WO2000021732A1 - Biaxially oriented polyolefin pipe - Google Patents

Biaxially oriented polyolefin pipe Download PDF

Info

Publication number
WO2000021732A1
WO2000021732A1 PCT/JP1999/005453 JP9905453W WO0021732A1 WO 2000021732 A1 WO2000021732 A1 WO 2000021732A1 JP 9905453 W JP9905453 W JP 9905453W WO 0021732 A1 WO0021732 A1 WO 0021732A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
biaxially oriented
polyolefin
circumferential direction
Prior art date
Application number
PCT/JP1999/005453
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Ueda
Koutarou Tsuboi
Kouichirou Iwasa
Keisuke Shimazaki
Takehisa Sugaya
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP29092498A external-priority patent/JP4511646B2/en
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Publication of WO2000021732A1 publication Critical patent/WO2000021732A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/22Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes
    • B29C55/26Shaping by stretching, e.g. drawing through a die; Apparatus therefor of tubes biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/475Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using pistons, accumulators or press rams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/005Oriented
    • B29K2995/0053Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Definitions

  • the present invention relates to a biaxially oriented polyolefin pipe, and more particularly, to a biaxially oriented polyolefin pipe having excellent deformation followability and circumferential elasticity as pipe performance required for a buried pipe, and high seismic resistance.
  • polyvinyl chloride synthetic resin pipes PVC pipes
  • steel pipes steel pipes
  • concrete pipes etc.
  • polyolefin pipes made of polyolefin resin have been rapidly spreading due to increased demand for underground pipes and the like because of their high seismic resistance and high reliability against ground deformation.
  • polyethylene pipes have a high ability to follow the deformation of the pipes (ie, elongation) against the external stresses inherent in the pipes, which causes repeated earthquake or ground deformation. It is disclosed that the polyethylene pipe buried in the ground does not break due to plastic deformation even when it is damaged.
  • Underground pipes must maintain high durability for a long time against internal pressure and earth pressure. For this reason, it is actually practiced to increase the thickness of the polyethylene pipe.
  • polyethylene pipes having a small diameter can be mass-produced industrially, but polyethylene pipes having a large diameter are still difficult to mass-produce industrially, and polyethylene pipes having a small diameter are actually mass-produced. Large-diameter polyethylene pipes have not yet been mass-produced industrially.
  • the polyolefin pipe is uniaxially stretched only in the axial direction, it can significantly improve the elastic modulus in the axial direction.
  • Polyethylene pipes cannot plastically deform in the axial direction, and the pipes tend to tear in the axial direction.
  • the strength and strength (especially elasticity) in the circumferential direction are not improved as well as the shochu properties against internal pressure and earth pressure are not improved.
  • Polyolefin pipes are inferior in practicality and earthquake resistance.
  • the elastic modulus in the circumferential direction can be significantly improved, and the internal pressure applied to the pipe from the fluid flowing through the pipe and the pipe is applied to the pipe when buried underground
  • the resistance to soil weight can be improved, but also in this case, the ability to follow the deformation of the pipe is significantly reduced by extension, and the plastic deformation in the axial direction is not possible. Inferior.
  • Japanese Patent Publication No. 4-5 539 79 discloses that (1) a hollow workpiece containing stretchable thermoplastic polymer is supplied from the inlet side of the die, and (2) the hollow workpiece is sent to the outlet side of the die. An empty workpiece is insufficient to cause tensile failure of the workpiece, but the workpiece is solid-phase with a die having a cross-sectional area greater than the initial internal cross-sectional area of the workpiece. Apply sufficient tensile strength to simultaneously deform and extend the bulk of the workpiece by passing it through the former disposed inside the workpiece, and (3) deforming by stretching in this way By collecting the hollow workpiece from the exit side of the die. Also, a method is disclosed for obtaining a tube having improved strength compared to an undeformed material.
  • Japanese Patent Application Laid-Open No. 5-5101993 discloses that a billet is stretched only in the circumferential direction by pressing a billet from inside to outside using a pressurized fluid such as compressed air from the inside of a pipe.
  • An axial stretching method is disclosed, but no method for improving the strength in the axial direction is disclosed. Therefore, the uniaxially stretched polyolefin pipe obtained by this method stretches only in the circumferential direction and does not stretch in the axial direction. And the elasticity in the circumferential direction cannot be achieved at the same time.
  • the biaxially oriented polyolefin tube according to the present invention which solves the above-mentioned problems, has an axial and And is oriented in the circumferential direction, and the degree of orientation in the circumferential direction is larger than the degree of orientation in the axial direction.
  • the term “degree of orientation” is a numerical value indicating how much the molecular chains of a polyolefin molecule are arranged in that direction, and includes infrared spectroscopy, X-ray diffraction, polarizing microscope (birefringence), And can be measured by microwaves. In the present invention, the measurement is performed using a microwave, as described later.
  • the term “biaxially oriented polyolefin tube” refers to an average value of the refractive index (nh) in the circumferential direction and an average value of the refractive index (na) in the axial direction. ) Means a polyolefin pipe having a diameter (DZ) of not more than 100 and a diameter (DZ) of pipe outer diameter (D) to pipe thickness (t) of not more than 1002.
  • the polyolefin molecule Insufficient orientation to improve elastic modulus
  • r internal pressure resistance the resistance to the internal pressure applied to the pipe from the fluid flowing inside the pipe
  • shochu earth pressure resistance the resistance to the internal pressure applied to the pipe from the fluid flowing inside the pipe
  • the relationship between the refractive index and the degree of orientation is such that the higher the refractive index in a particular direction is higher than the refractive index (nn) in the non-oriented state, the higher the degree of orientation in that direction, and it is said that the relationship is approximately proportional.
  • an Abbe refractometer that irradiates a sodium D line (wavelength 589 nm) is often used because the measurement method is simple, but in the Abbe refractometer, the sodium D line It is not appropriate to measure the refractive index of an optically opaque polyolefin tube using an Abbe refractometer, which requires sufficient transmission.
  • the pipe (melting point +40 (° C) or more, and then cooled at a rate of about 10 ° / min., And the refractive index of the tube whose orientation has been canceled may be used as the non-oriented state refractive index (nn).
  • the thickness of the biaxially oriented polyolefin tube is preferably equal to or smaller than that of a normal polyethylene tube or PVC tube.
  • the ratio (D / t) of the outer diameter (D) of the pipe to the thickness (t) of the pipe is preferably 100 or less as described above.
  • the ratio (DZt) is preferably 30 or less.
  • the shape of the biaxially oriented polyolefin tube is usually cylindrical, but is not necessarily limited to this. Depending on the application in which the tube is used, an elliptical cross section, an oval shape, a rectangular tube shape (for example, square It may have a different shape such as a cylindrical shape or a triangular cylindrical shape.
  • the refractive index in the circumferential direction (nh) is larger than the refractive index in the axial direction (na), and the refractive index in the circumferential direction. (Nh) is preferably 0.004 or more, more preferably 0.01 or more, larger than the refractive index (nn) in the non-aligned state. If the refractive index in the circumferential direction (nh) is smaller than the refractive index in the axial direction (na), it goes without saying that the degree of axial orientation is larger than the degree of circumferential orientation.
  • the difference between the refractive index (nh) in the circumferential direction and the refractive index (nn) in the non-aligned state is less than 0.004, the orientation of the polyolefin molecules in the circumferential direction by stretching is insufficient.
  • the elastic modulus in the circumferential direction cannot be sufficiently improved, and the internal pressure resistance and the earth pressure resistance of the pipe may not be improved.
  • (refractive index in the circumferential direction (nh) —refractive index in the axial direction (na)) / (refractive index in the circumferential direction (nh)) is 0.004 or more and 0.03 or less. It is more preferably from 006 to 0.025, particularly preferably from 0.01 to 0.02.
  • a structure in which the tensile elastic modulus (tmh) in the circumferential direction of the biaxially oriented polyolefin pipe is larger than the tensile elastic modulus (tma) in the axial direction may be adopted.
  • the improvement of the internal pressure resistance is achieved by increasing the tensile modulus in the circumferential direction.
  • (tensile modulus in the circumferential direction (tmh)) / (tensile modulus in the axial direction (tma)) is preferably 1 or more and 8 or less, more preferably 1 or more and 5 or less. It is more preferably 1.2 or more and 5 or less. That is, if (the tensile elastic modulus in the circumferential direction (tmh)) / (tensile elastic modulus in the axial direction (tma)) is less than 1, the tensile elastic modulus in the axial direction (tma) increases, while the tensile elastic modulus in the circumferential direction increases.
  • the tensile modulus in the circumferential direction is preferably 0.5 GPa or more and 2 OGPa or less, and the tensile modulus in the axial direction is preferably 0.5 GPa or more and 1 OGPa or less.
  • Tensile modulus is less than 0.5 GPa (especially when the tensile modulus in the circumferential direction is 0.5G (Less than Pa), the internal pressure resistance is remarkably low, and may not be practical.
  • the tensile elastic modulus in the circumferential direction exceeds 2 OGPa or the tensile elastic modulus in the axial direction exceeds 1 OGPa, the ability of the pipe to follow the deformation is significantly reduced. If an earthquake occurs when used, the pipe cannot be deformed and tends to break.
  • tensile elastic modulus used in this specification refers to a dumbbell-shaped test piece in accordance with JISK 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and the axial direction, respectively.
  • the specimen is subjected to a tensile test in accordance with JISK7113, a tensile stress-strain curve is drawn, and the value is calculated by the following equation (1) using the first straight line portion of this curve.
  • is the difference in stress due to the original average cross-sectional area between two points on the straight line, and ⁇ is the difference in strain between the same two points.
  • the biaxially oriented polyolefin pipe may have a structure in which the bending elastic modulus (mfh) in the circumferential direction is larger than the bending elastic modulus (mfa) in the axial direction.
  • the bending elastic modulus (mfh) in the circumferential direction is larger than the bending elastic modulus (mfa) in the axial direction.
  • (bending elastic modulus in the circumferential direction (mf h)) / (axial bending elastic modulus (mfa)) is preferably larger than 1 and 8 or less, and larger than 1 and 5 or less. Is more preferable, and 1.2 or more and 5 or less are particularly preferable. That is, when (circumferential bending elastic modulus (mfh)) Z (axial bending elastic modulus (mfa)) becomes 1 or less, axial bending elastic modulus (mfa) increases while circumferential elastic modulus (mfa) increases. Flexural modulus (mf h) tends to be lower, so that it becomes difficult to improve the earth pressure resistance.
  • the bending elastic modulus in the circumferential direction is 0.5 GPa or more and 2 OGPa or less, and the bending elastic modulus in the axial direction is 0.50 or more and 1 OGPa or less. That is, when the flexural modulus is less than 0.5 GPa (particularly, the circumferential flexural modulus is less than 0.5 GPa), the earth pressure resistance is extremely low, and the practicability may be lacking. On the other hand, if the bending elastic modulus in the circumferential direction exceeds 2 OGPa or the bending elastic modulus in the axial direction exceeds 1 OGPa, the deformation followability of the pipe is significantly reduced, causing earthquakes and cracks. In such a case, the pipe may not be deformed and may be broken, and may not be practically used.
  • flexural modulus used in the present specification is determined from the obtained biaxially oriented polyolefin tube as shown in FIG.
  • the bending elastic modulus in the axial direction can be calculated from the relationship between the load and deflection when a load is applied to the center between the fulcrums from above by supporting a polyolefin pipe of an appropriate length by two fulcrums. It is a numerical value calculated according to equation (2).
  • L is the distance between the two fulcrums
  • F is the load at an arbitrarily selected point on the first straight part of the curve in the load-deflection curve graph
  • D is the outside of the pipe.
  • D is the inner diameter of the tube
  • Y is the deflection at load F.
  • the flexural modulus in the circumferential direction is calculated according to the following equation (3) from the relationship between the load and the deflection when a load P is applied by crushing the appropriate side of a polyolefin pipe from the peripheral side surface. Is the number to be Orientation ⁇ ⁇ ⁇ (3)
  • is the applied load
  • R is the thickness center radius
  • I is The cross-sectional quadratic coefficient
  • AD X is the change in diameter in the horizontal direction
  • ⁇ D r is the change in diameter in the vertical direction.
  • a structure in which the axial tensile elongation at break (tba) of the axially oriented polyolefin tube is larger than the tensile elongation at break (tbh) in the circumferential direction a structure in which the axial tensile elongation at break (tba) of the axially oriented polyolefin tube is larger than the tensile elongation at break (tbh) in the circumferential direction.
  • the obtained biaxially oriented polyolefin pipe is stretched so that its tensile elongation at break (tba) in the axial direction is larger than the tensile elongation at break (tbh) in the circumferential direction, so that the shochu internal pressure resistance and It is possible to improve the earth pressure resistance and to maintain the deformability of the pipe.
  • (axial tensile elongation at break (t b a)) (tensile elongation at break in circumferential direction (t b h)) is preferably greater than 1 and 8 or less. That is, when (axial tensile elongation at break (tba)) Z (peripheral tensile elongation at break (tbh)) is 1 or less, axial tensile elongation at break (tba) becomes too low. Deformation of the pipe is extremely low, and the pipe tends to break in the axial direction when an earthquake or ground crack occurs.
  • the tensile elongation at break in the axial direction is preferably at least 200%, more preferably at least 250%. That is, if the tensile elongation at break in the axial direction is less than 200%, the pipe may be broken due to poor deformation followability of the pipe when an earthquake occurs when the polyolefin pipe is buried. There is.
  • the tensile elongation at break in the circumferential direction affects the seismic resistance compared with the tensile elongation at break in the axial direction.
  • the tensile elongation at break may be lower than the tensile elongation at break in the axial direction so as not to give much effect, and it is sufficient if the elongation is in the range of 150% to 500%, preferably 200% to 450%.
  • the tube may be stretched too much, which may impair the ability of the tube to follow the deformation.
  • the tensile elongation at break in the circumferential direction exceeds 500%, the internal pressure resistance and the earth pressure resistance cannot be improved because the orientation of the polyolefin molecules in the circumferential direction is not sufficient.
  • tensile elongation at break refers to a dumbbell-shaped test piece in accordance with JISK 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and in the axial direction, respectively. This is a numerical value calculated by the following formula (4) when a test piece is subjected to a tensile test according to JISK 7113.
  • L is the length of the central portion at the moment when the stress is gradually applied to the dumbbell-shaped test piece having the narrow central portion and the test piece breaks.
  • the length of the central part before applying stress to the No. 2 test piece (33 ⁇ 2 mm in JISK 7115).
  • polyolefin resin forming the polyolefin tube in the present invention examples include polyolefin polymers such as polyethylene, polypropylene, and polybutene, and polyolefin copolymers such as ethylene-propylene copolymer.
  • Polyethylenes include high-density polyethylene (HDPE), medium-density polyethylene (MDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE).
  • HDPE high-density polyethylene
  • MDPE medium-density polyethylene
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • the method for producing polyethylene is not particularly limited, and polyethylene that has been polymerized by using a high-pressure radical polymerization method, a Ziegler-Natta catalyst, a Phillip's catalyst, a meta-mouth catalyst, or the like can be used.
  • polystyrene copolymers examples include, in addition to the above, copolymers obtained by copolymerizing, for example, Hi-Ichi-Sai Refin, butadiene, vinyl drunkate, (meth) acrylic acid, (meth) acrylic acid derivatives, styrene, and styrene derivatives.
  • examples thereof include a copolymer obtained by modifying maleic anhydride, itaconic acid, etc. with a graph, other ionomers, ethylene-vinyl alcohol copolymers, and the like.
  • the one-year-old olefin those having 3 to 12 carbon atoms are preferable, and specific examples include propylene, 1-butene, 4-methyl-11-pentene, 11-hexene, and 1-octene.
  • polyethylene resin as the polyolefin resin from the viewpoint that it has been conventionally used as a tube and can be oriented at a high magnification.
  • polyethylene resins high-density polyethylene is preferred from the viewpoint that shochu creep properties are maintained.
  • the molecular weight distribution is preferably from 2 to 80, more preferably from 3 to 40.
  • Polyolefin polymers and polyolefin copolymers may be used alone as the polyolefin constituting the tube.However, in order to improve orientation, moldability, durability, etc., the molecular weight, melting point, molecular weight distribution, and composition distribution are improved.
  • the tube may be a laminated tube, and each layer may be formed from a polyolefin polymer or a polyolefin copolymer having different molecular weights, melting points, molecular weight distributions, and composition distributions.
  • the oxygen permeability of the polyolefin tube can be reduced by using a polyolefin tube having a multilayer structure and using a resin having a high oxygen barrier property for the intermediate layer.
  • the polyolefin constituting the tube may be crosslinked, and a resin other than the polyolefin resin may be mixed and used.
  • the crosslinking method is not particularly limited.
  • a physical crosslinking method such as an electron beam crosslinking method, a photo crosslinking method, a plasma crosslinking method, or a peroxide method such as a peroxide.
  • a peroxide crosslinking method using an oxide, a chemical crosslinking method using a chemical crosslinking agent such as a silane crosslinking agent or a polyfunctional monomer, etc., can be cited.Of these, the polyolefin resin is sufficiently and reliably used.
  • crosslinking electron beam crosslinking, oxide crosslinking and hot water crosslinking are preferred.
  • a reaction aid, a catalyst, and a decomposition inhibitor may be used to promote the crosslinking, and these may be mixed with the polyolefin resin as long as they do not adversely affect the orientation of the tube.
  • the thermal crosslinking agent used for thermal crosslinking is not particularly limited, but an organic peroxide can be used, and can be appropriately selected from the viewpoint of the molding temperature and compatibility of the raw material resin used.
  • an organic peroxide there are dicumyl peroxide, ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, cyclohexane hydride, 1,1-di (t-butyl butyl) cyclohexane, 1,1 Di (t-butyloxy) 3,3,5-trimethylcyclohexane, 2,2-di (t-butyloxy) octane, n-butyl-4,4di (t-butyloxy) ) Bellelate, g-tert-butyl oxide, benzoyl peroxide, 2,5-dimethyl-2,5-di (t-butylbaroxy) hexane, 2,5-dimethyl-2,5-bis (t-
  • organic peroxides include dicumyl peroxide,, '-bis (t-butyloxy-1-m-isopropyl) benzene, t-butylcumyl peroxide, and benzoyl peroxide.
  • the polyolefin resin When a partially crosslinked polyolefin resin is used, the polyolefin resin preferably has a gel fraction of 10% or more and 70% or less. The higher the gel fraction, the higher the degree of crosslinking.
  • the gel fraction can be increased by increasing the irradiation amount of the electron beam.
  • the electron beam irradiation amount is not particularly limited. However, in order to keep the gel fraction at 10% or more and 70% or less, the electron beam irradiation amount is generally about 3%. It is preferable to set the value between MR ad and 8 MR ad.
  • a polyolefin resin is composed of an amorphous portion and a crystalline portion, and when the polyolefin resin is pulled, two molecular chains in the amorphous portion having a low tensile drag are stretched so as to slide on each other. If it is too long, it will eventually break.
  • the gel fraction of the polyolefin resin is less than 10%, the crosslinking is not so advanced even in the amorphous part, that is, the two molecular chains in the amorphous part having a low tensile force are too small.
  • the gel fraction of the polyolefin resin exceeds 70%, the crosslinking proceeds too much in the amorphous portion, that is, the molecular chains are too crosslinked in the amorphous portion having a low tensile strength. Therefore, when the polyolefin resin is stretched, the two molecular chains cannot slide and extend each other, and the strength of the biaxially oriented polyolefin tube obtained instead (particularly, deformation followability) ), There is a possibility that the performance is reduced.
  • gel fraction refers to a numerical value determined as “degree of crosslinking” in accordance with JISC305. More specifically, "gel fraction" For the test, cut a lmm-thick annular test piece from the tip of the biaxially oriented polyolefin tube after cross-linking, and then cut this thin, annular test piece into a fan shape to obtain a 0.5 g test piece. The mass of this test piece is accurately measured (this mass is denoted by '), and then the test piece is placed in a test tube containing 50 g of xylene and kept at about 110 ° C for 24 hours. After this, the test piece was removed from the test tube and vacuum desiccated overnight to about 100.
  • polyolefin resin is a density 0. 940 gZcm 3 or 0. 980 g / cm 3 or less of polyethylene.
  • Polyethylene resin is composed of a crystalline part and an amorphous part. Generally, crosslinking is more likely to occur in the amorphous part than in the crystalline part, and when a polyolefin resin having a density of less than 0.940 g / cm 3 is crosslinked. In the early stage of the tension, the two molecular chains in the amorphous portion cannot slide and extend with each other, and the polyolefin molecules may be in a restrained state.
  • the biaxially oriented polyolefin tube of the present invention may have a structure in which the tensile yield strength in the circumferential direction (tyh) is larger than the tensile yield strength in the axial direction (tya). That is, the improvement of the internal pressure resistance is achieved by improving the tensile yield strength (tyh) in the circumferential direction.
  • (tensile yield strength in the circumferential direction (tyh)) / (tensile yield strength in the axial direction (tya)) is more than 1 and 8 or less, more preferably more than 1 and 5 or less. It is preferably 1.2 or more and 5 or less.
  • the tensile yield strength in the circumferential direction (tyh) is preferably 1 OMPa or more, and the tensile yield strength (tya) in the axial direction is preferably 1 OMPa or more.
  • tyh) is more than 15 MPa and the axial tensile yield strength (tya) is more preferably 15 MPa or more, and the circumferential tensile yield strength (tyh) is more than 2 OMPa and the axial tensile yield More preferably, the strength (tya) force is 15 MPa or more.
  • tensile yield strength refers to a dumbbell-shaped test piece in accordance with J IS K 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and the axial direction, respectively. This is a numerical value obtained by subjecting a test specimen to a tensile test in accordance with JISK 7113 and drawing a tensile stress-strain curve.
  • a resin other than the polyolefin resin may be mixed and used as long as it does not affect the degree of orientation in the present invention.
  • the polyolefin resin may contain optional additives as long as it does not adversely affect the orientation of the tube.
  • the additives include an antioxidant, a weathering agent, an ultraviolet absorber, a lubricant, a flame retardant, and an antistatic agent.
  • the crystal of the polyolefin molecule may be finely divided to make the physical properties uniform.
  • the polyolefin resin may include a filler.
  • the filler examples include fibrous fillers such as glass fiber, power fiber, bon fiber, and asbestos, plate-like particles such as talc, myriki, smectite, and other plate-like particles, aluminum hydroxide, and the like. Spherical particles and ground particles such as calcium carbonate and titanium oxide are included. Further, the polyolefin resin may be colored with a pigment, a dye or the like as needed. Of course, the surface of the tube may be printed or decorated.
  • a raw tube (billette) is formed from polyolefin resin. This is polio
  • the olefin resin is melt-kneaded inside the extruder, and the polyolefin resin is formed into a tube through a tube manufacturing die attached to the tip of the extruder.
  • the tubular polyolefin resin extruded from the die is pulled by a take-off machine to form a water tank. This is achieved by, for example, cooling after cooling to a predetermined length with a cutter.
  • the method for stretching the billet to orient the polyolefin molecules of the pipe in two directions, the circumferential direction and the axial direction is not particularly limited, and the simultaneous biaxial stretching method in the circumferential direction and the axial direction, Any of the sequential stretching methods in which the stretching is performed in the axial direction after the stretching may be performed, but the simultaneous biaxial stretching method is preferred from the viewpoint that the stretching step can be simplified.
  • the simultaneous biaxial stretching includes (1) a pressure fluid method, (2) a die mandrel method, (3) a mandrel method, and (4) a solid extrusion method.
  • the pressure fluid method of (1) uses a pressurized fluid such as compressed air from the inside of the pipe to press the billet from inside to outside and extend it in the circumferential direction, while using hydraulic pressure at both ends of the pipe. This is a method in which the pipe is stretched in the axial direction by attaching a tension device.
  • the pipe is made to advance on the surface of the cone-shaped mandrel whose diameter increases, and then pulled from the tip while the pipe is brought into close contact with the mandrel by a tension device using hydraulic pressure or the like.
  • a tension device using hydraulic pressure or the like.
  • a pipe is advanced on the surface of a cone-shaped mandrel whose diameter increases, and the pipe is pulled from the tip while making close contact with the mandrel by a tension device using hydraulic pressure or the like.
  • This is a method in which the inner diameter of the pipe is expanded and the pipe is simultaneously stretched in the circumferential and axial directions.
  • the pressure fluid method of (1) it is necessary to pressurize the fluid to a very high pressure when increasing the thickness of the billet and securing the thickness of the pipe after stretching.
  • the di-mandrel method of (2) and the mandrel method of (3) are easy to stretch in the axial direction as compared with stretching in the circumferential direction, so that the degree of orientation in the axial direction is increased.
  • the solid extrusion method (4) is preferred.
  • a tube Suruga warming upon stretching the tubing is limited to below the glass transition temperature or higher (melting point + 5 0 e C).
  • the melting point is preferably (melting point—50 ° C.) or more and (melting point + 50 ° C.) or less. If the melting point is less than (50 ° C.), the heating is too short, and it is extremely difficult to stretch the polyolefin resin. On the other hand, if it exceeds (melting point + 50 ° C), it is extremely difficult to fix the orientation and develop the strength. From the viewpoints of the capability of the stretching apparatus, uniformity of orientation, improvement of strength, productivity and the like, it is preferable to orient the pipe at a temperature of (melting point-140 ° C) or more and (melting point + 40.C) or less.
  • the outer diameter, the inner diameter, and the thickness of the obtained biaxially expanded polyolefin tube are not particularly limited as long as the outer diameter is 100 times or less the thickness, but the obtained biaxially expanded polyolefin tube is not limited. Is preferably 0.5 mm or more and 5 Omm or less, more preferably 1 mm or more and 3 Omm or less, and particularly preferably 2 mm or more and 25 mm or less.
  • the biaxially oriented polyolefin pipe according to the present invention is used not only as a transport pipe such as a water pipe, a hot water pipe, a gas pipe, a water pipe, a sewer pipe, a plant pipe, or an agricultural sewage pipe, It can be used as a protective tube provided around an optical fiber, an electric wire, or the like, or as a container such as a can or a bottle, or as a flat plate by cutting out.
  • the obtained biaxially oriented polyolefin tube may be subjected to post-treatments such as annealing and post-crosslinking in order to improve dimensional stability and creep resistance and further improve the quality.
  • post-treatments such as annealing and post-crosslinking in order to improve dimensional stability and creep resistance and further improve the quality.
  • the annealing is preferably performed at a temperature equal to or lower than the melting point of the polyolefin resin.
  • biaxially oriented polyolefin pipe was subjected to socket processing, bending, and drilling. It is also possible to improve the workability as a pipe by applying a pipe. Further, a plurality of biaxially oriented polyolefin tubes may be joined. Splicing methods include EF (elect mouth fusion) fusion, BUTT fusion, rotary welding, socket welding, flange welding (bolt fastening), and the like.
  • FIG. 1 is a view showing a stretching apparatus for producing a biaxially oriented polyolefin tube by a solid extrusion method.
  • FIG. 2 is a view showing a stretching apparatus for producing a biaxially oriented polyolefin tube by a fluid pressure method.
  • FIG. 3 is a diagram illustrating a stretching device used in the examples.
  • FIG. 4A is a cross-sectional view used to describe the bending elastic modulus in the circumferential direction
  • FIG. 4B is a cross-sectional view used to describe the bending elastic modulus in the axial direction.
  • the degree of circumferential orientation is greater than the degree of axial orientation.
  • Index (na) (Refractive index in the circumferential direction> axial refraction in the axial direction) Index (na)), (refractive index in the circumferential direction (nh) Refractive index in the non-oriented state (nn) ⁇ 0.004), (0.004 ⁇ (refractive index in the circumferential direction (nh) — axial refraction) Modulus (na)) (Refractive index in the circumferential direction (nh)) 03), (Tensile modulus in the circumferential direction (tmh)> Tensile modulus in the axial direction (tma)), (1 ⁇ (Tensile modulus in the circumferential direction) (t mh)) Z (axial tensile modulus (tma))) ⁇ 8, (0.5 GPa ⁇ circumferential tensile modul
  • the biaxially oriented polyolefin tube A can be produced, for example, by using a stretching apparatus 1 for stretching by a solid extrusion method as shown in FIG.
  • the stretching device 1 includes the plunger 11, the die 12, and the mandrel 13.
  • the die 12 has a cylindrical shape having a bill inlet portion 12a into which a billet 2 serving as a raw material tube is inserted, and a diameter-enlarging portion 12b expanding into a trumpet shape on the other side.
  • the mandrel 13 faces the enlarged diameter portion 12b of the die 12 and forms a stretching passage 14 between its outer peripheral surface and the inner peripheral surface of the enlarged diameter portion 12b of the die 12. ing.
  • the distance between the outer circumferential surface of the mandrel 13 and the inner circumferential surface of the enlarged diameter portion 12b of the die 12 extends from the billet insertion portion 12a side to the outlet side of the enlarged diameter portion 12b. It gradually becomes narrower.
  • the plunger body 11a has an outer diameter that is substantially the same as the inner diameter of the bill inlet portion 12a, and can be moved into and out of the billet insertion portion 12a by a hydraulic device (not shown). I have.
  • the biaxially oriented polyolefin tube A can be manufactured as follows using this stretching apparatus 1.
  • the plunger 11 is retracted to the hydraulic device side so as to open the inlet of the pillar insertion portion 12a, and the billet 2 is set into the bill insertion portion 12a as shown in FIG.
  • the plunger 11 is advanced in the direction of the die 2 such that the tip of the plunger body 11a is pressed against the rear end of the billet 2.
  • the plunger body 11a of the plunger 11 is pressed into the inner portion of the billet insertion portion 12a by a hydraulic device, and the billet 2 is stretched in the circumferential direction and the axial direction by the stretching passage. Obtain polyolefin tube A.
  • the degree of orientation in the circumferential direction is greater than the degree of orientation in the axial direction. Sliding of the surface improves the modulus of elasticity and the pipe against external stress. Can be compatible with each other.
  • the elasticity in the circumferential direction is stronger than the elasticity in the axial direction, so that the internal pressure applied to the pipe from the fluid flowing inside the pipe, and the soil applied from the soil around the pipe when the pipe is buried. Can withstand enough pressure. In other words, the internal pressure resistance and the earth pressure resistance of shochu are improved.
  • the ability of the polyolefin pipe to follow the deformation of the pipe against external stress which is an advantage of the polyolefin pipe, is not significantly impaired, so that even if the buried pipe according to the present invention is subjected to an earthquake, the pipe remains in the axial direction. It can be plastically deformed and does not break.
  • the refractive index in the circumferential direction (nh) is larger than the refractive index in the axial direction (na), and the refractive index in the circumferential direction (nh) is 0.04 or more larger than the refractive index in the non-aligned state (nn). Therefore, it is possible to sufficiently improve the elasticity in the circumferential direction, and to sufficiently secure the pipe without following the deformation followability.
  • the tensile elastic modulus in the circumferential direction is larger than the tensile elastic modulus in the axial direction, the internal pressure resistance of the shochu can be improved, and at the same time, the deformability of the polyolefin pipe can be maintained with respect to external stress. . Further, since each tensile elastic modulus is within the above-mentioned predetermined range, it is possible to improve the internal pressure resistance and maintain the deformation followability of the pipe extremely well.
  • the flexural modulus in the circumferential direction is greater than the flexural modulus in the axial direction, it is possible to improve the earth pressure resistance and to maintain the deformability of the pipe. Further, since each bending elastic modulus is within the above-mentioned predetermined range, it is possible to improve the earth pressure resistance and maintain the deformation followability of the pipe extremely well.
  • each tensile breaking strength is within the above-mentioned predetermined range. Therefore, the internal pressure resistance and the earth pressure resistance can be improved and the deformation followability of the pipe can be maintained extremely well.
  • the biaxially oriented polyolefin tube B In the biaxially oriented polyolefin tube B according to the second embodiment of the present invention, at least a part of the polyolefin resin constituting the tube is crosslinked, the gel fraction is 10% or more and 70% or less, and the density is 0% or less. 9408 ⁇ 111 3 or more and 0.980 gZcm 3 or less, and the degree of orientation in the circumferential direction is larger than the degree of orientation in the axial direction.
  • the biaxially oriented polyolefin tube B can be produced, for example, by using a stretching apparatus 3 using a fluid pressure method as shown in FIG.
  • the stretching device 3 includes the outer diameter control type 31 and the pipe chucks 32.
  • the outer diameter regulating type 31 regulates the billet 2 to be stretched to have a predetermined outer diameter when the billet 2 is expanded outward, and is provided with a heater (not shown).
  • the heater 2 can heat the billet 2 from the outside.
  • the pipe chucks 3 2, 3 2 hold both ends of the billet 2, and when the motor 34 is switched on, the billet 2 is pulled from both sides to extend in the axial direction,
  • the pressurized and heated gas sent from the gas transport pipe 33 is pressed into the inside of the billet 2 to extend the billet 2 in the circumferential direction.
  • the pipe chuck 32 is provided with an air-sealing structure at the grip portion of the billet 2 so that gas sent from the gas transport pipe 33 to the pipe chuck 32 can be supplied into the billet 2 without leaking. I have.
  • the biaxially oriented polyolefin tube B can be manufactured as follows using this stretching apparatus 3.
  • both ends of the billet 2 are gripped by the pipe chucks 32 on both sides.
  • the billet 2 is heated to a temperature not less than the melting point of the resin—50 ° C. (melting point + 50.
  • the heated gas is pressed into the billet 2 through the pipe chuck 32 to expand the diameter of the billet 2, that is, stretched and oriented in the circumferential direction, and the billet 2 is moved to both sides by the pipe chucks 32 and 32.
  • the biaxially oriented polyolefin tube B is obtained by stretching and orienting in the axial direction.
  • the biaxially oriented polyolefin tube B thus obtained has the same effects as the above biaxially oriented polyolefin tube A, and since the polyethylene resin is cross-linked, the bow is an amorphous material having a low tensile drag.
  • the molecular chains in the parts are cross-linked to each other. For this reason, even when the polyolefin resin is pulled, these molecular chains do not extend so as to slip each other, and the deformation followability of the obtained biaxially oriented polyolefin tube can be further improved.
  • a phenomenon in which the pipe separates in the thickness direction may be observed, which is not preferable from the viewpoint of earthquake resistance. Thus, separation can be prevented.
  • the gel fraction of the polyolefin resin is not less than 10% and not more than 70%, as described above, the molecular chains in the amorphous portion having a weak tensile force are simply cross-linked to each other. Not only does it occur, but also in the amorphous part, the molecular chains do not crosslink too much, and the deformation follow-up property is not degraded. Therefore, the deformability of the obtained biaxially oriented polyolefin tube can be more reliably improved.
  • the biaxially oriented polyolefin pipe according to the present invention is not limited to the above embodiment.
  • the biaxially oriented polypropylene tube A is produced by the stretching device 1 using the solid extrusion method, and the biaxially oriented polypropylene tube B is produced by the stretching device 3 using the fluid pressure method.
  • the biaxially oriented polypropylene tube B can be produced by the stretching device 1 and the biaxially oriented polypropylene tube A can be produced by the stretching device 3.
  • the billets I to XI to be the raw material tubes were prepared as follows.
  • a billet I was prepared in the same manner as the billet I except that the outer diameter was 89.0 mm and the inner diameter was 14 Omm.
  • a billet ⁇ ⁇ was prepared in the same manner as the billet I, except that the outer diameter was 89.0 mm and the inner diameter was 660 mm. (Billet: n
  • a billet IV was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 12.0 mm. , '-
  • a billet V was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 44.0 mm.
  • High-density polyethylene resin made by Asahi Kasei Corporation, trade name: “Suntech HD—QB78 0J, density: 0.953 g / cc FR: 0.03 10 minutes, weight average molecular weight: about 268,000, melting point 132 ° C
  • High-density polyethylene resin (Nippon Polychem Co., Ltd., product name: Novatec HD-HR120R, density 0.934 g / cc, MFR: 0.19 g / 10 min, weight average molecular weight: about 216000, melting point 132) was used, and a billet VI was prepared in the same manner as billet I except that the outer diameter was 89.0 mm and the inner diameter was 44. Omm.
  • High-density boroethylene resin manufactured by Asahi Kasei Corporation, product name: “Suntech HD—QB780”, density: 0.93 g / cc, MFR: 0.03 gZ, 10 minutes, weight average molecular weight: about 268,000, melting point 132 ° C
  • a high-density polyethylene resin product name: Novatec HD-HB530, manufactured by Nippon Polychem Co., Ltd., density: 0.964 gZ cc, MFR: 0.3 gZl 0 min, melting point: 136 ° C
  • billet W was prepared in the same manner as billet I.
  • High-density boroethylene resin manufactured by Asahi Kasei Corporation, trade name: "Suntech HD-QB780", density: 0.93 g / cc, MFR: 0.03 g / 10 minutes, weight average molecular weight: about 268000, melting point 132 ° C
  • a polypropylene resin trade name: Novatec PP-EC9, manufactured by Nippon Polychem Co., Ltd., density: 0.9 gZc c, MFR: 0.5 gZl 0 min.
  • a billet H was prepared in the same manner as described above.
  • billet K A billet K was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 62.0 mm.
  • High-density polyethylene resin manufactured by Asahi Kasei Corporation, trade name: “Suntech HD—QB780J, density: 0.953 gZc c, MFR: 0.03 g / 10 min, weight average molecular weight: about 268,000, melting point 1 32 (° C)
  • To 100 parts by weight add 0.5 parts by weight of trivinylmethoxysilane and 0.04 parts by weight of 2,5-dimethyl-1,2,5-bis-t-butyloxyhexane.
  • a billet X was prepared in the same manner as the above billet I, except that the outer diameter was 89.00 mm and the inner diameter was 14.0 mm.
  • High-density polyethylene resin (Asahi Kasei Co., Ltd., product name: “Suntech HD-QB780J, density: 0.93 g / cc, MFR: 0.03 gZlO content, weight average molecular weight: about 268000, melting point: 1 32 )
  • high-density polyethylene resin (Nippon Borichem Co., Ltd., product name: Novatec HD—HR120R, density: 0.934 g Zc c, FR: 0.19 g / 10 min, weight average molecular weight : about 21 6000, except for using the melting point 1 32 e C)
  • 41 is a die
  • 42 is a mandrel
  • 43 is a pressing device.
  • the stretching device 4 in which the temperature of the mandrel 42 and the temperature of the die 41 were set to 125 ° C was used. It was set in the billet insertion section 44. Then, while adding 20 tons of mosquito to the billet I by the pressing device 43, it is pushed into the stretching passage 45 between the mandrel 42 and the die 41 and stretched at a speed of 10 OmmZ, thereby surrounding the polyethylene molecules.
  • a non-crosslinked biaxially oriented polyethylene tube having an outer diameter of 156.8 mm and an inner diameter of 145.0 mm was obtained as a sample tube by orienting in each of the direction and the axial direction.
  • An oriented polyethylene tube was obtained as a sample tube.
  • the drawing unit 4 with the dimensions of each part is as follows and the billet]!
  • a biaxially oriented polyethylene tube was obtained as a sample tube.
  • a non-crosslinking type having an outer diameter of 166.Omm and an inner diameter of 145.Omm was performed in the same manner as in Example 1 except that a drawing device and a billet IV as shown in FIG. A biaxially oriented polyethylene tube was obtained as a sample tube.
  • a non-crosslinked biaxially oriented polyethylene tube with an outer diameter of 156.8 mm and an inner diameter of 145.0 mm was prepared in the same manner as in Example 1 except that the temperature of the die 41 was set to 110 ° C. Obtained as a sample tube.
  • a biaxially oriented Bolylene tube was obtained as a sample tube.
  • Example 2 Same as Example 1 except that a pulling device was connected to the tip of billet I without using the pressing device of the stretching device of Example 1, and the pulling device used a die mandrel method of pulling from the exit side of die 41. Thus, a non-crosslinked biaxially oriented polyethylene tube was obtained as a sample tube.
  • the refractive index was determined by cutting out a test piece (0.5 mm thick) of about 1 Omm square from the obtained tube, and using a molecular orientation meter (microphone mouth wave method, manufactured by Oji Scientific Instruments, model number: M0A3020A). By irradiating the test piece with microwaves of about 19 GHz using, the refractive indices at 0 degree (axial direction) and 90 degrees (circumferential direction) were measured.
  • the yield strength was determined by cutting a dumbbell-shaped No. 2 test piece from the obtained pipe in accordance with JISK7113 and pulling it while gradually increasing the load at a speed of 5 OmmZ.
  • tensile yield strength which corresponds to the tensile stress at the first point where the elongation is increased without increasing the elongation. If the test piece is broken by cutting or the like before the material yields, the ⁇ tensile fracture strength '' corresponding to the tensile stress at the moment when the test piece breaks is referred to as ⁇ yield strength '' here. .
  • the sample tubes of Examples 1 to 9 have higher yield strength in the circumferential direction than in the axial direction.
  • the sample tubes of Comparative Examples 1 and 2 are more oriented in the axial direction than in the circumferential direction, and the tensile modulus and the bending modulus in the axial direction are larger than those in the circumferential direction.
  • the ability to follow the deformation of the ship is impaired, making it impossible to respond to a major earthquake.
  • the degree of orientation and the refractive index in the circumferential direction are higher than the degree of orientation and the refractive index in the axial direction, the internal pressure applied to the pipe from the fluid flowing inside the pipe, and the soil around the pipe when the pipe is buried.
  • the tensile modulus the tensile modulus in the circumferential direction is higher than the tensile modulus in the axial direction, so it is understood that the biaxially oriented polyethylene pipe obtained by this method has improved internal pressure resistance. You. In addition, since the bending elastic modulus in the circumferential direction is higher than the bending elastic modulus in the axial direction, it is understood that the biaxially oriented polyolefin pipe obtained by this method has high shochu earth pressure.
  • the obtained pipe can have improved internal pressure resistance and earth pressure resistance, while the advantage of a polyolefin pipe is the external strength. It is understood that the deformation followability to stress is maintained.
  • Example 10 The sample tubes obtained in Examples 1 to 9 not only had sufficient shochu performance, but also had excellent pressure resistance and had sufficient performance as a buried pipe. In addition, it can be understood that since the thickness of the polyethylene pipe was reduced, the cost can be reduced to obtain a biaxially oriented polyolefin pipe. (Example 10)
  • a non-crosslinked type biaxially oriented polyethylene pipe having an outer diameter of 156.8 mm and an inner diameter of 14.5 mm was obtained in the same manner as in Example 1, and the obtained non-crosslinked type was obtained.
  • An electron beam irradiator (Nisshin High Voltage ESP 750 kV) was used to irradiate the biaxially oriented polyethylene tube with an electron beam of 3 MRad at an acceleration voltage of 750 kV. Then, the polyethylene constituting the tube was crosslinked by an electron beam crosslinking method to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
  • a crosslinked biaxially oriented polystyrene tube was obtained as a sample tube in the same manner as in Example 10 except that the electron beam irradiation amount was changed to 6 MRad.
  • a non-cross-linked biaxially oriented polyethylene pipe having an outer diameter of 156.8 mm and an inner diameter of 14.5 O mm was obtained in the same manner as in Example 1 using the billet X.
  • the biaxially oriented polyethylene tube was immersed in hot water at 95 for 48 hours to crosslink the polyethylene constituting the tube to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
  • a non-crosslinked biaxially oriented polyethylene tube having an outer diameter of 156.8 mm and an inner diameter of 14.5 mm was obtained in the same manner as in Example 1, and the obtained non-crosslinked type was obtained.
  • An electron beam irradiator (Nisshin High Voltage ESP 7500 kV) is used to irradiate the biaxially oriented polyethylene tube with an electron beam of 3 MRad at an acceleration voltage of 7500 kV.
  • the polyethylene constituting the tube was crosslinked by an electron beam crosslinking method to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
  • Example 12 when Example 12 is compared with other Examples 10, 11, and 13, it can be understood that the crosslinking method may be any of an electron beam crosslinking method and a hot water crosslinking method. .
  • the present invention it is possible to provide a biaxially oriented polyolefin pipe having high seismic resistance, which can achieve both high deformation followability and high elasticity in the circumferential direction, which are performances required when used as a buried pipe. can do.
  • a biaxially oriented polyolefin pipe having high seismic resistance which can achieve both high deformation followability and high elasticity in the circumferential direction, which are performances required when used as a buried pipe. can do.
  • it is possible to achieve both deformation followability and elasticity in the circumferential direction in this way it is possible to maintain high durability for a long time against internal pressure, earth pressure, etc. as compared to steel pipes, concrete pipes, etc.
  • two or more biaxially oriented polyolefin tubes according to the present invention can be used by connecting two or more, similarly to the conventional polyolefin tube.
  • the gas barrier property, chemical resistance, and surface hardness can be improved by orienting the polyolefin molecules in the axial direction and the circumferential direction. It can be expanded to other than the middle buried pipe).

Abstract

An axially and circumferentially oriented, i.e., biaxially oriented polyolefin pipe, wherein a degree of orientation thereof in the circumferential direction is set higher than that thereof in the axial direction, whereby providing a biaxially oriented pipe having an excellent elastic deformability; i.e. excellent deformation follow-up characteristics with respect to an external stress and an improved circumferential elasticity; and a high earthquake resistance which constitute performances required by this pipe when it is used as a buried pipe.

Description

明細書  Specification
2軸配向ポリオレフィン管  Biaxially oriented polyolefin tube
技術分野  Technical field
本発明は 2軸配向ポリオレフイン管に関し、 より詳細には、 埋設管に求められ る管の性能としての管の変形追従性および周方向の弾性に優れ、 耐震性が高い 2 軸配向ポリオレフィン管に関する。  The present invention relates to a biaxially oriented polyolefin pipe, and more particularly, to a biaxially oriented polyolefin pipe having excellent deformation followability and circumferential elasticity as pipe performance required for a buried pipe, and high seismic resistance.
背景技術  Background art
従来より、 配水管、 給湯管、 ガス管、 上水道管、 下水道管、 プラント管などと して、 ポリ塩化ビニル製合成樹脂管 (P V C製管) 、 铸鉄製管、 コンクリート管 などが用いられている。 また、 近年では、 ポリオレフイン樹脂を素材とするポリ ォレフィ ン管が、 耐震性、 地盤変動などに対する信頼性が高いという理由から、 地中埋設管等としての需要が高まり、 急速に普及している。 例えば、 積水化学ェ 業株式会社の技術報告では、 ポリエチレン管においては、 管が内在的に有する外 部応力に対する管の変形追従性(すなわち、 伸び) が高いため、 地震または地盤 の繰り返し変動が生じた際でも、 地面に埋設されたポリエチレン管が塑性変形し て破断しないことが開示されている。  Conventionally, polyvinyl chloride synthetic resin pipes (PVC pipes), steel pipes, concrete pipes, etc. have been used as water distribution pipes, hot water pipes, gas pipes, water supply pipes, sewer pipes, plant pipes, etc. . In recent years, polyolefin pipes made of polyolefin resin have been rapidly spreading due to increased demand for underground pipes and the like because of their high seismic resistance and high reliability against ground deformation. For example, according to a technical report by Sekisui Chemical Co., Ltd., polyethylene pipes have a high ability to follow the deformation of the pipes (ie, elongation) against the external stresses inherent in the pipes, which causes repeated earthquake or ground deformation. It is disclosed that the polyethylene pipe buried in the ground does not break due to plastic deformation even when it is damaged.
なお、 地中埋設管などは、 耐内圧、 土圧などに対して長期間、 高い耐久性を保 つ必要がある。 このため、 ポリエチレン管では、 管の厚みを増加させることが実 際に行われている。 これでは、 口径が小さいポリエチレン管は工業的に量産する ことはできるが、 口径が大きいポリェチレン管はまだ工業的に量産することは困 難であり、 現に口径が小さいポリエチレン管は工業的に量産されている力 口径 が大きいポリエチレン管はまだ工業的に量産されるに至っていない。  Underground pipes must maintain high durability for a long time against internal pressure and earth pressure. For this reason, it is actually practiced to increase the thickness of the polyethylene pipe. In this case, polyethylene pipes having a small diameter can be mass-produced industrially, but polyethylene pipes having a large diameter are still difficult to mass-produce industrially, and polyethylene pipes having a small diameter are actually mass-produced. Large-diameter polyethylene pipes have not yet been mass-produced industrially.
ポリオレフイン管が広く市場に浸透している現在、 ポリオレフィン管の管の変 形追従性、 周方向の弾性、 耐内圧性、 長期強度性などのような信頼性の向上に対 する要求は益々高まっている。 このような要求に応えるため、 ポリオレフイン管 を軸方向または周方向に延伸させてポリオレフイン分子を特定の方向に配向させ た配向ポリオレフィン管が注目されている。  Now that polyolefin pipes are widely infiltrated into the market, there is an increasing demand for improved reliability of polyolefin pipes such as deformability, circumferential elasticity, internal pressure resistance, and long-term strength. I have. In order to meet such demands, attention has been paid to oriented polyolefin tubes in which polyolefin tubes are stretched in the axial or circumferential direction to orient polyolefin molecules in a specific direction.
特定の方向にポリオレフイン管を延伸してポリオレフィン分子を配向させると 、 その方向の弾性は向上するが、 管の変形追従性が低下する傾向がある。 従って 、 特定の方向にポリオレフイン管を延伸すると、 その方向の弾性が向上するため 、 その特定の方向からの少々の外力によって塑性変形することがなくなり、 管と しての機能を維持することができるが、 塑性変形することか: 難となるので、 例 えば、 埋設された管が地震に遭遇した場合には、 管が破断してしまうおそれがあ る 0 When the polyolefin tube is stretched in a specific direction to orient the polyolefin molecules, the elasticity in that direction is improved, but the tube tends to be less deformable. Therefore However, when the polyolefin tube is stretched in a specific direction, the elasticity in that direction is improved, so that plastic deformation by a small external force from the specific direction is eliminated, and the function as the tube can be maintained. , or it is plastically deformed: since the flame, if example embodiment, when the buried pipe encounters earthquake, Ru danger tubes resulting in broken 0
ポリオレフィン管を軸方向のみに一軸的に延伸すると、 軸方向の弾性率を大幅 に改善することが出来る力 管の変形追従性が著しく低下するため、 地震などの 際には、 地面に埋設されたポリエチレン管は軸方向に塑性変形できず、 軸方向に 管が裂けやすい。 また、 周方向には延伸していないため、 内圧および土圧に対す る酎性は向上されていないばかり力、、 周方向の強度 (特に弾性) は向上されてお らず、 結果として得られたポリオレフイン管は実用性および耐震性に劣る。 一方、 周方向のみに一軸的に延伸した場合には、 周方向の弾性率を大幅に改善 することができ、 管を流れる流体から管に加わる内圧および地中に埋設された際 に管に加わる土の重量に対する耐性を向上させることができるが、 この場合も延 伸により管の変形追従性が著しく低下しているため、 軸方向に塑性変形できない ため、 結果として得られたポリオレフィン管は耐震性に劣る。  If the polyolefin pipe is uniaxially stretched only in the axial direction, it can significantly improve the elastic modulus in the axial direction. Polyethylene pipes cannot plastically deform in the axial direction, and the pipes tend to tear in the axial direction. In addition, since it is not stretched in the circumferential direction, the strength and strength (especially elasticity) in the circumferential direction are not improved as well as the shochu properties against internal pressure and earth pressure are not improved. Polyolefin pipes are inferior in practicality and earthquake resistance. On the other hand, when stretched uniaxially only in the circumferential direction, the elastic modulus in the circumferential direction can be significantly improved, and the internal pressure applied to the pipe from the fluid flowing through the pipe and the pipe is applied to the pipe when buried underground The resistance to soil weight can be improved, but also in this case, the ability to follow the deformation of the pipe is significantly reduced by extension, and the plastic deformation in the axial direction is not possible. Inferior.
そのため、 ポリオレフィン管を軸方向および周方向のいずれにも延伸させた 2 軸配向ポリオレフイン管についても種々検討されているが、 どうしても軸方向へ の延伸が周方向への延伸より大きくなり、 このためポリオレフィン分子は軸方向 に大きく、 周方向に小さく配向する。 従って、 従来の 2軸配向ポリオレフイン管 は、 その管の変形追従性(伸び) が著しく低下しているため、 軸方向に裂けやす い。  For this reason, various studies have been made on biaxially oriented polyolefin tubes in which the polyolefin tube is stretched in both the axial direction and the circumferential direction.However, the stretching in the axial direction is inevitably greater than the stretching in the circumferential direction. The molecules are large in the axial direction and small in the circumferential direction. Therefore, the conventional biaxially oriented polyolefin pipe is apt to be torn in the axial direction because the deformability (elongation) of the pipe is significantly reduced.
例えば、 特公平 4— 5 5 3 7 9号公報では、 ( 1 ) 延伸可能な熱可塑性ボリマ 一含有中空加工物をダイの入口側から供給し、 (2 ) ダイの出口側に送られた中 空加工物に、 該加工物の引張破壊を生じさせるには不十分であるが、 該加工物を 固相でダイおよび該加工物の初期内部横断面積よりも大きな横断面積を有して該 加工物の内部に配設したフォーマーを同時に通して延伸変形させて該加工物のバ ルク横断面積を現象させるのには充分の引張強度を加え、 (3 ) このようにして 延伸されることにより変形した中空加工物をダイの出口側から回収することによ り、 未変形の素材と比較して強度を向上させた管を得る方法が開示されている。 この方法では、 得られる管の周方向の弾性率、 引張降伏強度、 耐衝撃強度、 耐 内圧強度などについては改善が見られるものの、 弓【張破断伸度が著しく低下して レ、る。 そのため、 特公平 4 - 5 5 3 7 9号公報の方法によって得られる管は、 本 来、 ポリオレフィン管が有している外部応力に対する管の変形追従性(すなわち 、 伸び) が著しく低下している。 すなわち、 埋設された際に必要とされる外部応 力に対する管の変形追従性が不足しており、 又、 管が層状に剝離するなど耐震性 に欠けるという問題がある。 For example, Japanese Patent Publication No. 4-5 539 79 discloses that (1) a hollow workpiece containing stretchable thermoplastic polymer is supplied from the inlet side of the die, and (2) the hollow workpiece is sent to the outlet side of the die. An empty workpiece is insufficient to cause tensile failure of the workpiece, but the workpiece is solid-phase with a die having a cross-sectional area greater than the initial internal cross-sectional area of the workpiece. Apply sufficient tensile strength to simultaneously deform and extend the bulk of the workpiece by passing it through the former disposed inside the workpiece, and (3) deforming by stretching in this way By collecting the hollow workpiece from the exit side of the die. Also, a method is disclosed for obtaining a tube having improved strength compared to an undeformed material. In this method, although the circumferential elastic modulus, tensile yield strength, impact strength, and internal pressure strength of the obtained pipe are improved, the bow [tensile fracture elongation is significantly reduced. For this reason, the pipe obtained by the method disclosed in Japanese Patent Publication No. 4-55379 has a remarkably reduced pipe deformation followability (ie, elongation) with respect to the external stress inherent in the polyolefin pipe. . In other words, there is a problem that the pipe does not have sufficient follow-up ability to respond to the external stress required when the pipe is buried, and that the pipe lacks seismic resistance such as being separated in layers.
また、 成型加工第 1 0巻第 6号 3 9 4頁に記載されている中丸らの報告では、 ダイとマンドレルとを組み合わせた延伸手段を用いて、 ビレットと呼ばれる原管 を引っ張りながらこの延伸手段を通すことにより、 2軸配向管を作製する 「Die Drawing法」 が開示されている。 この報告では、 Die Drawing法によって、 軸方 向の延伸変形比および周方向の延伸変形比をそれぞれ制御して、 得られる管にお ける配向を自由に制御することが可能になったことが主張されているが、 埋設さ れた際に必要とされる耐内圧強度、 および外部応力に対する管の変形追従性を両 立させるには至っていない。  Nakamaru et al., Described in Vol.10, No.6, pp.394 of the Forming Process, used a stretching method combining a die and a mandrel to pull a raw tube called a billet while pulling the original tube. The "Die Drawing method" for producing a biaxially oriented tube by passing through a tube is disclosed. In this report, it is argued that the Die Drawing method enabled the control of the stretching ratio in the axial direction and the stretching ratio in the circumferential direction, and the orientation in the resulting tube could be freely controlled. However, it has not been able to achieve both the required internal pressure resistance when buried and the ability to follow the deformation of the pipe to external stress.
特表平 5 - 5 0 1 9 9 3号公報には、 管の内部から圧縮空気などの加圧流体を 用いてビレットを内側から外側へ押圧して周方向にのみ延伸するビレットを延伸 させる 1軸延伸方法が開示されているが、 軸方向の強度を向上させる方法は開示 されていない。 従って、 この方法で得られた 1軸延伸ポリオレフイン管において は、 周方向にのみ延伸し、 軸方向に延伸していないため、 埋設管として用いられ た際に管に求められる性能である塑性変形性および周方向の弾性の両立を図るこ とはできていない。  Japanese Patent Application Laid-Open No. 5-5101993 discloses that a billet is stretched only in the circumferential direction by pressing a billet from inside to outside using a pressurized fluid such as compressed air from the inside of a pipe. An axial stretching method is disclosed, but no method for improving the strength in the axial direction is disclosed. Therefore, the uniaxially stretched polyolefin pipe obtained by this method stretches only in the circumferential direction and does not stretch in the axial direction. And the elasticity in the circumferential direction cannot be achieved at the same time.
本発明は上記課題を解決するためになされ、 その目的とするところは、 埋設管 として用いられた際に求められる性能である塑性変形性(すなわち、 外部応力に 対する管の変形追従性) が高いことおよび周方向の弾性が高いことを両立させる ことができ、 耐震性が高レ、 2軸配向ポリオレフィン管を提供することにある。  The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to have high plastic deformability (that is, the ability of a pipe to follow an external stress) which is a performance required when used as a buried pipe. Another object of the present invention is to provide a biaxially oriented polyolefin pipe which has both high elasticity in the circumferential direction and high seismic resistance.
発明の開示  Disclosure of the invention
上記課題を解決する、 本発明に係る 2軸配向ポリオレフイン管は、 軸方向およ び周方向に配向されており、 周方向の配向度が軸方向の配向度よりも大きいこと を特徴とする。 The biaxially oriented polyolefin tube according to the present invention, which solves the above-mentioned problems, has an axial and And is oriented in the circumferential direction, and the degree of orientation in the circumferential direction is larger than the degree of orientation in the axial direction.
本明細書において用いられる用語 「配向度」 とは、 ポリオレフイン分子の分子 鎖がその方向にどれだけならんでいるかを表す数値であり、 赤外分光分析、 X線 回折、 偏光顕微鏡(複屈折) 、 およびマイクロ波により測定され得る。 本発明に おいては、 後述するように、 マイクロ波を用いて測定する。  As used herein, the term “degree of orientation” is a numerical value indicating how much the molecular chains of a polyolefin molecule are arranged in that direction, and includes infrared spectroscopy, X-ray diffraction, polarizing microscope (birefringence), And can be measured by microwaves. In the present invention, the measurement is performed using a microwave, as described later.
本明細書において用いられる用語 「2軸配向ポリオレフイン管」 とは、 周方向 の屈折率 (nh) の平均値および軸方向の屈折率 (na) の平均値がそれぞれ無 配向状態の屈折率 (nn) より 0. 002以上大きく、 かつ管の外径 (D) と管 の厚み (t) との比(DZt) が 1 00以下であるポリオレフィン製の管を意味 する。 周方向の屈折率 (na) の平均値または軸方向の屈折率 (nh) の平均値 のいずれかが無配向状態の屈折率(n n) より 0. 002未満である場合には、 ポリオレフイン分子の配向が不十分であり、 弾性率の向上を図ることができない As used herein, the term “biaxially oriented polyolefin tube” refers to an average value of the refractive index (nh) in the circumferential direction and an average value of the refractive index (na) in the axial direction. ) Means a polyolefin pipe having a diameter (DZ) of not more than 100 and a diameter (DZ) of pipe outer diameter (D) to pipe thickness (t) of not more than 1002. If either the average value of the refractive index (na) in the circumferential direction or the average value of the refractive index (nh) in the axial direction is less than 0.002 than the refractive index (nn) in the non-aligned state, the polyolefin molecule Insufficient orientation to improve elastic modulus
0 0
従って、 管内部を流れる流体から管に加えられる内圧に対する耐性(以下、 r 耐内圧性」 という) の向上を図ることができず、 さらにポリオレフイン管が埋設 された場合において、 土および地上を走行する車両から管に加えられる圧力に対 する耐性(以下、 「酎土圧性」 という) を向上することができない。  Therefore, the resistance to the internal pressure applied to the pipe from the fluid flowing inside the pipe (hereinafter referred to as “r internal pressure resistance”) cannot be improved, and when the polyolefin pipe is buried, it travels on soil and the ground. It is not possible to improve the resistance to pressure applied to pipes from vehicles (hereinafter referred to as “shochu earth pressure resistance”).
屈折率と配向度との関係は、 ある特定方向の屈折率が無配向状態の屈折率(n n) より高ければ高いほど、 その方向の配向度が高く、 ほぼ比例関係にあるとい える。 屈折率の測定には、 測定方法が簡単であるため、 ナトリウム D線 (波長 5 89 nm) を照射するアッベ屈折計が用いられることが多いが、 アッベ屈折計で は、 ナトリウム D線がサンプルを充分に透過することが必要であり、 光学的に不 透明なポリォレフィン管の屈折率をァッべ屈折計を用いて測定するのはあまり適 切ではない。 そのため、 本発明においては、 ポリオレフインなどの高分子物質の 分子主鎖のねじれなどの局所運動に起因する誘電緩和が観測されるマイクロ波領 域、 その中でも特に 1 9 GHz近辺のマイクロ波をポリオレフイン管に対して照 射することによって誘電率 (ε ' ) を測定し、 Maxwell の式 ( (屈折率 (n) = ^ (ε' ) ) から屈折率を求めることが適切である。 無配向状態の屈折率 (nn) は、 配向前のポリオレフインの屈折率をそのまま 無配向状態の屈折率 (nn) としてもよいが、 ポリオレフイン管が延伸されてい る場合は、 管を (融点 +40°C)以上に加熱し、 次いで 10¾/分程度の速度で 冷却することにより配向をキャンセルした管の屈折率を無配向状態の屈折率(n n) としても良い。 The relationship between the refractive index and the degree of orientation is such that the higher the refractive index in a particular direction is higher than the refractive index (nn) in the non-oriented state, the higher the degree of orientation in that direction, and it is said that the relationship is approximately proportional. In order to measure the refractive index, an Abbe refractometer that irradiates a sodium D line (wavelength 589 nm) is often used because the measurement method is simple, but in the Abbe refractometer, the sodium D line It is not appropriate to measure the refractive index of an optically opaque polyolefin tube using an Abbe refractometer, which requires sufficient transmission. For this reason, in the present invention, a polyolefin tube is used for the microwave region where dielectric relaxation due to local motion such as twisting of the molecular main chain of a polymer material such as polyolefin is observed. It is appropriate to measure the dielectric constant (ε ') by irradiating, and to find the refractive index from Maxwell's formula ((refractive index (n) = ^ (ε')). As the refractive index (nn) in the non-oriented state, the refractive index of polyolefin before orientation may be used as it is as the refractive index (nn) in the non-oriented state. However, if the polyolefin pipe is stretched, the pipe (melting point +40 (° C) or more, and then cooled at a rate of about 10 ° / min., And the refractive index of the tube whose orientation has been canceled may be used as the non-oriented state refractive index (nn).
2軸配向ポリオレフイン管の厚みは、 通常のポリエチレン管、 PVC管と同等 もしくは薄いことが好ましい。 管の外径により好ましい厚みは異なるが、 管の外 径(D) と管の厚み (t) の比 (D/t) は上記のように 100以下であること が好ましい。 特に 2軸配向ポリオレフィン管に耐クリープ性が要求される場合に は、 比 (DZt) は 30以下であることが好ましい。 また、 2軸配向ポリオレフ イン管の形状は、 通常、 円筒状であるが、 必ずしもこれに限られず、 管が用いら れる用途に応じて、 断面楕円形、 卵形、 角筒形 (例えば、 四角筒形、 三角筒形) などの異形状にしてもよい。  The thickness of the biaxially oriented polyolefin tube is preferably equal to or smaller than that of a normal polyethylene tube or PVC tube. Although the preferred thickness varies depending on the outer diameter of the pipe, the ratio (D / t) of the outer diameter (D) of the pipe to the thickness (t) of the pipe is preferably 100 or less as described above. In particular, when creep resistance is required for the biaxially oriented polyolefin tube, the ratio (DZt) is preferably 30 or less. Also, the shape of the biaxially oriented polyolefin tube is usually cylindrical, but is not necessarily limited to this. Depending on the application in which the tube is used, an elliptical cross section, an oval shape, a rectangular tube shape (for example, square It may have a different shape such as a cylindrical shape or a triangular cylindrical shape.
上述したように、 屈折率が高ければ高いほど配向度も大きくなるが、 具体的に は、 周方向の屈折率 (nh)が軸方向の屈折率 (na) より大きく、 かつ周方向 の屈折率(nh) が無配向状態の屈折率 (nn) より 0. 004以上が大きいこ とが好ましく、 0. 01以上大きいことがより好ましい。 周方向の屈折率 (nh ) が軸方向の屈折率 (na) より小さいと、 言うまでもなく軸方向の配向度が周 方向の配向度より大きくなつてしまう。 また、 周方向の屈折率 (nh) と無配向 状態の屈折率 (nn) との差が 0. 004未満である場合には、 延伸によるポリ ォレフィン分子の周方向への配向が不十分であり、 周方向の弾性率を十分向上さ せることができず、 管の耐内圧性および耐土圧性を向上させることができない場 合がある。  As described above, the higher the refractive index, the higher the degree of orientation. Specifically, the refractive index in the circumferential direction (nh) is larger than the refractive index in the axial direction (na), and the refractive index in the circumferential direction. (Nh) is preferably 0.004 or more, more preferably 0.01 or more, larger than the refractive index (nn) in the non-aligned state. If the refractive index in the circumferential direction (nh) is smaller than the refractive index in the axial direction (na), it goes without saying that the degree of axial orientation is larger than the degree of circumferential orientation. When the difference between the refractive index (nh) in the circumferential direction and the refractive index (nn) in the non-aligned state is less than 0.004, the orientation of the polyolefin molecules in the circumferential direction by stretching is insufficient. However, the elastic modulus in the circumferential direction cannot be sufficiently improved, and the internal pressure resistance and the earth pressure resistance of the pipe may not be improved.
また、 (周方向の屈折率 (nh) —軸方向の屈折率 (na) ) / (周方向の屈 折率 (nh) )が 0. 004以上0. 03以下であることが好ましく、 0. 00 6以上 0. 025以下であることがより好ましく、 0. 01以上 0. 02以下で あることが特に好ましい。  It is preferable that (refractive index in the circumferential direction (nh) —refractive index in the axial direction (na)) / (refractive index in the circumferential direction (nh)) is 0.004 or more and 0.03 or less. It is more preferably from 006 to 0.025, particularly preferably from 0.01 to 0.02.
すなわち、 (周方向の屈折率 (nh) 一軸方向の屈折率 (na) ) / (周方向 の屈折率 (nh) ) が 0. 004未満になると、 延伸によるポリオレフィン分子 の周方向への配向が不十分であり、 周方向の弾性率を十分向上させることができ ず、 管の耐内圧性および耐土圧性を向上させることができない場合がある。 一方In other words, when (refractive index in the circumferential direction (nh) refractive index in the uniaxial direction (na)) / (refractive index in the circumferential direction (nh)) becomes less than 0.004, the polyolefin molecule by stretching In some cases, the orientation in the circumferential direction is insufficient, the elastic modulus in the circumferential direction cannot be sufficiently improved, and the internal pressure resistance and the earth pressure resistance of the pipe cannot be improved. on the other hand
、 (周方向の屈折率 (nh) —軸方向の屈折率 (na) ) / 周方向の屈折率( nh) )が 0. 03を越えると、 ポリオレフイン分子があまりにも周方向へ配向 させるようにしてあまりにも延伸しているため、 管の変形追従性が低下しており 、 このため地中埋設管として用いられた際に地震が生じると、 管が破断しやすく なるという傾向がある。 If (refractive index in the circumferential direction (nh)-refractive index in the axial direction (na)) / refractive index in the circumferential direction (nh) exceeds 0.03, the polyolefin molecules should be oriented too circumferentially. Because the pipe is too stretched, its ability to follow the deformation of the pipe is reduced. Therefore, when an earthquake occurs when the pipe is used as an underground pipe, the pipe tends to break easily.
本発明においては、 上記課題を解決する他の手段として、 2軸配向ポリオレフ ィン管の周方向の引張弾性率 (tmh)が軸方向の引張弾性率 (tma) より大 きい構造としてもよい。 耐内圧性の向上は、 周方向の引張弾性率を向上させるこ とによって達成される。 し力、し、 地震、 地割れなどによって軸方向に管が変形す る際に、 その変形に追従させるには、 軸方向の引張弾性率を低くして管の変形追 従性を維持することが必要となる。 そのため、 2軸配向ポリオレフイン管におい ては、 その周方向の引張弾性率 (tmh) を軸方向の引張弾性率 (tma) より も大きくすることによって、 酎内圧性の向上を図ると共に、 管の変形追従性の維 持を図ることができる。  In the present invention, as another means for solving the above problems, a structure in which the tensile elastic modulus (tmh) in the circumferential direction of the biaxially oriented polyolefin pipe is larger than the tensile elastic modulus (tma) in the axial direction may be adopted. The improvement of the internal pressure resistance is achieved by increasing the tensile modulus in the circumferential direction. In order to follow the deformation of the pipe in the axial direction due to the force, force, earthquake, cracks, etc., it is necessary to maintain the ability of the pipe to follow the deformation by lowering the tensile modulus in the axial direction. Becomes Therefore, in a biaxially oriented polyolefin tube, by increasing the tensile modulus in the circumferential direction (tmh) to the tensile modulus in the axial direction (tma), the internal pressure of the shochu is improved, and the tube is deformed. Followability can be maintained.
具体的には、 (周方向の引張弾性率 (tmh) ) / (軸方向の引張弾性率 (t ma) ) は、 1以上 8以下であることが好ましく、 1以上 5以下であることがよ り好ましく、 1. 2以上 5以下が特に好ましい。 すなわち、 (周方向の引張弾性 率(tmh) ) / (軸方向の引張弾性率 (tma) ) が 1未潢であると、 軸方向 の引張弾性率 (tma)が高くなる一方、 周方向の引張弾性率(tmh) が低く なるため、 酎内圧性の向上を図ることができなくなる傾向がある。 一方、 (周方 向の引張弾性率 (tmh) ) / (軸方向の引張弾性率 (tma) )が 8を越える と、 著しく周方向に延伸させる必要があるため、 管の変形追従性が著しく低下し ており、 このため地中埋設管として用いられた際に地震が生じると、 管が破断し やすくなるという傾向がある。  Specifically, (tensile modulus in the circumferential direction (tmh)) / (tensile modulus in the axial direction (tma)) is preferably 1 or more and 8 or less, more preferably 1 or more and 5 or less. It is more preferably 1.2 or more and 5 or less. That is, if (the tensile elastic modulus in the circumferential direction (tmh)) / (tensile elastic modulus in the axial direction (tma)) is less than 1, the tensile elastic modulus in the axial direction (tma) increases, while the tensile elastic modulus in the circumferential direction increases. Since the tensile modulus (tmh) is low, it tends to be impossible to improve the internal pressure of shochu. On the other hand, if (tensile elastic modulus in the circumferential direction (tmh)) / (tensile elastic modulus in the axial direction (tma)) exceeds 8, it is necessary to remarkably stretch in the circumferential direction, so that the tube will have extremely poor deformation followability. Therefore, when used as an underground pipe, if an earthquake occurs, the pipe tends to break easily.
より具体的には、 周方向の引張弾性率は、 0. 5GPa以上 2 OGPa以下で あり、 かつ軸方向の引張弾性率が 0. 5GPa以上 1 OGPa以下であることが 好ましい。 引張弾性率が 0. 5 GP a未満 (特に周方向の引張弾性率が 0. 5G Pa未満) となると、 耐内圧性が著しく低く、 実用性に欠ける場合がある。 一方 、 周方向の引張弾性率が 2 OGP aを越えるか、 または軸方向の引張弾性率が 1 OGPaを越えると、 管の変形追従性が著しく低下しているので、 地中埋設管と して用いられた際に地震が生じると、 管が変形できず、 破断しやすくなる傾向が あ 0 More specifically, the tensile modulus in the circumferential direction is preferably 0.5 GPa or more and 2 OGPa or less, and the tensile modulus in the axial direction is preferably 0.5 GPa or more and 1 OGPa or less. Tensile modulus is less than 0.5 GPa (especially when the tensile modulus in the circumferential direction is 0.5G (Less than Pa), the internal pressure resistance is remarkably low, and may not be practical. On the other hand, if the tensile elastic modulus in the circumferential direction exceeds 2 OGPa or the tensile elastic modulus in the axial direction exceeds 1 OGPa, the ability of the pipe to follow the deformation is significantly reduced. If an earthquake occurs when used, the pipe cannot be deformed and tends to break.
本明細書において用いられる用語 「引張弾性率」 は、 得られた 2軸配向ポリオ レフィン管から、 それぞれ周方向および軸方向に平行に J I S K 6774に 準拠したダンベル形試験片を切り出し、 このダンベル形試験片を J I S K 7 1 1 3に準拠して引張試験に供し、 引張応力—ひずみ曲線を描き、 この曲線の初 めの直線部分を用いて以下の式 (1) によって算出される数値である。  The term “tensile elastic modulus” used in this specification refers to a dumbbell-shaped test piece in accordance with JISK 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and the axial direction, respectively. The specimen is subjected to a tensile test in accordance with JISK7113, a tensile stress-strain curve is drawn, and the value is calculated by the following equation (1) using the first straight line portion of this curve.
Δσ  Δσ
Em (引張弾性率) = (NZ讓 2 ) · · · (1) E m (Tensile modulus) = (NZ 讓2 ) · · · (1)
Δε  Δε
(式 (1) 中、 厶びは直線上の 2点間の元の平均断面積による応力の差であり、 Δ は同じ 2点間のひずみの差である。 )  (In Equation (1), 厶 is the difference in stress due to the original average cross-sectional area between two points on the straight line, and Δ is the difference in strain between the same two points.)
本発明においては、 上記課題を解決する他の手段として、 2軸配向ポリオレフ ィン管の周方向の曲げ弾性率(m f h) を軸方向の曲げ弾性率 (m f a) より大 きい構造としてもよい。 ポリオレフイン管が埋設された場合における、 耐土圧性 を向上させるためには、 周方向の曲げ弾性率を向上させることによって達成され る。 し力、し、 地震、 地割れなどによって軸方向に管が変形する際に、 その変形に 追従させるには、 軸方向の曲げ弾性率を低くして管の変形追従性を維持すること が必要となる。 そのため、 2軸配向ポリオレフイン管において、 その周方向の曲 げ弾性率 (mf h) を軸方向の曲げ弾性率 (mf a) よりも大きくすることによ つて、 耐土圧性の向上を図ると共に、 管の変形追従性の維持を図ることができる o  In the present invention, as another means for solving the above-mentioned problem, the biaxially oriented polyolefin pipe may have a structure in which the bending elastic modulus (mfh) in the circumferential direction is larger than the bending elastic modulus (mfa) in the axial direction. In order to improve the earth pressure resistance when a polyolefin pipe is buried, it is achieved by improving the bending elastic modulus in the circumferential direction. In order to follow the deformation of the pipe in the axial direction due to shear force, earthquake, cracking, etc., it is necessary to maintain the pipe's ability to follow the deformation by lowering the axial bending elastic modulus. Become. Therefore, in biaxially oriented polyolefin pipes, by making the bending elastic modulus in the circumferential direction (mf h) larger than the bending elastic modulus in the axial direction (mfa), the earth pressure resistance is improved and the pipe is improved. O Maintain the deformation followability of
具体的には、 (周方向の曲げ弾性率 (mf h) ) / (軸方向の曲げ弾性率 (m f a) ) は 1より大きく 8以下であることが好ましく、 1より大きく 5以下であ ることがより好ましく、 1. 2以上 5以下が特に好ましい。 すなわち、 (周方向 の曲げ弾性率 (m f h) ) Z (軸方向の曲げ弾性率(m f a) ) が 1以下になる と、 軸方向の曲げ弾性率 (mf a) が高くなる一方、 周方向の曲げ弾性率 (mf h) が低くなるため、 耐土圧性の向上を図ることができなくなる傾向がある。一 方、 (周方向の曲げ弾性率 (m ί h) ) Z (軸方向の曲げ弾性率 (m f a) )が 8を越えると、 著しく周方向に延伸させる必要があるため、 管の変形追従性が著 しく低下しており、 このため地中埋設管として用レ、られた際に地震が生じると、 管が破断しやすくなるという傾向がある。 Specifically, (bending elastic modulus in the circumferential direction (mf h)) / (axial bending elastic modulus (mfa)) is preferably larger than 1 and 8 or less, and larger than 1 and 5 or less. Is more preferable, and 1.2 or more and 5 or less are particularly preferable. That is, when (circumferential bending elastic modulus (mfh)) Z (axial bending elastic modulus (mfa)) becomes 1 or less, axial bending elastic modulus (mfa) increases while circumferential elastic modulus (mfa) increases. Flexural modulus (mf h) tends to be lower, so that it becomes difficult to improve the earth pressure resistance. On the other hand, if (bending elastic modulus in the circumferential direction (mίh)) Z (bending elastic modulus in the axial direction (mfa)) exceeds 8, it is necessary to remarkably stretch in the circumferential direction, so that the tube can follow the deformation. Is significantly reduced, and when used as an underground pipe, if an earthquake occurs, the pipe tends to break easily.
より具体的には、 周方向の曲げ弾性率が 0. 5GPa以上 2 OGPa以下であ り、 かつ軸方向の曲げ弾性率が 0. 50 &以上1 OGPa以下であることが好 ましい。 すなわち、 曲げ弾性率が 0. 5 G P a未満 (特に周方向の曲げ弾性率が 0. 5GPa未満) となると、 耐土圧性が著しく低く、 実用性に欠ける場合があ る。 一方、 周方向の曲げ弾性率が 2 OGPaを越えるか、 または軸方向の曲げ弾 性率が 1 OGPaを越える場合、 管の変形追従性が著しく低下しているので、 地 震、 地割れなどが生じた際に、 管が変形できず、 破断してしまう場合があり、 実 用に酎えない場合がある。  More specifically, it is preferable that the bending elastic modulus in the circumferential direction is 0.5 GPa or more and 2 OGPa or less, and the bending elastic modulus in the axial direction is 0.50 or more and 1 OGPa or less. That is, when the flexural modulus is less than 0.5 GPa (particularly, the circumferential flexural modulus is less than 0.5 GPa), the earth pressure resistance is extremely low, and the practicability may be lacking. On the other hand, if the bending elastic modulus in the circumferential direction exceeds 2 OGPa or the bending elastic modulus in the axial direction exceeds 1 OGPa, the deformation followability of the pipe is significantly reduced, causing earthquakes and cracks. In such a case, the pipe may not be deformed and may be broken, and may not be practically used.
本明細書において用いられる用語 「曲げ弾性率」 とは、 得られた 2軸配向ポリ ォレフィン管から図 4に示すようにして求められる。 すなわち、 軸方向の曲げ弾 性率は、 適切な長さのポリオレフイン管を 2支点によって支持し、 支点間の中央 部に上方から荷重を加えた際に、 その荷重とたわみの関係から、 以下の式 (2) に従って算出される数値である。  The term “flexural modulus” used in the present specification is determined from the obtained biaxially oriented polyolefin tube as shown in FIG. In other words, the bending elastic modulus in the axial direction can be calculated from the relationship between the load and deflection when a load is applied to the center between the fulcrums from above by supporting a polyolefin pipe of an appropriate length by two fulcrums. It is a numerical value calculated according to equation (2).
4L3 F 4L 3 F
軸方向の曲げ弾性率(mi a) = ―——―—— . . . (2) Bending elastic modulus in the axial direction (mi a) = ―—————... (2)
37Γ (D4 - d4 ) Y 37Γ (D 4 -d 4 ) Y
(式 (2) 中、 Lは 2支点間の距離であり、 Fは荷重一たわみ曲線のグラフにお ける曲線の初めの直線部分の任意に選んだ点の荷重であり、 Dは管の外径であり (In the equation (2), L is the distance between the two fulcrums, F is the load at an arbitrarily selected point on the first straight part of the curve in the load-deflection curve graph, and D is the outside of the pipe. Diameter
、 dは管の内径であり、 そして Yは荷重 Fにおけるたわみである。 ) , D is the inner diameter of the tube, and Y is the deflection at load F. )
一方、 周方向の曲げ弾性率は、 適切な長さのポリオレフイン管の周囲側面から 押し潰すようにして荷重 Pを加えた際に、 その荷重とたわみの関係から、 以下の 式(3) に従って算出される数値である。 周方 · · · (3)
Figure imgf000010_0001
On the other hand, the flexural modulus in the circumferential direction is calculated according to the following equation (3) from the relationship between the load and the deflection when a load P is applied by crushing the appropriate side of a polyolefin pipe from the peripheral side surface. Is the number to be Orientation · · · (3)
Figure imgf000010_0001
(式 (3) 中、 Ρは加えられた荷重であり、 Rば肉厚中心半径であり、 Iは管の 断面 2次係数であり、 A D X は水平方向における直径の変化量であり、 そして Δ D r は垂直方向におけるにおける直径の変化量である。 ) (In the equation (3), Ρ is the applied load, R is the thickness center radius, and I is The cross-sectional quadratic coefficient, AD X is the change in diameter in the horizontal direction, and ΔD r is the change in diameter in the vertical direction. )
本発明においては、 上記課題を解決する他の手段として、 .軸配向ポリオレフ ィン管の軸方向の引張破断伸度 ( t b a ) が周方向の引張破断伸度 ( t b h) よ りも大きい構造としてもよレ、。 上述したのと同様に、 地震、 地割れなどが生じて 埋設されたポリオレフィン管が軸方向に変形する際に、 延伸を行わずに軸方向の 引張破断伸度を高く維持することによって、 管の変形追従性を維持することがで き、 これによりその変形に管が追従することができるが、 延伸を行わない場合に は、 酎内圧性および酎土圧性の向上を図ることができない。 すなわち、 延伸する と引張破断伸度は低下してしまい、 管の変形追従性が損なわれてしまう。 そのた め、 得られた 2軸配向ポリオレフイン管においてその軸方向の引張破断伸度(t b a ) が周方向の引張破断伸度 (t b h) よりも大きくなるように延伸すること によって、 酎内圧性および耐土圧性の向上を図ると共に、 管の変形追従性の維持 を図ることができる。  In the present invention, as another means for solving the above-mentioned problems, a structure in which the axial tensile elongation at break (tba) of the axially oriented polyolefin tube is larger than the tensile elongation at break (tbh) in the circumferential direction. Well ,. As described above, when an embedded polyolefin pipe is deformed in the axial direction due to an earthquake, cracks, etc., the pipe is deformed by maintaining a high tensile elongation at break in the axial direction without stretching. The followability can be maintained, so that the pipe can follow the deformation. However, if the pipe is not stretched, the internal pressure of shochu and the earth pressure of shochu cannot be improved. In other words, when stretched, the tensile elongation at break decreases, and the ability of the pipe to follow the deformation is impaired. Therefore, the obtained biaxially oriented polyolefin pipe is stretched so that its tensile elongation at break (tba) in the axial direction is larger than the tensile elongation at break (tbh) in the circumferential direction, so that the shochu internal pressure resistance and It is possible to improve the earth pressure resistance and to maintain the deformability of the pipe.
具体的には、 (軸方向の引張破断伸度 (t b a ) ) (周方向の引張破断伸度 ( t b h) ) は 1より大きく 8以下であることが好ましい。 すなわち、 (軸方向 の引張破断伸度( t b a ) ) Z (周方向の引張破断伸度( t b h ) ) が 1以下と なると、 軸方向の引張破断伸度 (t b a ) があまりにも低くなるため、 管の変形 追従性が著しく低くなり、 地震、 地割れなどが生じた際に、 管が軸方向に破断し やすくなる傾向がある。 一方、 (軸方向の引張破断伸度( t b a ) ) Z (周方向 の引張破断伸度(t b h ) ) が 8を越えるためには、 軸方向と比較して著しく周 方向に延伸させることが必要となるため、 この著しい周方向への延伸により、 管 の変形追従性が損なわれ、 地震、 地割れなどが生じた際に、 管が破断しやすくな る傾向がある。  Specifically, (axial tensile elongation at break (t b a)) (tensile elongation at break in circumferential direction (t b h)) is preferably greater than 1 and 8 or less. That is, when (axial tensile elongation at break (tba)) Z (peripheral tensile elongation at break (tbh)) is 1 or less, axial tensile elongation at break (tba) becomes too low. Deformation of the pipe is extremely low, and the pipe tends to break in the axial direction when an earthquake or ground crack occurs. On the other hand, in order for (axial tensile elongation at break (tba)) Z (circumferential tensile elongation at break (tbh)) to exceed 8, it is necessary to stretch in the circumferential direction markedly in comparison with the axial direction. Because of this significant stretching in the circumferential direction, the ability of the pipe to follow the deformation is impaired, and the pipe tends to break easily in the event of an earthquake or ground cracking.
より具体的には、 軸方向の引張破断伸度は、 2 0 0 %以上であることが好まし く、 2 5 0 %以上がより好ましい。 すなわち、 軸方向の引張破断伸度が 2 0 0 % 未満の場合には、 ポリオレフイン管が埋設されている際に、 地震が発生した場合 、 管の変形追従性が低いため、 管が破断するおそれがある。  More specifically, the tensile elongation at break in the axial direction is preferably at least 200%, more preferably at least 250%. That is, if the tensile elongation at break in the axial direction is less than 200%, the pipe may be broken due to poor deformation followability of the pipe when an earthquake occurs when the polyolefin pipe is buried. There is.
また、 周方向の引張破断伸度は、 軸方向の引張破断伸度と比較して耐震性に影 響をあまり与えないため、 軸方向の引張破断伸度より低くてもよく、 150%以 上 500 %以下、 好ましくは 200 %以上 450 %以下の範囲内であれば充分で あ 。 、-' In addition, the tensile elongation at break in the circumferential direction affects the seismic resistance compared with the tensile elongation at break in the axial direction. The tensile elongation at break may be lower than the tensile elongation at break in the axial direction so as not to give much effect, and it is sufficient if the elongation is in the range of 150% to 500%, preferably 200% to 450%. ,-'
すなわち、 周方向の引張破断伸度が 1 50%未満であると、 あまりにも延伸さ せすぎているため、 管の変形追従性が損なわれる場合がある。 一方、 周方向の引 張破断伸度が 500 %を越えると、 周方向へのポリオレフィン分子の配向が充分 でないため、 耐内圧性および耐土圧性の向上を図ることができていない。  In other words, if the tensile elongation at break in the circumferential direction is less than 150%, the tube may be stretched too much, which may impair the ability of the tube to follow the deformation. On the other hand, if the tensile elongation at break in the circumferential direction exceeds 500%, the internal pressure resistance and the earth pressure resistance cannot be improved because the orientation of the polyolefin molecules in the circumferential direction is not sufficient.
本明細書において用いられる用語 「引張破断伸度」 は、 得られた 2軸配向ボリ ォレフィン管から、 それぞれ周方向および軸方向に平行に J I S K 6774 に準拠したダンベル形試験片を切り出し、 このダンベル形試験片を J I S K 71 13に準拠して引張試験に供した際に以下の式(4) によって算出される数 値である。  The term “tensile elongation at break” used in the present specification refers to a dumbbell-shaped test piece in accordance with JISK 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and in the axial direction, respectively. This is a numerical value calculated by the following formula (4) when a test piece is subjected to a tensile test according to JISK 7113.
L-Lo  L-Lo
(引張破断伸度 (%) ) = X 100 · · · (4)  (Tensile elongation at break (%)) = X 100 · · · (4)
L 0  L 0
(式(4) 中、 Lは中央部が細く形成されているダンベル形の試験片に応力を徐 々に加えて試験片が破壊した瞬間の中央部の長さであり、 L。 はこのダンベル形 の 2号試験片に応力をかける前の中央部の長さ (J I S K 71 15では 33 ± 2mm) である) 。  (In the equation (4), L is the length of the central portion at the moment when the stress is gradually applied to the dumbbell-shaped test piece having the narrow central portion and the test piece breaks. The length of the central part before applying stress to the No. 2 test piece (33 ± 2 mm in JISK 7115).
本発明におけるポリオレフィン管を形成するポリオレフィン樹脂としては、 例 えば、 ポリエチレン、 ボリプロピレン、 ポリブテンのようなポリオレフイン重合 体およびエチレン—プロピレン共重合体などのようなポリオレフィン共重合体が 挙げられる。  Examples of the polyolefin resin forming the polyolefin tube in the present invention include polyolefin polymers such as polyethylene, polypropylene, and polybutene, and polyolefin copolymers such as ethylene-propylene copolymer.
ポリエチレンとしては、 高密度ポリエチレン (HDPE)、 中密度ポリェチレ ン (MDPE)、 低密度ポリエチレン (LDPE)、 および直鎖状低密度ポリエ チレン (LLDPE)が挙げられる。 もちろん、 ポリエチレンの製造方法は特に 限定されず、 高圧ラジカル重合法、 ならびにチーグラ一ナッタ触媒、 フィリップ 触媒、 またはメタ口セン触媒などを用いることにより重合されたポリエチレンを 用いることができる。  Polyethylenes include high-density polyethylene (HDPE), medium-density polyethylene (MDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE). Of course, the method for producing polyethylene is not particularly limited, and polyethylene that has been polymerized by using a high-pressure radical polymerization method, a Ziegler-Natta catalyst, a Phillip's catalyst, a meta-mouth catalyst, or the like can be used.
ポリプロピレンとしては、 ホモボリプロピレン、 ランダムポリプロピレン、 ブ ロックポリプロピレンなどが挙げられる。 また、 立体規則性の異なる樹脂を用い ても良い。 Homopolypropylene, random polypropylene, polypropylene Rock polypropylene and the like. Further, resins having different stereoregularities may be used.
ポリオレフイン共重合体としては、 上記の他に、 ひ一才レフイン、 ブタジエン 、 醉酸ビニル、 (メタ) アクリル酸、 (メタ) アクリル酸誘導体、 スチレン、 ス チレン誘導体などを共重合した共重合体、 無水マレイン酸、 イタコン酸などをグ ラフト変性させた共重合体、 その他アイオノマ一、 エチレン一ビニルアルコール 共重合体などを挙げることができる。 一才レフインとしては、 炭素数が 3以上 1 2以下のものが好ましく、 具体的には、 プロピレン、 1 —ブテン、 4—メチル 一 1一ペンテン、 1一へキセン、 1ーォクテンなどが挙げられる。  Examples of the polyolefin copolymers include, in addition to the above, copolymers obtained by copolymerizing, for example, Hi-Ichi-Sai Refin, butadiene, vinyl drunkate, (meth) acrylic acid, (meth) acrylic acid derivatives, styrene, and styrene derivatives. Examples thereof include a copolymer obtained by modifying maleic anhydride, itaconic acid, etc. with a graph, other ionomers, ethylene-vinyl alcohol copolymers, and the like. As the one-year-old olefin, those having 3 to 12 carbon atoms are preferable, and specific examples include propylene, 1-butene, 4-methyl-11-pentene, 11-hexene, and 1-octene.
なお、 この中でも、 従来より管として用いられており、 高倍率に配向すること ができるという観点から、 ポリオレフイン樹脂としてポリエチレン樹脂を用いる ことが好ましい。 ボリエチレン樹脂の中でも、 酎クリープ性が保たれるという観 点から、 高密度ポリエチレンが好ましい。  Among these, it is preferable to use a polyethylene resin as the polyolefin resin from the viewpoint that it has been conventionally used as a tube and can be oriented at a high magnification. Among polyethylene resins, high-density polyethylene is preferred from the viewpoint that shochu creep properties are maintained.
ポリオレフイン樹脂の重量平均分子量および分子量分布 (=重量平均分子量ノ 数平均分子量) は特に限定されないが、 重量平均分子量は 3万以上 1 0 0 0万以 下が好ましく、 5万以上 1 0 0万以下がより好ましい。 分子量分布は 2以上 8 0 以下が好ましく、 3以上 4 0以下がより好ましい。 管を構成するポリオレフイ ン としてポリオレフィン重合体およびポリオレフィン共重合体は単独で用いられて も良いが、 配向性、 成形性、 耐久性などを向上させるため、 分子量、 融点、 分子 量分布、 組成分布の異なる 2種以上のポリオレフィン重合体またはポリオレフィ ン共重合体を混合して用いるようにしても良い。 また、 管を積層管とし、 各層を それぞれ分子量、 融点、 分子量分布、 組成分布の異なるポリオレフイン重合体ま たはポリオレフイン共重合体から形成してもよい。 例えば、 ポリオレフイ ン管を 多層構造として、 中間層に酸素バリア性が高い樹脂を用いることにより、 ポリオ レフイン管の酸素透過性を低減させることもできる。  The weight-average molecular weight and molecular weight distribution (= weight-average molecular weight / number-average molecular weight) of the polyolefin resin are not particularly limited, but the weight-average molecular weight is preferably 30,000 or more and 100,000 or less, more preferably 50,000 or more and 100,000 or less. Is more preferred. The molecular weight distribution is preferably from 2 to 80, more preferably from 3 to 40. Polyolefin polymers and polyolefin copolymers may be used alone as the polyolefin constituting the tube.However, in order to improve orientation, moldability, durability, etc., the molecular weight, melting point, molecular weight distribution, and composition distribution are improved. Two or more different polyolefin polymers or polyolefin copolymers may be used as a mixture. Alternatively, the tube may be a laminated tube, and each layer may be formed from a polyolefin polymer or a polyolefin copolymer having different molecular weights, melting points, molecular weight distributions, and composition distributions. For example, the oxygen permeability of the polyolefin tube can be reduced by using a polyolefin tube having a multilayer structure and using a resin having a high oxygen barrier property for the intermediate layer.
また、 本発明における配向度などに悪影響を与えない限り、 管を構成するポリ ォレフィンは、 少なくともその一部が架橋してもよく、 ポリオレフイン樹脂以外 の樹脂を混合して用いてもよい。 架橋方法は特に限定されず、 例えば、 電子線架 橋法、 光架橋法、 プラズマ架橋法などの物理的架橋法、 パーオキサイドなどの過 酸化物を用いた過酸化物架橋法、 シラン架橋剤、 多官能性モノマーなどの化学架 橋剤などを用いた化学的架橋法が挙げられるが、 この中でも、 ポリオレフイ ン樹 脂を充分かつ確実に架橋できるという観点から、 電子線架橋、、 酸化物架橋およ び熱水架橋が好ましい。 また、 これらの架橋を促進するために反応助剤、 触媒、 分解抑制剤を用いても良く、 これらは管の配向性に悪影響を与えない限り、 ポリ ォレフィン樹脂に混合されていてもよい。 As long as the degree of orientation in the present invention is not adversely affected, at least a part of the polyolefin constituting the tube may be crosslinked, and a resin other than the polyolefin resin may be mixed and used. The crosslinking method is not particularly limited. For example, a physical crosslinking method such as an electron beam crosslinking method, a photo crosslinking method, a plasma crosslinking method, or a peroxide method such as a peroxide. A peroxide crosslinking method using an oxide, a chemical crosslinking method using a chemical crosslinking agent such as a silane crosslinking agent or a polyfunctional monomer, etc., can be cited.Of these, the polyolefin resin is sufficiently and reliably used. From the viewpoint that crosslinking is possible, electron beam crosslinking, oxide crosslinking and hot water crosslinking are preferred. Further, a reaction aid, a catalyst, and a decomposition inhibitor may be used to promote the crosslinking, and these may be mixed with the polyolefin resin as long as they do not adversely affect the orientation of the tube.
熱架橋に使用する熱架橋剤としては、 特に限定されないが、 有機過酸化物の使 用が可能であり、 使用する原料樹脂の成形温度や相溶性の観点から適宜選択する ことができ、 具体的には、 ジクミルパーォキサイド、 α '—ビス (t一プチ ルパーォキシ一 m—イソプロピル) ベンゼン、 シクロへキサンバ一オキサイド、 1 , 1—ジ (tーブチルバ一ォキシ) シクロへキサン、 1 , 1ージ (t一ブチル パ一ォキシ) 3, 3 , 5—トリメチルシクロへキサン、 2 , 2—ジ (t一ブチル パ一ォキシ) オクタン、 n—ブチルー 4 , 4ージ (t—ブチルバ一ォキシ) べレ レート、 ジー t—ブチルバ一ォキサイド、 ベンゾィルバ一ォキサイド、 2 , 5— ジメチル— 2 , 5—ジ ( t—ブチルバーオキシ) へキサン、 2 , 5—ジメチルー 2 , 5—ビス (t—ブチルバ一ォキシ) へキシン一 3、 クミルバーオキシネオデ 力テート、 tーブチルバ一ォキシベンゾェート、 2 , 5—ジメチルー 2 , 5—ジ (ベンゾィルパーォキシ) へキサン、 tーブチルバ一ォキシイソプロピルカーボ ネート、 tーブチルバ一ォキシァリルカーボネート、 t一ブチルパーアセテート 、 2 , 2—ビス ( tーブチルバ一ォキシ) ブタン、 ジ— t一ブチルバーオキシィ ソフタレート、 t—ブチルパーォキシマレイン酸、 ジァゾァミノベンゼン、 N, N '―ジクロロアゾジカーボンアミ ド、 トリクロ口ペンタジェン、 トリクロロメ 夕ンスルフォクロリ ド、 メチルェチルケトンパーオキサイド等が挙げられる。 また、 これらの内、 より好ましい有機過酸化物としては、 ジクミルパーォキサ ィド、 , '一ビス (tーブチルバ一ォキシ一m—イソプロピル) ベンゼン、 t—ブチルクミルパーォキサイド、 ベンゾィルパ一ォキサイド、 t—ブチルバ一 ォキシベンゾエー卜、 メチルェチルケトンパーオキサイド、 2, 5—ジメチルー 2 , 5—ジ ( t—ブチルパーォキシ) へキサン、 2, 5—ジメチル— 2, 5—ビ ス (t一ブチルバーオキシ) へキシン一 3が挙げられ、 更に好ましい有機過酸化 物としては、 ジクミルパーォキサイド、 α, α '—ビス ( t—ブチルバ一ォキシ 一 m—イソプロピル) ベンゼン、 メチルェチルケトンパーオキサイド、 2 , 5— ジメチル一 2 , 5—ジ ( t一ブチルパーォキシ) へキサン、 2 、,- 5—ジメチルーThe thermal crosslinking agent used for thermal crosslinking is not particularly limited, but an organic peroxide can be used, and can be appropriately selected from the viewpoint of the molding temperature and compatibility of the raw material resin used. There are dicumyl peroxide, α'-bis (t-butylperoxy-m-isopropyl) benzene, cyclohexane hydride, 1,1-di (t-butyl butyl) cyclohexane, 1,1 Di (t-butyloxy) 3,3,5-trimethylcyclohexane, 2,2-di (t-butyloxy) octane, n-butyl-4,4di (t-butyloxy) ) Bellelate, g-tert-butyl oxide, benzoyl peroxide, 2,5-dimethyl-2,5-di (t-butylbaroxy) hexane, 2,5-dimethyl-2,5-bis (t-) Butyl vaoxy) Hexin-1, cumyl veroxyneodetate, t-butyl benzooxybenzoate, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butyl butyl isopropyl carbonate, t-Butyloxyarylcarbonate, t-butylperacetate, 2,2-bis (t-butylbutoxy) butane, di-t-butylperoxysophthalate, t-butylperoxymaleic acid, diazo Aminobenzene, N, N'-dichloroazodicarbonamide, trichloride pentagen, trichloromethyl sulfochloride, methylethyl ketone peroxide and the like. Of these, more preferred organic peroxides include dicumyl peroxide,, '-bis (t-butyloxy-1-m-isopropyl) benzene, t-butylcumyl peroxide, and benzoyl peroxide. Oxide, t-butyl peroxide benzoate, methyl ethyl ketone peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-bis (t-butyl Veroxy) hexine-3, more preferred organic peroxidation Products include dicumyl peroxide, α, α'-bis (t-butylvinyloxym-isopropyl) benzene, methylethylketone peroxide, 2,5-dimethyl-12,5-di (t 1-butylperoxy) hexane, 2, -5-dimethyl-
2, 5—ビス (t一ブチルパーォキシ) へキシン— 3が挙げられる。 2,5-bis (t-butylperoxy) hexine-3.
また、 一部が架橋されポリオレフィン樹脂を用いる場合、 ポリオレフィン樹脂 のゲル分率を 1 0 %以上 7 0 %以下とすることが好ましい。 ゲル分率が高ければ 架橋度も高くなる。  When a partially crosslinked polyolefin resin is used, the polyolefin resin preferably has a gel fraction of 10% or more and 70% or less. The higher the gel fraction, the higher the degree of crosslinking.
すなわち、 架橋方法として電子線架橋法を用いる場合には、 電子線の照射量を 多くすればゲル分率を高めることができる。 このように、 電子線架橋法が用いら れる場合、 電子線照射量は特に限定されないが、 ゲル分率を 1 0 %以上 7 0 %以 下とするためには、 電子線照射量を概ね 3 MR a d以上 8 MR a d以下とするこ とが好ましい。  That is, when the electron beam crosslinking method is used as the crosslinking method, the gel fraction can be increased by increasing the irradiation amount of the electron beam. As described above, when the electron beam cross-linking method is used, the electron beam irradiation amount is not particularly limited. However, in order to keep the gel fraction at 10% or more and 70% or less, the electron beam irradiation amount is generally about 3%. It is preferable to set the value between MR ad and 8 MR ad.
一般に、 ポリオレフイ ン樹脂は非晶部分と結晶部分とからなり、 ポリオレフィ ン樹脂が引っ張られた場合、 引張抗力の弱い非晶部分における 2本の分子鎖が互 いに滑るようにして伸びる。 なお、 伸びすぎると最終的に破断してしまう。 ポリオレフイン樹脂のゲル分率が 1 0 %未満である場合には、 非晶部分におい ても架橋があまり進んでいないため、 すなわち、 引張抗力の弱い非晶部分におけ る 2本の分子鎖があまり架橋していないため、 ポリオレフィン樹脂が引っ張られ た場合、 容易に引張抗力の弱い非晶部分から破断してしまう傾向が高く、 得られ る 2軸配向ポリオレフィン管の強度(特に変形追従性) を充分高めることができ ないおそれがある。  In general, a polyolefin resin is composed of an amorphous portion and a crystalline portion, and when the polyolefin resin is pulled, two molecular chains in the amorphous portion having a low tensile drag are stretched so as to slide on each other. If it is too long, it will eventually break. When the gel fraction of the polyolefin resin is less than 10%, the crosslinking is not so advanced even in the amorphous part, that is, the two molecular chains in the amorphous part having a low tensile force are too small. Since it is not cross-linked, when the polyolefin resin is pulled, it tends to break easily from the amorphous part where the tensile resistance is weak, and the strength of the obtained biaxially oriented polyolefin pipe (especially deformation followability) is sufficient. It may not be possible to increase.
一方、 ポリオレフィン樹脂のゲル分率が 7 0 %を越える場合には、 非晶部分に おいてもあまりにも架橋が進みすぎるため、 すなわち、 引張抗力の弱い非晶部分 において分子鎖同士があまりにも架橋しているため、 ポリオレフイン樹脂が引つ 張られた場合、 2本の分子鎖が互いに滑るようにして伸びることができず、 却つ て得られる 2軸配向ポリオレフイン管の強度 (特に、 変形追従性) 、 性能が低下 してしまうおそれがある。  On the other hand, when the gel fraction of the polyolefin resin exceeds 70%, the crosslinking proceeds too much in the amorphous portion, that is, the molecular chains are too crosslinked in the amorphous portion having a low tensile strength. Therefore, when the polyolefin resin is stretched, the two molecular chains cannot slide and extend each other, and the strength of the biaxially oriented polyolefin tube obtained instead (particularly, deformation followability) ), There is a possibility that the performance is reduced.
本明細書において用いられる用語 「ゲル分率」 とは、 J I S C 3 0 0 5に 従って 「架橋度」 として求められる数値を指す。 より詳細には、 「ゲル分率」 と は、 架橋後の 2軸配向ポリオレフイン管の先端部分から厚み lmmの環状の試験 片を切断し、 さらにこの薄レ、環状の試験片を扇形に切断して質量 0. 5gの試験 片とする。 この試験片の質量を正確に測定し (この質量を 、'とする) 、 次いで 試験片を 50 gのキシレンが入った試験管に入れ、 約 1 1 0°Cで 24時間保持す る。 この後、 試験片を試験管から取り出し、 真空デシケ一夕一により、 約 100 。(の温度および 1. 3kP a以下の真空度で 24時間乾燥した後の試験片の質量 (この質量を m2 とする) を正確に測定し、 以下の式(5) に基づいて算出され る数値である。 As used herein, the term “gel fraction” refers to a numerical value determined as “degree of crosslinking” in accordance with JISC305. More specifically, "gel fraction" For the test, cut a lmm-thick annular test piece from the tip of the biaxially oriented polyolefin tube after cross-linking, and then cut this thin, annular test piece into a fan shape to obtain a 0.5 g test piece. The mass of this test piece is accurately measured (this mass is denoted by '), and then the test piece is placed in a test tube containing 50 g of xylene and kept at about 110 ° C for 24 hours. After this, the test piece was removed from the test tube and vacuum desiccated overnight to about 100. (The mass of the test piece after drying for 24 hours at a temperature of 1.3 kPa and a vacuum of 1.3 kPa or less (this mass is referred to as m 2 ) is accurately measured and calculated based on the following formula (5). It is a numerical value.
Π12  Π12
ゲル分率 {%) = X 100 · · · (5) Gel fraction (%) = X 100
Figure imgf000016_0001
Figure imgf000016_0001
本発明においては、 ポリオレフイン樹脂が密度 0. 940 gZcm3 以上 0. 980 g/cm3 以下のポリエチレンであることが好ましい。 ボリエチレン樹脂 は、 結晶部分と非晶部分とからなり、 一般に結晶部分と比較して非晶部分におい て架橋が生じやすく、 密度が 0. 940 g/cm3 未満であるポリオレフイン樹 脂を架橋した場合には、 引張の初期段階において非晶部分における 2本の分子鎖 が互いに滑るようにして伸びることができず、 ポリオレフィン分子が拘束された 状態になるおそれがある。 従って、 ゲル分率が 70%を越える場合と同様に、 得 られる 2軸配向ボリオレフィン管の変形追従性が低下してしまうおそれがある。 一方、 上記の説明からは、 非晶部分の量が極端に少なくなると、 架橋による引 張破断伸度の向上を図ることができなくなるように思われ、 また、 密度が高いほ ど非晶部分の量が少なくなるが、 ポリエチレン樹脂の密度を 0. 980 g/cm 3 より大きくすることは極めて困難である。 なお、 ポリエチレン樹脂が引っ張ら れた場合、 引張の初期段階において引張抗力の弱い非晶部分における 2本の分子 鎖が互いに滑るようにして伸びることは、 ポリェチレン樹脂に特徵的な現象であ る。 In the present invention, it is preferable polyolefin resin is a density 0. 940 gZcm 3 or 0. 980 g / cm 3 or less of polyethylene. Polyethylene resin is composed of a crystalline part and an amorphous part.Generally, crosslinking is more likely to occur in the amorphous part than in the crystalline part, and when a polyolefin resin having a density of less than 0.940 g / cm 3 is crosslinked. In the early stage of the tension, the two molecular chains in the amorphous portion cannot slide and extend with each other, and the polyolefin molecules may be in a restrained state. Therefore, similarly to the case where the gel fraction exceeds 70%, there is a possibility that the deformability of the obtained biaxially oriented polyolefin tube may be reduced. On the other hand, from the above explanation, it seems that if the amount of the amorphous portion is extremely reduced, it becomes impossible to improve the tensile elongation at break by crosslinking, and that the higher the density, the more the amorphous portion Although the amount is small, it is extremely difficult to increase the density of the polyethylene resin to more than 0.980 g / cm 3 . In addition, when the polyethylene resin is pulled, it is a phenomenon specific to the polyethylene resin that the two molecular chains in the amorphous portion having a low tensile drag slip and stretch in the initial stage of the tension.
なお、 本発明の 2軸配向ポリオレフイン管は、 周方向の引張降伏強度 (tyh )が軸方向の引張降伏強度 (t y a) より大きい構造としてもよい。 すなわち、 耐内圧性の向上は、 周方向の引張降伏強度(tyh) を向上させることによって 達成される。 具体的には、 (周方向の引張降伏強度 (tyh) ) / (軸方向の引張降伏強度 (t y a) )が 1より大きく 8以下であることが好ましく、 1より大きく 5以下 であることがより好ましく、 1. 2以上 5以下が更に好ましい。 The biaxially oriented polyolefin tube of the present invention may have a structure in which the tensile yield strength in the circumferential direction (tyh) is larger than the tensile yield strength in the axial direction (tya). That is, the improvement of the internal pressure resistance is achieved by improving the tensile yield strength (tyh) in the circumferential direction. Specifically, it is preferable that (tensile yield strength in the circumferential direction (tyh)) / (tensile yield strength in the axial direction (tya)) is more than 1 and 8 or less, more preferably more than 1 and 5 or less. It is preferably 1.2 or more and 5 or less.
より具体的には、 周方向の引張降伏強度 (tyh)が 1 OMPa以上、 かつ、 軸方向の引張降伏強度(t y a)力 1 OMP a以上であることが好ましく、 周方 向の引張降伏強度 (tyh)が 15 MP a以上、 かつ、 軸方向の引張降伏強度( t y a)が 15MPa以上であることがより好ましく、 周方向の引張降伏強度 ( tyh)が 2 OMPa以上、 かつ、 軸方向の引張降伏強度 (t y a)力 15MP a以上であることが更に好ましい。  More specifically, the tensile yield strength in the circumferential direction (tyh) is preferably 1 OMPa or more, and the tensile yield strength (tya) in the axial direction is preferably 1 OMPa or more. tyh) is more than 15 MPa and the axial tensile yield strength (tya) is more preferably 15 MPa or more, and the circumferential tensile yield strength (tyh) is more than 2 OMPa and the axial tensile yield More preferably, the strength (tya) force is 15 MPa or more.
本明細書において用いられる用語 「引張降伏強度」 は、 得られた 2軸配向ポリ ォレフィン管から、 それぞれ周方向および軸方向に平行に J IS K 6774 に準拠したダンベル形試験片を切り出し、 このダンベル形試験片を J I S K 71 13に準拠して引張試験に供し、 引張応力一ひずみ曲線を描き求められる数 値である。  The term "tensile yield strength" used in the present specification refers to a dumbbell-shaped test piece in accordance with J IS K 6774 cut out from the obtained biaxially oriented polyolefin tube in the circumferential direction and the axial direction, respectively. This is a numerical value obtained by subjecting a test specimen to a tensile test in accordance with JISK 7113 and drawing a tensile stress-strain curve.
また、 本発明における配向度などに影響を与えない限り、 ポリオレフイン樹脂 以外の樹脂を混合して用いてもよい。  Further, a resin other than the polyolefin resin may be mixed and used as long as it does not affect the degree of orientation in the present invention.
ポリオレフイン樹脂には、 管の配向性に悪影響を与えない限り、 任意の添加剤 が含まれていても良い。 添加剤としては、 例えば、 酸化防止剤、 耐候剤、 紫外線 吸収剤、 滑剤、 難燃化剤、 帯電防止剤などが挙げられる。 これらの他に、 ポリオ レフイン樹脂に結晶核剤を添加することにより、 ポリオレフイン分子の結晶を微 細化して、 物性を均一化してもよい。 また、 同様にポリオレフイン樹脂には、 フ イラ一が含まれていても良い。 用いられ得るフイラ一としては、 ガラス繊維、 力 —ボン繊維、 アスベストなどの繊維状フイラ一の他、 タルク、 マイ力、 スメクタ イトなどの層状体の酸塩などの板状粒子、 水酸化アルミニウム、 炭酸カルシウム 、 酸化チタンなどの球状粒子および粉碎粒子などが挙げられる。 さらに、 ポリオ レフイン樹脂は必要に応じて顔料、 染料などで着色されていても良い。 もちろん 、 管の表面に印字または加飾を施しても良い。  The polyolefin resin may contain optional additives as long as it does not adversely affect the orientation of the tube. Examples of the additives include an antioxidant, a weathering agent, an ultraviolet absorber, a lubricant, a flame retardant, and an antistatic agent. In addition to these, by adding a crystal nucleating agent to the polyolefin resin, the crystal of the polyolefin molecule may be finely divided to make the physical properties uniform. Similarly, the polyolefin resin may include a filler. Examples of the filler that can be used include fibrous fillers such as glass fiber, power fiber, bon fiber, and asbestos, plate-like particles such as talc, myriki, smectite, and other plate-like particles, aluminum hydroxide, and the like. Spherical particles and ground particles such as calcium carbonate and titanium oxide are included. Further, the polyolefin resin may be colored with a pigment, a dye or the like as needed. Of course, the surface of the tube may be printed or decorated.
次に、 本発明に係るポリオレフィン管の製造方法を説明する。  Next, a method for producing a polyolefin tube according to the present invention will be described.
まず、 ポリオレフイン樹脂から原管 (ビレツト) を形成する。 これは、 ポリオ レフィン樹脂を押出機内部で溶融混練し、 押出機先端に取り付けた管製造用の金 型を通してポリオレフィン樹脂を管状に成形し、 次いで金型から押し出された管 状ポリオレフイン樹脂を引き取り機で引っ張りながら水槽など 、で-'冷却した後、 切 断機で所定の長さに切断することにより達成される。 First, a raw tube (billette) is formed from polyolefin resin. This is polio The olefin resin is melt-kneaded inside the extruder, and the polyolefin resin is formed into a tube through a tube manufacturing die attached to the tip of the extruder.Then, the tubular polyolefin resin extruded from the die is pulled by a take-off machine to form a water tank. This is achieved by, for example, cooling after cooling to a predetermined length with a cutter.
次に、 ビレツトを延伸させて周方向および軸方向の 2方向に管のポリオレフィ ン分子を配向させる方法としては特に限定されず、 周方向および軸方向の同時 2 軸延伸法、 周方向の延伸を行った後に軸方向の延伸を行う逐次延伸法のいずれで もよいが、 延伸工程を簡略化できるという観点から、 同時 2軸延伸法が好ましい 。 同時 2軸延伸としては、 (1 ) 圧力流体法、 (2 ) ダイ ·マンドレル法、 (3 ) マンドレル法および (4 ) 固体押出法が挙げられる。  Next, the method for stretching the billet to orient the polyolefin molecules of the pipe in two directions, the circumferential direction and the axial direction, is not particularly limited, and the simultaneous biaxial stretching method in the circumferential direction and the axial direction, Any of the sequential stretching methods in which the stretching is performed in the axial direction after the stretching may be performed, but the simultaneous biaxial stretching method is preferred from the viewpoint that the stretching step can be simplified. The simultaneous biaxial stretching includes (1) a pressure fluid method, (2) a die mandrel method, (3) a mandrel method, and (4) a solid extrusion method.
( 1 ) の圧力流体法は、 管の内部から圧縮空気などの加圧流体を用いてビレツ トを内側から外側へ押圧して周方向に延伸すると共に、 管の両端に油圧などを用 レ、た引張装置を取り付けて管を軸方向に延伸する方法である。  The pressure fluid method of (1) uses a pressurized fluid such as compressed air from the inside of the pipe to press the billet from inside to outside and extend it in the circumferential direction, while using hydraulic pressure at both ends of the pipe. This is a method in which the pipe is stretched in the axial direction by attaching a tension device.
( 2 ) のダイ .マンドレル法は、 径が拡大していくコーン状のマンドレル表面 に管を進行させた後、 油圧などを利用した引張装置により管をマンドレルに密着 させながら先端から引っ張ることにより、 管の内径を拡げて周方向および軸方向 に同時に延伸する方法である。 この方法では、 得られる管の厚みに対応した空間 In the die mandrel method (2), the pipe is made to advance on the surface of the cone-shaped mandrel whose diameter increases, and then pulled from the tip while the pipe is brought into close contact with the mandrel by a tension device using hydraulic pressure or the like. This is a method in which the inner diameter of the pipe is expanded and the pipe is simultaneously stretched in the circumferential and axial directions. In this method, the space corresponding to the thickness of the tube obtained is
(クリアランス) を挟むようにしてマンドレルに外嵌されるダイを組み合わせる ことが好ましい。 It is preferable to combine a die which is fitted onto the mandrel so as to sandwich (clearance).
( 3 ) マンドレル法は、 径が拡大していくコーン状のマンドレル表面に管を進 行させた後、 油圧などを利用した引張装置により管をマンドレルに密着させなが ら先端から引っ張ることにより、 管の内径を拡げて周方向および軸方向に同時に 延伸する方法である。  (3) In the mandrel method, a pipe is advanced on the surface of a cone-shaped mandrel whose diameter increases, and the pipe is pulled from the tip while making close contact with the mandrel by a tension device using hydraulic pressure or the like. This is a method in which the inner diameter of the pipe is expanded and the pipe is simultaneously stretched in the circumferential and axial directions.
( 4 ) の固体押出法は、 径が拡大していくコーン状のマンドレル表面に管を進 行させた後、 油圧などを利用した押出装置により管をマンドレルに密着させなが ら後方からマンドレルに押し込むことにより、 管の内径を拡げて周方向および軸 方向に同時に延伸する方法である。 この方法では、 上記と同様にダイを組み合わ せることが好ましい。 又、 周方向への配向を損なわない程度に軸方向に引っ張つ てもよい。 ( 1 ) の圧力流体法は、 ビレツトの厚みを厚くして、 延伸後の管の厚みを確保 する場合に、 流体を非常に高い圧力まで加圧する必要がある。 また、 (2 ) のダ ィ ·マンドレル法および (3 ) のマンドレル法は、 周方向の延伸と比較して軸方 向に延伸し易く、 そのため軸方向の配向度が高くなる。 (4 ) の固体押出法が好 ましい。 なお、 これ以外の方法、 例えば、 圧延などによって延伸してもよい。 通常、 管を延伸させる際には管を加温するが、 ガラス転移点温度以上(融点 + 5 0 eC) 以下に限定される。 具体的には、 (融点— 5 0 °C) 以上 (融点 + 5 0 °C ) 以下であることが好ましい。 (融点一 5 0 °C)未満では、 加温があまりに不足 しており、 ポリオレフイ ン樹脂を延伸することが極めて困難である。 一方、 (融 点 + 5 0 °C) をこえる場合は、 配向を固定して、 強度を発現させることが極めて 困難である。 延伸装置の能力、 配向の均一性、 強度向上、 生産性などの観点から は、 (融点一 4 0 °C) 以上 (融点 + 4 0。C) 以下の温度で管を配向させることが 好ましい。 In the solid extrusion method of (4), after the pipe is advanced to the surface of the cone-shaped mandrel whose diameter increases, the pipe is pushed onto the mandrel from behind while the pipe is brought into close contact with the mandrel by an extrusion device using hydraulic pressure or the like. This is a method in which the inner diameter of the pipe is expanded by pushing it in, and the pipe is simultaneously stretched in the circumferential and axial directions. In this method, it is preferable to combine the dies as described above. Further, it may be pulled in the axial direction so as not to impair the orientation in the circumferential direction. In the pressure fluid method of (1), it is necessary to pressurize the fluid to a very high pressure when increasing the thickness of the billet and securing the thickness of the pipe after stretching. In addition, the di-mandrel method of (2) and the mandrel method of (3) are easy to stretch in the axial direction as compared with stretching in the circumferential direction, so that the degree of orientation in the axial direction is increased. The solid extrusion method (4) is preferred. In addition, you may extend | stretch by methods other than this, for example, rolling. Usually, a tube Suruga warming upon stretching the tubing is limited to below the glass transition temperature or higher (melting point + 5 0 e C). Specifically, the melting point is preferably (melting point—50 ° C.) or more and (melting point + 50 ° C.) or less. If the melting point is less than (50 ° C.), the heating is too short, and it is extremely difficult to stretch the polyolefin resin. On the other hand, if it exceeds (melting point + 50 ° C), it is extremely difficult to fix the orientation and develop the strength. From the viewpoints of the capability of the stretching apparatus, uniformity of orientation, improvement of strength, productivity and the like, it is preferable to orient the pipe at a temperature of (melting point-140 ° C) or more and (melting point + 40.C) or less.
得られた 2軸延伸ポリオレフイン管の外径、 内径、 および厚みは、 上述したよ うに、 外径が厚みの 1 0 0倍以下であれば特に限定されないが、 得られた 2軸延 伸ポリオレフイン管の肉厚 tは 0 . 5 mm以上 5 O mm以下が好ましく、 1 mm 以上 3 O mm以下がより好ましく、 2 mm以上 2 5 mm以下が特に好ましい。 このようにして延伸することによりポリオレフィン分子を軸方向および周方向 に配向した本発明に係る 2軸配向ポリオレフィン管を得ることができる。 本発明 に係る 2軸配向ポリオレフイ ン管は、 従来より、 配水管、 給湯管、 ガス管、 上水 道管、 下水道管、 プラント管、 農下水管などの輸送管として用いられるだけでな く、 光ファイバ一、 電線などの周囲に設けられる保護管として、 または缶詰、 ボ トルなどのような容器として、 また、 切り開くことにより平板として用いられ得 。  As described above, the outer diameter, the inner diameter, and the thickness of the obtained biaxially expanded polyolefin tube are not particularly limited as long as the outer diameter is 100 times or less the thickness, but the obtained biaxially expanded polyolefin tube is not limited. Is preferably 0.5 mm or more and 5 Omm or less, more preferably 1 mm or more and 3 Omm or less, and particularly preferably 2 mm or more and 25 mm or less. By stretching in this way, a biaxially oriented polyolefin tube according to the present invention in which polyolefin molecules are oriented in the axial direction and the circumferential direction can be obtained. Conventionally, the biaxially oriented polyolefin pipe according to the present invention is used not only as a transport pipe such as a water pipe, a hot water pipe, a gas pipe, a water pipe, a sewer pipe, a plant pipe, or an agricultural sewage pipe, It can be used as a protective tube provided around an optical fiber, an electric wire, or the like, or as a container such as a can or a bottle, or as a flat plate by cutting out.
また、 得られた 2軸配向ポリオレフイン管に、 寸法安定性、 耐クリープ性を向 上させて品質をさらに改善するために、 アニーリング、 後架橋などの後処理を施 してもよい。 なお、 アニーリングを行う場合は、 ポリオレフイン樹脂の融点以下 の温度で行うことが好ましい。  Further, the obtained biaxially oriented polyolefin tube may be subjected to post-treatments such as annealing and post-crosslinking in order to improve dimensional stability and creep resistance and further improve the quality. When annealing is performed, the annealing is preferably performed at a temperature equal to or lower than the melting point of the polyolefin resin.
また、 得られた 2軸配向ポリオレフイ ン管に受け口加工、 曲げ加工、 穴開け加 ェなどを施し、 管としての施工性を向上させることもできる。 また、 複数本の 2 軸配向ポリオレフイ ン管を継ぎ合わせてもよい。 継ぎ合わせ方法としては、 EF (エレクト口フュージョン) 融着、 BUTT融着、 回転接合、 ソケット接合、 フ ランジ接合 (ボルト締め) などが挙げられる。 In addition, the obtained biaxially oriented polyolefin pipe was subjected to socket processing, bending, and drilling. It is also possible to improve the workability as a pipe by applying a pipe. Further, a plurality of biaxially oriented polyolefin tubes may be joined. Splicing methods include EF (elect mouth fusion) fusion, BUTT fusion, rotary welding, socket welding, flange welding (bolt fastening), and the like.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 固体押出法によって 2軸配向ポリオレフィン管を作製する延伸装置 を示す図である。  FIG. 1 is a view showing a stretching apparatus for producing a biaxially oriented polyolefin tube by a solid extrusion method.
図 2は、 流体圧力法によって 2軸配向ポリオレフイン管を作製する延伸装置 を示す図である。  FIG. 2 is a view showing a stretching apparatus for producing a biaxially oriented polyolefin tube by a fluid pressure method.
図 3は、 実施例に用いた延伸装置を示す図である。  FIG. 3 is a diagram illustrating a stretching device used in the examples.
図 4は、 同図 Aは周方向の曲げ弾性率の説明に用いられる断面図であり、 同 図 Bは軸方向の曲げ弾性率の説明に用いられる断面図である。  FIG. 4A is a cross-sectional view used to describe the bending elastic modulus in the circumferential direction, and FIG. 4B is a cross-sectional view used to describe the bending elastic modulus in the axial direction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面と共に詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(第 1の実施の形態)  (First Embodiment)
本発明にかかる第 1の実施の形態である 2軸配向ポリオレフィン管 Aは、 周方 向の配向度が軸方向の配向度よりも大きく、 (周方向の屈折率(nh) >軸方向 の屈折率 (na) )、 (周方向の屈折率 (nh) 一無配向状態の屈折率 (nn) ≥ 0. 004 ) 、 ( 0. 004≤ (周方向の屈折率 (nh) —軸方向の屈折率 ( na) ) (周方向の屈折率(nh) ) 03) 、 (周方向の引張弾性率 ( tmh) >軸方向の引張弾性率 (tma) )、 (1 < (周方向の引張弾性率 (t mh) ) Z (軸方向の引張弾性率 (tma) ) ) ^8、 (0. 5GPa≤周方向 の引張弾性率 (tmh) ≤2 OGPa)、 (0. 5 G P a≤軸方向の引張弾性率 (tma) ≤20GPa) 、 (周方向の曲げ弾性率 (m f h) >軸方向の曲げ弾 性率 (m f a) )、 (1 < (周方向の曲げ弾性率 (mf h) ) / (軸方向の曲げ 弾性率 (mf a) ) ) ≤ 8、 (0. 50? 3≤周方向の曲げ弾性率 (11^ 11) ≤ 2 OGPa)、 (0. 5GPa≤軸方向の曲げ弾性率 (mf a) ≤ 1 OGPa) 、 (軸方向の引張破断伸度 ( t b a) >周方向の引張破断伸度 ( t b h) )、 ( 1 < ( (軸方向の引張破断伸度 ( t b a) ) Z (周方向の引張破断伸度 ( t b h ) ) ≤ 8 ) 、 ( 3 0 0 軸方向の引張破断伸度(t b a ) ) の条件を満足して いる。 In the biaxially oriented polyolefin tube A according to the first embodiment of the present invention, the degree of circumferential orientation is greater than the degree of axial orientation. (Refractive index (nh) in the circumferential direction> axial refraction in the axial direction) Index (na)), (refractive index in the circumferential direction (nh) Refractive index in the non-oriented state (nn) ≥ 0.004), (0.004≤ (refractive index in the circumferential direction (nh) — axial refraction) Modulus (na)) (Refractive index in the circumferential direction (nh)) 03), (Tensile modulus in the circumferential direction (tmh)> Tensile modulus in the axial direction (tma)), (1 <(Tensile modulus in the circumferential direction) (t mh)) Z (axial tensile modulus (tma))) ^ 8, (0.5 GPa ≤ circumferential tensile modulus (tmh) ≤ 2 OGPa), (0.5 GP a ≤ axial Tensile modulus (tma) ≤20GPa), (Bending modulus in the circumferential direction (mfh)> Bending modulus in the axial direction (mfa)), (1 <(Bending modulus in the circumferential direction (mfh)) / ( Axial flexural modulus (mf a))) ≤ ≤ 8, (0.50-3 ≤ circumferential flexural modulus (11 ^ 11) ≤ 2 OGPa), (0.5 GPa ≤ axial direction Flexural modulus (mf a) ≤ 1 OGPa), (axial tensile elongation at break (tba)> circumferential tensile elongation at break (tbh)), (1 <((axial tensile elongation at break ( tba)) Z (Circumferential tensile elongation at break (tbh )) ≤ 8), and the condition of (tensile elongation at break in the 300 axis direction (tba)) is satisfied.
そして、 この 2軸配向ポリオレフイン管 Aは、 たとえば、 図 1に示すような固 体押出法により延伸する延伸装置 1を用いて作製することができる。  The biaxially oriented polyolefin tube A can be produced, for example, by using a stretching apparatus 1 for stretching by a solid extrusion method as shown in FIG.
すなわち、 この延伸装置 1は、 プランジャ 1 1と、 ダイ 1 2と、 マンドレル 1 3とを備えている。  That is, the stretching device 1 includes the plunger 11, the die 12, and the mandrel 13.
ダイ 1 2は、 一方に原料管となるビレツト 2が挿入されるビレツト揷入部 1 2 aを、 他方にラッパ状に拡径する拡径部 1 2 bを有する筒状をしている。  The die 12 has a cylindrical shape having a bill inlet portion 12a into which a billet 2 serving as a raw material tube is inserted, and a diameter-enlarging portion 12b expanding into a trumpet shape on the other side.
