WO2001026995A1 - A valve actuator - Google Patents

A valve actuator Download PDF

Info

Publication number
WO2001026995A1
WO2001026995A1 PCT/IB2000/001405 IB0001405W WO0126995A1 WO 2001026995 A1 WO2001026995 A1 WO 2001026995A1 IB 0001405 W IB0001405 W IB 0001405W WO 0126995 A1 WO0126995 A1 WO 0126995A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
actuator
seat
housing
pressure
Prior art date
Application number
PCT/IB2000/001405
Other languages
French (fr)
Inventor
Guillermo Aelejandro Araque
Adrie Carry Canninga
Ashley Grant Weyers
Original Assignee
Guillermo Aelejandro Araque
Adrie Carry Canninga
Ashley Grant Weyers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guillermo Aelejandro Araque, Adrie Carry Canninga, Ashley Grant Weyers filed Critical Guillermo Aelejandro Araque
Priority to AU74392/00A priority Critical patent/AU7439200A/en
Publication of WO2001026995A1 publication Critical patent/WO2001026995A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/20Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operated by manual action, e.g. button-type actuator or actuator caps
    • B65D83/205Actuator caps, or peripheral actuator skirts, attachable to the aerosol container
    • B65D83/206Actuator caps, or peripheral actuator skirts, attachable to the aerosol container comprising a cantilevered actuator element, e.g. a lever pivoting about a living hinge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/56Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant with means for preventing delivery, e.g. shut-off when inverted

Definitions

  • a valve actuator for mounting on a pressurised container, the actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating a valve of the container.
  • a valve actuator as claimed in Claim 1 in which the conversion means includes an actuator seat which is receivable on the valve; and at least one bearing component which is adjustable into an operative condition, in which it converts the applied pressure to the actuating pressure via the seat thereby to actuate the valve.
  • a valve actuator as claimed in Claim 2 which includes a housing for housing the conversion means, at least part of the housing being of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
  • a valve actuator as claimed in Claim 3 in which the housing defines mounting means shaped and dimensioned to be received on an end of the container proximate its valve in a snap-fit fashion.
  • a valve actuator as claimed in Claim 3 or Claim 4 in which the bearing component is of a rigid material and defines a bearing surface, the bearing component being mounted within the housing so that it is pivotally adjustable into the operative condition in which it bears against and displaces the seat upon application of the lateral pressure thereby to actuate the valve.
  • a valve actuator as claimed in Claim 8 in which the bearing components are dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
  • a valve actuator as claimed in any one of the preceding Claims 4 to 9 inclusive in which bearing components are rotatable 1 2 relative to the seat between an operative position in which they are aligned for abutment against the seat for dispensing from the container, and an inoperative position in which the are out of register with the seat to prevent dispensing.
  • a valve actuator as claimed in Claim 10 in which the seat includes a socket shaped and dimensioned to receive a valve stem of the valve thereby to mount the seat to the valve stem for actuating the valve, the seat including a flow passage to allow discharge of contents from the container via its valve stem.
  • a valve actuator as claimed in Claim 1 1 in which the seat is snugly mounted to the valve stem and the mounting means movably mounts the housing to the container so that, upon rotation of the housing relative to the container, the bearing components are rotated between their operative and inoperative positions.
  • a dispensing device which includes a reservoir for holding contents to be dispensed under pressure; a valve for controlling dispensing from the reservoir; and 13 a valve actuator for actuating the valve, the valve actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating the valve of the container.
  • a device as claimed in Claim 1 5 which includes a housing for housing the conversion means, at least part of the housing being of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
  • a device as claimed in Claim 21 in which the bearing components are dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
  • a new dispensing device substantially as herein described and illustrated.
  • THIS INVENTION relates to valves. In particular it relates to a valve actuator. It also relates to a dispensing device.
  • a valve actuator for mounting on a pressurised container, the actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating a valve of the container.
  • a dispensing container which includes a reservoir for holding contents to be dispensed under pressure; a valve for controlling dispensing from the reservoir; and a valve actuator for actuating the valve, the valve actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating the valve of the container.
  • the reservoir is defined by the body of an aerosol can.
  • the conversion means may include an actuator seat which is receivable on the valve; and 2 at least one bearing component which is adjustable into an operative condition, in which it converts the applied pressure to the actuating pressure via the seat thereby to actuate the valve.
  • the valve actuator may include a housing for housing the conversion means. At least part of the housing may be of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
  • the housing may define mounting means shaped and dimensioned to be received on an end of the container proximate its valve in a snap-fit fashion.
  • the mounting means is received on the top of the body of the aerosol can.
  • the bearing component may be of a resiliently deformable material which defines a bearing surface which in the operative condition bears against and displaces the seat upon application of the lateral pressure.
  • the bearing component may be of a rigid material and may define a bearing surface.
  • the bearing component may be mounted within the housing so that it is pivotally adjustable into the operative condition in which it bears against and displaces the seat upon application of the lateral pressure thereby to actuate the valve.
  • the housing may include a plurality of rigid sections interconnected by resiliently deformable sections.
  • the bearing components are typically supported by the rigid sections.
  • the housing may include a zone of reduced rigidity proximate the mounting means.
  • the rigid sections may be pivotally displaceable about the zone of reduced rigidity when the lateral pressure is applied.
  • the housing is cylindrical, the rigid sections then being pivotally displaceable radially inwardly.
  • the bearing components may be dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
  • the bearing components may be rotatable between an operative position in which they are aligned for abutment against the seat for dispensing from the container, and an inoperative position in which the are out of register with the seat to prevent dispensing.
  • the seat may include a socket shaped and dimensioned to receive a valve stem of the valve thereby to mount the seat to the valve stem for actuating the valve, the seat including a flow passage to allow discharge of contents from the container via its valve stem.
  • the seat may be snugly, e.g. by way of a friction fit, mounted to the valve stem and the mounting means may movably mount the housing to the container so that, upon rotation of the housing 4 relative to the container, the bearing components are rotated between their operative and inoperative positions.
  • the valve actuator may include a discharge outlet mounted proximate an upper end of the housing distal from the seat, and a connecting tube connectable to the flow passage of the seat for discharging contents of the container upon actuation from the valve stem to the discharge outlet by the laterally applied pressure.
  • Figure 1 shows an axial section through a valve actuator, in accordance with the invention, mounted on top of an aerosol can, the actuator being in a non-dispensing condition;
  • Figure 2 shows a three-dimensional view of an actuator seat of the actuator of Figure 1 ;
  • Figure 3 shows three-dimensional views of a bearing component of the actuator of Figure 1 ;
  • Figure 4 shows a three-dimensional view of another embodiment of a bearing component which may replace the bearing component of Figure 3;
  • Figure 5 shows the actuator of Figure 1 in an operative or dispensing condition
  • Figure 6 shows a bottom plan view of the actuator of Figure 1 removed from the aerosol can; 5
  • Figure 7 shows a top plan view of the actuator of Figure 1 taken at VII-VII in Figure 1 ;
  • Figure 8 shows an axial section through a further embodiment of an actuator, also in accordance with the invention, mounted on the top of an aerosol can;
  • Figure 9 shows a three-dimensional view of an actuator seat of the actuator of Figure 8.
  • Figure 10 shows a sectional view taken at X-X in Figure 8 with the actuator in its operative or dispensing condition; and Figure 1 1 shows a sectional view corresponding with Figure 1 0 with the actuator in its inoperative or non-dispensing condition.
  • reference numeral 1 0 generally indicates a valve actuator in accordance with the invention.
  • the actuator 1 0 includes a cylindrical housing or body 1 2 having a circular top 14 and a cylindrical side wall 1 6.
  • the top 14 is integrally formed with the side wall 1 6.
  • the top 1 4 can be removed .
  • the actuator 10 is detachably mounted on top of a pressurised container in the form of a conventional aerosol can 20 by snap-fit mounting means 21 .
  • the actuator 1 0 includes an actuator seat 30 which is mounted to a conventional valve control stem 28 of the valve of the aerosol can 20.
  • the seat 30 includes a circular base 32 (see Figures 1 and 2) and a raised circular top 34 of narrower cross-section which is integrally formed with the circular base 32 from a synthetic plastics material.
  • the base 32 has a socket 32.1 which is shaped and 6 dimensioned snugly to receive an end of the control stem 28.
  • the top 34 has a socket 34.1 for receiving an end of an elongate tube 40 of the actuator 1 0.
  • An axial passage 39 extends between the sockets 32.1 and 34.1 so that the tube 40 and the valve stem 28 are in flow communication.
  • the tube 40 leads to a discharge opening 1 2.1 in the top 14 of the body 1 2 from which the contents of the can 20 is selectively discharged .
  • a portion 14.1 of the top 1 4 immediately adjacent the opening 1 2.1 is reinforced.
  • the actuator 10 further includes six peripherally spaced fins or bearing components 50 (see Figures 1 , 3, 6 and 7) mounted within the cylindrical body or housing 1 2.
  • Each bearing component 50 has a top 50.1 , a bottom 50.2 and sides 50.3, 50.4 extending between the top 50.1 and bottom 50.2 (see Figures 1 , 3, 5 and 6) .
  • the top 50.1 and bottom 50.2 are wedge shaped and the side 50.3 has an arcuate shape to seat against the cylindrical side wall 1 6.
  • the sides 50.4 are trapezoidal in shape.
  • the bottom 50.2 of each bearing component 50 slopes downwardly towards the seat 30 and bears against an annular shoulder or flange 37 (see Figure 2) of the actuator seat 30.
  • bearing components 50 are in contact with the cylindrical side wall 1 6.
  • the angular spacing between bearing components 50 is the same.
  • the bearing component 1 00 generally indicates a further embodiment of a bearing component forming part of an actuator in accordance with the invention.
  • the bearing component 1 00 has a wedge shaped top 1 02 and a wedge 7 shaped bottom 1 04.
  • Two rectangular sides 1 06 extend between the top 1 02 and the bottom 1 04.
  • An arcuate side 108 extends between the top 1 02 and the bottom 1 04 and is parallel to and seats against the cylindrical side wall 1 6, in use.
  • the bearing component 1 00 replaces the bearing component 50.
  • Both the bearing components 50, 100 and the cylindrical body or housing 1 2 are made of a resiliently deformable plastics material.
  • a laterally applied finger pressure is applied to the cylindrical body or housing 1 2 in the direction of arrows 60 (see Figure 1 and 5) and, as a result thereof, the bearing components 50 to which the pressure is applied are adjusted or deformed to an operative condition in which the bottom 50.2, 1 04 of the components are displaced downwardly in the direction of arrows 70.
  • This causes the bearing components 50 to bear against the annular shoulder 37 (see Figure 2) of the actuator seat 30 thereby causing the seat 30 to be displaced towards a body of the can 20 and, accordingly, the valve stem 28 is depressed.
  • the valve mechanism 41 of the aerosol can 20 is thereby actuated and the contents of the aerosol can 20 is conveyed through the passage 39 of the seat 30 into the tube 40 and discharged via the opening 1 2.1 , as shown in Figure 5.
  • the bottoms 50.2, 104 thus define bearing surfaces which are longitudinally displaceable to bear against the seat 30 upon transverse deformation of the body or housing 1 2.
  • a laterally applied pressure is thus converted by conversion means including the bearing components 50 and the seat 30, into an actuating pressure which actuates the valve mechanism 51 .
  • the bearing components 50, 1 00 have been described as being resiliently deformable, it is to be appreciated that they may be rigid and may pivot 8 inwardly under finger or hand pressure into the operative condition described above.
  • reference numeral 200 generally indicates another embodiment of a valve actuator in accordance with the invention.
  • the actuator 200 includes a cylindrical body or housing 202 having a circular top 204 and a cylindrical side wall 206.
  • the side wall 206 has longitudinally extending rigid sections 208 (see Figure 10) of a rigid or hard plastics material which alternate with longitudinally extending sections 21 0 of a resiliently deformable plastics material.
  • the rigid sections 208 are designed to bend in a circular zone or band of reduced rigidity 209 (see Figure 8) of the body or housing 202 when subjected to lateral pressure as will be described in detail below.
  • the actuator 200 includes bearing components 100 (see Figure 4) which are integrally formed with and hence supported by the rigid sections 208.
  • the actuator 200 includes an actuator seat 250 which is similar to the seat 30 except that its solid flange 37 has been replaced by a number of arcuately spaced arms 252 (see Figure 9) which extend radially outwardly from its top 34. Spaces 254 between the arms 252, are of a complementary shape to the bottoms 104 of the bearing component 100.
  • the actuator 200 is mounted on the aerosol can 20 for rotation between an operative condition or dispensing position and an inoperative condition or non-dispensing position.
  • valve actuator 10 which facilitates the actuation of a valve on an aerosol can 20.

Abstract

The invention provides a valve actuator (200) for mounting on a pressurized container (20). The actuator includes conversion means (100) for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating a valve of the container. The invention also provides a dispensing device which includes a reservoir for holding contents to be dispensed under pressure and a valve for controlling dispensing from the reservoir.

Description

CLAIMS:
1 . A valve actuator for mounting on a pressurised container, the actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating a valve of the container.
2. A valve actuator as claimed in Claim 1 , in which the conversion means includes an actuator seat which is receivable on the valve; and at least one bearing component which is adjustable into an operative condition, in which it converts the applied pressure to the actuating pressure via the seat thereby to actuate the valve.
3. A valve actuator as claimed in Claim 2, which includes a housing for housing the conversion means, at least part of the housing being of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
4. A valve actuator as claimed in Claim 3, in which the housing defines mounting means shaped and dimensioned to be received on an end of the container proximate its valve in a snap-fit fashion.
5. A valve actuator as claimed in Claim 3 or Claim 4, in which the bearing component is of a resiliently deformable material which 1 1 defines a bearing surface which in the operative condition bears against and displaces the seat upon application of the lateral pressure.
6. A valve actuator as claimed in Claim 3 or Claim 4, in which the bearing component is of a rigid material and defines a bearing surface, the bearing component being mounted within the housing so that it is pivotally adjustable into the operative condition in which it bears against and displaces the seat upon application of the lateral pressure thereby to actuate the valve.
7. A valve actuator as claimed in Claim 6, in which the housing includes a plurality of rigid sections interconnected by resiliently deformable sections, the bearing components being supported by the rigid sections.
8. A valve actuator as claimed in Claim 7, in which the housing includes a zone of reduced rigidity proximate the mounting means, the rigid sections being pivotally displaceable about the zone of reduced rigidity when the lateral pressure is applied.
9. A valve actuator as claimed in Claim 8, in which the bearing components are dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
10. A valve actuator as claimed in any one of the preceding Claims 4 to 9 inclusive, in which bearing components are rotatable 1 2 relative to the seat between an operative position in which they are aligned for abutment against the seat for dispensing from the container, and an inoperative position in which the are out of register with the seat to prevent dispensing.
1 1 . A valve actuator as claimed in Claim 10, in which the seat includes a socket shaped and dimensioned to receive a valve stem of the valve thereby to mount the seat to the valve stem for actuating the valve, the seat including a flow passage to allow discharge of contents from the container via its valve stem.
1 2. A valve actuator as claimed in Claim 1 1 , in which the seat is snugly mounted to the valve stem and the mounting means movably mounts the housing to the container so that, upon rotation of the housing relative to the container, the bearing components are rotated between their operative and inoperative positions.
1 3. A valve actuator as claimed in Claim 1 1 or Claim 1 2, which includes a discharge outlet mounted proximate an upper end of the housing distal from the seat, and a connecting tube connectable to the flow passage of the seat for discharging contents of the container upon actuation from the valve stem to the discharge outlet by the laterally applied pressure.
1 4. A dispensing device, which includes a reservoir for holding contents to be dispensed under pressure; a valve for controlling dispensing from the reservoir; and 13 a valve actuator for actuating the valve, the valve actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating the valve of the container.
1 5. A device as claimed in Claim 14, in which the conversion means includes an actuator seat which is receivable on the valve; and at least one bearing component which is adjustable into an operative condition in which it converts the applied pressure to the actuating pressure via the seat thereby to actuate the valve.
1 6. A device as claimed in Claim 1 5, which includes a housing for housing the conversion means, at least part of the housing being of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
1 7. A device as claimed in Claim 1 6, in which the housing defines mounting means shaped and dimensioned to be received on an end of the container proximate its valve in a snap-fit fashion.
1 8. A device as claimed in Claim 1 6 or Claim 1 7, in which the bearing component is of a resiliently deformable material which defines a bearing surface which in the operative condition bears against and displaces the seat upon application of the lateral pressure. 14
1 9. A device as claimed in Claim 1 6 or Claim 1 7, in which the bearing component is of a rigid material and defines a bearing surface, the bearing component being mounted within the housing so that it is pivotally adjustable into the operative condition in which it bears against and displaces the seat upon application of the lateral pressure thereby to actuate the valve.
20. A device as claimed in Claim 1 9, in which the housing includes a plurality of rigid sections interconnected by resiliently deformable sections, the bearing components being supported by the rigid sections.
21 . A device as claimed in Claim 20, in which the housing includes a zone of reduced rigidity proximate the mounting means, the rigid sections being pivotally displaceable about the zone of reduced rigidity when the lateral pressure is applied.
22. A device as claimed in Claim 21 , in which the bearing components are dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
23. A device as claimed in any one of the preceding Claims 1 7 to 22 inclusive, in which bearing components are rotatable between an operative position in which they are aligned for abutment against the seat for dispensing from the container, and an inoperative position in which the are out of register with the seat to prevent dispensing . 1 5
24. A device as claimed in Claim 23, in which the seat includes a socket shaped and dimensioned to receive a valve stem of the valve thereby to mount the seat to the valve stem for actuating the valve, the seat including a flow passage to allow discharge of contents from the container via its valve stem.
25. A device as claimed in Claim 24, in which the seat is snugly mounted to the valve stem and the mounting means movably mounts the housing to the container so that, upon rotation of the housing relative to the container, the bearing components are rotated between their operative and inoperative positions.
26. A device as claimed in Claim 24 or Claim 25, which includes a discharge outlet mounted proximate an upper end of the housing distal from the seat, and a connecting tube connectable to the flow passage of the seat for discharging contents of the container upon actuation from the valve stem to the discharge outlet by the laterally applied pressure.
27. A new valve actuator, substantially as herein described and illustrated.
28. A new dispensing device, substantially as herein described and illustrated. A VALVE ACTUATOR
THIS INVENTION relates to valves. In particular it relates to a valve actuator. It also relates to a dispensing device.
According to one aspect of the invention, there is provided a valve actuator for mounting on a pressurised container, the actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating a valve of the container.
According to another aspect of the invention, there is provided a dispensing container, which includes a reservoir for holding contents to be dispensed under pressure; a valve for controlling dispensing from the reservoir; and a valve actuator for actuating the valve, the valve actuator including conversion means for converting an applied pressure to an actuating pressure in a transverse direction to the applied pressure for actuating the valve of the container.
Typically, the reservoir is defined by the body of an aerosol can.
The conversion means may include an actuator seat which is receivable on the valve; and 2 at least one bearing component which is adjustable into an operative condition, in which it converts the applied pressure to the actuating pressure via the seat thereby to actuate the valve.
The valve actuator may include a housing for housing the conversion means. At least part of the housing may be of a resiliently deformable material so that when the applied pressure is applied laterally to a side of the housing, the or each bearing component is adjusted into its operative condition.
The housing may define mounting means shaped and dimensioned to be received on an end of the container proximate its valve in a snap-fit fashion. Typically, the mounting means is received on the top of the body of the aerosol can.
The bearing component may be of a resiliently deformable material which defines a bearing surface which in the operative condition bears against and displaces the seat upon application of the lateral pressure.
The bearing component may be of a rigid material and may define a bearing surface. The bearing component may be mounted within the housing so that it is pivotally adjustable into the operative condition in which it bears against and displaces the seat upon application of the lateral pressure thereby to actuate the valve. 3
The housing may include a plurality of rigid sections interconnected by resiliently deformable sections. The bearing components are typically supported by the rigid sections.
The housing may include a zone of reduced rigidity proximate the mounting means. The rigid sections may be pivotally displaceable about the zone of reduced rigidity when the lateral pressure is applied. Typically, the housing is cylindrical, the rigid sections then being pivotally displaceable radially inwardly.
The bearing components may be dimensioned to include a working arm which bears against the seat, and an effort arm to which the laterally applied pressure is applied, the effort arm being longer than the working arm to obtain a mechanical advantage.
The bearing components may be rotatable between an operative position in which they are aligned for abutment against the seat for dispensing from the container, and an inoperative position in which the are out of register with the seat to prevent dispensing.
The seat may include a socket shaped and dimensioned to receive a valve stem of the valve thereby to mount the seat to the valve stem for actuating the valve, the seat including a flow passage to allow discharge of contents from the container via its valve stem.
The seat may be snugly, e.g. by way of a friction fit, mounted to the valve stem and the mounting means may movably mount the housing to the container so that, upon rotation of the housing 4 relative to the container, the bearing components are rotated between their operative and inoperative positions.
The valve actuator may include a discharge outlet mounted proximate an upper end of the housing distal from the seat, and a connecting tube connectable to the flow passage of the seat for discharging contents of the container upon actuation from the valve stem to the discharge outlet by the laterally applied pressure.
The invention will now be described, by way of example, with reference to the accompanying diagrammatic drawings.
In the drawings,
Figure 1 shows an axial section through a valve actuator, in accordance with the invention, mounted on top of an aerosol can, the actuator being in a non-dispensing condition;
Figure 2 shows a three-dimensional view of an actuator seat of the actuator of Figure 1 ;
Figure 3 shows three-dimensional views of a bearing component of the actuator of Figure 1 ;
Figure 4 shows a three-dimensional view of another embodiment of a bearing component which may replace the bearing component of Figure 3;
Figure 5 shows the actuator of Figure 1 in an operative or dispensing condition;
Figure 6 shows a bottom plan view of the actuator of Figure 1 removed from the aerosol can; 5
Figure 7 shows a top plan view of the actuator of Figure 1 taken at VII-VII in Figure 1 ;
Figure 8 shows an axial section through a further embodiment of an actuator, also in accordance with the invention, mounted on the top of an aerosol can;
Figure 9 shows a three-dimensional view of an actuator seat of the actuator of Figure 8;
Figure 10 shows a sectional view taken at X-X in Figure 8 with the actuator in its operative or dispensing condition; and Figure 1 1 shows a sectional view corresponding with Figure 1 0 with the actuator in its inoperative or non-dispensing condition.
Referring to Figure 1 of the drawings, reference numeral 1 0 generally indicates a valve actuator in accordance with the invention. The actuator 1 0 includes a cylindrical housing or body 1 2 having a circular top 14 and a cylindrical side wall 1 6. In the embodiment depicted in the drawings, the top 14 is integrally formed with the side wall 1 6. However, in other embodiments, the top 1 4 can be removed . The actuator 10 is detachably mounted on top of a pressurised container in the form of a conventional aerosol can 20 by snap-fit mounting means 21 .
The actuator 1 0 includes an actuator seat 30 which is mounted to a conventional valve control stem 28 of the valve of the aerosol can 20. The seat 30 includes a circular base 32 (see Figures 1 and 2) and a raised circular top 34 of narrower cross-section which is integrally formed with the circular base 32 from a synthetic plastics material. The base 32 has a socket 32.1 which is shaped and 6 dimensioned snugly to receive an end of the control stem 28. The top 34 has a socket 34.1 for receiving an end of an elongate tube 40 of the actuator 1 0. An axial passage 39 extends between the sockets 32.1 and 34.1 so that the tube 40 and the valve stem 28 are in flow communication. The tube 40 leads to a discharge opening 1 2.1 in the top 14 of the body 1 2 from which the contents of the can 20 is selectively discharged . A portion 14.1 of the top 1 4 immediately adjacent the opening 1 2.1 is reinforced.
The actuator 10 further includes six peripherally spaced fins or bearing components 50 (see Figures 1 , 3, 6 and 7) mounted within the cylindrical body or housing 1 2. Each bearing component 50 has a top 50.1 , a bottom 50.2 and sides 50.3, 50.4 extending between the top 50.1 and bottom 50.2 (see Figures 1 , 3, 5 and 6) . The top 50.1 and bottom 50.2 are wedge shaped and the side 50.3 has an arcuate shape to seat against the cylindrical side wall 1 6. The sides 50.4 are trapezoidal in shape. The bottom 50.2 of each bearing component 50 slopes downwardly towards the seat 30 and bears against an annular shoulder or flange 37 (see Figure 2) of the actuator seat 30. The sides
50.3 of the bearing components 50 are in contact with the cylindrical side wall 1 6. The angular spacing between bearing components 50 is the same.
Referring to Figure 4 of the drawings, reference numeral
1 00 generally indicates a further embodiment of a bearing component forming part of an actuator in accordance with the invention. The bearing component 1 00 has a wedge shaped top 1 02 and a wedge 7 shaped bottom 1 04. Two rectangular sides 1 06 extend between the top 1 02 and the bottom 1 04. An arcuate side 108 extends between the top 1 02 and the bottom 1 04 and is parallel to and seats against the cylindrical side wall 1 6, in use. In certain embodiments of the actuator 1 0, the bearing component 1 00 replaces the bearing component 50.
Both the bearing components 50, 100 and the cylindrical body or housing 1 2 are made of a resiliently deformable plastics material.
In use, a laterally applied finger pressure is applied to the cylindrical body or housing 1 2 in the direction of arrows 60 (see Figure 1 and 5) and, as a result thereof, the bearing components 50 to which the pressure is applied are adjusted or deformed to an operative condition in which the bottom 50.2, 1 04 of the components are displaced downwardly in the direction of arrows 70. This causes the bearing components 50 to bear against the annular shoulder 37 (see Figure 2) of the actuator seat 30 thereby causing the seat 30 to be displaced towards a body of the can 20 and, accordingly, the valve stem 28 is depressed. The valve mechanism 41 of the aerosol can 20 is thereby actuated and the contents of the aerosol can 20 is conveyed through the passage 39 of the seat 30 into the tube 40 and discharged via the opening 1 2.1 , as shown in Figure 5. The bottoms 50.2, 104 thus define bearing surfaces which are longitudinally displaceable to bear against the seat 30 upon transverse deformation of the body or housing 1 2. A laterally applied pressure is thus converted by conversion means including the bearing components 50 and the seat 30, into an actuating pressure which actuates the valve mechanism 51 . Although the bearing components 50, 1 00 have been described as being resiliently deformable, it is to be appreciated that they may be rigid and may pivot 8 inwardly under finger or hand pressure into the operative condition described above.
Referring to Figures 8 to 1 1 of the drawings, reference numeral 200 generally indicates another embodiment of a valve actuator in accordance with the invention.
The actuator 200 includes a cylindrical body or housing 202 having a circular top 204 and a cylindrical side wall 206. The side wall 206 has longitudinally extending rigid sections 208 (see Figure 10) of a rigid or hard plastics material which alternate with longitudinally extending sections 21 0 of a resiliently deformable plastics material. The rigid sections 208 are designed to bend in a circular zone or band of reduced rigidity 209 (see Figure 8) of the body or housing 202 when subjected to lateral pressure as will be described in detail below. The actuator 200 includes bearing components 100 (see Figure 4) which are integrally formed with and hence supported by the rigid sections 208.
The actuator 200 includes an actuator seat 250 which is similar to the seat 30 except that its solid flange 37 has been replaced by a number of arcuately spaced arms 252 (see Figure 9) which extend radially outwardly from its top 34. Spaces 254 between the arms 252, are of a complementary shape to the bottoms 104 of the bearing component 100. The actuator 200 is mounted on the aerosol can 20 for rotation between an operative condition or dispensing position and an inoperative condition or non-dispensing position. 9
In the dispensing position (see Figure 10 of the drawings), the bottoms 104 of the bearing components 100 are in register with the arms 252. In this position lateral finger pressure or hand pressure, applied to two opposed sections 208, in the direction of arrows 260 (see Figure 8 of the drawings), results in the sections 208 bending inwardly about the region 209 in a pivoting fashion. As a result the bearing components 100 are pivotally adjusted into an operative condition in which the bottoms 104 bear against the arms 252. This causes the actuator seat 250 to be displaced towards the body of the can 20 thereby to discharge the contents of the aerosol can 20, as described above. The arms 252 thus define shoulders against which the bottoms 104 bear, in use.
In the non-dispensing position, the bottoms 104 are aligned with the spaces 254 between the arms 252. It will be appreciated that in the non-dispensing position (see Figure 1 1 of the drawings) lateral finger pressure displaces the arms 252 between the shoulders and, accordingly actuation of the valve of the aerosol can 20 is avoided.
The Inventor believes that it is an advantage of the invention, as illustrated, that it provides a valve actuator 10 which facilitates the actuation of a valve on an aerosol can 20. In particular, persons who have difficulty in actuating conventional valve actuators, which are smaller and require pressure to be applied to the actuator by a single finger, may apply pressure to the actuator 10 thereby facilitating actuation of the can 20.
PCT/IB2000/001405 1999-10-09 2000-10-03 A valve actuator WO2001026995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74392/00A AU7439200A (en) 1999-10-09 2000-10-03 A valve actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ZA992618 1999-10-09
ZA99/2618 1999-10-09

Publications (1)

Publication Number Publication Date
WO2001026995A1 true WO2001026995A1 (en) 2001-04-19

Family

ID=25587666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2000/001405 WO2001026995A1 (en) 1999-10-09 2000-10-03 A valve actuator

Country Status (2)

Country Link
AU (1) AU7439200A (en)
WO (1) WO2001026995A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032036A1 (en) * 2004-09-15 2006-03-23 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
US7296713B2 (en) 2004-12-08 2007-11-20 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
US7308992B1 (en) 2004-09-15 2007-12-18 S.C. Johnson & Son, Inc. Spring-loaded actuator cap
US7308993B2 (en) 2004-12-08 2007-12-18 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
US7637393B2 (en) 2004-03-26 2009-12-29 S.C. Johnson & Son, Inc. Actuator cap for a container
WO2013118074A1 (en) 2012-02-08 2013-08-15 Platel Frederic Lateral actuator for a dispenser of a cosmetics container
US9051108B2 (en) 2010-05-21 2015-06-09 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
US9211994B2 (en) 2010-05-21 2015-12-15 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
WO2017009481A3 (en) * 2015-07-16 2017-03-30 Rpc Bramlage Gmbh Dispensing device for a fluid dispenser

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1479824A (en) * 1966-05-13 1967-05-05 Spray cap with lever control
FR1557484A (en) * 1968-03-27 1969-02-14
GB1256001A (en) * 1968-06-20 1971-12-08 Johnson & Son Inc S C Overcap for pressurized dispensing containers
US3739941A (en) * 1971-04-26 1973-06-19 Federal Tool & Plastics Uca Co Actuator means for use with aerosol dispensers
GB1460854A (en) * 1973-03-16 1977-01-06 Oreal Cap for operating a dispensing valve of a pressurised container
EP0385863A1 (en) * 1989-03-01 1990-09-05 Marthe Lucas Actuator cap for a spray container

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1479824A (en) * 1966-05-13 1967-05-05 Spray cap with lever control
FR1557484A (en) * 1968-03-27 1969-02-14
GB1256001A (en) * 1968-06-20 1971-12-08 Johnson & Son Inc S C Overcap for pressurized dispensing containers
US3739941A (en) * 1971-04-26 1973-06-19 Federal Tool & Plastics Uca Co Actuator means for use with aerosol dispensers
GB1460854A (en) * 1973-03-16 1977-01-06 Oreal Cap for operating a dispensing valve of a pressurised container
EP0385863A1 (en) * 1989-03-01 1990-09-05 Marthe Lucas Actuator cap for a spray container

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637393B2 (en) 2004-03-26 2009-12-29 S.C. Johnson & Son, Inc. Actuator cap for a container
US7819288B2 (en) 2004-03-26 2010-10-26 S.C. Johnson & Son, Inc. Housing and actuating apparatus and methods associated therewith
WO2006032037A1 (en) * 2004-09-15 2006-03-23 S. C. Johnson & Son, Inc. Actuator cap for a container
WO2006032036A1 (en) * 2004-09-15 2006-03-23 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
WO2006031989A3 (en) * 2004-09-15 2006-06-08 Johnson & Son Inc S C Spring-loaded actuator cap
US7308992B1 (en) 2004-09-15 2007-12-18 S.C. Johnson & Son, Inc. Spring-loaded actuator cap
WO2006031990A1 (en) * 2004-09-15 2006-03-23 S. C. Johnson & Son, Inc. Actuator cap
WO2006031989A2 (en) * 2004-09-15 2006-03-23 S. C. Johnson & Son, Inc. Spring-loaded actuator cap
US7296713B2 (en) 2004-12-08 2007-11-20 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
US7308993B2 (en) 2004-12-08 2007-12-18 S.C. Johnson & Son, Inc. Actuator cap and product refill for a housing
US9051108B2 (en) 2010-05-21 2015-06-09 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
US9211994B2 (en) 2010-05-21 2015-12-15 S.C. Johnson & Son, Inc. Shroud and dispensing system for a handheld container
WO2013118074A1 (en) 2012-02-08 2013-08-15 Platel Frederic Lateral actuator for a dispenser of a cosmetics container
WO2017009481A3 (en) * 2015-07-16 2017-03-30 Rpc Bramlage Gmbh Dispensing device for a fluid dispenser
US10384857B2 (en) 2015-07-16 2019-08-20 Rpc Bramlage Gmbh Dispensing device for a fluid dispenser

Also Published As

Publication number Publication date
AU7439200A (en) 2001-04-23

Similar Documents

Publication Publication Date Title
WO2001026995A1 (en) A valve actuator
US7637393B2 (en) Actuator cap for a container
CA1331591C (en) Metering and spray pump for liquid and low-viscosity substances
EP1242295B3 (en) Dispensing apparatus
EP1988798B1 (en) Dispensers e.g. for cosmetics
US7036691B2 (en) Dispenser device for fitting to a receptacle provided with a valve
EP0243393B1 (en) Aerosol valve actuator
EP1723051B1 (en) Apparatus for controlling flow rate from a valve dispenser
US20030071080A1 (en) Variable flow rate valve and container equipped therewith
WO2001036275A3 (en) Hand-held product dispensers having pressurized delivery
HUT70997A (en) Spray pump package employing multiple orifices for dispensing liquid in different spray patterns with automaticall adjusted optimized pump stroke for each pattern
US20050178802A1 (en) Hand-held product dispensers having pressurized delivery
AU2002366792A1 (en) Aerosol powder valve
CA2172098A1 (en) Whipped Cream Dispenser
WO2003021139A3 (en) Pressure-activated flexible valve
EP1886941A3 (en) Systems and methods for securing aerosol systems
KR950702937A (en) Pump sprayer with removable bottle
EP1914005A3 (en) Aerosol Spray Dispenser
EP1433533A1 (en) Dispensing apparatus having means for dispensing two products in variable ratios
KR101826878B1 (en) Operating system for fluid material distribution system
US11179739B2 (en) Liquid dispenser
CN107848689B (en) The output device of fluid spreader
US6170537B1 (en) Valve for dispensing a pressurized liquid, container fitted with this valve, and method of packing a container thus equipped
EP1125856A3 (en) Fluid dispenser
US6006954A (en) Metering valve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP