WO1999059186A1 - Electronic tube - Google Patents

Electronic tube Download PDF

Info

Publication number
WO1999059186A1
WO1999059186A1 PCT/JP1999/002451 JP9902451W WO9959186A1 WO 1999059186 A1 WO1999059186 A1 WO 1999059186A1 JP 9902451 W JP9902451 W JP 9902451W WO 9959186 A1 WO9959186 A1 WO 9959186A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron tube
socket
case
tube device
light receiving
Prior art date
Application number
PCT/JP1999/002451
Other languages
French (fr)
Japanese (ja)
Inventor
Yutaka Hasegawa
Tomohiro Ishizu
Original Assignee
Hamamatsu Photonics K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K. K. filed Critical Hamamatsu Photonics K. K.
Priority to AU37292/99A priority Critical patent/AU3729299A/en
Publication of WO1999059186A1 publication Critical patent/WO1999059186A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0204Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0252Constructional arrangements for compensating for fluctuations caused by, e.g. temperature, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a photometer; Purge systems, cleaning devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/061Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by controlling the temperature of the apparatus or parts thereof, e.g. using cooling means or thermostats
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J7/00Details not provided for in the preceding groups and common to two or more basic types of discharge tubes or lamps
    • H01J7/24Cooling arrangements; Heating arrangements; Means for circulating gas or vapour within the discharge space

Definitions

  • the present invention relates to an electron tube device including an electron tube from which electrons are emitted from a photocathode in response to incident light, and a Peltier device for cooling the photocathode of the electron tube.
  • the photomultiplier tube has a light-receiving surface plate on which light is incident from the outside.
  • the photoelectric surface formed on the inner surface of the light-receiving surface plate photoelectrically converts incident light to emit electrons, and emits electrons emitted from the photoelectric surface.
  • thermoelectrons In such a photomultiplier tube, the photocathode emits thermoelectrons even in the absence of incident light, and generates a ⁇ current pulse caused by these thermoelectrons as an output.
  • a ⁇ current pulse poses a serious problem, for example, when measuring at room temperature, particularly in the measurement of weak light.
  • a cooling device In order to suppress the emission of thermoelectrons by the photocathode and reduce the dark current pulse, a cooling device that cools the photocathode is required. The necessity of cooling the photocathode to suppress the emission of thermoelectrons is the same for electron tubes other than photomultiplier tubes, for example, image tubes.
  • the image tube means that the incident optical image is converted into a photoelectron image by photoelectric conversion on the photoelectric surface, and the photoelectron image is accelerated and imaged by an electron lens system, multiplied by an electron multiplier, An electron tube that is incident on a surface and reproduced as an optical image.
  • a photomultiplier tube, a Peltier element as a cooling element, and a heat conduction device necessary for cooling and heat dissipation are installed inside the housing, and the outer surface of the side wall of the photomultiplier tube near the photocathode is installed.
  • a Peltier element is arranged between the photomultiplier tube side and the housing side as a heat absorbing portion and the housing side as a heat radiating portion between the Peltier element and the inner surface of the side wall of the housing, whereby the photocathode is cooled.
  • the photomultiplier tube 10 and the Peltier element 30 are housed in a box 62, and the space in the box 62 (shaded area in the figure) is filled with urethane foam 63 as a heat insulating material. Is filled.
  • the cooling block 61 is in contact with the heat absorbing portion 30 a of the Peltier element 30, and the photocathode 12 is cooled from the side of the photomultiplier tube 10 via the cooling block 61.
  • the entrance window surface 22 a is part of the heat from the radiating portion 30 b of the Peltier device 30 through the box 62 from the radiating plate 34 in contact with the radiating portion 30 b of the Peltier device 30. To prevent dew formation without the use of additional equipment.
  • An apparatus for an image tube as shown in Fig. 6 is also known (Japanese Patent Laid-Open No. 6-103939).
  • this image tube device a plurality of Peltier elements 30 are arranged on the periphery of the light receiving surface plate 51 of the image tube 50, and the radiating portion 30 b of the Peltier element 30 is incident on the housing 20.
  • the heat absorption part 30 a of the Peltier element 30 is fixed on the periphery of the window 22.
  • the tube 50 is fixed near the photocathode 52. Thereby, the cooling of the photoelectric surface 52 and the prevention of dew condensation on the entrance window surface 22a and the housing exit window 56 can be efficiently performed.
  • the image tube 50 is held only in the vacuum in the housing 20 by the Peltier element 30, the external thermal influence can be minimized.
  • Both of the above two conventional techniques can cool the photocathode and prevent dew condensation on the entrance window surface and the like without using an additional device.
  • the Peltier element 30 is arranged on the side wall surface, so that the cooling of the photoelectric surface 12 and the heating of the entrance window surface 22 a are performed. There is a problem in efficiency.
  • the cooling means shown in Fig. 6 cannot be directly applied to a photomultiplier tube.
  • the photomultiplier tube applies a predetermined voltage to each electrode installed inside the photomultiplier tube to the stem that forms the base of the photomultiplier tube, or a plurality of signals for extracting signals from the photomultiplier tube. Therefore, a cooling device having a different form from the above-mentioned image tube device for an image tube without a stem pin is required. The same applies to an electron tube such as an image tube having a stem pin.
  • the present invention has been made in view of the above problems, and in an electron tube having a plurality of stem pins, such as a photomultiplier tube, the cooling device has been made more efficient and smaller, thereby reducing the number of components.
  • An object of the present invention is to provide an electron tube device which improves workability at the time of assembly. Disclosure of the invention
  • the electron tube device has A light-receiving surface plate having a surface and an inner surface; a photoelectric surface formed inside the light-receiving surface plate; a stem that forms a base; a plurality of stem pins fixed to the stem; An electron tube having an interposed side tube, a housing in which the electron tube is installed and an entrance window is arranged at a position facing the light-receiving surface plate of the electron tube;
  • a Peltier element installed inside the housing to cool the photocathode of the electron tube
  • An electron tube device comprising: a radiator for radiating heat generated by the Peltier element;
  • the housing has an airtight structure including a case having an entrance window at one end and an open end at the other end, and a socket for sealing the open end side of the case. Is fixed to the socket via a stem pin, and the Peltier element is arranged so that the heat-absorbing part is located on the light-receiving surface plate side of the electron tube and the heat-dissipating part is located on the inner surface of one end of the case. , The socket and the electron tube press against the case.
  • the heat absorbing portion of the Peltier element is located near the light receiving surface plate of the electron tube and is in thermal contact with the light receiving surface plate.
  • the socket part to which the stem pin of the electron tube is fixed and connected to an external voltage terminal etc. also constitutes a part of the housing, and the Peltier element is held only by pressing the socket part and the case through the electron tube.
  • the structure of the device is simplified, the number of components is reduced, the workability during assembly is improved, and the size and price of the device can be reduced.
  • Haji Since the electron tube is held against the housing by fixing the stem pin to the socket, external thermal effects due to contact between the electron tube and the housing can be minimized.
  • the Peltier device is a single device having an opening in the center, and is arranged so that the entrance window of the housing faces the light receiving surface plate of the electron tube via the opening.
  • the holding and assembling method by pressing the Peltier element can be further simplified, and the Peltier element holding structure near the light receiving face plate can be obtained. Generation of electrical noise can be suppressed.
  • the heat-absorbing part of the Peltier element is thermally connected to a part of the light-receiving surface plate, usually to the outer periphery of the light-receiving surface plate. This effectively cools the photocathode of the electron tube without impairing the primary function of the light receiving surface plate.
  • the socket section includes a socket pin to which the stem pin of the electron tube is connected and fixed, a socket to which the socket pin is fixed, and a socket holder to which the socket pin and the socket are fixed and connected to the case. It is composed of As described above, by dividing the socket portion into the socket and the socket holder, the socket of the existing electron tube can be used, whereby the application of the present invention to a conventionally known type of electron tube can be achieved. It can be easily done. In this case, it is preferable that the socket be fastened to the case with a holding screw, and such a structure facilitates assembly.
  • the heat absorbing portion of the Peltier element is connected to the light receiving surface plate via the heat absorbing side sheet, and the heat radiating portion is connected to the inner surface of one end of the case via the heat radiating side sheet.
  • the sheet parts absorb the unevenness of the surface where the case, Peltier element and light-receiving face plate are joined, and improve the efficiency of heat conduction. But it can.
  • the heat absorbing portion of the Peltier element may be joined to the light receiving face plate via a member having high thermal conductivity, and the heat radiating portion may be joined directly to the inner surface of one end of the case.
  • a metal case For heat dissipation, it is preferable to use a metal case and attach a heat radiating means such as a fan to the metal case.
  • the electron tube examples include a photomultiplier tube having a light receiving surface plate and an electron multiplier section provided in an internal space defined by a side tube and a stem. Also, by using a photomultiplier tube having a metal side tube having good thermal conductivity, the time required for the temperature of the entire photomultiplier tube to stabilize can be reduced.
  • FIG. 1 is a cross-sectional view of an electron tube device according to a first embodiment of the present invention.
  • FIG. 2 is an exploded view of the photomultiplier tube device shown in FIG. FIG.
  • FIG. 3 is a partial cross-sectional view of an electron tube device according to a second embodiment of the present invention.
  • FIG. 4 is a graph showing changes over time in the temperature of the photocathode and the case in the example.
  • FIG. 5 is a cross-sectional view of a conventional photomultiplier tube device.
  • FIG. 6 is a sectional view of an image tube device according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a cross-sectional view of the configuration of an embodiment of a photomultiplier tube device of the electron tube device according to the present invention.
  • FIG. 2 is a perspective view showing the photomultiplier tube device shown in FIG. 1 in a broken state and each part excluding the fan is developed.
  • reference numeral 10 denotes a photomultiplier tube.
  • the outer surface of the photomultiplier tube 10 includes a circular light receiving surface plate 11 for receiving incident light, a cylindrical metal side tube 13, and a circular stem 14 serving as a base.
  • a photoelectric surface 12 is formed inside the light receiving surface plate 11.
  • a plurality of stem pins 15 are fixed to the stem 14.
  • the housing 20 is made up of a case 21 made of metal having good thermal conductivity, preferably aluminum, and a socket portion 23 made of synthetic resin having good electrical insulation and good heat insulation.
  • the outer shape of the case 21 is a rectangular parallelepiped, and has a cylindrical cavity formed therein. As shown in FIG. 2, the hollow portion is composed of a receiving portion 21a and a socket fixing portion 21b, and an inner diameter of the receiving portion 21a is a socket fixing portion 21. It is formed smaller than the inner diameter of b.
  • a circular entrance opening 21 c having a smaller inside diameter than the housing portion 21 a inside the case is provided at the center.
  • the other end (the right side in FIGS. 1 and 2) is an open end 2Id.
  • An entrance window 22 for transmitting incident light preferably a glass entrance window 22, is attached to the entrance window fixing portion 21 e formed outside the entrance opening 21 c.
  • the photomultiplier tube 10 is housed in the housing portion 21 a in the case 21, and is arranged so that the entrance window 22 faces the light receiving surface plate 11 of the photomultiplier tube 10.
  • the case 21 having good heat conductivity also has a function of a heat sink, and as shown in FIG. 1, a fan 3 for air cooling is provided on one outer surface of the case 21. 3 is attached.
  • the socket part 23 is composed of a socket 23a, a plurality of socket bins 23b penetrating and fixed to the socket 23a, and a socket holder 23c.
  • the socket bin 23b penetrates and is fixed to the socket holder 23c, so that the socket 23a and the socket holder 23c are fixed via the socket pin 23b.
  • Each stem pin 15 of the photomultiplier tube 10 is connected and fixed to a corresponding socket bin 23b, and is connected to an external voltage terminal or a signal readout line via the socket pin 23b.
  • the socket 23 for sealing the open end 21 d of the housing 20 is inserted from the open end 2 Id of the case 21, and the housing 21 a and the socket 21 of the case 21 are inserted. And fixed to a step 21 f provided with a screw hole at the boundary of the fixing part 21 b. Thus, the photomultiplier tube 10 fixed to the socket portion 23 is fixed and held in the housing 20.
  • the case 21 and the entrance window 22 are fixed by bonding, and the case 21 and the socket portion 23 are fixed by a holding screw 25 via a fixing ring 24.
  • the fixing ring 24 is made of silicone rubber and also has a function as a seal for airtightness, and therefore, the housing 20 has an airtight structure. Dry gas, preferably xenon gas, which has good insulation and is safe to handle, is enclosed inside the housing 20, thereby minimizing external thermal effects on the photomultiplier tube 10. Further, the occurrence of dew condensation on the metal side tube 13 or the stem 14 of the photomultiplier tube 10 is prevented.
  • the light-receiving surface plate 11 of the photomultiplier tube 10 passes through the entrance window 22 of the housing 20.
  • electrons are emitted from the photoelectric surface 12 inside the light-receiving surface plate 11 by photoelectric conversion, and the electrons are photomultiplied. It is multiplied by an electron multiplying unit installed in the tube 10 and is taken out as an electric signal by the anode electrode. This electric signal is output via a predetermined stem pin 15 of the photomultiplier tube 10 and a socket pin 23b connected thereto.
  • the Peltier element 30 for cooling is a single element having an opening at the center, and the photomultiplier tube 10 and the case inside the housing 20 are arranged such that the opening faces the light receiving face plate 11. 2 1, heat absorbing section 30 a is located on the periphery of light receiving face plate 11, and heat radiating section 3 Ob is located on Peltier element holding section 2 1 g inside case 21 Is done. Thereby, the photocathode 12 is cooled by the heat absorbing portion 30a, and the incident window surface 22a is heated by the heat radiating portion 30b.
  • the Peltier element 30 is held inside the housing 20 by being pressed against the case 21 via the socket section 23 and the photomultiplier tube 10 by the holding screw 25. At this time, the fixing ring 24 functions to buffer and adjust the pressing pressure.
  • a single Peltier element 30 having an opening is used, and the Peltier element 30 is held only by pressing, and the photomultiplier tube 10 is connected to the socket section 23 of the stem pin 15.
  • the number of parts is greatly reduced, and workability during assembly is improved. As a result, the size and cost of the device can be reduced.
  • the heat absorbing portion 30 a of the Peltier element 30 is joined to the peripheral portion of the light receiving surface plate 11 of the photomultiplier tube 10 by the heat absorbing side sheet 31, and the heat radiating portion 30 b is joined to the Peltier element holding portion 21 g inside the case 21 by the heat radiation side sheet 32.
  • These heat-absorbing sheet 31 and heat-dissipating sheet 32 use sheet parts with good thermal conductivity.
  • the irregularities on the outer surface of the Peltier element holder 21g, the Peltier element 30 and the light receiving surface plate 11 are absorbed. As a result, heat can be conducted more efficiently, and the time from the start of cooling the photocathode until the photomultiplier tube reaches a usable stable temperature state can be shortened.
  • the heat-absorbing side sheet 31 is preferably a sheet part having good electrical conductivity, more preferably a sheet part mainly composed of aluminum, and is a metal side tube having the same potential as the photoelectric surface 12. 1 3 is in contact.
  • the outer surface of the light receiving surface plate 11 on which the heat absorbing side sheet 31 is arranged and the inner surface of the light receiving surface plate 11 on which the photoelectric surface 12 is formed can be maintained at the same potential. Electrical noise generated near the face plate 11 can be suppressed.
  • the heat radiation side sheet 32 a sheet component having good electric insulation is preferably used. Thereby, a leak current or the like from the photomultiplier tube to the outside can be suppressed.
  • FIG. 4 shows the temperature change of the photocathode of the photomultiplier tube and the case of the housing according to the example having the configuration shown in the above embodiment.
  • a GaAs semiconductor photocathode is used as the photocathode.
  • a semiconductor photocathode such as G a As has a larger dark current than a photocathode such as Sb-vial power, and is a photocathode that is particularly effective for cooling. After 5 minutes from the start of cooling, the temperature of the photocathode cools down to about 3 ° C, and the temperature reaches a stable state where the photomultiplier tube can be used for measurement.
  • the present invention is not limited to the above embodiment, but can be applied to electron tubes such as photomultiplier tubes and image tubes in various forms.
  • the socket portion is fixed to the step on the inner surface of the case.
  • the socket is fixed directly to the open end of the case, or is fixed to the inner surface of the side wall of the case.
  • the socket portion itself may be formed integrally without being divided into the socket and the socket holder.
  • a flange with good heat conductivity at the periphery is used.
  • the Peltier element may be brought into contact with the light-receiving surface plate and pressed against the case using the flange.
  • direct joining may be performed without using sheet parts for joining.
  • the heat-absorbing sheet 31 and the heat-dissipating sheet 32 are removed, and the Peltier element 30 is connected to the light-receiving face plate 11 via a holding member 36 having good thermal conductivity.
  • the Peltier device 30 is held between the holding member 36 and the Peltier device holding portion 21 g inside the case 21 while being in contact with the peripheral portion.
  • the holding member 36 includes a cylindrical portion 36 a having an inner diameter slightly larger than the outer diameter of the metal side tube 13 of the photomultiplier tube 10, and a flange portion extending outward from one end of the cylindrical portion 36 a. 36b and a flange 36c extending inward from the other end of the cylindrical portion 36a are integrally formed.
  • the cylindrical portion 36a and the flange portion 36b serve as a holding portion for the Peltier element 30.
  • the cylindrical portion 36a and the flange portion 36c serve as engagement members for the light receiving face plate 11 and the metal side tube 13. I have.
  • the entrance window is not limited to glass, but may be made of, for example, beryllium having a good X-ray transmittance.
  • the dry gas is sealed in the housing, but may be evacuated.
  • the radiator of the Peltier element is air-cooled by a fan.
  • other radiator such as water-cooling may be used depending on the use state of the photomultiplier tube device.
  • a control device that detects the temperature of the photocathode and controls the Peltier element based on the detected value is provided. The temperature of the photocathode can be controlled.
  • the side tube is made of ceramic instead of metal.
  • a photomultiplier tube having such a ceramic side tube is used. The same operation and effect can be obtained for a photomultiplier tube having a side tube other than metal.
  • an image tube using an electron-implanted CCD (EB-CCD) as a phosphor screen has a stem pin on the bottom surface like a photomultiplier tube, so that the structure of the cooling device according to the present invention can be applied. it can.
  • EB-CCD electron-implanted CCD
  • the electron tube device has the following effects.
  • the heat absorption part of the Peltier element thermally contacts the light receiving surface plate of the electron tube
  • the heat radiation part of the Peltier element thermally contacts the inner surface of the end of the housing case having the entrance window.
  • a cooling device for an electron tube can be realized that efficiently cools the surface and prevents the occurrence of dew condensation on the entrance window surface of the housing without using an additional device.
  • a part of the housing is constituted by a socket part to which the stem pin of the electron tube is fixed, and a Peltier element is formed by the socket part and the case formed by the electron tube.
  • the electron tube device according to the present invention can be widely used in medical devices, analytical devices, industrial measuring devices, and the like as optical analyzers for analyzing various substances using absorption, reflection, and polarization of specific wavelengths.

Abstract

A small-sized electronic tube in which a photoelectric surface is efficiently cooled while preventing the formation of dew. A housing (20) has an airtight structure that encloses a case (21) and a socket (23). A photomultiplier tube (10) is fixed and maintained by stem pins (15) in the socket. A Peltier element (30) for cooling the photomultiplier tube and a photoelectric surface (12) is placed in the housing and held by the pressure of the socket (23) and the photomultiplier tube (10) against the case (21). This structure minimizes the thermal contact with the outside of the photomultiplier so as to cool the photoelectric surface efficiently. Moreover, the simplified structure realizes miniaturization of the device and reduces manufacturing costs.