マンドレル 1 3は、 ダイ 1 2の拡径部 1 2 b内に臨み、 その外周面とダイ 1 2 の拡径部 1 2 bの内周面との間に、 延伸用通路 1 4を形成している。  The mandrel 13 faces the enlarged diameter portion 12b of the die 12 and forms a stretching passage 14 between its outer peripheral surface and the inner peripheral surface of the enlarged diameter portion 12b of the die 12. ing.
延伸用通路 1 4は、 マンドレル 1 3の外周面とダイ 1 2の拡径部 1 2 bの内周 面と距離が、 ビレツト挿入部 1 2 a側から拡径部 1 2 bの出口側に向かって徐々 に狭くなつている。  The distance between the outer circumferential surface of the mandrel 13 and the inner circumferential surface of the enlarged diameter portion 12b of the die 12 extends from the billet insertion portion 12a side to the outlet side of the enlarged diameter portion 12b. It gradually becomes narrower.
プランジャ 1 1は、 プランジャ本体 1 1 aが、 ビレツト揷入部 1 2 aの内径と 略同じ外径をしていて、 図示していない油圧装置によってビレツト挿入部 1 2 a 内に進退可能になっている。  In the plunger 11, the plunger body 11a has an outer diameter that is substantially the same as the inner diameter of the bill inlet portion 12a, and can be moved into and out of the billet insertion portion 12a by a hydraulic device (not shown). I have.
そして、 2軸配向ポリオレフイン管 Aは、 この延伸装置 1を用いて以下のよう にして作製することができる。  Then, the biaxially oriented polyolefin tube A can be manufactured as follows using this stretching apparatus 1.
すなわち、 先ず、 プランジャ 1 1を油圧装置側へ後退させてピレツト揷入部 1 2 aの入口を開放状態にして、 図 1に示すようにビレツト 2をビレツト揷入部 1 2 aにセッ卜する。  That is, first, the plunger 11 is retracted to the hydraulic device side so as to open the inlet of the pillar insertion portion 12a, and the billet 2 is set into the bill insertion portion 12a as shown in FIG.
つぎに、 プランジャ本体 1 1 aの先端がビレット 2の後端に押し当たるように プランジャ 1 1をダイ 2方向に進出させる。  Next, the plunger 11 is advanced in the direction of the die 2 such that the tip of the plunger body 11a is pressed against the rear end of the billet 2.
さらに、 プランジャ 1 1のプランジャ本体 1 1 aをビレツト揷入部 1 2 aの奥 まで油圧装置によって圧入し、 延伸用通路によってビレツト 2を周方向および軸 方向に延伸し、 上記のような 2軸配向ポリオレフィン管 Aを得る。  Further, the plunger body 11a of the plunger 11 is pressed into the inner portion of the billet insertion portion 12a by a hydraulic device, and the billet 2 is stretched in the circumferential direction and the axial direction by the stretching passage. Obtain polyolefin tube A.
上記のようにして得た 2軸配向ポリオレフイン管 Aは、 周方向の配向度が軸方 向の配向度よりも大きいので、 管のポリオレフイン結晶は、 周方向および軸方向 のそれぞれに配向し、 結晶面の滑りにより、 弾性率の向上と外部応力に対する管 の変形追従性の確保を両立させることができる。 In the biaxially oriented polyolefin tube A obtained as described above, the degree of orientation in the circumferential direction is greater than the degree of orientation in the axial direction. Sliding of the surface improves the modulus of elasticity and the pipe against external stress. Can be compatible with each other.
具体的には、 周方向の弾性は軸方向の弾性より強く、 これにより管内部を流れ る流体から管に加えられる内圧、 および管が埋設された場合には管周囲の土など から加えられる土圧に十分耐えることができる。 すなわち、 酎内圧性および耐土 圧性の向上が図られている。  More specifically, the elasticity in the circumferential direction is stronger than the elasticity in the axial direction, so that the internal pressure applied to the pipe from the fluid flowing inside the pipe, and the soil applied from the soil around the pipe when the pipe is buried. Can withstand enough pressure. In other words, the internal pressure resistance and the earth pressure resistance of shochu are improved.
し力、も、 ポリオレフィン管の長所である外部応力に対する管の変形追従性は、 さほど損なわれておらず、 これにより埋設された本発明に係る管が地震に遭った としても、 管は軸方向に塑性変形することができ、 破断しない。  The ability of the polyolefin pipe to follow the deformation of the pipe against external stress, which is an advantage of the polyolefin pipe, is not significantly impaired, so that even if the buried pipe according to the present invention is subjected to an earthquake, the pipe remains in the axial direction. It can be plastically deformed and does not break.
特に、 周方向の屈折率 ( n h) は、 軸方向の屈折率 (n a ) より大きく、 かつ 周方向の屈折率(n h) が無配向状態の屈折率(n n ) より 0 . 0 0 4以上大き いので、 周方向の弾性を充分に向上させることができると共に、 管の変形追従性 を低下させずに十分確保することができる。  In particular, the refractive index in the circumferential direction (nh) is larger than the refractive index in the axial direction (na), and the refractive index in the circumferential direction (nh) is 0.04 or more larger than the refractive index in the non-aligned state (nn). Therefore, it is possible to sufficiently improve the elasticity in the circumferential direction, and to sufficiently secure the pipe without following the deformation followability.
また、 (周方向の屈折率 ( n h) 一軸方向の屈折率(n a ) ) (周方向の屈 折率 (n h) ) が 0 . 0 0 4以上 0. 0 3以下であるので、 これによつても、 周 方向の弾性を充分に向上させることができると共に、 管の変形追従性を低下させ ずに十分確保することができ、 管の弾性および変形追従性のバランスが優れてい る。  Also, since (refractive index in the circumferential direction (nh) refractive index in the uniaxial direction (na)) and (refractive index in the circumferential direction (nh)) are not less than 0.04 and not more than 0.03, Even in this case, the elasticity in the circumferential direction can be sufficiently improved, and it can be sufficiently ensured without deteriorating the deformability of the pipe, and the balance between the elasticity of the pipe and the deformability can be excellent.
周方向の引張弾性率は軸方向の引張弾性率よりも大きいので、 酎内圧性の向上 を図ることができる共に、 ポリオレフイン管の長所である外部応力に対する管の 変形追従性を維持することができる。 また、 各引張弾性率が上記の所定の範囲内 であるので、 耐内圧性の向上および管の変形追従性の維持を極めて良好に図るこ とができる。  Since the tensile elastic modulus in the circumferential direction is larger than the tensile elastic modulus in the axial direction, the internal pressure resistance of the shochu can be improved, and at the same time, the deformability of the polyolefin pipe can be maintained with respect to external stress. . Further, since each tensile elastic modulus is within the above-mentioned predetermined range, it is possible to improve the internal pressure resistance and maintain the deformation followability of the pipe extremely well.
同様に、 周方向の曲げ弾性率は軸方向の曲げ弾性率よりも大きいので、 耐土圧 性を向上することができると共に、 管の変形追従性を維持することができる。 ま た、 各曲げ弾性率が上記の所定の範囲内であるので、 耐土圧性の向上および管の 変形追従性の維持を極めて良好に図ることができる。  Similarly, since the flexural modulus in the circumferential direction is greater than the flexural modulus in the axial direction, it is possible to improve the earth pressure resistance and to maintain the deformability of the pipe. Further, since each bending elastic modulus is within the above-mentioned predetermined range, it is possible to improve the earth pressure resistance and maintain the deformation followability of the pipe extremely well.
さらに、 軸方向の引張破断伸度 ( t b a ) は周方向の引張破断伸度 ( t b h ) よりも大きいので、 耐内圧性および耐土圧性の向上を図ると共に、 管の変形追従 性の維持を図ることができる。 また、 各引張破断強度が上記の所定の範囲内であ るので、 耐内圧性および耐土圧性の向上ならびに管の変形追従性の維持を極めて 良好に図ることができる。 Furthermore, since the tensile elongation at break (tba) in the axial direction is greater than the tensile elongation at break in the circumferential direction (tbh), the internal pressure resistance and the earth pressure resistance should be improved, and the tube should be able to follow the deformation. Can be. Further, each tensile breaking strength is within the above-mentioned predetermined range. Therefore, the internal pressure resistance and the earth pressure resistance can be improved and the deformation followability of the pipe can be maintained extremely well.
(第 2の実施の形態)  (Second embodiment)
本発明にかかる第 2の実施の形態の 2軸配向ポリオレフイン管 Bは、 管を構成 するポリオレフィン樹脂の少なくとも一部が架橋され、 そのゲル分率が 1 0%以 上 70%以下、 密度が 0. 9408 ^1113 以上0. 980 gZcm3 以下のポリエ チレンであるとともに、 周方向の配向度が軸方向の配向度よりも大きく、 (周方 向の屈折率 (nh) >軸方向の屈折率 (na) ) 、 (周方向の屈折率 (nh) 一 無配向状態の屈折率(nn) ≥ 0. 004) 、 ( 0. 004≤ (周方向の屈折率 (nh) —軸方向の屈折率 (na) ) / (周方向の屈折率 (nh) ) ≤ 0. 03 ) 、 (周方向の引張弾性率 (tmh) 〉軸方向の引張弾性率 (tma) )、 (1 < (周方向の引張弾性率 (tmh) ) / (軸方向の引張弾性率 (tma) ) ) ≤ 8、 (0. 5 GPa≤周方向の引張弾性率(tmh) ≤2 OGPa)、 (0. 5 GP a≤軸方向の引張弾性率(tma) ≤ 2 OGPa) , (周方向の曲げ弾性率 (m f h) >軸方向の曲げ弾性率 (m f a) )、 (1 < (周方向の曲げ弾性率( mf h) ) (軸方向の曲げ弾性率(mf a) ) ) ≤ 8、 (0. 5GPa≤周方 向の曲げ弾性率(mf h) ≤2 OGPa)、 (0. 5 G P a≤軸方向の曲げ弾性 率(mf a) ≤ 1 OGPa) 、 (軸方向の引張破断伸度(t ba) >周方向の引 張破断伸度 ( t b h) )、 ( 1く ( (軸方向の引張破断伸度 ( t b a) ) Z (周 方向の引張破断伸度 (t bh) ) ≤ 8)、 ( 200 軸方向の引張破断伸度 ( t b a) ) の条件を満足している。 In the biaxially oriented polyolefin tube B according to the second embodiment of the present invention, at least a part of the polyolefin resin constituting the tube is crosslinked, the gel fraction is 10% or more and 70% or less, and the density is 0% or less. 9408 ^ 111 3 or more and 0.980 gZcm 3 or less, and the degree of orientation in the circumferential direction is larger than the degree of orientation in the axial direction. (Refractive index in the circumferential direction (nh)> (Na)), (refractive index in the circumferential direction (nh)-refractive index in non-oriented state (nn) ≥ 0.004), (0.004≤ (refractive index in the circumferential direction (nh) — refractive index in the axial direction) (na)) / (refractive index in the circumferential direction (nh)) ≤ 0.03), (tensile modulus in the circumferential direction (tmh)〉 tensile modulus in the axial direction (tma)), (1 <( Tensile modulus (tmh)) / (axial tensile modulus (tma))) ≤ 8, (0.5 GPa ≤ circumferential tensile modulus (tmh) ≤ 2 OGPa), (0.5 GP a ≤ Tensile modulus in the axial direction (tma) ≤ 2 OGPa), (Bending modulus in the circumferential direction (mfh)> Flexural modulus in the direction (mfa)), (1 <(flexural modulus in the circumferential direction (mf h)) (flexural modulus in the axial direction (mfa))) ≤ 8, (0.5GPa ≤ Flexural modulus (mf h) ≤ 2 OGPa), (0.5 GP a ≤ axial flexural modulus (mf a) ≤ 1 OGPa), (axial tensile elongation at break (t ba)> circumferential direction Tensile rupture elongation (tbh)), (1 ((Tensile rupture elongation in the axial direction (tba)) Z (Tensile rupture elongation in the circumferential direction (tbh)) ≤ 8), (200 It satisfies the condition of elongation at break (tba)).
そして、 この 2軸配向ポリオレフイン管 Bは、 たとえば、 流体圧力法を利用し た図 2に示すような延伸装置 3を用いて作製することができる。  The biaxially oriented polyolefin tube B can be produced, for example, by using a stretching apparatus 3 using a fluid pressure method as shown in FIG.
すなわち、 この延伸装置 3は、 外径規制型 3 1と、 パイプチャック 32, 32 とを備えている。  That is, the stretching device 3 includes the outer diameter control type 31 and the pipe chucks 32.
外径規制型 3 1は、 延伸しょうとするビレット 2を外側への拡径させた時、 所 定の外径になるように規制するとともに、 図示していないが、 ヒータ一が設けら れていて、 このヒータ一によってビレツト 2を外側から加熱できるようになって いる。 パイプチャック 3 2 , 3 2は、 ビレット 2の両端を把持するようになっていて 、 モータ 3 4のスィッチを入れると、 ビレット 2を両側から引っ張って軸方向に 延伸するようになっているとともに、 その気体輸送管 3 3から送られてきた加圧 加温された気体をビレツト 2の内側に圧入し、 ビレツト 2を周方向に延伸させる ようになっている。 The outer diameter regulating type 31 regulates the billet 2 to be stretched to have a predetermined outer diameter when the billet 2 is expanded outward, and is provided with a heater (not shown). The heater 2 can heat the billet 2 from the outside. The pipe chucks 3 2, 3 2 hold both ends of the billet 2, and when the motor 34 is switched on, the billet 2 is pulled from both sides to extend in the axial direction, The pressurized and heated gas sent from the gas transport pipe 33 is pressed into the inside of the billet 2 to extend the billet 2 in the circumferential direction.
なお、 パイプチャック 3 2は、 気体輸送管 3 3からパイプチャック 3 2に送ら れてきた気体が漏れずにビレット 2内に供給できるようにエア一シール構造をビ レツト 2の把持部に備えている。  The pipe chuck 32 is provided with an air-sealing structure at the grip portion of the billet 2 so that gas sent from the gas transport pipe 33 to the pipe chuck 32 can be supplied into the billet 2 without leaking. I have.
そして、 2軸配向ポリオレフイン管 Bは、 この延伸装置 3を用いて以下のよう にして作製することができる。  Then, the biaxially oriented polyolefin tube B can be manufactured as follows using this stretching apparatus 3.
すなわち、 まず、 ビレット 2の両端を両側のパイプチャック 3 2によって把持 する。  That is, first, both ends of the billet 2 are gripped by the pipe chucks 32 on both sides.
つぎに、 外径規制型 3 1のヒーターによってビレツト 2を (樹脂の融点— 5 0 °C) 以上(融点 + 5 0。C) 以下の温度まで加熱した状態で、 気体輪送管 3 3から パイプチャック 3 2を介してビレツト 2内に加温された気体を圧入してビレツト 2を拡径する、 すなわち、 周方向に延伸配向させるとともに、 パイプチャック 3 2 , 3 2によってビレツト 2を両側に引っ張り、 軸方向に延伸配向させて 2軸配 向ポリオレフイン管 Bを得る。  Next, the billet 2 is heated to a temperature not less than the melting point of the resin—50 ° C. (melting point + 50. The heated gas is pressed into the billet 2 through the pipe chuck 32 to expand the diameter of the billet 2, that is, stretched and oriented in the circumferential direction, and the billet 2 is moved to both sides by the pipe chucks 32 and 32. The biaxially oriented polyolefin tube B is obtained by stretching and orienting in the axial direction.
このようにして得られた 2軸配向ポリオレフイン管 Bは、 上記 2軸配向ポリオ レフイン管 Aと同様の効果を備えているとともに、 ポリエチレン樹脂が架橋され ているため、 弓 ί張抗力の弱い非晶部分における分子鎖が互いに架橋している。 こ のため、 ポリオレフイン樹脂が引っ張られた場合であっても、 これらの分子鎖が 互いに滑るようにして伸びることがなく、 得られる 2軸配向ポリオレフィン管の 変形追従性をより高めることができる。 すなわち、 充分に延伸して配向させた場 合、 管が厚み方向に剝離する現象が見られる場合があり、 耐震性の観点からはあ まり好ましくないが、 このように、 一部を架橋させることにより剝離を防止する ことができる。  The biaxially oriented polyolefin tube B thus obtained has the same effects as the above biaxially oriented polyolefin tube A, and since the polyethylene resin is cross-linked, the bow is an amorphous material having a low tensile drag. The molecular chains in the parts are cross-linked to each other. For this reason, even when the polyolefin resin is pulled, these molecular chains do not extend so as to slip each other, and the deformation followability of the obtained biaxially oriented polyolefin tube can be further improved. In other words, when the tube is sufficiently stretched and oriented, a phenomenon in which the pipe separates in the thickness direction may be observed, which is not preferable from the viewpoint of earthquake resistance. Thus, separation can be prevented.
また、 ポリオレフイン樹脂のゲル分率は 1 0 %以上 7 0 %以下であるので、 上 記のように、 弓 ί張抗力の弱い非晶部分における分子鎖がただ単に互いに架橋して いるだけでなく、 非晶部分においても分子鎖同士があまりにも必要以上に架橋し て却って変形追従性が低下するようなことがない。 従って、 得られる 2軸配向ポ リオレフィン管の変形追従性をより確実に高めることができる。 In addition, since the gel fraction of the polyolefin resin is not less than 10% and not more than 70%, as described above, the molecular chains in the amorphous portion having a weak tensile force are simply cross-linked to each other. Not only does it occur, but also in the amorphous part, the molecular chains do not crosslink too much, and the deformation follow-up property is not degraded. Therefore, the deformability of the obtained biaxially oriented polyolefin tube can be more reliably improved.
さらに、 樹脂の密度が 0. 9408/じ1113 以上0. g S OgZcm3 以下で あるので、 非晶部分においても分子鎖同士があまりにも必要以上に架橋し、 却つ て変形追従性が低下するようなことをより確実に防止することができ、 得られる 2軸配向ポリポレフィン管の変形追従性をより確実に高めることができる。 本発明にかかる 2軸配向ポリオレフィン管は、 上記の実施の形態に限定されな い。 たとえば、 上記の実施の形態では、 2軸配向ポリポレフィン管 Aが固体押出 法を用いた延伸装置 1で、 2軸配向ポリポレフィン管 Bが流体圧力法を用いた延 伸装置 3で作製しているが、 2軸配向ポリポレフィ ン管 Bを延伸装置 1で、 2軸 配向ポリポレフィン管 Aを延伸装置 3で作製することもできる。 Furthermore, since the resin density is 0.9408 / 111 3 or more and 0.g S OgZcm 3 or less, even in the amorphous part, the molecular chains are cross-linked too much and the deformation followability is reduced. Can be more reliably prevented, and the deformability of the obtained biaxially oriented polypropylene tube can be more reliably improved. The biaxially oriented polyolefin pipe according to the present invention is not limited to the above embodiment. For example, in the above embodiment, the biaxially oriented polypropylene tube A is produced by the stretching device 1 using the solid extrusion method, and the biaxially oriented polypropylene tube B is produced by the stretching device 3 using the fluid pressure method. Alternatively, the biaxially oriented polypropylene tube B can be produced by the stretching device 1 and the biaxially oriented polypropylene tube A can be produced by the stretching device 3.
実施例  Example
以下、 本発明を以下の実施例と共に詳細に説明するが、 以下の実施例は例示の 目的にのみ用いられ、 限定の目的に用いられてはならない。  Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are used only for illustrative purposes and should not be used for limiting purposes.
まず、 原料管となるビレツト I〜XIを以下のようにして作製した。  First, the billets I to XI to be the raw material tubes were prepared as follows.
(ビレツ ト I)  (Billet I)
高密度ポリェチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB78 0J、 密度: 0. 953 gZc c、 MFR: 0. 03 gZ 10分、 重量平均分子 量:約 268000、 融点 132°C)をノーベント型単軸押出機 (シリンダー径 65mm、 L/D=30)を用いて 220 °Cで溶融混練して押出機の先端に備え られた管製造用金型より押し出すことにより、 外径 89. Omm、 内径 29. 0 mmのビレツト Iを作製した。  High-density polyethylene resin (Asahi Kasei Co., Ltd., product name: “Suntech HD-QB78 0J, density: 0.953 gZc c, MFR: 0.03 gZ 10 minutes, weight average molecular weight: about 268000, melting point 132 ° C) Melting and kneading at 220 ° C using a non-vent type single screw extruder (cylinder diameter 65 mm, L / D = 30), and extruding from the tube manufacturing die provided at the tip of the extruder to obtain an outer diameter of 89. A billet Omm having an inner diameter of 29.0 mm was prepared.
(ビレツ ト )  (Billet)
外径 89. 0 mm、 内径 14 Ommとした以外は、 上記ビレット Iと同様に してビレツト Iを作製した。  A billet I was prepared in the same manner as the billet I except that the outer diameter was 89.0 mm and the inner diameter was 14 Omm.
(ビッレト m)  (Billet m)
外径 89. 0 mm、 内径 66 0mmとした以外は、 上記ビレツト Iと同様に してビレツト Πを作製した。 (ビレツ ト: n A billet 作 製 was prepared in the same manner as the billet I, except that the outer diameter was 89.0 mm and the inner diameter was 660 mm. (Billet: n
外径 89. Omm、 内径 12. 0 mmとした以外は、 上記ビレット Iと同様に してビレツト IVを作製した。 、'- A billet IV was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 12.0 mm. , '-
(ビレツ ト V) (Billet V)
外径 89. Omm、 内径 44. 0 mmとした以外は、 上記ビレット Iと同様に してビレツト Vを作製した。  A billet V was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 44.0 mm.
(ビレツ ト VI)  (Billet VI)
高密度ポリェチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB78 0J 、 密度: 0. 953 g/c c FR: 0. 03 10分、 重量平均分子 量:約 268000、 融点 132°C) に代えて、 高密度ポリエチレン樹脂 (日本 ポリケム社製、 商品名: 「ノバテック HD— HR 120R」 、 密度 0. 934 g /c c、 MFR : 0. 1 9 g/10分、 重量平均分子量:約 216000、 融点 132で) を用いるとともに、 外径 89. 0mm、 内径 44. Ommとした以外 は、 上記ビレット Iと同様にしてビレツト VIを作製した。  High-density polyethylene resin (made by Asahi Kasei Corporation, trade name: “Suntech HD—QB78 0J, density: 0.953 g / cc FR: 0.03 10 minutes, weight average molecular weight: about 268,000, melting point 132 ° C) High-density polyethylene resin (Nippon Polychem Co., Ltd., product name: Novatec HD-HR120R, density 0.934 g / cc, MFR: 0.19 g / 10 min, weight average molecular weight: about 216000, melting point 132) was used, and a billet VI was prepared in the same manner as billet I except that the outer diameter was 89.0 mm and the inner diameter was 44. Omm.
(ビレット VII)  (Billette VII)
高密度ボリェチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB78 0」 、 密度: 0. 953 g/c c, MFR: 0. 03 gZ 10分、 重量平均分子 量:約 268000、 融点 132°C) に代えて、 高密度ポリエチレン樹脂 (日本 ポリケム社製、 商品名: 「ノバテック HD— HB 530」 、 密度 0. 964 gZ c c、 MFR : 0. 3 gZl 0分、 融点 136°C) を用いた以外は、 ビレット I と同様にしてビレツト Wを作製した。  High-density boroethylene resin (manufactured by Asahi Kasei Corporation, product name: “Suntech HD—QB780”, density: 0.93 g / cc, MFR: 0.03 gZ, 10 minutes, weight average molecular weight: about 268,000, melting point 132 ° C ) Was replaced by a high-density polyethylene resin (product name: Novatec HD-HB530, manufactured by Nippon Polychem Co., Ltd., density: 0.964 gZ cc, MFR: 0.3 gZl 0 min, melting point: 136 ° C) Except for the above, billet W was prepared in the same manner as billet I.
(ビレット珊)  (Billette cor)
高密度ボリェチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB78 0」 、 密度: 0. 953 g/c c, MFR: 0. 03 g/ 10分、 重量平均分子 量:約 268000、 融点 132°C) に代えて、 ポリプロピレン樹脂 (日本ポリ ケム社製、 商品名: 「ノバテック PP— EC 9」 、 密度 0. 9gZc c、 MFR : 0. 5 gZl 0分) を用いた以外は、 上記ビレツト Iと同様にしてビレツト H を作製した。  High-density boroethylene resin (manufactured by Asahi Kasei Corporation, trade name: "Suntech HD-QB780", density: 0.93 g / cc, MFR: 0.03 g / 10 minutes, weight average molecular weight: about 268000, melting point 132 ° C) was replaced with a polypropylene resin (trade name: Novatec PP-EC9, manufactured by Nippon Polychem Co., Ltd., density: 0.9 gZc c, MFR: 0.5 gZl 0 min). A billet H was prepared in the same manner as described above.
(ビレツ ト K) 外径 89. Omm. 内径 62. 0 mmとした以外は、 上記ビレット Iと同様に してビレツト Kを作製した。 (Billet K) A billet K was prepared in the same manner as billet I except that the outer diameter was 89. Omm and the inner diameter was 62.0 mm.
(ビレツ ト X) 、,  (Billet X) ,,
高密度ポリェチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB 78 0J 、 密度: 0. 953 gZc c、 MFR: 0. 03 g/ 1 0分、 重量平均分子 量:約 268000、 融点 1 32°C) 1 00重量部に対して、 0. 5重量部のト リビニルメトキシシランおよび 0. 04重量部の 2, 5—ジメチル一 2, 5—ビ スー t一プチルォキシへキサンを添加するとともに、 外径 89. 00mm、 内径 14. 0mmとした以外は、 上記ビレツト Iと同様にしてビレツト Xを作製した  High-density polyethylene resin (manufactured by Asahi Kasei Corporation, trade name: “Suntech HD—QB780J, density: 0.953 gZc c, MFR: 0.03 g / 10 min, weight average molecular weight: about 268,000, melting point 1 32 (° C) To 100 parts by weight, add 0.5 parts by weight of trivinylmethoxysilane and 0.04 parts by weight of 2,5-dimethyl-1,2,5-bis-t-butyloxyhexane. A billet X was prepared in the same manner as the above billet I, except that the outer diameter was 89.00 mm and the inner diameter was 14.0 mm.
(ビレツ ト XI) (Billet XI)
高密度ボリエチレン樹脂 (旭化成社製、 商品名: 「サンテック HD— QB 78 0J 、 密度: 0. 953 g/c c、 MFR : 0. 03 gZl O分、 重量平均分子 量:約 268000、 融点 1 32で) に代えて、 高密度ポリエチレン樹脂 (日本 ボリケム社製、 商品名: 「ノバテック HD— HR 1 20R」 、 密度 0. 934 g Zc c、 FR: 0. 1 9 g/1 0分、 重量平均分子量:約 21 6000、 融点 1 32eC) を用いたた以外は、 上記ビレツト Iと同様にしてビレツト XIを作製し High-density polyethylene resin (Asahi Kasei Co., Ltd., product name: “Suntech HD-QB780J, density: 0.93 g / cc, MFR: 0.03 gZlO content, weight average molecular weight: about 268000, melting point: 1 32 ) Instead of high-density polyethylene resin (Nippon Borichem Co., Ltd., product name: Novatec HD—HR120R, density: 0.934 g Zc c, FR: 0.19 g / 10 min, weight average molecular weight : about 21 6000, except for using the melting point 1 32 e C), to prepare a Biretsuto XI in the same manner as described above Biretsuto I
(実施例 1 ) (Example 1)
図 3に示す各部の寸法が、 以下のとおりである延伸装置 4を用意した。 なお、 図 3中、 4 1はダイ、 42はマンドレル、 43は押圧装置である。  A stretching device 4 in which the dimensions of each part shown in FIG. 3 are as follows was prepared. In FIG. 3, 41 is a die, 42 is a mandrel, and 43 is a pressing device.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
α= 1 5°  α = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 56. 8mm D 2 = 1 56.8 mm
D3 =8 9. 0mm D 3 = 8 9.0 mm
つぎに、 上記のようにして作製したビレット Iをギア一オーブン内で 1 25°C まで加温した後、 マンドレル 42の温度およびダイ 4 1の温度を 1 25°Cに設定 した延伸装置 4のビレツト挿入部 44にセットした。 そして、 押圧装置 43によって 20 トンのカをビレツト Iに加えながら、 マン ドレル 42とダイ 4 1との間の延伸用通路 45に押し込んで 1 0 OmmZ分の速 度で延伸させ、 ポリェチレン分子を周方向および軸方向のそれぞれに配向させて 、 外径 1 56. 8 mm. 内径 1 45. 0 mmの無架橋型 2軸配向ポリエチレン管 をサンプル管として得た。 Next, after the billet I produced as described above was heated to 125 ° C in a gear-oven, the stretching device 4 in which the temperature of the mandrel 42 and the temperature of the die 41 were set to 125 ° C was used. It was set in the billet insertion section 44. Then, while adding 20 tons of mosquito to the billet I by the pressing device 43, it is pushed into the stretching passage 45 between the mandrel 42 and the die 41 and stretched at a speed of 10 OmmZ, thereby surrounding the polyethylene molecules. A non-crosslinked biaxially oriented polyethylene tube having an outer diameter of 156.8 mm and an inner diameter of 145.0 mm was obtained as a sample tube by orienting in each of the direction and the axial direction.
(実施例 2 )  (Example 2)
各部の寸法が以下のとおりである図 3のような延伸装置 4を用いた以外は、 実 施例 1と同様にして、 外径 1 53. Omm、 内径 1 45. Ommの無架橋型 2軸 配向ポリェチレン管をサンプル管として得た。  A non-crosslinked biaxial shaft with an outer diameter of 153.Omm and an inner diameter of 145.Omm in the same manner as in Example 1 except that a stretching device 4 as shown in FIG. An oriented polyethylene tube was obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
= 1 5°  = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 53. Omm D 2 = 1 53. Omm
D3 =89. Omm D 3 = 89. Omm
(実施例 3 )  (Example 3)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト]!とを用 いた以外は、 実施例 1と同様にして、 外径 1 62. Omm, 内径 1 45. Omm の無架橋型 2軸配向ポリェチレン管をサンプル管として得た。  The drawing unit 4 with the dimensions of each part is as follows and the billet]! A non-crosslinked biaxially oriented polyethylene tube having an outer diameter of 162. Omm and an inner diameter of 145. Omm was obtained as a sample tube in the same manner as in Example 1 except that
〔延伸装置の各部の寸法〕 [Dimensions of each part of the stretching device]
= 1 5°  = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 62. Omm D 2 = 1 62. Omm
D3 =89. Omm D 3 = 89. Omm
(実施例 4 )  (Example 4)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト HIとを用 いた以外は、 実施例 1と同様にして、 外径 1 53. Omm. 内径 1 45. Omm の無架橋型 2軸配向ポリェチレン管をサンプル管として得た。  Non-crosslinked with an outer diameter of 153. Omm and an inner diameter of 1 45. Omm in the same manner as in Example 1 except that a drawing device 4 and a billet HI as shown in Fig. 3 were used, each of which had the following dimensions. A biaxially oriented polyethylene tube was obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
α= 1 5°
Figure imgf000029_0001
α = 15 °
Figure imgf000029_0001
D2 = 1 53. Omm D 2 = 1 53. Omm
D3 =89. Omm D 3 = 89. Omm
(実施例 5 )  (Example 5)
各部の寸法が以下のとおりである図 1のような延伸装置とビレット IVとを用い た以外は、 実施例 1と同様にして、 外径 1 66. Omm, 内径 1 45. Ommの 無架橋型 2軸配向ポリェチレン管をサンプル管として得た。  A non-crosslinking type having an outer diameter of 166.Omm and an inner diameter of 145.Omm was performed in the same manner as in Example 1 except that a drawing device and a billet IV as shown in FIG. A biaxially oriented polyethylene tube was obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
α= 1 5°  α = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 66. Omm D 2 = 1 66. Omm
D3 =89. Omm D 3 = 89. Omm
(実施例 6 )  (Example 6)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト Vとを用 いた以外は、 実施例 1と同様にして、 外径 1 54. Omm、 内径 1 45. Omm の無架橋型 2軸配向ポリェチレン管をサンプル管として得た。  Non-crosslinked with an outer diameter of 154.Omm and an inner diameter of 145.Omm in the same manner as in Example 1 except that a drawing device 4 and a billet V as shown in FIG. A biaxially oriented polyethylene tube was obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
= 1 5° = 15 °
Figure imgf000029_0002
Figure imgf000029_0002
D2 = 1 54. Omm D 2 = 1 54. Omm
D3 =89. Omm D 3 = 89. Omm
(実施例 7)  (Example 7)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト Y [とを用 いるとともに、 ビレット VIをギア一オーブン内で 1 1 0°Cまで加温し、 マンドレ ル 42の温度およびダイ 4 1の温度を 1 1 0 Cに設定した以外は、 実施例 1と同 様にして、 外径 1 56. 8mm、 内径 1 45. 0 mmの無架橋型 2軸配向ポリエ チレン管をサンプル管として得た。  Using a stretching device 4 and a billet Y [as shown in Fig. 3 with the dimensions of each part as shown below, the billet VI was heated to 110 ° C in a gear oven, and the temperature of the mandrel 42 was increased. A non-crosslinked biaxially oriented polyethylene tube with an outer diameter of 156.8 mm and an inner diameter of 145.0 mm was prepared in the same manner as in Example 1 except that the temperature of the die 41 was set to 110 ° C. Obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
α= 1 5°
Figure imgf000030_0001
α = 15 °
Figure imgf000030_0001
D2 = 1 56. 8mm D 2 = 1 56.8 mm
D3 =89. Omm 、--D 3 = 89.Omm,-
(実施例 8 ) (Example 8)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト IIとを用 いた以外は、 実施例 1と同様にして、 外径 1 56. 8mm> 内径 1 45. Omm の無架橋型 2軸配向ボリェチレン管をサンブル管として得た。  Non-crosslinked with an outer diameter of 156.8 mm and an inner diameter of 14.5 Omm in the same manner as in Example 1, except that a drawing device 4 and a billet II as shown in Fig. 3 where the dimensions of each part were as follows were used. A biaxially oriented Bolylene tube was obtained as a sample tube.
〔延伸装置の各部の寸法〕  [Dimensions of each part of the stretching device]
α= 1 5°  α = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 56. 8mm D 2 = 1 56.8 mm
D3 =89. Omm D 3 = 89. Omm
(実施例 9 )  (Example 9)
各部の寸法が以下のとおりである図 3のような延伸装置 4を用レ、、 マンドレル 42の温度およびダイ 4 1の温度を 1 40°Cに設定するとともに、 上記のように して作製したビレツト珊をギア一オーブン内で 1 40°Cまで加温した後、 実施例 1と同様にして無架橋型 2軸配向ボリプロピレン管をサンプル管として得た。 〔延伸装置の各部の寸法〕 Using a drawing device 4 as shown in FIG. 3 in which the dimensions of each part are as follows, the temperature of the mandrel 42 and the temperature of the die 41 were set to 140 ° C., and produced as described above. After heating the cornet to 140 ° C. in a gear oven, a non-crosslinked biaxially oriented polypropylene tube was obtained as a sample tube in the same manner as in Example 1. [Dimensions of each part of the stretching device]
= 1 5°  = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 56. 8mm D 2 = 1 56.8 mm
D3 =89. Omm D 3 = 89. Omm
(比較例 1 )  (Comparative Example 1)
実施例 1の延伸装置の押圧装置を用いず、 ビレット Iの先端に引張装置を連結 し、 この引張装置によってダイ 4 1の出口側から引っ張るダイマンドレル法を用 いた以外は、 実施例 1と同様にして無架橋型 2軸配向ポリエチレン管をサンプル 管として得た。  Same as Example 1 except that a pulling device was connected to the tip of billet I without using the pressing device of the stretching device of Example 1, and the pulling device used a die mandrel method of pulling from the exit side of die 41. Thus, a non-crosslinked biaxially oriented polyethylene tube was obtained as a sample tube.
(比較例 2 )  (Comparative Example 2)
各部の寸法が以下のとおりである図 3のような延伸装置 4とビレツト IXとを用 いた以外は、 実施例 1と同様にして、 外径 1 49. Omm、 内径 1 45. Omm の無架橋型 2軸配向ポリエチレン管をサンプル管として得た。 Using a drawing device 4 and a billet IX as shown in Fig. 3 where the dimensions of each part are as follows. A non-crosslinked biaxially oriented polyethylene pipe having an outer diameter of 149. Omm and an inner diameter of 145. Omm was obtained as a sample tube in the same manner as in Example 1 except for the above.
〔延伸装置の各部の寸法〕 ヽ.  [Dimensions of each part of the stretching device] ヽ.
ひ= 1 5°  Hi = 15 °
D 1 = 1 45 mm  D 1 = 1 45 mm
D2 = 1 4 9. 0mm D 2 = 1 49.0 mm
D3 =8 9. Omm D 3 = 8 9. Omm
上記実施例 1〜 9および比較例 1 , 2で得られたサンブル管および比較例 3と してのビレット Iについて、 周方向および軸方向の屈折率、 引張弾性率、 曲げ弾 性率、 引張破断伸度、 降伏強度、 延伸倍率をそれぞれ測定し、 その結果を、 延伸 温度、 周方向の屈折率と軸方向の屈折率との差、 この差と周方向の屈折率との比 、 使用したビレットの外径と内径、 各管の内径と外径とを合わせて表 1, 2に示 した。  With respect to the sample tubes obtained in Examples 1 to 9 and Comparative Examples 1 and 2 and billet I as Comparative Example 3, the refractive index in the circumferential direction and the axial direction, the tensile elastic modulus, the elastic modulus in bending, the tensile fracture The elongation, the yield strength, and the draw ratio were measured, and the results were calculated as the draw temperature, the difference between the refractive index in the circumferential direction and the refractive index in the axial direction, the ratio of this difference to the refractive index in the circumferential direction, and the billet used. Tables 1 and 2 show the outer diameter and inner diameter of the pipe and the inner diameter and outer diameter of each pipe.
なお、 屈折率は、 得られた管から約 1 Omm四方の試験片 (厚み 0. 5mm) を切り出し、 分子配向計(マイク口波方式、 王子計測機器株式会社製、 型番: M 0A 3020 A) を用いてこの試験片に約 1 9 GHzのマイクロ波を照射するこ とによって、 0度 (軸方向) および 90度(周方向) の屈折率を測定した。 また、 降伏強度は、 得られた管から J I S K 71 1 3に準拠して、 ダンべ ル形の 2号試験片を切り出し、 5 OmmZ分の速度で徐々に荷重を増やしながら 引っ張った際に、 荷重を増加することなく伸びの増加が認められる最初の点にお ける引張応力に該当する 「引張降伏強さ」 を意味する。 なお、 材料が降伏する前 に試験片が切断等により破壊される場合には、 試験片が破壊した瞬間における引 張応力に該当する 「引張破壊強さ」 をここでいう 「降伏強度」 とした。  The refractive index was determined by cutting out a test piece (0.5 mm thick) of about 1 Omm square from the obtained tube, and using a molecular orientation meter (microphone mouth wave method, manufactured by Oji Scientific Instruments, model number: M0A3020A). By irradiating the test piece with microwaves of about 19 GHz using, the refractive indices at 0 degree (axial direction) and 90 degrees (circumferential direction) were measured. The yield strength was determined by cutting a dumbbell-shaped No. 2 test piece from the obtained pipe in accordance with JISK7113 and pulling it while gradually increasing the load at a speed of 5 OmmZ. Means “tensile yield strength”, which corresponds to the tensile stress at the first point where the elongation is increased without increasing the elongation. If the test piece is broken by cutting or the like before the material yields, the `` tensile fracture strength '' corresponding to the tensile stress at the moment when the test piece breaks is referred to as `` yield strength '' here. .
表 1および表 2から、 比較例 1〜比較例 3のサンプル管と比較して、 実施例 1 〜実施例 9のサンブル管は、 いずれも周方向の屈折率が軸方向の屈折率と比較し て高く、 従ってポリェチレン分子は周方向に高く配向していることが理解される 。 一方、 軸方向にも配向しているが、 その配向度は周方向より低いため、 軸方向 における弾性の向上による管の変形追従性の低下はあまり生じておらず、 通常の ポリエチレン管に見られる程度の充分な耐震性が維持されていることが理解され る o From Tables 1 and 2, the sample tubes of Examples 1 to 9 were compared with the sample tubes of Comparative Examples 1 to 3 in that the refractive index in the circumferential direction was compared with the refractive index in the axial direction. Therefore, it is understood that the polyethylene molecules are highly oriented in the circumferential direction. On the other hand, although it is also oriented in the axial direction, its degree of orientation is lower than that in the circumferential direction, so there is not much deterioration in the ability to follow the deformation of the tube due to the improvement in elasticity in the axial direction, which is seen in ordinary polyethylene pipes It is understood that sufficient earthquake resistance is maintained. O
また、 実施例 1〜実施例 9と比較例 1 , 2とを比較すると、 実施例 1〜実施例 9のサンプル管は、 軸方向よりも周方向のほうが降伏強度が高くなつているのに 対し、 比較例 1, 2のサンブル管は、 周方向と比較して軸方向により配向してお り、 軸方向の引張弾性率および曲げ弾性率が、 周方向のそれらと比較して大きい ため、 管の変形追従性が損なわれてしまい、 大地震に酎えることができない。 このように、 周方向の配向度および屈折率は軸方向の配向度および屈折率より 高いので、 管内部を流れる流体から管に加えられる内圧、 および管が埋設された 場合には管周囲の土から加えられる土圧に十分耐えることができることが理解さ れる。 一方、 同様の理由により、 ポリオレフイン管の長所である外部応力に対す る変形追従性は維持されているので、 これにより埋設された管が地震に遭つたと しても、 管は軸方向に塑性変形することができ、 破断しないことが理解される。 引張弾性率についても、 周方向の引張弾性率は軸方向の引張弾性率より高いの で、 これにより得られた 2軸配向ポリエチレン管においては、 耐内圧性が向上さ れていることが理解される。 また、 周方向の曲げ弾性率は軸方向の曲げ弾性率よ り高いので、 これにより得られた 2軸配向ポリオレフイン管においては、 酎土圧 性が高いことが理解される。  Also, comparing Examples 1 to 9 with Comparative Examples 1 and 2, the sample tubes of Examples 1 to 9 have higher yield strength in the circumferential direction than in the axial direction. The sample tubes of Comparative Examples 1 and 2 are more oriented in the axial direction than in the circumferential direction, and the tensile modulus and the bending modulus in the axial direction are larger than those in the circumferential direction. The ability to follow the deformation of the ship is impaired, making it impossible to respond to a major earthquake. As described above, since the degree of orientation and the refractive index in the circumferential direction are higher than the degree of orientation and the refractive index in the axial direction, the internal pressure applied to the pipe from the fluid flowing inside the pipe, and the soil around the pipe when the pipe is buried. It can be understood that it can withstand the earth pressure applied from the sea. On the other hand, for the same reason, the ability of the polyolefin pipe to follow the deformation to external stress, which is an advantage of the polyolefin pipe, is maintained, so that even if the buried pipe is subjected to an earthquake, It is understood that it can be deformed and does not break. As for the tensile modulus, the tensile modulus in the circumferential direction is higher than the tensile modulus in the axial direction, so it is understood that the biaxially oriented polyethylene pipe obtained by this method has improved internal pressure resistance. You. In addition, since the bending elastic modulus in the circumferential direction is higher than the bending elastic modulus in the axial direction, it is understood that the biaxially oriented polyolefin pipe obtained by this method has high shochu earth pressure.
また、 軸方向の引張破断伸度が周方向の引張破断伸度より高いので、 得られた 管においては、 耐内圧性および耐土圧性を高くすることができる一方、 ポリオレ フィン管の長所である外部応力に対する変形追従性が維持されていることが理解 される。  In addition, since the tensile elongation at break in the axial direction is higher than the tensile elongation at break in the circumferential direction, the obtained pipe can have improved internal pressure resistance and earth pressure resistance, while the advantage of a polyolefin pipe is the external strength. It is understood that the deformation followability to stress is maintained.
同様に、 周方向の引張降伏強度が軸方向の引張降伏強度より高いので、 得られ た管においては、 ポリオレフイン管の長所である外部応力に対する変形追従性を 確実に確保することができることが理解される。  Similarly, since the tensile yield strength in the circumferential direction is higher than the tensile yield strength in the axial direction, it is understood that, in the obtained pipe, it is possible to reliably ensure deformation followability to external stress, which is an advantage of polyolefin pipe. You.
実施例 1〜実施例 9において得られたサンプル管は、 酎震性能が充分確保され ているだけでなく、 耐圧性にも優れ、 埋設管としての性能を充分に兼ね備えてい た。 また、 このポリエチレン管は、 管の肉厚を薄くすることができたため、 2軸 配向ポリオレフィン管を得るのに、 コスト削減を達成することもできることが理 解できる。 (実施例 1 0 ) The sample tubes obtained in Examples 1 to 9 not only had sufficient shochu performance, but also had excellent pressure resistance and had sufficient performance as a buried pipe. In addition, it can be understood that since the thickness of the polyethylene pipe was reduced, the cost can be reduced to obtain a biaxially oriented polyolefin pipe. (Example 10)
ビレツト Iを用いて、 実施例 1と同様にして外径 1 5 6 . 8 mm、 内径 1 4 5 . O mmの無架橋型 2軸配向ポリエチレン管を得たのち、 この得られた無架橋型 2軸配向ポリエチレン管に対して、 電子線照射装置 (日新ハイボルテージ社製 E S P 7 5 0 k V) を用レ、、 7 5 0 k Vの加速電圧にて 3 MR a dの電子線を照射 し、 電子線架橋法により管を構成するポリェチレンを架橋させて架橋型 2軸配向 ポリェチレン管をサンプル管として得た。  Using a billet I, a non-crosslinked type biaxially oriented polyethylene pipe having an outer diameter of 156.8 mm and an inner diameter of 14.5 mm was obtained in the same manner as in Example 1, and the obtained non-crosslinked type was obtained. An electron beam irradiator (Nisshin High Voltage ESP 750 kV) was used to irradiate the biaxially oriented polyethylene tube with an electron beam of 3 MRad at an acceleration voltage of 750 kV. Then, the polyethylene constituting the tube was crosslinked by an electron beam crosslinking method to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
(実施例 1 1 )  (Example 11)
電子線照射量を 6 MR a dにした以外は、 実施例 1 0と同様にして架橋型 2軸 配向ボリェチレン管をサンプル管として得た。  A crosslinked biaxially oriented polystyrene tube was obtained as a sample tube in the same manner as in Example 10 except that the electron beam irradiation amount was changed to 6 MRad.
(実施例 1 2 )  (Example 12)
ビレツト Xを用いて、 実施例 1と同様にして外径 1 5 6 . 8 mm. 内径 1 4 5 . O mmの無架橋型 2軸配向ポリエチレン管を得たのち、 この得られた無架橋型 2軸配向ボリエチレン管を 9 5での熱水中に 4 8時間浸潰し、 管を構成するボリ ェチレンを架橋させて架橋型 2軸配向ポリエチレン管をサンプル管として得た。  A non-cross-linked biaxially oriented polyethylene pipe having an outer diameter of 156.8 mm and an inner diameter of 14.5 O mm was obtained in the same manner as in Example 1 using the billet X. The biaxially oriented polyethylene tube was immersed in hot water at 95 for 48 hours to crosslink the polyethylene constituting the tube to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
(実施例 1 3 )  (Example 13)
ビレツト XIを用いて、 実施例 1と同様にして外径 1 5 6 . 8 mm、 内径 1 4 5 . O mmの無架橋型 2軸配向ポリエチレン管を得たのち、 この得られた無架橋型 2軸配向ポリエチレン管に対して、 電子線照射装置(日新ハイボルテージ社製 E S P 7 5 0 k V) を用い、 7 5 0 k Vの加速電圧にて 3 MR a dの電子線を照射 し、 電子線架橋法により管を構成するポリエチレンを架橋させて架橋型 2軸配向 ポリェチレン管をサンプル管として得た。  Using a billet XI, a non-crosslinked biaxially oriented polyethylene tube having an outer diameter of 156.8 mm and an inner diameter of 14.5 mm was obtained in the same manner as in Example 1, and the obtained non-crosslinked type was obtained. An electron beam irradiator (Nisshin High Voltage ESP 7500 kV) is used to irradiate the biaxially oriented polyethylene tube with an electron beam of 3 MRad at an acceleration voltage of 7500 kV. The polyethylene constituting the tube was crosslinked by an electron beam crosslinking method to obtain a crosslinked biaxially oriented polyethylene tube as a sample tube.
上記のようにして得た実施例 1 0〜1 3のサンブル管 (架橋型 2軸配向ポリエ チレン管) および比較例 1のサンプル管 (無架橋型 2軸配向ボリエチレン管) に ついて耐震性の評価を行い、 その結果を架橋条件とゲル分率と合わせて表 3に示 した。  Evaluation of the seismic resistance of the sample tubes (crosslinked biaxially oriented polyethylene tubes) of Examples 10 to 13 and the sample tube (non-crosslinked biaxially oriented polyethylene tubes) of Comparative Example 1 obtained as described above. Table 3 shows the results together with the crosslinking conditions and the gel fraction.
なお、 耐震性の評価については、 管の軸方向にサンプルを切り出し、 J I S K 7 0 5 7の 「ガラス繊維強化プラスチックの層間剪断試験方法」 と同様の方 法を用いて、 層間剝離が生じるかどうかを評価した。 そして、 クラックが生じ、 応力の増加に伴レ、亀裂が伝播するものは耐震性が X、 クラックが生じず、 亀裂が 伝播しないものを耐震性が〇とした。 For the evaluation of seismic resistance, cut out a sample in the axial direction of the pipe and use the same method as JISK 757, `` Interlayer Shear Test Method for Glass Fiber Reinforced Plastics '', to determine whether interlayer separation occurs. Was evaluated. And cracks occur, With the increase in stress, the case where the crack propagated was rated X for seismic resistance, and the case where cracks did not occur and the crack did not propagate was rated as Δ for seismic resistance.
さらに、 表 3から、 管を構成するポリオレフインの一部が架橋されていれば、 層間剝離もおきず、 より変性追従性を高めることができ、 耐震性に優れたものと なることが理解できる。  Further, from Table 3, it can be understood that if a part of the polyolefin constituting the pipe is crosslinked, no delamination occurs, the degeneration followability can be further improved, and the seismic resistance is excellent.
また、 実施例 1 2と他の実施例 1 0, 1 1 , 1 3とを比較すると、 架橋方法は 、 電子線架橋法、 熱水架橋法のいずれの方法であってもよいことが理解できる。  Further, when Example 12 is compared with other Examples 10, 11, and 13, it can be understood that the crosslinking method may be any of an electron beam crosslinking method and a hot water crosslinking method. .
産業上の利用可能性  Industrial applicability
本発明により、 埋設管として用いられた際に求められる性能である変形追従性 が高いことおよび周方向の弾性が高いことを両立させることができ、 耐震性が高 い 2軸配向ポリオレフイン管を提供することができる。 また、 このように変形追 従性および周方向への弾性を両立できるので、 铸鉄管、 コンクリート管などと比 較して、 内圧、 土圧などに対して長期間、 高い耐久性を保つことができるだけで なく、 本発明に係る方法を用いることによって、 管の厚みを低減させながら管の 口径を大きくすることができ、 経済的にも優れた 2軸配向ポリオレフィン管を提 供することができる。  According to the present invention, it is possible to provide a biaxially oriented polyolefin pipe having high seismic resistance, which can achieve both high deformation followability and high elasticity in the circumferential direction, which are performances required when used as a buried pipe. can do. In addition, since it is possible to achieve both deformation followability and elasticity in the circumferential direction in this way, it is possible to maintain high durability for a long time against internal pressure, earth pressure, etc. as compared to steel pipes, concrete pipes, etc. Instead, by using the method according to the present invention, it is possible to increase the diameter of the pipe while reducing the thickness of the pipe, and to provide a biaxially oriented polyolefin pipe which is economically excellent.
また、 管を構成するポリオレフイン樹脂の少なくとも一部を架橋させれば、 よ り高い耐久性、 特に、 耐震性を備えたものとすることができる。  Further, if at least a part of the polyolefin resin constituting the pipe is cross-linked, higher durability, particularly, earthquake resistance can be obtained.
もちろん、 本発明に係る 2軸配向ポリオレフイン管は、 従来のポリオレフイン 管と同様に、 2つ以上接続して用いることができる。 また、 本発明のように、 ポ リオレフィン分子を軸方向および周方向に配向させることにより、 ガスバリァ性 、 耐薬品性、 表面硬度を向上させることもでき、 従来のポリオレフイン管の用途 (例えば、 地中埋設管) 以外にも展開可能である。 (表 1 ) 屈 折 率 引張弾性率 (GPa) 曲げ弾性率 (GPa) 周方向(nh) 轴方向(na) ビレ, \ (nn) (nh-na) (nh- na)バ nh) 周方向(tmh) 轴方向(tma) 周方向(tfh) 轴方向(tfa)Of course, two or more biaxially oriented polyolefin tubes according to the present invention can be used by connecting two or more, similarly to the conventional polyolefin tube. Further, as in the present invention, the gas barrier property, chemical resistance, and surface hardness can be improved by orienting the polyolefin molecules in the axial direction and the circumferential direction. It can be expanded to other than the middle buried pipe). (Table 1) Flexural modulus Tensile modulus (GPa) Flexural modulus (GPa) Circumferential direction (nh) 轴 direction (na) Bille, \ (nn) (nh-na) (nh-na) bar nh) Circumferential direction (Tmh) 轴 direction (tma) Circumferential direction (tfh) 轴 direction (tfa)
1 1.490 1.470 1.460 0.02 0.0134 6 2.5 6 2.51 1.490 1.470 1.460 0.02 0.0134 6 2.5 6 2.5
2 1.490 1.480 1.460 0.01 0.0067 6 4 6 4 実 3 1.510 1.470 1.460 0.04 0.0265 8 2.5 8 2.52 1.490 1.480 1.460 0.01 0.0067 6 4 6 4 Actual 3 1.510 1.470 1.460 0.04 0.0265 8 2.5 8 2.5
4 1.475 1.470 1.460 0.005 0.0034 3 2 3 2 施 5 1.520 1.470 1.460 0.05 0.0329 9 2.5 9 2.54 1.475 1.470 1.460 0.005 0.0034 3 2 3 2 Al 51.520 1.470 1.460 0.05 0.0329 9 2.5 9 2.5
6 1.480 1.478 1.460 0.002 0.0014 4 3.8 4 3.86 1.480 1.478 1.460 0.002 0.0014 4 3.8 4 3.8
7 1.485 1.465 1.455 0.02 0.0135 3 1.5 3 1.5 例 7 1.485 1.465 1.455 0.02 0.0135 3 1.5 3 1.5 Example
8 1.495 1.475 1.465 0.02 0.0134 7 3 7 3 8 1.495 1.475 1.465 0.02 0.0134 7 3 7 3
9 1.480 1.460 1.450 0.02 0.0135 7 3 7 3 比 1 1.470 1.490 1.460 - 0.02 -0.0136 6 7 6 7 铰 2 1.480 1.485 1.460 - 0.005 -0.0034 3 4 3 4 例 3 1.460 1.460 1.460 0 0 1.1 1.1 1.1 1.1 9 1.480 1.460 1.450 0.02 0.0135 7 3 7 3 Ratio 1 1.470 1.490 1.460-0.02 -0.0136 6 7 6 7 铰 2 1.480 1.485 1.460-0.005 -0.0034 3 4 3 4 Example 3 1.460 1.460 1.460 0 0 1.1 1.1 1.1 1.1
(表 2) 降伏強度 (MPa) 引張破断伸度 (%) 延伸倍率 (倍) 延伸温度 周方向(tyh) 軸方向(tya) 周方向(tbh) 軸方向(tba) 周方向 軸方向 (°C)(Table 2) Yield strength (MPa) Tensile elongation at break (%) Stretch ratio (times) Stretching temperature Circumferential direction (tyh) Axial direction (tya) Circumferential direction (tbh) Axial direction (tba) Circumferential direction (° C) )
1 48 40 150 600 3.4 2 1251 48 40 150 600 3.4 2 125
2 47 43 150 400 3.4 3 1252 47 43 150 400 3.4 3 125
3 54 30 150 300 6 1.5 1253 54 30 150 300 6 1.5 125
4 33 30 250 500 2 1.5 125 施 5 55 31 100 200 7 1.2 1254 33 30 250 500 2 1.5 125 Application 5 55 31 100 200 7 1.2 125
6 38 37 200 220 2.5 2.2 1256 38 37 200 220 2.5 2.2 125
7 27 24 140 500 3.4 2 110 例 7 27 24 140 500 3.4 2 110 Example
8 52 43 150 600 3.4 2 125 8 52 43 150 600 3.4 2 125
9 51 41 120 250 3.4 2 140 比 1 48 60 150 100 3.4 4 125 較 2 38 46 400 150 2 3.5 125 例 3 23.5 23.5 1500 1500 9 51 41 120 250 3.4 2 140 ratio 1 48 60 150 100 3.4 4 125 comparison 2 38 46 400 150 2 3.5 125 Example 3 23.5 23.5 1500 1500
(表 3 ) 架橋方法 ゲル分率 耐震性評価 実施例 10 電子線架橋 1 6 % 〇 実施例 11 電子線架橋 4 4 % 〇 実施例 12 熱水架橋 2 5 % 〇 実施例 13 電子線架橋 2 1 % 〇 比較例 1 0 X (Table 3) Crosslinking method Gel fraction Seismic evaluation Example 10 Electron beam crosslinking 16% 1 Example 11 Electron beam crosslinking 4 4% 4 Example 12 Hot water crosslinking 25% 〇 Example 13 Electron beam crosslinking 21 % 〇 Comparative Example 1 0 X

Claims

請求の範囲 The scope of the claims
1. 軸方向および周方向に配向された 2軸配向ポリオレフィン管において 、 周方向の配向度が軸方向の配向度よりも大きいことを特徴とする 2軸配向ポリ ォレフィン管。  1. A biaxially oriented polyolefin tube oriented in the axial and circumferential directions, wherein the degree of orientation in the circumferential direction is greater than the degree of orientation in the axial direction.
2. 周方向の屈折率 (nh)が、 軸方向の屈折率(na) より大きく、 力、 つ周方向の屈折率 (nh) が無配向状態の屈折率 (nn) より 0. 004以上大 きいことを特徴とする請求項 1に記載の 2軸配向ポリオレフイン管。  2. The refractive index in the circumferential direction (nh) is greater than the refractive index in the axial direction (na), and the refractive index in the circumferential direction (nh) is greater than the refractive index in the unoriented state (nn) by more than 0.004. 2. The biaxially oriented polyolefin tube according to claim 1, wherein the polyolefin tube has a diameter.
3. (周方向の屈折率 (nh) —軸方向の屈折率 (na) ) ノ (周方向の屈 折率 (nh) )が 0. 004以上0. 03以下であることを特徴とする請求項 1 または 2に記載の 2軸配向ポリオレフィン管。  3. (Circumferential refractive index (nh)-axial refractive index (na)) No (circumferential refractive index (nh)) is not less than 0.004 and not more than 0.03. Item 3. The biaxially oriented polyolefin tube according to item 1 or 2.
4. 軸方向および周方向に配向された 2軸配向ポリオレフィン管において 、 周方向の引張弾性率 (tmh) が軸方向の引張弾性率(tma) よりも大きい ことを特徴とする 2軸配向ポリオレフイ ン管。  4. In a biaxially oriented polyolefin pipe oriented in the axial direction and the circumferential direction, a tensile modulus in the circumferential direction (tmh) is larger than a tensile modulus in the axial direction (tma). tube.
5. (周方向の引張弾性率 (tmh) ) / (軸方向の引張弾性率 (tma ) ) が 1より大きく 8以下であることを特徴とする請求項 4に記載の 2軸配向ボ リオレフィン管。  5. The biaxially oriented polyolefin according to claim 4, wherein (tensile modulus in the circumferential direction (tmh)) / (tensile modulus in the axial direction (tma)) is more than 1 and 8 or less. tube.
6. 周方向の引張弾性率 (tmh)が 0. 5GPa以上 2 OGPa以下で にあり、 かつ軸方向の引張弾性率 (tma) が 0. 5GPa以上 1 OGPa以下 である請求項 4または 5に記載の 2軸配向ボリオレフイン管。  6. The tensile modulus in the circumferential direction (tmh) is 0.5 GPa or more and 2 OGPa or less, and the tensile modulus in the axial direction (tma) is 0.5 GPa or more and 1 OGPa or less. Biaxially oriented polyolefin tube.
7. 軸方向および周方向に配向された 2軸配向ポリオレフィン管において 7. For biaxially oriented polyolefin pipes oriented axially and circumferentially
、 周方向の曲げ弾性率 (mf h)が軸方向の曲げ弾性率 (mf a) よりも大きい ことを特徴とする 2軸配向ポリオレフイン管。 A biaxially oriented polyolefin tube, wherein the flexural modulus in the circumferential direction (mfh) is larger than the flexural modulus in the axial direction (mfa).
8. (周方向の曲げ弾性率 (mf h) ) / (軸方向の曲げ弾性率 (m f a ) ) 力 1以上 8以下であることを特徴とする請求項 7に記載の 2軸配向ポリオレ フィ ン管。  8. The biaxially oriented polyolefin according to claim 7, wherein a force of (circumferential bending elastic modulus (mf h)) / (axial bending elastic modulus (mfa)) is 1 or more and 8 or less. tube.
9. 周方向の曲げ弾性率 (mf h)が 0. 5GPa以上 2 OGPa以下で あり、 かつ軸方向の曲げ弾性率 (mf a)が 0. 50 3以上1 OGPa以下で ある請求項 7または 8に記載の 2軸配向ポリオレフイン管。  9. The bending elastic modulus (mf h) in the circumferential direction is 0.5 GPa or more and 2 OGPa or less, and the bending elastic modulus (mf a) in the axial direction is 0.503 or more and 1 OGPa or less. 2. The biaxially oriented polyolefin tube according to 1.
1 0. 軸方向および周方向に配向された 2軸配向ポリオレフイン管におい て、 軸方向の引張破断伸度 (t b a) が周方向の引張破断伸度 (t bh) よりも 大きいことを特徴とする 2軸配向ポリオレフイン管。 10 0. In biaxially oriented polyolefin tubes oriented axially and circumferentially A biaxially oriented polyolefin tube, wherein the tensile elongation at break (tba) in the axial direction is larger than the tensile elongation at break (t bh) in the circumferential direction.
1 1. ( (軸方向の引張破断伸度 ( t b a) ) Z (周方向の引張破断伸度 (t bh) ) が 1より大きく 8以下であることを特徴とする請求項 1 0に記載の 2軸配向ポリオレフィン管。  11. The method according to claim 10, wherein ((axial tensile elongation at break (tba)) Z (circumferential tensile elongation at break (t bh)) is greater than 1 and equal to or less than 8 Biaxially oriented polyolefin tube.
1 2. 管を構成するポリオレフイン樹脂の少なくとも一部が架橋されてい る請求項 1〜請求項 1 1のいずれか 1項に記載の 2軸配向ポリオレフィン管。  12. The biaxially oriented polyolefin pipe according to any one of claims 1 to 11, wherein at least a part of a polyolefin resin constituting the pipe is crosslinked.
1 3. 管を構成するポリオレフィン樹脂のゲル分率が 1 0 %以上 70 %以 下である請求項 1〜請求項 1 2のいずれか 1項に記載の 2軸配向ポリオレフイン 管。  1 3. The biaxially oriented polyolefin tube according to any one of claims 1 to 12, wherein the polyolefin resin constituting the tube has a gel fraction of 10% or more and 70% or less.
1 4. 管を構成するポリオレフイン樹脂がポリエチレンである請求項 1〜 請求項 1 3のいずれかに 1項に記載の 2軸配向ポリオレフィン管。  14. The biaxially oriented polyolefin pipe according to any one of claims 1 to 13, wherein the polyolefin resin constituting the pipe is polyethylene.
1 5. 管を構成するポリエチレンの密度が 0. 940 gZcm3 以上 0. 9 80 g/cra3 以下である請求項 1 4に記載の 2軸配向ポリオレフィン管。 15. The biaxially oriented polyolefin pipe according to claim 14, wherein the density of polyethylene constituting the pipe is 0.940 gZcm 3 or more and 0.980 g / cra 3 or less.
PCT/JP1999/005453 1998-10-13 1999-10-01 Biaxially oriented polyolefin pipe WO2000021732A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP29092298 1998-10-13
JP10/290924 1998-10-13
JP29092498A JP4511646B2 (en) 1998-10-13 1998-10-13 Method for producing biaxially oriented polyolefin tube
JP10/290922 1998-10-13

Publications (1)

Publication Number Publication Date
WO2000021732A1 true WO2000021732A1 (en) 2000-04-20

Family

ID=26558307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005453 WO2000021732A1 (en) 1998-10-13 1999-10-01 Biaxially oriented polyolefin pipe

Country Status (1)

Country Link
WO (1) WO2000021732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573810B1 (en) * 2017-01-26 2021-06-30 SABIC Global Technologies B.V. Process for producing pipe by biaxial elongation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198866A (en) * 1962-02-06 1965-08-03 Remington Arms Co Inc Method and apparatus for producing plastic tubular members
WO1980000550A1 (en) * 1978-09-08 1980-04-03 Bethlehem Steel Corp An oriented,semi-crystalline polymer product and method and apparatus for producing such product
JPS57156227A (en) * 1981-03-23 1982-09-27 Agency Of Ind Science & Technol Manufacture of tubular body
WO1984000398A1 (en) * 1982-07-19 1984-02-02 Caterpillar Tractor Co Bulkhead-fluid-line connector
JPS6311336A (en) * 1986-03-31 1988-01-18 株式会社クラレ Pipe and manufacture thereof
US5650114A (en) * 1988-11-30 1997-07-22 British Technology Group Limited Tubular materials
JPH10225987A (en) * 1997-02-13 1998-08-25 Mitsubishi Chem Corp Manufacture of resin tubular body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198866A (en) * 1962-02-06 1965-08-03 Remington Arms Co Inc Method and apparatus for producing plastic tubular members
WO1980000550A1 (en) * 1978-09-08 1980-04-03 Bethlehem Steel Corp An oriented,semi-crystalline polymer product and method and apparatus for producing such product
JPS57156227A (en) * 1981-03-23 1982-09-27 Agency Of Ind Science & Technol Manufacture of tubular body
WO1984000398A1 (en) * 1982-07-19 1984-02-02 Caterpillar Tractor Co Bulkhead-fluid-line connector
JPS6311336A (en) * 1986-03-31 1988-01-18 株式会社クラレ Pipe and manufacture thereof
US5650114A (en) * 1988-11-30 1997-07-22 British Technology Group Limited Tubular materials
JPH10225987A (en) * 1997-02-13 1998-08-25 Mitsubishi Chem Corp Manufacture of resin tubular body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3573810B1 (en) * 2017-01-26 2021-06-30 SABIC Global Technologies B.V. Process for producing pipe by biaxial elongation

Similar Documents

Publication Publication Date Title
EP0851805B1 (en) Method and apparatus for manufacturing of oriented polymeric products
US4551380A (en) Oriented heat-sealable multilayer packaging film
RU2002129592A (en) POLYMER PIPE COMPOSITION
EP3291960B1 (en) Method for sheet extrusion thermoforming of polyethylene
US5077121A (en) High strength high modulus polyolefin composite with improved solid state drawability
JP2010510094A (en) Polyethylene useful in the production of films and molded articles by a method using solid state stretching
US7179521B2 (en) Multilayer shrink film for high speed packaging lines
SE505932C2 (en) Use of cross-linked biaxially oriented polyolefin plastic as material in pressure pipes
Knight Polyethylene
WO2000021732A1 (en) Biaxially oriented polyolefin pipe
EP3595863B1 (en) Process for producing pipe by biaxial elongation
JP2000343600A (en) Manufacture of biaxially oriented polyolefin resin pipe and biaxially oriented high density polyethylene pipe
JP4511646B2 (en) Method for producing biaxially oriented polyolefin tube
CN110234495B (en) Method for producing a tube by biaxial stretching
JP4246823B2 (en) Biaxially oriented polyethylene pipe and method for producing the same
US20220371262A1 (en) Biaxially oriented pipe
EP3277497B1 (en) Multilayer shrink film with scission layer
EP1259552B1 (en) Use of modified linear low density polyethylene in shrink films and shrink films
EP3962710B1 (en) Pipe for transport of chlorinated water
JP2002326327A (en) Method for manufacturing thermoplastic composite foam
JP2000117832A (en) Biaxially oriented polyethylene resin tube
US20220396693A1 (en) Biaxially oriented pipe
Michel et al. A Study Assessing the Performance of O-PVC in Pressure Pipes
JP2000296553A (en) Biaxially oriented polyolefinic resin tubular object
Fallatah A study of mechanical properties and processability of blown films using b-LLDPE and LDPE blends

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase