WO2000032807A1 - Apparatus for automatic reading of an antibiogram - Google Patents

Apparatus for automatic reading of an antibiogram Download PDF

Info

Publication number
WO2000032807A1
WO2000032807A1 PCT/FR1999/002846 FR9902846W WO0032807A1 WO 2000032807 A1 WO2000032807 A1 WO 2000032807A1 FR 9902846 W FR9902846 W FR 9902846W WO 0032807 A1 WO0032807 A1 WO 0032807A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
camera
light
petri dish
lighting
Prior art date
Application number
PCT/FR1999/002846
Other languages
French (fr)
Inventor
Michel Roch
Christian Curel
Original Assignee
Intelligence Artificielle Applications Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligence Artificielle Applications Sarl filed Critical Intelligence Artificielle Applications Sarl
Publication of WO2000032807A1 publication Critical patent/WO2000032807A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Definitions

  • the present invention relates to an apparatus for automatically reading an antibiogram.
  • an antibiogram is carried out in the following manner to determine which antibiotics are capable of blocking the multiplication of a germ.
  • a liquid sample containing the germ or the strain of bacteria to be tested is carried out, Petri dishes containing different culture media are prepared and inoculated with the infectious liquid; then incubate and thus determine which culture media allowed the development of the germ, so which is the family to which the germs of the sample belong, after which, to go further in the identification, we takes up one or more colony (s) which are sown on culture media or in a gallery in order to find the species.
  • an antibiogram is carried out by inoculating the germ on a Petri dish B (see FIG. 1) containing the appropriate agar, the inoculation being carried out regularly over the entire surface of the agar by any of the known techniques. . P pellets of different antibiotics are then positioned on the agar surface at regularly spaced points, it being understood that a panel of antibiotics is chosen which we know is generally effective for germs of the determined family; the Petri dish is then placed in the oven and incubated for 18 hours.
  • Germs develop on the agar surface except in areas where the antibiotic has blocked development; in this way around each pellet P, a disc D is formed in which the agar free of germ, that is to say shiny, is seen, whereas between the discs relating to the different pastilles, the development of germs gives rise to a matt surface G.
  • the diameter of the outer circle of the disc relating to each pellet is noted and by calculation deduced therefrom the minimum inhibitory concentration MIC for each antibiotic (MIC is the minimum concentration of antibiotic necessary to inhibit the growth of 'a germ): the larger the diameter of the circle, the more effective the antibiotic and, therefore, the smaller the MIC.
  • Petri dishes can be round or square.
  • the Petri dish B is placed in an area which is illuminated by means of a fluorescent tube 1 of annular shape placed behind a cylindrical 2 made of translucent glass allowing to have a substantially uniform illumination on the whole Petri dish which is placed in the center of said cylinder (see Figure 9).
  • the difficulty when carrying out a computer acquisition of the image of the Petri dish, stems from the fact that it is necessary to have as strong contrasts as possible between the circle of inhibition which surrounds the pellet of antibiotic, on the one hand, and the environment around this circle which corresponds to the area where the germ has grown.
  • the image acquisition is, in known manner, made by means of a charge-coupled matrix electronic camera, called "CCD", the field of observation of which encompasses the entire Petri dish.
  • CCD charge-coupled matrix electronic camera
  • the object of the invention is to propose an apparatus for automatic reading of an antibiogram, which makes it possible to improve the reading by a CCD camera of the contrasts on the surface of a Petri dish.
  • the subject of the invention is an apparatus for automatically reading an antibiogram, said apparatus comprising a lighting system for lighting a Petri dish containing antibiotic pellets positioned on a culture medium seeded with a germ.
  • the apparatus preferably being equipped with a calculation unit for determining on said image the inhibition circles around each patch and thus calculating the concentration minimum inhibitory effect for each antibiotic tablet, characterized in that the lighting system includes lighting means for focusing light rays towards the surface of the box, the incident rays forming an oblique angle with respect to the surface to be light up from the box, so that the reflected rays pass in the vicinity of the lens of the camera, without however penetrating there, to optimize the contrasts of the image.
  • said lighting means comprises a light source and a bundle of optical fibers housed in a support, the upstream ends of the optical fibers being located opposite the light source, while the downstream ends of the fibers are oriented towards the surface. to be lit with an oblique angle, the optical fibers having different lengths so as to distribute their downstream ends on the support to form a plurality of light points generating oblique light brushes towards the surface of the box.
  • the CCD camera is a matrix electronic camera whose axis of observation coincides with the axis of the Petri dish, so that the field of observation of the camera encompasses the whole of the Petri dish, and the aforementioned support is substantially in the form of a ring, the lower surface of which is spaced by a determined height from the surface of the dish, said support ring being, in axial projection, circumscribed in the Petri dish, so that the incident rays all form an oblique angle with the surface to be illuminated.
  • each light brush illuminates a portion of the surface of the box, said portion extending at least between an edge of the box and its center, the light brushes overlapping each other, so as to illuminate the the entire surface of the box.
  • the camera is at an optical distance from the surface of the box greater than the height between said surface and the point of intersection of the axis of observation of the camera with the reflected rays corresponding to the incident rays having the shortest optical path.
  • the angle of incidence of the light rays is adjusted according to the height of the ring and the optical distance of the camera from the surface of the box, and according to the radius of the ring. relative to the axis of the box.
  • the apparatus comprises one or more mirrors for returning the image of the surface of the box to the camera, so as to increase the optical distance between the camera lens and the surface of the box, while limiting the height of the camera relative to the box.
  • the support ring has a circular groove open on its lower surface, so as to allow the orientation of the downstream ends of the optical fibers at an oblique angle towards the surface to be lit, the fiber bundle being clamped in a sheath which penetrates radially into the support ring by separating into two half-beams each housed in a sheath, each half-beam being disposed in the groove on substantially a semicircle, the downstream ends of the fibers of each half-beam being evenly distributed over the entire semicircle.
  • the lighting system comprises another lighting means of annular shape, for example a fluorescent tube, placed around a translucent glass cylinder containing the petri dish, to send a diffused illumination substantially uniform on the set of petri dish.
  • another lighting means of annular shape for example a fluorescent tube, placed around a translucent glass cylinder containing the petri dish, to send a diffused illumination substantially uniform on the set of petri dish.
  • the CCD camera is a linear electronic camera whose field of observation covers a substantially rectilinear portion of the surface of the box, and the abovementioned support is substantially in the form of a rectilinear bar whose lower surface is spaced from the surface to be lit by a determined height, the optical fibers thus forming a line of luminous points which generates a luminous brush substantially in the form of a dihedral towards the surface to be lit, the apparatus further comprising means for moving the Petri dish relative to the camera and to the lighting means in a direction substantially perpendicular to the rectilinear bar, so as to acquire the image of the entire surface of the dish.
  • the observation plane of the linear CCD camera forms an oblique angle relative to the surface of the box.
  • the device comprises a divergent cylindrical lens interposed on the incident brush of the linear bar to widen the lighting area of the surface of the box.
  • FIG. 1 is a plan view and from above of an antibiogram
  • FIG. 2 is a schematic view in vertical elevation of the optical path of a light ray on an inhibited portion of a culture medium
  • Figure 3 is a figure similar to Figure 2, but showing the optical path of a light ray on a portion of the culture medium where the germ has grown;
  • FIG. 4 is a partial schematic view in vertical elevation of a first embodiment of the apparatus of the invention.
  • Figure 5 is a variant of Figure 4, in which the camera is in indirect observation of the Petri dish;
  • FIG. 6 is a partial schematic view in axial section of the apparatus of Figure 4, illustrating the positioning of a lighting means relative to the Petri dish;
  • FIG. 7 is a partial view in section along the line VII- VII of Figure 6;
  • FIG. 8 is a partial view in section along the line VIII-VIII of Figure 7;
  • - Figure 9 is a schematic perspective view showing a second lighting means which can be associated with the lighting means shown in Figure 6;
  • FIG. 10 is a diagram illustrating different possible positions for the camera and the lighting means relative to the Petri dish;
  • FIG. 11 is a view similar to Figure 4, but showing a second embodiment of the apparatus of the invention.
  • FIG. 12 is a partial perspective view from above of FIG. 11.
  • an incident ray Ri forms an angle ⁇ with respect to the surface of the inhibited portion D of the agar M contained in the box B, the reflected ray Rr being symmetrical to the ray Ri with respect to a axis A perpendicular to the agar surface, the reflected ray Rr thus forming the same angle ⁇ with respect to the inhibited surface portion D.
  • Part of the light intensity of the incident ray Ri is reflected and becomes the reflected ray Rr and the other part is refracted by the culture medium M and becomes the transmitted ray Rt.
  • the culture medium M transmits approximately 95% of the light intensity, the remaining 5% being reflected.
  • approximately 95% of the light intensity is absorbed by the culture medium.
  • the agar M retains its great flatness, so that the reflection occurs with very low diffusion, which thus gives a brilliant image of the inhibited portion.
  • the incident ray Ri arrives on surface irregularities G generated by the growth of the germ.
  • the light intensity of the incident ray Ri is partly absorbed if the medium M is opaque or transmitted by the ray R't if the medium is transparent, the other part being reflected by generating several reflected rays R'r which nevertheless remain close of specular reflection.
  • This slightly diffuse reflection on the irregularities of the germ G gives a dull image of the antibiogram.
  • the transmitted or absorbed part of the incident ray is weaker in the presence of the germ.
  • the reflected rays Rr and R'r enter the lens of the CCD camera, the corresponding pixels of the camera would be completely blinded by the large amount of reflected light, so it is necessary to place the CCD camera sufficiently away from the agar so that the reflected rays pass near the camera lens.
  • the amount of light intensity, which is absorbed or transmitted by the culture medium, being important, the light source must have a significant power.
  • FIG. 4 we see a matrix CCD camera 3 whose substantially frustoconical field of observation 4 encompasses the entire upper surface of the Petri dish B. Between the dish B and the camera 3, the figure has been indicated 5 an annular zone located outside the field of observation 4 of the camera 3, in which can be placed a means of lighting the box.
  • This annular zone 5 is delimited internally by a frustoconical surface whose small base corresponds to the upper surface of the Petri dish B and whose large base is directed towards the camera 3.
  • the annular zone 5 is delimited towards the outside by a cylindrical surface of revolution whose diameter corresponds to that of the large base of the aforementioned frustoconical surface.
  • a lighting means constituted by a support ring 6 illustrated in FIGS. 6 to 8.
  • the support ring 6 has, in axial section shown in FIG. 8, a substantially inverted U profile comprising a groove 7 open on its lower surface.
  • the support ring 6 is connected by a pipe 8, extending radially outward from the groove 7, to a chamber 9 in which is placed a lamp 10.
  • a bundle of optical fibers 11 housed in a sheath 12 extends from the chamber 9 to the support ring 6.
  • the upstream ends of the optical fibers 11 are placed in the chamber 9 opposite the lamp 10 to conduct the light to their end downstream ia.
  • the bundle of optical fibers 11 crosses the pipe 8 and opens into the groove 7 of the support ring 6, separating into two half-beams each housed in a sheath, each half-beam being disposed in the groove 7 on a semi-circle .
  • the downstream ends l ia of the optical fibers 11 of a half-beam are distributed angularly in a regular manner over a semi-circle of the groove 7.
  • the downstream end lia of each fiber 11 is curved downward in an oblique direction by relative to the surface of the box, so that each light point sends a conical light brush 13 towards the surface of the box.
  • the bundle can comprise one hundred fibers, fifty fibers distributed regularly over each semicircle of the groove of the support ring.
  • the height of the camera must be greater than Hl, which corresponds to the distance between the surface of the box B and the point of intersection of the axis A with the reflected ray coming from the incident ray which arrives on one edge of the box; when the radius of the ring 6 increases from the value RI to the value R2, or when its height decreases from the value L1 to the value L2, the height of the camera 3 must be greater than a value H2, which is less than the aforementioned Hl value.
  • the annular lighting being of revolution around the axis A of the Petri dish B, it is specifically directed towards the latter, so that the rays of the lighting make with the surface of the Petri dish an angle ⁇ varying around an average value; this angle is all the greater as the radius R of the lighting ring 6 is larger and all the smaller as the distance L between the lighting ring 6 and the petri dish B is greater .
  • a conical light brush 13 is therefore emitted which obliquely illuminates the surface of the agar.
  • the angle ⁇ varies between an angle corresponding to the light ray which arrives at the center of the box and an angle corresponding to the light ray which arrives at the edge of the box, as visible in FIG. 6.
  • the agar surface behaves, to a certain extent, like a mirror which reflects the annular lighting towards the CCD camera.
  • the obliquity of the rays of illumination of the same brush 13 varies between an edge of the agar and the center of the dish, and this variation is all the greater as the distance L is smaller for the same R or as the distance R is smaller for the same L.
  • the skilled person will therefore choose the values R, L and H so that there is optimum contrast and the radiation directly reflected on the agar does not enter the lens of the camera.
  • the camera 3 is in indirect observation of the surface of the agar contained in the dish B.
  • a first mirror 15 is provided vertically from the center of the dish B, at a height hl and with a 45 ° tilt.
  • a second mirror 16 is provided at the same height as the mirror 15 but offset in the horizontal direction by a distance h2, this second mirror 16 also being inclined at 45 ° but in the opposite direction to the mirror 15.
  • the camera 3 is placed vertically on the second mirror 16, at a distance h3 under the latter.
  • Figures 11 and 12 show a second embodiment of the invention.
  • the matrix CCD camera 3 has been replaced by a linear CCD camera 103, and the support ring 6 by a rectilinear bar 106.
  • the apparatus includes means for moving the box B in a horizontal direction F in FIG. 11, so as to acquire an image of the entire surface of the agar contained in the dish B.
  • the rectilinear strip 106 has a rectilinear groove open on its area lower, in which is positioned a bundle of optical fibers, the downstream ends of the fibers being distributed all along the strip, so as to define a line of light points which sends an illumination brush 113 on the agar, with an obliquity chosen to obtain the best possible contrast.
  • the mean plane passing through the light line 113 is located in the middle of the light brush sent by the strip 106 and makes an angle ⁇ with the plane of the agar.
  • the plane 114 of direct reflection of the brush on the agar must not arrive in the linear CCD camera 103 to avoid the dazzling of the pixels; where it follows that the linear camera 103 is arranged in the vicinity of the brush 114 obtained in direct reflection but outside of this brush.
  • the observation axis 104 of the camera 103 is oblique with respect to the surface of the box B.
  • the distance between a pixel and the point of the surface of agar which observes it is a constant distance for all the pixels of the line of the camera, that is to say that the light path of the lighting between the light strip 106 and the pixels of the camera 103 is the same for all the pixels, from which it results a perfectly constant illumination, which was not the case for a matrix camera where the points on the axis A of the Petri dish corresponded to a shorter optical path than those related to the edge. We therefore have a better reading of the agar surface.
  • the light strip and the linear camera have a length slightly greater than the width of the petri dish (or the diameter if it is a circular petri dish).
  • a slightly divergent cylindrical lens 115 can be interposed on the path of the incident brush 113 to widen the lighting area 116 of the box B, as visible in FIG. 11.
  • the lighting is not annular, but linear, it is not necessary to place the camera at a significant height to avoid the blindness of the camera, and it suffices to place the objective of the camera in the vicinity of the specular reflection of the linear lighting, to optimize the quality of the contrast, without blinding the camera.
  • the apparatus of the invention reads circular (diameter equal to 90, 100 or 140 mm) or square (120 mm wide) Petri dishes, calculates in a few seconds the value of the diameters of the muting disks and displays the image of the color box on a screen.
  • the calculation unit is suitable for reading the exact inhibition diameters, even in the event of particular phenomena, such as overlapping of zones, the presence of mutants, synergy and induction between the antibiotic tablets.
  • an expert system automatically detects inconsistencies, for example impossible or rare phenotypes, checks the consistency of the results of the molecules tested and interprets the results obtained to transform them into in vivo simulation.

Abstract

The invention concerns an apparatus for automatic reading of an antibiogram, said apparatus comprising an illumination system for illuminating a Petri dish (B) containing antibiotic lozenges positioned on a culture medium seeded with a germ, and an electronic CDD camera (3) for acquiring images of the antibiogram. The invention is characterised in that the illuminating system comprises illuminating means (6) for focusing the optical beams towards the dish surface, the incident beams forming an oblique angle (α) relatively to the surface of the dish (B) to be illuminated, such that the reflected rays pass in the proximity of the camera lens (3), without, however, penetrating therein, to optimise the image contrasts.

Description

APPAREIL DE LECTURE AUTOMATIQUE D'UN ANTIBIOGRAMMEAPPARATUS FOR AUTOMATICALLY READING AN ANTIBIOGRAM
La présente invention concerne un appareil de lecture automatique d'un antibiogramme. De façon connue, un antibiogramme est réalisé de la façon suivante pour déterminer quels sont les antibiotiques susceptibles de bloquer la multiplication d'un germe. On effectue un prélèvement liquide contenant le germe ou la souche de bactéries à tester, on prépare des boîtes de Pétri contenant différents milieux de culture et on ensemence avec le liquide infectieux; puis on fait incuber et l'on détermine ainsi quels sont les milieux de culture qui ont permis le développement du germe, donc quelle est la famille à laquelle appartiennent les germes du prélèvement, après quoi, pour aller plus loin dans l'identification, on reprend une ou plusieurs colonie(s) que l'on ensemence sur des milieux de culture ou en galerie en vue de trouver l'espèce.The present invention relates to an apparatus for automatically reading an antibiogram. In known manner, an antibiogram is carried out in the following manner to determine which antibiotics are capable of blocking the multiplication of a germ. A liquid sample containing the germ or the strain of bacteria to be tested is carried out, Petri dishes containing different culture media are prepared and inoculated with the infectious liquid; then incubate and thus determine which culture media allowed the development of the germ, so which is the family to which the germs of the sample belong, after which, to go further in the identification, we takes up one or more colony (s) which are sown on culture media or in a gallery in order to find the species.
Parallèlement à cette identification, on effectue un antibiogramme en ensemençant le germe sur une boîte de Pétri B (voir figure 1) contenant la gélose adaptée, l'ensemencement se faisant de façon régulière sur toute la surface de la gélose par une quelconque des techniques connues. On positionne alors des pastilles P de différents antibiotiques à la surface de la gélose en des points régulièrement espacés, étant entendu qu'on choisit un panel d'antibiotiques dont on sait qu'il est généralement efficace pour les germes de la famille déterminée ; on passe alors la boîte de Pétri à l' étuve et on incube pendant 18 heures. Les germes se développent à la surface de la gélose sauf dans les zones où l'antibiotique a bloqué le développement ; de la sorte autour de chaque pastille P, il se forme un disque D où l'on voit la gélose exempte de germe, c'est-à-dire brillante, alors qu'entre les disques afférents aux différentes pastilles, le développement des germes donne naissance à une surface mate G. On relève le diamètre du cercle extérieur du disque afférent à chaque pastille et en déduit par calcul la concentration minimale inhibitrice CMI pour chaque antibiotique (la CMI est la concentration minimale d'antibiotique nécessaire pour inhiber la croissance d'un germe) : plus le diamètre du cercle est grand, plus l'antibiotique est efficace et, par conséquent, plus la CMI est petite. Si, pour un antibiotique, la CMI est trop élevée, cela veut dire que l'antibiotique est inutilisable ; donc au-dessous d'un certain diamètre Dl du cercle d'inhibition, on sait que l'antibiotique de la pastille est inutilisable pour la lutte contre le germe. Au-dessus d'un certain diamètre D2, il est clair que l'antibiotique est actif in vitro. En revanche, entre les diamètres Dl et D2, il y a une zone d'incertitude.In parallel with this identification, an antibiogram is carried out by inoculating the germ on a Petri dish B (see FIG. 1) containing the appropriate agar, the inoculation being carried out regularly over the entire surface of the agar by any of the known techniques. . P pellets of different antibiotics are then positioned on the agar surface at regularly spaced points, it being understood that a panel of antibiotics is chosen which we know is generally effective for germs of the determined family; the Petri dish is then placed in the oven and incubated for 18 hours. Germs develop on the agar surface except in areas where the antibiotic has blocked development; in this way around each pellet P, a disc D is formed in which the agar free of germ, that is to say shiny, is seen, whereas between the discs relating to the different pastilles, the development of germs gives rise to a matt surface G. The diameter of the outer circle of the disc relating to each pellet is noted and by calculation deduced therefrom the minimum inhibitory concentration MIC for each antibiotic (MIC is the minimum concentration of antibiotic necessary to inhibit the growth of 'a germ): the larger the diameter of the circle, the more effective the antibiotic and, therefore, the smaller the MIC. Yes, for an antibiotic, the MIC is too high, this means that the antibiotic is unusable; therefore below a certain diameter Dl of the inhibition circle, it is known that the antibiotic of the lozenge is unusable for the fight against the germ. Above a certain diameter D2, it is clear that the antibiotic is active in vitro. On the other hand, between the diameters Dl and D2, there is a zone of uncertainty.
Il existe déjà des appareils destinés à effectuer la lecture automatique des boîtes de Pétri permettant la définition des antibiogrammes. Ces boîtes de Pétri peuvent être rondes ou carrées. Dans les équipements actuels, on met en place la boîte de Pétri B dans une zone que l'on éclaire au moyen d'un tube fluorescent 1 de forme annulaire placé derrière un cylindrique 2 en verre translucide permettant d'avoir un éclairement sensiblement uniforme sur l'ensemble de la boîte de Pétri que l'on place au centre dudit cylindre (voir figure 9). La difficulté, lorsque l'on effectue une acquisition informatique de l'image de la boîte de Pétri, provient du fait qu'il est nécessaire d'avoir des contrastes aussi forts que possible entre le cercle d'inhibition qui entoure la pastille d'antibiotique, d'une part, et l'environnement autour de ce cercle qui correspond à la zone où le germe s'est développé. L'acquisition de l'image est, de façon connue, faite au moyen d'une caméra électronique matricielle à couplage de charge, dite "CCD" , dont le champ d'observation englobe la totalité de la boîte de Pétri. Il existe souvent autour du cercle d'inhibition une zone annulaire de transition dont l'aspect est intermédiaire entre celle du cercle d'inhibition et celle de l'environnement où le germe s'est développé librement, et cette zone de transition a un aspect qui varie radialement de façon continue depuis l'un des bords jusqu'à l'autre bord de la zone annulaire de transition. Il est clair que cette circonstance rend particulièrement difficile la détermination informatique, à partir de l'image captée par la caméra CCD, du diamètre à prendre en considération pour le calcul de la CMI.There are already devices intended to perform automatic reading of Petri dishes allowing the definition of antibiograms. These petri dishes can be round or square. In current equipment, the Petri dish B is placed in an area which is illuminated by means of a fluorescent tube 1 of annular shape placed behind a cylindrical 2 made of translucent glass allowing to have a substantially uniform illumination on the whole Petri dish which is placed in the center of said cylinder (see Figure 9). The difficulty, when carrying out a computer acquisition of the image of the Petri dish, stems from the fact that it is necessary to have as strong contrasts as possible between the circle of inhibition which surrounds the pellet of antibiotic, on the one hand, and the environment around this circle which corresponds to the area where the germ has grown. The image acquisition is, in known manner, made by means of a charge-coupled matrix electronic camera, called "CCD", the field of observation of which encompasses the entire Petri dish. There is often around the inhibition circle an annular transition zone whose appearance is intermediate between that of the inhibition circle and that of the environment where the germ has developed freely, and this transition zone has an aspect which varies radially continuously from one of the edges to the other edge of the annular transition zone. It is clear that this circumstance makes particularly difficult the computer determination, from the image captured by the CCD camera, of the diameter to be taken into consideration for the calculation of the MIC.
Mais indépendamment de ce phénomène, une autre circonstance rend parfois particulièrement difficile la lecture de l'image de la boîte de Pétri ; cela arrive notamment lorsque la gélose sur laquelle s'est développé le germe est une gélose opaque ou de couleur sombre, par exemple un milieu rouge à base de sang de mouton ou un milieu marron à base de sang chauffé, sur laquelle il est très difficile de voir le contraste entre le disque d'inhibition et la zone environnante ; cela arrive notamment pour des supports de gélose contenant du sang. La lecture de ces géloses de couleur sombre est même difficile visuellement et lorsqu'elle est effectuée visuellement sans intervention d'un appareil de lecture automatique, le spécialiste utilise fréquemment une observation selon un axe qui fait un angle très inférieur à 90° avec la surface de la gélose. Or, cette technique n'est pas possible avec un appareil de lecture automatique puisque la caméra CCD se trouve disposée sur l'axe de la boîte de Pétri.But apart from this phenomenon, another circumstance sometimes makes it particularly difficult to read the image of the Petri dish; this happens in particular when the agar on which the germ has developed is an opaque or dark-colored agar, for example a red medium based on sheep's blood or a medium brown based on heated blood, on which it is very difficult to see the contrast between the inhibition disc and the surrounding area; this happens in particular for agar supports containing blood. Reading these dark agars is even difficult visually and when done visually without the intervention of an automatic reading device, the specialist frequently uses observation along an axis which makes an angle much less than 90 ° with the surface. agar. However, this technique is not possible with an automatic reading device since the CCD camera is placed on the axis of the Petri dish.
