery using larger implants, and/or bone grafts to accommodate for the lost bone tissue. The prognosis for success and service life of the implant after such a corrective operation is less predictable and depends, among other factors, on the extent of bone absorption suffered. If performed relatively early on, such corrective surgery has an increased chance of success. Therefore, a method to detect the extent and depth of wear of the articulating surfaces of an artificial joint is of paramount importance both to the patient and the treating physician. The Spine
The spine is a column of individual vertebrae. As shown in Figure 11, each vertebra is composed of a body (B), two pedicles (P), two laminae (L), transverse and posterior (spinous) processes (PS), and superior (SF) and inferior facets (IF). Within the spinal column, adjacent vertebrae inter- articulate via three joints which form a tripod-like configuration around the disc occupying the space between the bodies (anteriorly) and the two facet joints (posteriorly).
Degenerative processes of the spine affect all three joints and causes reduction of the disc space in between the vertebrae. Spinal injury may cause instability and loss of bone and may require surgical fusion of the affected vertebrae or vertebral replacement. Fusion is effected by a variety of techniques such as applying bone graft in the damaged disc spaces or by utilizing implanted fixation devices such as screws, plates, rods or hooks. If fusion is unsuccessful partial or total lack of union between the vertebrae (non-union) leads to a painful condition which arises from the motion existing between the vertebrae. Such motion, which is oftentimes difficult to detect, often requires additional surgical intervention.
Therefore accurate measurements of displacement of the implants and pathological motion during the post operative follow up period is of paramount importance.
Dental implants
Dental implants are typically composed of a metallic (or other bio- compatible material) fixture which is anchored within the maxillary or mandibular bone, a post (e.g., rod or screw) which is attached to the fixture and a prosthetic tooth (typically referred to as a crown, or a cap) which is fitted over the post.
The stability of the implant is essential for longevity thereof and for the preservation of the bone stock. A loose dental implant will cause absorption of bone and further deterioration of the bone stock, often requiring bone reconstruction using various grafting procedures. Thus, it is in the interest of both patient and dental surgeon to detect dental implant loosening prior to bone deterioration. Bone fractures
Following traumatic or intentional (osteotomy) bone fractures, natural bone processes unite the fractured or broken bone segments. When bone segments fail to properly unite, the resulting state of non-union can lead to pain and loss of function in the fractured or broken member; detection of the early stages of non-unions insures a more successful treatment thereof.
There is thus a widely recognized need for, and it would be highly advantageous to have, a system and method which enable to monitor relative wear and/or displacement in artificial joints, vertebrae, segments of fractured bones or dental implants thus enabling accurate monitoring of the state of an implant or bone following an implantation procedure.
SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided an artificial joint system comprising: (a) at least one artificial joint member having an articulating surface and a bone attachment portion, the bone attachment portion being for attaching the at least one artificial joint member to at least one natural bone of a joint when implanted within an individual; (b) a detection system implanted within, or attached to, the at least one artificial joint member and the at least one natural bone of the joint, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with relative displacement between the at least one artificial joint member and the at least one natural bone of the joint. According to another aspect of the present invention there is provided a method of determining a parameter associated with relative displacement between an artificial joint member and a natural bone of a joint to which it is attached, the method comprising the steps of: (a) providing a detection system implanted within, or attached to, at least one location in at least one artificial joint member and at least one location in at least one natural bone of a joint, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with the distance and the relative displacement between the at least one artificial joint member and the at least one natural bone of the joint; (b) extracorpo really energizing the detection system so as to receive outside the body the information signal; and (c) processing the information signal being received so as to yield the parameter associated with the relative displacement between the at least one artificial joint member and the at least one natural bone of a joint.
According to another aspect of the present invention there is provided an artificial joint system comprising: (a) an artificial joint assembly implantable within an individual, the artificial joint assembly including a first artificial joint member having a first articulating surface and further including a second artificial joint member having a second articulating surface, the first and the second articulating surfaces being in articulating engagement therebetween; (b) a detection system implanted within, or attached to, the artificial joint assembly, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with wear or relative displacement of the articulating surfaces.
According to another aspect of the present invention there is provided a method of determining a parameter associated with wear or relative displacement of an artificial joint, the method comprising the steps of: (a) providing an artificial joint assembly system including: (i) an artificial joint assembly implantable within an individual, the artificial joint assembly including a first artificial joint member having a first articulating surface and further including a second artificial joint member having a second articulating surface, the first and the second articulating surfaces being in articulating engagement therebetween; and (ii) a detection system implanted within, or attached to, the artificial joint assembly, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with wear or relative displacement of the articulating surfaces; (b) extracorporeally energizing the detection system so as to receive outside the body the information signal indicative of a parameter associated with wear or relative displacement of the articulating surfaces; and (c) processing the information signal received so as to yield the parameter associated with the wear or relative displacement of the articulating surfaces.
According to further features in preferred embodiments of the invention described below, the artificial joint system further comprising an extracorporeal unit, the extracorporeal unit being for communicating to the detection system an energizing signal and further being for receiving from the detection system the information signal indicative of a parameter associated with wear or relative displacement of the articulating surfaces.
According to still further features in the described preferred embodiments the detection system includes at least one resonance circuit element implanted within or attached to the first artificial joint member and at least one ferromagnetic or paramagnetic element implanted within, attached to, or forming a part of the second artificial joint member, such that when the at least one resonance circuit element is energized the at least one resonance circuit produces a signal of oscillating frequency which is a function of a distance between the at least one resonance circuit element and the at least one ferromagnetic or paramagnetic element, the distance being the parameter associated with the wear or relative displacement of the articulating surfaces. According to still further features in the described preferred embodiments the at least one resonance circuit element includes plurality of distinct resonance circuit elements implanted within or attached to the first artificial joint member, each of the plurality of distinct resonance circuit elements producing a distinct signal of oscillating frequency upon being energized, the distinct signal being a function of a distance between a resonance circuit element of the plurality of distinct resonance circuit elements and the at least one ferromagnetic or paramagnetic element.
According to still further features in the described preferred embodiments the artificial joint assembly is selected from the group consisting of an artificial shoulder joint, an artificial hip joint, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial wrist joint, an artificial carpo-metacarpal joint, an artificial metacarpo- phalangeal joints, an artificial interphalangeal joint and an artificial metatarso-phalangeal joint. According to still further features in the described preferred embodiments the artificial joint assembly further includes a third artificial joint member having at least one additional articulating surface, the at least one additional articulating surface being in articulating engagement with at least one of the first and the second articulating surfaces. According to still further features in the described preferred embodiments the detection system includes at least one resonance circuit element implanted within or attached to the first artificial joint member, and at least two ferromagnetic or paramagnetic elements implanted within, or attached to, the second and the third artificial joint members, such that when the at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between the resonance circuit element and each of the ferromagnetic or paramagnetic elements, the distance being the parameter associated with the wear or relative displacement of the articulating surfaces.
According to still further features in the described preferred embodiments the first and the second artificial joint members are each fabricated from at least one material selected from the group consisting of stainless steels, titanium alloys, cobalt alloys, polyethylene and other polymers, ceramics and composites materials.
According to still further features in the described preferred embodiments the first and the second and the third artificial joint members each include a stem portion distant to the articulating surface thereof, the portion being for attaching each of the first and the second artificial joint members to a bone when implanted within the individual.
According to yet another aspect of the present invention there is provided a system for monitoring displacement between adjacent vertebrae comprising a detection system implanted within, or attached to, the vertebrae, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with relative displacement between the vertebrae.
According to yet another aspect of the present invention there is provided a method of determining a parameter associated with relative displacement of adjacent vertebrae, the method comprising the steps of: (a) attaching or implanting a detection system within or upon the vertebrae, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of the parameter associated with relative displacement between the vertebrae; (b) extracorporeally energizing the detection system so as to receive outside the body the information signal indicative of the parameter associated with relative displacement between the vertebrae; and (c) processing the information signal received so as to yield the parameter associated with the relative displacement between the vertebrae. According to still further features in the described preferred embodiments the detection system includes (a) at least one resonance circuit element being sized and configured so as to be implanted within, or attached to a first vertebra of the vertebrae; and (b) at least one ferromagnetic or paramagnetic element being sized and configured so as to be so as to be implanted within, or attached to, a second vertebra of the vertebrae, such that when the at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between the at least one resonance circuit element and the at least one ferromagnetic or paramagnetic element, the distance being indicative of the parameter associated with relative displacement between the first and the second vertebrae.
According to still further features in the described preferred embodiments the system further comprising at least one anchor element being for attaching the detection system to the vertebrae. According to still further features in the described preferred embodiments the at least one anchor element forms a part of an implant.
According to still further features in the described preferred embodiments the implant serves for fixating the first vertebra to the second vertebra. According to still further features in the described preferred embodiments the system further comprising an extracorporeal unit, the extracorporeal unit being for communicating to the detection system an energizing signal and further being for receiving from the detection system the information signal indicative of the parameter associated with relative displacement between the vertebrae.
According to still further features in the described preferred embodiments at least one of the vertebrae is an artificial vertebra. According to still another aspect of the present invention there is provided a system for monitoring displacement between a dental implant and a bone in which it is anchored comprising a detection system implanted within, or attached to, the dental implant and the bone, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with relative displacement between the dental implant and the bone.
According to yet another aspect of the present invention there is provided a method of determining a parameter associated with relative displacement between a dental implant and a bone in which it is anchored, the method comprising the steps of: (a) providing a detection system within the dental implant and the bone, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of the parameter associated with relative displacement between the dental implant and the bone; (b) extracorporeally energizing the detection system so as to receive outside the body the information signal indicative of the parameter associated with relative displacement between the dental implant and the bone; and (c) processing the information signal received so as to yield the parameter associated with the relative displacement between the dental implant and the bone. According to still further features in the described preferred embodiments the detection system including at least one resonance circuit element being attached to, or forming a part of, the dental implant and at least one ferromagnetic or paramagnetic element being implanted within the bone, or vice a versa, such that when the at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between the at least one resonance circuit element and the at least one ferromagnetic or paramagnetic element, the distance being indicative of the parameter associated with relative displacement between the dental implant and the bone.
According to still further features in the described preferred embodiments the system further comprising an extracorporeal unit, the extracorporeal unit being for communicating to the detection system an energizing signal and further being for receiving from the detection system the information signal indicative of a parameter associated with relative displacement between the dental implant and the bone.
According to still another aspect of the present invention there is provided a system for monitoring displacement between bone segments of a fractured or a broken bone comprising a detection system implanted within, or attached to, the bone segments, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of a parameter associated with relative displacement between the bone segments.
According to still another aspect of the present invention there is provided a method of determining a parameter associated with relative displacement between bone segments of a fractured or broken bone, the method comprising the steps of: (a) attaching or implanting a detection system within or upon the bone segments, the detection system being for communicating an information signal receivable outside the body, the information signal indicative of the parameter associated with relative displacement between the bone segments; (b) extracorporeally energizing the detection system so as to receive outside the body the information signal indicative of the parameter associated with relative displacement between the bone segments; and (c) processing the information signal received so as to yield the parameter associated with the relative displacement between the bone segments.
According to still further features in the described preferred embodiments the detection system includes: (a) at least one resonance circuit element being sized and configured so as to be attached to, or implanted within, a first segment of the bone segments; and (b) at least one ferromagnetic or paramagnetic element being sized and configured so as to be attached to, or implanted within, a second segment of the bone segments, such that when the at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between the at least one resonance circuit element and the at least one ferromagnetic or paramagnetic element, the distance being indicative of the parameter associated with relative displacement between the first and the second segments. According to still further features in the described preferred embodiments the system further comprising at least one anchor element being for attaching the detection system to the bone segments.
According to still further features in the described preferred embodiments the at least one anchor element forms a part of an implant. According to still further features in the described preferred embodiments the implant serves for inter- fixating the bone segments.
According to still further features in the described preferred embodiments the system further comprising an extracorporeal unit, the extracorporeal unit being for communicating to the detection system an energizing signal and further being for receiving from the detection system the information signal indicative of the parameter associated with relative displacement between the bone segments. The present invention successfully addresses the shortcomings of the presently known configurations by providing a system with which a wear and/or displacement of members of an implanted artificial joint assembly or displacement of bone segments, vertebrae or dental implants can be determined at various time points in an easy and accurate manner.
BRIEF DESCRIPTION OF THE DRAWINGS The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice .
In the drawings:
FIGs. la-k are prior art designs of various artificial joint assemblies including artificial hip joint components (Figures la-d), artificial knee joint components (Figures le-g), artificial ankle joint component (figure lh), artificial shoulder joint components (Figure li), artificial elbow joint components (Figure lj), and artificial wrist joint components (Figure 1 k); FIG. 11 depicts a human vertebra illustrating the vertebra body (B), the two pedicles (P), the two laminae (L), the transverse and posterior (spinous) processes (PS), and the superior (SF) and inferior facets (IF);
FIG. 2 is a cross sectional view of an artificial hip joint according to the present invention including a first detection system for monitoring displacement between the artificial joint member and the natural bone of the joint to which it is attached and a second detection system for monitoring relative displacement between the articulating surfaces of the two artificial joint members; FIG. 3 is a schematic depiction of an artificial joint system showing an extracoφoreal unit, and an implantable artificial joint assembly including one embodiment of a detection system according to the present invention;
FIG. 4 is a schematic depiction of a three joint member embodiment of an implantable artificial joint assembly according to the present invention;
FIG. 5a is a schematic depiction of the head portion of an artificial hip joint member illustrating ferromagnetic or paramagnetic coating on an inside surface thereof;
FIG. 5b is a schematic depiction of an artificial joint system showing an extracoφoreal unit, and an implantable artificial joint assembly including another embodiment of a detection system according to the present invention;
FIG. 6 is a black box diagram depicting the various components of one embodiment of an extracoφoreal unit according to the present invention;
FIG. 7 is a black box diagram depicting some of the components of another embodiment of the extracoφoreal unit according to the present invention; FIG. 8 is a schematic depiction of a detection system for monitoring displacement in adjacent vertebrae according to the teachings of the present invention; and
FIG. 9 is a schematic depiction of detection system for monitoring displacement between a dental implant and a bone in which it is anchored according to the teachings of the present invention.
FIG. 10 is a schematic depiction of detection system for monitoring displacement between segments of a fractured bone according to the teachings of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention is of a system and method which can be utilized for monitoring and detecting wear and/or displacement in artificial joint members, vertebrae, segments of a fractured bone and dental implants. Specifically, the present invention is of an implanted or attached detection system which can be used to detect a distance between it's components thus enabling to monitor the wear of, and/or displacement between, artificial joint members, bone segments, adjacent vertebrae or dental implants. The principles and operation of the system and method according to the present invention may be better understood with reference to the drawings and accompanying descriptions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the puφose of description and should not be regarded as limiting.
Referring to the drawings, Figure 2 illustrates an artificial joint system according to the teachings of the present invention, which is referred to herein as system 10.
According to one aspect of the present invention, system 10 includes at least one artificial joint member 12 (two are shown). Member(s) 12 can be for example, artificial hip joint member(s) (as exemplified in Figure 2), artificial knee joint member(s), artificial ankle joint member(s), artificial shoulder joint member(s), artificial elbow joint member(s), or artificial wrist joint member(s).
Each of members 12 has an articulating surface 14 and a bone attachment portion 16. Bone attachment portion 16 serves for attaching member 12 to a natural bone of a joint 18, when members 12 are implanted within a joint of an individual. Bone attachment portion 16 can include protrusions and/or other projections or indentations which facilitate attachment of members 12 to bones 18. Fixation of members 12 to bones
18 can be effected, for example, by polymethylmethacrylate cementing.
Alternatively, fixation can be effected by creating a porous surface on a metal or polymer from which members 12 are fabricated, which porous surface allows for bone ingrowth following implantation, which results in fixation. Creating a porous surface can be effected by plasma spray of metallic granules or fibers or by coating a core metal or plastic with a porous layer of active calcium phosphate ceramics, such as hydroxyapatite or tricalcium phosphate. Alternatively, a porous layer of titanium powder or a titanium net can be applied to the core.
Members 12 are each constructed from one or more portions each fabricated from at least one material such as, but not limited to, stainless steel, titanium alloy, cobalt alloy, polyethylene and other polymers, ceramics and/or composite materials.
System 10 further includes a detection system 20 implanted within, or attached to members 12 and bones 18 of the joint. Detection system 20 serves for communicating an information signal receivable outside the body. This information signal is indicative of a parameter associated with relative displacement between member(s) 12 and bone(s) 18.
Detection system 20 employs any number of unique element pairs of known electronic properties which are attached to, or implanted within members 12 and bones 18 in at least one location (three shown in Figure 2). These elements enable to measure a distance between members 12 and reference points in bones 18 via the mutual electronic properties of the elements. To be able to measure a distance, the mutual area of the two element planes and the capacitance between the two planes represented by the dielectric constant of the space between the planes must be known. Thus, assuming that the space between the planes of the elements is partially filled with air the capacitance measured between the elements planes is function of the distance therebetween.
One method to produce a signal indicative of a capacitance is to connect a capacitor to a coil forming a resonant circuit and to measure the resonant frequency of the circuit as transmitted from the coil. By providing a ferromagnetic or paramagnetic element in varying distances from the resonant circuit a distance dependent capacitance as reflected by the resonance of the coil is produced. This method is advantageous in that the resonant frequency can be remotely measured, thus, allowing contact-less measurement, by remotely energizing the circuit and measuring the frequency of the free oscillations of the resonant circuit.
It will be appreciated that detection system 20 can be utilized for two-dimensional and/or three-dimensional assessment of joint member displacement. For example, by implanting detection system 20 at three or more locations in bone 18 and member 12 (as is shown in Figure 2), one can obtain information on the relative displacement between bone 18 and member 12 in three different planes. This can be achieved, for example, by comparing three dimensional data acquired from detection systems 20 immediately following joint replacement surgery with data acquired following use of the joint for a period of time. Such a comparison, which can be performed by commercially available software programs capable of analyzing and displaying three dimensional data, can yield information on relative displacement in three different planes, thus providing a more accurate assessment of the state of the implanted joint members at any given time.
Detection system 20 is similar in construction and operation to detection system 20' which is described in detail hereinbelow with respect to further embodiments of the present invention.
Thus, system 10 of the present invention enables to monitor and detect relative displacement between member 12 and bone 18. Such monitoring is advantageous since detection of displacement between a joint bone and an implanted or attached artificial joint member can be indicative, for example, of joint loosening and/or bone deterioration which often necessitates treatment or replacement.
It will be appreciated, that since wear to articulating surfaces 14 of members 12 is also a problem frequently experienced in implanted artificial joints, members 12 can alternatively or additionally include an additional detection system which is similar to detection system 20, and which functions in monitoring and detecting relative displacement between articulating surfaces 14 of members 12.
Thus, as shown in Figures 2, 3 and 4, and according to another aspect of the present invention, members 12 include detection system 20'. Members 12 include a first artificial joint member 24 having a first articulating surface 26. Artificial joint members 12 further includes a second artificial joint member 28 having a second articulating surface 30. Articulating surfaces 26 and 30 are in articulating engagement therebetween, so as to allow movement of members 12 relative to one another. This movement is restricted by design to mimic those of a natural joint which is replaced by the artificial joint.
As is specifically shown in Figure 4, artificial joint members 12 can further include a third artificial joint member 29, such as the case of, for example, an artificial knee joint assembly. Member 29 includes a third articulating surface 31. In this case, members 12 are configured such that surface 31 is in articulating engagement with at least one of surfaces 26 and 30.
Members 12, or the articulating surfaces thereof are fabricated so as to have distinct properties in friction, lubrication and wear. Friction depends on the coefficient property of the material, the diameter of the component from the center of motion and the finish property of the surface. Lubrication is the property of the synovial fluid which is known to be deficient after surgical arthroplasty. Wear is the property of the two articulating surfaces and depends, among other factors, on sphericity, surface finish and lubrication.
Stainless steel or cobalt alloy used in combination with polyethylene is present state of the art. However following 10 years of service, a joint manufactured from these materials may produce about 1 mm of linear wear, which results in a release of billions or more of particles into the surrounding tissues. Coupling titanium alloy with polyethylene results in a large amount of wear of both the plastic and the titanium due to currently inapt polishing technologies. Coupling ceramic with polyethylene results in about 50 % decrease of wear in comparison to metal and polyethylene, which is a significant improvement, but still causes release of billions of particles over a ten year period. Coupling metal to metal and ceramic to ceramic has been tried to a limited extent, yet with uncertain results.
Detection system 20' according to this aspect of the present invention, is implanted within, or attached to, members 12.
Preferably, detection system 20' is implanted within members 12 during the fabrication thereof. Detection system 20' serves for communicating an information signal receivable outside the body, which information signal is indicative of a parameter associated with wear or relative displacement of the articulating surfaces.
It will be appreciated that either wear of surfaces 26 and 30 and/or relative displacement of members 12 can lead to a change in a distance between defined points or regions within members 12. Therefore, measurement of the distance between defined points within members 12 at any given time can yield information on both the wear of surfaces 26 and 30 and/or relative displacement of members 12. It will further be appreciated that in cases of more than two members 12, detection system 20' is configured such that a distance is measurable between, for example, any pair of members 12.
Detection system 20' can also be utilized to measure specific distances between three or more defined point-pairs in members 12. Such measurements can provide information on a volumetric wear of surfaces 26 and 30 which can serve to assess the volume of particle debris expelled from the artificial joint over a period of time.
It will further be appreciated that in the case of an artificial joint which includes both detection system 20 and detection system 20', each detection system is configured such that a distance between the articulating surfaces and a distance between each member 12 and the reference point of the bone to which it is attached can be separately measured.
The following is a detailed description of various embodiments of detection system 20'. It will be appreciated however, that these embodiments also apply to detection system 20 mentioned above.
According to one preferred embodiment of the present invention, and as specifically shown in Figure 3, detection system 20' includes at least one resonance circuit element 34 implanted within or attached to member 24. Preferably, resonance circuit element 34 includes a coil with a ferromagnetic core which can be, for example, U or E shaped. Resonance circuit element 34 can include for example, a cobalt-iron core and a gold or cobalt wire coil. Detection system 20' further includes at least one ferromagnetic or paramagnetic element 36 implanted within, attached to, or forming a part of member 28. It will be appreciated that in cases where member 28 or a portion thereof is constructed of a magnetizable metal, such a portion can be utilized as ferromagnetic or paramagnetic element 36. As is specifically shown in Figure 4, in the case of more than two members 12, additional elements 36 can be provided, such that the distance between any pair of members can be determined. It will further be appreciated that in cases where joint member 12 is fabricated from two or more portions, the ferromagnetic or paramagnetic material can be coated on an inner surface of the joint proximal portion thus not subjecting the ferromagnetic or paramagnetic material to wear, and in addition simplifying the fabrication of the artificial joint assembly of the present invention.
For example, and as is specifically shown in Figure 5a, in an artificial hip joint, the head portion 35 of the femur-implanted joint member can be coated with the ferromagnetic or paramagnetic material on a surface 33 opposite the articulating surface prior to assembly with the stem portion. Element 36 is shaped so as to allows a magnetic loop with resonance circuit element 34. When resonance circuit element 34 is energized by an energy source originating from outside the body, it produces a signal of a distinct oscillating frequency which frequency is function of a distance between resonance circuit element 34 and element 36. Thus, movement of resonance circuit element 34 and element 36 relative to each other, as is caused by displacement of one of members 12, or alternatively by friction induced wear to surfaces 26 and /or 30, yields a resonance frequency different than that of a normally positioned, wear free members 12. Thus, elements 34 and 36 form a high Q resonant circuit. The frequency of oscillation of a resonant circuit is a function of a distance between element 34 and element 36 which can be indicative of either wear of surfaces 26 and 30 or relative displacement of members 24 and 28.
It will be appreciated that in order to measure a distance change caused by relative displacement of members 24 and 28 which relative displacement can be asymmetric, several elements 34 are utilized in member 24 (as is specifically shown in Figure 5a). In this case, each element 34 is assigned a different resonant frequency, enabling to distinct distance measurement generated by the resonance frequency of each element. In order to measure volumetric wear of surfaces 26 and/or 30, as mentioned hereinabove, three or more pairs of elements 34 and 36, each having a unique resonant frequency, can be utilized to measure a distance between members 24 and 28 at three or more different regions thus yielding volumetric wear information. Thus, according to the present invention, system 10 includes detection system 20 and/or 20' for monitoring displacement between member 12 and bone 18 and/or wear and displacement of articulating surfaces 14. To provide the energy for energizing detection systems 20 and/or
20', system 10 further includes an extracoφoreal unit 40. Extracoφoreal unit 40 serves for communicating to element 34 of detection system 20 for example, an energizing signal and for receiving from element 34 a signal which is indicative of a distance between elements 34 and 36.
As shown in Figures 3 and 5, unit 40 includes a coil 42 which serves to both produce the energizing signal and to receive the signal generated by element 34. Alternatively unit 40 includes two coils one to produce a signal and one to receive a signal. Thus, using unit 40 and implanted detection systems 20 and/or 20', a distance between member(s) 12 and bone(s) 18 which can be indicative of implant loosening or bone deterioration and/or a distance between elements 34 and 36 which can be indicative of wear to surfaces 26 and/or 30 and to relative displacement between members 24 and 28 can be measured. As is shown in Figures 5 and 6, such a measurement can be effected as follows. A short energizing pulse generated from coil 42 which, depending on the number of implanted elements, can be multiplexed by a multiplexer 44 and controlled by a timing control 46 is picked up by for example, element 34 of detection system 20'. Element 34 resonates at a frequency dependent on a distance from element 36. This resonance produces a transmitted signal oscillating at a distinct frequency, this frequency is picked-up by coil 42 of unit 40, which now functions as a pickup coil. The picked up signal wave is shaped to a square wave by shaper 48, measured by a counter 50 and displayed to a user via display 52 as a distance value.
Alternatively and as specifically shown in Figure 7, the signal provided by counter 50 is fed into a microprocessor 54 which compares the signal to a lookup table 56. Lookup tables can be used in order to compensate for non-linearity in the distance to frequency ratio. An example of a lookup table which can be utilized by the present invention to compensate for the non-linearity in the distance to frequency ratio is given hereinbelow, wherein f is the frequency and d is the distance as a function of the frequency measured.
Frequency 1 2 3 . . . d (distance in mm) fl fll fl2 fl3 fid f2 f21 f22 f23 f2d f3 f31 f32 f33 f3d : fx fxl fx2 fx3 fxd
It will be appreciated that system 10 of the present invention enables the detection of extremely small changes in a distance between artificial joint member(s) and reference points in bone(s) and/or between the articulating surfaces of artificial joint members, which changes can be caused by, for example, artificial joint loosening, bone deterioration, and/or wear to the articulating surfaces of the artificial joint members.
For example, the resonance circuit configuration of detection systems 20 is capable of detecting a distance differential between two measured distances which is indicative of minimal displacement between bone 18 and member 12, while detection system 20' is capable of detecting a distance differential between two measured distances which is indicative of minimal wear to articulating surfaces of members 12.
To effect measurements in a most accurate manner an implanted artificial joint is first monitored when an individual regains motion capacity in the joint following recovery from implant surgery. The implanted artificial joint is then monitored for signs of wear and/or displacement at various time points following the initial measurement. Each oscillating frequency is either used directly to calculate a distance or alternatively inputted into a lookup table to determine a distance.
Such measurements yield both the state and function of the implanted artificial joint since an abnormally high rate of wear or displacement may be indicative of a poor fit or an unsuccessful implantation operation.
Thus, the systems of the present invention described hereinabove enable accurate and simple monitoring of a state of an artificial joint implanted in an individual. The information providable by the system of the present invention enables a treating physician to detect early on, bone deterioration and implant loosening and/or any articulating surface wear which may lead to the development of bone absoφtion and/or loosening of the joint implant. Early detection of displacement and/or wear enables the physician to determine a most suitable course of treatment if necessary. In addition the system of the present invention allows a physician to detect displacements of joint members which can be at times left unnoticed by the patient or treating physician but which may progress into severe joint damage.
It will be appreciated that the present invention can also be utilized to monitor displacement between fixed or inter-articulating body constituents, either natural and/or implanted.
For example, the detection system and extracoφoreal unit described hereinabove can be designed and configured for monitoring displacement between adjacent vertebrae, including any combination of artificial and/or natural vertebrae, inter-articulating or fused (e.g. following surgery).
For example, as is shown in Figure 8, a detection system 100 which is similar in function to detection systems 20 or 20' described hereinabove, can be incoφorated into an implant 102 such as, for example an internal fixation cage. Alternatively, detection system 100 can be implanted within natural vertebrae and/or incoφorated into artificial vertebra. It will be appreciated that implant 102 can be fabricated in part from a metallic material which can function as the ferromagnetic or paramagnetic element of detection system 100. In any case, detection system 100 serves for communicating an a signal receivable outside the body which is indicative of a parameter associated with relative displacement between the adjacent vertebrae.
This signal is generated in response to an interrogating signal provided from an extracoφoreal unit similar in function to unit 40 described hereinabove. Such an interrogation signal energizes element 104 of detection system 100 and generates a signal indicative of a distance between elements 104 and 106 which can be received and inteφreted by the extracoφoreal unit as described hereinabove.
It will be appreciated that periodical interrogation following vertebral surgery can provide a physician with information as to the displacement between adjacent vertebrae, a parameter which can be utilized to determine the success of a surgical procedure, the general state of an implant or fixated vertebrae and the like.
In addition, the system of the present invention can be designed and configured for monitoring displacement between a dental implant and the bone into which it was implanted.
For example, as is specifically shown in Figure 9, detection system
110 which is similar in function to detection systems 20 or 20' described hereinabove can be utilized to assess the relative displacement between a dental implant 111 (including crown 112, bone implanted fixture 113 and post 114) and bone 116.
It will be appreciated in this case, that fixture 113 and/or post 114 can be fabricated from a material which in itself can function as the paramagnetic or ferromagnetic element of detection system 110. Alternatively, the paramagnetic or ferromagnetic element can form a part of, or be implanted within, crown 112 or bone 116.
Extracoφoreal interrogation of detection system 110 can provide a dental surgeon with information as to the state of the implant and the bone in which it is implanted, thus enabling to detect implant loosening prior to the stage of bone deterioration.
The detection system of the present invention can also be utilized to monitor displacement between segments of a bone fractured due to a trauma or osteotomy. As is specifically shown in Figure 10, a detection system 120 which is similar in function to detection systems 20 or 20' described hereinabove can be implanted into two or more bone segments 122 either directly or as a part of a fixating device such as a pin or screw.
Extracoφoreal interrogation of detection system 120 can provide information relating to the healing state of the fractured or broken bone.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incoφorated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incoφorated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims

WHAT IS CLAIMED IS:
1. An artificial joint system comprising:
(a) at least one artificial joint member having an articulating surface and a bone attachment portion, said bone attachment portion being for attaching said at least one artificial joint member to at least one natural bone of a joint when implanted within an individual;
(b) a detection system implanted within, or attached to, said at least one artificial joint member and said at least one natural bone of said joint, said at least one detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with relative displacement between said at least one artificial joint member and said at least one natural bone of said joint.
2. The artificial joint system of claim 1, wherein said at least one artificial joint member includes at least two artificial joint members, each attached to a specific natural bone of said joint of said at least one natural bone of said joint, whereas said articulating surfaces of said at least two artificial joint members are configured to allow articulating engagement therebetween.
3. The artificial joint system of claim 1, further comprising an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of a parameter associated with relative displacement between said at least one artificial joint member and said at least one natural bone of said joint.
4. The artificial joint system of claim 1, wherein said detection system includes at least one resonance circuit element implanted within or attached to said at least one artificial joint member and at least one ferromagnetic or a paramagnetic element implanted within, or attached to, said at least one natural bone of said joint and vice versa, such that when said at least one resonance circuit element is energized said at least one resonance circuit produces a signal of oscillating frequency which is a function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being said parameter associated with relative displacement between said at least one artificial joint member and said at least one natural bone of said joint.
5. The artificial joint system of claim 4, wherein said at least one resonance circuit element includes a plurality of distinct resonance circuit elements each producing a distinct signal of oscillating frequency upon being energized, said distinct signal being a function of a distance between a specific resonance circuit element of said plurality of distinct resonance circuit elements and said at least one ferromagnetic or paramagnetic element.
6. The artificial joint system of claim 1, wherein said at least one artificial joint member forms a part of an artificial joint selected from the group consisting of an artificial shoulder joint, an artificial hip joint, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial wrist joint, an artificial caφo-metacaφal joint, an artificial metacaφo-phalangeal joint, an artificial inteφhalangeal joint and an artificial metatarso-phalangeal joint.
7. The artificial joint system of claim 1, wherein said at least one artificial joint member is fabricated from at least one material selected from the group consisting of stainless steel, titanium alloy, cobalt alloy, polyethylene, ceramics and composites materials.
8. The artificial joint system of claim 4, wherein said at least one resonance circuit element is implanted within, or attached to, said bone attachment portion of said at least one artificial joint member, and further wherein said at least one ferromagnetic or paramagnetic element is implanted within, attached to, or forms a part of said bone attachment portion of said at least one artificial joint member.
9. The artificial joint system of claim 2, further comprising an additional detection system implanted within or attached to said at least two artificial joint members, said additional detection system serves for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces of said at least two artificial joint members.
10. A method of determining a parameter associated with relative displacement between an artificial joint member and a natural bone of a joint to which it is attached, the method comprising the steps of:
(a) providing a detection system implanted within, or attached to, least one artificial joint member and at least one natural bone of a joint, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with the relative displacement between said at least one artificial joint member and said at least one natural bone of said joint;
(b) extracoφoreally energizing said detection system so as to receive outside the body said information signal; and
(c) processing said information signal being received so as to yield said parameter associated with the relative displacement between said at least one artificial joint member and said at least one natural bone of a joint.
11. The method of claim 10, wherein step (b) is effected by an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of said parameter associated with the relative displacement between said at least one artificial joint member and said at least one natural bone of said joint.
12. The method of claim 10, wherein said detection system includes at least one resonance circuit element implanted within or attached to said at least one artificial joint member and at least one ferromagnetic or paramagnetic element implanted within, or attached to, said at least one natural bone of said joint or vice versa, such that when said at least one resonance circuit element is energized said at least one resonance circuit produces a signal of oscillating frequency which is a function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being said parameter associated with said wear or relative displacement of said articulating surfaces.
13. The method of claim 12, wherein said at least one resonance circuit element includes plurality of distinct resonance circuit elements each producing a distinct signal of oscillating frequency upon being energized, said distinct signal being proportional to a distance between a resonance circuit element of said plurality of distinct resonance circuit elements and said at least one ferromagnetic or paramagnetic element.
14. The method of claim 10, wherein said at least one artificial joint member is a part of an artificial joint selected from the group consisting of an artificial shoulder joint, an artificial hip joint, an artificial knee joint, an artificial elbow joint, an artificial ankle joint, an artificial wrist joint, an artificial caφo-metacaφal joint, an artificial metacaφo- phalangeal joint, an artificial inteφhalangeal joint and an artificial metatarso-phalangeal joint.
15. The method of claim 10, wherein said at least one artificial joint member is fabricated from at least one material selected from the group consisting of stainless steel, titanium alloy, cobalt alloy, polyethylene, ceramics and composite materials.
16. An artificial joint system comprising:
(a) an artificial joint assembly implantable within an individual, said artificial joint assembly including a first artificial joint assembly member having a first articulating surface and further including a second artificial joint assembly member having a second articulating surface, said first and said second articulating surfaces being in articulating engagement therebetween; (b) a detection system implanted within, or attached to, said artificial joint assembly, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces.
17. The artificial joint system of claim 16, further comprising an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces.
18. The artificial joint system of claim 16, wherein said detection system includes at least one resonance circuit element implanted within or attached to said first artificial joint assembly member and at least one ferromagnetic or a paramagnetic element implanted within, attached to, or forming a part of said second artificial joint assembly member, such that when said at least one resonance circuit element is energized said at least one resonance circuit produces a signal of oscillating frequency which is function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being said parameter associated with said wear or relative displacement of said articulating surfaces.
19. The artificial joint system of claim 18, wherein said at least one resonance circuit element includes plurality of distinct resonance circuit elements implanted within or attached to said first artificial joint assembly member, each of said plurality of distinct resonance circuit elements producing a distinct signal of oscillating frequency upon being energized, said distinct signal being proportional to a distance between a resonance circuit element of said plurality of distinct resonance circuit elements and said at least one ferromagnetic or paramagnetic element.
20. The artificial joint system of claim 16, wherein said artificial joint assembly is an artificial shoulder joint, an artificial hip joint, an artificial elbow joint, an artificial ankle joint, an artificial wrist joint, an artificial caφo-metacaφal joint, an artificial metacaφo-phalangeal joint, an artificial inteφhalangeal joint and an artificial metatarso-phalangeal joint.
21. The artificial joint system of claim 16, wherein said artificial joint assembly further includes a third artificial joint assembly member having a third articulating surface, said third articulating surface being in articulating engagement with at least one of said first and said second articulating surfaces.
22. The artificial joint system of claim 16, wherein said artificial joint assembly is an artificial knee joint.
23. The artificial joint system of claim 16, wherein said first and said second artificial joint assembly members are each fabricated from at least one material selected from the group consisting of stainless steel, titanium alloy, cobalt alloy, polyethylene, ceramics and composite materials.
24. The artificial joint system of claim 16, wherein said first and said second artificial joint assembly members each include a portion distant to said articulating surface thereof, said portion being for attaching each of said first and said second artificial joint assembly members to a natural bone of a joint when implanted within the individual.
25. A method of determining a parameter associated with wear or relative displacement of an artificial joint, the method comprising the steps of:
(a) providing an artificial joint assembly system including:
(i) an artificial joint assembly implantable within an individual, said artificial joint assembly including a first artificial joint assembly member having a first articulating surface and further including a second artificial joint assembly member having a second articulating surface, said first and said second articulating surfaces being in articulating engagement therebetween; and
(ii) a detection system implanted within, or attached to, said artificial joint assembly, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces; and
(b) extracoφoreally energizing said detection system so as to receive outside the body said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces; and
(c) processing said information signal received so as to yield said parameter associated with said wear or relative displacement of said articulating surfaces.
26. The method of claim 25, wherein step (b) is effected by an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of a parameter associated with wear or relative displacement of said articulating surfaces.
27. The method of claim 25, wherein said detection system includes at least one resonance circuit element implanted within or attached to said first artificial joint assembly member and at least one ferromagnetic or paramagnetic element implanted within, or attached to, said second artificial joint assembly member, such that when said at least one resonance circuit element is energized said at least one resonance circuit produces a signal of oscillating frequency which is function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being said parameter associated with said wear or relative displacement of said articulating surfaces.
28. The method of claim 27, wherein said at least one resonance circuit element includes plurality of distinct resonance circuit elements implanted within or attached to said first artificial joint assembly member, each of said plurality of distinct resonance circuit elements producing a distinct signal of oscillating frequency upon being energized, said distinct signal being function of a distance between a resonance circuit element of said plurality of distinct resonance circuit elements and said at least one ferromagnetic or paramagnetic element.
29. The method of claim 25, wherein said artificial joint assembly is an artificial shoulder joint, an artificial hip joint, an artificial elbow joint, an artificial ankle joint, an artificial wrist joint, an artificial caφo- metacaφal joint, an artificial metacaφo-phalangeal, an artificial inteφhalangeal joint and an artificial metatarso-phalangeal joint.
30. The method of claim 25, wherein said artificial joint assembly further includes a third artificial joint assembly member having a third articulating surface, said third articulating surface being in articulating engagement with at least one of said first and said second articulating surfaces.
31. The method of claim 25, wherein said artificial joint assembly is an artificial knee joint.
32. The method of claim 25, wherein said first and said second artificial joint assembly members are each fabricated from at least one material selected from the group consisting of stainless steels, titanium alloy, cobalt alloy, polyethylene, ceramics and composite materials.
33. The method of claim 25, wherein said first and said second artificial joint assembly members each include a portion distant to said articulating surface thereof, said portion being for attaching each of said first and said second artificial joint assembly members to a natural bone of a joint when implanted within the individual.
34. A system for monitoring displacement between adjacent vertebrae comprising a detection system implanted within, or attached to, said vertebrae, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with relative displacement between the vertebrae.
35. The system of claim 34, wherein said detection system includes:
(a) at least one resonance circuit element being sized and configured so as to be attached to, or implanted within, a first vertebra of the vertebrae; and
(b) at least one ferromagnetic or paramagnetic element being sized and configured so as to be attached to, or implanted within, a second vertebra of the vertebrae, such that when said at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being indicative of said parameter associated with relative displacement between said first and said second vertebrae.
36. The system of claim 34, further comprising at least one anchor element being for attaching said detection system to the vertebrae.
37. The system of claim 36, wherein said at least one anchor element forms a part of an implant.
38. The system of claim 37, wherein said implant serves for fixating said first vertebra to said second vertebra.
39. The system of claim 34, further comprising an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of said parameter associated with relative displacement between the vertebrae.
40. The system of claim 34, wherein at least one of the vertebrae is an artificial vertebra.
41. A method of determining a parameter associated with relative displacement of adjacent vertebrae, the method comprising the steps of:
(a) attaching or implanting a detection system within or upon the vertebrae, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of the parameter associated with relative displacement between the vertebrae;
(b) extracoφoreally energizing said detection system so as to receive outside the body said information signal indicative of the parameter associated with relative displacement between the vertebrae; and
(c) processing said information signal received so as to yield the parameter associated with the relative displacement between the vertebrae.
42. A system for monitoring displacement between a dental implant and a bone in which it is anchored comprising a detection system implanted within, or attached to, the dental implant and the bone, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with relative displacement between the dental implant and the bone.
43. The system of claim 42, wherein said detection system including at least one resonance circuit element being attached to, or forming a part of, the dental implant and at least one ferromagnetic or paramagnetic element being implanted within the bone, or vice a versa, such that when said at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being indicative of said parameter associated with relative displacement between the dental implant and the bone.
44. The system of claim 42, further comprising an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of a parameter associated with relative displacement between the dental implant and the bone.
45. A method of determining a parameter associated with relative displacement between a dental implant and a bone in which it is anchored, the method comprising the steps of:
(a) providing a detection system within the dental implant and the bone, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of the parameter associated with relative displacement between the dental implant and the bone;
(b) extracoφoreally energizing said detection system so as to receive outside the body said information signal indicative of the parameter associated with relative displacement between the dental implant and the bone; and (c) processing said information signal received so as to yield the parameter associated with the relative displacement between the dental implant and the bone.
46. A system for monitoring displacement between bone segments of a fractured or a broken bone comprising a detection system implanted within, or attached to, the bone segments, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of a parameter associated with relative displacement between the bone segments.
47. The system of claim 46, wherein said detection system includes:
(a) at least one resonance circuit element being sized and configured so as to be attached to, or implanted within, a first segment of the bone segments; and
(b) at least one ferromagnetic or paramagnetic element being sized and configured so as to be attached to, or implanted within, a second segment of the bone segments, such that when said at least one resonance circuit element is energized it produces a signal of oscillating frequency which is a function of a distance between said at least one resonance circuit element and said at least one ferromagnetic or paramagnetic element, said distance being indicative of said parameter associated with relative displacement between said first and said second segments.
48. The system of claim 46, further comprising at least one anchor element being for attaching said detection system to the bone segments.
49. The system of claim 48, wherein said at least one anchor element forms a part of an implant.
50. The system of claim 49, wherein said implant serves for inter- fixating the bone segments.
51. The system of claim 46, further comprising an extracoφoreal unit, said extracoφoreal unit being for communicating to said detection system an energizing signal and further being for receiving from said detection system said information signal indicative of said parameter associated with relative displacement between the bone segments.
52. A method of determining a parameter associated with relative displacement between bone segments of a fractured or broken bone, the method comprising the steps of:
(a) attaching or implanting a detection system within or upon the bone segments, said detection system being for communicating an information signal receivable outside the body, said information signal indicative of the parameter associated with relative displacement between the bone segments;
(b) extracoφoreally energizing said detection system so as to receive outside the body said information signal indicative of the parameter associated with relative displacement between the bone segments; and (c) processing said information signal received so as to yield the parameter associated with the relative displacement between the bone segments.
PCT/IL2000/000757 1999-11-18 2000-11-15 Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants WO2001035872A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU14102/01A AU1410201A (en) 1999-11-18 2000-11-15 Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
US09/774,019 US6583630B2 (en) 1999-11-18 2001-01-31 Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
US09/774,017 US6573706B2 (en) 1999-11-18 2001-01-31 Method and apparatus for distance based detection of wear and the like in joints

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US44311399A 1999-11-18 1999-11-18
US09/443,113 1999-11-18
US09/585,318 2000-06-02
US09/585,318 US6245109B1 (en) 1999-11-18 2000-06-02 Artificial joint system and method utilizing same for monitoring wear and displacement of artificial joint members

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/585,318 Continuation-In-Part US6245109B1 (en) 1999-11-18 2000-06-02 Artificial joint system and method utilizing same for monitoring wear and displacement of artificial joint members

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/774,017 Continuation-In-Part US6573706B2 (en) 1999-11-18 2001-01-31 Method and apparatus for distance based detection of wear and the like in joints

Publications (1)

Publication Number Publication Date
WO2001035872A1 true WO2001035872A1 (en) 2001-05-25

Family

ID=27033412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IL2000/000757 WO2001035872A1 (en) 1999-11-18 2000-11-15 Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants

Country Status (3)

Country Link
US (1) US6245109B1 (en)
AU (1) AU1410201A (en)
WO (1) WO2001035872A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648354A2 (en) * 2003-07-11 2006-04-26 Depuy Products, Inc. In vivo joint space measurement device and method
WO2006113660A1 (en) * 2005-04-18 2006-10-26 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
EP1733704A2 (en) * 2005-06-13 2006-12-20 DePuy Products, Inc. Orthopaedic prosthesis having a superparamagnetic material
WO2007106172A1 (en) 2006-03-14 2007-09-20 Mako Surgical Corporation Prosthetic device and system and method for implanting prosthetic device
WO2008043921A2 (en) * 2006-10-12 2008-04-17 Implanet, Societe Anonyme Method and system for tracking medical products
DE102006051032A1 (en) * 2006-10-21 2008-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System for determining the anchoring position of an implanted endoprosthesis comprises using a magnet or a ferromagnetic element arranged on the endoprosthesis and oscillated using an excitation coil
EP2268218A2 (en) * 2008-04-01 2011-01-05 CardioMems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
CN101984327A (en) * 2010-08-26 2011-03-09 中国人民解放军军事医学科学院卫生装备研究所 Fracture model resetting detection device and detection method thereof
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
WO2013021357A1 (en) 2011-08-08 2013-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) In-vivo condition monitoring of metallic implants by electrochemical techniques
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US9078563B2 (en) 2005-06-21 2015-07-14 St. Jude Medical Luxembourg Holdings II S.à.r.l. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US9265428B2 (en) 2003-09-16 2016-02-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux Ii”) Implantable wireless sensor
WO2016113440A1 (en) * 2015-01-12 2016-07-21 Centro De Estudios E Investigaciones Tecnicas (Ceit) Orthopaedic prosthesis for hip or knee replacement
US10430749B2 (en) 2010-02-17 2019-10-01 Global Healthcare Exchange, Llc Method and system for monitoring the use of sensitive products

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573706B2 (en) * 1999-11-18 2003-06-03 Intellijoint Systems Ltd. Method and apparatus for distance based detection of wear and the like in joints
US6656135B2 (en) 2000-05-01 2003-12-02 Southwest Research Institute Passive and wireless displacement measuring device
US20030236572A1 (en) * 2000-10-18 2003-12-25 Morton Bertram Total joint replacements using magnetism to control instability
US6610096B2 (en) * 2001-08-22 2003-08-26 Macdonald Stuart G. Prosthetic implants having enhanced utility
US7179295B2 (en) 2001-10-05 2007-02-20 Nebojsa Kovacevic Prosthetic shock absorber
JP2003144454A (en) * 2001-11-16 2003-05-20 Yoshio Koga Joint operation support information computing method, joint operation support information computing program, and joint operation support information computing system
EP1487385A2 (en) * 2002-03-19 2004-12-22 The Board of Trustees for the University of Illinois System and method for prosthetic fitting and balancing in joints
US20040230288A1 (en) * 2002-04-17 2004-11-18 Rosenthal Arthur L. Medical devices adapted for controlled in vivo structural change after implantation
ATE377382T1 (en) * 2002-07-22 2007-11-15 Compumed Inc METHOD, CODE AND SYSTEM FOR THE INVESTIGATION OF JOINT DEFORMITY
EP1555963A4 (en) 2002-10-23 2008-12-31 Mako Surgical Corp Modular femoral component for a total knee joint replacement for minimally invasive implantation
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
WO2004089240A2 (en) 2003-04-04 2004-10-21 Theken Disc, Llc Artificial disc prosthesis
WO2004091419A2 (en) * 2003-04-08 2004-10-28 Wasielewski Ray C Use of micro-and miniature position sensing devices for use in tka and tha
US7470288B2 (en) * 2003-07-11 2008-12-30 Depuy Products, Inc. Telemetric tibial tray
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
US7190273B2 (en) * 2003-07-11 2007-03-13 Depuy Products, Inc. Joint endoprosthesis with ambient condition sensing
EP1648349B1 (en) * 2003-07-11 2010-12-08 DePuy Products, Inc. In vivo joint implant cycle counter
WO2005084544A1 (en) 2004-03-05 2005-09-15 Depuy International Ltd Orthopaedic monitoring system, methods and apparatus
GB0405013D0 (en) * 2004-03-05 2004-04-07 Depuy Int Ltd Implantable marker instruments and methods
US7794499B2 (en) * 2004-06-08 2010-09-14 Theken Disc, L.L.C. Prosthetic intervertebral spinal disc with integral microprocessor
US7097662B2 (en) * 2004-08-25 2006-08-29 Ut-Battelle, Llc In-vivo orthopedic implant diagnostic device for sensing load, wear, and infection
AU2005304912A1 (en) * 2004-11-04 2006-05-18 Smith & Nephew, Inc. Cycle and load measurement device
US20060100508A1 (en) * 2004-11-10 2006-05-11 Morrison Matthew M Method and apparatus for expert system to track and manipulate patients
JP2006158722A (en) * 2004-12-08 2006-06-22 Jikei Univ School Of Medicine Artificial femoral head for measuring pressure distribution, measuring instrument, and intraoperative evaluation method of artificial joint installation situation
US20060142670A1 (en) * 2004-12-29 2006-06-29 Disilvestro Mark R System and method for determining patient follow-up subsequent to an orthopaedic procedure
EP1850803B1 (en) * 2005-02-18 2014-03-26 Zimmer, Inc. Smart joint implant sensors
US11457813B2 (en) 2005-03-29 2022-10-04 Martin W. Roche Method for detecting body parameters
WO2006105098A2 (en) 2005-03-29 2006-10-05 Martin Roche Body parameter detecting sensor and method for detecting body parameters
US20110213221A1 (en) * 2005-03-29 2011-09-01 Roche Martin W Method for Detecting Body Parameters
US20100249787A1 (en) * 2009-03-26 2010-09-30 Martin Roche System and method for orthopedic dynamic distraction
US8486070B2 (en) 2005-08-23 2013-07-16 Smith & Nephew, Inc. Telemetric orthopaedic implant
WO2007047556A2 (en) * 2005-10-14 2007-04-26 Microchips, Inc. Passive wear-indicating sensor for implantable prosthetic device
US8095198B2 (en) * 2006-01-31 2012-01-10 Warsaw Orthopedic. Inc. Methods for detecting osteolytic conditions in the body
US8078282B2 (en) 2006-02-01 2011-12-13 Warsaw Orthopedic, Inc Implantable tissue growth stimulator
US20070238992A1 (en) * 2006-02-01 2007-10-11 Sdgi Holdings, Inc. Implantable sensor
US7328131B2 (en) * 2006-02-01 2008-02-05 Medtronic, Inc. Implantable pedometer
US8016859B2 (en) * 2006-02-17 2011-09-13 Medtronic, Inc. Dynamic treatment system and method of use
US7993269B2 (en) * 2006-02-17 2011-08-09 Medtronic, Inc. Sensor and method for spinal monitoring
US8141437B2 (en) 2006-03-29 2012-03-27 Ortho Sensing Technologies, Llc Force monitoring system
US7918796B2 (en) * 2006-04-11 2011-04-05 Warsaw Orthopedic, Inc. Volumetric measurement and visual feedback of tissues
US8565853B2 (en) 2006-08-11 2013-10-22 DePuy Synthes Products, LLC Simulated bone or tissue manipulation
US7879043B2 (en) * 2006-11-28 2011-02-01 Robert Michael Meneghini System and method for preventing intraoperative fracture in cementless hip arthroplasty
US9445720B2 (en) 2007-02-23 2016-09-20 Smith & Nephew, Inc. Processing sensed accelerometer data for determination of bone healing
US20090005708A1 (en) * 2007-06-29 2009-01-01 Johanson Norman A Orthopaedic Implant Load Sensor And Method Of Interpreting The Same
JP6121088B2 (en) 2007-09-06 2017-04-26 スミス アンド ネフュー インコーポレイテッド System and method for communicating with a telemetric implant
US8328875B2 (en) 2009-12-30 2012-12-11 Linares Medical Devices, Llc Combination male/female hip joint and installation kit
US8211182B2 (en) 2007-09-17 2012-07-03 Linares Medical Devices, Llc Hip socket with assembleable male ball shape having integrally formed ligament and female receiver and installation kit
WO2009039164A1 (en) * 2007-09-17 2009-03-26 Linares Medical Devices, Llc Artificial ligaments for joint applications
US8915866B2 (en) * 2008-01-18 2014-12-23 Warsaw Orthopedic, Inc. Implantable sensor and associated methods
JP2011519637A (en) * 2008-05-05 2011-07-14 スパイナルモーション, インコーポレイテッド Polyaryletherketone artificial disc
SE533438C2 (en) * 2008-05-06 2010-09-28 Swemac Innovation Ab Joint prosthesis
US8029566B2 (en) * 2008-06-02 2011-10-04 Zimmer, Inc. Implant sensors
US9492210B2 (en) 2008-10-15 2016-11-15 Smith & Nephew, Inc. Composite internal fixators
US8685093B2 (en) 2009-01-23 2014-04-01 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8126736B2 (en) 2009-01-23 2012-02-28 Warsaw Orthopedic, Inc. Methods and systems for diagnosing, treating, or tracking spinal disorders
US8720270B2 (en) 2010-06-29 2014-05-13 Ortho Sensor Inc. Prosthetic component for monitoring joint health
US9462964B2 (en) 2011-09-23 2016-10-11 Orthosensor Inc Small form factor muscular-skeletal parameter measurement system
US20100331679A1 (en) * 2009-06-30 2010-12-30 Orthosensor Pulsed echo sensing device and method for an orthopedic joint
US20100331738A1 (en) * 2009-06-30 2010-12-30 Orthosensor Integrated sensor and interconnect for measuring a parameter of the muscular-skeletal system
US8701484B2 (en) 2010-06-29 2014-04-22 Orthosensor Inc. Small form factor medical sensor structure and method therefor
US20110160616A1 (en) * 2009-06-30 2011-06-30 Orthosensor System and method for orthopedic load and location sensing
US8707782B2 (en) 2009-06-30 2014-04-29 Orthosensor Inc Prosthetic component for monitoring synovial fluid and method
US8714009B2 (en) 2010-06-29 2014-05-06 Orthosensor Inc. Shielded capacitor sensor system for medical applications and method
US8421479B2 (en) * 2009-06-30 2013-04-16 Navisense Pulsed echo propagation device and method for measuring a parameter
US8826733B2 (en) 2009-06-30 2014-09-09 Orthosensor Inc Sensored prosthetic component and method
US9839390B2 (en) 2009-06-30 2017-12-12 Orthosensor Inc. Prosthetic component having a compliant surface
US8427176B2 (en) * 2009-06-30 2013-04-23 Orthosensor Inc Pulsed waveguide sensing device and method for measuring a parameter
US9259179B2 (en) 2012-02-27 2016-02-16 Orthosensor Inc. Prosthetic knee joint measurement system including energy harvesting and method therefor
US9332943B2 (en) 2011-09-23 2016-05-10 Orthosensor Inc Flexible surface parameter measurement system for the muscular-skeletal system
US8926530B2 (en) 2011-09-23 2015-01-06 Orthosensor Inc Orthopedic insert measuring system for having a sterilized cavity
US8979758B2 (en) 2010-06-29 2015-03-17 Orthosensor Inc Sensing module for orthopedic load sensing insert device
US20150335440A1 (en) 2011-08-23 2015-11-26 Linares Medical Devices, Llc Multi-component implant assembly with dual articulating and/or rotating surfaces
US8702800B2 (en) 2011-08-23 2014-04-22 Linares Medical Devices, Llc Multi-component shoulder implant assembly with dual articulating surfaces
US8864835B2 (en) 2011-08-24 2014-10-21 Linares Medical Devices, Llc Multi-component knee implant assembly with multiple articulating and traveling surfaces
US8702802B2 (en) 2011-08-29 2014-04-22 Linares Medical Devices, Llc Knee implant assembly with rotary bearing supported and traveling surfaces
US8753403B2 (en) 2011-08-30 2014-06-17 Linares Medical Devices, Llc Multi-component knee implant assembly with combined articulating and belt support and traveling surfaces
US9167989B2 (en) * 2011-09-16 2015-10-27 Mako Surgical Corp. Systems and methods for measuring parameters in joint replacement surgery
EP2760362B1 (en) 2011-09-29 2018-11-07 ArthroMeda, Inc. System for precise prosthesis positioning in hip arthroplasty
US9216086B2 (en) * 2012-02-01 2015-12-22 Zimmer, Inc. Adjustable provisional component of a medical device
US9271675B2 (en) 2012-02-27 2016-03-01 Orthosensor Inc. Muscular-skeletal joint stability detection and method therefor
US9622701B2 (en) 2012-02-27 2017-04-18 Orthosensor Inc Muscular-skeletal joint stability detection and method therefor
US9480571B2 (en) 2012-12-27 2016-11-01 Wright Medical Technology, Inc. Ankle replacement system and method
US9974588B2 (en) 2012-12-27 2018-05-22 Wright Medical Technology, Inc. Ankle replacement system and method
US10080573B2 (en) 2012-12-27 2018-09-25 Wright Medical Technology, Inc. Ankle replacement system and method
AU2013270628B2 (en) 2012-12-27 2015-02-05 Wright Medical Technology, Inc. Ankle replacement system and method
US9918724B2 (en) 2012-12-27 2018-03-20 Wright Medical Technology, Inc. Ankle replacement system and method
US8801796B2 (en) 2012-12-31 2014-08-12 Richard A. Rogachefsky Bone prosthesis for maintaining joint operation in complex joints
US9308102B2 (en) 2013-03-04 2016-04-12 Howmedica Osteonics Corp. Acetabular cup positioning device
JP6410792B2 (en) 2013-03-14 2018-10-24 ライト メディカル テクノロジー インコーポレイテッドWright Medical Technology, Inc. Ankle joint replacement system and method
AU2014232933A1 (en) 2013-03-15 2015-10-29 Arthromeda, Inc. Systems and methods for providing alignment in total knee arthroplasty
US9439797B2 (en) 2013-04-08 2016-09-13 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
US10137024B2 (en) 2013-04-08 2018-11-27 Elwha Llc Apparatus, system, and method for controlling movement of an orthopedic joint prosthesis in a mammalian subject
PT3013283T (en) * 2013-06-23 2021-03-11 Canary Medical Inc Devices, systems and methods for monitoring knee replacements
KR101501282B1 (en) * 2013-07-19 2015-03-11 한국기계연구원 A system for measuring a gap between fractured bones
US20150238691A1 (en) * 2014-02-25 2015-08-27 Elwha Llc Control systems for release of medication responsive to joint activity
US11596347B2 (en) 2014-06-25 2023-03-07 Canary Medical Switzerland Ag Devices, systems and methods for using and monitoring orthopedic hardware
US10874496B2 (en) 2014-06-25 2020-12-29 Canary Medical Inc. Devices, systems and methods for using and monitoring implants
US20180125365A1 (en) 2014-09-17 2018-05-10 Canary Medical Inc. Devices, systems and methods for using and monitoring medical devices
US10335282B2 (en) 2016-02-09 2019-07-02 Richard A. Rogachefsky Magnetic joint replacement
EP4353160A2 (en) 2016-03-23 2024-04-17 Wright Medical Technology, Inc. Fixation apparatus and method for total ankle replacement
MX2018011544A (en) 2016-03-23 2019-06-24 Canary Medical Inc Implantable reporting processor for an alert implant.
US11191479B2 (en) 2016-03-23 2021-12-07 Canary Medical Inc. Implantable reporting processor for an alert implant
CA3034071A1 (en) * 2016-08-30 2018-03-08 Mako Surgical Corp. Systems and methods for intra-operative pelvic registration
US10898106B2 (en) 2017-01-05 2021-01-26 Biomet Manufacturing, Llc Implantable knee sensor and methods of use
US11534316B2 (en) 2017-09-14 2022-12-27 Orthosensor Inc. Insert sensing system with medial-lateral shims and method therefor
EP3769724B1 (en) 2017-09-22 2022-03-02 Encore Medical, L.P. dba DJO Surgical Talar ankle implant
US11000296B2 (en) 2017-12-20 2021-05-11 Encore Medical, L.P. Joint instrumentation and associated methods of use
US11771569B2 (en) * 2018-03-30 2023-10-03 Regents Of The University Of Michigan System and method for aligning hip replacement prostheses
US11135066B2 (en) 2018-04-23 2021-10-05 Medos International Sarl Mechanical fuse for surgical implants and related methods
US11812978B2 (en) 2019-10-15 2023-11-14 Orthosensor Inc. Knee balancing system using patient specific instruments
US11872137B2 (en) 2021-06-15 2024-01-16 Wright Medical Technology, Inc. Unicompartmental ankle prosthesis

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140712A (en) * 1961-08-17 1964-07-14 William S Hunter Articulated joints
US4024588A (en) * 1974-10-04 1977-05-24 Allo Pro A.G. Artificial joints with magnetic attraction or repulsion
US4214322A (en) * 1976-03-19 1980-07-29 Werner Kraus Long-term endoprosthesis
US4978323A (en) * 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5715837A (en) * 1996-08-29 1998-02-10 Light Sciences Limited Partnership Transcutaneous electromagnetic energy transfer
US5935171A (en) * 1997-11-17 1999-08-10 John E. Schneider Apparatus for, and method of, detecting dislocations and material wear in hip replacements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140712A (en) * 1961-08-17 1964-07-14 William S Hunter Articulated joints
US4024588A (en) * 1974-10-04 1977-05-24 Allo Pro A.G. Artificial joints with magnetic attraction or repulsion
US4214322A (en) * 1976-03-19 1980-07-29 Werner Kraus Long-term endoprosthesis
US4978323A (en) * 1989-08-10 1990-12-18 George Freedman System and method for preventing closure of passageways
US5715837A (en) * 1996-08-29 1998-02-10 Light Sciences Limited Partnership Transcutaneous electromagnetic energy transfer
US5935171A (en) * 1997-11-17 1999-08-10 John E. Schneider Apparatus for, and method of, detecting dislocations and material wear in hip replacements

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1648354A2 (en) * 2003-07-11 2006-04-26 Depuy Products, Inc. In vivo joint space measurement device and method
EP2335651A1 (en) * 2003-07-11 2011-06-22 DePuy Products, Inc. In vivo joint space measurement device
EP1648354A4 (en) * 2003-07-11 2010-03-31 Depuy Products Inc In vivo joint space measurement device and method
US9265428B2 (en) 2003-09-16 2016-02-23 St. Jude Medical Luxembourg Holdings Ii S.A.R.L. (“Sjm Lux Ii”) Implantable wireless sensor
US8896324B2 (en) 2003-09-16 2014-11-25 Cardiomems, Inc. System, apparatus, and method for in-vivo assessment of relative position of an implant
US7474223B2 (en) 2005-04-18 2009-01-06 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
WO2006113660A1 (en) * 2005-04-18 2006-10-26 Warsaw Orthopedic, Inc. Method and apparatus for implant identification
EP1733704A2 (en) * 2005-06-13 2006-12-20 DePuy Products, Inc. Orthopaedic prosthesis having a superparamagnetic material
EP1733704A3 (en) * 2005-06-13 2006-12-27 DePuy Products, Inc. Orthopaedic prosthesis having a superparamagnetic material
US9078563B2 (en) 2005-06-21 2015-07-14 St. Jude Medical Luxembourg Holdings II S.à.r.l. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US7842092B2 (en) 2006-03-14 2010-11-30 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
US10327904B2 (en) 2006-03-14 2019-06-25 Mako Surgical Corp. Prosthetic device and system and method for implanting prosthetic device
WO2007106172A1 (en) 2006-03-14 2007-09-20 Mako Surgical Corporation Prosthetic device and system and method for implanting prosthetic device
FR2907241A1 (en) * 2006-10-12 2008-04-18 Erick Cloix METHOD AND SYSTEM FOR MONITORING MEDICAL PRODUCTS
WO2008043921A3 (en) * 2006-10-12 2008-09-12 Erick Cloix Method and system for tracking medical products
US8042738B2 (en) 2006-10-12 2011-10-25 Implanet, Societe Anonyme Method and system for tracking medical products
WO2008043921A2 (en) * 2006-10-12 2008-04-17 Implanet, Societe Anonyme Method and system for tracking medical products
DE102006051032A1 (en) * 2006-10-21 2008-04-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System for determining the anchoring position of an implanted endoprosthesis comprises using a magnet or a ferromagnetic element arranged on the endoprosthesis and oscillated using an excitation coil
EP2268218A4 (en) * 2008-04-01 2013-05-15 Cardiomems Inc System and apparatus for in-vivo assessment of relative position of an implant
EP2268218A2 (en) * 2008-04-01 2011-01-05 CardioMems, Inc. System and apparatus for in-vivo assessment of relative position of an implant
US8078440B2 (en) 2008-09-19 2011-12-13 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US10600515B2 (en) 2008-09-19 2020-03-24 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US11488721B2 (en) 2008-09-19 2022-11-01 Smith & Nephew, Inc. Operatively tuning implants for increased performance
US10430749B2 (en) 2010-02-17 2019-10-01 Global Healthcare Exchange, Llc Method and system for monitoring the use of sensitive products
CN101984327B (en) * 2010-08-26 2014-02-26 中国人民解放军军事医学科学院卫生装备研究所 Fracture model resetting detection device and detection method thereof
CN101984327A (en) * 2010-08-26 2011-03-09 中国人民解放军军事医学科学院卫生装备研究所 Fracture model resetting detection device and detection method thereof
WO2013021357A1 (en) 2011-08-08 2013-02-14 Ecole Polytechnique Federale De Lausanne (Epfl) In-vivo condition monitoring of metallic implants by electrochemical techniques
WO2016113440A1 (en) * 2015-01-12 2016-07-21 Centro De Estudios E Investigaciones Tecnicas (Ceit) Orthopaedic prosthesis for hip or knee replacement

Also Published As

Publication number Publication date
US6245109B1 (en) 2001-06-12
AU1410201A (en) 2001-05-30

Similar Documents

Publication Publication Date Title
WO2001035872A1 (en) Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
US6583630B2 (en) Systems and methods for monitoring wear and/or displacement of artificial joint members, vertebrae, segments of fractured bones and dental implants
Crowninshield et al. An analysis of femoral component stem design in total hip arthroplasty.
Kroon et al. Hydroxyapatite coating of hip prostheses. Effect on migration into the femur
Huddleston Femoral lysis after cemented hip arthroplasty
MALONEY et al. Biomechanical and Histologic Investigation of Cemented Total Hip Arthroplasties: A Study of Autopsy-Retrieved Femurs After: In Vivo: Cycling
Rubin et al. Frictional interface micromotions and anisotropic stress distribution in a femoral total hip component
McNamara et al. Relationship between bone-prosthesis bonding and load transfer in total hip reconstruction
Hua et al. Relative motion of hip stems under load. An in vitro study of symmetrical, asymmetrical, and custom asymmetrical designs.
Brown et al. The development of a computational stress analysis of the femoral head. Mapping tensile, compressive, and shear stress for the varus and valgus positions.
Ebramzadeh et al. Initial stability of cemented femoral stems as a function of surface finish, collar, and stem size
Huiskes Biomechanics of artificial-joint fixation
Gee et al. Biomechanical design using in-vitro finite element modeling of distal femur fracture plates made from semi-rigid materials versus traditional metals for post-operative toe-touch weight-bearing
Tatani et al. Comparison of two metaphyseal-fitting (short) femoral stems in primary total hip arthroplasty: study protocol for a prospective randomized clinical trial with additional biomechanical testing and finite element analysis
Bischoff et al. Heterotopic ossification following uncemented total hip arthroplasty: effect of the operative approach
Ruther et al. Current possibilities for detection of loosening of total hip replacements and how intelligent implants could improve diagnostic accuracy
Murphy et al. Adaptive changes in the femur after implantation of an Austin Moore prosthesis.
Kligman et al. The effect of abduction differences between cup and contralateral acetabular angle on polyethylene component wear
Monti et al. In vitro testing of the primary stability of the VerSys enhanced taper stem: a comparative study in intact and intraoperatively cracked femora
El-Shiekh Finite element simulation of hip joint replacement under static and dynamic loading
Chiu Quantitative monitoring of osseointegrated implant stability using vibration analysis
Solitro et al. Measures of micromotion in cementless femoral stems-review of current methodologies
Hyodo et al. Thermoelastic femoral stress imaging for experimental evaluation of hip prosthesis design
Scales et al. Choosing materials for bone and joint replacements
Kraenzlein et al. The compression—rotation stem: An experimental study on the primary stability of a new revision hip stem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09774017

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase