WO2000058701A1 - Temperature measurement system - Google Patents

Temperature measurement system Download PDF

Info

Publication number
WO2000058701A1
WO2000058701A1 PCT/JP2000/002005 JP0002005W WO0058701A1 WO 2000058701 A1 WO2000058701 A1 WO 2000058701A1 JP 0002005 W JP0002005 W JP 0002005W WO 0058701 A1 WO0058701 A1 WO 0058701A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
temperature
measurement system
photodetector
temperature measurement
Prior art date
Application number
PCT/JP2000/002005
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Suzuki
Shigeru Kasai
Masahiro Shimizu
Minoru Yazawa
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU34554/00A priority Critical patent/AU3455400A/en
Priority to KR1020017012533A priority patent/KR20010110480A/en
Publication of WO2000058701A1 publication Critical patent/WO2000058701A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • G01J5/0007Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter of wafers or semiconductor substrates, e.g. using Rapid Thermal Processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • G01J5/046Materials; Selection of thermal materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0875Windows; Arrangements for fastening thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0887Integrating cavities mimicking black bodies, wherein the heat propagation between the black body and the measuring element does not occur within a solid; Use of bodies placed inside the fluid stream for measurement of the temperature of gases; Use of the reemission from a surface, e.g. reflective surface; Emissivity enhancement by multiple reflections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/131Arrangement of detectors in a multiple array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays

Definitions

  • the light-receiving element of the radiation thermometer simultaneously detects not only heat radiation from the wafer itself but also radiation from the lamp heating source, so the SZN ratio for temperature measurement cannot be sufficiently increased.
  • An example of a conventional temperature measuring system for solving this problem is described in Japanese Patent Application Laid-Open No. H10-111186.
  • the technology disclosed herein includes a filter for cutting light of a specific wavelength provided between a light transmission window provided at the bottom of a chamber and a lamp heating source, and the light-receiving element side of a radiation thermometer.
  • a filter that selectively transmits light of a specific wavelength is provided to eliminate the effects of stray light.
  • the present invention has been made in view of the above circumstances, and has as its object to provide a temperature measurement system capable of performing accurate temperature measurement with a low-cost and simple structure.
  • a photodetector that selectively detects light in a wavelength region near a specific wavelength region, and a calculation unit that calculates the temperature of the measurement target based on the output of the photodetector.
  • a temperature measurement system is provided.
  • the window material itself may have a property of selectively transmitting light in a specific wavelength region
  • the light detecting means may have a function of selectively detecting light in a wavelength region other than the wavelength region near the specific wavelength region. .
  • the temperature measurement system includes a light guide disposed in the chamber and transmitting heat radiation from the object to be measured, an optical transmission medium that guides light obtained by the light guide to a light detector, May be further provided.
  • the window material forms at least a part of a wall that partitions the chamber. This is advantageous in reducing cost and size.
  • the window material is preferably made of quartz glass having a function of absorbing light in a predetermined wavelength region, for example, quartz glass containing a hydroxyl group.
  • the light detecting means may further include an optical filter for limiting a wavelength range of light incident on the light receiving element.
  • an optical filter for limiting a wavelength range of light incident on the light receiving element.
  • the window material is made of quartz glass containing a hydroxyl group, it has a function of selectively transmitting light near a wavelength of 2.7 to the optical filter according to the light absorption characteristics of this quartz glass. Is selected.
  • a temperature measurement system that is housed in a chamber and measures the temperature of a measurement target heated by a lamp heating source, heat radiation from the measurement target is measured.
  • a photodetector having a light receiving element for receiving light, and selectively detects light having a wavelength of 1.5 m or more, more preferably 2.0 or more
  • a temperature measurement system comprising: a light detection unit; and a calculation unit that calculates a temperature of the measurement target based on an output of the light detector.
  • the light detection means can further include an optical filter that limits the wavelength region of the light incident on the light receiving element.
  • FIG. 1 is a diagram schematically illustrating an example of a CVD processing device including a temperature measurement system according to a first embodiment of the present invention
  • FIG. 3 is a diagram schematically showing another example of the CVD processing device including the temperature measurement system according to the first embodiment of the present invention
  • FIG. 4 is a diagram schematically showing still another example of a CVD processing device including the temperature measurement system according to the second embodiment of the present invention
  • FIG. 5 is a graph illustrating a method of calculating the contribution of the lamp stray light included in the output voltage of the light receiving element.
  • FIG. 7 is a diagram showing a radiation intensity distribution of radiation light emitted from an object at each temperature
  • FIG. 8 is a diagram showing another example of a CVD processing apparatus provided with a temperature measurement system according to the second embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing an example of FIG. Description of the preferred embodiment
  • a window 6 made of quartz glass containing a hydroxyl group is provided. It is known that quartz glass containing hydroxyl groups has an absorption band around 270 nm (2.7 m) due to vibration of ⁇ -H, and the intensity of absorption is proportional to the amount of hydroxyl groups contained. . In addition, the quartz glass containing a hydroxyl group also has an absorption band near 220 nm due to the vibration of Si— ⁇ —H, and the absorption intensity in this absorption band is near 270 nm. It is much weaker than the strength of the absorption in the band.
  • Figure 2 is a graph showing the wavelength dependence of the light transmittance of lcm-thick quartz glass for each hydroxyl content ("The World of Quartz Glass", Shin Kuzuu, Industrial Research Institute (1996)). Quote) .
  • the window material 6 a quartz glass having a hydroxyl group content of 50 ppm or more.
  • the quartz glass may be formed by a melting method, a synthetic quartz glass, or may be manufactured by a VAD method.
  • a means for selectively transmitting light near the wavelength of 270 nm that is, light of a wavelength other than light in the specific wavelength region.
  • the window material 6 a means for selectively transmitting light near the wavelength of 270 nm, that is, light of a wavelength other than light in the specific wavelength region.
  • the term “specific wavelength region” is used to mean a wavelength region other than the wavelength region near the wavelength of 270 nm, the “wavelength around the wavelength of 270 nm” It is possible to constitute a means for selectively transmitting light of a wavelength other than the region, that is, light of a specific wavelength region. " It can also be expressed. )
  • a susceptor 8 for mounting the wafer 1, that is, the object to be processed is provided.
  • the susceptor 8 is preferably formed of black A 1 N, which is advantageous in that the radiation characteristics of the susceptor 8 are close to those of a black body and that the lamp light is difficult to transmit.
  • the susceptor 8 has a hole 10 that extends from the side surface toward the center and terminates.
  • a light guide 12 for condensing radiated light from the susceptor 8, that is, a light guide is inserted.
  • the light guide 12 extends through the wall 1 to the outside of the chamber 2.
  • the configuration in which the light guide 12 is inserted into the hole 10 is advantageous in that the amount of lamp light reaching the light guide 12 is minimized.
  • the light guide 16 is connected to the light guide 12 via an optical fiber 14, that is, an optical transmission medium.
  • the photodetector 16 has a light receiving element 18.
  • the optical detector 16 is provided with an optical filter 19 in front of the light receiving element 18.
  • thermopile using Sb, Bi (antimony, bismuth) is used as the light-receiving element 18 and a multilayer interference filter is used as the optical filter 19, so that the light-receiving element 18 has a wavelength of about 2700 nm.
  • Light detecting means for selectively detecting light in the above wavelength range.
  • the lamp 22 is turned on, and the susceptor 8 is heated by the radiant heat of this lamp.
  • the susceptor 8 is heated, the wafer 1 placed on the susceptor 8 is heated.
  • heat radiation is generated from the susceptor 8 corresponding to the temperature.
  • the heat radiation light is condensed by the optical guide 12, passes through the optical fiber 14 and the optical filter 19 sequentially, and enters the light receiving element 18.
  • the output of the light receiving element 18 is input to the calculation unit 26.
  • the calculation unit 26 calculates the temperature of the susceptor 8 based on the output of the light receiving element 18 according to Planck's radiation law.
  • the output control unit 28 supplies electric power to the lamp 22 based on the calculation result of the calculation unit 26 so that the temperature of the susceptor 8 becomes a predetermined value.
  • the light radiated from the lamp 22 is absorbed by the window member 6 in a wavelength region near 270 nm (ie, a specific wavelength region), and the other wavelength regions reach the susceptor 8.
  • the lamp light reaching the susceptor 8 heats the susceptor 8 and transmits through the susceptor 8 to be introduced into the light guide 12 to a small extent.
  • the light introduced into the light guide 12 is radiated light from the susceptor 8 and lamp light in which the wave length region near 270 nm is cut.
  • the optical filter 19 is provided in front of the light receiving element 18, only the wavelength region near 270 nm of the light introduced into the light guide 12 reaches the light receiving element 18. I do. That is, little or no lamp light reaches the light receiving element 18. Therefore, the effect of stray light from the lamp 22 can be eliminated from the output of the light receiving element 18 and the temperature of the susceptor 8 can be accurately measured.
  • the light detecting means for selectively detecting the light in the wavelength region near 2700 nm is configured by combining the light receiving element 18 and the optical filter 19, If the light receiving sensitivity characteristics of the light receiving element 18 are sufficient to achieve the purpose of selectively detecting light in the vicinity of a specific wavelength region, it is possible to configure the light detecting means without the light filter 19. . If a suitable light receiving element 18 is used, a photodiode may be used instead of the thermopile.
  • quartz glass containing a hydroxyl group is used as a material having an optical filter function of absorbing light in a specific wavelength region, but other materials such as sapphire may be used as the window material. May be used. Also in this case, the light receiving element 18 and the optical filter 19 may be appropriately combined in accordance with the absorption wavelength of the window material 6.
  • FIG. 4 is a diagram schematically showing a CVD processing apparatus provided with a temperature measurement system according to the present invention.
  • components having the same or similar functions as the components shown in FIGS. 1 and 3 are denoted by the same reference numerals.
  • the CVD processing apparatus has a chamber 2.
  • a CVD process such as a film forming process is performed on the wafer 1
  • the atmosphere in the chamber 2 is isolated from the atmosphere outside the chamber 2.
  • the chamber 2 is defined by a wall 4.
  • a light-transmitting window material 6 A made of quartz glass is provided.
  • the window member 6A does not need to have an absorption peak in a specific wavelength region.
  • the chamber 2 is provided with members such as a gas shower 3 for supplying a processing gas to the wafer 1, but will not be described in detail here because it is not directly related to the gist of the present invention.
  • the susceptor 8 has a hole 10 extending from its side toward the center and terminating. Has been established. In the hole 10, a light guide 12 for condensing radiated light from the susceptor 8, that is, a light guide is inserted.
  • the light guide 12 extends through the wall 1 to the outside of the chamber 2.
  • Light guide 1 2 The configuration inserted into L 10 is advantageous in that the amount of lamp light reaching the light guide 12 is minimized.
  • a lamp chamber 20 is provided below the chamber 2.
  • the lamp chamber 20 is provided with a lamp 22A, that is, a lamp heating source.
  • Lamp 22A is a halogen lamp.
  • a temperature controller 24 is connected to the photodetector 16A.
  • the temperature controller is a calculator 24 that calculates the temperature of the susceptor 8 based on the principle of Planck's radiation law, and a lamp 2 based on the temperature of the susceptor 8 calculated by the calculator 26.
  • an output control unit 28 for controlling the power supplied to the power supply 2.
  • the lamp 22 A is turned on, and the susceptor 8 is heated by the radiant heat of the lamp.
  • the wafer 1 placed on the susceptor 8 is heated.
  • susceptor 8 When susceptor 8 is heated, susceptor 8 generates heat radiation corresponding to its temperature.
  • the heat radiation light is condensed by the light guide 12, passes through the optical fiber 14 and the optical filter 19 A in order, and enters the light receiving element 18 A.
  • the output of the light receiving element 18 A is input to the calculation unit 26.
  • the calculation unit 26 calculates the temperature of the susceptor 8 based on the output of the light receiving element 18 A according to Planck's radiation law.
  • the output control unit 28 supplies power to the lamp 22A based on the calculation result of the arithmetic unit 26 so that the temperature of the susceptor 8 becomes a predetermined value. Supply.
  • the light emitted from lamp 22A reaches Susep E8.
  • the lamp light reaching the susceptor 8 heats the susceptor 8 and transmits through the susceptor 8 to be introduced into the light guide 12 though a small amount. Therefore, the light introduced into the light guide 12 becomes the radiation light from the susceptor 8 and the lamp light.
  • the effect of the lamp light on the temperature measurement result by being included in the light introduced into the light guide 12 can be obtained as follows.
  • the graph of FIG. 5 shows the change over time of the output voltage Vpd of the light receiving element 18 A and the temperature TS of the susceptor 8.
  • the power W supplied to the lamp 22A is stable and has a substantially constant value Wi
  • the temperature TS of the susceptor 8 has a stable value Ti
  • the power W supplied to the lamp 22A is set to 0 at the time tl. Then, at that moment, the light from the lamp 22A is not input to the light receiving element 18A, so that the output voltage Vpd of the light receiving element 18A sharply drops from Vi to Vi-AVi. After that, the output voltage Vpd of the light-receiving element 18 A gradually decreases as the temperature TS of the susceptor 8 decreases. The temperature TS of the susceptor 8 gradually decreases after stopping the power supply to the lamp 22A.
  • the output voltage drop AVi of the light-receiving element 18 A at the moment when the power supply to the lamp 22 A is stopped corresponds to the contribution of the lamp light included in the output voltage Vi of the light-receiving element 18 A in the time range tA. I do.
  • R ViZ (Vi- ⁇ Vi) is defined as the intensity ratio index of the radiated light from the lamp 22A to the radiated light from the susceptor 8.
  • This intensity ratio index R is a function of the wavelength range detected by the light detection means. Table 1 shows the relationship. table 1
  • the intensity ratio index R is 1 or less when the detection wavelength region is 1.5 xm or more, and 0.1 when the detection wavelength region is 2.0 m or more. It is as follows. In other words, a significant improvement is observed compared to the case where the detection wavelength region is less than 1.5 m.
  • the emission intensity distribution of the emission light (hereinafter, also referred to as “lamp light”) of a halogen lamp having a color temperature of usually 2000 to 300 ° C. Focusing on the relationship with the radiation intensity distribution of the radiated light from the suscept evening based on the evening temperature (usually 300 ° (: ⁇ 60 Ot :)) By removing the long region, even if the lamp light enters the light receiving element as stray light, the effect can be minimized.
  • the emission intensity of the halogen lamp light is strongest in the wavelength range of 0.5 to 1.0 m, so the effect of stray light is minimized by excluding this wavelength region from the detection wavelength region. Limit. Furthermore, the radiation intensity from the susceptor 8 outside the wavelength range of 0.5 to 1.0 m and usually set in the range of 300 ° C to 600 ° C is the strongest. The influence of stray light can be further suppressed by setting the range of 1.5 to 6 zm as the detection wavelength range. As described above, the detection wavelength region is preferably 1.5 / m or more, and more preferably 2.Om or more.
  • the wavelength range detected by the light detection unit is By optimizing, the effect of stray light due to lamp light can be eliminated, and highly accurate temperature measurement can be performed.
  • the temperature measurement target is the susceptor 8 on which the wafer 1 to be processed is placed, but the application of the present invention is not limited to this.
  • the light guide 12 may be arranged so as to detect the radiated light from the wafer 1 which is the object to be processed. Further, the light guide 12 is arranged above or obliquely above the wafer 1 in the chamber 2 so as to be separated from the wafer 1 so that the light guide 12 detects radiation light from the wafer 1. You may. In this case, substantially the same effects as in the above embodiment can be obtained.
  • the light detecting means for selectively detecting light in a predetermined wavelength region is configured by combining the light receiving element 18A and the optical filter 19A. If the light-receiving sensitivity characteristic of 8 A is sufficient to achieve the purpose of selectively detecting light in the vicinity of a specific wavelength region, the light detecting means can be configured without the optical filter 19 A.