La lecture de l'antibiogramme est également difficile lorsque la pousse du germe sur le milieu de culture est faible, ce qui rend difficile de distinguer les disques d'inhibition du reste de l'environnement où le germe s'est développé librement. On connaît également par le brevet US n° 4 701 850 un appareil de lecture pour antibiogramme comportant une source d'éclairage diffus pour éclairer la surface de la boîte de Pétri et un pied à coulisse électronique ou numérique pour mesurer à distance le diamètre du cercle d'inhibition apparaissant sur un écran d'affichage. Toutefois, cet appareil ne permet pas une lecture automatique, et présente également les problèmes précités liés au contraste.Reading the antibiogram is also difficult when the growth of the germ on the culture medium is weak, which makes it difficult to distinguish the inhibition discs from the rest of the environment where the germ has grown freely. Also known from US Pat. No. 4,701,850 is an antibiogram reading device comprising a diffuse light source to illuminate the surface of the Petri dish and an electronic or digital caliper to measure the diameter of the circle from a distance. inhibition appearing on a display screen. However, this device does not allow automatic reading, and also presents the aforementioned problems related to contrast.
L'invention a pour but de proposer un appareil de lecture automatique d'un antibiogramme, qui permette d'améliorer la lecture par une caméra CCD des contrastes à la surface d'une boîte de Pétri. A cet effet, l'invention a pour objet un appareil de lecture automatique d'un antibiogramme, ledit appareil comportant un système d'éclairage pour éclairer une boîte de Pétri contenant des pastilles d'antibiotiques positionnées sur un milieu de culture ensemencé avec un germe, et une caméra électronique CCD pour l'acquisition de l'image de l'antibiogramme, ledit appareil étant de préférence équipé d'une unité de calcul pour déterminer sur ladite image les cercles d'inhibition autour de chaque pastille et calculer ainsi la concentration minimale inhibitrice de chaque pastille d'antibiotique, caractérisé par le fait que le système d'éclairage comporte un moyen d'éclairage pour focaliser des rayons lumineux vers la surface de la boîte, les rayons incidents formant un angle oblique par rapport à la surface à éclairer de la boîte, de façon que les rayons réfléchis passent au voisinage de l'objectif de la caméra, sans toutefois y pénétrer, pour optimiser les contrastes de l'image.The object of the invention is to propose an apparatus for automatic reading of an antibiogram, which makes it possible to improve the reading by a CCD camera of the contrasts on the surface of a Petri dish. To this end, the subject of the invention is an apparatus for automatically reading an antibiogram, said apparatus comprising a lighting system for lighting a Petri dish containing antibiotic pellets positioned on a culture medium seeded with a germ. , and a CCD electronic camera for acquiring the image of the antibiogram, said apparatus preferably being equipped with a calculation unit for determining on said image the inhibition circles around each patch and thus calculating the concentration minimum inhibitory effect for each antibiotic tablet, characterized in that the lighting system includes lighting means for focusing light rays towards the surface of the box, the incident rays forming an oblique angle with respect to the surface to be light up from the box, so that the reflected rays pass in the vicinity of the lens of the camera, without however penetrating there, to optimize the contrasts of the image.
Avantageusement, ledit moyen d'éclairage comporte une source de lumière et un faisceau de fibres optiques logé dans un support, les extrémités amont des fibres optiques étant situées face à la source de lumière, alors que les extrémités aval des fibres sont orientées vers la surface à éclairer avec un angle oblique, les fibres optiques ayant des longueurs différentes de façon à répartir leurs extrémités aval sur le support pour former une pluralité de points lumineux engendrant des pinceaux lumineux obliques vers la surface de la boîte.Advantageously, said lighting means comprises a light source and a bundle of optical fibers housed in a support, the upstream ends of the optical fibers being located opposite the light source, while the downstream ends of the fibers are oriented towards the surface. to be lit with an oblique angle, the optical fibers having different lengths so as to distribute their downstream ends on the support to form a plurality of light points generating oblique light brushes towards the surface of the box.
Dans une première forme de réalisation, la caméra CCD est une caméra électronique matricielle dont l'axe d'observation est confondu avec l'axe de la boîte de Pétri, de façon que le champ d'observation de la caméra englobe la totalité de la boîte de Pétri, et le support précité est sensiblement en forme d'anneau dont la surface inférieure est espacée d'une hauteur déterminée de la surface de la boîte, ledit anneau support étant, en projection axiale, circonscrit à la boîte de Pétri, de façon que les rayons incidents forment tous un angle oblique avec la surface à éclairer.In a first embodiment, the CCD camera is a matrix electronic camera whose axis of observation coincides with the axis of the Petri dish, so that the field of observation of the camera encompasses the whole of the Petri dish, and the aforementioned support is substantially in the form of a ring, the lower surface of which is spaced by a determined height from the surface of the dish, said support ring being, in axial projection, circumscribed in the Petri dish, so that the incident rays all form an oblique angle with the surface to be illuminated.
Selon une autre caractéristique, chaque pinceau lumineux éclaire une portion de la surface de la boîte, ladite portion s 'étendant au moins entre un bord de la boîte et son centre, les pinceaux lumineux se chevauchant les uns les autres, de façon à éclairer l'ensemble de la surface de la boîte.According to another characteristic, each light brush illuminates a portion of the surface of the box, said portion extending at least between an edge of the box and its center, the light brushes overlapping each other, so as to illuminate the the entire surface of the box.
Selon une autre caractéristique, la caméra est à une distance optique de la surface de la boîte supérieure à la hauteur entre ladite surface et le point d'intersection de l'axe d'observation de la caméra avec les rayons réfléchis correspondant aux rayons incidents ayant le trajet optique le plus court.According to another characteristic, the camera is at an optical distance from the surface of the box greater than the height between said surface and the point of intersection of the axis of observation of the camera with the reflected rays corresponding to the incident rays having the shortest optical path.
Dans ce cas, l'angle d'incidence des rayons lumineux est réglé en fonction de la hauteur de l'anneau et de la distance optique de la caméra par rapport à la surface de la boîte, et en fonction du rayon de l'anneau par rapport à l'axe de la boîte. Dans une variante de réalisation, l'appareil comporte un ou plusieurs miroirs pour renvoyer l'image de la surface de la boîte à la caméra, de façon à augmenter la distance optique entre l'objectif de la caméra et la surface de la boîte, tout en limitant la hauteur de la caméra par rapport à la boîte.In this case, the angle of incidence of the light rays is adjusted according to the height of the ring and the optical distance of the camera from the surface of the box, and according to the radius of the ring. relative to the axis of the box. In an alternative embodiment, the apparatus comprises one or more mirrors for returning the image of the surface of the box to the camera, so as to increase the optical distance between the camera lens and the surface of the box, while limiting the height of the camera relative to the box.
Dans une forme de réalisation particulière, l'anneau support comporte une rainure circulaire ouverte sur sa surface inférieure, de façon à permettre l'orientation des extrémités aval des fibres optiques suivant un angle oblique vers la surface à éclairer, le faisceau de fibres étant enserré dans une gaine qui pénètre radialement dans l'anneau support en se séparant en deux demi-faisceaux logés chacun dans une gaine, chaque demi faisceau étant disposé dans la rainure sur sensiblement un demi cercle, les extrémités aval des fibres de chaque demi-faisceau étant réparties régulièrement sur tout le demi cercle.In a particular embodiment, the support ring has a circular groove open on its lower surface, so as to allow the orientation of the downstream ends of the optical fibers at an oblique angle towards the surface to be lit, the fiber bundle being clamped in a sheath which penetrates radially into the support ring by separating into two half-beams each housed in a sheath, each half-beam being disposed in the groove on substantially a semicircle, the downstream ends of the fibers of each half-beam being evenly distributed over the entire semicircle.
De préférence, le système d'éclairage comporte un autre moyen d'éclairage de forme annulaire, par exemple un tube fluorescent, placé autour d'un cylindre en verre translucide contenant la boîte de Pétri, pour envoyer un éclairage diffus sensiblement uniforme sur l'ensemble de la boîte de Pétri.Preferably, the lighting system comprises another lighting means of annular shape, for example a fluorescent tube, placed around a translucent glass cylinder containing the petri dish, to send a diffused illumination substantially uniform on the set of petri dish.
Dans un deuxième mode de réalisation, la caméra CCD est une caméra électronique linéaire dont le champ d'observation recouvre une portion sensiblement rectiligne de la surface de la boîte, et le support précité est sensiblement en forme de barrette rectiligne dont la surface inférieure est espacée de la surface à éclairer d'une hauteur déterminée, les fibres optiques formant ainsi une ligne de points lumineux qui engendre un pinceau lumineux sensiblement en forme de dièdre vers la surface à éclairer, l'appareil comportant, en outre, des moyens pour déplacer la boîte de Pétri par rapport à la caméra et au moyen d'éclairage dans une direction sensiblement perpendiculaire à la barrette rectiligne, de façon à acquérir l'image de la totalité de la surface de la boîte. Selon une autre caractéristique, le plan d'observation de la caméra CCD linéaire forme un angle oblique par rapport à la surface de la boîte.In a second embodiment, the CCD camera is a linear electronic camera whose field of observation covers a substantially rectilinear portion of the surface of the box, and the abovementioned support is substantially in the form of a rectilinear bar whose lower surface is spaced from the surface to be lit by a determined height, the optical fibers thus forming a line of luminous points which generates a luminous brush substantially in the form of a dihedral towards the surface to be lit, the apparatus further comprising means for moving the Petri dish relative to the camera and to the lighting means in a direction substantially perpendicular to the rectilinear bar, so as to acquire the image of the entire surface of the dish. According to another characteristic, the observation plane of the linear CCD camera forms an oblique angle relative to the surface of the box.
Selon encore une autre caractéristique, l'appareil comporte une lentille cylindrique divergente intercalée sur le pinceau incident de la barrette linéaire pour élargir la zone d'éclairage de la surface de la boîte. Pour mieux faire comprendre l'objet de l'invention, on va en décrire maintenant, à titre d'exemples purement illustratifs et non limitatifs, plusieurs modes de réalisation représentés sur le dessin annexé. Sur ce dessin :According to yet another characteristic, the device comprises a divergent cylindrical lens interposed on the incident brush of the linear bar to widen the lighting area of the surface of the box. To better understand the object of the invention, we will now describe, by way of purely illustrative and nonlimiting examples, several embodiments shown in the accompanying drawing. On this drawing :
- la figure 1 est une vue en plan et de dessus d'un antibiogramme ;- Figure 1 is a plan view and from above of an antibiogram;
- la figure 2 est une vue schématique en élévation verticale du trajet optique d'un rayon lumineux sur une portion inhibée d'un milieu de culture ;- Figure 2 is a schematic view in vertical elevation of the optical path of a light ray on an inhibited portion of a culture medium;
- la figure 3 est une figure analogue à la figure 2, mais représentant le trajet optique d'un rayon lumineux sur une portion du milieu de culture où le germe a poussé ;- Figure 3 is a figure similar to Figure 2, but showing the optical path of a light ray on a portion of the culture medium where the germ has grown;
- la figure 4 est une vue schématique partielle et en élévation verticale d'un premier mode de réalisation de l'appareil de l'invention ;- Figure 4 is a partial schematic view in vertical elevation of a first embodiment of the apparatus of the invention;
- la figure 5 est une variante de la figure 4, dans laquelle la caméra est en observation indirecte de la boîte de Pétri ;- Figure 5 is a variant of Figure 4, in which the camera is in indirect observation of the Petri dish;
- la figure 6 est une vue schématique partielle et en coupe axiale de l'appareil de la figure 4, illustrant le positionnement d'un moyen d'éclairage par rapport à la boîte de Pétri ;- Figure 6 is a partial schematic view in axial section of the apparatus of Figure 4, illustrating the positioning of a lighting means relative to the Petri dish;
- la figure 7 est une vue partielle et en coupe suivant la ligne VII- VII de la figure 6 ;- Figure 7 is a partial view in section along the line VII- VII of Figure 6;
- la figure 8 est une vue partielle et en coupe suivant la ligne VIII- VIII de la figure 7 ; - la figure 9 est une vue schématique en perspective montrant un deuxième moyen d'éclairage pouvant être associé au moyen d'éclairage représenté sur la figure 6 ;- Figure 8 is a partial view in section along the line VIII-VIII of Figure 7; - Figure 9 is a schematic perspective view showing a second lighting means which can be associated with the lighting means shown in Figure 6;
- la figure 10 est un schéma illustrant différentes positions possibles pour la caméra et le moyen d'éclairage par rapport à la boîte de Pétri ;- Figure 10 is a diagram illustrating different possible positions for the camera and the lighting means relative to the Petri dish;
- la figure 11 est une vue analogue à la figure 4, mais représentant un deuxième mode de réalisation de l'appareil de l'invention ; et- Figure 11 is a view similar to Figure 4, but showing a second embodiment of the apparatus of the invention; and
- la figure 12 est une vue partielle et en perspective de dessus de la figure 11. Sur la figure 2, on voit qu'un rayon incident Ri forme un angle α par rapport à la surface de la portion inhibée D de la gélose M contenue dans la boîte B, le rayon réfléchi Rr étant symétrique au rayon Ri par rapport à un axe A perpendiculaire à la surface de la gélose, le rayon réfléchi Rr formant ainsi le même angle α par rapport à la portion de surface inhibée D. Une partie de l'intensité lumineuse du rayon incident Ri est réfléchie et devient le rayon réfléchi Rr et l'autre partie est réfractée par le milieu de culture M et devient le rayon transmis Rt. Dans le cas d'une gélose transparente, par exemple du type Muller Hinton, le milieu de culture M transmet environ 95 % de l'intensité lumineuse, les 5 % restants étant réfléchis. Dans le cas d'une gélose opaque, par exemple une gélose Muller Hinton additionnée de sang de mouton chauffé ou non, environ 95 % de l'intensité lumineuse est absorbée par le milieu de culture. Ces valeurs ont été obtenues par des mesures spectrométriques effectuées dans le spectre visible et le proche infrarouge.FIG. 12 is a partial perspective view from above of FIG. 11. In FIG. 2, it can be seen that an incident ray Ri forms an angle α with respect to the surface of the inhibited portion D of the agar M contained in the box B, the reflected ray Rr being symmetrical to the ray Ri with respect to a axis A perpendicular to the agar surface, the reflected ray Rr thus forming the same angle α with respect to the inhibited surface portion D. Part of the light intensity of the incident ray Ri is reflected and becomes the reflected ray Rr and the other part is refracted by the culture medium M and becomes the transmitted ray Rt. In the case of a transparent agar, for example of the Muller Hinton type, the culture medium M transmits approximately 95% of the light intensity, the remaining 5% being reflected. In the case of an opaque agar, for example a Muller Hinton agar supplemented with heated or unheated sheep's blood, approximately 95% of the light intensity is absorbed by the culture medium. These values were obtained by spectrometric measurements carried out in the visible spectrum and the near infrared.
Sur la portion inhibée D, la gélose M conserve sa grande planéité, de sorte que la réflexion se produit avec une très faible diffusion, ce qui donne ainsi une image brillante de la portion inhibée. Sur la figure 3, le rayon incident Ri arrive sur des irrégularités de surface G engendrées par la pousse du germe. L'intensité lumineuse du rayon incident Ri est en partie absorbée si le milieu M est opaque ou transmise par le rayon R't si le milieu est transparent, l'autre partie étant réfléchie en engendrant plusieurs rayons réfléchis R'r qui restent néanmoins proches de la réflexion spéculaire. Cette réflexion légèrement diffuse sur les irrégularités du germe G donne une image mate de l'antibiogramme. Il est à noter que la partie transmise ou absorbée du rayon incident est plus faible en présence du germe.On the inhibited portion D, the agar M retains its great flatness, so that the reflection occurs with very low diffusion, which thus gives a brilliant image of the inhibited portion. In FIG. 3, the incident ray Ri arrives on surface irregularities G generated by the growth of the germ. The light intensity of the incident ray Ri is partly absorbed if the medium M is opaque or transmitted by the ray R't if the medium is transparent, the other part being reflected by generating several reflected rays R'r which nevertheless remain close of specular reflection. This slightly diffuse reflection on the irregularities of the germ G gives a dull image of the antibiogram. It should be noted that the transmitted or absorbed part of the incident ray is weaker in the presence of the germ.
Si les rayons réfléchis Rr et R'r pénètrent dans l'objectif de la caméra CCD, les pixels correspondants de la caméra seraient totalement aveuglés par l'importante quantité de lumière réfléchie, de sorte qu'il est nécessaire de placer la caméra CCD suffisamment loin de la gélose pour que les rayons réfléchis passent à côté de l'objectif de la caméra. D'autre part, il est souhaitable de placer l'objectif de la caméra au plus près des rayons réfléchis pour acquérir une image à fort contraste. Par ailleurs, la quantité d'intensité lumineuse, qui est absorbée ou transmise par le milieu de culture, étant importante, la source de lumière doit avoir une puissance importante.If the reflected rays Rr and R'r enter the lens of the CCD camera, the corresponding pixels of the camera would be completely blinded by the large amount of reflected light, so it is necessary to place the CCD camera sufficiently away from the agar so that the reflected rays pass near the camera lens. On the other hand, it is desirable to place the camera lens as close as possible to the reflected rays in order to acquire a high contrast image. Furthermore, the amount of light intensity, which is absorbed or transmitted by the culture medium, being important, the light source must have a significant power.
On va maintenant décrire un mode de réalisation particulier de l'invention en référence aux figures 4 à 10.We will now describe a particular embodiment of the invention with reference to FIGS. 4 to 10.
Sur la figure 4, on voit une caméra CCD matricielle 3 dont le champ d'observation sensiblement tronconique 4 englobe la totalité de la surface supérieure de la boîte de Pétri B. Entre la boîte B et la caméra 3, on a indiqué par le chiffre de référence 5 une zone annulaire située à l'extérieur du champ d'observation 4 de la caméra 3, dans laquelle peut être placé un moyen d'éclairage de la boîte. Cette zone annulaire 5 est délimitée intérieurement par une surface tronconique dont la petite base correspond à la surface supérieure de la boîte de Pétri B et dont la grande base est dirigée vers la caméra 3. La zone annulaire 5 est délimitée vers l'extérieur par une surface cylindrique de révolution dont le diamètre correspond à celui de la grande base de la surface tronconique précitée.In FIG. 4, we see a matrix CCD camera 3 whose substantially frustoconical field of observation 4 encompasses the entire upper surface of the Petri dish B. Between the dish B and the camera 3, the figure has been indicated 5 an annular zone located outside the field of observation 4 of the camera 3, in which can be placed a means of lighting the box. This annular zone 5 is delimited internally by a frustoconical surface whose small base corresponds to the upper surface of the Petri dish B and whose large base is directed towards the camera 3. The annular zone 5 is delimited towards the outside by a cylindrical surface of revolution whose diameter corresponds to that of the large base of the aforementioned frustoconical surface.
Dans cette zone 5, on peut placer un moyen d'éclairage constitué par un anneau support 6 illustré sur les figures 6 à 8. L'anneau-support 6 présente en section axiale représentée sur la figure 8, un profil sensiblement en U inversé comportant une rainure 7 ouverte sur sa surface inférieure. L'anneau support 6 est relié par une conduite 8, s 'étendant radialement vers l'extérieur à partir de la rainure 7, à une chambre 9 dans laquelle est disposée une lampe 10. Un faisceau de fibres optiques 11 logées dans une gaine 12 s'étend à partir de la chambre 9 jusqu'à l'anneau support 6. Les extrémités amont des fibres optiques 11 sont placées dans la chambre 9 en vis-à-vis de la lampe 10 pour conduire la lumière jusqu'à leur extrémité aval l ia. Le faisceau de fibres optiques 11 traverse la conduite 8 et débouche dans la rainure 7 de l'anneau support 6 en se séparant en deux demi-faisceaux logés chacun dans une gaine, chaque demi-faisceau étant disposé dans la rainure 7 sur un demi cercle. Comme visible sur la figure 7, les extrémités aval l ia des fibres optiques 11 d'un demi faisceau se répartissent angulairement d'une manière régulière sur un demi cercle de la rainure 7. Sur la figure 8, on voit que l'extrémité aval lia de chaque fibre 11 est incurvée vers le bas dans une direction oblique par rapport à la surface de la boîte, afin que chaque point lumineux envoie un pinceau lumineux conique 13 vers la surface de la boîte. A titre d'exemple, le faisceau peut comporter cent fibres, cinquante fibres se répartissant régulièrement sur chaque demi cercle de la rainure de l'anneau support.In this zone 5, it is possible to place a lighting means constituted by a support ring 6 illustrated in FIGS. 6 to 8. The support ring 6 has, in axial section shown in FIG. 8, a substantially inverted U profile comprising a groove 7 open on its lower surface. The support ring 6 is connected by a pipe 8, extending radially outward from the groove 7, to a chamber 9 in which is placed a lamp 10. A bundle of optical fibers 11 housed in a sheath 12 extends from the chamber 9 to the support ring 6. The upstream ends of the optical fibers 11 are placed in the chamber 9 opposite the lamp 10 to conduct the light to their end downstream ia. The bundle of optical fibers 11 crosses the pipe 8 and opens into the groove 7 of the support ring 6, separating into two half-beams each housed in a sheath, each half-beam being disposed in the groove 7 on a semi-circle . As visible in FIG. 7, the downstream ends l ia of the optical fibers 11 of a half-beam are distributed angularly in a regular manner over a semi-circle of the groove 7. In FIG. 8, it can be seen that the downstream end lia of each fiber 11 is curved downward in an oblique direction by relative to the surface of the box, so that each light point sends a conical light brush 13 towards the surface of the box. For example, the bundle can comprise one hundred fibers, fifty fibers distributed regularly over each semicircle of the groove of the support ring.
On constate également sur la figure 10 que plus la hauteur L de l'anneau 6 augmente, ou plus le rayon R de l'anneau 6 diminue, plus la hauteur minimale H de la caméra augmente : pour une hauteur Ll et un rayon RI de l'anneau 6, la hauteur de la caméra doit être supérieure à Hl, qui correspond à la distance entre la surface de la boîte B et le point d'intersection de l'axe A avec le rayon réfléchi provenant du rayon incident qui arrive sur un bord de la boîte ; lorsque le rayon de l'anneau 6 augmente de la valeur RI à la valeur R2, ou lorsque sa hauteur diminue de la valeur Ll à la valeur L2, la hauteur de la caméra 3 doit être supérieure à une valeur H2, qui est inférieure à la valeur Hl précitée.It can also be seen in FIG. 10 that the more the height L of the ring 6 increases, or the more the radius R of the ring 6 decreases, the more the minimum height H of the camera increases: for a height L1 and a radius RI of the ring 6, the height of the camera must be greater than Hl, which corresponds to the distance between the surface of the box B and the point of intersection of the axis A with the reflected ray coming from the incident ray which arrives on one edge of the box; when the radius of the ring 6 increases from the value RI to the value R2, or when its height decreases from the value L1 to the value L2, the height of the camera 3 must be greater than a value H2, which is less than the aforementioned Hl value.
L'éclairage annulaire étant de révolution autour de l'axe A de la boîte de Pétri B, il est spécifiquement dirigé vers celle-ci, de sorte que les rayons de l'éclairage fassent avec la surface de la boîte de Pétri un angle α variant autour d'une valeur moyenne ; cet angle est d'autant plus grand que le rayon R de l'anneau d'éclairage 6 est plus grand et d'autant plus petit que la distance L entre l'anneau d'éclairage 6 et la boîte de Pétri B est plus importante. En chaque point de l'éclairage annulaire, on émet donc un pinceau lumineux conique 13 qui éclaire obliquement la surface de la gélose. L'angle α varie entre un angle correspondant au rayon lumineux qui arrive au centre de la boîte et un angle correspondant au rayon lumineux qui arrive au bord de la boîte, comme visible sur la figure 6. L'observation par la caméra CCD 3 est toujours effectuée sur l'axe A de la boîte de Pétri et le champ 4 de la caméra CCD passe à travers l'anneau 6, ce qui veut dire que, nécessairement, cet anneau 6 doit avoir un rayon R supérieur au rayon r de la boîte B pour ne pas s'interposer dans le champ de la caméra CCD.The annular lighting being of revolution around the axis A of the Petri dish B, it is specifically directed towards the latter, so that the rays of the lighting make with the surface of the Petri dish an angle α varying around an average value; this angle is all the greater as the radius R of the lighting ring 6 is larger and all the smaller as the distance L between the lighting ring 6 and the petri dish B is greater . At each point of the annular lighting, a conical light brush 13 is therefore emitted which obliquely illuminates the surface of the agar. The angle α varies between an angle corresponding to the light ray which arrives at the center of the box and an angle corresponding to the light ray which arrives at the edge of the box, as visible in FIG. 6. The observation by the CCD camera 3 is always performed on the axis A of the Petri dish and the field 4 of the CCD camera passes through the ring 6, which means that, necessarily, this ring 6 must have a radius R greater than the radius r of the box B so as not to stand in the field of the CCD camera.
La surface de la gélose se comporte, dans une certaine mesure, comme un miroir qui renvoie en direction de la caméra CCD l'éclairage annulaire. Or, il est essentiel que la réflexion directe de la lumière additionnelle sur la gélose ne pénètre pas dans l'objectif de la caméra CCD sans quoi les pixels correspondants de la caméra seraient totalement aveuglés par l'importante quantité de lumière réfléchie. Ceci impose de mettre la caméra CCD suffisamment loin de la gélose pour que le faisceau directement réfléchi passe tout autour de l'objectif de la caméra sans toutefois rentrer dans celui-ci. Pour améliorer le contraste de l'image par éclairement oblique, on définit que l'on doit se trouver entre deux valeurs angulaires limites par rapport au plan de la gélose, sans que ces valeurs soient des seuils critiques. On définit le diamètre de l'objectif de la caméra CCD et l'angle correspondant à son champ de vision, et à partir des données imposées par l'appareillage, on peut établir un certain nombre d'inéquations qui doivent être satisfaites par les valeurs R, L et H. De façon qualitative sur la figure 10, on voit que, si L augmente de la valeur L2 à la valeur Ll , l'obliquité d'éclairement diminue, car l'angle augmente de la valeur α2 à la valeur l et se rapproche de 90°, et que, si R augmente d'une valeur RI à une valeur R2, l'obliquité d'éclairement augmente, car l'angle diminue de la valeur αl à la valeur α3. Si l'on se place dans un plan passant par l'axe A de la gélose et de la caméra 3, l'obliquité des rayons d'éclairement du même pinceau 13 varie entre un bord de la gélose et le centre de la boîte, et cette variation est d'autant plus grande que la distance L est plus petite pour un même R ou que la distance R est plus petite pour un même L. L'homme de métier choisira donc les valeurs R, L et H de façon que l'on ait un contraste optimum et que le rayonnement directement réfléchi sur la gélose ne rentre pas dans l'objectif de la caméra.The agar surface behaves, to a certain extent, like a mirror which reflects the annular lighting towards the CCD camera. However, it is essential that the direct reflection of the additional light on the agar does not enter the lens of the CCD camera, otherwise the corresponding pixels of the camera would be completely blinded by the large amount of reflected light. This requires placing the CCD camera far enough from the agar so that the directly reflected beam passes all around the camera lens without however entering it. To improve the contrast of the image by oblique illumination, it is defined that one must be between two limiting angular values relative to the plane of the agar, without these values being critical thresholds. We define the diameter of the CCD camera lens and the angle corresponding to its field of vision, and from the data imposed by the apparatus, we can establish a number of inequalities which must be satisfied by the values R, L and H. Qualitatively on figure 10, we see that, if L increases from the value L2 to the value Ll, the skew of illumination decreases, because the angle increases from the value α2 to the value l and approaches 90 °, and that, if R increases from a value RI to a value R2, the obliquity of illumination increases, because the angle decreases from the value αl to the value α3. If one places oneself in a plane passing through the axis A of the agar and of the camera 3, the obliquity of the rays of illumination of the same brush 13 varies between an edge of the agar and the center of the dish, and this variation is all the greater as the distance L is smaller for the same R or as the distance R is smaller for the same L. The skilled person will therefore choose the values R, L and H so that there is optimum contrast and the radiation directly reflected on the agar does not enter the lens of the camera.
Il est clair que l'on pourrait choisir R et L indépendamment de H s'il était possible de mettre la caméra suffisamment loin de la gélose ; mais lorsque l'on se trouve dans un équipement de lecture automatique, l'encombrement de l'appareillage est nécessairement restreint, de sorte qu'en pratique, la valeur de H doit être aussi restreinte que possible, ce qui amène globalement à un compromis entre la qualité du contraste et les valeurs de R, L et H. Au demeurant, pour une puissance d'éclairement donnée, il est souhaitable que la distance entre la source annulaire de lumière et la gélose soit aussi faible que possible, ce qui ajoute une contrainte supplémentaire. Dans un exemple de réalisation, on pourra adopter les valeurs numériques suivantes :It is clear that one could choose R and L independently of H if it were possible to place the camera far enough from the agar; but when in automatic reading equipment, the size of the apparatus is necessarily limited, so that in practice, the value of H must be as small as possible, which generally leads to a compromise between the quality of the contrast and the values of R, L and H. Moreover, for a given illumination power, it is desirable that the distance between the annular light source and the agar is as small as possible, which adds an additional constraint. In an exemplary embodiment, the following numerical values can be adopted:
- hauteur H de la caméra par rapport à la gélose : 70 cm- height H of the camera relative to the agar: 70 cm
- hauteur L de l'anneau d'éclairement : 30 cm, - rayon R de l'anneau support : 10 cm,- height L of the lighting ring: 30 cm, - radius R of the support ring: 10 cm,
- angle d'incidence α : 84,3 °,- angle of incidence α: 84.3 °,
- champ angulaire de la caméra CCD : 12,23°,- angular field of view of the CCD camera: 12.23 °,
- diamètre d'une boîte de Pétri circulaire : 14 cm,- diameter of a circular petri dish: 14 cm,
- diamètre du verre translucide 2 autour duquel se trouve le tube à néon 1 : 30 cm,- diameter of the translucent glass 2 around which the neon tube is 1: 30 cm,
- puissance d'éclairement du tube à néon : 32 W,- lighting power of the neon tube: 32 W,
- puissance d'éclairement de la lampe 10 (Halogène EKE 21V) associée à l'éclairage annulaire : 150 W .- lighting power of the lamp 10 (Halogen EKE 21V) associated with the ring lighting: 150 W.
Dans la variante illustrée sur la figure 5, la caméra 3 est en observation indirecte de la surface de la gélose contenue dans la boîte B. Un premier miroir 15 est prévu à la verticale du centre de la boîte B, à une hauteur hl et avec une inclinaison à 45°. Un deuxième miroir 16 est prévu à la même hauteur que le miroir 15 mais décalé dans la direction horizontale d'une distance h2, ce deuxième miroir 16 étant également incliné à 45° mais en sens opposé au miroir 15. Enfin, la caméra 3 est placée à la verticale du deuxième miroir 16, à une distance h3 sous ce dernier. Ainsi, le trajet optique de l'acquisition de l'image de l'antibiogramme par la caméra correspond à une distance hl - h2 + h3 = H, ce qui permet d'éloigner la caméra 3 de la surface de la boîte à une distance optique H, sans pour autant augmenter l'encombrement global de l'appareil, notamment dans la direction verticale.In the variant illustrated in FIG. 5, the camera 3 is in indirect observation of the surface of the agar contained in the dish B. A first mirror 15 is provided vertically from the center of the dish B, at a height hl and with a 45 ° tilt. A second mirror 16 is provided at the same height as the mirror 15 but offset in the horizontal direction by a distance h2, this second mirror 16 also being inclined at 45 ° but in the opposite direction to the mirror 15. Finally, the camera 3 is placed vertically on the second mirror 16, at a distance h3 under the latter. Thus, the optical path of the acquisition of the image of the antibiogram by the camera corresponds to a distance hl - h2 + h3 = H, which makes it possible to move the camera 3 away from the surface of the box at a distance optical H, without increasing the overall size of the device, especially in the vertical direction.
Sur les figures 11 et 12, on a représenté un deuxième mode de réalisation de l'invention. Dans ce deuxième mode de réalisation, on a remplacé la caméra CCD matricielle 3, par une caméra CCD linéaire 103, et l'anneau support 6 par une barrette rectiligne 106. L'appareil comporte des moyens pour déplacer la boîte B dans une direction horizontale F sur la figure 11 , de façon à acquérir une image de la totalité de la surface de la gélose contenue dans la boîte B. D'une manière analogue à l'anneau 6 précité, la barrette rectiligne 106 comporte une rainure rectiligne ouverte sur sa surface inférieure, dans laquelle est positionné un faisceau de fibres optiques, les extrémités aval des fibres étant réparties tout le long de la barrette, de façon à définir une ligne de points lumineux qui envoie un pinceau d'éclairement 113 sur la gélose, avec une obliquité choisie pour l'obtention du meilleur contraste possible.Figures 11 and 12 show a second embodiment of the invention. In this second embodiment, the matrix CCD camera 3 has been replaced by a linear CCD camera 103, and the support ring 6 by a rectilinear bar 106. The apparatus includes means for moving the box B in a horizontal direction F in FIG. 11, so as to acquire an image of the entire surface of the agar contained in the dish B. In a similar manner to the aforementioned ring 6, the rectilinear strip 106 has a rectilinear groove open on its area lower, in which is positioned a bundle of optical fibers, the downstream ends of the fibers being distributed all along the strip, so as to define a line of light points which sends an illumination brush 113 on the agar, with an obliquity chosen to obtain the best possible contrast.
Le plan moyen passant par la ligne lumineuse 113 est situé au milieu du pinceau lumineux envoyé par la barrette 106 et fait avec le plan de la gélose un angle α. Bien entendu, le plan 114 de réflexion directe du pinceau sur la gélose ne doit pas arriver dans la caméra CCD linéaire 103 pour éviter l'éblouissement des pixels ; d'où il résulte que la caméra linéaire 103 est disposée au voisinage du pinceau 114 obtenu en réflexion directe mais à l'extérieur de ce pinceau. L'axe d'observation 104 de la caméra 103 est oblique par rapport à la surface de la boîte B. L'avantage de ce type de réalisation par rapport à celui précédemment décrit est que la distance entre un pixel et le point de la surface de gélose qui l'observe est une distance constante pour tous les pixels de la ligne de la caméra, c'est-à-dire que le trajet lumineux de l'éclairage entre la barrette d'éclairement 106 et les pixels de la caméra 103 est le même pour tous les pixels, d'où il résulte un éclairement parfaitement constant, ce qui n'était pas le cas pour une caméra matricielle où les points sur l'axe A de la boîte de Pétri correspondait à un trajet optique plus court que ceux relatifs au bord. On a donc une meilleure lecture de la surface de gélose. Bien entendu, la barrette d'éclairement et la caméra linéaire ont une longueur légèrement supérieure à la largeur de la boîte de Pétri (ou au diamètre s'il s'agit d'une boîte de Pétri circulaire).The mean plane passing through the light line 113 is located in the middle of the light brush sent by the strip 106 and makes an angle α with the plane of the agar. Of course, the plane 114 of direct reflection of the brush on the agar must not arrive in the linear CCD camera 103 to avoid the dazzling of the pixels; where it follows that the linear camera 103 is arranged in the vicinity of the brush 114 obtained in direct reflection but outside of this brush. The observation axis 104 of the camera 103 is oblique with respect to the surface of the box B. The advantage of this type of embodiment compared to that previously described is that the distance between a pixel and the point of the surface of agar which observes it is a constant distance for all the pixels of the line of the camera, that is to say that the light path of the lighting between the light strip 106 and the pixels of the camera 103 is the same for all the pixels, from which it results a perfectly constant illumination, which was not the case for a matrix camera where the points on the axis A of the Petri dish corresponded to a shorter optical path than those related to the edge. We therefore have a better reading of the agar surface. Of course, the light strip and the linear camera have a length slightly greater than the width of the petri dish (or the diameter if it is a circular petri dish).
Une lentille cylindrique légèrement divergente 115 peut être intercalée sur le trajet du pinceau incident 113 pour élargir la zone d'éclairement 116 de la boîte B, comme visible sur la figure 11.A slightly divergent cylindrical lens 115 can be interposed on the path of the incident brush 113 to widen the lighting area 116 of the box B, as visible in FIG. 11.
Etant donné que dans ce deuxième mode de réalisation, l'éclairage n'est pas annulaire, mais linéaire, il n'est pas nécessaire de placer la caméra à une hauteur importante pour éviter l'aveuglement de la caméra, et il suffit de placer l'objectif de la caméra au voisinage de la réflexion spéculaire de l'éclairage linéaire, pour optimiser la qualité du contraste, sans aveugler la caméra. De manière connue en soi, l'appareil de l'invention lit les boîtes de Pétri circulaires (de diamètre égal à 90, 100 ou 140 mm) ou carrées (de 120 mm de large), calcule en quelques secondes la valeur des diamètres des disques d'inhibition et affiche sur un écran l'image de la boîte en couleur. L'unité de calcul est adaptée pour lire les diamètres d'inhibition exacts, même en cas de phénomènes particuliers, comme le chevauchement de zones, la présence de mutants, la synergie et l'induction entre les pastilles d'antibiotique. A la suite de la lecture, un système expert détecte automatiquement les incohérences, par exemple des phénotypes impossibles ou rares, contrôle la cohérence des résultats des molécules testées et interprète les résultats obtenus pour les transformer en simulation in vivo.Since in this second embodiment, the lighting is not annular, but linear, it is not necessary to place the camera at a significant height to avoid the blindness of the camera, and it suffices to place the objective of the camera in the vicinity of the specular reflection of the linear lighting, to optimize the quality of the contrast, without blinding the camera. In a manner known per se, the apparatus of the invention reads circular (diameter equal to 90, 100 or 140 mm) or square (120 mm wide) Petri dishes, calculates in a few seconds the value of the diameters of the muting disks and displays the image of the color box on a screen. The calculation unit is suitable for reading the exact inhibition diameters, even in the event of particular phenomena, such as overlapping of zones, the presence of mutants, synergy and induction between the antibiotic tablets. Following the reading, an expert system automatically detects inconsistencies, for example impossible or rare phenotypes, checks the consistency of the results of the molecules tested and interprets the results obtained to transform them into in vivo simulation.
Bien que l'invention ait été décrite en liaison avec plusieurs variantes de réalisation particulières, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons, si celles-ci entrent dans le cadre de l'invention. Although the invention has been described in conjunction with several particular variant embodiments, it is obvious that it is in no way limited thereto and that it includes all the technical equivalents of the means described as well as their combinations, if these these are within the scope of the invention.

Claims

REVENDICATIONS
1. Appareil de lecture automatique d'un antibiogramme, ledit appareil comportant un système d'éclairage pour éclairer une boîte de Pétri (B) contenant des pastilles d'antibiotiques (P) positionnées sur un milieu de culture (M) ensemencé avec un germe (G), et une caméra électronique CCD (3, 103) pour l'acquisition de l'image de l'antibiogramme, caractérisé par le fait que le système d'éclairage comporte un moyen d'éclairage (6, 106) pour focaliser des rayons lumineux vers la surface de la boîte, les rayons incidents formant un angle oblique (α) par rapport à la surface à éclairer de la boîte (B), de façon que les rayons réfléchis passent au voisinage de l'objectif de la caméra (3, 103), sans toutefois y pénétrer, pour optimiser les contrastes de l'image.1. Apparatus for automatic reading of an antibiogram, said apparatus comprising a lighting system for illuminating a Petri dish (B) containing antibiotic pellets (P) positioned on a culture medium (M) seeded with a germ (G), and an electronic CCD camera (3, 103) for acquiring the image of the antibiogram, characterized in that the lighting system comprises a lighting means (6, 106) for focusing light rays towards the surface of the box, the incident rays forming an oblique angle (α) with respect to the surface to be illuminated of the box (B), so that the reflected rays pass in the vicinity of the camera lens (3, 103), without however entering it, to optimize the contrasts of the image.
2. Appareil selon la revendication 1 , caractérisé par le fait que ledit moyen d'éclairage comporte une source de lumière (10) et un faisceau de fibres optiques (11) logé dans un support (6, 106), les extrémités amont des fibres optiques étant situées face à la source de lumière, alors que les extrémités aval (l ia) des fibres sont orientées vers la surface à éclairer avec un angle oblique (α), les fibres optiques ayant des longueurs différentes de façon à répartir leurs extrémités aval sur le support pour former une pluralité de points lumineux engendrant des pinceaux lumineux obliques (13, 113) vers la surface de la boîte (B).2. Apparatus according to claim 1, characterized in that said lighting means comprises a light source (10) and a bundle of optical fibers (11) housed in a support (6, 106), the upstream ends of the fibers optics being located opposite the light source, while the downstream ends (l ia) of the fibers are oriented towards the surface to be lit with an oblique angle (α), the optical fibers having different lengths so as to distribute their downstream ends on the support to form a plurality of light points generating oblique light brushes (13, 113) towards the surface of the box (B).
3. Appareil selon la revendication 2, caractérisé par le fait que la caméra CCD est une caméra électronique matricielle (3) dont l'axe d'observation (A) est confondu avec l'axe de la boîte de Pétri (B), de façon que le champ d'observation (4) de la caméra englobe la totalité de la boîte de Pétri, et par le fait que le support précité est sensiblement en forme d'anneau (6) dont la surface inférieure est espacée d'une hauteur (Ll, L2) déterminée de la surface de la boîte, ledit anneau support étant, en projection axiale, circonscrit à la boîte de Pétri, de façon que les rayons incidents forment tous un angle oblique (α) avec la surface à éclairer.3. Apparatus according to claim 2, characterized in that the CCD camera is an electronic matrix camera (3) whose observation axis (A) coincides with the axis of the Petri dish (B), so that the field of observation (4) of the camera encompasses the entire Petri dish, and by the fact that the aforementioned support is substantially in the form of a ring (6) whose lower surface is spaced apart by a height (L1, L2) determined from the surface of the dish, said support ring being, in axial projection, circumscribed in the Petri dish, so that the incident rays all form an oblique angle (α) with the surface to be lit.
4. Appareil selon la revendication 3, caractérisé par le fait que chaque pinceau lumineux (13) éclaire une portion de la surface de la boîte, ladite portion s 'étendant au moins entre un bord de la boîte (B) et son centre, les pinceaux lumineux se chevauchant les uns les autres, de façon à éclairer l'ensemble de la surface de la boîte.4. Apparatus according to claim 3, characterized in that each light brush (13) illuminates a portion of the surface of the box, said portion extending at least between an edge of the box (B) and its center, the light brushes overlapping each other, so as to illuminate the entire surface of the box.
5. Appareil selon la revendication 3 ou 4, caractérisé par le fait que la caméra (3) est à une distance optique (H) de la surface de la boîte (B) supérieure à la hauteur entre ladite surface et le point d'intersection de l'axe d'observation (A) de la caméra avec les rayons réfléchis correspondant aux rayons incidents ayant le trajet optique le plus court.5. Apparatus according to claim 3 or 4, characterized in that the camera (3) is at an optical distance (H) from the surface of the box (B) greater than the height between said surface and the point of intersection of the observation axis (A) of the camera with the reflected rays corresponding to the incident rays having the shortest optical path.
6. Appareil selon la revendication 5, caractérisé par le fait que l'angle d'incidence (α) des rayons lumineux est réglé en fonction de la hauteur (Ll, L2) de l'anneau et de la distance optique (H) de la caméra (3) par rapport à la surface de la boîte (B), et en fonction du rayon (RI, R2) de l'anneau (6) par rapport à l'axe (A) de la boîte.6. Apparatus according to claim 5, characterized in that the angle of incidence (α) of the light rays is adjusted as a function of the height (L1, L2) of the ring and the optical distance (H) of the camera (3) relative to the surface of the box (B), and as a function of the radius (RI, R2) of the ring (6) relative to the axis (A) of the box.
7. Appareil selon l'une des revendications 3 à 6, caractérisé par le fait qu'il comporte un ou plusieurs miroirs (15, 16) pour renvoyer l'image de la surface de la boîte (B) à la caméra (3), de façon à augmenter la distance optique (H) entre l'objectif de la caméra et la surface de la boîte, tout en limitant la hauteur de la caméra par rapport à la boîte. 7. Apparatus according to one of claims 3 to 6, characterized in that it comprises one or more mirrors (15, 16) for returning the image of the surface of the box (B) to the camera (3) , so as to increase the optical distance (H) between the camera lens and the surface of the box, while limiting the height of the camera relative to the box.
8. Appareil selon l'une des revendications 3 à 7, caractérisé par le fait que l'anneau support (6) comporte une rainure circulaire (7) ouverte sur sa surface inférieure, de façon à permettre l'orientation des extrémités aval (lia) des fibres optiques suivant un angle oblique (α) vers la surface à éclairer, le faisceau de fibres étant enserré dans une gaine qui pénètre radialement dans l'anneau support en se séparant en deux demi-faisceaux logés chacun dans une gaine (12), chaque demi faisceau étant disposé dans la rainure sur sensiblement un demi cercle, les extrémités aval des fibres de chaque demi-faisceau étant réparties régulièrement sur tout le demi cercle. 8. Apparatus according to one of claims 3 to 7, characterized in that the support ring (6) has a circular groove (7) open on its lower surface, so as to allow the orientation of the downstream ends (lia ) optical fibers at an oblique angle (α) towards the surface to be illuminated, the fiber bundle being enclosed in a sheath which penetrates radially into the support ring by separating into two half-beams each housed in a sheath (12) , each half-bundle being disposed in the groove on substantially a semi-circle, the downstream ends of the fibers of each half-bundle being distributed regularly over the entire semi-circle.
9. Appareil selon l'une des revendications 3 à 8, caractérisé par le fait que le système d'éclairage comporte un autre moyen d'éclairage de forme annulaire (1), par exemple un tube fluorescent, placé autour d'un cylindre en verre translucide (2) contenant la boîte de Pétri (B), pour envoyer un éclairage diffus sensiblement uniforme sur l'ensemble de la boîte de Pétri. 9. Apparatus according to one of claims 3 to 8, characterized in that the lighting system comprises another lighting means of annular shape (1), for example a fluorescent tube, placed around a cylinder in translucent glass (2) containing the Petri dish (B), to send a substantially uniform diffuse light over the entire Petri dish.
10. Appareil selon la revendication 2, caractérisé par le fait que la caméra CCD est une caméra électronique linéaire (103) dont le champ d'observation (114) recouvre une portion sensiblement rectiligne de la surface de la boîte (B), et par le fait que le support précité est sensiblement en forme de barrette rectiligne (106) dont la surface inférieure est espacée de la surface à éclairer d'une hauteur déterminée, les fibres optiques formant ainsi une ligne de points lumineux qui engendre un pinceau lumineux (113) sensiblement en forme de dièdre vers la surface à éclairer, l'appareil comportant, en outre, des moyens pour déplacer la boîte de Petri par rapport à la caméra et au moyen d'éclairage dans une direction (F) sensiblement perpendiculaire à la barrette rectiligne, de façon à acquérir l'image de la totalité de la surface de la boîte.10. Apparatus according to claim 2, characterized in that the CCD camera is a linear electronic camera (103) whose field of observation (114) covers a substantially rectilinear portion of the surface of the box (B), and by the fact that the aforesaid support is substantially in the form of a rectilinear bar (106), the lower surface of which is spaced from the surface to be lit by a determined height, the optical fibers thus forming a line of light points which generates a light brush (113 ) substantially in the form of a dihedral towards the surface to be lit, the apparatus further comprising means for moving the Petri dish relative to the camera and to the lighting means in a direction (F) substantially perpendicular to the bar rectilinear, so as to acquire the image of the entire surface of the box.
11. Appareil selon la revendication 10, caractérisé par le fait que le plan d'observation (114) de la caméra CCD linéaire (103) forme un angle oblique par rapport à la surface de la boîte.11. Apparatus according to claim 10, characterized in that the observation plane (114) of the linear CCD camera (103) forms an oblique angle relative to the surface of the box.
12. Appareil selon la revendication 10 ou 11, caractérisé par le fait qu'il comporte une lentille cylindrique divergente (115) intercalée sur le pinceau incident (113) de la barrette linéaire (106) pour élargir la zone d'éclairage (116) de la surface de la boîte (B). 12. Apparatus according to claim 10 or 11, characterized in that it comprises a divergent cylindrical lens (115) interposed on the incident brush (113) of the linear bar (106) to widen the lighting area (116) from the surface of the box (B).
PCT/FR1999/002846 1998-11-27 1999-11-19 Apparatus for automatic reading of an antibiogram WO2000032807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/14959 1998-11-27
FR9814959A FR2786498B1 (en) 1998-11-27 1998-11-27 APPARATUS FOR AUTOMATICALLY READING AN ANTIBIOGRAM

Publications (1)

Publication Number Publication Date
WO2000032807A1 true WO2000032807A1 (en) 2000-06-08

Family

ID=9533264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/002846 WO2000032807A1 (en) 1998-11-27 1999-11-19 Apparatus for automatic reading of an antibiogram

Country Status (2)

Country Link
FR (1) FR2786498B1 (en)
WO (1) WO2000032807A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298886B2 (en) 2003-09-05 2007-11-20 3M Innovative Properties Company Counting biological agents on biological growth plates
US7298885B2 (en) 2002-11-27 2007-11-20 3M Innovative Properties Company Biological growth plate scanner with automated image processing profile selection
US7319031B2 (en) 2002-11-27 2008-01-15 3M Innovative Properties Company Mounting platform for biological growth plate scanner
US7351574B2 (en) 2002-11-27 2008-04-01 3M Innovative Properties Company Loading and ejection systems for biological growth plate scanner
US7496225B2 (en) 2003-09-04 2009-02-24 3M Innovative Properties Company Biological growth plate scanner with automated intake
US9933446B2 (en) 2008-03-04 2018-04-03 3M Innovative Properties Company Processing of biological growth media based on measured manufacturing characteristics

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520923A1 (en) 2011-05-06 2012-11-07 bioMérieux Bio-imaging method and system
FR2997502B1 (en) * 2012-10-29 2014-12-26 Commissariat Energie Atomique METHOD FOR OBSERVING BIOLOGICAL SPECIES
NL2012922B1 (en) * 2014-05-30 2016-06-09 Ccm Beheer Bv Container for culturing organisms, method for monitoring the culturing of organisms inside said container, and monitoring system.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757299A (en) * 1972-07-14 1973-09-04 Artek Syst Corp An assay medium method and apparatus for measuring the size of zones of inhibition in
US4677473A (en) * 1985-06-21 1987-06-30 Matsushita Electric Works, Ltd. Soldering inspection system and method therefor
US4969037A (en) * 1988-08-11 1990-11-06 Siemens Aktiengesellschaft Arrangement for illuminating and detecting parts in an image processing system
US5629169A (en) * 1994-10-17 1997-05-13 The Analytic Sciences Corporation Automated system and method for estimating antibiotic effectiveness from drug diffusion tests
WO1998005794A1 (en) * 1996-07-31 1998-02-12 Muylle Jean Pierre Device for forming an image of a transparent container
US5745176A (en) * 1995-10-12 1998-04-28 Ppt Vision, Inc. Machine-vision illumination system and method for delineating a lighted volume from an unlighted volume
WO1999002645A1 (en) * 1997-07-09 1999-01-21 Oxoid Limited Image analysis systems and devices for use therewith

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757299A (en) * 1972-07-14 1973-09-04 Artek Syst Corp An assay medium method and apparatus for measuring the size of zones of inhibition in
US4677473A (en) * 1985-06-21 1987-06-30 Matsushita Electric Works, Ltd. Soldering inspection system and method therefor
US4969037A (en) * 1988-08-11 1990-11-06 Siemens Aktiengesellschaft Arrangement for illuminating and detecting parts in an image processing system
US5629169A (en) * 1994-10-17 1997-05-13 The Analytic Sciences Corporation Automated system and method for estimating antibiotic effectiveness from drug diffusion tests
US5745176A (en) * 1995-10-12 1998-04-28 Ppt Vision, Inc. Machine-vision illumination system and method for delineating a lighted volume from an unlighted volume
WO1998005794A1 (en) * 1996-07-31 1998-02-12 Muylle Jean Pierre Device for forming an image of a transparent container
WO1999002645A1 (en) * 1997-07-09 1999-01-21 Oxoid Limited Image analysis systems and devices for use therewith

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7298885B2 (en) 2002-11-27 2007-11-20 3M Innovative Properties Company Biological growth plate scanner with automated image processing profile selection
US7319031B2 (en) 2002-11-27 2008-01-15 3M Innovative Properties Company Mounting platform for biological growth plate scanner
US7351574B2 (en) 2002-11-27 2008-04-01 3M Innovative Properties Company Loading and ejection systems for biological growth plate scanner
US7496225B2 (en) 2003-09-04 2009-02-24 3M Innovative Properties Company Biological growth plate scanner with automated intake
US7298886B2 (en) 2003-09-05 2007-11-20 3M Innovative Properties Company Counting biological agents on biological growth plates
US7738689B2 (en) 2003-09-05 2010-06-15 3M Innovative Properties Company Counting biological agents on biological growth plates
US9933446B2 (en) 2008-03-04 2018-04-03 3M Innovative Properties Company Processing of biological growth media based on measured manufacturing characteristics

Also Published As

Publication number Publication date
FR2786498A1 (en) 2000-06-02
FR2786498B1 (en) 2002-02-08

Similar Documents

Publication Publication Date Title
EP2992315B1 (en) Method and device for observing and analysing optical singularities in glass containers
CA2716549C (en) Method and apparatus for diffuse excitation in imaging
EP3221688B1 (en) Lens-free imaging system comprising a diode, a diaphragm and a diffuser between the diode and the diaphragm
EP0604276A1 (en) Method and device for determining the colour of a transparent, diffusing and absorbing object, especially of a tooth
FR2846424A1 (en) LIGHTING METHOD AND DEVICE FOR DETECTING DEFECTS AND / OR LACK OF MATERIAL ON THE RING OF A TRANSPARENT OR TRANSLUCENT CONTAINER
WO2000032807A1 (en) Apparatus for automatic reading of an antibiogram
EP0655221A1 (en) Colorimetrical measuring head, and method for determining the internal colour of a non opaque material
EP2912436A1 (en) Method for observing biological species
EP3559635B1 (en) Device and method for observing the radiation backscattered by an object
FR2907548A1 (en) VISUALIZATION OF THE REFLECTIVE POWER OF ULTRAVIOLET RADIATION OF A GLASS OF GLASSES
EP3559636B1 (en) Device and method for observing the radiation backscattered by an object
EP2356429A1 (en) Device for analyzing a polyphase mixture via a light beam backscattered by said mixture
CA2301733C (en) Method and device for reading raised designs borne by a transparent or translucent container
CH629592A5 (en) RADIATION COLLECTOR APPARATUS.
FR2814808A1 (en) PROCESS FOR OPTICALLY READING THE SHAPE OF A PROFILE AND APPLICATION TO THE SURVEY OF THE INNER EDGE OF A GLASSES MOUNTING CIRCLE.
FR2730038A1 (en) Light-guide optical system for reflector-type lamp
FR2703159A1 (en) Machine inspecting the bottom of a glass container.
FR3032527A1 (en) DEVICE FOR MEASURING AN OPTICAL SIGNAL RETRODUCED BY A SAMPLE
FR2703784A1 (en) Method and device for checking the continuity of a bead of glue.
FR2786499A1 (en) APPARATUS FOR AUTOMATICALLY READING AN ANTIBIOGRAM WITH IMPROVED CONTRAST
EP0715163B1 (en) Device for controlling the quality and the continuity of a ribbon applied onto a surface
WO2024061843A1 (en) Optical microscope with resonator
FR2798995A1 (en) Glass bottle inspection system
EP0286490A1 (en) Apparatus for ocular monitoring by means of infrared radiation reflected from the eyeball
EP1576406A2 (en) Optical device for observing samples on a support, designed in particular for a cytometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase