WO2000073395A1 - Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung - Google Patents

Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung Download PDF

Info

Publication number
WO2000073395A1
WO2000073395A1 PCT/EP2000/004807 EP0004807W WO0073395A1 WO 2000073395 A1 WO2000073395 A1 WO 2000073395A1 EP 0004807 W EP0004807 W EP 0004807W WO 0073395 A1 WO0073395 A1 WO 0073395A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating material
material according
groups
actinic radiation
thermally
Prior art date
Application number
PCT/EP2000/004807
Other languages
English (en)
French (fr)
Inventor
Uwe Meisenburg
Heinz-Peter Rink
Karl-Heinz Joost
Hubert Baumgart
Original Assignee
Basf Coatings Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Coatings Ag filed Critical Basf Coatings Ag
Priority to DE50003129T priority Critical patent/DE50003129D1/de
Priority to BR0011059A priority patent/BR0011059A/pt
Priority to JP2001500714A priority patent/JP2003501512A/ja
Priority to US09/926,532 priority patent/US6716891B1/en
Priority to EP20000929556 priority patent/EP1190004B1/de
Publication of WO2000073395A1 publication Critical patent/WO2000073395A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31794Of cross-linked polyester
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a new coating material which is curable thermally and with actinic radiation.
  • the present invention relates to the use of the new coating material for the production of new clearcoat and coloring and / or effect-giving multi-layer coatings for automotive initial and refinishing, industrial painting, including coil coating and container coating, plastic coating and furniture coating.
  • the clear coat can be used as the sole coat of paint or form the top layer of a multi-layer top coat.
  • IC One-component
  • 2K two-component
  • 3K, 4K multicomponent clearcoats
  • Powder clearcoats are known, for example, from German patent DE 4222 194 AI or the product information from the company BASF Lacke + Wegner AG, "Powder Coatings", 1990.
  • a powder coating which is curable thermally and with actinic radiation is known from the European patent EP 0 844 286 AI. It contains an unsaturated binder and a second resin that can be copolymerized with it, as well as a photoinitiator and a thermal initiator, and is thus curable thermally and with actinic radiation.
  • this dual-cure powder coating is used as a pigmented topcoat, which is thermally cured on the surface with UV light and in the areas close to the substrate. It is not clear from the patent whether this known powder coating is also suitable for the production of clear coating layers, particularly in multi-layer coatings.
  • Powder slurry coatings are powder coatings in the form of aqueous dispersions. Such slurries are described, for example, in US Pat. No. 4,268,542 and German patent applications DE 195 18 392.4 AI and DE 196 13 547 AI and the unpublished German patent application DE 198 14 471.7 AI.
  • UV-curable clearcoats are known, for example, from the patents EP 0 540 884 AI, EP 0 568 967 AI or US 4,675,234.
  • EP 0 568 967 A1 discloses a process for the production of multi-layer coatings, in which a thermally curable clear coat is applied to a pigmented base coat by the wet-on-wet process, after which the two layers are cured together in the heat. Then at least one further clear lacquer layer based on coating materials curable with actinic radiation is applied to the hardened clear lacquer layer and thermally hardened with actinic radiation or with actinic radiation.
  • This process provides clear lacquer coatings of high chemical resistance and optical quality. However, the scratch resistance is not satisfactory.
  • EP 0 568 967 A1 also discloses a process in which a coating material curable with actinic radiation is applied to the pigmented basecoat layer and cured. Another layer of the same coating material is then applied and hardened with actinic radiation. The result is a high-gloss surface without any noticeable structure, but the clear coat in question yellows. The scratch resistance also leaves something to be desired.
  • (al2) at least one functional group which can undergo thermal crosslinking reactions with the hydroxyl and / or thiol groups (a21) in component (a2),
  • (a2) at least one branched, cyclic and / or acyclic C 9 -C 16 alkane which is functionalized with at least two hydroxyl or thiol groups or at least one hydroxyl and at least one thiol group (a21).
  • coating material curable thermally and with actinic radiation
  • the branched, cyclic and / or acyclic C -Ci6 alkanes (a2) to be used according to the invention which are functionalized with at least two hydroxyl or thiol groups or at least one hydroxyl and at least one thiol group, for the sake of brevity as functionalized alkanes (a2) ".
  • the new clearcoats and color and / or effect multi-layer coatings were found, which can be produced with the aid of the coating material of the invention.
  • thermal hardening means the heat-initiated hardening of a lacquer layer made of a coating material, in which a crosslinking agent that is usually present is used. Usually this is referred to by experts as external crosslinking. Are the crosslinking agents already in the binders built-in, one speaks of self-crosslinking, according to the invention the external crosslinking is advantageous and is therefore preferred.
  • actinic radiation is understood to mean electron radiation or preferably UV radiation. Curing by UV radiation is usually initiated by free-radical or cationic photoinitiators and, according to its mechanism, is free-radical or cationic photopolymerization.
  • the use of the coating material of the invention results in clear coats and multi-coat coats according to the invention which, when baked, show no decomposition of constituents and which are not only scratch-resistant, weather-resistant, resistant to yellowing, hard, flexible and free from surface defects, are high on all substrates Have adhesion and can be produced in the high layer thickness necessary for an excellent overall optical impression, but also have an extraordinarily high reflow.
  • the coating material of the invention contains at least one component (al) with at least two functional groups (al l), which are used for crosslinking with actinic radiation.
  • suitable functional groups (A1) are epoxy groups or olefinically unsaturated double bonds, as are present in vinyl, allyl, cinnamoyl, methacrylic or acrylic groups, in particular methacrylic or acrylic groups.
  • the epoxy groups are used for cationic photopolymerization, whereas the olefinically unsaturated double bonds are mainly used for radical photopolymerization.
  • the constituent (a1) can contain epoxy groups and olefinic double bonds, so that it can be subjected to crosslinking with actinic radiation by both mechanisms. However, it is advantageous to use only olefinically unsaturated double bonds of the type mentioned as functional groups (al 1).
  • constituent (al) to be used according to the invention contains at least one, preferably at least two functional groups (al2) which correspond to the hydroxyl and / or thiol groups (a21) below Component (a2) described can undergo thermal crosslinking reactions.
  • radicals R mean aliphatic, cycloaliphatic, aromatic, aliphatic-cycloaliphatic, aliphatic-aromatic or cycloaliphatic-aromatic organic groups which are optionally substituted and / or contain heteroatoms such as oxygen, nitrogen and / or sulfur.
  • groups (a21) is based on the one hand on the fact that they do not undergo any undesirable reactions initiated by actinic radiation or on the other hand they must not interfere with or inhibit curing with actinic radiation, and on the other hand in which temperature range the thermal curing should take place.
  • a temperature range which does not exceed 100 ° C., in particular 80 ° C.
  • isocyanate groups (al2) have proven to be advantageous, which is why they are preferably used according to the invention.
  • the particularly advantageous constituent (al) is an oligomeric or polymeric compound curable with actinic radiation or thermally curable, which has at least one, preferably at least two and in particular at least three isocyanate group (s) (al2) and at least two and in particular at least three Contains (meth) acrylic groups (al 1).
  • an oligomeric compound is understood to mean a compound which generally has an average of 2 to 15 repeating basic structures or monomer units.
  • a polymeric compound is understood to mean a compound which generally has on average at least 10 repeating basic structures or monomer units. Compounds of this type are also referred to by experts as binders or resins.
  • a low-molecular compound is understood to mean a compound which is essentially derived only from a basic structure or a monomer unit.
  • Compounds of this type are generally referred to by the experts as reactive thinners.
  • the polymers or oligomers used as component (a1) usually have a number average molecular weight of 500 to 50,000, preferably 1,000 to 5,000. They preferably have a double bond equivalent weight of 400 to 2,000, particularly preferably 500 to 900. In addition, they preferably have a viscosity of 250 to 11,000 mPas at 23 ° C. They are preferably used in an amount of 5 to 90% by weight, particularly preferably 10 to 80% by weight and in particular 15 to 70% by weight, in each case based on the total amount of the coating material.
  • suitable constituents (al) come from the oligomer and / or polymer classes of the linear or branched, in particular the branched (mem) acyl-functional (meth) acrylic copolymers, polyether acrylates,
  • Polyester acrylates unsaturated polyesters, epoxy acrylates, urethane acrylates, amino acrylates, melamine acrylates, silicone acrylates and the corresponding methacrylates. It is preferred to use binders (A1) which are free from aromatic structural units.
  • Urethane (meth) acrylates are preferred and / or polyester (meth) acrylates, particularly preferably urethane (meth) acrylates, very particularly preferably aliphatic urethane (meth) acrylates and in particular urethane acrylates.
  • the urethane (meth) acrylates (al) are obtained by reacting a diisocyanate and or polyisocyanate, in particular a polyisocyanate, with a chain extender from the group of the diols / polyols and / or diamines / polyamines and or dithiols / polythiols and / or alkanolamines and subsequent Reaction of part of the free isocyanate groups with at least one hydroxyalkyl (meth) acrylate, especially a hydroxyalkyl acrylate.
  • hydroxyalkyl esters of other ethylenically unsaturated carboxylic acids such as ethacrylic acid or itaconic acid can also be used.
  • chain extender di- and / or polyisocyanate and hydroxyalkyl ester are preferably chosen so that
  • the equivalent ratio of the NCO groups to the reactive groups of the chain extender is between 20: 1 and 2: 1, preferably between 15: 1 and 5: 1, and
  • the OH groups of the hydroxyalkyl esters of the ethylenically unsaturated carboxylic acids are present in substoichiometric amounts with respect to the free isocyanate groups of the prepolymer of isocyanate and chain extender.
  • the urethane (meth) acrylates (al) by first reacting some of the isocyanate groups of a polyisocyanate with at least one hydroxyalkyl ester and then reacting some of the remaining isocyanate groups with a chain extender.
  • the amounts of chain extender, isocyanate and hydroxyalkyl ester are chosen so that the equivalent ratio of the NCO groups to the reactive groups of the chain extender is between 20: 1 and 2: 1, preferably between 15: 1 and 5: 1 and the equivalent ratio of the remaining NCO groups to the OH groups of the hydroxyalkyl ester is more than 1.
  • the urethane (meth) acrylate (al) contains on average at least one, preferably at least two, isocyanate group (s) (al2). Particular advantages result if an average of more than two, very particularly preferably more than three, isocyanate groups (al2) are present.
  • the number of isocyanate groups (al2) per need not exceed six on average in order to achieve the advantages according to the invention. In special cases, however, more than six isocyanate groups (al2) per urethane (meth) acrylate (al) have proven to be advantageous.
  • component (al) in particular urethane (meth) acrylate (al), has an isocyanate group (al2) content of 7 to 20% by weight, particularly preferably 8 to 18% by weight and in particular 9 up to 16% by weight, based in each case on the component (al).
  • Suitable di- and / or polyisocyanates are the following in the
  • Crosslinking agent (a7) described.
  • component (al) in particular urethane (meth) acrylate (al)
  • polyisocyanurates containing isocyanurate groups are particularly advantageous and are therefore used with particular preference.
  • the coating material of the invention further contains the functionalized alkanes (a2).
  • the functionalized alkanes (a2) are derived from branched, cyclic or acyclic alkanes with 9 to 16 carbon atoms, which each form the basic structure.
  • alkanes of this type with 9 carbon atoms examples include 2-methyloctane, 4-methyloctane, 2,3-dimethyl-heptane, 3,4-dimethyl-heptane, 2,6-dimethyl-heptane, 3,5-dimethyl-heptane, 2 -Methyl-4-ethylhexane or isopropylcyclohexane.
  • alkanes of this type with 10 carbon atoms are 4-ethyloctane, 2,3,4,5-tetramethyl-hexane, 2,3-diethyl-hexane or l-methyl-2-n-propyl-cyclohexane.
  • alkanes of this type with 11 carbon atoms examples include 2,4,5,6-tetramethyl-heptane or 3-methyl-6-ethyl-octane.
  • alkanes of this type with 12 carbon atoms are 4-methyl-7-ethyl-nonane, 4,5-diethyl-octane, l'-ethyl-butyl-cyclohexane, 3,5-diethyl-octane or 2,4-diethyl- octane.
  • alkanes of this type with 13 carbon atoms are 3,4-dimethyl-5-ethyl-nonane or 4,6-dimethyl-5-ethyl-nonane.
  • An example of a suitable alkane of this type with 14 carbon atoms is 3,4-dimethyl-7-ethyl-decane.
  • Examples of suitable alkanes of this type with 15 carbon atoms are 3,6-diethyl-undecane or 3,6-dimethyl-9-ethyl-undecane.
  • alkanes of this type with 16 carbon atoms are 3,7-diethyl-dodecane or 4-ethyl-6-isopropyl-undecane.
  • alkanes with 10 to 14 and in particular 12 carbon atoms are particularly advantageous and are therefore used with preference.
  • the octane derivatives are particularly advantageous.
  • the functionalized alkanes (a2) which are derived from these branched, cyclic or acyclic alkanes as basic structures, are liquid at room temperature. Either individual liquid .functionalized alkanes (a2) or liquid mixtures of these compounds can thus be used. This is particularly the case when functionalized alkanes (a2) are used which are solid as individual compounds due to their high number of carbon atoms in the alkane backbone. The person skilled in the art can therefore select the corresponding functionalized alkanes (a2) in a simple manner.
  • the functionalized alkanes (a2) have a boiling point above 200, preferably 220 and in particular 240 ° C. In addition, they are said to have a low evaporation rate.
  • the functionalized alkanes (a2) are acycic.
  • the functionalized alkanes (a2) have primary and / or secondary hydroxyl and / or thiol groups.
  • the coating materials of the invention it is advantageous if there are primary and secondary groups of this type in a connection.
  • the functionalized alkanes (a2) are therefore polyols, polythiols or polyol-polythiols (a2), but in particular polyols (a2). These compounds can be used individually or together as mixtures. There are particular advantages if the polyols (a2) are diols and / or triols, but in particular diols. They are therefore used with particular preference.
  • the functionalized alkanes (a2) described above are compounds known per se and can be prepared using customary and known synthetic methods of organic chemistry, such as base-catalyzed aldol condensation, or they are obtained as by-products of large-scale chemical syntheses, such as the preparation of 2-ethylhexanol.
  • the functionalized alkanes (a2) are generally present in the coating materials of the invention in an amount of 5 to 60% by weight, based on the total amount of the coating material in question. Although they can be contained here in larger amounts, this is an advantageous range within which the advantages according to the invention are achieved safely and reliably. Within this range, that of 10 to 50% by weight is particularly advantageous because the coating materials according to the invention, which contain this amount of functionalized alkanes (a2), have a particularly advantageous profile of properties. All However, particular advantages result from the use of 15 to 40% by weight of functionalized alkanes (a2).
  • the ratio of isocyanate groups (al2) to the isocyanate-reactive groups (a21) can vary widely in the coating material of the invention. It depends in particular on which technical effects are to be achieved with regard to the clear coating and multi-layer coating according to the invention. According to the invention, it is advantageous if the ratio (al2) / (a21) is between 2: 1 and 1: 2, particularly preferably 1.5: 1 and 1: 1.5.
  • the coating material to be used according to the invention can contain at least one photoinitiator (a3). If the coating material or the clear lacquer layer is to be crosslinked with UV radiation, the use of a photoinitiator (a3) is generally necessary. If they are also used, they are preferably present in the coating material in proportions of 0.1 to 10% by weight, 1 to 8% by weight and in particular 2 to 6% by weight, in each case based on the total amount of the coating material .
  • Suitable photoinitiators (a3) are those of the Norrish II type whose mechanism of action is based on an intramolecular variant of the hydrogen
  • Benzoin ether or phosphine oxides There can also be, for example, those commercially available under the names Irgacure® 184, Irgacure® 1800 and Irgacure® 500 from the company
  • Ciba Geigy Grenocure® MBF from Rann and Lucirin® TPO from BASF AG can be used.
  • conventional sensitizers (a3) such as anthracene can be used in effective amounts.
  • the coating material can contain at least one initiator of the thermal crosslinking (a4). From 80 to 120 ° C, these form radicals that start the crosslinking reaction. Examples of thermolabile radicals
  • Initiators are organic peroxides, organic azo compounds or C-C-cleaving initiators such as dialkyl peroxides, peroxocarboxylic acids,
  • C-C-cleaving initiators are particularly preferred, since during their thermal cleavage no gaseous decomposition products are formed which could lead to defects in the lacquer layer. If they are used, their amounts are generally between 0.1 and 10% by weight.
  • % preferably 0.5 to 8% by weight and in particular 1 to 5% by weight, in each case based on the total amount of the coating material.
  • the coating material can contain at least one reactive diluent (a5) curable with actinic radiation and / or thermally.
  • thermally crosslinkable reactive diluents (a5) are oligomeric polyols which can be obtained from oligomeric intermediates which are obtained by metathesis reactions of acyclic monoolefins and cyclic monoolefins by hydroformylation and subsequent hydrogenation;
  • suitable cyclic monoolefins are cyclobutene, cyclopentene, cyclohexene, cyclooctene, cycloheptene, norbones or 7-oxanorbones;
  • suitable acyclic monoolefins are contained in hydrocarbon mixtures which are obtained by cracking in petroleum processing (C 5 cut );
  • suitable oligomeric polyols to be used according to the invention have a hydroxyl number (OHZ) from 200 to 450, a number average molecular weight Mn from 400 to 1000 and a mass average molecular weight Mw from 600 to 1100;
  • reactive diluents can be prepared by the customary and known methods of producing hyperbranched and dendrimeric compounds. Suitable synthesis methods are described, for example, in the patent specifications WO 93/17060 or WO 96/12754 or in the book by GR Newkome, CN Moorefield and F. Vögtle, "Dendritic Molecules, Concepts, Syntheses, Perspectives", VCH, Weinheim, New York, 1996 , described.
  • Suitable reactive diluents (a5) are polycarbonate diols, polyester polyols, poly (meth) acrylate diols or polyadducts containing hydroxyl groups.
  • Suitable reactive solvents which can be used as reactive diluents (a5) are butyl glycol, 2-methoxypropanol, n-butanol, methoxybutanol, n-propanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol
  • Trimethylolpropane, 2-hydroxypropionic acid ethyl ester or 3-methyl-3-methoxybutanol as well as derivatives based on propylene glycol, e.g. Called ethoxyethyl propionate, isopropoxypropanol or methoxypropylacetate.
  • the reactive diluents (a5) which can be crosslinked with actinic radiation are, for example, (meth) acrylic acid and its esters, maleic acid and its esters or half esters, vinyl acetate, vinyl ether, vinyl ureas and the like. used.
  • examples include alkylene glycol di (meth) acrylate, Polyethylene glycol di (meth) acrylate, 1, 3-butanediol di (meth) acrylate,
  • the two acrylate groups can be separated by a polyoxibutylene structure.
  • Preferred reactive diluents (a5) are mono- and or diacrylates, such as e.g. Isobomylacrylate, hexanediol diacrylate, tripropylene glycol diacrylate, Laromer® 8887 from BASF AG xmd Actilane® 423 from Akcros Chemicals Ltd., GB. Isobomylacrylate, hexanediol diacrylate and tripropylene glycol diacrylate are particularly preferably used.
  • the reactive diluents (a5) are used in an amount of preferably 2 to 70% by weight, particularly preferably 10 to 65% by weight and in particular 15 to 50% by weight, in each case based on the total amount of Coating material applied.
  • the coating material can contain at least one customary and known paint additive (a6) in effective amounts, ie in amounts preferably up to 40% by weight, particularly preferably up to 30% by weight and in particular up to 20 wt .-%, each based on the total amount of the coating material.
  • a6 customary and known paint additive
  • UV absorber
  • Light stabilizers such as HALS compounds, benzotriazoles or oxalanilides
  • Crosslinking catalysts such as dibutyltin dilaurate or lithium decanoate
  • Emulsifiers in particular nonionic emulsifiers such as alkoxylated alkanols and polyols, phenols and alkylphenols or anionic emulsifiers such as alkali metal salts or ammonium salts of alkane carboxylic acids, alkane sulfonic acids and sulfonic acids of alkoxylated alkanols and polyols, phenols and alkylphenols;
  • nonionic emulsifiers such as alkoxylated alkanols and polyols, phenols and alkylphenols
  • anionic emulsifiers such as alkali metal salts or ammonium salts of alkane carboxylic acids, alkane sulfonic acids and sulfonic acids of alkoxylated alkanols and polyols, phenols and alkylphenols;
  • wetting agents such as siloxanes, fluorine-containing compounds,
  • - film-forming aids such as cellulose derivatives
  • the coating material can contain at least one thermally curable component (a7) in minor amounts.
  • “minor amounts” are to be understood as amounts which do not adversely affect the dual cure properties of the coating material, but rather vary and supplement in an advantageous manner. If they are used, their proportions of the coating material should generally be 40 % By weight, preferably 35% by weight and in particular 30% by weight.
  • suitable constituents (a7) are the binders and crosslinking agents known from the thermally curable coating materials.
  • suitable binders (a7) are linear and or branched and / or block-like, comb-like and / or randomly constructed poly (meth) acrylates or acrylate copolymers, polyesters, alkyds, aminoplast resins, polyurethanes, polylactones, polycarbonates, polyethers, epoxy-hare-amine adducts, (Meth) acrylate diols, partially saponified polyvinyl esters or polyureas, of which the acrylate copolymers, the polyesters, the polyurethanes, the polyethers and the epoxy-hara-amine adducts are advantageous.
  • Suitable binders (a7) are, for example, under the trade names Desmophen® 650, 2089, 1100, 670, 1200 or 2017 from Bayer, under the trade names Priplas or Pripol® from Uniqema, under the trade names Cempol® polyester or polyacrylate-polyol distributed by the CCP, under the trade names Crodapol® 0-85 or 0-86 by the company Croda or under the trade name Formrez® ER417 by the company Witco.
  • Suitable crosslinking agents (a7) are blocked di- and or polyisocyanates.
  • Suitable di- and / or polyisocyanates for the preparation of the blocked derivatives (a7) are organic polyisocyanates, in particular so-called lacquer polyisocyanates, with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound, free isocyanate groups. To be favoured
  • Polyisocyanates with 2 to 5 isocyanate groups per molecule and with viscosities of 100 to 10,000, preferably 100 to 5000 and in particular 1000 to 2000 mPas (at 23 ° C.) are used.
  • small amounts of organic solvent, preferably 1 to 25% by weight, based on pure polyisocyanate, can also be added to the polyisocyanates in order to improve the incorporability of the isocyanate and, if appropriate, the viscosity of the polyisocyanate to one
  • Solvents suitable as additives are the polyisocyanates, for example
  • Polyisocyanates can be modified hydrophilically or hydrophobically in the usual and known manner.
  • polystyrene foams examples include polyurethane prepolymers containing isocyanate groups, which can be prepared by reacting polyols with an excess of polyisocyanates and which are preferably low-viscosity.
  • polyisocyanates are polyisocyanates containing isocyanurate, biuret, allophanate, iminooxadiazindone, urethane, urea and / or uretdione groups.
  • Polyisocyanates containing urethane groups are obtained, for example, by reacting part of the isocyanate groups with polyols, e.g. Trimethylolpropane xmd glycerin, obtained.
  • Aliphatic or cycloaliphatic polyisocyanates, in particular hexamethylene diisocyanate are preferably dimerized and trimerized
  • Hexamethylene diisocyanate isophorone diisocyanate, 2-isocyanatopropylcyclohexyl isocyanate, dicyclohexyl methane-2,4'-diisocyanate,
  • the polyisocyanate component can also consist of any mixtures of the free polyisocyanates mentioned by way of example.
  • blocking agents examples include the blocking agents known from US Pat. No. 4,444,954, such as
  • phenols such as phenol, cresol, xylenol, nitrophenol, chlorophenol,
  • lactams such as ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam or ß-propiolactam
  • active methylenic compounds such as diethyl malonate, dimethyl malonate, ethyl or methyl acetoacetate or acetylacetone;
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, n-amyl alcohol, t-amyl alcohol, laxyl alcohol,
  • mercaptans such as butyl mercaptan, hexyl mercaptan, t-butyl mercaptan, t-dodecyl mercaptan, 2-mercaptobenzothiazole, thiophenol,
  • Methylthiophenol or ethylthiophenol vi) acid amides such as acetoanilide, acetoanisidinamide, acrylamide, methacrylamide, acetic acid amide, stearic acid amide or benzamide;
  • imides such as succinimide, phthalimide or maleimide
  • amines such as diphenylamine, phenylnaphthylamine, xylidine, N-phenylxylidine, carbazole, aniline, naphthylamine, butylamine, dibutylamine or butylphenylamine;
  • imidazoles such as imidazole or 2-ethylimidazole
  • ureas such as urea, thiourea, ethylene urea, ethylene thiourea or 1,3-diphenyl urea
  • carbamates such as phenyl N-phenylcarbamate or 2-oxazolidone
  • oximes such as acetone oxime, formal doxime, acetaldoxime, acetoxime, methyl ethyl ketoxime, diisobutyl ketoxime, diacetyl monoxime,
  • xiv) salts of sulfurous acid such as sodium bisulfite or potassium bisulfite
  • 5 xv) hydroxamic acid esters such as benzyl methacrylohydroxamate (BMH) or allyl methacrylohydroxamate
  • BMH benzyl methacrylohydroxamate
  • allyl methacrylohydroxamate or
  • Tris (alkoxycarbonylamino) triazines of the general formula 5 can also be used as crosslinking agents (a7)
  • tris (alkoxycarbonylammo) triazines (a7) are described in the patents US 4,939,213, US 5,084,541 or EP 0 624 577 AI.
  • the tris (methoxy-, tris (butoxy- and / or tris (2-ethy_hexoxycarbonylar ___ ino) triazines are used.
  • methyl-butyl mixed esters the butyl-2-ethylhexyl mixed esters xmd and the butyl esters are advantageous. Compared to the pure methyl ester, these have the advantage of better solubility in polymer melts and also have less tendency to crystallize out.
  • aminoplast resins for example melamine resins
  • Crosslinking agent (a7) can be used. Anything can be done for transparent
  • Topcoats or clearcoats suitable aminoplast resin or a mixture of such aminoplast resins can be used.
  • the usual ones come xmd known aminoplast resins into consideration, the methylol and / or methoxymethyl groups z. T. are defunctionalized by means of carbamate or allophanate groups.
  • Crosslinking agents of this type are described in the patents US 4,710,542 and EP 0 245 700 B1 and in the article by B. Singh and co-workers "Carbamylmethylated Melamines, Novel Crosslinkers for the Coatings Industry” in Advanced Organic Coatings Science and Technology Seiles, 1991, Volume 13, Pages 193 to 207.
  • the aminoplast resins can also be used as binders (A1) in the base color (AI).
  • crosslinking agents (a7) are beta-hydroxyalkylamides such as N, N, N ', N'-tetrakis (2-hydroxyethyl) adipamide or N, N, N, N'-tetrakis (2-hydroxypropyl) adipamide.
  • suitable crosslinking agents (a7) are siloxanes, in particular siloxanes with at least one trialkoxy or dialkoxysilane group.
  • crosslinking agents (a7) are polyanhydrides, in particular polysuccinic anhydride.
  • the coating material of the invention may contain organic solvents (a8) which do not react with isocyanate groups.
  • organic solvents of this type are esters, ketones, keto esters, glycol ethers such as ethylene, propylene or butylene glycol ethers, glycol esters such as ethylene, propylene or butylene glycol esters or glycol ether esters such as ethoxyethyl propionate and isopropoxypropanol.
  • aliphatic and aromatic solvents such as dipentene, xylene or Shellsol R.
  • the coating material to be used according to the invention can be in various forms. Thus, with a corresponding choice of its constituents described above, it can be in the form of a liquid coating substance which is essentially free of organic solvents. However, the coating material can be a solution or dispersion of the components described above in organic solvents (a8). It is a further advantage of the coating material according to the invention that solids contents of up to more than 80% by weight, based on the coating material, can be adjusted.
  • the coating material can be a powder clearcoat if the components described above are selected accordingly.
  • the component (a1) is advantageously microencapsulated. This powder clearcoat can then optionally be dispersed in water, resulting in a powder slurry clearcoat.
  • the coating material according to the invention is advantageously a two- or multi-component system, in which at least the component (a1) is stored separately from the other components and is added to them only shortly before use.
  • the coating substance according to the invention can also be aqueous, the constituent (a1) preferably being present in a component containing a solvent (a8).
  • the coating material of the invention is used to produce the clearcoats and multi-layer coatings of the invention on primed or unprimed substrates.
  • Suitable substrates here are all surfaces to be painted, which are accessible for a combined hardening using heat xmd actinic jet xmg.
  • the coating material of the invention is also for applications Suitable outside of automotive painting, especially for painting furniture and industrial painting, including coil coating and container coating. As part of industrial painting, it is suitable for painting practically all parts for private or industrial use, such as radiators, household appliances, small parts made of metal, hubcaps or rims.
  • plastics such as ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, UHMWPE, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PUR-RIM, SMC, BMC, PP-EPDM and UP (short names according to DIN 7728T1) can be painted.
  • the plastics to be painted can of course also be polymer blends, modified plastics or fiber-reinforced plastics.
  • plastics typically used in vehicle construction in particular motor vehicle construction.
  • these can be subjected to a pretreatment, such as with a plasma or with flame treatment, in a known manner before the coating.
  • one or more clear lacquer layer (s) can be applied as part of the painting method according to the invention. Become several
  • Applied clear lacquer layers coating materials of different material composition according to the invention can be used. In the vast majority of cases, however, the desired property profile of the clearcoats and multi-coat coatings according to the invention is achieved with a clearcoat layer.
  • the clear lacquer layer was applied in a wet layer thickness that after the
  • Curing in the finished clearcoats and multi-layer coatings according to the invention a dry layer thickness of the seal of 10 to 100, preferably 15 to 75, particularly preferably 20 to 55 ⁇ md, in particular 20 to 35 ⁇ m, results.
  • the application of the coating material according to the invention for the purpose of producing the clear lacquer layer can be carried out by all customary application methods, such as e.g. Spraying, knife coating, painting, pouring, dipping or rolling.
  • Spray application methods are preferably used, such as, for example, compressed air spraying, airless spraying, high rotation, electrostatic spray application (ESTA), optionally combined with hot spray application such as, for example, hot-air spraying.
  • the application can be carried out at temperatures of max. 70 to 80.degree. C. are carried out so that suitable application viscosities are achieved without the change in or damage to the coating material and its overspray, which may need to be reprocessed, occurring under the briefly acting thermal load.
  • hot spraying can be designed in such a way that the coating material is heated only very briefly in or shortly before the spray nozzle.
  • the spray booth used for the application can be operated, for example, with a circulation that can be tempered, if necessary, which is equipped with a suitable absorption medium for the overspray, e.g. B. the coating material according to the invention itself is operated.
  • the application is preferably carried out when illuminated with visible light of a wavelength of more than 550 ⁇ m or in the absence of light. This avoids material changes or damage to the coating material and the overspray.
  • the application methods described above can also be used in the production of the basecoat of the multi-layer coatings according to the invention in the context of the painting method according to the invention.
  • the clear lacquer layer is cured thermally and with actinic radiation after its application.
  • the hardening can take place after a certain rest period. It can have a duration of 30 s to 2 h, preferably 1 min to 1 h and in particular 1 min to 30 min.
  • the idle time is used, for example, for the course and degassing of the clear lacquer layer or for the evaporation of volatile constituents such as solvents, water or carbon dioxide if the coating material has been applied with supercritical carbon dioxide as a solvent.
  • the rest period can be supported and / or shortened by using elevated temperatures up to 80 ° C, provided that there is no damage or changes to the clear coat, such as premature crosslinking.
  • curing takes place with actinic radiation with UV radiation or electron beams. If necessary, it can be carried out or supplemented with actinic radiation from other radiation sources.
  • actinic radiation with UV radiation or electron beams.
  • it can be carried out or supplemented with actinic radiation from other radiation sources.
  • work is preferably carried out under an inert gas atmosphere. This can be ensured, for example, by supplying carbon dioxide and / or nitrogen directly to the surface of the clear lacquer layer.
  • the usual xmd known radiation sources and optical auxiliary measures are used for hardening with actinic radiation.
  • suitable radiation sources are high-pressure or low-pressure mercury vapor lamps, which may be doped with lead in order to open a radiation window up to 385 ⁇ m, or electron beam sources.
  • Their arrangement is known in principle and can be adapted to the conditions of the workpiece and the process parameters. For complicated shaped workpieces like those for If car bodies are intended, the areas (shadow areas) which are not directly accessible to the beam, such as cavities, folds and other undercuts due to construction, with point, small area or Rxmdum radiators combined with an automatic movement device for irradiating cavities or edges can be (partially) cured.
  • the substrate When curing the layer (s) made of the coating material according to the invention with actinic radiation, the substrate can rest or be guided past the radiation source at a suitable speed. If the substrate is moved, a advance speed in the range from 1 to 10 m / min, particularly preferably 2 to 8 m / min ⁇ md, in particular 3 to 6 m / min, has proven to be advantageous.
  • the UV lamps preferably have 100 to 200 w / cm, particularly preferably 120 to 190 w / cm and in particular 140 to 180 w / cm.
  • the curing can take place in stages, i. H. by multiple exposure or exposure to actinic radiation. This can also take place alternately, i. that is, alternately cured with UV beam xmg and electron beam xmg.
  • the thermal curing also has no special features in terms of method, but is carried out according to the customary and known methods such as heating in a forced air oven or irradiation with IR lamps. As with the hardening with actinic radiation, thermal curing can also be carried out in stages. The thermal curing is advantageously carried out at a temperature of 50 to 100 ° C., particularly preferably 80 to 100 ° C. and in particular 90 to 100 ° C. for a time of 1 minute to 2 hours, particularly preferably 2 minutes to 1 hour and in particular 3 to 30 min. If substrates are used that are thermally highly resilient, the thermal crosslinking can also be carried out at temperatures above 100 ° C. In general, it is advisable not to exceed temperatures of 180 ° C., preferably 160 ° C. and in particular 140 ° C.
  • Thermal curing and curing with actinic radiation are used together. These methods can be used simultaneously or alternately. If the two curing methods are used alternately, thermal curing can be started, for example, and curing with actinic radiation can be ended. In other cases, it may prove advantageous to start and end the curing with actinic radiation.
  • the person skilled in the art can determine the hardening method which is most advantageous for the individual case on the basis of his general specialist knowledge, if necessary with the aid of simple preliminary tests. In the vast majority of cases, it proves advantageous to first carry out the curing with actinic radiation and then to carry out the thermal curing.
  • the clearcoat materials according to the invention can also be part of the multi-layer paint systems according to the invention.
  • the coating material according to the invention is not applied to the primed or unprimed substrates, but rather to at least one color and / or effect basecoat layer made of a pigmented coating material that is curable thermally and optionally with actinic radiation.
  • basecoats in particular waterborne basecoats, are suitable as coating material for the production of the basecoat film.
  • Suitable waterborne basecoats are from the patents EP 0 089 497 AI, EP 0 256 540 AI, EP 0 260 447 AI, EP 0 297 576 AI, WO 96/12747, EP 0 523 610 AI, EP 0 228 003 AI, EP 0 397 806 AI, EP 0 574 417 AI, EP 0 531 510 AI, EP 0 581 211 AI, EP 0 708 788 AI, EP 0 593 454 AI, DE 43 28 092 AI, EP 0 299 148 AI, EP 0 394 737 AI, EP 0 590 484 AI, EP 0 234 362 AI, EP 0 234 361 AI, EP 0 543 817 AI, WO 95/14721, EP 0 521 928 AI, EP 0 522 420 AI, EP 0 522 419 AI, EP 0 649 865 AI, EP 0 536 712 AI, EP 0 596 460 AI, EP 0
  • the clearcoats and multicoat paint systems of the invention have good scratch resistance, intercoat adhesion, weather stability and chemical stability, an excellent optical property profile and an extraordinarily high reflow.
  • a wet-in-wet coating xmd curable with actinic radiation was applied to the basecoat film in a wet film thickness that resulted in a film thickness of 35 ⁇ m after the clear coat was completely cured.
  • the coating material consisted of 136 parts by weight of an aliphatic urethane acrylate based on the isocyanurate of hexamethylene diisocyanate, which contained 12.5% by weight of isocyanate groups and had an average functionality with respect to the acrylate groups of 3.5, 47.9 parts by weight of 2,4-diethyloctanediol.
  • the resulting basecoat and clearcoat layer were cured with UV radiation (3,000 mJ / cm 2 ) after a rest period of 6 min at 50 ° C. xmd then baked at 160 ° C. for 45 min.
  • the adhesion of the multicoat paint system of the invention was determined after storage for 24 hours at room temperature after the cross-cut test according to DIN 53151 (2 mm) [rating 0 to 5]. There was no release: Note GT0.
  • the scratch resistance of the multilayer coating on the test panels was determined after two weeks of storage at room temperature with the aid of the method shown in FIG. 2 on page 28 of the article by P. Betz and A. Bartelt, Progress in Organic Coatings, 22 (1 93), pages 27-37, BASF brush tests described, but modified with regard to the weight used (2000 g instead of the 280 g mentioned there), were assessed as follows:
  • the paint surface was damaged with a sieve fabric that was loaded with a mass.
  • the screen fabric and the varnish surface were wetted liberally with a detergent solution.
  • the test panel was moved back and forth under the screen fabric in a lifting motion by means of a motor drive.
  • test specimen was eraser covered with nylon sieve mesh (No. 11, 31 ⁇ m mesh size, Tg 50 ° C.) (4.5 ⁇ 2.0 cm, wide side perpendicular to the direction of scratching).
  • the coating weight was 2000 g.
  • the multi-layer coating according to the invention corresponded to the multi-layer coatings which were produced with the aid of conventional and known two-component (2K) clearcoats.

Abstract

Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff, enthaltend mindestens einen Bestandteil (a1) mit mindestens zwei funktionellen Gruppen (a11), welche der Vernetzung mit aktinischer Strahlung dienen, und mindestens einer funktionellen Gruppe (a12), welche mit den Hydroxyl- und/oder Thiolgruppen (a21) im Bestandteil (a2) thermische Vernetzungsreaktionen eingehen kann, und mindestens ein verzweigtes, cyclisches und/oder acyclisches C9-C16-Alkan (a2), das mit mindestens zwei Hydroxyl- oder Thiolgruppen (a21) oder mindestens einer Hydroxyl- und mindestens einer Thiolgruppe funktionalisiert ist, sowie gegebenenfalls enthaltend mindestens einen Photoinitiator (a3), mindestens einen Initiator der thermischen Vernetzung (a4), mindestens einen mit aktinischer Strahlung und/oder thermisch härtbaren Reaktivverdünner (a5), mindestens ein Lackadditiv (a6), mindestens einen thermisch härtbaren Bestandteil (a7) und/oder mindestens ein organisches Lösemittel (a8). Der Beschichtungsstoff dient der Herstellung von Klarlackierungen und farb- und/oder effektgebenden Mehrschichtlackierungen.

Description

Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
Die vorliegende Erfindung betrifft einen neuen thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoff. Außerdem betrifft die vorliegende Erfindung die Verwendung des neuen Beschichtungsstoffs für die Herstellung neuer Klarlackierung und färb- und/oder effektgebender M ehrschichtlackierungen für die Automobilerst- und -reparaturlackierung, die industrielle Lackierung, inclusive Coil Coating und Container Coating, die Kunststofflackierung und die Möbellackierung.
Automobilkarosserien, Kunststoffteile für Automobile oder Haushaltsgeräte und industrielle Bauteile werden heutzutage durch eine Klarlackierung geschützt. Hierbei kann die Klarlackierung als alleinige Lackschicht verwendet werden oder die oberste Schicht einer mehrschichtigen Decklackierung bilden.
Insbesondere Automobilkarosserien sind größtenteils mit einem mehrschichtigen Decklackaufbau versehen. Als letzte Überzugsschicht werden häufig Klarlacke aufgetragen. Hierfür kommen die üblichen und bekannten Einkomponenten (1K)-, Zweikomponenten (2K)-, Mehrkomponenten (3K, 4K)- Pulver- oder Pulverslurry- Klarlacke oder UV-härtbare Klarlacke in Betracht.
Einkomponenten(lK)-, Zweikomponenten(2K)- oder Mehrkomponenten(3K, 4K)-Klarlacke werden beispielsweise in den Patentschriften US 5,474,811, US 5,356,669, US 5,605,965, WO 94/10211, WO 94/10212, WO 94/10213, EP 0 594 068 AI, EP 0 594 071 AI, EP 0 594 142 AI-, EP 0 604 992 AI, WO 94/22969, EP 0 596 460 AI oder WO 92/22615 beschrieben.
Pulverklarlacke sind beispielsweise aus der deutschen Patentschrift DE 4222 194 AI oder der Produkt-Information der Firma BASF Lacke + Farben AG, „Pulverlacke", 1990 bekannt. Ein Pulverlack, welcher thermisch und mit aktinischer Strahlung härtbar ist, ist aus der europäischen Patentschrift EP 0 844 286 AI bekannt. Er enthält ein ungesättigtes Bindemittel und ein zweites hiermit copolymerisierbares Harz sowie einen Photoinitiator und einen thermischen Initiator und ist somit thermisch und mit aktinischer Strahlung härtbar. Allerdings wird dieser Dual Cure-Pulverlack als pigmentierter Decklack verwendet, welcher an der Oberfläche mit UV-Licht und in den substratnahen Bereichen thermisch gehärtet wird. Ob dieser bekannte Pulverlack auch für die Herstellung von Klarlackschichten, insbesondere in Mehrschichtlackierungen tauglich ist, läßt sich der Patentschrift nicht entnehmen.
Bei Pulverslurry-Lacken handelt es sich um Pulverlacke in Form wäßriger Dispersionen. Derartige Slurries sind beispielsweise in der US Patentschrift US 4,268,542 und den deutschen Patentanmeldungen DE 195 18 392.4 AI und DE 196 13 547 AI und der nicht vorveröffentlichten deutschen Patentanmeldung DE 198 14 471.7 AI beschrieben.
UV-härtbare Klarlacke gehen beispielsweise aus den Patentschriften EP 0 540 884 AI, EP 0 568 967 AI oder US 4,675,234 hervor.
Jeder dieser Klarlacke weist spezifischen Stärken und Schwächen auf. So erhält man mit Hilfe dieser Klarlacke Mehrschichtlackierungen, die den optischen Anforderungen genügen. Indes sind die kratzfesten Einkomponenten(lK)- Klarlacke manchmal nicht genügend witterungsbeständig, wogegen die witterungsbeständigen Zweikomponenten(2K)- oder Mehrkomponenten(3K, 4K)- Klarlacke oftmals nicht genügend kratzfest sind. Manche Einkomponenten(lK)- Klarlacke sind zwar kratzfest und witterungsstabil, weisen aber in Kombination mit häufig angewandten Wasserbasislacken Oberflächenstörungen wie Schrumpf (wrinkling) auf. Pulverklarlacke, Pulverslurry-Klarlacke und UV-härtbare Klarlacke dagegen weisen eine nicht völlig befriedigende Zwischenschichthaftung auf, ohne daß die Probleme der Kratzfestigkeit oder der Etchbeständigkeit völlig gelöst wären. Insbesondere neigen die UV-härtbaren Klarlacke wegen ihrer starken Schrumpfung bei der Polymerisation ganz besonders zur Enthaftung.
Aus der EP 0 568 967 AI ist ein Verfahren zur Herstellung von Mehrschichtlackierungen bekannt, bei dem eine thermisch härtbare Klarlackschicht nach dem Naß-in-naß-Verfahren auf eine pigmentierte Basis lackschicht aufgetragen wird, wonach die beiden Schichten in der Wärme gemeinsam ausgehärtet werden. Auf die ausgehärtete Klarlackschicht wird anschließend mindestens eine weitere Klarlackschicht auf der Basis von mit aktinischer Strahlung härtbaren Beschichtungsstoffen aufgetragen und mit aktinischer Strahlung oder mit aktinischer Strahlung und thermisch ausgehärtet. Dieses Verfahren liefert Klarlacküberzüge von hoher Chemikalienfestigkeit und optischer Qualität. Indes ist die Kratzfestigkeit nicht befriedigend.
Außerdem geht aus der EP 0 568 967 AI ein Verfahren hervor, bei dem ein mit aktinischer Strahlung härtbarer Beschichtungsstoff auf die pigmentierte Basislackschicht aufgetragen und ausgehärtet wird. Anschließend wird eine weitere Schicht desselben Beschichrungsstoffs appliziert und mit aktinischer Strahlung gehärtet. Es resultiert zwar eine hochglänzende Oberfläche ohne wahrnehmbare Struktur, indes vergilbt der betreffende Klarlacküberzug. Auch die Kratzfestigkeit läßt nach wie vor zu wünschen übrig.
Aufgabe der vorliegenden Erfindung ist es, einen neuen Beschichtungsstoff bereitzustellen, welcher die Nachteile des Standes der Technik nicht mehr länger aufweist, sondern in einfacher Weise neue Klarlackierungen und färb- und/oder effektgebende Lackierungen liefert, welche beim Eibrennen keine Rückspaltung von Bestandteilen zeigen und kratzfest, witterungsstabil, vergilbungsfirei, hart, flexibel und von Oberflächenstörungen frei sind, auf allen Substraten eine hohe Haftung aufweisen und sich in der für einen hervorragenden optischen Gesamteindruck notwendigen hohen Schichtdicke herstellen lassen.
Demgemäß wurde der neue thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoff, enthaltend
(al) mindestens einen Bestandteil mit
(al l) mindestens zwei funktionellen Gruppen, welche der Vernetzung mit aktinischer Strahlung dienen, und
(al2) mindestens einer funktionellen Gruppe, welche mit den Hydroxyl- und/oder Thiolgruppen (a21) im Bestandteil (a2) thermische Vernetzungsreaktionen eingehen kann,
und
(a2) mindestens ein verzweigtes, cyclisches und/oder acyclisches C9-C16- Alkan, das mit mindestens zwei Hydroxyl- oder Thiolgruppen oder mindestens einer Hydroxyl- und mindestens einer Thiolgruppe (a21) funktionalisiert ist.
Im folgenden wird der neue thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoff als „erfindungsgemäßer Beschichtungsstoff' bezeichnet.
Im folgenden werden die erfindungsgemäß zu verwendenden verzweigten, cyclischen und/oder acyclischen C -Ci6-Alkane (a2), die mit mindestens zwei Hydroxyl- oder Thiolgruppen oder mindestens einer Hydroxyl- und mindestens einer Thiolgruppe funktionalisiert sind, der Kürze halber als „ftinktionalisierte Alkane (a2)" bezeichnet. Darüber hinaus wurden die neuen Klarlackierungen und färb- und/oder effektgebenden Mehrschichtlackierungen gefunden, welche mit Hilfe des erfindungsgemäßen Beschichtungsstoffs hergestellt werden können.
In folgenden werden die neuen Klarlackierungen und färb- und/oder effektgebenden Mehrschichtlackierungen als „erfindungsgemäße Klarlackierung" und „erfindungsgemäße Mehrschichtlackierungen" bezeichnet, und die entsprechenden Verfahren zu ihrer Herstellung werden als „erfindungsgemäße Lackierverfahren" bezeichnet.
Im Rahmen der vorliegenden Erfindung bedeutet der Begriff „thermische Härtung" die durch Hitze initiierte Härtung einer Lackschicht aus einem Beschichtungsstoff, bei der üblicherweise ein separat vorliegendes Vernetzungsmittel angewandt wird. Üblicherweise wird dies von der Fachwelt als Fremdvernetzung bezeichnet. Sind die Vernetzungsmittel in die Bindemittel bereits eingebaut, spricht man auch von Selbstvernetzung. Erfindungsgemäß ist die Fremdvernetzung von Vorteil und wird deshalb bevorzugt angewandt.
Im Rahmen der vorliegenden Erfindung ist unter aktinischer Strahlxmg Elektronenstrahlung oder vorzugsweise UV-Strahlung zu verstehen. Die Härtung durch UV-Strahlung wird üblicherweise durch radikalische oder kationische Photoinitiatoren initiiert und ist ihrem Mechanismus nach eine radikalische oder kationische Photopolymerisation.
Werden die thermische und die Härtung mit aktinischem Licht bei einem Beschichtungsstoff gemeinsam angewandt, spricht man auch von „Dual Cure".
Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, daß die Aufgabe, welche der Erfindung zugrunde liegt mit Hilfe des erfindungsgemäßen Beschichtungsstoffs, des erf dungsgemäßen Lackierverfahrens und der erfindungsgemäßen Klarlackierungen und Mehrschichtlackierungen gelöst werden konnte.
Besonders überraschend ist, daß aufgrund der Verwendung des erfindungsgemäßen Beschichtungsstoffs erfindungs gemäße Klarlackierungen und Mehrschichtlackierungen resultieren, welche beim Einbrennen keine Rückspaltung von Bestandteilen zeigen und welche nicht nur kratzfest, witterungsstabil, vergilbungsfirei, hart, flexibel und von Oberflächenstörungen frei sind, auf allen Substraten eine hohe Haftung aufweisen und sich in der für einen hervorragenden optischen Gesamteindruck notwendigen hohen Schichtdicke herstellen lassen, sondern auch einen außerordentlich hohen Reflow haben.
Der erfindungsgemäße Beschichtungsstoff enthält mindestens einen Bestandteil (al) mit mindestens zwei funktionellen Gruppen (al l), welche der Vernetzung mit aktinischer Strahlung dienen.
Beispiele geeigneter funktioneller Gruppen (al l) sind Epoxidgruppen oder olefinisch ungesättigte Doppelbindungen, wie sie in Vinyl-, Allyl-, Cinnamoyl-, Methacryl- oder Acrylgruppen, insbesondere Methacryl- oder Acrylgruppen, vorliegen. Bekanntermaßen werden die Epoxidgruppen für die kationische Photopolymerisation verwendet, wogegen die olefinisch ungesättigten Doppelbindungen in der Hauptsache für die radikalische Photopolymerisation in Betracht kommen. Erfindungsgemäß kann der Bestandteil (al) Epoxidgruppen und olefinische Doppelbindungen enthalten, so daß er nach beiden Mechanismen der Vernetzung mit aktinischer Strahlung unterworfen werden kann. Es ist indes von Vorteil, ausschließlich olefinisch ungesättigte Doppelbindungen der genannten Art als funktioneile Gruppen (al 1) zu verwenden.
Des weiteren enthält der erfindungsgemäß zu verwendende Bestandteil (al) mindestens eine, vorzugsweise mindestens zwei funktionelle Gruppen (al2), welche mit den Hydroxyl- und/oder Thiolgruppen (a21) des nachstehend beschriebenen Bestandteils (a2) thermische Vernetzungsreaktionen eingehen können.
Beispiele geeigneter funktioneller Gruppen (al2) ergeben sich aus der nachfolgenden Übersicht.
Übersicht: Beispiele komplementärer funktioneller Gruppen (al2) und (a22) im
Bestandteil (a2) Bestandteil (al)
Gruppe (a21) Gruppe (a!2)
-SH -C(O)-OH
-OH -C(O)-O-C(O)-
-NCO
-NH-C(O)-OR
-CH2-OH
-CH2-O-CH3
-NH-C(O)-CH(-C(O)OR)2
-NH-C(O)-CH(-C(O)OR)(-C(O)-R)
-NH-C(O)-NR2 - Si(OR)2
O
-CH-CKb
In der Übersicht bedeuten die Reste R aliphatische, cycloaliphatische, aromatische, aliphatisch-cycloaliphatische, aliphatisch-aromatische oder cycloaliphatisch-aromatische organische Gruppen, welche gegebenenfalls substituiert sind und/oder Heteroatome wie Sauerstoff, Stickstoff und/oder Schwefel enthalten.
Die Auswahl der Gruppen (a21) richtet sich zum einen danach, daß sie keine unerwünschten durch aktinische Strahlung initiierten Reaktionen eingehen oder die Härtung mit aktinischer Strahlung nicht stören oder inhibieren dürfen, und zum anderen danach, in welchem Temperaturbereich die thermische Härtung erfolgen soll. Hierbei ist es, insbesondere im Hinblick auf thermisch sensible Substrate wie Kunststoffe, erfindungsgemäß von Vorteil, einen Temperaturbereich zu wählen, welcher 100 °C, insbesondere 80 °C nicht überschreitet. Im Hinblick auf diese Rahmenbedingungen haben sich Isocyanatgruppen (al2) als vorteilhaft erwiesen, weswegen sie erfindungsgemäß bevorzugt angewandt werden.
Demnach handelt es sich bei dem besonders vorteilhaften Bestandteil (al) um eine mit aktinischer Strahlung oder thermisch härtbare oligomere oder polymere Verbindung, welche mindestens eine, vorzugsweise mindestens zwei und insbesondere mindestens drei Isocyanatgruppe(n) (al2) und mindestens zwei und insbesondere mindestens drei (Meth)Acrylgruppen (al 1) enthält. Im Rahmen der vorliegenden Erfindung wird unter einer oligomeren Verbindung eine Verbindung verstanden, welche im allgemeinen im Mittel 2 bis 15 sich wiederholende Grundstrukturen oder Monomereinheiten aufweist. Unter einer polymeren Verbindung wird dagegen eine Verbindung verstanden, welche im allgemeinen im Mittel mindestens 10 sich wiederholende Grundstrukturen oder Monomereinheiten aufweist. Verbindungen dieser Art werden von der Fachwelt auch als Bindemittel oder Harze bezeichnet.
Im Unterschied dazu ist im Rahmen der vorliegenden Erfindung unter einer niedermolekularen Verbindimg, eine Verbindung zu verstehen, welche sich im wesentlichen nur von einer Grundstruktur oder einer Monomereinheit ableitet. Verbindungen dieser Art werden von der Fachwelt im allgemeinen auch als Reaktivverdünner bezeichnet.
Die als Bestandteil (al) eingesetzten Polymere bzw. Oligomere weisen üblicherweise ein zahlenmittleres Molekulargewicht von 500 bis 50.000, bevorzugt von 1.000 bis 5.000, auf. Bevorzugt weisen sie ein Doppelbindungsäquivalentgewicht von 400 bis 2.000, besonders bevorzugt von 500 bis 900, auf. Außerdem weisen sie bei 23 °C bevorzugt eine Viskosität von 250 bis 11.000 mPas auf. Vorzugsweise werden sie in einer Menge von 5 bis 90 Gew.-%, besonders bevorzugt 10 bis 80 Gew.-% und insbesondere 15 bis 70 Gew.-%, jeweils bezogen auf die Gesamtmenge des Beschichtungsstoffs angewandt.