Description

明 細  Details
技術分野 Technical field
本発明は、 入射光に対応して光電面から電子が放出される電子管と、 この電子管の光電面を冷却するためのペルチェ素子とを備えた電子管装 置に関するものである。 背景技術  The present invention relates to an electron tube device including an electron tube from which electrons are emitted from a photocathode in response to incident light, and a Peltier device for cooling the photocathode of the electron tube. Background art
光電子増倍管は、 外部から光が入射する受光面板を有し、 受光面板の 内側面に形成された光電面において入射光を光電変換して電子を放出し、 光電面より放出された電子を電子増倍部において二次電子放出により増 倍し、 増倍された二次電子流をアノード電極によって取り出して、 入射 光に対応した電気信号として出力する電子管である。  The photomultiplier tube has a light-receiving surface plate on which light is incident from the outside. The photoelectric surface formed on the inner surface of the light-receiving surface plate photoelectrically converts incident light to emit electrons, and emits electrons emitted from the photoelectric surface. An electron tube that multiplies by secondary electron emission in the electron multiplier section, takes out the multiplied secondary electron flow by the anode electrode, and outputs it as an electric signal corresponding to the incident light.
このような光電子増倍管においては、 光電面は入射光がない場合にお いても熱電子を放出し、 これら熱電子に起因する喑電流パルスを出力と して生じる。 このような喑電流パルスは、 例えば室温で測定した場合、 特に微弱光の測定において大きな問題となる。 光電面による熱電子の放 出を抑制し暗電流パルスを減少させるためには、 光電面を冷却する冷却 装置が必要である。 熱電子の放出の抑制のための光電面の冷却の必要性 は、 光電子増倍管以外の電子管、 例えばイメージ管においても同様であ る。 なお、 イメージ管とは、 入射した光学像が光電面において光電変換 によって光電子像に変換され、 光電子像は電子レンズ系で加速 ·結像さ れ、 電子増倍部で増倍された後、 蛍光面に入射して光学像として再生さ れる電子管である。 従来一般の冷却手段においては、 ハウジングの内部に光電子増倍管、 冷却素子としてのペルチェ素子、 及び冷却 ·放熱に必要な熱伝導装置等 を設置し、 光電面近傍の光電子増倍管の側壁外面とハウジングの側壁内 面との間に、 ペルチェ素子が光電子増倍管側を吸熱部、 ハウジング側を 放熱部として配置され、 それによつて光電面が冷却される。 In such a photomultiplier tube, the photocathode emits thermoelectrons even in the absence of incident light, and generates a 喑 current pulse caused by these thermoelectrons as an output. Such a 喑 current pulse poses a serious problem, for example, when measuring at room temperature, particularly in the measurement of weak light. In order to suppress the emission of thermoelectrons by the photocathode and reduce the dark current pulse, a cooling device that cools the photocathode is required. The necessity of cooling the photocathode to suppress the emission of thermoelectrons is the same for electron tubes other than photomultiplier tubes, for example, image tubes. In addition, the image tube means that the incident optical image is converted into a photoelectron image by photoelectric conversion on the photoelectric surface, and the photoelectron image is accelerated and imaged by an electron lens system, multiplied by an electron multiplier, An electron tube that is incident on a surface and reproduced as an optical image. In conventional cooling means, a photomultiplier tube, a Peltier element as a cooling element, and a heat conduction device necessary for cooling and heat dissipation are installed inside the housing, and the outer surface of the side wall of the photomultiplier tube near the photocathode is installed. A Peltier element is arranged between the photomultiplier tube side and the housing side as a heat absorbing portion and the housing side as a heat radiating portion between the Peltier element and the inner surface of the side wall of the housing, whereby the photocathode is cooled.
このような装置においては、 冷却によって生じる温度差によって、 ノ \ ウジングに設けられた入射窓面等に結露を生じるという問題がある。 こ の問題を解決する手段としては、 ヒー夕による必要な部位への加温や、 乾燥空気の吹き付けなどの方法があるが、 これらの付加的装置を用いた 場合には、 それによつて装置が複雑かつ大型化し、 またコスト高となる。 付加的装置を用いずに結露の発生を防止した光電子増倍管の冷却手段 としては、 第 5図に示すような装置が知られている (特開平 6— 8 8 7 4 7号) 。 この装置では、 光電子増倍管 1 0及びペルチェ素子 3 0など は、 ボックス 6 2内に収容され、 ボックス 6 2内の空間 (図中の斜線領 域) には、 断熱材として発泡ウレタン 6 3が充填されている。 冷却プロ ック 6 1はペルチェ素子 3 0の吸熱部 3 0 aに接触しており、 冷却プロ ック 6 1を介して光電子増倍管 1 0の側面から光電面 1 2が冷却される。 また、 入射窓面 2 2 aはペルチェ素子 3 0の放熱部 3 0 bに接触してい る放熱板 3 4からボックス 6 2を通じて、 ペルチェ素子 3 0の放熱部 3 0 bからの熱の一部によって加温され、 これによつて付加的装置を用い ることなく結露の発生は防止される。  In such an apparatus, there is a problem that dew condensation occurs on an entrance window surface provided in the nozzle due to a temperature difference generated by cooling. As a means to solve this problem, there are methods such as heating the required parts by heating and blowing dry air, but when these additional devices are used, the devices are It is complicated, large, and expensive. As a cooling means for a photomultiplier tube in which dew condensation is prevented without using an additional device, a device as shown in FIG. 5 is known (Japanese Patent Laid-Open No. Hei 6-88747). In this device, the photomultiplier tube 10 and the Peltier element 30 are housed in a box 62, and the space in the box 62 (shaded area in the figure) is filled with urethane foam 63 as a heat insulating material. Is filled. The cooling block 61 is in contact with the heat absorbing portion 30 a of the Peltier element 30, and the photocathode 12 is cooled from the side of the photomultiplier tube 10 via the cooling block 61. In addition, the entrance window surface 22 a is part of the heat from the radiating portion 30 b of the Peltier device 30 through the box 62 from the radiating plate 34 in contact with the radiating portion 30 b of the Peltier device 30. To prevent dew formation without the use of additional equipment.
また、イメージ管に関して第 6図に示すような装置が知られている(特 開平 6— 1 0 3 9 3 9号) 。 このィメ一ジ管装置においては、 複数のぺ ルチェ素子 3 0がイメージ管 5 0の受光面板 5 1の周縁部に配置され、 ペルチェ素子 3 0の放熱部 3 0 bはハウジング 2 0の入射窓 2 2の周緣 部に固定されるとともに、 ペルチェ素子 3 0の吸熱部 3 0 aはイメージ 管 5 0の光電面 5 2の近傍に固定される。 これによつて、 光電面 5 2の 冷却と入射窓面 2 2 a及びハウジング出射窓 5 6での結露の発生防止を 効率良く行うことができる。 また、 この冷却手段においては、 イメージ 管 5 0はハウジング 2 0内の真空中でペルチェ素子 3 0のみによって保 持されるので、 外部からの熱的影響を最小限に抑えることができる。 上記二つの従来技術は共に、 光電面を冷却し、 かつ、 付加的装置を用 いることなく入射窓面等への結露を防止することができる。 しかしなが ら、 第 5図に示された光電子増倍管装置では、 ペルチェ素子 3 0が側壁 面に配置されているため、 光電面 1 2の冷却及び入射窓面 2 2 aの加温 の効率の点で問題がある。 An apparatus for an image tube as shown in Fig. 6 is also known (Japanese Patent Laid-Open No. 6-103939). In this image tube device, a plurality of Peltier elements 30 are arranged on the periphery of the light receiving surface plate 51 of the image tube 50, and the radiating portion 30 b of the Peltier element 30 is incident on the housing 20. The heat absorption part 30 a of the Peltier element 30 is fixed on the periphery of the window 22. The tube 50 is fixed near the photocathode 52. Thereby, the cooling of the photoelectric surface 52 and the prevention of dew condensation on the entrance window surface 22a and the housing exit window 56 can be efficiently performed. Further, in this cooling means, since the image tube 50 is held only in the vacuum in the housing 20 by the Peltier element 30, the external thermal influence can be minimized. Both of the above two conventional techniques can cool the photocathode and prevent dew condensation on the entrance window surface and the like without using an additional device. However, in the photomultiplier tube device shown in FIG. 5, the Peltier element 30 is arranged on the side wall surface, so that the cooling of the photoelectric surface 12 and the heating of the entrance window surface 22 a are performed. There is a problem in efficiency.
一方、 第 6図に示されたイメージ管装置では、 複数のペルチェ素子 3 0を固定しているためその組立が複雑になり、 部品個数が多くなつて組 立時の作業性が低下する。 また、 第 6図に示された冷却手段をそのまま 光電子増倍管に適用することはできない。 光電子増倍管はその基台部を 構成するステムに、 光電子増倍管の内部に設置された各電極に所定の電 圧を印加し、 或いは、 光電子増倍管からの信号を取り出すための複数の ステムピンを有するため、 ステムピンを有しないイメージ管に関する上 記イメージ管装置とは違った形態の冷却装置が必要である。 ステムピン を有する型のイメージ管等の電子管についても同様である。  On the other hand, in the image tube device shown in FIG. 6, since a plurality of Peltier elements 30 are fixed, the assembly is complicated, and the number of parts is increased, so that workability at the time of assembly is reduced. Also, the cooling means shown in Fig. 6 cannot be directly applied to a photomultiplier tube. The photomultiplier tube applies a predetermined voltage to each electrode installed inside the photomultiplier tube to the stem that forms the base of the photomultiplier tube, or a plurality of signals for extracting signals from the photomultiplier tube. Therefore, a cooling device having a different form from the above-mentioned image tube device for an image tube without a stem pin is required. The same applies to an electron tube such as an image tube having a stem pin.
本発明は、 以上の問題点に鑑みてなされたものであり、 光電子増倍管 のような複数のステムピンを有する電子管において、 冷却装置の効率化 と小型化を実現し、 それによる部品個数の減少によって組立時の作業性 を向上する電子管装置を提供することを目的とする。 発明の開示  The present invention has been made in view of the above problems, and in an electron tube having a plurality of stem pins, such as a photomultiplier tube, the cooling device has been made more efficient and smaller, thereby reducing the number of components. An object of the present invention is to provide an electron tube device which improves workability at the time of assembly. Disclosure of the invention
このような目的を達成するために、 本発明による電子管装置は、 外側 面と内側面とを有する受光面板と、 受光面板の内側に形成された光電面 と、 基台部を構成するステムと、 ステムに固定された複数のステムピン と、 受光面板とステムとの間に介在する側管とを有した電子管と、 電子管が内部に設置され、 電子管の受光面板に対向する位置に入射窓 が配置されるハウジングと、 In order to achieve such an object, the electron tube device according to the present invention has A light-receiving surface plate having a surface and an inner surface; a photoelectric surface formed inside the light-receiving surface plate; a stem that forms a base; a plurality of stem pins fixed to the stem; An electron tube having an interposed side tube, a housing in which the electron tube is installed and an entrance window is arranged at a position facing the light-receiving surface plate of the electron tube;
ハウジングの内部に設置されて電子管の光電面を冷却するペルチェ素 子と、  A Peltier element installed inside the housing to cool the photocathode of the electron tube;
ペルチェ素子で発生した熱を放熱する放熱手段とを備えた電子管装置 において、  An electron tube device comprising: a radiator for radiating heat generated by the Peltier element;
ハウジングは、 一方の端部に入射窓を有し他方の端部を開放端部とす るケースと、 ケースの開放端部側を封止するソケッ 卜部とから構成され て気密構造をなし、 電子管は、 ステムピンを介してソケッ ト部に固定さ れ、 ペルチェ素子は、 電子管の受光面板側に吸熱部が位置し、 ケースの 一方の端部の内面側に放熱部が位置するように配置されて、 ソケッ ト部 及び電子管によるケースへの押し付けによって保持されている。  The housing has an airtight structure including a case having an entrance window at one end and an open end at the other end, and a socket for sealing the open end side of the case. Is fixed to the socket via a stem pin, and the Peltier element is arranged so that the heat-absorbing part is located on the light-receiving surface plate side of the electron tube and the heat-dissipating part is located on the inner surface of one end of the case. , The socket and the electron tube press against the case.
このような電子管装置においては、 ペルチェ素子の吸熱部が電子管の 受光面板近傍に位置して受光面板に熱的に接触し、 放熱部がハウジング のケースの入射窓を有する端部の内面近傍に位置してケースに熱的に接 触するようにペルチェ素子を配置することにより、 電子管の光電面を効 率良く冷却し、 かつハウジングの入射窓面における結露の発生を防止す ることができる。  In such an electron tube device, the heat absorbing portion of the Peltier element is located near the light receiving surface plate of the electron tube and is in thermal contact with the light receiving surface plate. By arranging the Peltier element so as to be in thermal contact with the case, the photocathode of the electron tube can be efficiently cooled, and dew condensation on the entrance window of the housing can be prevented.
また、 電子管のステムピンが固定され外部の電圧端子等と接続される ソケット部が、 同時にハウジングの一部を構成し、 またペルチェ素子の 保持をソケッ ト部及び電子管を介したケースへの押し付けのみによって 行うことにより、 装置の構造が簡略化して部品個数が減少し、 組立時の 作業性の向上と装置の小型化及び低価格化を実現できる。 また、 ハウジ ングに対する電子管の保持をステムピンのソケッ ト部への固定によって 行っていることにより、 電子管とハウジングとの接触による外部からの 熱的影響を最小限に抑えることができる。 In addition, the socket part to which the stem pin of the electron tube is fixed and connected to an external voltage terminal etc. also constitutes a part of the housing, and the Peltier element is held only by pressing the socket part and the case through the electron tube. By doing so, the structure of the device is simplified, the number of components is reduced, the workability during assembly is improved, and the size and price of the device can be reduced. Also, Haji Since the electron tube is held against the housing by fixing the stem pin to the socket, external thermal effects due to contact between the electron tube and the housing can be minimized.
また、 ペルチェ素子は、 中央に開口部を有する単一の素子であって、 開口部を介してハウジングの入射窓が電子管の受光面板に対面するよう に配置される。 このように、 ペルチェ素子を単一の素子とすることによ つて、 ペルチェ素子の押し付けによる保持 ·組立方法をより簡略化する ことができ、 また、 受光面板付近のペルチェ素子の保持構造に起因する 電気的ノィズの発生を抑制することができる。  The Peltier device is a single device having an opening in the center, and is arranged so that the entrance window of the housing faces the light receiving surface plate of the electron tube via the opening. As described above, by using a single Peltier element, the holding and assembling method by pressing the Peltier element can be further simplified, and the Peltier element holding structure near the light receiving face plate can be obtained. Generation of electrical noise can be suppressed.
ペルチェ素子の吸熱部は受光面板の一部、 通常は受光面板の外周縁に 熱的に接続する。 これによつて受光面板の本来的機能を損なうことなく 効果的に電子管の光電面を冷却することができる。  The heat-absorbing part of the Peltier element is thermally connected to a part of the light-receiving surface plate, usually to the outer periphery of the light-receiving surface plate. This effectively cools the photocathode of the electron tube without impairing the primary function of the light receiving surface plate.
また、 ソケッ ト部は、 電子管のステムピンが接続 · 固定されるソケッ トピンと、 ソケッ トピンが固定されるソケッ トと、 ソケッ トピン及びソ ケッ 卜が固定されケースに接続 · 固定されるソケッ トホルダ一とから構 成される。 このように、 ソケッ ト部をソケッ トとソケッ トホルダーとに 分けることにより、 既存の電子管のソケッ トを利用することができ、 こ れによって従来知られた型式の電子管への本発明の適用を容易にするこ とができる。 この場合、 ソケッ トは保持用ねじによりケースに締結する ようにするのが好ましく、 かかる構造とすることにより組み立てが容易 となる。  The socket section includes a socket pin to which the stem pin of the electron tube is connected and fixed, a socket to which the socket pin is fixed, and a socket holder to which the socket pin and the socket are fixed and connected to the case. It is composed of As described above, by dividing the socket portion into the socket and the socket holder, the socket of the existing electron tube can be used, whereby the application of the present invention to a conventionally known type of electron tube can be achieved. It can be easily done. In this case, it is preferable that the socket be fastened to the case with a holding screw, and such a structure facilitates assembly.
また、 ペルチェ素子の吸熱部は、 吸熱側シートを介して受光面板に接 合し、 放熱部は、 放熱側シートを介してケースの一方の端部の内面に接 合する。 ペルチェ素子の接合に、 さらに、 熱伝導性の良いシート部品を 用いることにより、 ケース、 ペルチェ素子及び受光面板の接合部位の表 面の凹凸をシート部品によって吸収し、 熱伝導の効率を良くすることが できる。 あるいは、 ペルチェ素子の吸熱部を、 熱伝導性の高い部材を介 して受光面板に接合し、 放熱部を直接ケースの一方の端部の内面に接合 するようにしてもよい。 The heat absorbing portion of the Peltier element is connected to the light receiving surface plate via the heat absorbing side sheet, and the heat radiating portion is connected to the inner surface of one end of the case via the heat radiating side sheet. By using sheet parts with good thermal conductivity for joining the Peltier elements, the sheet parts absorb the unevenness of the surface where the case, Peltier element and light-receiving face plate are joined, and improve the efficiency of heat conduction. But it can. Alternatively, the heat absorbing portion of the Peltier element may be joined to the light receiving face plate via a member having high thermal conductivity, and the heat radiating portion may be joined directly to the inner surface of one end of the case.
放熱のために、 金属製のケースを用い、 金属製ケースにファン等の放 熱手段を取り付けるようにするのが好ましい。  For heat dissipation, it is preferable to use a metal case and attach a heat radiating means such as a fan to the metal case.
対象となる電子管としては、 受光面板と、 側管及びステムによって定 義される内部空間に設置された電子増倍部を有する光電子増倍管が挙げ られる。 また、 熱伝導性の良い金属製の側管を有する光電子増倍管を用 いることによって、 光電子増倍管全体の温度が安定するまでの時間を短 縮することができる。 図面の簡単な説明  Examples of the electron tube include a photomultiplier tube having a light receiving surface plate and an electron multiplier section provided in an internal space defined by a side tube and a stem. Also, by using a photomultiplier tube having a metal side tube having good thermal conductivity, the time required for the temperature of the entire photomultiplier tube to stabilize can be reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施形態に係る電子管装置の断面図である 第 2図は、 第 1図に示した光電子増倍管装置について破断しファンを 除く各部分を展開して示す斜視図である。  FIG. 1 is a cross-sectional view of an electron tube device according to a first embodiment of the present invention. FIG. 2 is an exploded view of the photomultiplier tube device shown in FIG. FIG.
第 3図は、 本発明の第 2の実施形態に係わる電子管装置の一部断面図 である。  FIG. 3 is a partial cross-sectional view of an electron tube device according to a second embodiment of the present invention.
第 4図は、 実施例における光電面及びケースの経時温度変化を示すグ ラフである。  FIG. 4 is a graph showing changes over time in the temperature of the photocathode and the case in the example.
第 5図は、 従来例に係る光電子増倍管装置の断面図である。  FIG. 5 is a cross-sectional view of a conventional photomultiplier tube device.
第 6図は、 従来例に係るイメージ管装置の断面図である。 発明を実施するための最良の形態  FIG. 6 is a sectional view of an image tube device according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面と共に本発明による電子管装置の好適な実施形態について 詳細に説明する。 なお、 図面の説明においては同一要素には同一符号を 付し、 重複する説明を省略する。 また、 図面の寸法比率は、 説明のもの と必ずしも一致していない。 Hereinafter, preferred embodiments of an electron tube device according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements will be denoted by the same reference symbols, without redundant description. Also, the dimensional ratios in the drawings are for explanation. Does not always match.
第 1図に本発明に係る電子管装置の、 光電子増倍管装置における実施 形態の構成の断面図を示す。 また、 第 2図は第 1図に示した光電子増倍 管装置について破断し、 フアンを除く各部分を展開して示す斜視図であ る。 図中、 符号 1 0は光電子増倍管を表している。 光電子増倍管 1 0の 外面は、 入射光を受ける円形の受光面板 1 1 と、 円筒形の金属側管 1 3 と、 基台部となる円形のステム 1 4とから構成される。 受光面板 1 1の 内側には光電面 1 2が形成されている。 ステム 1 4には、 複数のステム ピン 1 5が固定されている。  FIG. 1 shows a cross-sectional view of the configuration of an embodiment of a photomultiplier tube device of the electron tube device according to the present invention. FIG. 2 is a perspective view showing the photomultiplier tube device shown in FIG. 1 in a broken state and each part excluding the fan is developed. In the figure, reference numeral 10 denotes a photomultiplier tube. The outer surface of the photomultiplier tube 10 includes a circular light receiving surface plate 11 for receiving incident light, a cylindrical metal side tube 13, and a circular stem 14 serving as a base. A photoelectric surface 12 is formed inside the light receiving surface plate 11. A plurality of stem pins 15 are fixed to the stem 14.
ハウジング 2 0は、 熱伝導性の良い金属製、 好ましくはアルミニウム 製のケース 2 1と、 電気絶縁性が良くかつ断熱性の良い合成樹脂製のソ ケッ ト部 2 3とから構成される。  The housing 20 is made up of a case 21 made of metal having good thermal conductivity, preferably aluminum, and a socket portion 23 made of synthetic resin having good electrical insulation and good heat insulation.
ケース 2 1の外形は直方体形であり、 内部に円筒形の空洞が形成され ている。 第 2図に示されているように、 この空洞部分は、 収容部 2 1 a とソケッ ト固定部 2 1 bとから構成され、 収容部 2 1 aの内径は、 ソケ ット固定部 2 1 bの内径に対して小さく形成されている。 ケース 2 1の 一方の端部 (第 1図及び第 2図においては左側) には、 中央にケース内 部の収容部 2 1 aよりも内径の小さい円形の入射開口部 2 1 cが設けら れ、 他方の端部 (第 1図及び第 2図においては右側) は開放端部 2 I d とされる。 入射開口部 2 1 cの外側に形成された入射窓固定部 2 1 eに は入射光を透過する入射窓 2 2、 好ましくはガラス製の入射窓 2 2、 が 取り付けられる。 光電子増倍管 1 0は、 ケース 2 1内の収容部 2 1 aに 収容され、 入射窓 2 2が光電子増倍管 1 0の受光面板 1 1に対向するよ うに配置される。 また、 熱伝導性の良いケース 2 1は放熱板の機能をも 有しており、 第 1図に示されているように、 ケース 2 1の一方の外側面 には、 空冷のためのファン 3 3が取り付けられる。 ソケッ ト部 2 3は、 ソケッ ト 2 3 aと、 ソケッ ト 2 3 aに貫通 · 固定 されている複数のソケットビン 2 3 bと、 ソケッ トホルダー 2 3 cとか ら構成される。 ソケッ トホルダ一 2 3 cにはソケッ トビン 2 3 bが貫 通 · 固定され、 したがってソケッ ト 2 3 a及びソケッ トホルダ一 2 3 c はソケッ トピン 2 3 bを介して固定される。 光電子増倍管 1 0の各ステ ムピン 1 5は対応するソケッ トビン 2 3 bに接続 · 固定され、 ソケッ ト ピン 2 3 bを介して外部の電圧端子或いは信号の読み出し線に接続され る。 The outer shape of the case 21 is a rectangular parallelepiped, and has a cylindrical cavity formed therein. As shown in FIG. 2, the hollow portion is composed of a receiving portion 21a and a socket fixing portion 21b, and an inner diameter of the receiving portion 21a is a socket fixing portion 21. It is formed smaller than the inner diameter of b. At one end of the case 21 (the left side in FIGS. 1 and 2), a circular entrance opening 21 c having a smaller inside diameter than the housing portion 21 a inside the case is provided at the center. The other end (the right side in FIGS. 1 and 2) is an open end 2Id. An entrance window 22 for transmitting incident light, preferably a glass entrance window 22, is attached to the entrance window fixing portion 21 e formed outside the entrance opening 21 c. The photomultiplier tube 10 is housed in the housing portion 21 a in the case 21, and is arranged so that the entrance window 22 faces the light receiving surface plate 11 of the photomultiplier tube 10. In addition, the case 21 having good heat conductivity also has a function of a heat sink, and as shown in FIG. 1, a fan 3 for air cooling is provided on one outer surface of the case 21. 3 is attached. The socket part 23 is composed of a socket 23a, a plurality of socket bins 23b penetrating and fixed to the socket 23a, and a socket holder 23c. The socket bin 23b penetrates and is fixed to the socket holder 23c, so that the socket 23a and the socket holder 23c are fixed via the socket pin 23b. Each stem pin 15 of the photomultiplier tube 10 is connected and fixed to a corresponding socket bin 23b, and is connected to an external voltage terminal or a signal readout line via the socket pin 23b.
ハウジング 2 0の開放端部 2 1 d側を封止するソケッ ト部 2 3は、 ケ —ス 2 1の開放端部 2 I dから挿入され、 ケース 2 1の収容部 2 1 a及 びソケッ ト固定部 2 1 bの境界のネジ穴が設けられた段差 2 1 f に固定 される。 これによつてソケット部 2 3に固定された光電子増倍管 1 0は、 ハウジング 2 0に対して固定され保持される。  The socket 23 for sealing the open end 21 d of the housing 20 is inserted from the open end 2 Id of the case 21, and the housing 21 a and the socket 21 of the case 21 are inserted. And fixed to a step 21 f provided with a screw hole at the boundary of the fixing part 21 b. Thus, the photomultiplier tube 10 fixed to the socket portion 23 is fixed and held in the housing 20.
ケース 2 1 と入射窓 2 2との間は接着によって固定され、 ケース 2 1 とソケッ ト部 2 3との間は固定用リング 2 4を介して保持用ネジ 2 5に よって固定される。 固定用リング 2 4はシリコーンゴム製で気密のため のシールとしての機能も有しており、 したがって、 ハウジング 2 0は気 密構造をなしている。 ハウジング 2 0の内部には乾燥ガス、 好ましくは 断熱性が良く取り扱いが安全なキセノンガス、 が封入され、 それによつ て光電子増倍管 1 0への外部からの熱的影響を最小限に抑え、 また、 光 電子増倍管 1 0の金属側管 1 3あるいはステム 1 4等における結露の発 生が防止される。  The case 21 and the entrance window 22 are fixed by bonding, and the case 21 and the socket portion 23 are fixed by a holding screw 25 via a fixing ring 24. The fixing ring 24 is made of silicone rubber and also has a function as a seal for airtightness, and therefore, the housing 20 has an airtight structure. Dry gas, preferably xenon gas, which has good insulation and is safe to handle, is enclosed inside the housing 20, thereby minimizing external thermal effects on the photomultiplier tube 10. Further, the occurrence of dew condensation on the metal side tube 13 or the stem 14 of the photomultiplier tube 10 is prevented.
以上のような光電子増倍管 1 0、 ケース 2 1、 入射窓 2 2及びソケッ ト部 2 3の構成において、 ハウジング 2 0の入射窓 2 2を通して光電子 増倍管 1 0の受光面板 1 1に光が入射すると、 受光面板 1 1の内側の光 電面 1 2から光電変換によって電子が放出され、 その電子は光電子増倍 管 1 0内に設置された電子増倍部において増倍されて、 ァノ一ド電極に よって電気信号として取り出される。 この電気信号は、 光電子増倍管 1 0の所定のステムピン 1 5及びこれに接続されたソケッ トピン 2 3 bを 経て出力される。 In the configuration of the photomultiplier tube 10, the case 21, the entrance window 22, and the socket section 23 as described above, the light-receiving surface plate 11 of the photomultiplier tube 10 passes through the entrance window 22 of the housing 20. When light enters, electrons are emitted from the photoelectric surface 12 inside the light-receiving surface plate 11 by photoelectric conversion, and the electrons are photomultiplied. It is multiplied by an electron multiplying unit installed in the tube 10 and is taken out as an electric signal by the anode electrode. This electric signal is output via a predetermined stem pin 15 of the photomultiplier tube 10 and a socket pin 23b connected thereto.
冷却のためのペルチェ素子 3 0は中央に開口部を有する単一の素子で、 その開口部が受光面板 1 1と対向する位置になるようにハウジング 2 0 内部において光電子増倍管 1 0及びケース 2 1の間に配置され、 吸熱部 3 0 aが受光面板 1 1の周縁部に位置し、 放熱部 3 O bがケース 2 1内 側のペルチェ素子保持部 2 1 gに位置するように配置される。 これによ り、 吸熱部 3 0 aによって光電面 1 2が冷却され、 放熱部 3 O bによつ て入射窓面 2 2 aが加温される。  The Peltier element 30 for cooling is a single element having an opening at the center, and the photomultiplier tube 10 and the case inside the housing 20 are arranged such that the opening faces the light receiving face plate 11. 2 1, heat absorbing section 30 a is located on the periphery of light receiving face plate 11, and heat radiating section 3 Ob is located on Peltier element holding section 2 1 g inside case 21 Is done. Thereby, the photocathode 12 is cooled by the heat absorbing portion 30a, and the incident window surface 22a is heated by the heat radiating portion 30b.
ペルチェ素子 3 0はハウジング 2 0内部において、 保持用ネジ 2 5に よるソケッ ト部 2 3及び光電子増倍管 1 0を介したケース 2 1への押し 付けによって保持される。 このとき、 固定用リング 2 4は押し付けの圧 力を緩衝 ·調節させる機能を果たす。  The Peltier element 30 is held inside the housing 20 by being pressed against the case 21 via the socket section 23 and the photomultiplier tube 10 by the holding screw 25. At this time, the fixing ring 24 functions to buffer and adjust the pressing pressure.
このように、 開口部を有した単一のペルチェ素子 3 0を用い、 また、 ペルチェ素子 3 0の保持を押し付けのみによって行い、 光電子増倍管 1 0をステムピン 1 5のソケッ ト部 2 3への固定のみによって固定する構 造を用いることによって、 部品個数が大幅に減少し、 組立時の作業性が 向上する。 それによつて、 装置の小型化及び低価格化を実現することが できる。  As described above, a single Peltier element 30 having an opening is used, and the Peltier element 30 is held only by pressing, and the photomultiplier tube 10 is connected to the socket section 23 of the stem pin 15. By using a structure that is fixed only by fixing the parts, the number of parts is greatly reduced, and workability during assembly is improved. As a result, the size and cost of the device can be reduced.
また、 このような保持構造において、 ペルチェ素子 3 0の吸熱部 3 0 aは光電子増倍管 1 0の受光面板 1 1の周縁部に対して吸熱側シ一ト 3 1によって接合され、 放熱部 3 0 bはケース 2 1内側のペルチェ素子保 持部 2 1 gに対して放熱側シート 3 2によって接合される。 これら吸熱 側シート 3 1及び放熱側シ一ト 3 2には熱伝導性の良いシ一ト部品が用 いられ、 それらを保持用ネジ 2 5によって押し付けることによって、 ぺ ルチェ素子保持部 2 1 g、 ペルチェ素子 3 0及び受光面板 1 1の外面部 の表面の凹凸が吸収される。 これによつてより効率良く熱を伝導させる ことができ、 光電面の冷却を開始してから光電子増倍管が使用可能な安 定した温度状態になるまでの時間を、 短縮することができる。 In such a holding structure, the heat absorbing portion 30 a of the Peltier element 30 is joined to the peripheral portion of the light receiving surface plate 11 of the photomultiplier tube 10 by the heat absorbing side sheet 31, and the heat radiating portion 30 b is joined to the Peltier element holding portion 21 g inside the case 21 by the heat radiation side sheet 32. These heat-absorbing sheet 31 and heat-dissipating sheet 32 use sheet parts with good thermal conductivity. By pressing them with the holding screws 25, the irregularities on the outer surface of the Peltier element holder 21g, the Peltier element 30 and the light receiving surface plate 11 are absorbed. As a result, heat can be conducted more efficiently, and the time from the start of cooling the photocathode until the photomultiplier tube reaches a usable stable temperature state can be shortened.
吸熱側シ一ト 3 1については、 好ましくは電気伝導性の良いシート部 品、 より好ましくはアルミニウムを主成分とするシート部品、 が用いら れ、 光電面 1 2と同電位である金属側管 1 3に接触している。 これによ つて、 吸熱側シート 3 1が配置されている受光面板 1 1の外面と、 光電 面 1 2が形成されている受光面板 1 1の内面とを同電位に保持すること ができ、 受光面板 1 1近傍において生じる電気的ノイズを抑制すること ができる。 一方、 放熱側シート 3 2については、 好ましくは電気絶縁性 の良いシート部品が用いられる。 これによつて、 光電子増倍管から外部 へのリーク電流等を抑制することができる。  The heat-absorbing side sheet 31 is preferably a sheet part having good electrical conductivity, more preferably a sheet part mainly composed of aluminum, and is a metal side tube having the same potential as the photoelectric surface 12. 1 3 is in contact. As a result, the outer surface of the light receiving surface plate 11 on which the heat absorbing side sheet 31 is arranged and the inner surface of the light receiving surface plate 11 on which the photoelectric surface 12 is formed can be maintained at the same potential. Electrical noise generated near the face plate 11 can be suppressed. On the other hand, as the heat radiation side sheet 32, a sheet component having good electric insulation is preferably used. Thereby, a leak current or the like from the photomultiplier tube to the outside can be suppressed.
第 4図は、 上記の実施形態によって示された構成を有する実施例によ る光電子増倍管の光電面及びハウジングのケースの温度変化を示してい る。 なお、 本実施例においては光電面として G a A sの半導体光電面を 用いている。 G a A sなどの半導体光電面は S b—アル力リゃバイアル 力リなどの光電面に比べて暗電流が多く、 特に冷却が有効な光電面であ る。 光電面の温度は冷却開始の 5分後にはおよそ 3 °Cまで冷却され、 光 電子増倍管を測定に使用することが可能な安定した温度状態となる。 こ れは、 従来の光電子増倍管冷却装置において、 使用可能な温度状態にな るまでに 2時間程度を要していたのに比べて、 非常に早い。 また、 ケ一 スの温度もファンによる空冷によって、 3 0で程度までの上昇に抑えら れている。 このとき光電子増倍管の暗電流パルス数を冷却による温度変 化以外の条件を一定に保って測定した結果、 冷却前には毎秒 7 4 5 5力 ゥントであったのに対して、 冷却後には毎秒 5 8カウントと大幅な喑電 流パルス数の低減が実現されている。 FIG. 4 shows the temperature change of the photocathode of the photomultiplier tube and the case of the housing according to the example having the configuration shown in the above embodiment. In this embodiment, a GaAs semiconductor photocathode is used as the photocathode. A semiconductor photocathode such as G a As has a larger dark current than a photocathode such as Sb-vial power, and is a photocathode that is particularly effective for cooling. After 5 minutes from the start of cooling, the temperature of the photocathode cools down to about 3 ° C, and the temperature reaches a stable state where the photomultiplier tube can be used for measurement. This is much faster than the conventional photomultiplier tube cooling device, which took about two hours to reach a usable temperature state. In addition, the temperature of the case was suppressed to about 30 by air cooling by a fan. At this time, the number of dark current pulses of the photomultiplier tube was measured while keeping the conditions other than temperature change due to cooling constant. In contrast, the cooling current has been reduced to 58 counts per second after cooling.
本発明は、 上記実施形態に限られるものではなく、 種々の形態によつ て光電子増倍管やイメージ管などの電子管に対して適用することが可能 である。  The present invention is not limited to the above embodiment, but can be applied to electron tubes such as photomultiplier tubes and image tubes in various forms.
第 1図及び第 2図に示した実施形態においてはソケッ ト部をケース 内面の段差に固定しているが、 例えばケースの開放端部に直接固定する 力 、 もしくはケースの側壁内面に固定するなど、 様々な形状のケース及 びソケッ ト、 またその固定方法が可能である。 ソケッ ト部自体について も、 ソケッ ト及びソケッ トホルダーに分割せずに一体に形成しても良い。 ペルチェ素子の保持方法については、 電子管の受光面板の周縁部にぺ ルチェ素子の保持に充分な領域がない場合には、 周縁部に熱伝導性の良 いフランジ、 例えば金属製のフランジ、 を補助的に設置し、 そのフラン ジによってペルチェ素子の受光面板への接触とケースへの押し付けを行 つても良い。 また、 接合にシート部品を用いず、 直接接合しても良い。 具体的には、 第 3図に示すように、 吸熱側シート 3 1 と放熱側シート 3 2を取り外し、 ペルチェ素子 3 0を熱伝導性の良い保持部材 3 6を介 して受光面板 1 1の周縁部に接するようにすると共に、 保持部材 3 6と ケース 2 1内部のペルチェ素子保持部 2 1 gとの間にペルチェ素子 3 0 を挟持するようにする。 保持部材 3 6は、 光電子増倍管 1 0の金属側管 1 3の外径よりもわずかに大きい内径を有する円筒部 3 6 aと、 円筒部 3 6 aの一端から外方に延びるフランジ部 3 6 bと、 円筒状部 3 6 aの 他端から内方に延びるフランジ部 3 6 cとが一体成型された構造となつ ている。 円筒状部 3 6 aとフランジ部 3 6 bはペルチェ素子 3 0の保持 部としての役割を果たしている。 また、 円筒部 3 6 aとフランジ部 3 6 cは受光面板 1 1と金属側管 1 3への係合部材としての役割を果たして いる。 In the embodiment shown in FIGS. 1 and 2, the socket portion is fixed to the step on the inner surface of the case.For example, the socket is fixed directly to the open end of the case, or is fixed to the inner surface of the side wall of the case. A variety of shapes and cases and sockets, and methods for fixing them are possible. The socket portion itself may be formed integrally without being divided into the socket and the socket holder. Regarding the method of holding the Peltier element, if there is not enough area for holding the Peltier element at the periphery of the light-receiving surface plate of the electron tube, a flange with good heat conductivity at the periphery, such as a metal flange, is used. The Peltier element may be brought into contact with the light-receiving surface plate and pressed against the case using the flange. In addition, direct joining may be performed without using sheet parts for joining. Specifically, as shown in FIG. 3, the heat-absorbing sheet 31 and the heat-dissipating sheet 32 are removed, and the Peltier element 30 is connected to the light-receiving face plate 11 via a holding member 36 having good thermal conductivity. The Peltier device 30 is held between the holding member 36 and the Peltier device holding portion 21 g inside the case 21 while being in contact with the peripheral portion. The holding member 36 includes a cylindrical portion 36 a having an inner diameter slightly larger than the outer diameter of the metal side tube 13 of the photomultiplier tube 10, and a flange portion extending outward from one end of the cylindrical portion 36 a. 36b and a flange 36c extending inward from the other end of the cylindrical portion 36a are integrally formed. The cylindrical portion 36a and the flange portion 36b serve as a holding portion for the Peltier element 30. Further, the cylindrical portion 36a and the flange portion 36c serve as engagement members for the light receiving face plate 11 and the metal side tube 13. I have.
本発明を X線検出用の光電子増倍管に用いる場合などには、 入射窓は ガラス製に限らず、 例えば X線の透過率の良いベリリウム製とすること も可能である。 また、 上記実施形態においてはハウジング中に乾燥ガス を封入したが、 真空にしても良い。  When the present invention is used for a photomultiplier tube for X-ray detection, the entrance window is not limited to glass, but may be made of, for example, beryllium having a good X-ray transmittance. Further, in the above embodiment, the dry gas is sealed in the housing, but may be evacuated.
ペルチェ素子の放熱手段については、 上記実施形態ではファンによる 空冷によっているが、 光電子増倍管装置の使用の状態等によって、 水冷 など他の放熱手段を用いることも可能である。 また、 光電面の温度を特 に一定に維持することが必要な場合には、 光電面の温度を検出してその 検出値に基づいてペルチェ素子を制御するようなコントロール装置を付 設することによって、 光電面の温度を制御することができる。  In the above embodiment, the radiator of the Peltier element is air-cooled by a fan. However, other radiator such as water-cooling may be used depending on the use state of the photomultiplier tube device. When it is necessary to keep the temperature of the photocathode particularly constant, a control device that detects the temperature of the photocathode and controls the Peltier element based on the detected value is provided. The temperature of the photocathode can be controlled.
また例えば、 ァノ一ドとしてアバランシェフォ トダイォ一ドを用いた 光電子増倍管 (H P D ) は側管が金属製でなくセラミック製であるが、 このようなセラミック側管を有する光電子増倍管など、 金属製以外の側 管を有する光電子増倍管に対しても同様な作用効果が得られる。  For example, in a photomultiplier tube (HPD) using an avalanche photodiode as the anode, the side tube is made of ceramic instead of metal. For example, a photomultiplier tube having such a ceramic side tube is used. The same operation and effect can be obtained for a photomultiplier tube having a side tube other than metal.
また、 蛍光面として電子打ち込み型 C C D ( E B— C C D ) を用いた イメージ管は、 光電子増倍管と同様に底面にステムピンを有しており、 したがって本発明による冷却装置の構造を適用することができる。  In addition, an image tube using an electron-implanted CCD (EB-CCD) as a phosphor screen has a stem pin on the bottom surface like a photomultiplier tube, so that the structure of the cooling device according to the present invention can be applied. it can.
本発明による電子管装置は、 以上詳細に説明したように、 次のような 効果を得る。 すなわち、 ペルチェ素子の吸熱部が電子管の受光面板に熱 的に接触し、 ペルチェ素子の放熱部がハウジングのケースの入射窓を有 する端部の内面に熱的に接触することによって、 電子管の光電面を効率 良く冷却し、 かつ付加的装置を用いることなくハウジングの入射窓面に おける結露の発生を防止する電子管の冷却装置が実現できる。  As described in detail above, the electron tube device according to the present invention has the following effects. In other words, the heat absorption part of the Peltier element thermally contacts the light receiving surface plate of the electron tube, and the heat radiation part of the Peltier element thermally contacts the inner surface of the end of the housing case having the entrance window. A cooling device for an electron tube can be realized that efficiently cools the surface and prevents the occurrence of dew condensation on the entrance window surface of the housing without using an additional device.
また、 電子管のステムピンが固定されるソケッ ト部によってハウジン グの一部を構成し、 ペルチェ素子をソケッ ト部及び電子管によるケース への押し付けにより保持することによって、 装置の構造が簡略化して部 品個数が減少し、 組立時の作業性の向上と装置の小型化及び低価格化を 実現できる。 特にペルチェ素子として中央に開口部を有する単一の素子 を用いることにより、 保持 · 組立方法をより簡略化できる。 また、 ソケ ッ ト部をソケッ 卜とソケッ トホルダ一とに分けることにより、 既存のソ ケッ トを利用し、 本発明を容易に既存の電子管に適用できる。 In addition, a part of the housing is constituted by a socket part to which the stem pin of the electron tube is fixed, and a Peltier element is formed by the socket part and the case formed by the electron tube. By holding the device by pressing it, the structure of the device can be simplified, the number of parts can be reduced, and the workability at the time of assembly can be improved, and the size and cost of the device can be reduced. In particular, by using a single element having an opening in the center as a Peltier element, the holding / assembling method can be further simplified. In addition, by dividing the socket portion into a socket and a socket holder, the present invention can be easily applied to an existing electron tube using an existing socket.
さらに、 ハウジングに対する電子管の保持をステムピンのソケッ ト部 への固定のみで行うことにより、 電子管とハウジングとの接触による外 部からの熱的影響を最小限に抑え、 また、 ペルチェ素子の接合に熱伝導 性の良いシ一ト部品を用いることにより、 より効率良い光電面の冷却を 実現できる。 また、 金属側管を有する電子管を用いることにより、 温度 が安定するまでの時間を短縮することができる。 産業上の利用可能性  Furthermore, by holding the electron tube in the housing only by fixing the stem pin to the socket, thermal effects from outside due to contact between the electron tube and the housing are minimized, and heat is applied to the joint of the Peltier element. More efficient cooling of the photocathode can be realized by using sheet parts having good conductivity. Further, by using the electron tube having the metal side tube, the time until the temperature becomes stable can be shortened. Industrial applicability
本発明による電子管装置は、 特定の波長の吸収、 反射、 偏光を利用し て各種物質の分析を行う光分析装置として医用機器、 分析機器、 工業用 計測機器等に幅広く利用することができる。  The electron tube device according to the present invention can be widely used in medical devices, analytical devices, industrial measuring devices, and the like as optical analyzers for analyzing various substances using absorption, reflection, and polarization of specific wavelengths.

Claims

請 求 の 範 囲 The scope of the claims
1. 外側面と内側面とを有する受光面板 ( 1 1 ) と、 前記受光面板( 1 1 ) の内側に形成された光電面 ( 1 2 ) と、 基台部を構成するステム ( 1 4) と、 前記ステム ( 1 4) に固定された複数のステムピン ( 1 5 ) と、 前記受光面板 ( 1 1 ) と前記ステム ( 1 4) との間に介在する側管 ( 1 3 ) とを有した電子管 ( 1 0 ) と、  1. A light receiving surface plate (11) having an outer surface and an inner surface, a photoelectric surface (12) formed inside the light receiving surface plate (11), and a stem (14) constituting a base portion A plurality of stem pins (15) fixed to the stem (14); and a side tube (13) interposed between the light receiving face plate (11) and the stem (14). Electron tube (10)
前記電子管 ( 1 0 ) が内部に設置され、 前記電子管 ( 1 0 ) の前記受 光面板 ( 1 1 ) に対向する位置に入射窓 ( 2 2 ) が配置されるハウジン グ ( 2 0 ) と、  A housing (20) in which the electron tube (10) is installed, and an entrance window (22) is arranged at a position of the electron tube (10) facing the light receiving face plate (11);
前記ハウジング (2 0 ) の内部に設置されて前記電子管 ( 1 0 ) の前 記光電面 ( 1 2) を冷却するペルチェ素子 ( 3 0 ) と、  A Peltier element (30) installed inside the housing (20) to cool the photoelectric surface (12) of the electron tube (10);
前記ペルチェ素子 ( 3 0 ) で発生した熱を放熱する放熱手段 (3 2, 2 1、 3 3 ) とを備えた電子管装置において、  A heat radiation means (32, 21, 33) for radiating the heat generated by the Peltier element (30);
前記ハウジング (2 0 ) は、 一方の端部に前記入射窓 ( 2 2 ) を有し 他方の端部を開放端部とするケース ( 2 1 ) と、 前記ケース (2 1 ) の 前記開放端部側を封止するソケッ ト部 ( 2 3 ) とから構成されて気密構 造をなし、  The housing (20) has the entrance window (22) at one end, a case (21) having the other end as an open end, and the open end of the case (21). And a socket part (23) that seals the part side to form an airtight structure.
前記電子管 ( 1 0) は、 前記ステムピン ( 1 5 ) を介して前記ソケッ ト部 (2 3 ) に固定され、  The electron tube (10) is fixed to the socket portion (23) via the stem pin (15),
前記ペルチェ素子 ( 3 0 ) は、 前記電子管 ( 1 0 ) の前記受光面板 ( 1 1 ) 側に吸熱部 ( 3 0 a) が位置し、 前記ケース ( 2 1 ) の前記一方の 端部の内面側に放熱部 ( 3 0 b) が位置するように配置されて、 前記ソ ケット部 (2 3 ) 及び前記電子管 ( 1 0) による前記ケース ( 2 1 ) へ の押し付けによって保持されたことを特徴とする電子管装置。  In the Peltier element (30), a heat absorbing portion (30a) is located on the light receiving surface plate (11) side of the electron tube (10), and an inner surface of the one end of the case (21) is provided. The heat radiating portion (30b) is disposed on the side of the housing, and the heat radiating portion (30b) is held by being pressed against the case (21) by the socket portion (23) and the electron tube (10). Electron tube device.
2. 請求項 1記載の前記電子管装置において、  2. The electron tube device according to claim 1,
前記ペルチェ素子 ( 3 0 ) は、 中央に開口部を有する単一の素子であ つて、 The Peltier device (30) is a single device having an opening at the center. And
前記開口部を介して前記ハウジング (2 0) の前記入射窓 ( 2 2 ) が 前記電子管 ( 1 0 ) の前記受光面板 ( 1 1 ) に対面するように配置され たことを特徴とする電子管装置。  An electron tube device, wherein the entrance window (22) of the housing (20) faces the light receiving surface plate (11) of the electron tube (10) via the opening. .
3. 請求項 1または 2記載の前記電子管装置において、  3. In the electron tube device according to claim 1 or 2,
前記ペルチェ素子 ( 3 0) の吸熱部 ( 3 0 a) が前記受光面板 ( 1 1 ) の一部に熱的に接続されていることを特徴とする電子管装置。  An electron tube device, wherein a heat absorbing portion (30a) of the Peltier element (30) is thermally connected to a part of the light receiving face plate (11).
4. 請求項 1乃至 3記載の前記電子管装置において、  4. The electron tube device according to any one of claims 1 to 3,
前記ソケッ ト部 ( 2 3 ) は、 前記電子管 ( 1 0) の前記ステムピン ( 1 5) が接続 ' 固定されるソケッ トピン ( 2 3 b) と、 前記ソケッ トピン ( 2 3 b) が固定されるソケッ ト ( 2 3 a) と、 前記ソケッ トピン ( 2 3 b) 及び前記ソケッ ト ( 2 3 a) が固定され前記ケース (2 1 ) に接 続 · 固定されるソケッ トホルダ一 ( 2 3 c ) とから構成されたことを特 徵とする電子管装置。  The socket part (23) is fixed to the socket pin (23b) to which the stem pin (15) of the electron tube (10) is connected and fixed and the socket pin (23b). A socket (23c) to which the socket (23a), the socket pin (23b) and the socket (23a) are fixed and which is connected and fixed to the case (21). An electron tube device characterized by comprising:
5. 請求項 4記載の前記電子管装置において、  5. In the electron tube device according to claim 4,
前記ソケッ ト ( 2 3 a) が保持用ねじ ( 2 5 ) により前記ケース ( 2 1 ) に締結されていることを特徴とする電子管装置。  An electron tube device, wherein the socket (23a) is fastened to the case (21) by a holding screw (25).
6. 請求項 1乃至 5のいずれか一項記載の前記電子管装置において、 前記ペルチェ素子 ( 3 0 ) の前記吸熱部 ( 3 0 a) は、 吸熱側シート (3 1 ) を介して前記受光面板 ( 1 1 ) に接合し、 前記放熱部 ( 3 0 b) は、 放熱側シート (3 2) を介して前記ケース ( 2 1 ) の前記一方の端 部の内面に接合したことを特徴とする電子管装置。  6. The electron tube device according to any one of claims 1 to 5, wherein the heat absorbing portion (30a) of the Peltier element (30) is provided with the light receiving surface plate via a heat absorbing side sheet (31). (11), wherein the heat radiating portion (30b) is bonded to the inner surface of the one end of the case (21) via a heat radiating sheet (32). Electron tube device.
7. 請求項 1乃至 5のいずれか一項記載の前記電子管装置において、 前記ペルチェ素子 ( 3 0) の前記吸熱部 ( 3 0 a) は、 熱伝導部材 ( 3 6 ) を介して前記受光面板 ( 1 1 ) に接合し、 前記放熱部 ( 3 0 b) は 直接前記ケース ( 2 1 ) の前記一方の端部の内面に接合したことを特徴 とする電子管装置。 7. The electron tube device according to any one of claims 1 to 5, wherein the heat absorbing portion (30a) of the Peltier element (30) is connected to the light receiving face plate via a heat conducting member (36). (11), wherein the heat radiating portion (30b) is directly bonded to the inner surface of the one end of the case (21). Electron tube device.
8. 請求項 1乃至 7のいずれか 1項記載の前記電子管装置において、 前記ケース ( 2 1 ) が金属製であることを特徴とする電子管装置。  8. The electron tube device according to any one of claims 1 to 7, wherein the case (21) is made of metal.
9. 請求項 8記載の前記電子管装置において、  9. The electron tube device according to claim 8,
前記放熱手段 ( 3 2, 2 1, 3 3) は前記ケース (2 1 ) に取り付けら れたファン ( 3 3) を有することを特徴とする電子管装置。 An electron tube device, wherein the heat radiating means (32, 21, 33) has a fan (33) attached to the case (21).
1 0. 請求項 1乃至 1 0のいずれか一項記載の前記電子管装置におい て、  10. In the electron tube device according to any one of claims 1 to 10,
前記電子管 ( 1 0) は、 前記受光面板 ( 1 1 ) と、 前記側管 ( 1 3) 及び前記ステム ( 1 4) によって定義される内部空間に設置された電子 増倍部を有することを特徴とする電子管装置。  The electron tube (10) has the light receiving face plate (11) and an electron multiplier disposed in an internal space defined by the side tube (13) and the stem (14). Electron tube device.
1 1. 請求項 1乃至 1 0のいずれか一項記載の前記電子管装置におい て、  1 1. In the electron tube device according to any one of claims 1 to 10,
前記側管 ( 1 3) が金属製であることを特徴とする電子管装置。  An electron tube device, wherein the side tube (13) is made of metal.
PCT/JP1999/002451 1998-05-13 1999-05-12 Electronic tube WO1999059186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU37292/99A AU3729299A (en) 1998-05-13 1999-05-12 Electronic tube

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13047298A JP4128654B2 (en) 1998-05-13 1998-05-13 Electron tube equipment
JP10/130472 1998-05-13

Publications (1)

Publication Number Publication Date
WO1999059186A1 true WO1999059186A1 (en) 1999-11-18

Family

ID=15035070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002451 WO1999059186A1 (en) 1998-05-13 1999-05-12 Electronic tube

Country Status (3)

Country Link
JP (1) JP4128654B2 (en)
AU (1) AU3729299A (en)
WO (1) WO1999059186A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024123A1 (en) 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh Detector apparatus
DE102012107480A1 (en) 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh detecting device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
TWI365475B (en) * 2007-10-25 2012-06-01 Iner Aec Executive Yuan Interface device for photomultiplier tube
JP5051143B2 (en) * 2009-01-23 2012-10-17 株式会社島津製作所 Photomultiplier tube holding device
JP2011193400A (en) * 2010-03-16 2011-09-29 Anritsu Corp Ion trap type frequency standard and output frequency stabilizing method
EP2560189B1 (en) 2011-08-16 2020-06-17 Leica Microsystems CMS GmbH Detector device
JP6508140B2 (en) * 2016-06-30 2019-05-08 東亜ディーケーケー株式会社 Photomultiplier tube, measuring device, manufacturing jig

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180930A (en) * 1986-01-31 1987-08-08 Hamamatsu Photonics Kk Cooling device for photocathode
JPH0688747A (en) * 1992-09-08 1994-03-29 Omron Corp Cooling type photodetector
JPH06103939A (en) * 1992-09-24 1994-04-15 Hamamatsu Photonics Kk Image tube device
JPH0817390A (en) * 1994-06-29 1996-01-19 Hamamatsu Photonics Kk Photodetector equipped with cooling device and its manufacture
JPH08190889A (en) * 1995-01-09 1996-07-23 Advantest Corp Cooling type photomultiplier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180930A (en) * 1986-01-31 1987-08-08 Hamamatsu Photonics Kk Cooling device for photocathode
JPH0688747A (en) * 1992-09-08 1994-03-29 Omron Corp Cooling type photodetector
JPH06103939A (en) * 1992-09-24 1994-04-15 Hamamatsu Photonics Kk Image tube device
JPH0817390A (en) * 1994-06-29 1996-01-19 Hamamatsu Photonics Kk Photodetector equipped with cooling device and its manufacture
JPH08190889A (en) * 1995-01-09 1996-07-23 Advantest Corp Cooling type photomultiplier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024123A1 (en) 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh Detector apparatus
DE102012107480A1 (en) 2011-08-16 2013-02-21 Leica Microsystems Cms Gmbh detecting device
US9450118B2 (en) 2011-08-16 2016-09-20 Leica Microsystems Cms Gmbh Detector apparatus
DE102012107480B4 (en) 2011-08-16 2019-10-02 Leica Microsystems Cms Gmbh detecting device

Also Published As

Publication number Publication date
JPH11329338A (en) 1999-11-30
JP4128654B2 (en) 2008-07-30
AU3729299A (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US6818885B2 (en) Photodetector
JP3277378B2 (en) Microphone device
WO1999059186A1 (en) Electronic tube
JP3884616B2 (en) Photodetector and imaging device using the same
US3814964A (en) External photodetector cooling techniques
TW201917418A (en) An X-ray detector with a cooling system
JP2003258221A (en) Hermetically sealed package
EP1329930B1 (en) Photocathode and electron tube
JP2006112870A (en) Photodetection apparatus
JPH08190889A (en) Cooling type photomultiplier
EP0595468B1 (en) Image device
JPS58148572A (en) Solid-state image pickup device
JPH0467293B2 (en)
US3757151A (en) Internal cooling for photodetectors
JPH10146332A (en) X-ray ct device
EP1523044B1 (en) Imaging apparatus
JPH0688747A (en) Cooling type photodetector
JP7360975B2 (en) photodetector
JPH07287130A (en) Optical fiber module
JP2007333653A (en) Radiation detection apparatus
CN211318208U (en) Gas analyzer
JP3694565B2 (en) Photodetector
JP3121424B2 (en) Semiconductor photodetector
KR100564398B1 (en) Cooling device of the light source in the projection television
JP3854846B2 (en) Solid-state imaging device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase