WO2001025630A1 - Verfahren zum betrieb eines windparks - Google Patents

Verfahren zum betrieb eines windparks Download PDF

Info

Publication number
WO2001025630A1
WO2001025630A1 PCT/EP2000/006493 EP0006493W WO0125630A1 WO 2001025630 A1 WO2001025630 A1 WO 2001025630A1 EP 0006493 W EP0006493 W EP 0006493W WO 0125630 A1 WO0125630 A1 WO 0125630A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
power
wind farm
energy
turbines
Prior art date
Application number
PCT/EP2000/006493
Other languages
English (en)
French (fr)
Inventor
Aloys Wobben
Original Assignee
Aloys Wobben
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7924736&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001025630(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Aloys Wobben filed Critical Aloys Wobben
Priority to JP2001528337A priority Critical patent/JP4195220B2/ja
Priority to DE50002611T priority patent/DE50002611D1/de
Priority to DK00954452.9T priority patent/DK1222389T4/en
Priority to ES00954452T priority patent/ES2197112T5/es
Priority to EP00954452.9A priority patent/EP1222389B2/de
Priority to CA002388509A priority patent/CA2388509C/en
Priority to AT00954452T priority patent/ATE243301T1/de
Priority to US10/089,812 priority patent/US6724097B1/en
Priority to AU66904/00A priority patent/AU6690400A/en
Publication of WO2001025630A1 publication Critical patent/WO2001025630A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/96Mounting on supporting structures or systems as part of a wind turbine farm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1011Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • the invention relates to a method for operating a wind farm and also a wind farm as such.
  • Wind turbines were initially always set up singularly and only in recent years - also caused by administrative and building regulations - have wind turbines been installed frequently in wind farms.
  • a wind farm is an arrangement of at least two wind turbines, but often significantly more.
  • the Holtriem wind farm (East Frisia) is an example of this, where more than 50 wind turbines are installed in a network. It is to be expected that the number as well as the installed capacity of the wind energy plants will continue to increase strongly in the further years. In most cases, the wind potential is greatest in areas of the supply network with low short-circuit power and low population density. It is precisely there that the technical connection limits are quickly reached by the wind energy plants, with the result that then no further wind energy plants can be installed at such locations.
  • a conventional wind farm that is connected to a substation with 50 MW, for example, can therefore only have a maximum total output of 50 MW, ie, for example, 50 wind turbines with a nominal output of 1 MW each.
  • the invention accordingly proposes a solution in which the wind farm is equipped with a total power that is higher than the maximum possible grid feed-in power. Transferred to the above example, the power can reach a value of over 50 MW, e.g. B 53 MW can be raised. As soon as the wind speeds are high enough to generate the limit power of 50 MW, the wind farm control according to the invention intervenes and controls individual or all systems when the total maximum power is exceeded in such a way that this is always maintained. This means that at wind speeds above nominal wind (wind speed at which a wind turbine reaches its nominal output) at least one or all systems are operated with a (slightly) throttled output (for example with an output of 940 kW instead of 1 MW).
  • the network components of the infeed network can be optimally utilized or utilized (utilization up to the thermal limit is also possible).
  • existing wind farm areas can thus be better utilized by setting up a maximum possible number of wind turbines. The number is then no longer limited by the available network capacity.
  • the electrical power can be set in a range from 0 to 100% (based on the nominal power). Is z. B If a setpoint of 350 kW is applied, the maximum output of this wind turbine will not exceed the setpoint of 350 kW. Any value from 0 to the nominal power (e.g. from 0 to 1 MW) is possible as a setpoint.
  • This data input can be used directly for power limitation.
  • the generator output can also be regulated with the help of a regulator depending on the mains voltage (in the wind farm network or in the feed-in network).
  • a wind farm consists of 10 wind turbines, each of which has a nominal output of 600 kW. Due to the capacities of the network components (line capacities) or the limited capacities in the substation, it should also be assumed that the maximum output (limit output) is limited to 5200 kW.
  • Another possibility is to not allow the maximum output as the sum of all systems to be exceeded, but at the same time to generate a maximum of energy (kW-hours (work)).
  • the wind farm power control regulates the individual plants in such a way that the maximum possible energy yield is obtained.
  • the nominal power e.g. B.
  • parking control regulates each individual system in such a way that the maximum permitted electrical connected load is not exceeded, while at the same time the work generated (kWh) reaches a maximum value.
  • the wind farm management system according to the invention can easily be adapted to the respective situations that arise. For example, a different throttling of the performance of individual turbines can be carried out very easily if a single or several turbines in a wind farm have to be taken off the grid, be it for maintenance reasons or for other reasons that one or more turbines have to be temporarily shut down.
  • a data / control processing device can be used, which is connected to the data inputs of the systems and from the wind speed data which are determined (from each system) the most favorable power throttling value for an individual Plant or the entire wind farm determined.
  • FIG. 1 shows in a block diagram the control of a wind energy installation by means of a microprocessor ⁇ P, which is connected to an inverter device (PWR), by means of which multiphase alternating current can be fed into a supply network.
  • the microprocessor has a power input P, an input for entering a power factor (cos ⁇ ) and an input for entering the power gradient (dP / dt).
  • the inverter device consisting of a rectifier, a DC intermediate circuit and an inverter is connected to the generator of a wind power plant and receives from this the energy generated by the generator at variable speeds, ie. H. depending on the speed of the rotor of the wind turbine.
  • the concept shown in the figure serves to explain how the amount of power output by a wind energy installation can be limited to a maximum possible grid feed-in value.
  • FIG. 2 shows the basic illustration of a wind farm, consisting, by way of example, of three wind turbines 1, 2 and 3, of which — viewed from the wind direction — two stand side by side and the third is placed behind the first two. Because each of the individual wind turbines has a power input for adjustment of the performance of the respective system (FIG. 1), the performance of an individual wind energy system can be set to a desired value by means of a data processing device by means of which the entire wind farm is controlled.
  • the favorable locations of the wind energy plants are those that the wind hits first, that is, plants 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Soil Working Implements (AREA)
  • Control Of Eletrric Generators (AREA)
  • Harvester Elements (AREA)
  • Catching Or Destruction (AREA)
  • Transplanting Machines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines Windparks sowie auch einen Windpark als solchen. Verfahren zum Betrieb eines Windparks, bestehend aus wenigstens zwei Windenergieanlagen, wobei die von den Windenergieanlagen abgegebene Leistung in ihrem Betrag auf einen maximal möglichen Netzeinspeisewert begrenzt wird, welcher geringer ist als der maximal mögliche Wert der abzugebenen Leistung (Nennleistung) und daß der maximal mögliche Einspeisewert bestimmt ist durch die Aufnahmekapazität (Leitungskapazität) des Netzes, in welches die Energie eingespeist wird und/oder durch die Leistungskapazität der Energieübertragungseinheit bzw. des Transformators, mittels dem die von der Windenergieanlage erzeugte Energie in das Netz eingespeist wird.

Description

Verfahren zum Betrieb eines Windparks
Die Erfindung betrifft ein Verfahren zum Betrieb eines Windparks sowie auch einen Windpark als solchen.
Windenergieanlagen wurden zunächst immer singulär aufgestellt und erst in den letzten Jahren werden - verursacht auch durch Verwaltungs- und Bauvorschriften - Windenergieanlagen häufig in Windparks installiert. Ein Windpark ist hierbei in seiner kleinsten Einheit eine Anordnung von wenigstens zwei Windenergieanlagen, häufig aber deutlich mehr. Beispielhaft sei der Windpark Holtriem (Ostfriesland) genannt, wo mehr als 50 Windenergieanlagen in einem Verbund aufgestellt sind. Es ist zu erwarten, daß die Stückzahl als auch die installierte Leistung der Windenergieanlagen auch in den weiteren Jahren noch stark ansteigen wird. In den meisten Fällen ist das Windpotential in Bereichen der Versorgungsnetze mit kleiner Kurzschlußleistung und geringer Bevölkerungsdichte am größten. Gerade dort werden die technischen Anschlußgrenzen durch die Windenergieanlagen rasch erreicht mit der Folge, daß an solchen Standorten dann keine weiteren Windenergieanlagen mehr aufgestellt werden können. Ein konventioneller Windpark, der beispielsweise an ein Umspannwerk mit 50 MW angeschlossen wird, kann daher maximal nur 50 MW Gesamtleistung haben, d.h. z.B. 50 Windenergieanlagen mit jeweils 1 MW Nennleistung.
Eingedenk dessen, daß die Windenergieanlagen nicht ständig im Nennbetrieb betrieben werden und somit der gesamte Windpark auch nicht ständig seine maximale Leistung (Nennleistung) erreicht, kann man feststellen, daß der Windpark nicht optimal ausgenutzt wird, wenn die Nennleistung des Windparks der maximal möglichen einzuspeisenden Gesamtleistung entspricht.
Die Erfindung schlägt demgemäß eine Lösung vor, bei der der Windpark mit einer Gesamtleistung ausgestattet wird, die höher ist als die maximal mögliche Netzeinspeiseleistung. Auf das vorgenannte Beispiel übertragen, kann die Leistung auf einen Wert von über 50 MW, z. B 53 MW angehoben werden. Sobald die Windgeschwindigkeiten hoch genug sind, um die Grenzleistung von 50 MW zu erzeugen, greift die erfindungsgemäße Windparkregelung ein und regelt einzelne oder alle Anlagen bei Überschreitung der Gesamt-Maximalleistung derart ab, daß diese immer eingehalten wird. Dies bedeutet, daß bei Windgeschwindigkeiten über Nennwind (Windgeschwindigkeit, bei der eine Windenergieanlage ihre Nennleistung erreicht) wenigstens eine oder alle Anlagen mit einer (leicht) gedrosselten Leistung betrieben werden (beispielsweise mit einer Leistung von 940 kW anstatt von 1 MW) .
Die Vorteile der Erfindung liegen auf der Hand. Insgesamt können die Netzkomponenten des Einspeisenetzes (Netzkomponenten sind z. B der Transformator und die Leitungen) optimal ausgenutzt bzw. ausgelastet werden (es ist auch eine Ausnutzung bis zur thermischen Grenze möglich). Somit können vorhandene Windparkflächen besser ausgenutzt werden durch die Aufstellung einer maximal möglichen Anzahl von Windenergieanlagen. Die Anzahl ist dann nicht mehr (so stark) durch die vorhandene Netzwerkkapazität begrenzt.
Zur Steuerung/Regelung einer Windenergieanlage ist es zweckmäßig, wenn diese über einen Dateneingang verfügt, mittels/über den die elektrische Leistung in einem Bereich von 0 bis 100% (bezogen auf die Nennleistung) eingestellt werden kann. Wird an diesen Dateneingang z. B ein Sollwert von 350 kW angelegt, so wird die maximale Leistung dieser Windenergieanlage den Sollwert von 350 kW nicht überschreiten. Jeder Wert von 0 bis zur Nennleistung (z. B. von 0 bis 1 MW) ist als Sollwert möglich. Dieser Dateneingang kann direkt zur Leistungsbegrenzung benutzt werden.
Es kann aber auch mit Hilfe eines Reglers die Generatorleistung in Abhängigkeit der Netzspannung (im Windparknetz oder im Einspeisenetz) geregelt werden.
Eine weitere wichtige Funktion wird im folgenden anhand einer Windparkregelung erläutert. Es sei beispielsweise angenommen, daß ein Windpark aus 10 Windenergieanlagen besteht, die jeweils über eine Nennleistung von 600 kW verfügen. Aufgrund der Kapazitäten der Netzkomponenten (Leitungskapazitäten) oder der begrenzten Kapazitäten im Umspannwerk sei ferner angenommen, daß die maximal abzugebende Leistung (Grenzleistung) auf 5200 kW begrenzt ist.
Es gibt nun die Möglichkeit, alle Windenergieanlagen auf eine Maximalleistung von 520 kW mit Hilfe des Sollwertes (Dateneingang) zu begrenzen. Damit ist die Forderung zur Begrenzung der abzugebenden Leistung stets erfüllt.
Eine andere Möglichkeit besteht darin, die maximale Leistung als Summe aller Anlagen nicht überschreiten zu lassen, gleichzeitig aber ein Maximum an Energie (kW-Stunden (Arbeit)) zu erzeugen.
Hierzu sollte man wissen, daß bei geringen bis mäßigen Windgeschwindigkeiten innerhalb des Windparks es häufig vorkommt, daß die Windenergieanlagen an den günstigen (guten) Standorten (das sind die Standorte, auf die der Wind innerhalb des Windparks zuerst trifft) viel Wind bekommen. Werden nun alle Windenergieanlagen gleichzeitig auf ihren gedrosselten Wert heruntergeregelt (z. B. alle auf 520 kW), wird diese erzeugte Leistung zwar von einigen an guten Standorten angeordneten Windenergieanlagen erreicht, einige andere Windenergieanlagen, die jedoch im "Windschatten" der gut lokalisierten Windenergieanlagen stehen (in der zweiten und dritten Reihe) haben weniger Wind und arbeiten dadurch z. B. nur mit 460 kW Leistung und erreichen nicht den Wert der maximal gedrosselten Leistung von 520 kW. Die erzeugte Gesamtleistung des Windparks liegt demgemäß also wesentlich unterhalb der erlaubten Grenzleistung von 5200 kW.
Die erfindungsgemäße Windparkleistungsregelung regelt in diesem Fall die einzelnen Anlagen so, daß der maximal mögliche Energieertrag sich einstellt. Das bedeutet konkret, daß z. B die Anlagen in der ersten Reihe (also an guten Standorten) auf eine höhere Leistung, z. B. auf die Nennleistung geregelt werden (also keine Drosselung). Somit steigt die gesamte elektrische Leistung im Windpark an. Die Parkregelung regelt jedoch jede einzelne Anlage so, daß die maximal erlaubte elektrische Anschlußleistung nicht überschritten wird, während gleichzeitig die erzeugte Arbeit (kWh) einen maximalen Wert erreicht.
Das erfindungsgemäße Windparkmanagement läßt sich leicht an die jeweiligen sich einstellenden Situationen anpassen. So kann beispielsweise sehr einfach eine andere Drosselung der Leistung einzelner Anlagen vorgenommen werden, wenn eine einzelne oder mehrere Anlagen eines Windparks vom Netz genommen werden (müssen), sei aus Wartungsgründen oder aus anderen Gründen eine einzelne oder mehrere Anlagen vorübergehend stillgelegt werden müssen.
Zur Steuerung/Regelung des Windparks bzw. der einzelnen Anlagen kann eine Daten/Steuerungsverarbeitungseinrichtung verwendet werden, welche mit den Dateneingängen der Anlagen verbunden ist und aus den Windgeschwindigkeitsdaten, die (von jeder Anlage) ermittelt werden, den jeweils günstigsten Leistungs- drosselungswert für eine einzelne Anlage bzw. den gesamten Windpark ermittelt.
Die Figur 1 zeigt im Blockschaltbild die Steuerung einer Windenergieanlage mittels eines Mikroprozessors μP, welcher mit einer Wechseirichtereinrichtung (PWR) verbunden ist, mittels welchem mehrphasiger Wechselstrom in ein Versorgungsnetz eingespeist werden kann. Der Mikroprozessor verfügt über einen Leistungseingabeeingang P, einen Eingang zur Eingabe eines Leistungsfaktors (cos φ) sowie einen Eingang zur Eingabe des Leistungsgradienten (dP/dt) .
Die Wechselrichtereinrichtung, bestehend aus einem Gleichrichter, einem Gleichstromzwischenkreis und einem Wechselrichter ist mit dem Generator einer Windenergieanlage verbunden und erhält von dieser die vom Generator erzeugte Energie drehzahlvariabel, d. h. in Anabhängigkeit der Drehzahl des Rotors der Windenergieanlage.
Die in der Figur dargestellte Konzeption dient zur Erläuterung, wie die von einer Windenergieanlage abgegebene Leistung in ihrem Betrag auf einen maximal möglichen Netzeinspeisewert begrenzt werden kann.
Die Figur 2 zeigt die Prinzipdarstellung eines Windparks, bestehend aus beispielhaft drei Windenergieanlagen 1 , 2 und 3, von denen - aus der Windrichtung betrachtet - zwei nebeneinander stehen und die dritte hinter den ersten beiden platziert ist. Da jeder der einzelnen Windenergieanlagen über einen Leistungseingang zur Einstellung der Leistung der jeweiligen Anlage verfügt (Fig. 1 ), kann mittels einer Datenverarbeitungseinrichtung mittels der der gesamte Windpark gesteuert wird jeweils die Leistungen einer einzelnen Windenergieanlage auf einen gewünschten Wert eingestellt werden. In der Figur 2 sind die günstigen Standorte der Windenergieanlagen diejenigen, auf die der Wind zuerst trifft, also die Anlage 1 und 2.

Claims

A n s p r ü c h e
1 . Verfahren zum Betrieb eines Windparks, bestehend aus wenigstens zwei Windenergieanlagen, wobei die von den Windenergieanlagen abgegebene Leistung in ihrem Betrag auf einen maximal möglichen Netzeinspeisewert begrenzt wird, welcher geringer ist als der maximal mögliche Wert der abzugebenen Leistung (Nennleistung) und daß der maximal mögliche Einspeisewert bestimmt ist durch die Aufnahmekapazität (Leitungskapazität) des Netzes, in welches die Energie eingespeist wird und/oder durch die Leistungskapazität der Energieübertragungseinheit bzw. des Transformators, mittels dem die von der Windenergieanlage erzeugte Energie in das Netz eingespeist wird.
2. Windpark mit einer Nennleistung, welche größer ist als die Leistung, welche in das Energieversorgungsnetz, an welches der Windpark angeschlossen ist, eingespeist werden kann/darf.
3. Windpark nach Anspruch 2, dadurch gekennzeichnet, daß die Leistung wenigstens einer oder mehrerer Windenergieaniagen oder aller Windenergieanlagen des Windparks gedrosselt wird, wenn der maximal mögliche Netzeinspeiseieistungswert erreicht wird.
4. Windpark nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Drosselung der Leistung für alle Windenergieanlagen gleich groß oder unterschiedlich ist.
5. Windpark nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens eine Windenergieanlage des Windparks über einen Dateneingang verfügt, mittels dem die elektrische Leistung der Windenergieanlage in einem Bereich von 0 bis 100% der jeweiligen Nennleistung eingestellt werden kann und daß eine Datenverarbeitungseinrichtung vorgesehen ist, welche mit dem Dateneingang verbunden ist und mittels welcher der Stellwert im Bereich von 0 bis 100% eingestellt wird, je nachdem wie groß die Leistung ist, die der gesamte Windpark an seinem Ausgang für die Einspeisung in ein Energienetz zur Verfügung stellt.
6. Windpark nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Windenergieanlagen, die dem Wind innerhalb des Windparks zuerst ausgesetzt sind, in ihrer Leistung weniger begrenzt werden als Windenergieanlagen, die in Windrichtung hinter den vorgenannten Windenergieanlagen stehen.
PCT/EP2000/006493 1999-10-06 2000-07-08 Verfahren zum betrieb eines windparks WO2001025630A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2001528337A JP4195220B2 (ja) 1999-10-06 2000-07-08 風力発電施設およびその運転方法
DE50002611T DE50002611D1 (de) 1999-10-06 2000-07-08 Verfahren zum betrieb eines windparks
DK00954452.9T DK1222389T4 (en) 1999-10-06 2000-07-08 Method for operating a wind farm
ES00954452T ES2197112T5 (es) 1999-10-06 2000-07-08 Procedimiento para el funcionamiento de un parque eólico
EP00954452.9A EP1222389B2 (de) 1999-10-06 2000-07-08 Verfahren zum betrieb eines windparks
CA002388509A CA2388509C (en) 1999-10-06 2000-07-08 Method for operating a wind farm
AT00954452T ATE243301T1 (de) 1999-10-06 2000-07-08 Verfahren zum betrieb eines windparks
US10/089,812 US6724097B1 (en) 1999-10-06 2000-07-08 Method for operating a wind farm
AU66904/00A AU6690400A (en) 1999-10-06 2000-07-08 Method for operating a wind farm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19948196.2 1999-10-06
DE19948196A DE19948196A1 (de) 1999-10-06 1999-10-06 Verfahren zum Betrieb eines Windparks

Publications (1)

Publication Number Publication Date
WO2001025630A1 true WO2001025630A1 (de) 2001-04-12

Family

ID=7924736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/006493 WO2001025630A1 (de) 1999-10-06 2000-07-08 Verfahren zum betrieb eines windparks

Country Status (12)

Country Link
US (1) US6724097B1 (de)
EP (1) EP1222389B2 (de)
JP (1) JP4195220B2 (de)
KR (1) KR100735581B1 (de)
AT (1) ATE243301T1 (de)
AU (1) AU6690400A (de)
CA (1) CA2388509C (de)
DE (3) DE19948196A1 (de)
DK (1) DK1222389T4 (de)
ES (1) ES2197112T5 (de)
PT (1) PT1222389E (de)
WO (1) WO2001025630A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086315A1 (de) * 2001-04-24 2002-10-31 Aloys Wobben Verfahren zum betreiben einer windenergieanlage
WO2002086314A1 (de) * 2001-04-20 2002-10-31 Aloys Wobben Verfahren zum betrieben einer windenergieanlage
WO2003030329A1 (de) * 2001-09-28 2003-04-10 Aloys Wobben Verfahren zum betrieb eines windparks
EP1571746A1 (de) * 2004-03-05 2005-09-07 Gamesa Eolica, S.A. (Sociedad Unipersonal) Wirkleistungsregelungssystem eines Windparks
WO2007006565A2 (de) * 2005-07-13 2007-01-18 Repower Systems Ag Leistungsregelung eines windparks
WO2008125163A1 (de) * 2007-04-13 2008-10-23 Repower Systems Ag Verfahren zum betreiben einer windenergieanlage bei überspannungen im netz
US7462946B2 (en) 2001-04-20 2008-12-09 Aloys Wobben Method for operating a wind energy plant
US7649282B2 (en) 2006-07-13 2010-01-19 Nordex Energy Gmbh Wind park and method for the operation of a wind park
WO2013041192A3 (de) * 2011-09-22 2013-08-15 Repower Systems Se Verfahren zum betrieb einer windenergieanlage
EP2093420A3 (de) * 2008-02-21 2013-10-30 General Electric Company System zum Verbessern der Leistung von leistungsbegrenzter Windenergieanlage
US8793027B2 (en) 2008-06-30 2014-07-29 Vestas Wind Systems A/S Power curtailment of wind turbines
CN104242355A (zh) * 2014-09-19 2014-12-24 清华大学 考虑最小弃风的风电场接入电网的位置和容量的控制方法
EP1416604B1 (de) * 2002-10-31 2016-06-29 Siemens Aktiengesellschaft Elektrische Schaltung für einen angetriebenen Generator mit segmentiertem Stator
EP1467463B1 (de) 2003-04-09 2016-12-21 General Electric Company Windpark und Verfahren zum Betrieb des Windparks
US9556852B2 (en) 2012-09-17 2017-01-31 Vestas Wind Systems A/S Method of determining individual set points in a power plant controller, and a power plant controller

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756777B4 (de) * 1997-12-19 2005-07-21 Wobben, Aloys, Dipl.-Ing. Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
DE10109553B4 (de) * 2001-02-28 2006-03-30 Wobben, Aloys, Dipl.-Ing. Luftdichteabhängige Leistungsregelung
DE10138399A1 (de) * 2001-08-04 2003-02-27 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
DE10145347A1 (de) * 2001-09-14 2003-04-03 Abb Research Ltd Windparkanlage
DE10145346A1 (de) * 2001-09-14 2003-04-03 Abb Research Ltd Windparkanlage
ES2329019T3 (es) * 2001-09-28 2009-11-20 Vestas Wind Systems A/S Metodo y sistema de ordenador para gestionar datos de funcionamiento de plantas de energia eolica.
NL1021078C1 (nl) * 2002-07-15 2004-01-16 Energieonderzoek Ct Petten Ecn Werkwijze en inrichting betreffende stromingsenergie zoals een windturbinepark.
DE10320087B4 (de) 2003-05-05 2005-04-28 Aloys Wobben Verfahren zum Betreiben eines Windparks
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
TWM279734U (en) * 2004-10-22 2005-11-01 Jr-Feng Chen Multi-direction wind-bearing generator
JP4495001B2 (ja) 2005-02-17 2010-06-30 三菱重工業株式会社 発電システム
JP4631054B2 (ja) * 2005-07-28 2011-02-16 国立大学法人 琉球大学 ウインドファームにおける発電電力平準化装置および方法
EP1770277A1 (de) * 2005-09-30 2007-04-04 General Electric Company Verfahren zur Regelung einer Windenergieanlage eines Windparks
DE102006021982C5 (de) * 2006-05-10 2010-10-07 Repower Systems Ag Gestaffelt abschaltbarer Windpark
US8648481B2 (en) 2006-06-10 2014-02-11 Star Sailor Energy, Inc. Wind generator with energy enhancer element for providing energy at no wind and low wind conditions
US7880323B2 (en) * 2006-06-10 2011-02-01 Menges Pamela A Wind generator system
US11644010B1 (en) 2006-06-10 2023-05-09 Star Sailor Energy, Inc. Energy storage system
DE102007018888A1 (de) * 2007-04-19 2008-10-30 Repower Systems Ag Windenergieanlage mit Blindleistungsvorgabe
DK200700630A (da) * 2007-04-27 2008-05-10 Lm Glasfiber As Design af gruppe af vindenergianlæg
DK200700626A (da) * 2007-04-27 2008-05-10 Lm Glasfiber As Effektkurve af vindenergianlæg til energinet
DE102007036444A1 (de) 2007-08-02 2009-02-05 Nordex Energy Gmbh Windpark mit einer Vielzahl von Windenergieanlagen sowie Verfahren zum Betreiben des Windparks
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
KR101158703B1 (ko) * 2007-12-14 2012-06-25 미츠비시 쥬고교 가부시키가이샤 풍력 발전 시스템 및 그 운전 제어 방법
EP2221958A4 (de) * 2007-12-14 2015-09-02 Mitsubishi Heavy Ind Ltd Windstromerzeugungssystem und betriebssteuerverfahren dafür
JP4865869B2 (ja) 2007-12-14 2012-02-01 三菱重工業株式会社 風力発電システム及びその運転制御方法
US8134250B1 (en) 2008-01-14 2012-03-13 Menges Pamela A Wind generator system suitable for both small and big wind applications
DE102008007448A1 (de) * 2008-02-01 2009-08-13 Woodward Seg Gmbh & Co. Kg Verfahren zum Betreiben einer Windenergieanlage
US7999406B2 (en) * 2008-02-29 2011-08-16 General Electric Company Wind turbine plant high wind derating control
US20090295231A1 (en) * 2008-05-30 2009-12-03 Gaffney Shawn J Intelligent Power Collection Network
ES2480590T3 (es) * 2008-08-12 2014-07-28 Ingeteam Power Technology, S.A. Sistema y método para la gestión de potencia en una instalación fotovoltaica
CN102144345B (zh) * 2008-09-30 2013-10-16 日本碍子株式会社 互联系统的控制方法
CN101749183B (zh) * 2008-12-12 2011-12-14 财团法人工业技术研究院 风电场控制系统及风电场
EP2284392B2 (de) * 2009-06-03 2019-09-25 Vestas Wind Systems A/S Windkraftanlage, Windkraftanlagensteuerung und Verfahren zur Steuerung einer Windkraftanlage
KR100946347B1 (ko) 2009-10-12 2010-03-08 김세빈 환체방사형 터빈블레이드 풍력발전 시스템
EP2494671B1 (de) 2009-10-27 2020-08-12 Vestas Wind Systems A/S Windenergieanlage mit optimaler nennleistung
BRPI1004895A2 (pt) * 2010-05-28 2017-01-17 Mitsubishi Heavy Ind Ltd aparelho e método de monitoramento e controle e usina de energia eólica equipada com os mesmos.
GB2484266A (en) 2010-09-30 2012-04-11 Vestas Wind Sys As Over-rating control of a wind turbine power plant
GB2491548A (en) 2010-09-30 2012-12-12 Vestas Wind Sys As Over-rating control of a wind turbine power plant
ES2698397T3 (es) * 2011-02-01 2019-02-04 Siemens Ag Desincronización activa de convertidores de conmutación
US10495060B2 (en) * 2011-05-27 2019-12-03 Seawind Ocean Technology Holding Bv Wind turbine control system having a thrust sensor
US8964435B2 (en) 2011-09-26 2015-02-24 General Electric Company Methods and systems for operating a power converter
DK201170539A (en) 2011-09-30 2013-03-31 Vestas Wind Sys As Control of wind turbines
US9201410B2 (en) 2011-12-23 2015-12-01 General Electric Company Methods and systems for optimizing farm-level metrics in a wind farm
CN102971527A (zh) * 2012-02-24 2013-03-13 三菱重工业株式会社 风力发电系统及其控制方法
DE102012013896A1 (de) 2012-07-13 2014-01-16 E.N.O. Energy Systems Gmbh Windenergieanlage
US8860237B2 (en) 2012-10-15 2014-10-14 General Electric Company System and method of selecting wind turbine generators in a wind park for curtailment of output power to provide a wind reserve
US8912674B2 (en) 2012-10-15 2014-12-16 General Electric Company System and method of selecting wind turbine generators in a wind park for change of output power
US11035342B2 (en) * 2012-10-31 2021-06-15 Hispavista Labs, A.I.E. Method for calculating and correcting the angle of attack in a wind turbine farm
US8941961B2 (en) 2013-03-14 2015-01-27 Boulder Wind Power, Inc. Methods and apparatus for protection in a multi-phase machine
US9453497B2 (en) * 2014-03-18 2016-09-27 General Electric Company Method for operating a wind farm
US9551322B2 (en) 2014-04-29 2017-01-24 General Electric Company Systems and methods for optimizing operation of a wind farm
KR101598051B1 (ko) * 2014-09-25 2016-02-26 한국전력공사 풍력발전단지의 출력 증발률 제어 시스템 및 방법
US10385829B2 (en) 2016-05-11 2019-08-20 General Electric Company System and method for validating optimization of a wind farm
US10865774B2 (en) * 2016-08-09 2020-12-15 Mhi Vestas Offshore A/S Wind turbine control method and system
DE102016123384A1 (de) * 2016-12-02 2018-06-07 Wobben Properties Gmbh Verfahren zum Wiederaufbau eines elektrischen Versorgungsnetzes
US11085415B1 (en) 2017-12-22 2021-08-10 Star Sailor Energy, Inc. Wind generator system having a biomimetic aerodynamic element for use in improving the efficiency of the system
DE102018129429A1 (de) 2018-11-22 2020-05-28 Wobben Properties Gmbh Einspeiseverfahren eines Windenergiesystems sowie Windenergiesystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751228A1 (de) * 1977-11-16 1979-05-17 Lawson Tancred H Sons & Co Sir Verfahren und vorrichtung zur stromerzeugung aus ungleichmaessig wirksamen energiequellen
EP0072598A1 (de) * 1981-08-14 1983-02-23 van den Berg, Hendrik Verfahren zum Abstimmen der elektrischen Energienachfrage mit der elektrischen Energielieferung sowie eine für diesen Zweck gebrauchte Schaltung
WO1990007823A1 (de) * 1988-12-23 1990-07-12 Elin Energieversorgung Gesellschaft M.B.H. Regelungs- und steuerungssystem für eine windkraftanlage
DE19620906A1 (de) * 1996-05-24 1998-01-08 Siemens Ag Windenergiepark

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514995A (en) * 1976-07-19 1978-06-21 Lawson Tancred H Windmill generation of electricity
GB2007926B (en) * 1977-10-27 1982-03-03 Westinghouse Electric Corp System for providing load-frequency control for multiple gas turbine-generator units
US4400659A (en) * 1980-05-30 1983-08-23 Benjamin Barron Methods and apparatus for maximizing and stabilizing electric power derived from wind driven source
WO1981003702A1 (en) 1980-06-19 1981-12-24 Boekels & Co H Method and device for the acoustic supervision of machines and/or plants
FR2486654A1 (fr) 1980-07-08 1982-01-15 Cgr Dispositif d'activation d'un appareil de mesure d'emission acoustique par detection du bruit de fond
IT1167547B (it) * 1981-07-07 1987-05-13 Snam Progetti Metodo di utilizzazione dell'energia eolica per la produzione autonoma di energia elettrica
US4996880A (en) 1989-03-23 1991-03-05 Electric Power Research Institute, Inc. Operating turbine resonant blade monitor
US5210704A (en) 1990-10-02 1993-05-11 Technology International Incorporated System for prognosis and diagnostics of failure and wearout monitoring and for prediction of life expectancy of helicopter gearboxes and other rotating equipment
US5845230A (en) 1996-01-30 1998-12-01 Skf Condition Monitoring Apparatus and method for the remote monitoring of machine condition
DE69814840D1 (de) * 1997-03-26 2003-06-26 Forskningsct Riso Roskilde Windturbine mit vorrichtung zur messung der windgeschwindigkeit
JP3724912B2 (ja) * 1997-04-25 2005-12-07 株式会社東芝 タービン最適負荷配分装置
CA2318386C (en) 1998-01-14 2008-10-21 Dancontrol Engineering A/S Method for measuring and controlling oscillations in a wind turbine
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2751228A1 (de) * 1977-11-16 1979-05-17 Lawson Tancred H Sons & Co Sir Verfahren und vorrichtung zur stromerzeugung aus ungleichmaessig wirksamen energiequellen
EP0072598A1 (de) * 1981-08-14 1983-02-23 van den Berg, Hendrik Verfahren zum Abstimmen der elektrischen Energienachfrage mit der elektrischen Energielieferung sowie eine für diesen Zweck gebrauchte Schaltung
WO1990007823A1 (de) * 1988-12-23 1990-07-12 Elin Energieversorgung Gesellschaft M.B.H. Regelungs- und steuerungssystem für eine windkraftanlage
DE19620906A1 (de) * 1996-05-24 1998-01-08 Siemens Ag Windenergiepark

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2256340A3 (de) * 2001-04-20 2014-03-12 Aloys Wobben Verfahren zum Betrieb einer Windenergieanlage
AU2005202210B2 (en) * 2001-04-20 2007-01-25 Aloys Wobben Method for operating a wind energy plant
AU2002319133B9 (en) * 2001-04-20 2005-03-24 Aloys Wobben Method for operating a wind energy plant
EP1489300A1 (de) * 2001-04-20 2004-12-22 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
AU2005202210C1 (en) * 2001-04-20 2009-09-17 Aloys Wobben Method for operating a wind energy plant
AU2002319133B2 (en) * 2001-04-20 2005-03-17 Aloys Wobben Method for operating a wind energy plant
US7462946B2 (en) 2001-04-20 2008-12-09 Aloys Wobben Method for operating a wind energy plant
CZ299154B6 (cs) * 2001-04-20 2008-05-07 Zpusob provozu zarízení vetrné elektrárny a zarízení vetrné elektrárny
CN100353055C (zh) * 2001-04-20 2007-12-05 阿洛伊斯·沃本 风力涡轮机及其工作方法
WO2002086314A1 (de) * 2001-04-20 2002-10-31 Aloys Wobben Verfahren zum betrieben einer windenergieanlage
US6965174B2 (en) 2001-04-24 2005-11-15 Aloys Wobben Method for operating a wind turbine
JP2010045969A (ja) * 2001-04-24 2010-02-25 Aloys Wobben 風力タービン及びその運転方法
EP1493921A1 (de) * 2001-04-24 2005-01-05 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
WO2002086315A1 (de) * 2001-04-24 2002-10-31 Aloys Wobben Verfahren zum betreiben einer windenergieanlage
NO342761B1 (no) * 2001-04-24 2018-08-06 Aloys Wobben Fremgangsmåte for drift av et vindkraftanlegg
WO2003030329A1 (de) * 2001-09-28 2003-04-10 Aloys Wobben Verfahren zum betrieb eines windparks
JP2013102684A (ja) * 2001-09-28 2013-05-23 Aloys Wobben ウインドパークの運転方法
EP2113980B1 (de) 2001-09-28 2016-02-24 Wobben Properties GmbH Verfahren zum Betrieb einer Windenergieanlage
US7830029B2 (en) 2001-09-28 2010-11-09 Aloys Wobben Method for operating a wind park
AU2002340927B2 (en) * 2001-09-28 2006-09-14 Aloys Wobben Method for operating a wind park
EP1433238B1 (de) 2001-09-28 2017-06-07 Wobben Properties GmbH Verfahren zum betrieb eines windparks
US7638893B2 (en) 2001-09-28 2009-12-29 Aloys Wobben Method for operating a wind park
EP2113980A2 (de) * 2001-09-28 2009-11-04 Aloys Wobben Verfahren zum Betrieb einer Windenergieanlage
EP2275674A3 (de) * 2001-09-28 2015-01-28 Aloys Wobben Verfahren zum Betrieb eines Windparks
US7392114B2 (en) 2001-09-28 2008-06-24 Aloys Wobben Method for operating a wind park
EP2113980A3 (de) * 2001-09-28 2013-05-22 Aloys Wobben Verfahren zum Betrieb einer Windenergieanlage
US8301313B2 (en) 2001-09-28 2012-10-30 Aloys Wobben Method of reducing power provided by a wind power installation based on network conditions
EP3032685A1 (de) * 2001-09-28 2016-06-15 Wobben Properties GmbH Verfahren zum betrieb einer windenergieanlage
JP2012041931A (ja) * 2001-09-28 2012-03-01 Aloys Wobben ウインドパークの運転方法
EP1416604B1 (de) * 2002-10-31 2016-06-29 Siemens Aktiengesellschaft Elektrische Schaltung für einen angetriebenen Generator mit segmentiertem Stator
EP1467463B1 (de) 2003-04-09 2016-12-21 General Electric Company Windpark und Verfahren zum Betrieb des Windparks
US8406934B2 (en) 2004-03-05 2013-03-26 Gamesa Innovation & Technology, S.L. System for regulating the active power of a wind farm
EP1571746A1 (de) * 2004-03-05 2005-09-07 Gamesa Eolica, S.A. (Sociedad Unipersonal) Wirkleistungsregelungssystem eines Windparks
WO2005085634A1 (es) * 2004-03-05 2005-09-15 Gamesa Eólica, S.A., Sociedad Unipersonal Sistema de regulación de potencia activa de un parque eólico
CN1997824B (zh) * 2004-03-05 2011-05-11 歌美飒创新技术公司 风力农场的有功功率调节系统
WO2007006565A3 (de) * 2005-07-13 2007-10-11 Repower Systems Ag Leistungsregelung eines windparks
CN101223359B (zh) * 2005-07-13 2013-06-19 再生动力系统股份公司 风电场的功率调节
US7989974B2 (en) 2005-07-13 2011-08-02 Repower Systems Ag Power control of a wind park
WO2007006565A2 (de) * 2005-07-13 2007-01-18 Repower Systems Ag Leistungsregelung eines windparks
US7649282B2 (en) 2006-07-13 2010-01-19 Nordex Energy Gmbh Wind park and method for the operation of a wind park
US8692419B2 (en) 2007-04-13 2014-04-08 Repower Systems Se Method for operating a wind power plant with excess voltage in the grid
WO2008125163A1 (de) * 2007-04-13 2008-10-23 Repower Systems Ag Verfahren zum betreiben einer windenergieanlage bei überspannungen im netz
EP2209205A1 (de) * 2007-04-13 2010-07-21 REpower Systems AG Verfahren zum Betreiben einer Windenergieanlage bei Überspannungen im Netz
EP2093420A3 (de) * 2008-02-21 2013-10-30 General Electric Company System zum Verbessern der Leistung von leistungsbegrenzter Windenergieanlage
US8793027B2 (en) 2008-06-30 2014-07-29 Vestas Wind Systems A/S Power curtailment of wind turbines
US10006437B2 (en) 2011-09-22 2018-06-26 Senvion Se Method for operating a wind power plant
WO2013041192A3 (de) * 2011-09-22 2013-08-15 Repower Systems Se Verfahren zum betrieb einer windenergieanlage
US9556852B2 (en) 2012-09-17 2017-01-31 Vestas Wind Systems A/S Method of determining individual set points in a power plant controller, and a power plant controller
CN104242355A (zh) * 2014-09-19 2014-12-24 清华大学 考虑最小弃风的风电场接入电网的位置和容量的控制方法

Also Published As

Publication number Publication date
DK1222389T4 (en) 2016-05-17
PT1222389E (pt) 2003-11-28
DE50002611D1 (de) 2003-07-24
DE20023134U1 (de) 2003-03-06
EP1222389A1 (de) 2002-07-17
CA2388509C (en) 2003-11-04
CA2388509A1 (en) 2001-04-12
EP1222389B1 (de) 2003-06-18
ATE243301T1 (de) 2003-07-15
US6724097B1 (en) 2004-04-20
DE19948196A1 (de) 2001-05-17
AU6690400A (en) 2001-05-10
KR20020043616A (ko) 2002-06-10
JP4195220B2 (ja) 2008-12-10
ES2197112T5 (es) 2016-05-23
JP2003511615A (ja) 2003-03-25
DK1222389T3 (da) 2003-10-06
ES2197112T3 (es) 2004-01-01
KR100735581B1 (ko) 2007-07-04
EP1222389B2 (de) 2016-03-02

Similar Documents

Publication Publication Date Title
EP1222389B2 (de) Verfahren zum betrieb eines windparks
EP1433238B2 (de) Verfahren zum betrieb eines windparks
EP1668245B1 (de) Windenergieanlage mit einem blindleistungsmodul zur netzstützung und verfahren dazu
AU2002319133B2 (en) Method for operating a wind energy plant
EP1164691B1 (de) Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
EP2614573B1 (de) Verfahren zur stabilisierung eines elektrischen versorgungsnetzes
WO2000077395A1 (de) Windenergieanlage mit schallpegelregelung
EP2206917A2 (de) Verfahren und Anordnung zum Überwachen einer Windenergieanlage
EP3536950A1 (de) Verfahren und system zum warten einer windenergieanlage aus einer gruppe von windenergieanlagen
EP3031113B1 (de) Verfahren zum steuern von windenergieanlagen
DE19926553B4 (de) Windparkbetrieb
EP1309063B1 (de) Anlage zur Einspeisung von Strom aus Gleichstromerzeugern in das Wechselstromnetz
EP3759338B1 (de) Kombiniertes kraftwerk und verfahren zum betrieb
WO2020249385A1 (de) Dual purpose converter
EP3682522B1 (de) Verfahren zum betreiben eines energiespeichers
EP3046204A1 (de) Windenergieanlage
WO2020011675A1 (de) Verfahren zum steuern einer einspeiseanordnung
DE102010000837A1 (de) Verfahren zur Verminderung der Komplexität von Windenergieanlagen im Windparkverbund und Anordnung eines Windparks

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000954452

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 528337

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2388509

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027004427

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027004427

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10089812

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000954452

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000954452

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020027004427

Country of ref document: KR