Beispiele geeigneter Bestandteile (al) entstammen den Oligomer- und/oder Polymerklassen der linearen oder verzweigten, insbesonder der verzweigten (mem)acιylfunktionellen (Meth)Acrylcopolymere, Polyetheracrylate,
Polyesteracrylate, ungesättigten Polyester, Epoxyacrylate, Urethanacrylate, Aminoacrylate, Melaminacrylate, Silikonacrylate und der entsprechenden Methacrylate. Bevorzugt werden Bindemittel (al) eingesetzt, die frei von aromatischen Struktureinheiten sind. Bevorzugt werden Urethan(meth)acrylate und/oder Polyester(meth)acrylate, besonders bevorzugt Urethan(meth)acrylate, ganz besonders bevorzugt aliphatische Urethan(meth)acrylate und insbesondere Urethanacrylate, eingesetzt.
Die Urethan(meth)acrylate (al) werden erhalten durch Umsetzung eines Diisocyanats und oder Polyisocyanats, insbesondere eines Polyisocyanats, mit einem Kettenverlängerungsmittel aus der Gruppe der Diole/Polyole und/oder Diamine/Polyamine und oder Dithiole/Polythiole und/oder Alkanolamine und anschließende Umsetzung eines Teils der freien Isocyanatgruppen mit mindestens einem Hydroxyalkyl(meth)acrylat, insbesondere einem Hydroxyalkylacrylat. Gegebenenfalls können noch Hydroxyalkylester anderer ethylenisch ungesättigter Carbonsäuren wie Ethacrylsäure oder Itaconsäure mit verwendet werden.
Die Mengen an Kettenverlängerungsmittel, Di- und/oder Polyisocyanat und Hydroxyalkylester werden dabei bevorzugt so gewählt, daß
1.) das Äquivalentverhältnis der NCO-Gruppen zu den reaktiven Gruppen des Kettenverlängerungsmittels (Hydroxyl-, Amino- bzw. Thiolgruppen) zwischen 20 : 1 und 2 : 1, bevorzugt zwischen 15 : 1 und 5 : 1, liegt und
2.) die OH-Gruppen der Hydroxyalkylester der ethylenisch ungesättigten Carbonsäuren in unterstöchiometrischer Menge in bezug auf die noch freien Isocyanatgruppen des Präpolymeren aus Isocyanat und Kettenverlängerungsmittel vorliegen.
Außerdem ist es möglich, die Urethan(meth)acrylate (al) herzustellen, indem zunächst ein Teil der Isocyanatgruppen eines Polyisocyanates mit mindestens einem Hydroxyalkylester umgesetzt wird und ein Teil der restlichen Isocyanatgruppen anschließend mit einem Kettenverlängerungsmittel umgesetzt werden. Auch in diesem Fall werden die Mengen an Kettenverlängerungsmittel, Isocyanat und Hydroxyalkylester so gewählt, daß das Äquivalentverhältnis der NCO-Gruppen zu den reaktiven Gruppen des Kettenverlängerungsmittels zwischen 20 : 1 und 2 : 1, bevorzugt zwischen 15 : 1 und 5 : 1 liegt und das Äquivalentverhältnis der restlichen NCO-Gruppen zu den OH-Gruppen des Hy- droxyalkylesters mehr als 1 beträgt.
Selbstverständlich sind auch sämtliche Zwischenformen dieser beiden Verfahren möglich.
Insgesamt ist darauf zu achten, daß das Verhältnis von Isocyanatgruppen zu isocyanatreaktiven Gruppen so hoch ist, daß . das resultierende Urethan(meth)acrylat (al) über die gewünschte Anzahl an Isocyanatgruppen (al2) verfügt.
Erfindungs gemäß enthält das Urethan(meth)acrylat (al) im Mittel mindestens eine, vorzugsweise mindestens zwei Isocyanatgruppe(n) (al2). Besondere Vorteile resultieren, wenn im Mittel mehr als zwei, ganz besonders bevorzugt mehr als drei Isocyanatgruppen (al2) vorhanden sind. Die Anzahl der Isocyanatgruppen (al2) pro braucht im Mittel sechs nicht zu übersteigen, um die erfindungsgemäßen Vorteile zu erzielen. Indes erweisen sich in speziellen Fällen auch im Mittel mehr als sechs Isocyanatgruppen (al2) pro Urethan(meth)acrylat (al) als vorteilhaft.
Besondere Vorteile resultieren, wenn der Bestandteil (al), insbesondere das Urethan(meth)acrylat (al), einen Gehalt an Isocyanatgruppen (al2) von 7 bis 20 Gew.-%, besonders bevorzugt 8 bis 18 Gew.-% und insbesondere 9 bis 16 Gew.- %, jeweils bezogen auf den Bestandteil (al), aufweist.
Beispiele geeigneter Di- und/oder Polyisocyanate sind die nachstehend bei dem
Vernetzungsmittel (a7) beschriebenen. Zu Zwecken der Herstellung des Bestandteils (al), insbesondere des Urethan(meth)acrylats (al), sind die dort beschriebenen Isocyanuratgruppen enthaltenden Polyisocyanurate von besonderem Vorteil und werden deshalb besonders bevorzugt verwendet.
Der erfindungsgemäße Beschichtungsstoff enthält des weiteren die funktionalisierten Alkane (a2).
Die funktionalisierten Alkane (a2) leiten sich ab von verzweigten, cyclischen oder acyclischen Alkanen mit 9 bis 16 Kohlenstoffatomen, welche jeweils das Grundgerüst bilden.
Beispiele geeigneter Alkane dieser Art mit 9 Kohlenstoffatomen sind 2- Methyloctan, 4-Methyloctan, 2,3-Dimethyl-heptan, 3,4-Dimethyl-heptan, 2,6- Dimethyl-heptan, 3,5-Dimethyl-heptan, 2-Methyl-4-ethyl-hexan oder Isopropyl- cyclohexan.
Beispiele geeigneter Alkane dieser Art mit 10 Kohlenstoffatomen sind 4- Ethyloctan, 2,3,4,5-Tetramethyl-hexan, 2,3-Diethyl-hexan oder l-Methyl-2-n- propyl-cyclohexan.
Beispiele geeigneter Alkane dieser Art mit 11 Kohlenstoffatomen sind 2,4,5,6- Tetramethyl-heptan oder 3-Methyl-6-ethyl-octan.
Beispiele geeigneter Alkane dieser Art mit 12 Kohlenstoffatomen sind 4-Methyl- 7-ethyl-nonan, 4,5-Diethyl-octan, l '-Ethyl-butyl-cyclohexan, 3,5-Diethyl-octan oder 2 ,4-Diethyl-octan.
Beispiele geeigneter Alkane dieser Art mit 13 Kohlenstoffatomen sind 3,4- Dimethyl-5-ethyl-nonan oder 4,6-Dimethyl-5-ethyl-nonan.
Ein Beispiel eines geeigneten Alkans dieser Art mit 14 Kohlenstoffatomen ist 3,4- Dimethyl-7-ethyl-decan. Beispiele geeigneter Alkane dieser Art mit 15 Kohlenstoffatomen sind 3,6- Diethyl-undecan oder 3,6-Dimethyl-9-ethyl-undecan.
Beispiele geeigneter Alkane dieser Art mit 16 Kohlenstoffatomen sind 3,7- Diethyl-dodecan oder 4-Ethyl-6-isopropyl-undecan.
Von diesen Grundgerüsten sind die Alkane mit 10 bis 14 und insbesondere 12 Kohlenstoffatomen besonders vorteilhaft und werden deshalb bevorzugt verwendet. Von diesen sind wiederum die Octanderivate ganz besonders vorteilhaft.
Für die vorliegende Erfindung ist es vorteilhaft, wenn die funktionalisierten Alkane (a2), welche sich von diesen verzweigten, cyclischen oder acyclischen Alkanen als Grundgerüsten ableiten, bei Raumtemperatur flüssig sind. Somit können entweder einzelne flüssige .funktionalisierte Alkane (a2) verwendet werden oder flüssige Gemische dieser Verbindungen. Dies ist insbesondere dann der Fall, wenn funktionalisierte Alkane (a2) verwendet werden, welche wegen ihrer hohen Anzahl an Kohlenstoffatomen im Alkan-Grundgerüst als einzelne Verbindungen fest sind. Der Fachmann kann daher die entsprechenden funktionalisierten Alkane (a2) in einfacher Weise auswählen.
Für die Erfindung ist es außerdem vorteilhaft, daß die funktionalisierten Alkane (a2) einen Siedepunkt von über 200, vorzugsweise 220 und insbesondere 240 °C aufweisen. Darüberhinaus sollen sie eine niedrige Verdampfungsrate haben.
Für die erfindungsgemäßen Beschichtungsstoffe ist es von Vorteil, wenn die ftinktionalisierten Alkane (a2) acyc lisch sind.
Die funktionalisierten Alkane (a2) weisen primäre und/oder sekundäre Hydroxyl- und/oder Thiolgruppen auf. Für die erfindungsgemäßen Beschichtungsstoffe ist es von Vorteil, wenn primäre und sekundäre Gruppen dieser .Art in einer Verbindung vorhanden sind.
Bei den ftinktionalisierten Alkanen (a2) handelt es sich demnach um Polyole, Polythiole oder um Polyol-polythiole (a2), insbesondere aber Polyole (a2). Diese Verbindungen können einzeln oder gemeinsam als Gemische verwendet werden. Besondere Vorteil ergeben sich, wenn die Polyole (a2) Diole und/oder Triole, insbesondere aber Diole sind. Sie werden deshalb ganz besonders bevorzugt verwendet.
Ganz besonders vorteilhafte erfindungsgemäße Beschichtungsstoffe werden erhalten, wenn die Polyole (a2) stellungsisomere Dialkyloctandiole, insbesondere Diethyloctandiole, sind. Herausragende Ergebnisse werden mit 2,4-Diethyl- octandiol-1,5 erzielt.
Die vorstehend beschriebenen funktionalisierten Alkane (a2) sind an sich bekannte Verbindungen und können mit Hilfe üblicher und bekannter Synthesemethoden der Organischen Chemie wie die basenkatalysierte Aldolkondensation hergestellt werden oder sie fallen als Nebenprodukte chemischer Großsynthesen wie der Herstellung von 2-Ethyl-hexanol an.
Die funktionalisierten Alkane (a2) sind im allgemeinen in den erfindungsgemäßen Beschichtungsstoffen in einer Menge von 5 bis 60 Gew.-%, bezogen auf die Gesamtmenge des jeweiligen Beschichtungsstoffs, enthalten. Zwar können sie hierin in größeren Mengen enthalten sein, indes handelt es sich um einen vorteilhaften Bereich, innerhalb dessen die erfindungsgemäßen Vorteile sicher und zuverlässig erzielt werden. Innerhalb dieses Bereichs ist derjenige von 10 bis 50 Gew.-% von besonderem Vorteil, weil die erfindungsgemäßen Beschichtungsstoffe, welche diese Menge an funktionalisierten Alkanen (a2) enthalten, ein besonders vorteilhaftes Eigenschaftsprofil aufweisen. Ganz besondere Vorteile resultieren indes aus der Verwendung von 15 bis 40 Gew.-% an funktionalisierten Alkanen (a2).
In dem erfindungsgemäßen Beschichtungsstoff kann das Verhältnis von Isocyanatgruppen (al2) zu den isocyanatreaktiven Gruppen (a21) breit variieren. Es richtet sich insbesondere danach, welche technischen Effekte hinsichtlich der erfindungsgemäßen Klarlackierung und Mehrschichtlackierung erzielt werden sollen. Erfindungsgemäß ist es von Vorteil, wenn das Verhältnis (al2)/(a21) zwischen 2 : 1 und 1 : 2, besonders bevorzugt 1,5 : 1 und 1 : 1,5 liegt.
Der erfindungsgemäß zu verwendende Beschichtungsstoff kann mindestens einen Photoinitiator (a3) enthalten. Wenn der Beschichtungsstoff bzw. die Klarlackschicht mit UV-Strahlung vernetzt werden soll, ist die Verwendung eines Photoinitiators (a3) im allgemeinen notwendig. Sofern sie mitverwendet werden, sind sie in dem Beschichtungsstoff bevorzugt in Anteilen von 0,1 bis 10 Gew.-%, 1 bis 8 Gew.-% und insbesondere 2 bis 6 Gew.-%, jeweils bezogen auf die Gesamtmenge des Beschichtungsstoffs, enthalten.
Beispiele geeigneter Photoinitiatoren (a3) sind solche vom Norrish II-Typ, deren Wirkungsmechanismus auf einer intramolekularen Variante der Wasserstoff-
Abstraktionsreaktionen beruht, wie sie in vielfältiger Weise bei photochemischen
Reaktionen auftreten (beispielhaft sei hier auf Römpp Chemie Lexikon, 9. erweiterte und neubearbeitete Auflage, Georg Thieme Verlag Stuttgart, Bd. 4,
1991, verwiesen) oder kationische Photoinitiatoren (beispielhaft sei hier auf Römpp Lexikon »Lacke und Druckfarben« Georg Thieme Verlag Stuttgart, 1998,
Seiten 444 bis 446, verwiesen), insbeondere Benzophenone, Benzoine oder
Benzoinether oder Phosphinoxide. Es können auch beispielsweise die im Handel unter den Namen Irgacure® 184, Irgacure® 1800 und Irgacure® 500 der Firma
Ciba Geigy, Grenocure® MBF der Firma Rann und Lucirin® TPO der Firma BASF AG erhältlichen Produkte eingesetzt werden. Neben den Photoinitiatoren (a3) können übliche Sensibilisatoren (a3) wie Anthracen in wirksamen Mengen verwendet werden.
Des weiteren kann der Beschichtungsstoff mindestens einen Initiator der thermischen Vernetzung (a4) enthalten. Diese bilden ab 80 bis 120 °C Radikale, welche die Vernetzungsreaktion starten. Beispiele für thermolabile radikalische
Initiatoren sind organische Peroxide, organische Azoverbindungen oder C-C- spaltende Initiatoren wie Dialkylperoxide, Peroxocarbonsäuren,
Peroxodicarbonate, Peroxidester, Hydroperoxide, Ketonperoxide, Azodinitrile oder Benzpinakolsilylether. C-C-spaltende Initiatoren sind besonders bevorzugt, da bei ihrer thermischen Spaltung keine gasförmigen Zersetzungprodukte gebildet werden, die zu Störungen in der Lackschicht führen könnten. Sofern sie mit verwendet werden, liegen ihre Mengen im allgemeinen zwischen 0,1 bis 10 Gew.-
%, vorzugsweise 0,5 bis 8 Gew.-% und insbesondere 1 bis 5 Gew.-%, jeweils bezogen auf die Gesamtmenge des Beschichtungsstoffs.
Darüber hinaus kann der Beschichtungsstoff mindestens einen mit aktinischer Strahlung und/oder thermisch härtbaren Reaktivverdünner (a5) enthalten.
Beispiele geeigneter thermisch vernetzbarer Reaktiverdünner (a5) sind oligomere Polyole, welche aus oligomeren Zwischenprodukten, die durch Metathesereaktionen von acyclischen Monoolefinen und cyclischen Monoolefinen gewonnen werden, durch Hydroformylierung und anschließender Hydrierung erhältlich sind; Beispiele geeigneter cyclischer Monoolefine sind Cyclobuten, Cy- clopenten, Cyclohexen, Cycloocten, Cyclohepten, Norbonen oder 7- Oxanorbonen; Beispiele geeigneter acyclischer Monoolefine sind in Kohlenwasserstoffgemischen enthalten, die in der Erdölverarbeitung durch Cracken erhalten werden (C5-Schnitt); Beispiele geeigneter, erfindungsgemäß zu verwendender oligomerer Polyole weisen eine Hydroxylzahl (OHZ) von 200 bis 450, ein zahlenmittleres Molekulargewicht Mn von 400 bis 1000 und ein massenmittleres Molekulargewicht Mw von 600 bis 1100 auf; Weitere Beispiele geeigneter thermisch vernetzbarer Reaktiverdünner (a5) sind hyperverzweigte Verbindungen mit einer tefrafunktionellen Zentralgruppe, abgeleitet von Ditrimethylolpropan, Diglycerin, Ditrimethylolethan, Pentaerythrit, Tetrakis(2-hydroxyethyl)methan, Tetrakis(3-hydroxypropyl)methan oder 2,2-Bis- hydroxymethyl-butandiol-(l,4) (Homopentaerythrit). Die Herstellung dieser Reaktiwerdünner kann nach den üblichen und bekannten Methoden der Herstellung hyperverzweigter und dendrimerer Verbindungen erfolgen. Geeignete Synthesemethoden werden beispielsweise in den Patentschriften WO 93/17060 oder WO 96/12754 oder in dem Buch von G. R. Newkome, C. N. Moorefield und F. Vögtle, "Dendritic Molecules, Concepts, Syntheses, Perspectives", VCH, Weinheim, New York, 1996, beschrieben.
Weitere Beispiele geeigneter Reaktivverdünner (a5) sind Polycarbonatdiole, Polyesterpolyole, Poly(meth)acrylatdiole oder hydroxylgruppenhaltige Polyadditionsprodukte.
Beispiele geeigneter reaktiver Lösemittel, welche als Reaktiverdünner (a5) verwendet werden können, sind Butylglykol, 2-Methoxypropanol, n-Butanol, Methoxybutanol, n-Propanol, Ethylenglykolmonomethylether, Ethylengly- kolmonoethylether, Ethylenglykolmonobutylether, Diethy- lenglykolmonomethylether, Diethylenglykolmonoethyl-ether,
Diethylenglykoldiethylether, Diethylenglykolmo-nobutylether,
Trimethylolpropan, 2-Hydroxypropionsäureethylester oder 3 -Methyl-3 -methoxybutanol sowie Derivate auf Basis von Propylenglykol, z.B. Ethoxyethylpropionat, Isopropoxypropanol oder Methoxypropylacetat genannt.
Als Reaktiwerdünner (a5), welche mit aktinischer Strahlung vernetzt werden können, werden beispielsweise (Meth)Acrylsäure und deren Ester, Maleinsäure und deren Ester bzw. Halbester, Vinylacetat, Vinylether, Vinylhamstoffe u.ä. eingesetzt. Als Beispiele seien Alkylenglykoldi(meth)acrylat, Polyethylenglykoldi(meth)acrylat, 1 ,3-Butandioldi(meth)acrylat,
Vinyl(meth)acrylat, Allyl(meth)acrylat, Glycerin-tri(meth)acrylat,
Trimethylolpropantri(meth)acrylat, Trimethylolpropandi(meth)acrylat, Styrol, Vinyltoluol, Divinylbenzol, Pentaerythrittri(meth)acrylat, Pentaerythrittetra(meth)acrylat, Dipropylenglykoldi(meth)acrylat, Hexandioldi- (meth)acrylat, Ethoxyethoxyethylacrylat, N-Vinylpyrrolidon, Phenoxy- ethylacrylat, Dimemylaminoethylacrylat, Hydroxyethyl(meth)acrylat,
Butoxyethylacrylat, Isobornyl(meth)acrylat, Dimethylacrylamid und Dicyclopentylacrylat, die in der EP 0 250 631 AI beschriebenen, langkettigen linearen Diacrylate mit einem Molekulargewicht von 400 bis 4000, bevorzugt von 600 bis 2500. Beispielsweise können die beiden Acrylatgruppen durch eine Polyoxibutylenstruktur getrennt sein. Einsetzbar sind außerdem 1,12-Dodecyl- diacrylat und das Umsetzungsprodukt von 2 Molen Acrylsäure mit einem Mol eines Dimerfettalkohols, der im allgemeinen 36 C- Atome aufweist. Geeignet sind auch Gemische der genannten Monomeren.
Bevorzugt werden als Reaktiwerdünner (a5) Mono- und oder Diacrylate, wie z.B. Isobomylacrylat, Hexandioldiacrylat, Tripropylenglykoldiacrylat, Laromer® 8887 der Firma BASF AG xmd Actilane® 423 der Firma Akcros Chemicals Ltd., GB, eingesetzt. Besonders bevorzugt werden Isobomylacrylat, Hexandioldiacrylat und Tripropylenglykoldiacrylat eingesetzt.
Sofern sie mit verwendet werden, werden die Reaktivverdünner (a5) in einer Menge von vorzugsweise 2 bis 70 Gew.-%, besonders bevorzugt 10 bis 65 Gew.- % und insbesondere 15 bis 50 Gew.-%, jeweils bezogen auf die Gesamtmenge des Beschichtungsstoffs, angewandt.
Darüber hinaus kann der Beschichtungsstoff mindestens ein übliches und bekanntes Lackadditiv (a6) in wirksamen Mengen, d.h. in Mengen vorzugsweise bis zu 40 Gew.-%, besonders bevorzugt bis zu 30 Gew.-% und insbesondere bis zu 20 Gew.-%, jeweils bezogen auf die Gesamtmenge des Beschichtungsstoffs, enthalten.
Beispiele geeigneter Lackadditive (a6) sind
UV-Absorber;
Lichtschutzmittel wie HALS-Verbindungen, Benztriazole oder Oxalanilide;
Radikalfänger;
Katalysatoren für die Vernetzung wie Dibutylzinndilaurat oder Lithiumdecanoat;
Slipadditive;
Polymerisationsinhibitoren;
- Entschäumer;
Emulgatoren, insbesondere nicht ionische Emulgatoren wie alkoxylierte Alkanole xmd Polyole, Phenole und Alkylphenole oder anionische Emulgatoren wie Alkalisalze oder Ammoniumsalze von Alkancarbon- säuren, Alkansulfonsäuren, und Sulfosäuren von alkoxylierten Alkanolen und Polyolen, Phenolen und Alkylphenolen;
Netzmittel wie Siloxane, fluorhaltige Verbindungen,
Carbonsäurehalbester, Phosphorsäureester, Polyacrylsäuren xmd deren Copolymere oder Polyurethane; Haftvermittler wie Tricyclodecandimethanol;
Verlaufinittel;
- filmbildende Hilfsmittel wie Cellulose-Derivate;
transparente Füllstoffe wie pyrogenes Siliziumdioxid oder Nanopartikel auf der Basis von Siliziumdioxid; ergänzend wird noch auf das Römpp Lexikon »Lacke und Druckfarben« Georg Thieme Verlag, Stuttgart, 1998, Seiten 250 bis 252, verwiesen;
Flammschutzmittel und/oder
Mattienrngsmittel.
Weitere Beispiele geeigneter Lackadditive (a6) werden in dem Lehrbuch »Lackadditive« von Johan Bieleman, Wiley-VCH, Weinheim, New York, 1998, beschrieben.
Nicht zuletzt kann der Beschichtungsstoff mindestens einen thermisch härtbaren Bestandteil (a7) in untergeordneten Mengen enthalten. Im Rahmen der vorliegenden Erfindung sind unter „untergeordneten Mengen" Mengen zu verstehen, welche die Dual Cure-Eigenschaften des Beschichtungsstoffs nicht nachteilig beeinflussen, sondern in vorteilhafter Weise variieren und ergänzen. Sofern sie mit verwendet werden, soll ihr Anteile an dem Beschichtungsstoff im allgemeinen 40 Gew.-%, vorzugsweise 35 Gew.-% und insbesondere 30 Gew.-% nicht überschreiten.
Beispiele geeigneter Bestandteile (a7) sind die von den thermisch härtbaren Beschichtungsstoffen her bekannten Bindemittel und Vemetzxmgsmittel. Beispiele geeigneter Bindemittel (a7) sind lineare und oder verzweigte und/oder blockartig, kammartig und/oder statistisch aufgebaute Poly(meth)acrylate oder Acrylatcopolymerisate, Polyester, Alkyde, Aminoplastharze, Polyurethane, Polylactone, Polycarbonate, Polyether, Epoxidhare-Amin-Addukte, (Meth)Acrylatdiole, partiell verseifte Polyvinylester oder Polyhamstoffe, von denen die Acrylatcopolymerisate, die Polyester, die Polyurethane, die Polyether und die Epoxidhara-Amin-Addukte vorteilhaft sind.
Geeignete Bindemittel (a7) werden beispielsweise unter den Handelsnamen Desmophen® 650, 2089, 1100, 670, 1200 oder 2017 von der Firma Bayer, unter den Handelsnamen Priplas oder Pripol® von der Firma Uniqema, unter den Handelsnamen Cempol® Polyester oder Polyacrylat-Polyol von der CCP, unter den Handelsnamen Crodapol® 0-85 oder 0-86 von der Firma Croda oder unter dem Handelsnamen Formrez® ER417 von der Firma Witco vertrieben.
Beispiele geeigneter Vemetzxmgsmittel (a7) sind blockierte Di- und oder Polyisocyanate.
Beispiele geeigneter Di- und/oder Polyisocyanate für die Herstellung der blockierten Derivate (a7) sind organische Polyisocyanate, insbesondere sogenannte Lackpolyisocyanate, mit aliphatisch, cycloaliphatisch, araliphatisch und/oder aromatisch gebundenen, freien Isocyanatgruppen. Bevorzugt werden
Polyisocyanate mit 2 bis 5 Isocyanatgruppen pro Molekül und mit Viskositäten von 100 bis 10.000, vorzugsweise 100 bis 5000 und insbesondere 1000 bis 2000 mPas (bei 23 °C) eingesetzt. Gegebenenfalls können den Polyisocyanaten noch geringe Mengen organisches Lösemittel, bevorzugt 1 bis 25 Gew.-%, bezogen auf reines Polyisocyanat, zugegeben werden, um so die Einarbeitbarkeit des Isocyana- tes zu verbessern und gegebenenfalls die Viskosität des Polyisocyanats auf einen
Wert innerhalb der obengenannten Bereiche abzusenken. Als Zusatzmittel geeignete Lösemittel die Polyisocyanate sind beispielsweise
Ethoxyethylpropionat, Amylmethylketon oder Butylacetat. Außerdem können die Polyisocyanate in üblicher und bekannter Weise hydrophil oder hydrophob modifiziert sein.
Beispiele für geeignete Polyisocyanate sind beispielsweise in "Methoden der organischen Chemie", Houben-Weyl, Band 14/2, 4. Auflage, Georg Thieme Verlag, Stuttgart 1963, Seite 61 bis 70, und von W. Siefken, Liebigs Annalen der Chemie, Band 562, Seiten 75 bis 136, beschrieben. Beispielsweise geeignet sind isocyanatgruppenhaltige Polyurethanpräpolymere, die durch Reaktion von Polyolen mit einem Überschuß an Polyisocyanaten hergestellt werden können und die bevorzugt niederviskos sind.
Weitere Beispiele geeigneter Polyisocyanate sind Isocyanurat-, Biuret-, Allophanat-, Iminooxadiazindon-, Urethan-, Harnstoff- und/oder Uretdiongruppen aufweisende Polyisocyanate. Urethangruppen aufweisende Polyisocyanate werden beispielsweise durch Umsetzxmg eines Teils der Isocyanatgruppen mit Polyolen, wie z.B. Trimethylolpropan xmd Glycerin, erhalten. Vorzugsweise werden aliphatische oder cycloaliphatische Polyisocyanate, insbesondere Hexamethylendusocyanat, dimerisiertes und trimerisiertes
Hexamethylendusocyanat, Isophorondiisocyanat, 2-Isocyanatopro- pylcyclohexylisocyanat, Dicyclohexylmethan-2,4'-diisocyanat,
Dicyclohexylmethan-4,4'-diisocyanat oder 1 ,3-Bis(isocyanatomethyl)cyclohexan, Diisocyanate, abgeleitet von Dimerfettsäuren, wie sie unter der Handelsbezeichnung DDI 1410 von der Firma Henkel vertrieben werden, 1,8- Diisocyanato-4-isocyanatomethyl-oktan, l,7-Diisocyanato-4-isocyanatomethyl- heptan oder 1 -Isocyanato-2-(3-isocyanatoρropyl)cyclohexan oder Mischungen aus diesen Polyisocyanaten eingesetzt.
Ganz besonders bevorzugt werden Gemische aus Uretdion- und/oder
Isocyanuratgruppen und/oder Allophanatgruppen aufweisenden Polyisocyanaten auf Basis von Hexamethylendusocyanat, wie sie durch katalytische
Oligomerisierxmg von Hexamethylendusocyanat unter Verwendung von geeigneten Katalysatoren entstehen, eingesetzt. Der Polyisocyanatbestandteil kann im übrigen auch aus beliebigen Gemischen der beispielhaft genannten freien Polyisocyanate bestehen.
Beispiele für geeignete Blockierungsmittel sind die aus der US-Patentschrift US 4,444,954 bekannten Blockierungsmittel wie
i) Phenole wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol,
Ethylphenol, t-Butylphenol, Hydroxybenzoesäure, Ester dieser Säure oder 2,5- di-tert.-Butyl-4-hydroxytoluol;
ii) Lactame, wie ε-Caprolactam, δ-Valerolactam, γ-Butyrolactam oder ß- Propiolactam;
iii) aktive methylenische Verbindungen, wie Diethylmalonat, Dimethylmalonat, Acetessigsäureethyl- oder -methylester oder Acetylaceton;
iv) Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laxxrylalkohol,
Ethylenglykolmonomethylether, Ethylenglykolmonoethylether,
Ethylenglykolmonobutylether, Diethylenglykolmonomethylether,
Diethylenglykolmonoethylether, Propylenglykolmonomethylether,
Methoxymethanol, Glykolsäure, Glykolsäureester, Milchsäure, Milchsäureester, Methylolhamstoff, Methylolmelamin, Diacetonalkohol,
Ethylenchlorohydrin, Ethyl enbromhy drin, l,3-Dichloro-2-propanol, 1,4- Cyclohexyldimethanol oder Acetocyanhydrin;
v) Mercaptane wie Butylmercaptan, Hexylmercaptan, t-Butylmercaptan, t- Dodecylmercaptan, 2-Mercaptobenzothiazol, Thiophenol,
Methylthiophenol oder Ethylthiophenol; vi) Säureamide wie Acetoanilid, Acetoanisidinamid, Acrylamid, Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;
5 vii) Imide wie Succinimid, Phthalimid oder Maleimid;
vüi) Amine wie Diphenylamin, Phenylnaphthylamin, Xylidin, N- Phenylxylidin, Carbazol, Anilin, Naphthylamin, Butylamin, Dibutylamin oder Butylphenylamin;
!0 ix) Imidazole wie Imidazol oder 2-Ethylimidazol;
x) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenhamstoff, Ethylen- thioharnstoff oder 1,3-Diphenylhamstoff; 15 xi) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2-Oxazolidon;
xii) Imine wie Ethylenin in;
20 xüi) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim, Methylethylketoxim, Diisobutylketoxim, Diacetylmonoxim,
Benzophenonoxim oder Chlorohexanonoxime;
xiv) Salze der schwefeligen Säure wie Natriumbisulfit oder Kaliumbisulfit; 5 xv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder
xvi) substituierte Pyrazole, Ketoxime, Imidazole oder Triazole; sowie 0 Gemische dieser Blockierungsmittel, insbesondere Dimethylpyrazol xmd Triazole, Malonester und Acetessigsäureester oder Dimethylpyrazol xmd Succinimid.
Als Vernetzxmgsmittel (a7) können auch Tris(alkoxycarbonylamino)triazine der allgemeinen Formel 5
Figure imgf000026_0001
eingesetzt werden.
Beispiele geeigneter Tris(alkoxycarbonylammo)triazine (a7) werden in den Patentschriften US 4,939,213, US 5,084,541 oder der EP 0 624 577 AI beschrieben. Insbesondere werden die Tris(methoxy-, Tris(butoxy- und/oder Tris(2-ethy_hexoxycarbonylar___ino)triazine verwendet.
Von Vorteil sind die Methyl-Butyl-Mischester, die Butyl-2-Ethylhexyl-Mi- schester xmd die Butylester. Diese haben gegenüber dem reinen Methylester den Vorzug der besseren Löslichkeit in Polymerschmelzen und neigen auch weniger zum Auskristallisieren.
Insbesondere sind Aminoplastharze, beispielsweise Melaminharze, als
Vemetzxmgsmittel (a7) verwendbar. Hierbei kann jedes für transparente
Decklacke oder Klarlacke geeignete Aminoplastharz oder eine Mischung aus solchen Aminoplastharzen verwendet werden. Insbesondere kommen die üblichen xmd bekannten Aminoplastharze in Betracht, deren Methylol- und/oder Methoxymethylgruppen z. T. mittels Carbamat- oder Allophanatgruppen defunk- tionalisiert sind. Vemetzxmgsmittel dieser Art werden in den Patentschriften US 4,710,542 und EP 0 245 700 Bl sowie in dem Artikel von B. Singh und Mitarbeiter "Carbamylmethylated Melamines, Novel Crosslinkers for the Coatings Industry" in Advanced Organic Coatings Science and Technology Seiles, 1991, Band 13, Seiten 193 bis 207, beschrieben. Überdies können die Aminoplastharze auch als Bindemittel (al l) in der Basisfarbe (AI) verwendet werden.
Weitere Beispiele geeigneter Vemetzungsmittel (a7) sind beta- Hydroxyalkylamide wie N,N,N',N'-Tetrakis(2-hydroxyethyl)adipamid oder N,N,N,,N'-Tetrakis(2-hydroxypropyl)-adipamid.
Weitere Beispiele geeigneter Vemetzxmgsmittel (a7) sind Siloxane, insbesondere Siloxane mit mindestens einer Trialkoxy- oder Dialkoxysilangruppe.
Weitere Beispiele geeigneter Vernetzungsmittel (a7) sind Polyanhydride, insbsondere Polysuccinsäureanhydrid.
Ansonsten kann der erfindungsgemäße Beschichtungsstoff organische Lösemittel (a8) enthalten, welche nicht mit Isocyanatgruppen reagieren. Als Lösemittel dieser Art sind insbesondere Ester, Ketone, Ketoester, Glykolether wie Ethylen-, Propylen- oder Butylenglykolether, Glykolester wie Ethylen-, Propylen- oder Butylenglykolester oder Glykoletherester wie Ethoxyethylpropionat und Isopropoxypropanol geeignet. Außerdem kommen aliphatische und aromatische Lösemittel wie Dipenten, Xylol oder ShellsolR in Betracht.
Der erfindungsgemäß zu verwendende Beschichtungsstoff kann in unterschiedlichen Formen vorliegen. So kann er bei entsprechender Wahl seiner vorstehend beschriebenen Bestandteile als flüssiger Beschichtxmgsstoff vorliegen, welcher im wesentlichen frei von organischen Lösemitteln ist. Indes kann es sich bei dem Beschichtungsstoff um eine Lösung oder Dispersion der vorstehend beschriebenen Bestandteile in organischen Lösemitteln (a8) handeln. Es ist ein weiterer Vorteil des erfindungsgemäßen Beschichtxmgsstoffs, daß hierbei Feststoffgehalte bis zu mehr als 80 Gew.-%, bezogen auf den Beschichtungsstoff, eingestellt werden können.
Des weiteren kann der Beschichtungsstoff bei entsprechender Wahl seiner vorstehend beschriebenen Bestandteile ein Pulverklarlack sein. Zu diesem Zweck wird der Bestandteil (al) vorteilhafterweise mikroverkapselt. Dieser Pulverklarlack kann dann gegebenenfalls in Wasser dispergiert werden, wodurch ein Pulverslurry-Klarlack resultiert.
Vorteilhafterweise ist der erfindungsgemäße Beschichtxmgsstoff ein Zwei- oder Mehrkomponentensystem, bei dem zumindest der Bestandteil (al) getrennt von den übrigen Bestandteilen gelagert und erst kurz vor der Verwendung zu diesen hinzugegeben wird. In diesem Falle kann der erfindxmgsgemäße Beschichtxmgsstoff auch wäßrig sein, wobei der Bestandteil (al) vorzugsweise in einer ein Lösemittel (a8) enthaltenden Komponente vorliegt.
Der erfindungsgemäße Beschichtungsstoff dient der Herstellung der erfindungsgemäßen Klarlackierungen und Mehrschichtlackierungen auf grundierten oder ungrundierten Substraten.
Als Substrate kommen hierbei alle zu lackierenden Oberflächen, die einer kombinierten Härtung unter Anwendung von Hitze xmd aktinischer Strahlxmg zugänglich sind, in Betracht, das sind z. B. Metalle, Kunststoffe, Holz, Keramik, Stein, Textil, Leder, Glas, Glasfasern, Glas- xmd Steinwolle, mineral- xmd harzgebundene Baustoffe, wie Gips- und Zementplatten oder Dachziegel. Demnach ist der erfindungsgemäße Beschichtungsstoff auch für Anwendungen außerhalb der Automobillackierung geeignet, insbesondere für die Lackierung von Möbeln und die industrielle Lackierung, inklusive Coil Coating und Container Coating. Im Rahmen der industriellen Lackierungen eignet er sich für die Lackierimg praktisch aller Teile für den privaten oder industriellen Gebrauch wie Radiatoren, Haushaltsgeräte, Kleinteile aus Metall, Radkappen oder Felgen.
Mit dem erfindungsgemäßen Beschichtungsstoff können insbesondere auch grundierte oder nicht grundierte Kunststoffe wie z. B. ABS, AMMA, ASA, CA, CAB, EP, UF, CF, MF, MPF, PF, PAN, PA, PE, HDPE, LDPE, LLDPE, UHMWPE, PET, PMMA, PP, PS, SB, PUR, PVC, RF, SAN, PBT, PPE, POM, PUR-RIM, SMC, BMC, PP-EPDM und UP (Kurzbezeichnungen nach DIN 7728T1) lackiert werden. Die zu lackierenden Kunststoffe können selbstverständlich auch Polymerblends, modifizierte Kunststoffe oder faserverstärkte Kunststoffe sein. Er kann auch für die Beschichtung von üblicherweise im Fahrzeugbau, insbesondere Kraftfahrzeugbau, eingesetzten Kunststoffe zum Einsatz kommen. Im Falle von nichtfimktionalisierten und/oder unpolaren Substratoberflächen können diese vor der Beschichtung in bekannter Weise einer Vorbehandlung, wie mit einem Plasma oder mit Beflammen, unterzogen werden.
Hierbei kann im Rahmen des erfindungsgemäßen Lackierverfahrens eine oder mehrere Klarlackschicht(en) appliziert werden. Werden mehrere
Klarlackschichten appliziert, können erfindungsgemäße Beschichtungsstoffe unterschiedlicher stofflicher Zusammensetzung verwendet werden. In den allermeisten Fällen wird indes das angestrebte Eigenschaftsprofil der erfindungsgemäßen Klarlackierungen und Mehrschichtlackierungen mit einer Klarlackschicht erzielt.
Die Klarlackschicht wüd in einer Naßschichtdicke aufgetragen, daß nach der
Aushärtung in den fertigen erfindungsgemäßen Klarlackierungen und Mehrschichtlackierungen eine Trockenschichtdicke der Versiegelung von 10 bis 100, vorzugsweise 15 bis 75, besonders bevorzugt 20 bis 55 xmd insbesondere 20 bis 35μm resultiert.
Die Applikation des erfindungsgemäßen Beschichtxmgsstoffs zum Zwecke der Herstellung der Klarlackschicht kann durch alle üblichen Applikationsmethoden, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen oder Walzen erfolgen. Vorzugsweise werden Spritzapplikationsmethoden angewandt, wie zum Beispiel Druckluftspritzen, Airless-Spritzen, Hochrotation, elektrostatischer Sprühauftrag (ESTA), gegebenenfalls verbunden mit Heißspritzapplikation wie zum Beispiel Hot-Aü - Heißspritzen. Die Applikation kann bei Temperaturen von max. 70 bis 80 °C durchgeführt werden, so daß geeigneter Applikationsviskositäten erreicht werden, ohne daß bei der kurzzeitig einwirkenden thermischen Belastung eine Veränderung oder Schädigungen des Beschichtungsstoffs und seines gegebenenfalls wiederaufzubereitenden Overspray eintreten. So kann das Heißspritzen so ausgestaltet sein, daß der Beschichtungsstoff nur sehr kurz in der oder kurz vor der Spritzdüse erhitzt wüd.
Die für die Applikation verwendete Spritzkabine kann beispielsweise mit einem gegebenenfalls temperierbaren Umlauf betrieben werden, der mit einem geeigneten Absorptionsmedium für den Overspray, z. B. dem erfindungsgemäßen Beschichtxmgsstoff selbst, betrieben wird.
Bevorzugt wird die Applikation bei Beleuchtung mit sichtbarem Licht einer Wellenlänge von über 550 μm oder unter Lichtausschluß durchgeführt. Hierdurch werden eine stoffliche Änderung oder Schädigung des Beschichtungsstoffs und des Overspray vermieden.
Selbstverständlich können die vorstehend beschriebenen Applikationsmethoden auch bei der Herstellung der Basislackierung der erfindungsgemäßen Mehrschichtlackierungen im Rahmen des erfindungsgemäßen Lackierverfahrens angewandt werden. Erfindungs gemäß wird die Klarlackschicht nach ihrer Applikation thermisch und mit aktinischer Strahlung ausgehärtet.
Die Aushärtung kann nach einer gewissen Ruhezeit erfolgen. Sie kann eine Dauer von 30 s bis 2 h, vorzugsweise 1 min bis 1 h und insbesondere 1 min bis 30 min haben. Die Ruhezeit dient beispielsweise zum Verlauf und zur Entgasung der Klarlackschicht oder zum Verdunsten von flüchtigen Bestandteilen wie Lösemittel, Wasser oder Kohlendioxid, wenn der Beschichtungsstoff mit überkritischem Kohlendioxid als Lösemittel appliziert worden ist. Die Ruhezeit kann durch die Anwendung erhöhter Temperaturen bis 80 °C unterstützt und/oder verkürzt werden, sofern hierbei keine Schädigungen oder Veränderungen der Klarlackschicht eintreten, etwa eine vorzeitige Vernetzung.
Erfindungs gemäß erfolgt die Aushärtung mit aktinischer Strahlxmg mit UV- Strahlung oder Elektronenstrahlen. Gegebenenfalls kann sie mit aktinischer Strahlxmg von anderen Strahlenquellen durchgeführt oder ergänzt werden. Im Falle von Elektronenstrahlen wird vorzugsweise unter Inertgasatmosphäre gearbeitet. Dies kann beispielsweise durch Zuführen von Kohlendioxid und/oder Stickstoff direkt an die Oberfläche der Klarlackschicht gewährleistet werden.
Auch im Falle der Härtung mit UV-Strahlung kann, um die Bildung von Ozon zu vermeiden, unter Inertgas gearbeitet werden.
Für die Härtimg mit aktinischer Strahlxmg werden die üblichen xmd bekannten Strahlenquellen und optischen Hilfsmaßnahmen angewandt. Beispiele geeigneter Strahlenquellen sind Quecksilberhoch- oder -niederdruckdampflampen, welche gegebenenfalls mit Blei dotiert sind, um ein Strahlenfenster bis zu 385 μm zu öffnen, oder Elektronenstrahlquellen. Deren Anordnung ist im Prinzip bekannt und kann den Gegebenheiten des Werkstücks und der Verfahrensparameter angepaßt werden. Bei kompliziert geformten Werkstücken, wie sie für Automobilkarosserien vorgesehen sind, können die nicht direkter Strahlxmg zugänglichen Bereiche (Schattenbereiche) wie Hohlräume, Falzen und anderen konstruktionsbedingte Hinterschneidungen mit Punkt-, Kleinflächen- oder Rxmdumstrahlem verbunden mit einer automatischen Bewegungseinrichtung für das Bestrahlen von Hohlräumen oder Kanten (partiell) ausgehärtet werden.
Das Substrat kann bei der Härtung der hierauf befindlichen Schicht(en) aus dem erfindungsgemäßen Beschichtxmgsstoff mit aktinischer Strahlxmg ruhen oder an der Strahlungsquelle mit einer geeigneten Geschwindigkeit vorbeigeführt werden. Wird das Substrat bewegt, erweist sich eine Vortriebsgeschwindigkeit im Bereich von von 1 bis 10 m/min, besonders bevorzugt 2 bis 8m/min xmd insbesondere 3 bis 6 m/min als vorteilhaft. Vorzugsweise weisen hierbei die UV-Lampen 100 bis 200 w/cm, besonders bevorzugt 120 bis 190 w/cm und insbesondere 140 bis 180 w/cm auf. Unabhängig davon, ob das Substrat bewegt wird oder ruht, erweist sich eine Strahlxmgsdosis im Bereich von 500 bis 5.000 mJ/cm2, besonders bevorzugt von 1.000 bis 4.500 mJ/cm2 xmd insbesondere von 1.500 bis 4.000 mJ/cm2 als vorteilhaft.
Die Anlagen und Bedingungen diese Härtungsmethoden werden beisppielsweise in R. Holmes, UN. and E.B. Curing Formulations for Printing Inks, Coatings and Paints, SITA Technology, Academic Press, London, United Kindom 1984, beschrieben.
Hierbei kann die Aushärtung stufenweise erfolgen, d. h. durch mehrfache Belichtung oder Bestrahlung mit aktinischer Strahlung. Dies kann auch alternierend erfolgen, d. h., daß abwechselnd mit UV-Strahlxmg und Elektronenstrahlxmg gehärtet wird.
Auch die thermische Härtung weist keine methodischen Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten Methoden wie Erhitzen in einem Umluftofen oder Bestrahlen mit IR-Lampen. Wie bei der Härtimg mit aktinischer Strahlxmg kann auch die thermische Härtung stufenweise erfolgen. Vorteilhafterweise erfolgt die thermische Härtung bei einer Temperatur von 50 bis 100 °C, besonders bevorzugt 80 bis 100 °C und insbesondere 90 bis 100 °C während einer Zeit von 1 min bis zu 2 h, besonders bevorzugt 2 min bis zu 1 h und insbesondere 3 bis 30 min. Werden Substrate verwendet, welche thermisch stark' belastbar sind, kann die thermische Vernetzung auch bei Temperaturen oberhalb 100 °C durchgeführt werden. Im allgemeinen empfiehlt es sich, hierbei Temperaturen von 180 °C, vorzugsweise 160 °C und insbesondere 140 °C nicht zu überschreiten.
Die thermische Härtung und Härtung mit aktinischer Strahlung werden zusammen angewandt. Dabei können diese Methoden gleichzeitig oder alternierend eingesetzt werden. Werden die beiden Härtungsmethoden alternierend verwendet, kann beispielsweise mit der thermischen Härtung begonnen und mit der Härtung mit aktinischer Strahlxmg geendet werden. In anderen Fällen kann es sich als vorteilhaft erweisen, mit der Härtung mit aktinischer Strahlung zu beginnen und hiermit zu enden. Der Fachmann kann die Härtungsmethode, welche für den jeweiligen Einzelfall am vorteilhaftesten ist aufgrund seines allgemeinen Fachwissens gegebenenfalls unter Zuhilfenahme einfacher Vorversuche ermitteln. In den allermeisten Fällen erweist es sich als vorteilhaft, zunächst die Härtung mit aktinischer Strahlung und anschließend die thermische Härtung durchzuführen.
Die erfindungsgemäßen Klarlackierxmgen können auch Bestandteil der erfindxmgsgemäßen Mehrschichtlackierungen sein.
Zu diesem Zweck wird der erfindungsgemäße Beschichtxmgsstoff nach dem erfindungsgemäßen Lackierverfahren nicht auf die grundierten oder ungrundierten Substrate, sondern auf mindestens eme hierauf befindliche färb- und/oder effektgebende Basislackschicht aus einem thermisch sowie gegebenenfalls mit aktinischer Strahlung härtbaren pigmentierten Beschichtungsstoff appliziert. Erfindungsgemäß ist es von Vorteil, die erfindungsgemäßen Beschichtungsstoffe nach dem Naß-in-naß-V erfahren auf die getrocknete oder abgelüftete, indes nicht ausgehärtete Basislackschicht aufzutragen, wonach die resultierende Klarlackschicht und die Basislackschicht gemeinsam thermisch und mit aktinischer Strahlxmg gehärtet werden.
Als Beschichtxmgsstoff für die Herstellung der Basislackschicht kommen die üblichen und bekannten Basislacke, insbesondere Wasserbasislacke, in Betracht.
Beispiele geeigneter Wasserbasislacke sind aus den Patentschriften EP 0 089 497 AI, EP 0 256 540 AI, EP 0 260 447 AI, EP 0 297 576 AI, WO 96/12747, EP 0 523 610 AI, EP 0 228 003 AI, EP 0 397 806 AI, EP 0 574 417 AI, EP 0 531 510 AI, EP 0 581 211 AI, EP 0 708 788 AI, EP 0 593 454 AI, DE 43 28 092 AI, EP 0 299 148 AI, EP 0 394 737 AI, EP 0 590 484 AI, EP 0 234 362 AI, EP 0 234 361 AI, EP 0 543 817 AI, WO 95/14721, EP 0 521 928 AI, EP 0 522 420 AI, EP 0 522 419 AI, EP 0 649 865 AI, EP 0 536 712 AI, EP 0 596 460 AI, EP 0 596 461 AI, EP 0 584 818 AI, EP 0 669 356 AI, EP 0 634 431 AI, EP 0 678 536 AI, EP 0 354 261 AI, EP 0 424 705 AI, WO 97/49745, WO 97/49747, EP 0 401 565 AI, EP 0 730 613 Bl oder WO 95/14721 bekannt.
Die erfindungsgemäßen Klarlackierungen und Mehrschichtlackierungen weisen eine gute Kratzfestigkeit, Zwischenschichthaftxmg, Witterungsstabilität und Chemikalienstabilität, ein hervorragendes optisches Eigenschaftsprofil sowie einen außerordentlich hohen Reflow auf.
Beispiel 1
Die Herstellung einer erfindungsgemäßen Mehrschichtlackierung
Auf mit einem handelsüblichen Elektrotauchlack kathodisch beschichteten Stahltafeln (Elektrotauchlackierung mit einer Schichtdicke von 18 - 22 μm) wur- den mit einer Becherpistole zunächst ein handelsüblicher Füller von BASF Coatings AG appliziert xmd eingebrannt. Es resultierte eine Füllerschicht mit einer Schichtdicke von 35 bis 40 μm. Anschließend wurde auf den Füller in gleicher Weise zu Zwecken der besseren Beurteüung der optischen Eigenschaften der erfindungsgemäßen Klarlackschicht ein schwarzer Wasserbasislack der Firma BASF Coatings AG appliziert xmd während 10 min bei 80 °C vorgetrocknet. Der Wasserbasislack wurde hierbei in einer Naßschichtdicke appliziert, daß nach seiner vollständigen Aushärtung eine Trockenschichtdicke von 13,5 bis 15 μm resultierte.
Auf die Basislackschicht wurde naß-in-naß ein thermisch xmd mit aktinischer Strahlung härtbarer Beschichtxmgsstoff in einer Naßschichtdicke appliziert, daß nach der vollständigen Aushärtung der Klarlackschicht eine Schichtdicke von 35 μm resultierte. Der Beschichtungsstoff bestand aus 136 Gewichtsteilen eines aliphatischen Urethanacrylats auf der Basis des Isocyanurats von Hexamethylendusocyanat, welches 12,5 Gew.-% Isocyanatgruppen enthielt und einer mittlere Funktionalität bezüglich der Acrylatgruppen von 3,5 aufwies, 47,9 Gewichtsteilen 2,4- Diethyloctandiol-1,5, 13,6 Gewichtsteile eines handelsüblichen Photoinitiators (Irgacure® 184 der Firma CIBA AG), 1,36 Gewichtsteilen eines handelsüblichen Verlaufmittels auf Siliconbasis, 1,36 Gewichtsteile emes handelsüblichen Entschäumers (BYK® 020 der Firma Byk) und 20 Gewichtsteile Butylacetat.
Die resultierende Basislack- und Klarlackschicht wurden nach einer Ruhezeit von 6 min bei 50 °C mit UV-Strahlxmg (3.000 mJ/cm2) gehärtet xmd anschließend während 45 min bei 160 °C eingebrannt.
Die Haftung der erfindungsgemäßen Mehrschichtlackierung wurde nach 24 Stunden Lagerung bei Raumtemperatur nach dem Gitterschnittest nach DIN 53151 (2 mm) [Note 0 bis 5] ermittelt. Es erfolgte keine Enthaftung: Note GT0. Die Kratzfestigkeit der Mehrschichtlackierung auf den Prüftafeln wurde nach zweiwöchiger Lagerung bei Raumtemperatur mit Hilfe des in Fig. 2 auf Seite 28 des Artikels von P. Betz und A. Bartelt, Progress in Organic Coatings, 22 (1 93), Seiten 27 - 37, beschriebenen BASF-Bürstentests, der allerdings bezüglich des verwendeten Gewichts (2000 g statt der dort genannten 280 g) abgewandelt wurde, folgendermaßen beurteilt:
Bei dem Test wurde die Lackoberfläche mit einem Siebgewebe, welches mit einer Masse belastet wurde, geschädigt. Das Siebgewebe und die Lackoberfläche wurden mit einer Waschmittel-Lösung reichlich benetzt. Die Prüftafel wurde mittels eines Motorantriebs in Hubbewegungen unter dem Siebgewebe vor- und zurückgeschoben.
Der Prüfkörper war mit Nylon-Siebgewebe (Nr. 11, 31 μm Maschenweite, Tg 50 °C) bespanntes Radiergummi (4,5 x 2,0 cm, breite Seite senkrecht zur Kratzrichtung). Das Auflagegewicht betrugt 2000 g.
Vor jeder Prüfung wurde das Siebgewebe erneuert, dabei war die Laufrichtxmg der Gewebemaschen parallel zur Kratzrichtung. Mit einer Pipette wurde ca. 1 ml einer frisch aufgerührten 0,25%igen Persil-Lösung vor dem Radiergummi aufgebracht. Die Umdrehungszahl des Motors wurde so eingestellt, daß in einer Zeit von 80 s 80 Doppelhübe ausgeführt wurden. Nach der Prüfung wurde die verbleibende Waschflüssigkeit mit kaltem Leitungswasser abgespült und die Prüftafel mit Druckluft trockengeblasen. Gemessen -wurde der Glanz nach DIN 67530 vor und nach Beschädigung (Meßrichtung senkrecht zur Kratzrichtung), wobei die folgenden Ergebnisse erhalten wurden:
Ausgangsglanz: 86
Glanz nach Belastung: 63 Glanz nach zweistündiger
Lagerung bei 60 °C: 83 Die Ergebnisse belegen die gute Kratzfestigkeit xmd den außerordentlich hohen Reflow der erfindungsgemäßen Mehrschichtlackierung.
In ihrer Chemikalienbeständigkeit entsprach die erfindungsgemäße Mehrschichtlackierung den Mehrschichtlackiemngen, welche Mithilfe von üblichen und bekannten Zweikomponenten(2K)-Klarlacken hergestellt wurden.

Claims

Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine VerwendungPatentansprüche
1. Thermisch xmd mit aktinischer Strahlxmg härtbarer Beschichtungsstoff, enthaltend
(al) mindestens einen Bestandteil mit
(al l) mindestens zwei ftinktionellen Gruppen, welche der Vernetzung mit aktinischer Strahlung dienen, und
(al2) mindestens einer funktionellen Gruppe, welche mit den
Hydroxyl- und/oder Thiolgruppen (a21) im Bestandteil (a2) thermische Vernetzungsreaktionen eingehen kann,
und
(a2) mindestens ein verzweigtes, cyclisches und/oder acyclisches C9- C16-Alkan, das mit mindestens zwei Hydroxyl- oder Thiolgruppen oder mindestens einer Hydroxyl- xmd mindestens einer Thiolgruppe (a21) funktionalisiert ist.
2. Der Beschichtxmgsstoff nach Ansprach 1, dadurch gekennzeichnet, daß er zusätzlich eine oder mehrere der Komponenten
(a3) mindestens einen Photoinitiator,
(a4) mindestens einen Initiator der thermischen Vernetzung, (a5) mindestens einen mit aktinischer Strahlxmg und/oder thermisch härtbaren Reaktiwerdünner,
(a6) mindestens ein Lackadditiv,
(a7) mindestens einen thermisch härtbaren Bestandteil und oder
(a8) mindestens ein organisches Lösemittel
enthält.
3. Der Beschichtungsstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß es sich bei den funktionellen Grappen (al l) um olefinisch ungesättigte Gruppen und/oder Epoxidgruppen, insbesondere olefinisch ungesättigte Grappen, und bei den funktionellen Grappen (al2) um
Isocyanatgruppen handelt.
4. Der Beschichtungsstoff nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es sich bei dem Bestandteil (al) um ein Urethan(meth)acrylat und/oder Polyester(meth)acrylat handelt.
5. Der Beschichtungsstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das funktionalisierte Alkan (a2) bei Raumtemperatur flüssig ist.
6. Der Beschichtxmgsstoff nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das .funktionalisierte Alkan (a2) einen Siedepxmkt von über 200 °C hat.
7. Der Beschichtungsstoff nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das funktionalisierte Alkan (a2) acyclisch ist.
8. Der Beschichtxmgsstoff nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das ftinktionalisierte Alkan (a2) primäre xmd/oder sekundäre, insbesondere primäre xmd sekundäre, Hydroxyl- xmd/oder Thiolgruppen aufweist.
9. Der Beschichtungsstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es sich bei dem funktionalisierten Alkan (a2) um ein Polyol (a2) handelt.
10. Der B eschichtungsstoff nach Ansprach 9 , dadurch gekennzeichnet, daß die Polyole (a2) Diole xmd/oder Triole (a2) sind.
11. Der Beschichtungsstoff nach Ansprach 10, dadurch gekennzeichnet, daß die Polyole (a2) stellungsisomere Dialkyloctandiole, insbesondere
Diethyloctandiole, sind.
12. Der Beschichtungsstoff nach Ansprach 11, dadurch gekennzeichnet, daß das Polyol (a2) 2,4-Diethyl-octandiol-l,5 enthält oder hieraus besteht.
13. Die Verwendung des Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 12 in der Kxaiff-dirzeugserienlackierung, der Kraftfal-irzeugreparaturlackierang, der Kunststofflackierung, der Möbellackierung xmd der industriellen Lackierung, inklusive Coil Coatmgs und Container Coatings zur Herstellung von Klarlackschichten und von färb- und/oder effektgebenden Mehrschichtlackierangen.
14. Die Verwendung des Beschichtungsstoffs gemäß einem der Ansprüche 1 bis 12 zur Herstellung emer Klarlackierung oder einer färb- und/oder effektgebenden Mehrschichtlackierung, wobei man mindestens eine
Klarlackschicht aus einem mit aktinischer Strahlxmg und thermisch härtbaren Beschichtungsstoff gemäß einem der Ansprüche 1 bis 12 auf die Oberfläche eines grundierten oder ungrundierten Substrats oder naß-in-naß auf die Oberfläche einer Basislackschicht appliziert und gegebenenfalls gemeinsam mit der Basislackschicht aushärtet.
PCT/EP2000/004807 1999-05-29 2000-05-26 Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung WO2000073395A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50003129T DE50003129D1 (de) 1999-05-29 2000-05-26 Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung
BR0011059A BR0011059A (pt) 1999-05-29 2000-05-26 Material de revestimento endurecìvel termicamente e com radiação actìnica e sua utilização
JP2001500714A JP2003501512A (ja) 1999-05-29 2000-05-26 熱硬化可能および化学線で硬化可能な被覆材料ならびにその使用
US09/926,532 US6716891B1 (en) 1999-05-29 2000-05-26 Coating material that can be cured thermally or by actinic radiation, and its use
EP20000929556 EP1190004B1 (de) 1999-05-29 2000-05-26 Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19924674A DE19924674C2 (de) 1999-05-29 1999-05-29 Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19924674.2 1999-05-29

Publications (1)

Publication Number Publication Date
WO2000073395A1 true WO2000073395A1 (de) 2000-12-07

Family

ID=7909602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004807 WO2000073395A1 (de) 1999-05-29 2000-05-26 Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung

Country Status (7)

Country Link
US (1) US6716891B1 (de)
EP (1) EP1190004B1 (de)
JP (1) JP2003501512A (de)
BR (1) BR0011059A (de)
DE (2) DE19924674C2 (de)
ES (1) ES2204596T3 (de)
WO (1) WO2000073395A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954680B2 (en) 2001-07-13 2005-10-11 Siemens Aktiengesellschaft Method and system for the electronic provision of services for machines via a data communication link
US7098257B2 (en) * 2001-08-16 2006-08-29 Heinz-Peter Rink Coating materials that can be cured thermally and by actinic radiation, and the use thereof
US7312255B2 (en) * 2001-03-05 2007-12-25 Chemetall Gmbh Water-based coating mixture, method for application of corrosion protection layer with said mixture, substrates coated thus and use thereof
US7713445B2 (en) 2002-04-20 2010-05-11 Chemetall Gmbh Mixture for applying a non-corrosive, thin polymer coating which can be shaped in a low-abrasive manner, and method for producing the same
EP2767564B1 (de) 2007-08-17 2016-10-05 PPG Industries Ohio Inc. Klarlackzusammensetzung
EP2183298B1 (de) 2007-08-17 2017-10-04 PPG Industries Ohio, Inc. Verfahren zur herstellung einer mehrlagigen beschichtung mit strahlungshärtbaren polyen-/polythiolbeschichtungszusammensetzungen

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10106566A1 (de) 2001-02-13 2002-08-22 Basf Coatings Ag Von flüchtigen organischen Stoffen im wesentlichen oder völlig freier wäßriger Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10113884B4 (de) * 2001-03-21 2005-06-02 Basf Coatings Ag Verfahren zum Beschichten mikroporöser Oberflächen und Verwendung des Verfahrens
DE10115505B4 (de) * 2001-03-29 2007-03-08 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare wäßrige Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
US6589411B1 (en) * 2001-05-10 2003-07-08 E.I. Du Pont De Nemours And Company Electrodeposition coating process
DE10130069A1 (de) * 2001-06-21 2003-01-16 Basf Coatings Ag Physikalisch oder thermisch und/oder mit aktinischer Strahlung härtbare, lösemittelhaltige Gemische, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10130972C1 (de) * 2001-06-27 2002-11-07 Basf Coatings Ag Verfahren zur Herstellung von Beschichtungen aus thermisch und mit aktinischer Strahlung härtbaren Beschichtungsstoffen und mit dem Verfahren herstellbare Lackierungen
DE10140155A1 (de) * 2001-08-16 2003-03-06 Basf Coatings Ag Thermisch sowie thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoffe und ihre Verwendung
DE10140145A1 (de) * 2001-08-16 2003-03-06 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbare Beschichtungsstoffe und ihre Verwendung
US6835759B2 (en) 2001-08-28 2004-12-28 Basf Corporation Dual cure coating composition and processes for using the same
US6852771B2 (en) 2001-08-28 2005-02-08 Basf Corporation Dual radiation/thermal cured coating composition
US6699942B2 (en) * 2001-09-14 2004-03-02 Ppg Industries Ohio, Inc. Powder coating compositions demonstrating improved mar resistance
DE10202819C1 (de) * 2002-01-25 2003-08-14 Basf Coatings Ag Verwendung von polyhydroxyfunktionalisierten Alkanen als Haftvermittler in Verbunden aus Beschichtung, Klebschicht und Scheibe sowie Verbunde dieser Art, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10206225C1 (de) * 2002-02-15 2003-09-18 Basf Coatings Ag Verfahren zur Herstellung farb- und/oder effektgebender Mehrschichtlackierungen
JP2003290707A (ja) * 2002-03-29 2003-10-14 Honda Motor Co Ltd 熱硬化性/光硬化性二成分系塗料組成物およびこれを用いた塗装方法
DE10248324A1 (de) * 2002-10-17 2004-05-06 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und Verfahren zum Beschichten miktoporöser Oberflächen
US7057264B2 (en) * 2002-10-18 2006-06-06 National Starch And Chemical Investment Holding Corporation Curable compounds containing reactive groups: triazine/isocyanurates, cyanate esters and blocked isocyanates
US6908644B2 (en) * 2003-02-04 2005-06-21 Ford Global Technologies, Llc Clearcoat insitu rheology control via UV cured oligomeric additive network system
DE102004026423A1 (de) * 2004-05-29 2005-12-22 Basf Coatings Ag Integriertes Dual-Cure-Beschichtungsstoffsystem und seine Verwendung für die Innen- und Außenbeschichtung komplex geformter dreidimensionaler Substrate
US7909263B2 (en) * 2004-07-08 2011-03-22 Cube Technology, Inc. Method of dispersing fine particles in a spray
KR101320815B1 (ko) * 2004-12-21 2013-10-21 미츠비시 폴리에스테르 필름 인코포레이티드 퍼옥사이드 경화제를 사용한 인라인 열경화성 코팅
US7264872B2 (en) * 2004-12-30 2007-09-04 3M Innovative Properties Company Durable high index nanocomposites for AR coatings
US7491441B2 (en) * 2004-12-30 2009-02-17 3M Innovative Properties Company High refractive index, durable hard coats
US7297810B2 (en) * 2004-12-30 2007-11-20 3M Innovative Properties Company High refractive index monomers for optical applications
TWI379849B (en) * 2005-09-20 2012-12-21 Eternal Chemical Co Ltd Radiation-curable alkoxy silanized hyperbranched polyester acrylates and preparation thereof
US20070071965A1 (en) * 2005-09-23 2007-03-29 Ecology Coatings, Inc. Compositions for impregnating paper products and natural fabrics and methods, processes and assemblages therefor
US7872057B2 (en) * 2005-10-18 2011-01-18 Perstorp Specialty Chemicals Ab Dual cure composition
US20070126833A1 (en) * 2005-12-06 2007-06-07 Laurin Michael M Digital printing using ultraviolet inks
DE102006009004A1 (de) * 2006-02-23 2007-09-06 Sustech Gmbh & Co. Kg Multifunktionelle sternförmige Präpolymere, deren Herstellung und Verwendung
DE102006021917A1 (de) * 2006-05-11 2007-11-15 Basf Coatings Ag Verzweigte Polyole mit im statistischen Mittel zwei oder mehr Hydroxylgruppen im Molekül, Verfahren zu ihrer Herstellung und ihre Verwendung
US20080107564A1 (en) 2006-07-20 2008-05-08 Shmuel Sternberg Medical fluid access site with antiseptic indicator
FR2904321B1 (fr) * 2006-07-25 2008-09-05 Rhodia Recherches Et Technologies Sas Composition polymerisable et/ou reticulable sous irradiation par voie cationique et/ou radicalaire
DE102006048464A1 (de) * 2006-10-11 2008-04-17 Bundesdruckerei Gmbh Haftvermittlerschicht für die Verbindung eines holographischen Datenträgers mit einem Substrat
EP2094794B1 (de) * 2006-12-04 2010-06-23 E.I. Du Pont De Nemours And Company Beschichtungszusammensetzung aus acrylpolyol
JP5118389B2 (ja) * 2007-05-26 2013-01-16 中村製作所株式会社 ワークへの凹所形成方法
DE102007028601A1 (de) * 2007-06-19 2008-12-24 Evonik Röhm Gmbh Reaktivgemisch zur Beschichtung von Formkörpern mittels Reaktionsspritzguss sowie beschichteter Formkörper
US9125973B2 (en) 2007-07-20 2015-09-08 Baxter International Inc. Antimicrobial housing and cover for a medical device
USRE47452E1 (en) 2007-07-20 2019-06-25 Baxter International Inc. Antimicrobial housing and cover for a medical device
WO2009086301A1 (en) * 2007-12-27 2009-07-09 Baxter International Inc. Radiation curable coatings
US7981986B2 (en) * 2008-04-29 2011-07-19 3M Innovative Properties Company Optical films comprising fluorenol (meth)acrylate monomer
US20090275720A1 (en) * 2008-04-30 2009-11-05 3M Innovative Properties Company Ortho-benzylphenol mono(meth)acrylate monomers suitable for microstructured optical films
US8178120B2 (en) * 2008-06-20 2012-05-15 Baxter International Inc. Methods for processing substrates having an antimicrobial coating
US8753561B2 (en) * 2008-06-20 2014-06-17 Baxter International Inc. Methods for processing substrates comprising metallic nanoparticles
US8277826B2 (en) * 2008-06-25 2012-10-02 Baxter International Inc. Methods for making antimicrobial resins
US20090324738A1 (en) * 2008-06-30 2009-12-31 Baxter International Inc. Methods for making antimicrobial coatings
US7871704B2 (en) * 2008-09-02 2011-01-18 Ppg Industries Ohio, Inc. Multi-cure compositions comprising polythiol
US20100227052A1 (en) * 2009-03-09 2010-09-09 Baxter International Inc. Methods for processing substrates having an antimicrobial coating
US20110059265A1 (en) 2009-09-09 2011-03-10 Toyota Motor Engineering & Manufacturing North America, Inc. Method for producing layered materials using long-lived photo-induced active centers
EP2598561A1 (de) * 2010-07-29 2013-06-05 Evonik Röhm GmbH Verfahren zur kratz- und abrasionsbeständigen beschichtung und physikalischen mattierung von kunststoffsubstraten, insbesondere polymethylmethacrylat, mit nanokompositlack
EP2565033B1 (de) * 2011-09-01 2016-02-10 Senosan GmbH Verbundkörper
JP6174674B2 (ja) * 2012-03-22 2017-08-02 スリーエム イノベイティブ プロパティズ カンパニー ポリメチルメタクリレート系ハードコート組成物及びコーティングされた物品
US9765178B2 (en) 2013-06-19 2017-09-19 Empire Technology Development Llc Self-writing waveguide with nanoparticles
US20150355377A1 (en) * 2014-06-06 2015-12-10 Empire Technology Development Llc Configurable optical couplers
DE102014111415A1 (de) 2014-08-11 2016-02-11 Lisa Dräxlmaier GmbH Beschichtetes substrat und verfahren zu dessen herstellung
RU2712992C1 (ru) * 2016-08-19 2020-02-03 Ксило Текнолоджиз АГ Панель с покрытием и способ изготовления панели с покрытием
US11020948B2 (en) * 2017-09-28 2021-06-01 Wilsonart Llc High pressure decorative laminate having a top layer of energy cured acrylated urethane polymer
KR102278154B1 (ko) * 2019-12-03 2021-07-16 주식회사 한솔케미칼 이중 경화형 접착제 조성물
US20220073764A1 (en) * 2020-09-08 2022-03-10 Illinois Tool Works Inc. Ultra-fast uv-cured material for repairing surface imperfections

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540884A1 (de) * 1991-10-08 1993-05-12 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Mehrschichtlackierungen unter Verwendung von radikalisch und/oder kationisch polymerisierbaren Klarlacken
EP0844286A1 (de) * 1996-12-26 1998-05-27 Morton International, Inc. Thermisch und UV härtbare Pulverlacke
DE19826715A1 (de) * 1997-07-21 1999-01-28 Basf Ag Strahlungshärtbare Verbindungen auf Basis von 2,4-Diethyloctandiol
EP0940459A2 (de) * 1998-03-06 1999-09-08 BASF Coatings Aktiengesellschaft Beschichtungsmittel und Klebstoffe, ihre Verwendung und Verfahren zu ihrer Herstellung

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025407A (en) 1971-05-05 1977-05-24 Ppg Industries, Inc. Method for preparing high solids films employing a plurality of curing mechanisms
DE2259360C2 (de) 1972-12-04 1982-06-09 Basf Ag, 6700 Ludwigshafen Verfahren zur Herstellung von dünnen Schichten auf Basis von Polyurethan-Elastomeren
US4139385A (en) 1975-06-20 1979-02-13 General Electric Company Coating method and composition using cationic photoinitiators polythio components and polyolefin components
JPS534048A (en) 1975-12-26 1978-01-14 Dainippon Toryo Co Ltd Method of forming multi-layer coating film
DE2636425A1 (de) 1976-08-13 1978-02-16 Basf Ag Haertbare ueberzugsmassen
US4128600A (en) 1977-01-14 1978-12-05 General Mills Chemicals, Inc. Interpenetrating dual cure resin compositions
US4247578A (en) 1977-01-14 1981-01-27 Henkel Corporation Interpenetrating dual cure resin compositions
US4342793A (en) 1977-01-14 1982-08-03 Henkel Corporation Interpenetrating dual cure resin compositions
NL7707669A (nl) 1977-07-08 1979-01-10 Akzo Nv Werkwijze voor het bekleden van een substraat met een stralingshardbare bekledingscompositie.
US4192762A (en) 1978-04-20 1980-03-11 Union Carbide Corporation Radiation curable urethane compositions
US4287116A (en) 1979-05-22 1981-09-01 Ici Americas Inc. Polyester urethane-containing molding compositions
US4675234A (en) 1980-10-01 1987-06-23 Tarkett Ab Radiation cured coating and process therefor
US4377457A (en) 1980-11-21 1983-03-22 Freeman Chemical Corporation Dual cure coating compositions
US4481093A (en) 1981-10-13 1984-11-06 Desoto, Inc. Ultraviolet curable basecoats for vacuum metallization
US4424252A (en) 1982-11-12 1984-01-03 Loctite Corporation Conformal coating systems
US4415604A (en) 1982-11-12 1983-11-15 Loctite Corporation Conformal coating and potting system
US4526939A (en) 1983-07-18 1985-07-02 Desoto, Inc. Thermosetting coating compositions for the sealing of fiber reinforced plastics
US4532021A (en) 1983-07-18 1985-07-30 Desoto, Inc. Adherent ultraviolet cured coatings
DE3407087C3 (de) 1984-02-27 1994-07-07 Fraunhofer Ges Forschung Verfahren und Lack zur Herstellung von kratzfesten Beschichtungen
US4607084A (en) 1984-06-11 1986-08-19 Celanese Specialty Resins, Inc. Radiation curable acrylated polyurethane oligomer compositions
US4618632A (en) 1985-02-07 1986-10-21 Westinghouse Electric Corp. UV curable high tensile strength resin composition
US4634602A (en) 1986-01-02 1987-01-06 Ppg Industries, Inc. Primer composition
US4761435A (en) 1986-10-03 1988-08-02 Desoto, Inc. Polyamine-polyene ultraviolet coatings
US5089376A (en) * 1986-12-08 1992-02-18 Armstrong World Industries, Inc. Photoimagable solder mask coating
US4786657A (en) 1987-07-02 1988-11-22 Minnesota Mining And Manufacturing Company Polyurethanes and polyurethane/polyureas crosslinked using 2-glyceryl acrylate or 2-glyceryl methacrylate
US4950696A (en) 1987-08-28 1990-08-21 Minnesota Mining And Manufacturing Company Energy-induced dual curable compositions
US4952612A (en) 1987-08-28 1990-08-28 Minnesota Mining And Manufacturing Company Energy-induced curable compositions
US4985340A (en) 1988-06-01 1991-01-15 Minnesota Mining And Manufacturing Company Energy curable compositions: two component curing agents
US5013631A (en) 1989-03-03 1991-05-07 Westinghouse Electric Corp. Ultraviolet curable conformal coatings
EP0401892A3 (de) 1989-06-09 1991-08-07 Akzo N.V. Hitzehärtbare Polyestermischungen und Überzugsmittel daraus
EP0402894B1 (de) 1989-06-16 1995-07-26 Ciba-Geigy Ag Photoresist
CA2048232A1 (en) 1990-09-05 1992-03-06 Jerry W. Williams Energy curable pressure-sensitive compositions
WO1992020719A1 (en) 1991-05-15 1992-11-26 Sokol Andrew A Finishing composition which is curable by uv light and method of using same
DE4119857A1 (de) 1991-06-17 1992-12-24 Basf Lacke & Farben Ueberzugsmittel auf der basis von carboxylgruppenhaltigen polymeren und epoxidharzen
FR2678530B1 (fr) 1991-07-05 1993-10-29 Sauron Materiel Indl Joseph Appareil portatif de redressement de tubes.
DE4122743C1 (de) 1991-07-10 1992-11-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
US5234970A (en) 1991-07-16 1993-08-10 W. R. Grace & Co.-Conn. Dual curing composition based on isocyanate trimer and use thereof
DE4215070A1 (de) 1992-05-07 1993-11-11 Herberts Gmbh Verfahren zur Herstellung von Mehrschichtlackierungen
DE4222194A1 (de) 1992-07-07 1994-01-13 Basf Lacke & Farben Verfahren zur Herstellung einer zweischichtigen Lackierung und für dieses Verfahren geeignete Pulverlacke
US5356669A (en) 1992-10-23 1994-10-18 Basf Corporation Composite color-plus-clear coating utilizing carbamate-functional polymer composition in the clearcoat
US5605965A (en) 1992-10-23 1997-02-25 Basf Corporation High gloss and/or high DOI coating utilizing carbamate-functional polymer composition
ZA937635B (en) 1992-10-23 1994-05-05 Basf Corp Curable carbamate-functional polymer composition
US5300328A (en) 1992-10-23 1994-04-05 Basf Corporation Partially-defunctionalized aminoplast curing for polymer compositions
US6103816A (en) 1992-10-30 2000-08-15 Ppg Industries Ohio, Inc. Aqueous aminoplast curable film-forming compositions providing films having resistance to acid etching
JP2672031B2 (ja) 1992-10-30 1997-11-05 ピーピージー インダストリーズ,インコーポレイテッド 耐酸エッチング性を有する塗膜を与えるアミノプラスト硬化可能な塗膜形成組成物
US5610224A (en) 1992-10-30 1997-03-11 Basf Corporation Water dispersible ionic and nonionic polyamide modified polyurethane resins for use in coating composition
TW242644B (de) 1992-10-30 1995-03-11 Ppg Industries Inc
US5409740A (en) 1992-12-18 1995-04-25 Lord Corporation Dual-cure method of forming industrial threads
FR2701268B1 (fr) 1993-02-05 1995-04-14 Atochem Elf Sa Peintures à base de poudres de polyamide destinées au revêtement de profilés PVC.
US6534187B2 (en) 1993-02-08 2003-03-18 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Coating material and process for the production of functional coatings
DE4310414A1 (de) 1993-03-31 1994-10-06 Basf Lacke & Farben Verfahren zur Herstellung einer zweischichtigen Decklackierung auf einer Substratoberfläche
US6159556A (en) 1995-05-19 2000-12-12 Basf Coatings Ag Process for preparing an aqueous powder coating dispersion and using the same
IT1276480B1 (it) 1995-07-07 1997-10-31 Fiat Auto Spa Metodo di verniciatura migliorato applicabile su elementi in materiale plastico, in particolare componenti automobilistici in
US5965213A (en) 1996-04-04 1999-10-12 Basf Coatings Ag Aqueous dispersions of a transparent powder coating
WO1998020047A1 (en) 1996-11-07 1998-05-14 H.B. Fuller Licensing & Financing, Inc. Isocyanates as reactive diluents in the preparation of polymers
DE19709560C1 (de) 1997-03-07 1998-05-07 Herberts Gmbh Überzugsmittel zur Mehrschichtlackierung und Verwendung der Überzugsmittel in einem Verfahren zur Lackierung
DE69819143D1 (de) 1997-04-08 2003-11-27 Dsm Ip Assets Bv Strahlungshärtbare bindemittelzusammensetzung mit hoher bruchdehnung und zähigkeit nach härtung
DE19716020A1 (de) 1997-04-17 1998-10-22 Basf Ag Dispersionen enthaltend ein Polyurethan und ein strahlenhärtbares Präpolymer
DE19739970A1 (de) * 1997-09-11 1999-03-18 Basf Ag Strahlungshärtbare Zubereitungen auf der Basis aliphatischer, Urethangruppen enthaltender Prepolymere mit ethylenisch ungesättigten Doppelbindungen
US6177535B1 (en) 1997-09-22 2001-01-23 Basf Aktiengesellchaft Preparing radiation-curable, urethane-functional prepolymers
DE19853813A1 (de) * 1997-12-10 1999-06-17 Henkel Kgaa Klebstoff mit mehrstufiger Aushärtung und dessen Verwendung bei der Herstellung von Verbundmaterialien
JP2003527449A (ja) 1998-04-01 2003-09-16 ビーエーエスエフ コーティングス アクチェンゲゼルシャフト 非イオン的に安定化された粉末クリヤラッカー分散液
DE19814872A1 (de) * 1998-04-02 1999-10-07 Basf Ag Strahlungshärtbare Zubereitungen
DE19818735A1 (de) 1998-04-27 1999-10-28 Herberts Gmbh Strahlungshärtbare Beschichtungsmittel und deren Verwendung
DE19855116A1 (de) * 1998-11-30 2000-05-31 Basf Coatings Ag Bautenanstrichstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE19920801A1 (de) 1999-05-06 2000-11-16 Basf Coatings Ag Hochkratzfeste mehrschichtige Lackierung, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19920799A1 (de) 1999-05-06 2000-11-16 Basf Coatings Ag Thermisch und mit aktinischer Strahlung härtbarer Beschichtungsstoff und seine Verwendung
DE19930067A1 (de) 1999-06-30 2001-01-11 Basf Coatings Ag Beschichtungsstoff und seine Verwendung zur Herstellung von Füllerschichten und Steinschlagschutzgrundierungen
DE19930665A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Basislack und seine Verwendung zur Herstellung von farb- und/oder effektgebenden Basislackierungen und Mehrschichtlackierung
DE19930664A1 (de) 1999-07-02 2001-01-11 Basf Coatings Ag Klarlack und seine Verwendung zur Herstellung von Klarlackierungen und farb- und/oder effektgebenden Mehrschichtlackierungen
DE10004498A1 (de) * 2000-02-02 2001-08-09 Basf Coatings Ag Diethyloctandioldicarbamate und Diethyloctandioldiallophanate, Verfahren zu ihrer Herstellung und ihre Verwendung
WO2002010292A1 (en) 2000-07-31 2002-02-07 Ppg Industries Ohio, Inc. Dual cure coating compositions having improved scratch resistance, coated substrates and methods related thereto
DE10113884B4 (de) 2001-03-21 2005-06-02 Basf Coatings Ag Verfahren zum Beschichten mikroporöser Oberflächen und Verwendung des Verfahrens
US6835759B2 (en) 2001-08-28 2004-12-28 Basf Corporation Dual cure coating composition and processes for using the same
US20030083397A1 (en) 2001-08-28 2003-05-01 Bradford Christopher J. Dual cure coating composition and process for using the same
US20030077394A1 (en) 2001-08-28 2003-04-24 Bradford Christophen J. Dual cure coating composition and process for using the same
US20030078315A1 (en) 2001-08-28 2003-04-24 Bradford Christopher J. Dual cure coating composition and processes for using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0540884A1 (de) * 1991-10-08 1993-05-12 Herberts Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Mehrschichtlackierungen unter Verwendung von radikalisch und/oder kationisch polymerisierbaren Klarlacken
EP0844286A1 (de) * 1996-12-26 1998-05-27 Morton International, Inc. Thermisch und UV härtbare Pulverlacke
DE19826715A1 (de) * 1997-07-21 1999-01-28 Basf Ag Strahlungshärtbare Verbindungen auf Basis von 2,4-Diethyloctandiol
EP0940459A2 (de) * 1998-03-06 1999-09-08 BASF Coatings Aktiengesellschaft Beschichtungsmittel und Klebstoffe, ihre Verwendung und Verfahren zu ihrer Herstellung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312255B2 (en) * 2001-03-05 2007-12-25 Chemetall Gmbh Water-based coating mixture, method for application of corrosion protection layer with said mixture, substrates coated thus and use thereof
US6954680B2 (en) 2001-07-13 2005-10-11 Siemens Aktiengesellschaft Method and system for the electronic provision of services for machines via a data communication link
US7098257B2 (en) * 2001-08-16 2006-08-29 Heinz-Peter Rink Coating materials that can be cured thermally and by actinic radiation, and the use thereof
US7713445B2 (en) 2002-04-20 2010-05-11 Chemetall Gmbh Mixture for applying a non-corrosive, thin polymer coating which can be shaped in a low-abrasive manner, and method for producing the same
US7736538B2 (en) 2002-04-20 2010-06-15 Chemetall Gmbh Mixture for applying a non-corrosive, polymer coating which can be shaped in a low-abrasive manner, and method for producing the same
EP2767564B1 (de) 2007-08-17 2016-10-05 PPG Industries Ohio Inc. Klarlackzusammensetzung
EP2183298B1 (de) 2007-08-17 2017-10-04 PPG Industries Ohio, Inc. Verfahren zur herstellung einer mehrlagigen beschichtung mit strahlungshärtbaren polyen-/polythiolbeschichtungszusammensetzungen
EP2767564B2 (de) 2007-08-17 2020-01-08 PPG Industries Ohio Inc. Klarlackzusammensetzung

Also Published As

Publication number Publication date
BR0011059A (pt) 2002-03-05
EP1190004A1 (de) 2002-03-27
DE19924674C2 (de) 2001-06-28
US6716891B1 (en) 2004-04-06
DE19924674A1 (de) 2000-11-30
EP1190004B1 (de) 2003-07-30
ES2204596T3 (es) 2004-05-01
JP2003501512A (ja) 2003-01-14
DE50003129D1 (de) 2003-09-04

Similar Documents

Publication Publication Date Title
EP1190004B1 (de) Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung
EP1181337B2 (de) Thermisch und mit aktinischer strahlung härtbarer beschichtungsstoff und seine verwendung
EP1208173B1 (de) Beschichtungsstoff und seine verwendung zur herstellung hochkratzfester mehrschichtiger klarlackierungen
EP1337350B2 (de) Farb- und/oder effektgebende mehrschichtlackierung, verfahren zu ihrer herstellung und ihre verwendung
WO2000067919A1 (de) Hochkratzfeste mehrschichtige lackierung, verfahren zu ihrer herstellung und ihre verwendung
EP1194491B1 (de) Klarlack und seine verwendung zur herstellung von klarlackierungen und farb- und/oder effektgebenden mehrschichtlackierungen
DE19736083A1 (de) Mehrschichtlackierungen und Verfahren zu deren Herstellung
EP1196507A2 (de) Basislack und seine verwendung zur herstellung von farb- und/oder effektgebenden basislackierungen und mehrschichtlackierungen
DE19964282B4 (de) Verfahren zur Herstellung einer farb- und/oder effektgebenden Mehrschichtlackierung auf einem grundierten oder ungrundierten Substrat und mit Hilfe des Verfahrens herstellbare Mehrschichtlackierungen
EP1368134B1 (de) Beschichtungsverfahren und beschichtungsmittel
WO2002031071A1 (de) Verfahren zur herstellung eines thermisch und mit aktinischer strahlung härtbaren mehrkomponentensystems und seine verwendung
WO2001057142A2 (de) Physikalisch, thermisch oder thermisch und mit aktinischer strahlung härtbarer wässriger beschichtungsstoff und seine verwendung
WO2002031015A1 (de) Lösemittelhaltiges, thermisch und mit aktinischer strahlung härtbares mehrkomponentensystem und seine verwendung
EP1322690A1 (de) Beschichtungsstoffsystem für die herstellung farb- und/oder effektgebender mehrschichtlackierungen auf der basis von mehrkomponentenbeschichtungsstoffen
WO2002016462A1 (de) Thermisch und mit aktinischer strahlung härtbare einkomponentensysteme und ihre verwendung
DE19958726A1 (de) Pulverslurry und Verfahren zur Herstellung einer farb- und/oder effektgebenden Mehrschichtlackierung auf einem grundierten oder ungrundierten Substrat
DE10150088A1 (de) Thermisch und mit aktinischer Strahlung härtbarer, nicht wässriger Einkomponenten-Beschichtungsstoff, Verfahren zu seiner Herstellung und seine Verwendung
DE10011644A1 (de) Die Verwendung von Silanen, die eine Azidogruppe enthalten, als Vernetzungsmittel in Beschichtungsstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000929556

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09926532

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 500714

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000929556

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000929556

Country of ref document: EP