Abstract

A simplified system is provided in which the temperature of an object to be processed, such as a wafer, is measured by a noncontact thermometer while removing the effects of stray light from a heating lamp. A window material (6) of a chamber (2) is made of fused silica containing hydroxyl groups. The fused silica containing hydroxyl groups is capable of strongly absorbing light in a wavelength range near 2700 nm. A photodetector element (18) and an optical filter (19) on a photodetector (16) are properly selected so that the photodetector (16) may detect only the light at wavelength near 2700 nm, resulting in the elimination of the effects of stray light from the lamp. Since the window material (6) itself functions as a filter, no other filters are required between the lamp (22) and the object to be heated.

Description

明 細 温度測定 技術分野  Details Temperature measurement technology
本発明は、 ランプ加熱源により加熱される物体の温度を放射温度計を用いて測 定する際に、 ランプ加熱源自体が発生する光に起因する迷光の影響を排除する技 術に関する。 発明の背景  The present invention relates to a technique for eliminating the influence of stray light due to light generated by a lamp heating source itself when measuring the temperature of an object heated by the lamp heating source using a radiation thermometer. Background of the Invention
半導体製造プロセスにおける成膜工程等においては、 被処理体であるウェハを 所定温度に維持するため、 ランプ加熱源により、 サセプ夕を介して若しくは直接 的に、 ウェハを加熱することが行われている。 成膜工程においては、 ウェハ温度 が成膜速度および膜の特性を大きく左右するため、 ウェハ温度管理が非常に重要 である。 ウェハ温度を検出する方法として、 ウェハからの熱輻射を放射温度計で 測定する手法が従来から知られている。  In a film forming process in a semiconductor manufacturing process, a lamp heating source heats a wafer through a susceptor or directly to maintain a wafer to be processed at a predetermined temperature. . In the film forming process, the temperature of the wafer greatly affects the film forming speed and the characteristics of the film, so that the wafer temperature control is very important. As a method of detecting a wafer temperature, a method of measuring thermal radiation from a wafer with a radiation thermometer has been conventionally known.
但し、 この方法においては、 放射温度計の受光素子がウェハ自体からの熱輻射 のみならずランプ加熱源からの放射光も同時に検出してしまうため、 温度測定の S Z N比を十分に高めることができないという問題がある。 この問題を解決する ための従来の温度測定システムの一例が、 特開平 1 0— 1 1 1 1 8 6号に記載さ れている。 ここに開示された技術は、 チャンバ底部に設けられた光透過窓とラン プ加熱源との間に特定波長の光をカツ卜するフィル夕を設けるとともに、 放射温 度計の受光素子側に前記特定波長の光を選択的に透過させるフィル夕を設け、 迷 光の影響を排除するものである。  However, in this method, the light-receiving element of the radiation thermometer simultaneously detects not only heat radiation from the wafer itself but also radiation from the lamp heating source, so the SZN ratio for temperature measurement cannot be sufficiently increased. There is a problem. An example of a conventional temperature measuring system for solving this problem is described in Japanese Patent Application Laid-Open No. H10-111186. The technology disclosed herein includes a filter for cutting light of a specific wavelength provided between a light transmission window provided at the bottom of a chamber and a lamp heating source, and the light-receiving element side of a radiation thermometer. A filter that selectively transmits light of a specific wavelength is provided to eliminate the effects of stray light.
上記従来のシステムにおいては、 光透過窓とランプ加熱源との間にフィル夕を 複数設けているため、 装置の構成が複雑化し、 装置のコストも上昇する。 また、 近年ウェハが大径化しているため、 フィル夕のサイズも大きくする必要があり、 フィル夕の製造コストが特に問題となってくる。 また、 上記従来のシステムにお いては、 検出波長の最適化がなされていない。 発明の開示 In the conventional system described above, since a plurality of filters are provided between the light transmission window and the lamp heating source, the configuration of the device becomes complicated, and the cost of the device also increases. In addition, since the diameter of the wafer has been increasing in recent years, it is necessary to increase the size of the filter, and the manufacturing cost of the filter becomes a particular problem. Further, in the above-described conventional system, the detection wavelength is not optimized. Disclosure of the invention
本発明は、 上記実状に鑑みなされたものであり、 低コストかつ簡単な構造で正 確な温度測定を行うことができる温度測定システムを提供することを目的として いる。  The present invention has been made in view of the above circumstances, and has as its object to provide a temperature measurement system capable of performing accurate temperature measurement with a low-cost and simple structure.
上記目的を達成するため、 本発明の第 1の観点によれば、 チャンバ内に収容さ れ、 ランプ加熱源により加熱される測定対象物の温度測定を行う温度測定システ ムにおいて、 ランプ加熱源と測定対象物との間の部分に設けられ、 それ自体が特 定波長領域以外の光を選択的に透過させる性質を有する窓材と、 測定対象物から の輻射光を受光するための受光素子を有する光検出器を含み、 特定波長領域近傍 の波長領域の光を選択的に検出する光検出手段と、 光検出器の出力に基づいて、 測定対象物の温度を算出する演算部とを備えた温度測定システムが提供される。 なお、 窓材それ自体に特定波長領域の光を選択的に透過させる性質を持たせ、 光検出手段に特定波長領域近傍の波長領域以外の光を選択的に検出する機能を持 たせてもよい。  In order to achieve the above object, according to a first aspect of the present invention, a temperature measurement system that is housed in a chamber and measures a temperature of an object to be measured that is heated by a lamp heating source includes a lamp heating source, A window material that is provided between the measurement target and has the property of selectively transmitting light outside the specified wavelength range, and a light-receiving element that receives radiation from the measurement target A photodetector that selectively detects light in a wavelength region near a specific wavelength region, and a calculation unit that calculates the temperature of the measurement target based on the output of the photodetector. A temperature measurement system is provided. The window material itself may have a property of selectively transmitting light in a specific wavelength region, and the light detecting means may have a function of selectively detecting light in a wavelength region other than the wavelength region near the specific wavelength region. .
この温度測定システムは、 チャンバ内に配置されるとともに測定対象物からの 熱輻射光を伝送するための光ガイドと、 前記光ガイドにより取得された光を光検 出器に導く光伝送媒体と、 を更に備えて構成することができる。  The temperature measurement system includes a light guide disposed in the chamber and transmitting heat radiation from the object to be measured, an optical transmission medium that guides light obtained by the light guide to a light detector, May be further provided.
前記窓材により、 前記チャンバを区画する壁体の少なくとも一部が構成されて いること力 低コスト化およびコンパクト化を図る上で有利である。  The window material forms at least a part of a wall that partitions the chamber. This is advantageous in reducing cost and size.
前記窓材は、 所定の波長領域の光を吸収する機能を有する石英ガラス、 例えば 水酸基を含む石英ガラスにより構成することが好適である。  The window material is preferably made of quartz glass having a function of absorbing light in a predetermined wavelength region, for example, quartz glass containing a hydroxyl group.
光検出手段は、 前記受光素子に入射する光の波長領域を限定する光フィルタを 更に含んで構成することができる。 例えば、 窓材を水酸基を含む石英ガラスから 構成する場合には、 この石英ガラスの光吸収特性にあわせて、 光フィル夕に波長 2 . 7 近傍の光を選択的に透過する機能を持ったものが選定される。  The light detecting means may further include an optical filter for limiting a wavelength range of light incident on the light receiving element. For example, when the window material is made of quartz glass containing a hydroxyl group, it has a function of selectively transmitting light near a wavelength of 2.7 to the optical filter according to the light absorption characteristics of this quartz glass. Is selected.
また、 本発明の第 2の観点によれば、 チャンバ内に収容され、 ランプ加熱源に より加熱される測定対象物の温度測定を行う温度測定システムにおいて、 測定対 象物からの熱輻射光を受光するための受光素子を有する光検出器を含み、 1 . 5 m以上の波長、 より好ましくは 2 . 0 以上の波長の光を選択的に検出する 光検出手段と、 前記光検出器の出力に基づいて、 前記測定対象物の温度を算出す る演算部とを備えた温度測定システムが提供される。 Further, according to a second aspect of the present invention, in a temperature measurement system that is housed in a chamber and measures the temperature of a measurement target heated by a lamp heating source, heat radiation from the measurement target is measured. Includes a photodetector having a light receiving element for receiving light, and selectively detects light having a wavelength of 1.5 m or more, more preferably 2.0 or more A temperature measurement system is provided, comprising: a light detection unit; and a calculation unit that calculates a temperature of the measurement target based on an output of the light detector.
この場合、 光検出手段は、 受光素子に入射する光の波長領域を限定する光フィ ル夕を更に含んで構成することができる。  In this case, the light detection means can further include an optical filter that limits the wavelength region of the light incident on the light receiving element.
また、 温度測定システムは、 チャンバ内に配置されるとともに測定対象物から の熱輻射光を伝送するための光ガイ ドと、 光ガイ ドにより取得された光を光検出 器に導く光伝送媒体とを更に備えて構成することができる。 図面の簡単な説明  In addition, the temperature measurement system includes an optical guide that is disposed in the chamber and transmits thermal radiation from the object to be measured, and an optical transmission medium that guides the light obtained by the optical guide to the photodetector. May be further provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態に係る温度測定システムを具備した C V D処 理装置の一例を概略的に示す図、  FIG. 1 is a diagram schematically illustrating an example of a CVD processing device including a temperature measurement system according to a first embodiment of the present invention,
図 2は、 水酸基の含有量に対応する石英ガラスの光透過率の波長依存性を説明 するグラフ、  Figure 2 is a graph illustrating the wavelength dependence of the light transmittance of quartz glass corresponding to the hydroxyl group content.
図 3は、 本発明の第 1の実施形態に係る温度測定システムを具備した C V D処 理装置の他の例を概略的に示す図、  FIG. 3 is a diagram schematically showing another example of the CVD processing device including the temperature measurement system according to the first embodiment of the present invention,
図 4は、 本発明の第 2の実施形態に係る温度測定システムを具備した C V D処 理装置の更に他の例を概略的に示す図、  FIG. 4 is a diagram schematically showing still another example of a CVD processing device including the temperature measurement system according to the second embodiment of the present invention,
図 5は、 受光素子の出力電圧に含まれるランプ迷光の寄与分を算出する方法を 説明するグラフ、  FIG. 5 is a graph illustrating a method of calculating the contribution of the lamp stray light included in the output voltage of the light receiving element.
図 6は、 実験に用いた受光素子と光フィル夕との組み合わせごとの検出波長領 域を示すグラフ、  Figure 6 is a graph showing the detection wavelength range for each combination of the light receiving element and optical filter used in the experiment.
図 7は、 物体から放射される輻射光の温度ごとの放射強度分布を示す図、 そし て図 8は、 本発明の第 2の実施形態に係る温度測定システムを具備した C V D処 理装置の他の例を概略的に示す図、 である。 好適な実施形態の説明  FIG. 7 is a diagram showing a radiation intensity distribution of radiation light emitted from an object at each temperature, and FIG. 8 is a diagram showing another example of a CVD processing apparatus provided with a temperature measurement system according to the second embodiment of the present invention. FIG. 4 is a diagram schematically showing an example of FIG. Description of the preferred embodiment
以下に図面を参照して本発明の好適な実施形態について説明する。 [第 1の実施形態] Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. [First Embodiment]
まず、 図 1乃至図 3を参照して第 1の実施形態について説明する。 図 1は、 本 発明による温度測定システムを備えた C V D処理装置を概略的に示す図である。 図 1に示すように、 C V D処理装置はチャンバ 2を有している。 ウェハ 1に対 して成膜処理等の C V D処理が行われる場合、 チヤンバ 2内の雰囲気がチャンバ 2外の雰囲気から隔離される。 チャンバ 2は壁体 4により区画されている。 な お、 チャンバ 2には、 ウェハ 1に処理ガスを供給するガスシャワー 3等の部材が 設けられているが、 本発明の要旨とは直接関係ないためここでは詳細には説明し ない。  First, a first embodiment will be described with reference to FIGS. FIG. 1 is a diagram schematically showing a CVD processing apparatus provided with a temperature measurement system according to the present invention. As shown in FIG. 1, the CVD processing apparatus has a chamber 2. When the CVD process such as the film forming process is performed on the wafer 1, the atmosphere in the chamber 2 is isolated from the atmosphere outside the chamber 2. The chamber 2 is defined by a wall 4. Although the chamber 2 is provided with a member such as a gas shower 3 for supplying a processing gas to the wafer 1, it will not be described in detail here because it is not directly related to the gist of the present invention.
壁体 4の底部には、 水酸基を含む石英ガラスからなる窓材 6が設けられてい る。 水酸基を含む石英ガラスは、 〇— Hの振動により 2 7 0 0 n m ( 2 . 7 m) 付近に吸収帯が生じ、 吸収の強さは含まれる水酸基の量に比例することが知 られている。 なお、 水酸基を含む石英ガラスは、 S i—〇— Hの振動により 2 2 0 0 n m付近にも吸収帯が生じるが、 この吸収帯における吸収の強さは 2 7 0 0 n m付近にある吸収帯における吸収の強さより十分に弱い。 図 2は、 厚さ l c m の石英ガラスの光透過率の波長依存性を水酸基の含有量ごとに示すグラフである ( 「石英ガラスの世界」 、 葛生伸、 工業調査会 ( 1 9 9 6 ) より引用) 。 このグ ラフからも理解できるように水酸基の含有量が 5 0 p mあれば、 波長 2 7 0 0 n mの光は、 9 0 %以上吸収することができる (図 2の破線参照) 。 従って、 本 発明の実施にあたっては、 窓材 6として、 水酸基の含有量が 5 0 p p m以上の石 英ガラスを使用することが好ましい。 なお、 石英ガラスは、 溶融法によるもので あってもよいし、 合成石英ガラスであってもよいし、 また V AD法により製造さ れたものであってもよい。  At the bottom of the wall 4, a window 6 made of quartz glass containing a hydroxyl group is provided. It is known that quartz glass containing hydroxyl groups has an absorption band around 270 nm (2.7 m) due to vibration of 〇-H, and the intensity of absorption is proportional to the amount of hydroxyl groups contained. . In addition, the quartz glass containing a hydroxyl group also has an absorption band near 220 nm due to the vibration of Si—〇—H, and the absorption intensity in this absorption band is near 270 nm. It is much weaker than the strength of the absorption in the band. Figure 2 is a graph showing the wavelength dependence of the light transmittance of lcm-thick quartz glass for each hydroxyl content ("The World of Quartz Glass", Shin Kuzuu, Industrial Research Institute (1996)). Quote) . As can be understood from this graph, if the hydroxyl group content is 50 pm, light having a wavelength of 270 nm can be absorbed by 90% or more (see the broken line in FIG. 2). Therefore, in practicing the present invention, it is preferable to use, as the window material 6, a quartz glass having a hydroxyl group content of 50 ppm or more. The quartz glass may be formed by a melting method, a synthetic quartz glass, or may be manufactured by a VAD method.
このように窓材 6として適当量の水酸基を含有する石英ガラスを用いることに より、 波長 2 7 0 0 n m近傍の光、 すなわち特定波長領域の光以外の波長の光を 選択的に透過する手段を構成することができる。 (なお、 このことは、 「特定波 長領域」 という用語を波長 2 7 0 0 n m近傍の波長領域以外の波長領域を意味す る用語として用いた場合、 「波長 2 7 0 0 n m近傍の波長領域以外の波長の光、 すなわち特定波長領域の光を選択的に透過する手段を構成することができる」 と 表現することもできる。 ) As described above, by using quartz glass containing an appropriate amount of hydroxyl group as the window material 6, a means for selectively transmitting light near the wavelength of 270 nm, that is, light of a wavelength other than light in the specific wavelength region. Can be configured. (Note that this means that when the term “specific wavelength region” is used to mean a wavelength region other than the wavelength region near the wavelength of 270 nm, the “wavelength around the wavelength of 270 nm” It is possible to constitute a means for selectively transmitting light of a wavelength other than the region, that is, light of a specific wavelength region. " It can also be expressed. )
チャンバ 2には、 ウェハ 1すなわち被処理体を載置するためのサセプ夕 8が設 けられている。 サセプ夕 8は、 黒色の A 1 Nにより形成することが好ましく、 こ れにより、 サセプ夕 8の放射特性が黒体のそれに近くなる点と、 ランプ光を透過 しにくくなる点において有利となる。  In the chamber 2, a susceptor 8 for mounting the wafer 1, that is, the object to be processed, is provided. The susceptor 8 is preferably formed of black A 1 N, which is advantageous in that the radiation characteristics of the susceptor 8 are close to those of a black body and that the lamp light is difficult to transmit.
サセプ夕 8には、 その側面からその中央方向に延びて終端する孔 1 0が形成さ れている。 孔 1 0内には、 サセプ夕 8からの輻射光を集光するための光ガイド 1 2すなわち導光体が挿入されている。 光ガイド 1 2は、 壁体 1を貫通してチャン バ 2の外部に延びている。 光ガイド 1 2を、 孔 1 0に挿入する構成は、 ランプ光 の光ガイド 1 2への到達量を最小限に抑制する点で有利である。  The susceptor 8 has a hole 10 that extends from the side surface toward the center and terminates. In the hole 10, a light guide 12 for condensing radiated light from the susceptor 8, that is, a light guide is inserted. The light guide 12 extends through the wall 1 to the outside of the chamber 2. The configuration in which the light guide 12 is inserted into the hole 10 is advantageous in that the amount of lamp light reaching the light guide 12 is minimized.
光ガイド 1 2には、 光ファイバ 1 4すなわち光伝送媒体を介して、 光検出器 1 6が接続されている。 光検出器 1 6は、 受光素子 1 8を有している。 光検出器 1 6には、 受光素子 1 8の手前側に、 光フィルタ 1 9が設けられている。 適当な受 光感度特性 (受光感度の波長依存性を意味する) を有する受光素子 1 8と、 適当 な透過特性 (透過率の波長依存性を意味する) を有する光フィルタ 1 9を適宜組 み合わせることにより、 2 7 0 0 n m近傍の波長領域の光 (すなわち特定波長領 域近傍の波長の光) を選択的に検出する光検出手段を構成することができる。  The light guide 16 is connected to the light guide 12 via an optical fiber 14, that is, an optical transmission medium. The photodetector 16 has a light receiving element 18. The optical detector 16 is provided with an optical filter 19 in front of the light receiving element 18. Appropriate combination of light receiving element 18 having appropriate light receiving sensitivity characteristics (meaning the wavelength dependence of light receiving sensitivity) and optical filter 19 having appropriate transmitting characteristics (meaning the wavelength dependence of transmittance) By combining them, it is possible to constitute a light detecting means for selectively detecting light in a wavelength region around 270 nm (that is, light having a wavelength near a specific wavelength region).
(なお、 このことは、 「特定波長領域」 という用語を波長 2 7 0 0 n m近傍の波 長領域以外の波長領域を意味する用語として用いた場合、 「波長 2 7 0 0 n m近 傍の波長領域の光、 すなわち特定波長領域の以外の波長の光を選択的に透過する 手段を構成することができる」 と表現することもできる。 )  (Note that this means that when the term “specific wavelength region” is used to mean a wavelength region other than the wavelength region near the wavelength of 270 nm, the term “wavelength near the wavelength of 270 nm” It is possible to constitute a means for selectively transmitting light in a specific region, that is, light having a wavelength other than the specific wavelength region. ")
なお、 本例では、 受光素子 1 8として、 S b , B i (アンチモン, ビスマス) を使用したサーモパイルを用い、 光フィル夕 1 9として多層膜干渉フィルターを 用いることにより、 2 7 0 0 n m近傍の波長領域の光を選択的に検出する光検出 手段を構成している。  In this example, a thermopile using Sb, Bi (antimony, bismuth) is used as the light-receiving element 18 and a multilayer interference filter is used as the optical filter 19, so that the light-receiving element 18 has a wavelength of about 2700 nm. Light detecting means for selectively detecting light in the above wavelength range.
光検出器 1 6には、 温度コントローラ 2 4が接続されている。 温度コントロー ラ 2 4は、 プランクの放射則の原理に基づいてサセプ夕 8の温度を算出する演算 部 2 6と、 演算部 2 6により算出されたサセプ夕 8の温度に基づいてランプ 2 2 に供給する電力を制御する出力制御部 2 8と、 を有している。 チャンバ 2の下方には、 ランプ室 2 0が設けられている。 ランプ室 2 0には、 ランプ 2 2すなわちランプ加熱源が設けられている。 A temperature controller 24 is connected to the photodetector 16. The temperature controller 24 calculates the temperature of the susceptor 8 based on the principle of Planck's radiation law, and outputs a signal to the lamp 22 based on the temperature of the susceptor 8 calculated by the calculator 26. And an output control unit 28 for controlling the supplied power. Below the chamber 2, a lamp chamber 20 is provided. The lamp chamber 20 is provided with a lamp 22, that is, a lamp heating source.
次に、 作用について説明する。 C V D処理を行う場合、 ランプ 2 2が点灯さ れ、 このランプの輻射熱によりサセプタ 8が加熱される。 サセプタ 8が加熱され ることにより、 サセプタ 8上に載置されたウェハ 1が加熱される。 サセプ夕 8が 加熱されると、 サセプ夕 8からその温度に相応した熱輻射光が生じる。 熱輻射光 は、 光ガイ ド 1 2により集光されて、 光ファイバ 1 4および光フィルタ 1 9を順 次経て、 受光素子 1 8に入射する。 受光素子 1 8の出力は演算部 2 6に入力され る。 演算部 2 6は、 プランクの放射則にのっとり、 受光素子 1 8の出力に基づい てサセプ夕 8の温度を算出する。 出力制御部 2 8は、 演算部 2 6の算出結果に基 づいて、 サセプ夕 8の温度が所定値となるようにランプ 2 2に電力を供給する。 ランプ 2 2から放射された光は、 窓材 6に 2 7 0 O n m近傍の波長領域 (すな わち特定波長領域) が吸収され、 その他の波長領域がサセプ夕 8に到達する。 サ セプ夕 8に到達したランプ光は、 サセプタ 8を加熱するとともに、 サセプ夕 8を 透過して光ガイド 1 2に少量ではあるが導入される。  Next, the operation will be described. When performing the CVD process, the lamp 22 is turned on, and the susceptor 8 is heated by the radiant heat of this lamp. When the susceptor 8 is heated, the wafer 1 placed on the susceptor 8 is heated. When the susceptor 8 is heated, heat radiation is generated from the susceptor 8 corresponding to the temperature. The heat radiation light is condensed by the optical guide 12, passes through the optical fiber 14 and the optical filter 19 sequentially, and enters the light receiving element 18. The output of the light receiving element 18 is input to the calculation unit 26. The calculation unit 26 calculates the temperature of the susceptor 8 based on the output of the light receiving element 18 according to Planck's radiation law. The output control unit 28 supplies electric power to the lamp 22 based on the calculation result of the calculation unit 26 so that the temperature of the susceptor 8 becomes a predetermined value. The light radiated from the lamp 22 is absorbed by the window member 6 in a wavelength region near 270 nm (ie, a specific wavelength region), and the other wavelength regions reach the susceptor 8. The lamp light reaching the susceptor 8 heats the susceptor 8 and transmits through the susceptor 8 to be introduced into the light guide 12 to a small extent.
従って、 光ガイド 1 2に導入される光は、 サセプ夕 8からの輻射光と、 2 7 0 0 n m近傍の波'長領域がカットされたランプ光とになる。 ここで、 受光素子 1 8 の前段には光フィルタ 1 9が設けられているため、 光ガイド 1 2に導入された光 のうち 2 7 0 0 n m近傍の波長領域のみが受光素子 1 8に到達する。 すなわち、 受光素子 1 8には、 ランプ光は殆ど若しくは全く到達しない。 このため、 受光素 子 1 8の出力からランプ 2 2からの迷光の影響を排除することができ、 サセプ夕 8の温度を正確に測定することができる。  Therefore, the light introduced into the light guide 12 is radiated light from the susceptor 8 and lamp light in which the wave length region near 270 nm is cut. Here, since the optical filter 19 is provided in front of the light receiving element 18, only the wavelength region near 270 nm of the light introduced into the light guide 12 reaches the light receiving element 18. I do. That is, little or no lamp light reaches the light receiving element 18. Therefore, the effect of stray light from the lamp 22 can be eliminated from the output of the light receiving element 18 and the temperature of the susceptor 8 can be accurately measured.
なお、 上記実施形態においては、 温度測定対象物が被処理体であるウェハ 1を 載置するサセプ夕 8であったが、 本発明の適用はこれに限定されるものではな レ^ すなわち、 例えば、 図 4に示すように、 光ガイ ド 1 2力 被処理体であるゥ ェハ 1からの輻射光を検出するような配置としてもよい。 更に、 光ガイド 1 2 を、 チヤンバ 2内においてウェハ 1の上方若しくは斜め上方にウェハ 1から離し て配置して、 この光ガイド 1 2がウェハ 1からの輻射光を検出するような配置と してもよい。 この場合も、 上記実施形態と略同一の効果が得られる。 また、 上記実施形態においては、 受光素子 1 8と光フィル夕 1 9との組み合わ せにより 2 7 0 0 n m近傍の波長領域の光を選択的に検出する光検出手段を構成 しているが、 受光素子 1 8の受光感度特性が特定波長領域近傍の光を選択的に検 出する目的を達成するに十分であれば、 光フィル夕 1 9無しで光検出手段を構成 することも可能である。 また、 受光素子 1 8として、 適当なものがあれば、 サー モパイルに代えてフォトダイォードを使用してもよい。 In the above embodiment, the temperature measurement target is the susceptor 8 on which the wafer 1 to be processed is placed. However, the application of the present invention is not limited to this. However, as shown in FIG. 4, the light guide 12 may be arranged so as to detect the radiation light from the wafer 1 which is the object to be processed. Further, the light guide 12 is disposed above or obliquely above the wafer 1 in the chamber 2 and separated from the wafer 1 so that the light guide 12 detects radiation light from the wafer 1. Is also good. In this case, substantially the same effects as in the above embodiment can be obtained. Further, in the above-described embodiment, the light detecting means for selectively detecting the light in the wavelength region near 2700 nm is configured by combining the light receiving element 18 and the optical filter 19, If the light receiving sensitivity characteristics of the light receiving element 18 are sufficient to achieve the purpose of selectively detecting light in the vicinity of a specific wavelength region, it is possible to configure the light detecting means without the light filter 19. . If a suitable light receiving element 18 is used, a photodiode may be used instead of the thermopile.
また、 上記実施形態においては、 それ自体が特定波長領域の光を吸収する光フ ィル夕機能を有する材料として水酸基を含有する石英ガラスを用いたが、 その他 の材料、 例えばサファイアを窓材 6として用いてもよい。 この場合も、 窓材 6の 吸収波長に対応して受光素子 1 8および光フィルタ 1 9を適宜組み合わせればよ い。  Further, in the above embodiment, quartz glass containing a hydroxyl group is used as a material having an optical filter function of absorbing light in a specific wavelength region, but other materials such as sapphire may be used as the window material. May be used. Also in this case, the light receiving element 18 and the optical filter 19 may be appropriately combined in accordance with the absorption wavelength of the window material 6.
[第 2の実施形態]  [Second embodiment]
次に図 4乃至図 8を参照して本発明の第 2の実施形態について説明する。 図 4 は、 本発明による温度測定システムを備えた C V D処理装置を概略的に示す図で ある。 なお、 図 4および図 8において、 図 1および図 3に示す構成要素と同一ま たは類似の機能を果たす構成要素には、 同一の符号を付している。  Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a diagram schematically showing a CVD processing apparatus provided with a temperature measurement system according to the present invention. In FIGS. 4 and 8, components having the same or similar functions as the components shown in FIGS. 1 and 3 are denoted by the same reference numerals.
図 4に示すように、 C V D処理装置はチャンバ 2を有している。 ウェハ 1に対 して成膜処理等の C V D処理が行われる場合、 チャンバ 2内の雰囲気がチャンバ 2外の雰囲気から隔離される。 チャンバ 2は壁体 4により区画されている。 壁体 4の底部には、 石英ガラスにより形成された光透過性を有する窓材 6 Aが設けら れている。 この窓材 6 Aは、 第 1の実施形態の窓材 6と異なり、 特定波長領域に 吸収のピークを持っている必要はない。 チャンバ 2には、 ウェハ 1に処理ガスを 供給するガスシャワー 3等の部材が設けられているが、 本発明の要旨とは直接関 係ないためここでは詳細には説明しない。  As shown in FIG. 4, the CVD processing apparatus has a chamber 2. When a CVD process such as a film forming process is performed on the wafer 1, the atmosphere in the chamber 2 is isolated from the atmosphere outside the chamber 2. The chamber 2 is defined by a wall 4. At the bottom of the wall 4, a light-transmitting window material 6 A made of quartz glass is provided. Unlike the window member 6 of the first embodiment, the window member 6A does not need to have an absorption peak in a specific wavelength region. The chamber 2 is provided with members such as a gas shower 3 for supplying a processing gas to the wafer 1, but will not be described in detail here because it is not directly related to the gist of the present invention.
チャンバ 2には、 ウェハ 1すなわち被処理体を載置するためのサセプ夕 8が設 けられている。 サセプタ 8は、 黒色の A 1 Nにより形成することが好ましく、 こ れにより、 サセプタ 8の放射特性が黒体のそれに近くなる点と、 ランプ光を透過 しにくくなる点において有利となる。  In the chamber 2, a susceptor 8 for mounting the wafer 1, that is, the object to be processed, is provided. The susceptor 8 is preferably formed of black A 1 N, which is advantageous in that the radiation characteristics of the susceptor 8 are close to those of a black body and that the susceptor 8 does not easily transmit lamp light.
サセプ夕 8には、 その側面からその中央方向に延びて終端している孔 1 0が形 成されている。 孔 1 0内には、 サセプ夕 8からの輻射光を集光するための光ガイ ド 1 2すなわち導光体が挿入されている。 光ガイド 1 2は、 壁体 1を貫通してチ ヤンバ 2の外部に延びている。 光ガイド 1 2を、 ? L 1 0に挿入する構成は、 ラン プ光の光ガイド 1 2への到達量を最小限に抑制する点で有利である。 The susceptor 8 has a hole 10 extending from its side toward the center and terminating. Has been established. In the hole 10, a light guide 12 for condensing radiated light from the susceptor 8, that is, a light guide is inserted. The light guide 12 extends through the wall 1 to the outside of the chamber 2. Light guide 1 2? The configuration inserted into L 10 is advantageous in that the amount of lamp light reaching the light guide 12 is minimized.
一方、 チャンバ 2の下方には、 ランプ室 2 0が設けられている。 ランプ室 2 0 には、 ランプ 2 2 Aすなわちランプ加熱源が設けられている。 ランプ 2 2 Aはハ ロゲンランプからなる。  On the other hand, a lamp chamber 20 is provided below the chamber 2. The lamp chamber 20 is provided with a lamp 22A, that is, a lamp heating source. Lamp 22A is a halogen lamp.
また、 光ガイド 1 2には、 光ファイバ 1 4すなわち光伝送媒体を介して、 光検 出器 1 6 Aが接続されている。 光検出器 1 6 Aは、 フォトダイオード等からなる 受光素子 1 8 Aを有している。  In addition, an optical detector 16A is connected to the optical guide 12 via an optical fiber 14, that is, an optical transmission medium. The photodetector 16A has a light receiving element 18A composed of a photodiode or the like.
光検出器 1 6 Aには、 受光素子 1 8 Aの手前側に、 光フィルタ 1 9 Aが設けら れている。 適当な受光感度特性 (受光感度の波長依存性を意味する) を有する受 光素子 1 8 Aと、 適当な透過特性 (透過率の波長依存性を意味する) を有する光 フィル夕 1 9 Aを適宜組み合わせることにより、 所望の波長領域の光を選択的に 検出する光検出手段を構成することができる。 この光検出手段による検出波長領 域については、 後に詳述する。  The photodetector 16A is provided with an optical filter 19A in front of the light receiving element 18A. A light-receiving element 18 A having appropriate light-receiving sensitivity characteristics (meaning the wavelength dependence of light-receiving sensitivity) and a light filter 19 A having appropriate transmission characteristics (meaning the wavelength dependence of transmittance) are used. By appropriately combining them, it is possible to constitute a light detecting means for selectively detecting light in a desired wavelength region. The wavelength region detected by the light detecting means will be described later in detail.
光検出器 1 6 Aには、 温度コントローラ 2 4が接続されている。 温度コント口 —ラ 2 4は、 プランクの放射則の原理に基づいてサセプ夕 8の温度を算出する演 算部 2 6と、 演算部 2 6により算出されたサセプタ 8の温度に基づいてランプ 2 2に供給する電力を制御する出力制御部 2 8と、 を有している。  A temperature controller 24 is connected to the photodetector 16A. The temperature controller is a calculator 24 that calculates the temperature of the susceptor 8 based on the principle of Planck's radiation law, and a lamp 2 based on the temperature of the susceptor 8 calculated by the calculator 26. And an output control unit 28 for controlling the power supplied to the power supply 2.
次に、 作用について説明する。 C V D処理を行う場合、 ランプ 2 2 Aが点灯さ れ、 このランプの輻射熱によりサセプ夕 8が加熱される。 サセプ夕 8が加熱され ることにより、 サセプ夕 8上に荦置されたウェハ 1が加熱される。 サセプ夕 8が 加熱されると、 サセプ夕 8からはその温度に相応した熱輻射光が生じる。 熱輻射 光は、 光ガイド 1 2により集光されて、 光ファイバ 1 4および光フィル夕 1 9 A を順次経て、 受光素子 1 8 Aに入射する。 受光素子 1 8 Aの出力は演算部 2 6に 入力される。 演算部 2 6は、 プランクの放射則にのっとり、 受光素子 1 8 Aの出 力に基づいてサセプタ 8の温度を算出する。 出力制御部 2 8は、 演算部 2 6の算 出結果に基づいて、 サセプ夕 8の温度が所定値となるようにランプ 2 2 Aに電力 を供給する。 Next, the operation will be described. When performing the CVD process, the lamp 22 A is turned on, and the susceptor 8 is heated by the radiant heat of the lamp. When the susceptor 8 is heated, the wafer 1 placed on the susceptor 8 is heated. When susceptor 8 is heated, susceptor 8 generates heat radiation corresponding to its temperature. The heat radiation light is condensed by the light guide 12, passes through the optical fiber 14 and the optical filter 19 A in order, and enters the light receiving element 18 A. The output of the light receiving element 18 A is input to the calculation unit 26. The calculation unit 26 calculates the temperature of the susceptor 8 based on the output of the light receiving element 18 A according to Planck's radiation law. The output control unit 28 supplies power to the lamp 22A based on the calculation result of the arithmetic unit 26 so that the temperature of the susceptor 8 becomes a predetermined value. Supply.
ランプ 22 Aから放射された光は、 サセプ夕 8に到達する。 サセプ夕 8に到達 したランプ光は、 サセプタ 8を加熱するとともに、 サセプ夕 8を透過して光ガイ ド 1 2に少量ではあるが導入される。 従って、 光ガイ ド 1 2に導入される光は、 サセプ夕 8からの輻射光と、 ランプ光とになる。  The light emitted from lamp 22A reaches Susep E8. The lamp light reaching the susceptor 8 heats the susceptor 8 and transmits through the susceptor 8 to be introduced into the light guide 12 though a small amount. Therefore, the light introduced into the light guide 12 becomes the radiation light from the susceptor 8 and the lamp light.
ランプ光が、 光ガイド 1 2に導入される光に含まれることにより温度測定結果 に及ぼす影響は、 以下のようにして求めることができる。  The effect of the lamp light on the temperature measurement result by being included in the light introduced into the light guide 12 can be obtained as follows.
図 5のグラフは、 受光素子 1 8 Aの出力電圧 Vpdおよびサセプタ 8の温度 TSの 経時変化を示している。  The graph of FIG. 5 shows the change over time of the output voltage Vpd of the light receiving element 18 A and the temperature TS of the susceptor 8.
今、 時間範囲 t Aにおいて、  Now, in the time range t A,
(1) ランプ 22 Aに供給される電力 Wが安定し、 略一定の値 Wiとなっており、 (2) サセプタ 8の温度 TSが安定した値 Tiとなっており、 かつ、  (1) The power W supplied to the lamp 22A is stable and has a substantially constant value Wi, (2) the temperature TS of the susceptor 8 has a stable value Ti, and
(3) 受光素子 1 8 Aの出力電圧 Vpdが安定し、 略一定の値 Viとなっているもの とする。  (3) It is assumed that the output voltage Vpd of the light-receiving element 18 A is stable and has a substantially constant value Vi.
この状態から、 時間 t lの時点で、 ランプ 22 Aに供給する電力 Wを 0にする。 するとその瞬間、 受光素子 1 8Aにはランプ 22 Aからの光が入力されなくなる ため、 受光素子 1 8 Aの出力電圧 Vpdは Viから Vi— AViまで急激に低下する。 その 後、 受光素子 1 8 Aの出力電圧 Vpdは、 サセプ夕 8の温度 TSの低下に合わ せて緩 やかに低下してゆく。 サセプタ 8の温度 TSは、 ランプ 22Aへの電力供 給を停止 した後、 緩やかに低下してゆく。 従って、 ランプ 22 Aへの電力供給を 停止した瞬間の受光素子 1 8 Aの出力電圧低下 AViが、 時間範囲 tAにおける受 光素子 1 8 Aの出力電圧 Viに含まれるランプ光の寄与分に相当する。  From this state, the power W supplied to the lamp 22A is set to 0 at the time tl. Then, at that moment, the light from the lamp 22A is not input to the light receiving element 18A, so that the output voltage Vpd of the light receiving element 18A sharply drops from Vi to Vi-AVi. After that, the output voltage Vpd of the light-receiving element 18 A gradually decreases as the temperature TS of the susceptor 8 decreases. The temperature TS of the susceptor 8 gradually decreases after stopping the power supply to the lamp 22A. Therefore, the output voltage drop AVi of the light-receiving element 18 A at the moment when the power supply to the lamp 22 A is stopped corresponds to the contribution of the lamp light included in the output voltage Vi of the light-receiving element 18 A in the time range tA. I do.
ここで、 R ViZ (Vi-Δ Vi) をサセプ夕 8からの輻射光に対するランプ 光 22 Aからの放射光の強度比指数と定義する。 この強度比指数 Rは、 光検出手 段による検出波長領域の関数となる。 その関係を表 1に示す。 表 1 Here, R ViZ (Vi-ΔVi) is defined as the intensity ratio index of the radiated light from the lamp 22A to the radiated light from the susceptor 8. This intensity ratio index R is a function of the wavelength range detected by the light detection means. Table 1 shows the relationship. table 1
表 1に示すように、 強度比指数 Rは、 検出波長領域を 1. 5 xm以上とした場 合に、 1以下となり、 更に、 検出波長領域を 2. 0 m以上とした場合に 0. 1 以下となる。 すなわち検出波長領域が 1. 5 m未満である場合に比べて大幅な 改善が認められる。 実施例 As shown in Table 1, the intensity ratio index R is 1 or less when the detection wavelength region is 1.5 xm or more, and 0.1 when the detection wavelength region is 2.0 m or more. It is as follows. In other words, a significant improvement is observed compared to the case where the detection wavelength region is less than 1.5 m. Example
次に、 実験例に基づいて、 本発明を更に詳細に説明する。 受光素子 18Aとフ ィル夕 1 9 Aとを適宜組み合わせて検出波長領域を変化させた場合の強度比指数 Rを調べた。 その結果を表 2に示す。 また、 表 2の結果を得るために行った試験 において用いた受光素子 18 Aとフィルタ 1 9 Aの組み合わせごとの検出波長領 域を図 6に示す。 なお、 表 2および図 6において、 Filterの表示がないものはフ ィル夕 1 9 Aを設けることなく受光素子 18 Aのみで光検出手段を構成した場合 を示している。 表2 ラ:ンプ Zサ :プ夕輻射強度比指数 R Next, the present invention will be described in more detail based on experimental examples. The intensity ratio index R when the detection wavelength region was changed by appropriately combining the light receiving element 18A and the filter 19A was examined. The results are shown in Table 2. Fig. 6 shows the detection wavelength region for each combination of the light-receiving element 18A and the filter 19A used in the test performed to obtain the results shown in Table 2. In Table 2 and FIG. 6, those without a filter show the case where the photodetector is constituted by only the light receiving element 18A without providing the filter 19A. Table 2 La: Pump Z: Ratio of radiation intensity ratio R
ランフ。出力 InGaAs (L) InGaAs (S) In GaAs (S) Si サセフ。タ温度 (%) +Fi 1 ter +Fi Iter  Ramph. Output InGaAs (L) InGaAs (S) In GaAs (S) Si susef. Temperature (%) + Fi 1 ter + Fi Iter
2 0 0 °C 1 3 2 . 3  200 ° C 1 32 .3
2 5 0。C 1 6 1 . 2  2 5 0. C 1 6 1.2
ο U U し 丄 0 0 . 5 8 R= 6 . 2 R = = 8. 丄  ο U U 丄 0 0. 5 8 R = 6.2 R = = 8. 丄
3 5 0°C 1 8 0 . 2 7 2 . 5 4. 1  3 5 0 ° C 1 8 0 .2 7 2 .5 4.1
4 0 0°C 2 1 0 . 1 5 1 . 5 1. 7 R= 3 7 0 4 0 0 ° C 2 1 0 .1 5 1 .5 1.7 R = 3 7 0
4 5 0 °C 2 7 0 . 1 0 0 . 7 4 1. 3 1 0 04 5 0 ° C 2 7 0 .10 0 .7 4 1.3 1 0 0
5 0 0 °C 3 2 0 . 0 6 7 0 . 4 5 0. 7 0 5 6. 95 0 ° C 3 2 0 .0 6 7 0 .4 5 0 .7 0 5 6.9
5 2 0。C 3 5 0 . 0 5 8 0 • 3 3 0. 5 5 3 1. 8 表 2に示すように、 受光素子 1 8 Aとして I n G aA s (long) と 1. 5 ^m 以下の短波長側をカットするフィル夕 1 9 Aとを組み合わせた場合、 測定誤差を 少なくすることができることがわかる。 特にサセプ夕 8の温度が 5 0 0°C付近の 場合、 測定誤差が非常に小さくなつている。 5 2 0. C 30.5 .0 5 8 0 • 3 3 .5 5 31.8 As shown in Table 2, for the light-receiving element 18 A, InGaas (long) and a short length of 1.5 ^ m or less It can be seen that the measurement error can be reduced when combined with the filter 19 A, which cuts the wavelength side. Especially when the temperature of Susceptor 8 is around 500 ° C, the measurement error is very small.
このように、 通常 2 0 0 0 :〜 3 0 0 0°Cの色温度を持つハロゲンランプの放 射光 (以下、 「ランプ光」 ともいう) の放射強度分布と、 成膜工程の際のサセプ 夕の温度 (通常 3 0 0° (:〜 6 0 Ot:) に基づくサセプ夕からの輻射光の放射強度 分布との関係に着目し、 ランプ光の放射強度が最も強くなる波長領域から検出波 長領域を外すことにより、 ランプ光が迷光として受光素子に入射した場合でも、 その影響を最小限とすることができる。  Thus, the emission intensity distribution of the emission light (hereinafter, also referred to as “lamp light”) of a halogen lamp having a color temperature of usually 2000 to 300 ° C. Focusing on the relationship with the radiation intensity distribution of the radiated light from the suscept evening based on the evening temperature (usually 300 ° (: ~ 60 Ot :)) By removing the long region, even if the lamp light enters the light receiving element as stray light, the effect can be minimized.
すなわち、 図 7に示すように、 ハロゲンランプ光の放射強度は波長 0. 5〜 1. 0 mの領域で最も強くなるため、 この波長領域を検出波長領域から外すこ とにより迷光の影響を最小限とすることができる。 更に、 0. 5〜 1. 0 mの 波長領域外であって、 かつ通常 3 0 0°C〜 6 0 0°Cの範囲に設定されるサセプ夕 8からの輻射光の放射強度が最も強くなる波長 1. 5〜 6 zmの領域を検出波長 領域とすることにより、 迷光の影響を更に抑えることができる。 前述したよう に、 検出波長領域は 1. 5 / m以上とすることが好ましく、 2. O m以上とす ることが更に好ましい。  In other words, as shown in Fig. 7, the emission intensity of the halogen lamp light is strongest in the wavelength range of 0.5 to 1.0 m, so the effect of stray light is minimized by excluding this wavelength region from the detection wavelength region. Limit. Furthermore, the radiation intensity from the susceptor 8 outside the wavelength range of 0.5 to 1.0 m and usually set in the range of 300 ° C to 600 ° C is the strongest. The influence of stray light can be further suppressed by setting the range of 1.5 to 6 zm as the detection wavelength range. As described above, the detection wavelength region is preferably 1.5 / m or more, and more preferably 2.Om or more.
以上説明したように、 本実施形態によれば、 光検出手段による検出波長領域を 最適化することにより、 ランプ光による迷光の影響を排除して、 精度の高い温度 測定を行うことができる。 As described above, according to the present embodiment, the wavelength range detected by the light detection unit is By optimizing, the effect of stray light due to lamp light can be eliminated, and highly accurate temperature measurement can be performed.
なお、 上記実施形態においては、 温度測定対象物が被処理体であるゥェ八 1を 載置するサセプ夕 8であったが、 本発明の適用はこれに限定されるものではな レ^ すなわち、 例えば、 図 8に示すように、 光ガイド 1 2力 被処理体であるゥ ェハ 1からの輻射光を検出するような配置としてもよい。 更に、 光ガイ ド 1 2 を、 チヤンバ 2内においてウェハ 1の上方若しくは斜め上方にウェハ 1から離し て配置して、 この光ガイド 1 2がウェハ 1からの輻射光を検出するような配置と してもよい。 この場合も、 上記実施形態と略同一の効果が得られる。  In the above-described embodiment, the temperature measurement target is the susceptor 8 on which the wafer 1 to be processed is placed, but the application of the present invention is not limited to this. For example, as shown in FIG. 8, the light guide 12 may be arranged so as to detect the radiated light from the wafer 1 which is the object to be processed. Further, the light guide 12 is arranged above or obliquely above the wafer 1 in the chamber 2 so as to be separated from the wafer 1 so that the light guide 12 detects radiation light from the wafer 1. You may. In this case, substantially the same effects as in the above embodiment can be obtained.
また、 上記実施形態においては、 受光素子 1 8 Aと光フィル夕 1 9 Aとの組み 合わせにより所定の波長領域の光を選択的に検出する光検出手段を構成している が、 受光素子 1 8 Aの受光感度特性が特定波長領域近傍の光を選択的に検出する 目的を達成するに十分であれば、 光フィルタ 1 9 A無しで光検出手段を構成する ことも可能である。  In the above embodiment, the light detecting means for selectively detecting light in a predetermined wavelength region is configured by combining the light receiving element 18A and the optical filter 19A. If the light-receiving sensitivity characteristic of 8 A is sufficient to achieve the purpose of selectively detecting light in the vicinity of a specific wavelength region, the light detecting means can be configured without the optical filter 19 A.

Claims

請求の範囲 The scope of the claims
1 . チャンバ内に収容され、 ランプ加熱源により加熱される測定対象物の温 度測定を行う温度測定システムにおいて、 1. In a temperature measurement system that measures the temperature of an object to be measured housed in a chamber and heated by a lamp heating source,
前記ランプ加熱源と前記測定対象物との間の部分に設けられ、 それ自体が特定 波長領域以外の光を選択的に透過させる性質を有する窓材と、  A window member provided at a portion between the lamp heating source and the object to be measured, which has a property of selectively transmitting light outside a specific wavelength region;
前記測定対象物からの熱輻射光を受光するための受光素子を有する光検出器を 含み、 前記特定波長領域近傍の波長領域の光を選択的に検出する光検出手段と、 前記光検出器の出力に基づいて、 前記測定対象物の温度を算出する演算部と、 を備えたことを特徴とする、 温度測定システム。  A photodetector having a light receiving element for receiving thermal radiation light from the measurement object, a photodetector that selectively detects light in a wavelength region near the specific wavelength region, And a calculation unit for calculating the temperature of the measurement target based on the output.
2 . チャンバ内に収容され、 ランプ加熱源により加熱される測定対象物の温 度測定を行う温度測定システムにおいて、  2. In a temperature measurement system that measures the temperature of an object to be measured housed in a chamber and heated by a lamp heating source,
前記ランプ加熱源と前記測定対象物との間の部分に設けられ、 それ自体が特定 波長領域の光を選択的に透過させる性質を有する窓材と、  A window member provided at a portion between the lamp heating source and the object to be measured, which has a property of selectively transmitting light in a specific wavelength region itself;
前記測定対象物からの熱輻射光を受光するための受光素子を有する光検出器を 含み、 前記特定波長領域近傍の波長領域以外の光を選択的に検出する光検出手段 と、  A photodetector including a photodetector having a light receiving element for receiving thermal radiation light from the measurement object, and a light detection unit for selectively detecting light outside a wavelength region near the specific wavelength region,
前記光検出器の出力に基づいて、 前記測定対象物の温度を算出する演算部と、 を備えたことを特徴とする、 温度測定システム。  A calculation unit for calculating the temperature of the object to be measured based on the output of the photodetector.
3 . 前記チャンバ内に配置され、 測定対象物からの熱輻射光を伝送するため の光ガイドと、  3. a light guide arranged in the chamber for transmitting heat radiation from the object to be measured;
前記光ガイドにより取得された光を前記光検出器に導く光伝送媒体と、 を更に備えたことを特徴とする、 請求項 1または 2に記載の温度測定システム。  The temperature measurement system according to claim 1, further comprising: an optical transmission medium that guides light obtained by the light guide to the photodetector.
4 . 前記窓材は、 前記チャンバを区画する壁体の少なくとも一部を構成して いることを特徴とする、 請求項 1または 2に記載の温度測定システム。  4. The temperature measurement system according to claim 1, wherein the window material forms at least a part of a wall that partitions the chamber.
5 . 前記窓材は、 所定の波長領域の光を吸収する機能を有する石英ガラスか らなることを特徴とする、 請求項 1または 2に記載の温度測定システム。  5. The temperature measurement system according to claim 1, wherein the window material is made of quartz glass having a function of absorbing light in a predetermined wavelength range.
6 . 前記石英ガラスは水酸基を含んでいること特徴とする、 請求項 5に記載 の温度測定システム。 6. The temperature measurement system according to claim 5, wherein the quartz glass contains a hydroxyl group.
7 . 前記光検出手段は、 前記受光素子に入射する光の波長領域を限定する光 フィルタを更に含んでいることを特徴とする、 請求項 1または 2に記載の温度測 疋システム。 7. The temperature measurement system according to claim 1, wherein the light detection unit further includes an optical filter that limits a wavelength range of light incident on the light receiving element.
8 . 前記窓材は、 水酸基を含む石英ガラスからなり、  8. The window material is made of quartz glass containing a hydroxyl group,
前記光フィル夕は、 波長 2 . 7 m近傍の光を選択的に透過する機能を有して いることを特徴とする、 請求項 7に記載の温度測定システム。  The temperature measurement system according to claim 7, wherein the optical filter has a function of selectively transmitting light having a wavelength of about 2.7 m.
9 . チャンバ内に収容され、 ランプ加熱源により加熱される測定対象物の温 度測定を行う温度測定システムにおいて、  9. In a temperature measurement system that measures the temperature of an object to be measured housed in a chamber and heated by a lamp heating source,
測定対象物からの熱輻射光を受光するための受光素子を有する光検出器を含 み、 1 . 5 m以上の波長を有する光を選択的に検出する光検出手段と、 前記光検出器の出力に基づいて、 前記測定対象物の温度を算出する演算部と、 を備えたことを特徴とする、 温度測定システム。  A photodetector including a photodetector having a light receiving element for receiving thermal radiation light from the object to be measured, a photodetector for selectively detecting light having a wavelength of 1.5 m or more; and And a calculation unit for calculating the temperature of the measurement target based on the output.
1 0 . 前記光検出手段は、 2 . 0 m以上の波長を有する光を選択的に検出 することを特徴とする、 請求項 9に記載の温度測定システム。  10. The temperature measurement system according to claim 9, wherein the light detection means selectively detects light having a wavelength of 2.0 m or more.
1 1 . 前記光検出手段は、 前記受光素子に入射する光の波長領域を限定する 光フィルタを更に含んでいることを特徵とする、 請求項 9または 1 0に記載の温 度測定システム。  11. The temperature measurement system according to claim 9, wherein the light detection unit further includes an optical filter that limits a wavelength region of light incident on the light receiving element.
1 2 . 前記チャンバ内に配置され、 前記測定対象物からの熱輻射光を伝送す るための光ガイドと、  12. A light guide disposed in the chamber for transmitting heat radiation light from the object to be measured;
前記光ガイドにより取得された光を前記光検出器に導く光伝送媒体と、 を更に備えたことを特徴とする、 請求項 9乃至 1 1のいずれかに記載の温度測定 システム。  The temperature measurement system according to any one of claims 9 to 11, further comprising: an optical transmission medium that guides light acquired by the light guide to the photodetector.
PCT/JP2000/002005 1999-03-30 2000-03-30 Temperature measurement system WO2000058701A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU34554/00A AU3455400A (en) 1999-03-30 2000-03-30 Temperature measurement system
KR1020017012533A KR20010110480A (en) 1999-03-30 2000-03-30 Temperature measurement system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11/90104 1999-03-30
JP11/90120 1999-03-30
JP9012099 1999-03-30
JP9010499 1999-03-30

Publications (1)

Publication Number Publication Date
WO2000058701A1 true WO2000058701A1 (en) 2000-10-05

Family

ID=26431616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002005 WO2000058701A1 (en) 1999-03-30 2000-03-30 Temperature measurement system

Country Status (3)

Country Link
KR (1) KR20010110480A (en)
AU (1) AU3455400A (en)
WO (1) WO2000058701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169643B1 (en) 1998-12-28 2007-01-30 Seiko Epson Corporation Semiconductor device, method of fabricating the same, circuit board, and electronic apparatus
CN114441591A (en) * 2022-01-05 2022-05-06 电子科技大学 Device and method for testing thermal radiation cooling rate of high-temperature object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100681693B1 (en) * 2005-10-21 2007-02-09 재단법인 포항산업과학연구원 Error source radiance optical filtering method and system in infrared radiation thermometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131430A (en) * 1983-12-19 1985-07-13 Dainippon Screen Mfg Co Ltd Measuring device of temperature of semiconductor substrate
JPH0442025A (en) * 1990-06-07 1992-02-12 M Setetsuku Kk Method and apparatus for measuring temperature of wafer
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
WO1992021144A1 (en) * 1991-05-17 1992-11-26 Materials Research Corporation Wafer processing cluster tool batch preheating and degassing method and apparatus
JPH07134069A (en) * 1993-11-10 1995-05-23 Hitachi Ltd Method for monitoring temperature of substrate
JPH10170343A (en) * 1996-12-06 1998-06-26 Sony Corp Temperature measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60131430A (en) * 1983-12-19 1985-07-13 Dainippon Screen Mfg Co Ltd Measuring device of temperature of semiconductor substrate
US5154512A (en) * 1990-04-10 1992-10-13 Luxtron Corporation Non-contact techniques for measuring temperature or radiation-heated objects
JPH0442025A (en) * 1990-06-07 1992-02-12 M Setetsuku Kk Method and apparatus for measuring temperature of wafer
WO1992021144A1 (en) * 1991-05-17 1992-11-26 Materials Research Corporation Wafer processing cluster tool batch preheating and degassing method and apparatus
JPH07134069A (en) * 1993-11-10 1995-05-23 Hitachi Ltd Method for monitoring temperature of substrate
JPH10170343A (en) * 1996-12-06 1998-06-26 Sony Corp Temperature measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169643B1 (en) 1998-12-28 2007-01-30 Seiko Epson Corporation Semiconductor device, method of fabricating the same, circuit board, and electronic apparatus
CN114441591A (en) * 2022-01-05 2022-05-06 电子科技大学 Device and method for testing thermal radiation cooling rate of high-temperature object

Also Published As

Publication number Publication date
AU3455400A (en) 2000-10-16
KR20010110480A (en) 2001-12-13

Similar Documents

Publication Publication Date Title
JP4339523B2 (en) Temperature measurement system
US4499378A (en) Infrared radiation gas analyzer
JP4689010B2 (en) Heat treatment substrate
US5154512A (en) Non-contact techniques for measuring temperature or radiation-heated objects
CN103155113B (en) Substrate board treatment
KR101057853B1 (en) Systems and processes for calibrating temperature measuring devices in heat treatment chambers
JP4545812B2 (en) Pyrometer calibration using multiple light sources
KR101545282B1 (en) Calibration substrate and calibration method
JP2007524828A (en) Thermo-optic filter and infrared sensor using the same
US6452136B1 (en) Monitoring and control system and method for sensing of a vessel and other properties of a cooktop
EP0458388B1 (en) Method and device for measuring temperature radiation using a pyrometer wherein compensation lamps are used
JPH07134069A (en) Method for monitoring temperature of substrate
JPH0721430B2 (en) Dual spectrum optical pyrometer
WO2000058701A1 (en) Temperature measurement system
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
JP2007183207A (en) Radiation temperature sensor and radiation temperature measuring device
JPH07502821A (en) Heating control method and device
JP2009266506A (en) Induction heating cooker
JPH0442025A (en) Method and apparatus for measuring temperature of wafer
JP2002164299A (en) Substrate-heating equipment and substrate-processing equipment
JPH07306138A (en) Gas analyzer
US4499379A (en) Infrared radiation gas analyzer
KR101552103B1 (en) Optical Pyrometer for Measuring Temperatures of Substrate and Susceptor
JP6546064B2 (en) Temperature measuring device
JPH11258054A (en) Wafer temperature measuring method and device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09657609

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020017012533

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 608149

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020017012533

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020017012533

Country of ref document: KR