WO1999064559A2 - Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif - Google Patents

Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif Download PDF

Info

Publication number
WO1999064559A2
WO1999064559A2 PCT/CH1999/000243 CH9900243W WO9964559A2 WO 1999064559 A2 WO1999064559 A2 WO 1999064559A2 CH 9900243 W CH9900243 W CH 9900243W WO 9964559 A2 WO9964559 A2 WO 9964559A2
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
cells
electrodes
porous membrane
electrode
Prior art date
Application number
PCT/CH1999/000243
Other languages
English (en)
Other versions
WO1999064559A3 (fr
Inventor
Claude HÄNNI
Luc Stoppini
Original Assignee
Haenni Claude
Luc Stoppini
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haenni Claude, Luc Stoppini filed Critical Haenni Claude
Priority to AT99923354T priority Critical patent/ATE236399T1/de
Priority to JP2000553549A priority patent/JP2002517225A/ja
Priority to US09/701,956 priority patent/US6689594B1/en
Priority to EP99923354A priority patent/EP1133691B1/fr
Priority to AU40279/99A priority patent/AU4027999A/en
Priority to DE69906574T priority patent/DE69906574T2/de
Priority to IL14017499A priority patent/IL140174A/xx
Publication of WO1999064559A2 publication Critical patent/WO1999064559A2/fr
Publication of WO1999064559A3 publication Critical patent/WO1999064559A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • G01N33/4836Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures using multielectrode arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Definitions

  • the present invention relates to a device for the cultivation of clusters of organic cells and for the study of the electrophysiological activity of cells, in which the cells are placed on at least one porous membrane, the underside of which is in contact with a liquid. nutritious, this device comprising at least one electrode arranged to be in contact with said cluster of organic cells.
  • the present invention also relates to a membrane made of a porous synthetic material, as well as the use of this membrane to produce a model of blood-brain barrier.
  • Such a device is described in particular in French patent application FR-A-2 733 055.
  • a device is described which makes it possible to keep tissue explants alive and to continuously collect and analyze the electrophysiological and biochemical activity of the tissue studied.
  • This device is formed by two half-cards respectively forming the upper part and the lower part of the interface which come together to form a card intended to be inserted in an electronic unit specially designed for this purpose.
  • the electrodes and the cells are intimately linked.
  • part of them remain attached to the electrodes, which has the effect of destroying the structure of the cluster of cells and thus rendering them unusable.
  • the cells are fed from below and the electrodes are placed on the pile of cells. These electrodes therefore prevent visualization of the tissues. This visualization is important in particular because it makes it possible to know the organization of the tissues and thus to determine the electrodes which must be used. It also helps control the survival of these tissues.
  • the electrodes prevents intervention on the tissues analyzed. In addition, this implies that the electrodes must have a relatively high mechanical resistance since they are formed from copper tracks not resting on a substrate. In addition, the design of the card into two half-cards involves the manufacture and assembly of a large number of parts.
  • the electrodes are arranged between the two half-cards, it is necessary that one of their ends is brought into an area accessible by an electrical connector.
  • the cost of use due to the number of parts and the complexity of the device is high.
  • the device comprises an array of electrodes.
  • Each electrode advantageously comprises an analysis zone arranged to be able to be placed in contact with the cluster of cells, and a measurement zone arranged to be able to be brought into contact with an apparatus generating an electrical signal and / or measuring an electrical signal.
  • the porous membrane is preferably held on a rigid support.
  • This rigid support advantageously contains a nutrient liquid supply chamber, this chamber communicating with an inlet duct and a nutrient liquid discharge duct and being provided with an opening communicating with said porous membrane.
  • the porous membrane is surmounted by a capsule arranged to maintain the organic cells in a controlled environment.
  • This capsule may include a gas injection pipe and a gas discharge pipe.
  • the measurement zones of the electrodes of the electrode network are arranged on a circle.
  • the network of electrodes advantageously comprises a means of indexing its position.
  • the porous membrane is transparent.
  • the aims set by the invention are also achieved by a membrane as defined in the preamble and characterized in that it comprises at least one electrode deposited on this membrane.
  • the membrane comprises an array of electrodes deposited on this membrane.
  • each electrode comprises at least one analysis zone, a measurement zone and a connection zone.
  • the aims of the invention are also achieved by a method for producing a blood-brain barrier model from a membrane as defined above, this method being characterized in that it comprises steps consisting in: treating the porous membrane so as to allow endothelial cells to adhere to it, placing endothelial cells on a face without an electrode, porous membrane, cultivating said endothelial cells until they form a layer, and placing an organotypic culture in a slice on the other face comprising at least one electrode, of the porous membrane.
  • FIG. 1 is a top view of the device according to the present invention
  • FIG. 2 is an enlarged view of part of the device of Figure 1;
  • FIG. 3 is a sectional view along line A-A of Figure 1;
  • FIG. 4 is a sectional view illustrating a particular use of the device of the invention.
  • the device 10 comprises a support 11 in the thickness of which is provided a supply chamber 12 for nutritive liquid.
  • This feed chamber communicates with an inlet duct
  • This chamber linked to a perfusion system (not shown) of nutritive liquid. This chamber also communicates with a discharge pipe 14 of said nutritive liquid.
  • This chamber also has an opening 15 at the top of the support.
  • a transparent porous membrane 16 is placed on the support 11 so as to cover the opening 15.
  • This porous membrane 16 can be produced for example from polyethylene terephthalate (PET) or from polycarbonate in particular. It comprises an array of electrodes 17 produced directly on the membrane. Each electrode 18 of the electrode array 17 comprises an analysis area 19, a measurement area 20 and a connection area 21.
  • the analysis zone 19 is a non-insulated part of the electrode. This zone is located above the opening 15 of the supply chamber 12.
  • the measurement zone 20 is also a non-insulated part of the electrode. It is produced, for example, in the form of a circle having a sufficient surface to be easily brought into contact with a connector.
  • the connection area 21 is an isolated part of the electrode, connecting the analysis area 19 to the measurement area 20.
  • the electrodes can be made, for example, of gold or platinum.
  • the network of electrodes can be produced according to several distinct methods. In one of the processes, a layer of gold is evaporated, for example, on the porous membrane by means of a process known under the name of "Plasma vapor deposition" (PVD) or by evaporation under vacuum. A layer of photoresist is then deposited. This layer is subjected to sunshine through a first photographic mask reproducing the network of electrodes. The whole is then revealed. The gold is chemically machined, then the membrane is rinsed before the first layer of photoresist is completely dissolved.
  • the insulation of certain parts of the electrode network is carried out as follows: a layer of a second photoresist material is deposited by soaking on the membrane. This material undergoes cooking, then a new insolation is carried out through a photographic mask reproducing the isolated zones of the electrodes. The membrane then undergoes development, then rinsing.
  • the network of electrodes can also be produced by evaporation of gold by the PVD process through a first mask.
  • the insulator "network" is then similarly deposited by a PVD process through a second mask.
  • the insulation may for example be titanium oxide.
  • Each electrode can also include a non-isolated area, constituting the analysis area 19, having a square shape for example.
  • This non-insulated area is arranged near the end of each electrode, above the opening 15 of the supply chamber.
  • Gold or platinum is then deposited by electrodeposition in the uninsulated area. This process is advantageous from different points of view. On the one hand, it allows good electrical contact between the cells and the electrodes. On the other hand, this decreases the impedance of the electrodes. Finally, it is particularly easy to modify the active surface of the electrodes, i.e. the surface of the zone not isolated. It is also possible to produce electrodes having different active surfaces in the same electrode network.
  • the measurement areas of the electrodes are arranged on a circle so that they are easily accessible for activating the electrodes or for measuring electrical signals. It is clear that other configurations could also be chosen.
  • the device 10 further comprises a capsule 22 formed from a side wall and a partially open bottom. This capsule is rigidly fixed above the porous membrane so that the opening 15 of the supply chamber communicates with the opening of the bottom of the capsule 22 via the porous membrane 16.
  • This capsule 22 further comprises a cover 23 which can be placed on the capsule so as to protect its contents from the outside environment. This cover can be closed hermetically.
  • the capsule may also include a gas injection pipe 28 and a gas discharge pipe 29. Depending on the measurements to be made or the nature of the cells or products to be tested, a gas can be introduced into this gas injection pipe. It is also possible to generate a gas flow in the chamber by introducing a gas into the injection pipe and by evacuating it through the gas discharge pipe.
  • the support 11 is rigid and includes means 24 for holding and indexing means 25 for its position.
  • the holding means 24 can be made in the form of two holes 26 cooperating with two rods of a connection box (not shown). These holding means make it possible to maintain the device 10 in position in this connection box.
  • the indexing means 25 are, for example, formed by a notch 27 cooperating with a boss (not shown) of the connection box. They ensure the correct positioning of the device in the connection box and in particular prevent this device from being placed in a symmetrical position with respect to the correct position.
  • a cell mass is placed in the capsule 22.
  • This mass can be placed directly on the porous membrane 16, in a conventional manner. It is however also possible to cultivate cells on a porous membrane having for example a circular shape, then to place these cells with the circular membrane in the capsule. This is particularly interesting in the case where cells have to be cultured before they can be analyzed. It is thus possible to stimulate and record the electrophysiological responses of the cells through the precut membrane, without this biological tissue being in direct contact with the electrodes.
  • a nutritive liquid is brought into the supply chamber 12 through the inlet conduit 13. This liquid comes into contact with the porous membrane and completely covers the cellular mass of nutritive liquid by a film of culture medium. This allows good diffusion of gases throughout the thickness of the tissue, and ensures a long life of the cells. On the other hand, this avoids the need to set the entire device in motion, as in some devices of the prior art.
  • the cover 23 of the capsule 22 is generally kept closed in order to avoid pollution due to the external environment.
  • the film of nutritive liquid also has the effect of pressing the cell mass against the electrodes, which ensures good electrical contact between the electrodes and the cells, without it being necessary to bond these cells.
  • the device is advantageously placed in a connection box (not shown) which connects each of the measurement areas of the electrodes to an input of the connection box. This allows an electrical signal to be transmitted in a simple manner to one or more selected electrodes of the electrode network, by introducing this signal to the corresponding input or inputs of the connection box.
  • this allows a simple measurement of an electrical signal from one or more electrodes of the electrode network.
  • the inlet 13 and outlet 14 conduits make it possible to introduce chemical substances to be tested, while maintaining the device in its environment in which the electrical measurements are carried out.
  • the porous membrane being transparent, the cell mass can be analyzed under the microscope without it being necessary to remove it from the electrodes and, consequently, without destroying its structure.
  • the membrane can also be removed from the support, which facilitates its handling during various tests.
  • FIG. 4 illustrates a particular use of the device 30 according to the invention, in which a blood-brain barrier model has been produced.
  • This blood-brain barrier is made up of endothelial cells that line the capillaries of the central nervous system. These cells have specific properties compared to those of other organs. They form a barrier which prevents the passage of most of the water-soluble molecules, except those which have a particular transporter such as for example glucose.
  • This barrier plays an important role in the protection of nervous tissue. It sometimes prevents the passage of certain active drugs, but which cannot cross this barrier. For this reason, it is important to have blood-brain barrier models to test the permeability of new drugs.
  • the blood-brain barrier model developed with the device of the present invention is obtained by the co-culture of endothelial cells 31 and organotypic cultures 32 in slices.
  • This barrier model is particularly interesting because it allows to know in a single experiment, the permeability of molecules and its effects on nervous tissue.
  • the co-culture of endothelial cells 31 and organotypic cultures 32 is integrated into the porous membrane 16.
  • the assembly thus formed makes it possible to test the permeability of molecules in a model which is very close to the in-vivo situation, but which is much simpler and less costly to produce.
  • the porous membrane 16 is first treated so as to allow the endothelial cells 31 to adhere to it. Endothelial cells are then injected into the chamber. When they form a compact layer, an organotypic culture 32 is placed on the other side of the membrane, on the electrodes 18 forming the network of electrodes.
  • the entire device is kept for a few days in an incubator, for the time necessary for the formation of the blood-brain barrier.
  • the device of the invention, to which the blood-brain barrier is added, is used as described above.
  • the molecules to be tested are injected into the chamber through the inlet duct 13.
  • the permeability of the neuroactive molecules can be directly determined by analyzing the modifications of the electrophysiological activity of the nervous tissues, these modifications being able to appear due to the presence of the molecules to be tested in the tissue.
  • the network of electrodes makes it possible to simultaneously stimulate and record the electrical activity of the nervous tissue via an appropriate treatment device.
  • the device according to the present invention is generally intended for single use. It is discarded after each analysis. The number of pieces that make it up has been reduced to a minimum. This therefore makes it possible to reduce the cost of the device.
  • the present invention is not limited to the embodiment described, but extends to any variant obvious to a person skilled in the art.
  • the shape of the porous membrane 16 could be non-circular. Using, for example, a square porous membrane, positioning the sides of the square would ensure positioning of the electrodes. This positioning can be important when the device must cooperate with a connection box in which the position of the connectors is fixed.

Abstract

Le dispositif comporte un support (11) dans l'épaisseur duquel est réalisée une chambre d'alimentation (12) ayant un conduit d'entrée (13) de liquide nutritif et un conduit d'évacuation (14) de ce liquide. Une capsule (22) pouvant recevoir des cellules organiques est disposée sur le support (11). La chambre d'alimentation (12) et le support (11) sont séparés par une membrane poreuse (16) comportant un réseau d'électrodes (17) disposées de façon à pouvoir être en contact avec différentes zones de l'amas de cellules et permettre ainsi d'analyser leur activité électrophysiologique. Ce dispositif permet d'augmenter la durée de vie des cellules et d'effectuer des analyses de façon simple, efficace et sans nuire à l'organisation des cellules.

Description

DISPOSITIF DE CULTURE DE CELLULES ORGANIQUES ET D'ETUDE DE LEUR ACTIVITE ELECTROPHYSIOLOGIQUE ET MEMBRANE UTILISEE DANS UN TEL DISPOSITIF
La présente invention concerne un dispositif pour la culture d'amas de cellules organiques et pour l'étude de l'activité électrophysiologique des cellules, dans lequel les cellules sont placées sur au moins une membrane poreuse dont la face inférieure est en contact avec un liquide nutritif, ce dispositif comportant au moins une électrode agencée pour être en contact avec ledit amas de cellules organiques.
La présente invention concerne également une membrane réalisée en une matière synthétique poreuse, ainsi que l'utilisation de cette membrane pour réaliser un modèle de barrière hémato-encéphalique.
Il existe actuellement différents dispositifs permettant de mesurer l'activité électrophysiologique d'amas de cellules organiques.
Un tel dispositif est en particulier décrit dans la demande de brevet français FR-A-2 733 055. Dans ce document, il est décrit un dispositif qui permet de maintenir en vie des explants tissulaire et de recueillir et d'analyser en continu l'activité électrophysiologioque et biochimique du tissu étudié. Ce dispositif est formé de deux demi-cartes formant respectivement la partie supérieure et la partie inférieure de l'interface qui s'assemblent pour former une carte destinée à être insérée dans un boîtier électronique spécialement conçu à cet effet.
Ce dispositif donne des résultats satisfaisants, mais présente toutefois un certain nombre d'inconvénients. En effet, les électrodes sont forcées en direction des cellules jusqu'à ce qu'elles soient en contact avec celles-ci. Ceci blesse un certain nombre de cellules, ce qui diminue leur durée de survie.
Après un certain temps, les électrodes et les cellules sont intimement liées. Lorsqu'il est nécessaire de retirer les cellules, par exemple, pour réaliser une analyse au moyen d'un microscope, une partie d'entre elles restent fixées aux électrodes, ce qui a pour effet de détruire la structure de l'amas de cellules et de les rendre ainsi inutilisables.
Dans ce dispositif, les cellules sont nourries par dessous et les électrodes sont posées sur l'amas de cellules. Ces électrodes empêchent donc une visualisation des tissus. Cette visualisation est importante notamment parce qu'elle permet de connaître l'organisation des tissus et de déterminer ainsi les électrodes qui doivent être utilisées. Elle permet également de contrôler la survie de ces tissus.
En outre, le fait de placer les électrodes sur les cellules empêche d'intervenir sur les tissus analysés. De plus, ceci implique que les électrodes doivent avoir une résistance mécanique relativement élevées puisqu'elles sont formées de pistes de cuivre ne reposant pas sur un substrat. En outre, la conception de la carte en deux demi-cartes implique la fabrication et l'assemblage d'un nombre élevé de pièces.
Comme les électrodes sont disposées entre les deux demi-cartes, il faut qu'une de leur extrémité soit amenée dans une zone accessible par un connecteur électrique. Comme chaque carte est à usage unique, le coût d'utilisation dû au nombre de pièces et à la complexité du dispositif est élevé.
D'autres dispositifs comportant un substrat en verre ont également été développés. Dans ces dispositifs, les tissus biologiques doivent être collés pour qu'ils puissent adhérer au substrat. Le substrat n'étant pas poreux, il est nécessaire de placer le dispositif dans un appareillage qui assure un mouvement qui permet au tissu d'être successivement immergé et émergé pour que le tissu puisse respirer. Ce dispositif est lourd et ne permet pas une survie à long terme lorsque l'on arrête le mouvement. En outre, il est difficile de réaliser plusieurs substrats simultanément sur une plaque. La fabrication de tels substrats est particulièrement longue et coûteuse. La présente invention permet de pallier ces inconvénients en réalisant un dispositif bon marché, comportant un nombre restreint de pièces et permettant d'effectuer une analyse électrophysiologique et/ou microscopique des cellules sans les détruire.
Ces buts sont atteints par un dispositif tel que décrit en préambule et caractérisé en ce que les électrodes sont réalisées sur la membrane poreuse.
Selon un mode de réalisation préféré, le dispositif comporte un réseau d'électrodes.
Chaque électrode comporte avantageusement une zone d'analyse agencée pour pouvoir être disposée en contact avec l'amas de cellules, et une zone de mesure agencée pour pouvoir être mise en contact avec un appareil générant un signal électrique et/ou mesurant un signal électrique.
La membrane poreuse est de préférence maintenue sur un support rigide.
Ce support rigide contient avantageusement une chambre d'alimentation en liquide nutritif, cette chambre communiquant avec un conduit d'entrée et un conduit d'évacuation de liquide nutritif et étant pourvue d'une ouverture communiquant avec ladite membrane poreuse.
Selon une forme de réalisation préférée, la membrane poreuse est surmontée d'une capsule agencée pour maintenir les cellules organiques dans un environnement contrôlé. Cette capsule peut comporter un conduit d'injection de gaz et un conduit d'évacuation de gaz.
Selon un mode de réalisation particulier de l'invention, les zones de mesure des électrodes du réseau d'électrodes sont disposées sur un cercle. Le réseau d'électrodes comporte avantageusement un moyen d'indexage de sa position.
Selon une forme de réalisation préférée, la membrane poreuse est transparente.
Les buts fixés par l'invention sont également atteints par une membrane telle que définie en préambule et caractérisée en ce qu'elle comporte au moins une électrode déposée sur cette membrane.
Selon une forme de réalisation préférée, la membrane comporte un réseau d'électrodes déposées sur cette membrane.
Selon une forme de réalisation préférée, chaque électrode comporte au moins une zone d'analyse, une zone de mesure et une zone de connexion.
Finalement, les buts de l'invention sont également atteints par un procédé pour réaliser un modèle de barrière hémato-encéphalique à partir d'une membrane telle que définie ci-dessus, ce procédé étant caractérisé en ce qu'il comporte des étapes consistant à traiter la membrane poreuse de façon à permettre à des cellules endotheliales d'y adhérer, à placer des cellules endotheliales sur une face ne comportant pas d'électrode, de la membrane poreuse, à cultiver lesdites cellules endotheliales jusqu'à ce qu'elles forment une couche, et à placer une culture organotypique en tranche sur l'autre face comportant au moins une électrode, de la membrane poreuse.
La présente invention sera mieux comprise en référence à la description d'un mode de réalisation particulier de l'invention et aux dessins annexés dans lesquels :
- la figure 1 est une vue de dessus du dispositif selon la présente invention; - la figure 2 est une vue agrandie d'une partie du dispositif de la figure 1;
- la figure 3 est une vue en coupe selon la ligne A-A de la figure 1 ; et
- la figure 4 est une vue en coupe illustrant une utilisation particulière du dispositif de l'invention.
En référence aux figures, le dispositif 10 comporte un support 11 dans l'épaisseur duquel est réalisée une chambre d'alimentation 12 en liquide nutritif. Cette chambre d'alimentation communique avec un conduit d'entrée
13 lié à un système de perfusion (non représenté) de liquide nutritif. Cette chambre communique également avec un conduit d'évacuation 14 dudit liquide nutritif.
Cette chambre comporte également une ouverture 15 dans le haut du support. Une membrane poreuse 16 transparente est placée sur le support 11 de façon à recouvrir l'ouverture 15. Cette membrane poreuse 16 peut être réalisée par exemple en polyéthylène téréphtalate (PET) ou en polycarbonate notamment. Elle comporte un réseau d'électrodes 17 réalisées directement sur la membrane. Chaque électrode 18 du réseau d'électrodes 17 comporte une zone d'analyse 19, une zone de mesure 20 et une zone de connexion 21.
La zone d'analyse 19 est une partie non isolée de l'électrode. Cette zone se trouve au-dessus de l'ouverture 15 de la chambre d'alimentation 12. La zone de mesure 20 est également une partie non isolée de l'électrode. Elle est réalisée, par exemple, sous la forme d'un cercle ayant une surface suffisante pour être facilement mise en contact avec un connecteur.
La zone de connexion 21 est une partie isolée de l'électrode, reliant la zone d'analyse 19 à la zone de mesure 20. Les électrodes peuvent être réalisées, par exemple, en or ou en platine. Le réseau d'électrodes peut être réalisé selon plusieurs procédés distincts. Dans l'un des procédés, on évapore une couche d'or par exemple, sur la membrane poreuse au moyen d'un procédé connu sous la dénomination de "Plasma vapor déposition" (PVD) ou par evaporation sous vide. On dépose ensuite une couche de matière photorésistante. Cette couche est soumise à une insolation à travers un premier masque photographique reproduisant le réseau d'électrodes. L'ensemble est ensuite révélé. L'or est usiné chimiquement, puis la membrane est rincée avant que la première couche de matière photorésistante ne soit totalement dissolue.
L'isolation de certaines parties du réseau d'électrodes est effectuée de la façon suivante: une couche d'une deuxième matière photorésistante est déposée par trempage sur la membrane. Cette matière subit une cuisson, puis une nouvelle insolation est effectuée à travers un masque photographique reproduisant les zones isolées des électrodes. La membrane subit ensuite un développement, puis un rinçage.
Le réseau d'électrodes peut également être réalisé par evaporation d'or par procédé PVD à travers un premier masque. Le "réseau" d'isolant est ensuite déposé de façon similaire par un procédé PVD à travers un deuxième masque. L'isolation peut par exemple être de l'oxyde de titane.
Chaque électrode peut également comporter une zone non isolée, constituant la zone d'analyse 19, ayant une forme carrée par exemple. Cette zone non isolée est disposée à proximité de l'extrémité de chaque électrode, au-dessus de l'ouverture 15 de la chambre d'alimentation. De l'or ou du platine est ensuite déposé par électrodéposition dans la zone non isolée. Ce procédé est avantageux à différents points de vue. Il permet d'une part d'avoir un bon contact électrique entre les cellules et les électrodes. D'autre part, cela diminue l'impédance des électrodes. Finalement, il est particulièrement facile de modifier la surface active des électrodes, c'est-à-dire la surface de la zone non isolée. Il est également possible de réaliser des électrodes ayant des surfaces actives différentes dans un même réseau d'électrodes.
Dans le mode de réalisation illustré, les zones de mesure des électrodes sont disposées sur un cercle de telle façon qu'elles soient facilement accessibles pour activer les électrodes ou pour mesurer des signaux électriques. Il est clair que d'autres configurations pourraient également être choisies.
Le dispositif 10 comporte en outre une capsule 22 formée d'une paroi latérale et d'un fond partiellement ouvert. Cette capsule est fixée rigidement au- dessus de la membrane poreuse de telle façon que l'ouverture 15 de la chambre d'alimentation communique avec l'ouverture du fond de la capsule 22 par l'intermédiaire de la membrane poreuse 16.
Cette capsule 22 comporte en outre un couvercle 23 qui peut être placé sur la capsule de façon à protéger son contenu du milieu extérieur. Ce couvercle peut être fermé hermétiquement. La capsule peut également comporter un conduit 28 d'injection de gaz et un conduit 29 d'évacuation de gaz. En fonction des mesures à effectuer ou de la nature des cellules ou des produits à tester, un gaz peut être introduit dans ce conduit d'injection de gaz. Il est également possible de générer un flux de gaz dans la chambre en introduisant un gaz dans le conduit d'injection et en l'évacuant par le conduit d'évacuation de gaz.
Le support 11 est rigide et comporte des moyens de maintien 24 et des moyens d'indexage 25 de sa position. Les moyens de maintien 24 peuvent être réalisés sous la forme de deux trous 26 coopérant avec deux tiges d'un boîtier de connexion (non représenté). Ces moyens de maintien permettent d'assurer le maintien en position du dispositif 10 dans ce boîtier de connexion. Les moyens d'indexage 25 sont, par exemple, formés par une encoche 27 coopérant avec un bossage (non représenté) du boîtier de connexion. Ils permettent d'assurer le positionnement correct du dispositif dans le boîtier de connexion et évitent en particulier que ce dispositif ne soit placé dans une position symétrique par rapport à la position correcte.
Lors de l'utilisation du dispositif tel qu'illustré par les figures 1 à 3, un amas cellulaire est placé dans la capsule 22. Cet amas peut être placé directement sur la membrane poreuse 16, de façon conventionnelle. Il est toutefois également possible de cultiver des cellules sur une membrane poreuse ayant par exemple une forme circulaire, puis de placer ces cellules avec la membrane circulaire dans la capsule. Ceci est particulièrement intéressant dans le cas où des cellules doivent être cultivées avant de pouvoir procéder à leur analyse. Il est ainsi possible de stimuler et d'enregistrer les réponses électrophysiologiques des cellules à travers la membrane prédécoupée, sans que ce tissu biologique soit en contact direct avec les électrodes.
Un liquide nutritif est amené dans la chambre d'alimentation 12 par le conduit d'entrée 13. Ce liquide entre en contact avec la membrane poreuse et recouvre totalement l'amas cellulaire de liquide nutritif par un film de milieu de culture. Ceci permet une bonne diffusion des gaz dans toute l'épaisseur du tissu, et assure une durée de vie importante des cellules. D'autre part, cela permet d'éviter la nécessité de mettre l'ensemble du dispositif en mouvement, comme dans certains dispositifs de l'art antérieur. Le couvercle 23 de la capsule 22 est généralement maintenu fermé afin d'éviter des pollutions dues au milieu extérieur.
Le film de liquide nutritif a également pour effet de plaquer l'amas cellulaire contre les électrodes, ce qui assure un bon contact électrique entre les électrodes et les cellules, sans qu'il soit nécessaire de coller ces cellules. Le dispositif est avantageusement placé dans un boîtier de connexion (non représenté) qui relie chacune des zones de mesure des électrodes à une entrée du boîtier de connexion. Ceci permet de transmettre de façon simple, un signal électrique à une ou plusieurs électrodes sélectionnées du réseau d'électrodes, en introduisant ce signal à l'entrée ou aux entrées correspondantes du boîtier de connexion.
De même, ceci permet de mesurer de façon simple, un signal électrique d'une ou plusieurs électrodes du réseau d'électrodes.
Les conduits d'entrée 13 et d'évacuation 14 permettent d'introduire des substances chimiques à tester, tout en maintenant le dispositif dans son environnement dans lequel les mesures électriques sont effectuées.
La membrane poreuse étant transparente, l'amas cellulaire peut être analysé au microscope sans qu'il soit nécessaire de le retirer des électrodes et, par conséquent, sans détruire sa structure. La membrane peut également être retirée du support, ce qui facilite sa manipulation lors de différents tests.
La figure 4 illustre une utilisation particulière du dispositif 30 selon l'invention, dans lequel un modèle de barrière hémato-encéphalique a été réalisé. Cette barrière hémato-encéphalique est formée de cellules endotheliales qui tapissent les capillaires du système nerveux central. Ces cellules ont des propriétés spécifiques par rapport à celles des autres organes. Elles forment une barrière qui empêche le passage de la plupart des molécules hydrosolubles, sauf de celles qui ont un transporteur particulier tel que par exemple le glucose.
Cette barrière joue un rôle important dans la protection des tissus nerveux. Elle empêche parfois le passage de certains médicaments actifs, mais qui ne peuvent pas traverser cette barrière. Pour cette raison, il est important de disposer de modèles de barrières hémato-encéphaliques, pour tester la perméabilité de nouveaux médicaments.
Le modèle de barrière hémato-encéphalique développé avec le dispositif de la présente invention est obtenu par la co-culture de cellules endotheliales 31 et de cultures organotypiques 32 en tranche. Ce modèle de barrière est particulièrement intéressant du fait qu'il permet de connaître en une seule expérience, la perméabilité des molécules et ses effets sur les tissus nerveux.
Comme cela est illustré en détail par la figure 4, la co-culture des cellules endotheliales 31 et de cultures organotypiques 32 est intégrée à la membrane poreuse 16. L'ensemble ainsi formé permet de tester la perméabilité de molécules dans un modèle qui est très proche de la situation in-vivo, mais qui est nettement plus simple et moins coûteux à réaliser.
Dans ce mode de réalisation, la membrane poreuse 16 est tout d'abord traitée de façon à permettre aux cellules endotheliales 31 d'y adhérer. Des cellules endotheliales sont ensuite injectées dans la chambre. Lorsqu'elles forment une couche compacte, une culture organotypique 32 est placée de l'autre côté de la membrane, sur les électrodes 18 formant le réseau d'électrodes.
L'ensemble du dispositif est conservé pendant quelques jours dans un incubateur, pendant la durée nécessaire à la formation de la barrière hématoencéphalique. Le dispositif de l'invention, auquel est ajouté la barrière hémato-encéphalique est utilisé comme décrit précédemment. Les molécules à tester sont injectées dans la chambre par le conduit d'entrée 13.
La perméabilité des molécules neuroactives peut être directement déterminée en analysant les modifications de l'activité électrophysiologique du tissus nerveux, ces modification pouvant apparaître du fait de la présence des molécules à tester dans le tissus. Le réseau d'électrodes permet de stimuler et d'enregistrer simultanément l'activité électrique du tissus nerveux par l'intermédiaire d'un dispositif de traitement adéquat. Le dispositif selon la présente invention est généralement prévu pour un usage unique. Il est jeté après chaque analyse. Le nombre de pièces qui le compose a été réduit à un minimum. Ceci permet donc de réduire le coût du dispositif.
D'autre part, grâce à l'utilisation d'un substrat souple, il est facile de réaliser plusieurs substrats simultanément, sur une plaque, puis de découper la plaque lorsque les électrodes ont été réalisées. Ceci permet une fabrication industrielle des substrats.
La présente invention n'est pas limitée au mode de réalisation décrit, mais s'étend à toute variante évidente pour un homme du métier. En particulier, la forme de la membrane poreuse 16 pourrait être non circulaire. En utilisant, par exemple, une membrane poreuse carrée, le positionnement des côtés du carré permettrait d'assurer le positionnement des électrodes. Ce positionnement peut être important lorsque le dispositif doit coopérer avec un boîtier de connexion dans lequel la position des connecteurs est fixe.

Claims

REVENDICATIONS
1. Dispositif pour la culture d'amas de cellules organiques et pour l'étude de l'activité électrophysiologique des cellules, dans lequel les cellules sont placées sur au moins une membrane poreuse dont la face inférieure est en contact avec un liquide nutritif, ce dispositif comportant au moins une électrode agencée pour être en contact avec ledit amas de cellules organiques, caractérisé en ce que les électrodes (18) sont réalisées sur la membrane poreuse (16).
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comporte un réseau d'électrodes (17).
3. Dispositif selon la revendication 1 , caractérisé en ce que chaque électrode (18) comporte une zone d'analyse (19) agencée pour pouvoir être disposée en contact avec l'amas de cellules, et une zone de mesure (20) agencée pour pouvoir être mise en contact avec un appareil générant un signal électrique et/ou mesurant un signal électrique.
4. Dispositif selon la revendication 1, caractérisé en ce que la membrane poreuse (16) est maintenue sur un support rigide (11).
5. Dispositif selon la revendication 4, caractérisé en ce que le support rigide (11) contient une chambre d'alimentation (12) en liquide nutritif, cette chambre communiquant avec un conduit d'entrée (13) et un conduit d'évacuation (14) de liquide nutritif et étant pourvue d'une ouverture (15) communiquant avec ladite membrane poreuse (16).
6. Dispositif selon la revendication 1, caractérisé en ce que la membrane poreuse (16) est surmontée d'une capsule (22) agencée pour maintenir les cellules organiques dans un environnement contrôlé.
7. Dispositif selon la revendication 6, caractérisé en ce que la capsule (22) comporte un conduit (28) d'injection de gaz et un conduit (29) d'évacuation de gaz.
8. Dispositif selon la revendication 3, caractérisé en ce que les zones de mesure (20) des électrodes (18) du réseau d'électrodes (17) sont disposées sur un cercle.
9. Dispositif selon la revendication 1, caractérisé en ce que le réseau d'électrodes (17) comporte un moyen d'indexage (25) de sa position.
10. Dispositif selon la revendication 1, caractérisé en ce que la membrane poreuse (16) est transparente.
11. Membrane réalisée en une matière synthétique poreuse, caractérisée en ce qu'elle comporte au moins une électrode (18) déposée sur cette membrane.
12. Membrane selon la revendication 11, caractérisée en ce qu'elle comporte un réseau d'électrodes (17) déposées sur cette membrane.
13. Membrane selon la revendication 11 ou 12, caractérisée en ce que chaque électrode (18) comporte au moins une zone d'analyse (19), une zone de mesure (20) et une zone de connexion (21).
14. Utilisation d'une membrane selon l'une quelconque des revendications 11 à 13, pour réaliser un modèle de barrière hémato-encéphalique.
15. Procédé pour réaliser un modèle de barrière hémato-encéphalique à partir d'une membrane selon l'une quelconque des revendications 11 à 13, caractérisé en ce qu'il comporte des étapes consistant à : - traiter la membrane poreuse (18) de façon à permettre à des cellules endotheliales (31) d'y adhérer,
- placer des cellules endotheliales (31) sur une face ne comportant pas d'électrode, de la membrane poreuse (18),
- cultiver lesdites cellules endotheliales (31) jusqu'à ce qu'elles forment une couche, et
- placer une culture organotypique en tranche (32) sur l'autre face, comportant au moins une électrode, de la membrane poreuse (18).
PCT/CH1999/000243 1998-06-08 1999-06-04 Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif WO1999064559A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT99923354T ATE236399T1 (de) 1998-06-08 1999-06-04 Vorrichtung zum züchten von organischen zellen und erforschung ihrer elektrophysiologischen aktivität und dabei verwendete membran
JP2000553549A JP2002517225A (ja) 1998-06-08 1999-06-04 有機細胞を培養し、かつこの細胞の電気生理学的活性度を研究するための装置、およびこの装置で使用する膜
US09/701,956 US6689594B1 (en) 1998-06-08 1999-06-04 Device for organic cell culture and for studying their electrophysiological activity and membrane used in said device
EP99923354A EP1133691B1 (fr) 1998-06-08 1999-06-04 Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif
AU40279/99A AU4027999A (en) 1998-06-08 1999-06-04 Device for organic cell culture and for studying their electrophysiological activity and membrane used in said device
DE69906574T DE69906574T2 (de) 1998-06-08 1999-06-04 Vorrichtung zum züchten von organischen zellen und erforschung ihrer elektrophysiologischen aktivität und dabei verwendete membran
IL14017499A IL140174A (en) 1998-06-08 1999-06-04 Device for organic cell cultures and for studying their electrophysiological activity and membrane used in said device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR98/07596 1998-06-08
FR9807596A FR2779443B1 (fr) 1998-06-08 1998-06-08 Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif

Publications (2)

Publication Number Publication Date
WO1999064559A2 true WO1999064559A2 (fr) 1999-12-16
WO1999064559A3 WO1999064559A3 (fr) 2001-07-12

Family

ID=9527465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1999/000243 WO1999064559A2 (fr) 1998-06-08 1999-06-04 Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif

Country Status (10)

Country Link
US (1) US6689594B1 (fr)
EP (1) EP1133691B1 (fr)
JP (1) JP2002517225A (fr)
AT (1) ATE236399T1 (fr)
AU (1) AU4027999A (fr)
DE (1) DE69906574T2 (fr)
ES (1) ES2195572T3 (fr)
FR (1) FR2779443B1 (fr)
IL (1) IL140174A (fr)
WO (1) WO1999064559A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099408A1 (fr) * 2001-06-05 2002-12-12 Matsushita Electric Industrial Co., Ltd. Capteur de detection de signaux pourvu de multiples electrodes
US7897377B2 (en) 2005-06-15 2011-03-01 Capsant Neurotechnologies, S.A. Cell- and tissue culture device
US8927282B2 (en) 2005-06-15 2015-01-06 Capsant Neurotechnologies S.A. Method of producing organotypic cell cultures

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485454B1 (en) * 2000-03-10 2009-02-03 Bioprocessors Corp. Microreactor
IL136232A0 (en) * 2000-05-18 2001-05-20 Bar Ilan University Res Author Measurements of enzymatic activity in a single, individual cell in population
EP2332651A3 (fr) * 2001-10-25 2011-08-31 Bar Ilan University Processeur de biopuces transparentes interactives pour cellules individuelles
JP4370082B2 (ja) * 2002-08-26 2009-11-25 独立行政法人科学技術振興機構 神経細胞培養マイクロチャンバー
IL154677A0 (en) * 2003-02-27 2003-09-17 Univ Bar Ilan A method and apparatus for manipulating an individual cell
WO2004113492A1 (fr) * 2003-06-26 2004-12-29 Molecular Cytomics Ltd. Materiaux ameliores pour la construction de puces cellulaires, couvertures de puces cellulaires, revetements de puces cellulaires, puces cellulaires traitees et leurs utilisations
US7888110B2 (en) * 2003-06-26 2011-02-15 Seng Enterprises Ltd. Pico liter well holding device and method of making the same
US9200245B2 (en) 2003-06-26 2015-12-01 Seng Enterprises Ltd. Multiwell plate
US8597597B2 (en) * 2003-06-26 2013-12-03 Seng Enterprises Ltd. Picoliter well holding device and method of making the same
US7982751B2 (en) * 2003-07-11 2011-07-19 The University Of North Carolina Methods and systems for controlling a computer using a video image and for combining the video image with a computer desktop
US20050064524A1 (en) * 2003-08-11 2005-03-24 Mordechai Deutsch Population of cells utilizable for substance detection and methods and devices using same
DK1656449T3 (da) 2003-08-21 2009-06-02 Monsanto Technology Llc Fedtsyredesaturaser fra primula
WO2005074893A1 (fr) * 2004-02-03 2005-08-18 Chemagis Ltd. Formes amorphes stables de montelukast sodique
US7403647B2 (en) * 2004-09-13 2008-07-22 Seng Enterprises Ltd. Method for identifying an image of a well in an image of a well-bearing component
WO2006003664A1 (fr) * 2004-07-07 2006-01-12 Seng Enterprises Ltd. Procede et dispositif d'identification d'une image d'un puits dans une image de composant porteur de puits
WO2006021959A2 (fr) * 2004-08-25 2006-03-02 Seng Enterprises Ltd. Procede et dispositif destines a isoler des cellules
WO2006037527A1 (fr) * 2004-09-30 2006-04-13 Pamgene Bv Supports poreux solides masques permettant un echange aise et rapide de reactifs destine a accelerer des microreseaux a electrodes
ES2352344T3 (es) 2005-01-25 2011-02-17 Seng Enterprises Limited Dispositivo de microfluido para estudio de células.
US20070141555A1 (en) * 2005-10-11 2007-06-21 Mordechai Deutsch Current damper for the study of cells
US8288120B2 (en) * 2005-11-03 2012-10-16 Seng Enterprises Ltd. Method for studying floating, living cells
US20060223999A1 (en) * 2006-05-10 2006-10-05 Chemagis Ltd. Process for preparing montelukast and precursors thereof
EP2044438B1 (fr) * 2006-07-24 2017-11-01 Biocer-Entwicklungs-GmbH Installation pour des mesures en ligne sur des cellules
DE102007016629A1 (de) * 2007-04-05 2008-10-09 Micronas Gmbh Sensor zur Erfassung eines toxischen oder gefährlichen Gasgemisches und Betriebsverfahren
US9145540B1 (en) 2007-11-15 2015-09-29 Seng Enterprises Ltd. Device for the study of living cells
EP2237887A2 (fr) 2007-12-26 2010-10-13 Seng Enterprises Ltd. Dispositif pour l'étude de cellules vivantes
JP5200888B2 (ja) * 2008-11-21 2013-06-05 大日本印刷株式会社 パターン細胞培養用器具
WO2012147463A1 (fr) * 2011-04-28 2012-11-01 株式会社日立製作所 Récipient pour culture cellulaire et appareil associé
CN102680526B (zh) * 2012-05-16 2014-07-02 清华大学 单细胞阵列微芯片及其制造、电测量和电穿孔方法
CN103630579A (zh) * 2013-02-27 2014-03-12 中国科学院电子学研究所 细胞阻抗分析的芯片及仪器
EP4170014A1 (fr) 2021-10-21 2023-04-26 Alpvision SA Système microfluidique pour la mesure et/ou la stimulation électrique robuste à long terme de cultures cellulaires

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689051A2 (fr) * 1994-06-13 1995-12-27 Matsushita Electric Industrial Co., Ltd. Appareil de mesure du potentiel cellulaire avec plusieurs microélectrodes
US5759846A (en) * 1995-04-12 1998-06-02 Chemodyne S.A. Device for the study of organotypic cultures and its uses in electrophysiology and biochemistry

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1124022A1 (ru) * 1983-04-15 1984-11-15 Специальное конструкторское бюро биологического приборостроения АН СССР Камера дл регистрации электрофизиологических характеристик и фиксации потенциала мембраны биологического объекта
US6303082B1 (en) * 1999-12-15 2001-10-16 Nanogen, Inc. Permeation layer attachment chemistry and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0689051A2 (fr) * 1994-06-13 1995-12-27 Matsushita Electric Industrial Co., Ltd. Appareil de mesure du potentiel cellulaire avec plusieurs microélectrodes
US5759846A (en) * 1995-04-12 1998-06-02 Chemodyne S.A. Device for the study of organotypic cultures and its uses in electrophysiology and biochemistry

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 8523 Derwent Publications Ltd., London, GB; Class D16, AN 85-139721 XP002095669 & SU 1 124 022 A (AS USSR BIOEQUIP DE), 15 novembre 1984 (1984-11-15) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099408A1 (fr) * 2001-06-05 2002-12-12 Matsushita Electric Industrial Co., Ltd. Capteur de detection de signaux pourvu de multiples electrodes
US7006929B2 (en) 2001-06-05 2006-02-28 Matsushita Electric Industrial Co., Ltd. Signal detecting sensor provided with multi-electrode
US7897377B2 (en) 2005-06-15 2011-03-01 Capsant Neurotechnologies, S.A. Cell- and tissue culture device
US8927282B2 (en) 2005-06-15 2015-01-06 Capsant Neurotechnologies S.A. Method of producing organotypic cell cultures

Also Published As

Publication number Publication date
DE69906574T2 (de) 2004-01-29
FR2779443A1 (fr) 1999-12-10
US6689594B1 (en) 2004-02-10
AU4027999A (en) 1999-12-30
ATE236399T1 (de) 2003-04-15
FR2779443B1 (fr) 2000-08-04
WO1999064559A3 (fr) 2001-07-12
ES2195572T3 (es) 2003-12-01
DE69906574D1 (de) 2003-05-08
IL140174A0 (en) 2002-02-10
EP1133691B1 (fr) 2003-04-02
EP1133691A2 (fr) 2001-09-19
JP2002517225A (ja) 2002-06-18
IL140174A (en) 2003-12-10

Similar Documents

Publication Publication Date Title
EP1133691B1 (fr) Dispositif de culture de cellules organiques et d'etude de leur activite electrophysiologique et membrane utilisee dans un tel dispositif
FR2733055A1 (fr) Nouveau dispositif d'etude de cultures organotypiques et ses applications en electrophysiologie
BE1016793A4 (fr) Procede de culture de cellules et dispositif permettant sa mise en oeuvre.
EP2542662B1 (fr) Boite multi-reacteurs pour culture cellulaire dynamique
JP3801617B2 (ja) 薬理測定装置およびシステム並びにそれに用いるウェル容器
FR2801899A1 (fr) Dispositif destine a la culture de cellules
EP0678745B1 (fr) Dispositif et procédé d'analyse immunologique
US4608342A (en) Method of growing a confluent layer of cells on a porous or semi-permeable substrate and apparatus for practicing the method
FR2844052A1 (fr) Dispositif de mesure de l'activite electrique d'elements biologiques et ses applications
EP1118657A1 (fr) Dispositif de culture cellulaire et tissulaire à circulation perfectionnée de fluide de culture.
Van Bergen et al. Long-term stimulation of mouse hippocampal slice culture on microelectrode array
FR2882943A1 (fr) Appareil de traitement d'echantillons biologiques.
CH621410A5 (fr)
FR3061203A1 (fr) Chambre de culture et d'imagerie d'echantillons biologiques
JP2966904B2 (ja) 細胞の処理方法、および処理装置
FR2957087A1 (fr) Boite multi-reacteurs pour culture cellulaire dynamique
EP3177922B1 (fr) Procédé pour le dépistage de la drépanocytose
EP0455788A1 (fr) Installation automatique d'analyse immunologique ou biochimique a l'aide de cuvettes de microtitration
WO2001014514A1 (fr) Dispositif a usage biologique, notamment pour la culture cellulaire
EP3853341A1 (fr) Dispositif de distribution de microbulles pour une sonoporation cellulaire
WO1988004316A1 (fr) Module de culture de micro-organismes
FR3013237A1 (fr) Systeme et procede de test d'echantillon
FR2957086A1 (fr) Boite multi-reacteurs pour culture cellulaire dynamique
FR2622973A1 (fr) Procede de determination de la luminescence de cultures cellulaires et dispositif pour mettre en oeuvre ce procede
EP1142641A1 (fr) Préparation d'échantillons biologiques au moyen d'une matrice de micro-buses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA IL JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09701956

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 140174

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1999923354

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA IL JP NZ US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWP Wipo information: published in national office

Ref document number: 1999923354

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999923354

Country of ref document: EP